
F O R R E i E R E

40 0 6 7 0 8 6 0 3

I N I I I I I 1 I 1 I I I I I I I I I I I I

ProQuest Number: 10290065

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com p le te manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 10290065

Published by ProQuest LLC(2017). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106- 1346

p k D

q s / p t A ^

THE DEVELOPM ENT OF A KNOWLEDGE BASED FRONT END FOR A

COMPUTATIONAL FLUID DYNAMICS PACKAGE

BY

Stuart Lee Hartle, BEng(Hons), AMIMechE

A thesis submitted in partial fulfilment of the requirements

of The Nottingham Trent University

for the Degree of Doctor of Philosophy

August 1993

© Copyright Notice:

This copy of the thesis has been supplied under the condition that anyone who consults it

is understood to recognise that its copyright rests with its author and that no quotations

from the thesis and no information derived from it may be published without the author’s

prior consent.

A^sAiaateA to Abuzanne.

■a
1
3

The Development of a Knowledge Based Front End
for a Computational Fluid Dynamics Package

by

Stuart Lee Hartle, BEng(Hons), AMIMechE

ABSTRACT

The overall aim of this study was to establish a knowledge based approach to the
preparation of data for complex computer programs. This was achieved through the
development of a Knowledge Based Front End which interacts with a user to extract data,
performs inference on this data and then synthesises the data to generate appropriate
commands acceptable to the original program.

Initial development of a Knowledge Based Front End to a Computational Fluid Dynamics
package, PHOENICS, using a commercial expert system shell, LEONARDO, was found
to be inadequate. The limitations of the shell lead to the re-development of the Front
End using the traditional Artificial Intelligence language, LISP.

LISP was used to create knowledge representation formalisms, data storage techniques
and a purpose built inference engine for the target application. Knowledge representation
formalisms included factual templates, objects and a specifically designed rule base
language. The creation and implementation of inference networks reduced the number of
rules the system needs to consider when using a specific rulebase. Base rules within each
rulebase are used as the roots with which forward chaining commences. Antecedents that
cannot be proved through forward chaining are then used as the goal for backward
chaining throughout the associated inference network. The Knowledge Based Front End
for PHOENICS improved the accuracy and consistency of the prepared data file. The
system synthesises the user entered data and inferred data into appropriate PHOENICS
commands to fully describe a computational analysis of fluid flow. A knowledge domain
for je t impingement was used as a vehicle to demonstrate the concepts incorporated within
the system.

The program architecture was carefully designed to enable future extensibility.
Replacement, or extension, of the existing database and knowledge bases with new
assertion templates, objects and rules, which would be inferred upon by the same
inference engine is feasible. This potential for extensibility allows the system to be applied
to different knowledge domains.

An important aspect of Computational Fluid Dynamics is the correct specification of the
meshed geometry. Aspect ratios within the grid can have disastrous effects on the
convergence of the solution and the accuracy of the results, and are therefore of
paramount importance. A novel method of aspect ratio dependent finite volume grid
generation is presented which utilises a generalised Fourier Series profile function. This
technique ensures that given an arbitrary, one dimensional, region, its overall height, the
minimum cell size, and the maximum allowed cell aspect ratio, the region can be meshed
using grid clustering near a wall or within a duct. Meshing each axis as a one dimensional
region enables a complete mesh to be obtained by superimposing the axes together.
Within the final domain, the cell aspect ratio will not exceed the predefined maximum.
Feasibility studies into the monitoring and control of the PHOENICS solution algorithm
and results analysis through post processing grid optimisation, were performed. The
potential for the latter two areas to be integrated into the KBFE looks promising.

ACKNOWLEDGEMENTS

To my Director of Studies, Dr K Jambunathan, I would like to express my sincere

gratitude for his tireless enthusiasm throughout this project. I would also like to extend

the same appreciation to Dr Eugene Lai, my first supervisor. Furthermore, their

continuous moral and technical support was always there in times of need. I am also

grateful to my second supervisor and Head of Department, Eur Ing Professor B L Button,

for providing the resources and facilities.

Special thanks are directed towards the Polytechnics and Colleges Funding Council

(PCFC) who have financially supported this project.

Researchers are always in need of a first class library service for access to references and

publications in whatever medium. I am extremely grateful to the engineering library staff,

especially the librarian, Mr J Corlett, for providing an excellent information retrieval

service which, in my opinion, is second to none. Thanks are also due to staff in the

Computer Services department for their extreme patience, in particular D r RHA Eade

and Mr R Gage.

On a more personal note, I would like to express the value of my friendship with my

colleagues Mr Shabir Kapasi and Mrs Shirley Ashforth-Frost. Their patience and

continual support, was very welcome, especially when I needed someone to discuss ideas

with. One further colleague who needs a special mention is Mr Karl Wyer, for his expert

help with various computer hardware and software difficulties experienced throughout this

research.

Finally, my years of higher education and the pursuit of further, formal, qualifications is

coming to a close. It is here where I would like to mention those people closest to me

that have not only had to suffer my intolerable attitude, in times of despair, but have also

shared my good times. Furthermore, they have always had confidence in me, something

that I often lack. Firstly: my wife Suzanne, for her confidence, endless patience and

understanding; and secondly my parents, Gloria and Dennis, who have always believed in

PUBLICATIONS

Jambunathan, K., Lai, E., Hartle, S. L., and Button, B. L., (1991a). Development

of an Intelligent Front End for a Computational Fluid Dynamics Package.

Artificial Intelligence in Engineering, Volume 6, Number 1, January 1991, 27-35.

Jambunathan, K., Lai, E., Hartle, S, L., and Button, B. L., (1991b). Development

of an Intelligent Front End: An Experience. Engineering Applications o f Artificial

Intelligence in Engineering, Volume 4, Number 5, 385-392.

Jambunathan, K., Lai, E., Hartle, S. L., and Button, B. L., (1992). Development

of an Intelligent Front End using LISP. Proceedings o f the Seventh International

Conference on Artificial Intelligence in Engineering, 14116 July 1992, University o f

Waterloo, Ontario, Canada, 229-243.

Hartle, S. L., Li, H., Lai, E., Jambunathan, K., and Button, B. L., 1993. A

Knowledge Based Approach to Data File Checking for Numerical Simulation

Packages using an Expert System Shell. Submitted for publication in Engineering

Applications o f Artificial Intelligence, July 1993.

Hartle, S. L., Jambunathan, K., Lai, E., and Button, B.L. Aspect Ratio dependent

finite volume grid generation. Submitted for publication in the International Journal

for Numerical Methods in Engineering, August 1993.

CONTENTS

A b strac t.. i

Acknowledgements... ii

Pub lications... iii

Contents ... iv

List of figures .. ix

List of t a b l e s .. xv

Nomenclature ... xvi

Abbreviations.. xvii

1 INTROD UCTION.. 1

1.1 Background... 1

1.2 A pplication ... 2

1.3 Aims and O bjectives... 4

1.3.1 Aims ... 4

1.3.2 KBFE System Objectives .. 5

1.3.3 CFD Heuristic O bjectives.. 6

1.4 Chapter con ten ts ... 6

2 LITERATURE REVIEW .. 9

2.1 Introduction ..■.......... 9

2.2 Intelligent front e n d s .. 10

2.3 KBFE applications .. 11

2.3.1 Management information system s.. 11

2.3.2 Program generation .. 12

2.3.3 D atabases... 13

2.3.4 Process plant .. 15

2.3.5 Simulation .. 16

2.3.6 Statistical packages.. 18

iv

-

2.3.7 General engineering .. 19

2.4 Integrating artificial intelligence and computational fluid dynam ics 23

2.5 Conclusions... 26

3 COMPUTATIONAL FLUID DYNAMICS.. 28

3.1 In tro d u c tio n ... 28

3.2 The need for computational fluid dynam ics.. 28

3.3 Computational fluid dynamics packages... 29

3.4 PHOENICS environment ... 30

3.4.1 SATELLITE .. 30

3.4.2 E A R T H ... 31

3.4.3 PHOTON .. 32

3.5 Description of physical phenomena using P H O E N IC S................................. 32

3.5.1 Dependent variab les.. 32

3.5.2 Discretisation of the co n tin u a ... 33

3.5.3 General differential equation solved by P H O E N IC S 34

3.5.4 Linear algebraic discretisation eq u a tio n s .. 34

3.5.5 Solution to the algebraic eq u a tio n s ... 35

3.5.6 Problem specification... 35

3.6 The need for artificial intelligence interaction .. 38

3.7 Computational fluid dynamics knowledge elicitation..................................... 41

3.8 Aspect ratio dependent finite volume grid generation 41

3.8.1 In troduction .. 41

3.8.2 Symmetric formulation, grid clustering in a d u c t 46

3.8.3 Generic formulation.. 56

3.8.4 Example ... 59

3.9 Conclusions.. 59

4 INTELLIGENT/KNOWLEDGE BASED FRONT E N D S .. 65

4.1 In tro d u c tio n ... 65

4.2 Knowledge based front end architectures... 67

4.2.1 The dialogue handler/user in terface.. 67

4.2.2 The user model ... 69

4.2.3 T . dge handler and knowledge bases 69

4.3 Knowledge based front ends developed with expert system sh e lls 70

4.4 Conclusions.. 71

v

PROTOTYPE KNOWLEDGE BASED FRONT END USING LEONARDO . . . 72

5.1 Introduction ... 72

5.2 Expert systems .. 72

5.3 L E O N A R D O ... 75

5.3.1 Spurious events within L E O N A R D O ... 75

5.3.2 LEONARDO’S use of pseudo-lists.. 76

5.3.3 LEONARDO’S run time response .. 78

5.3.4 Compilation times and debugging facilities 79

5.4 Prototype infrastructure ... 79

5.4.1 The data file checker 81

5.4.2 Pseudo-sequential checking.. 83

5.4.3 Parsing of mathematical expressions... 87

5.4.4 The data file generator 89

5.4.5 Information storage within pseudo-list structures 90

5.5 Conclusions... 92

A KNOWLEDGE-BASED FRONT END TO PHOENICS USING L I S P 94

6.1 In tro d u c tio n .. 94

6.2 Symbolic pattern matching ... 95

6.3 Symbolic pattern unification ... 96

6.4 Inferencing techniques.. 97

6.5 System arch itectu re... 97

6.6 LISP functions .. 99

6.6.1 User interface fu n c tio n s ... 99

6.6.2 Data manipulation functions...102

6.7 System d a ta b a s e ...104

6.7.1 Assertions ..106

6.7.2 Assertions l i s t ...106

6.7.3 O bjects...107

6.7.4 Object slot descriptions.. 108

6.8 RuleBase language .. I l l

6.8.1 User Rule S y n tax .. I l l

6.8.2 System Rule Syntax ... 113

6.8.3 Production rules : A ntecedents.. 113

6.8.4 Production rules : Consequents.. 1.16

6.8.5 Object declaration and object slot manipulation consequents . . 117

6.8.6 Function calling consequents... 119

6.8.7 Bindings manipulation consequents..122

6.8.8 Command synthesis consequents...124

6.8.9 List quantification rules ...125

6.8.10 Rule firing m o d es ... 127

6.9 Inference e n g in e .. 127

6.9.1 R ulebases... 130

6.9.2 Inference ne tw orks...132

6.9.3 Forward ch a in in g 133

6.9.4 Backward ch a in in g ...139

6.9.5 Bindings transition through inference ne tw orks.............................. 146

6.9.6 Mathematical p a r s e r .. 148

6.10 Presentation facilities ...149

6.11 Extensibility ... 153

6.12 Conclusions..153

7 CASE STUDIES ..156

7.1 Introduction ..156

7.2 Two dimensional thermal jet impingement - Turbulent158

7.3 Two dimensional axisymmetric flow m e te r ...169

8 FEASIBILITY ST U D IE S..180

8.1 Introduction ..180

8.2 Monitoring and control of the solution algorithm .. 180

8.2.1 Heuristic monitoring and control ...181

8.2.2 Directly requesting user declared code from Q l .D A T186

8.2.3 Location of residuals and monitor spot values within

G R O U N D .. 187

8.2.4 Location of relaxation values .. 188

8.2.5 Statistical analysis... 188

8.3 Post processing grid optim isation..190

8.4 Conclusions.. 193

9 CONCLUSIONS AND RECOMMENDATIONS... 194

9.1 Conclusions.. 194

9.2 Recommendations for further work ...196

REFERENCES ..198

vii

Appendix A Fourier series coefficients for the profile function shown in

Figure 3.15 ...210

Appendix B Finite volume aspect ratio dependent C c o d e ..213

Appendix C Command sequence program, COMSEQ.FOR, used for the data file

checker..219

Appendix D FORTRAN mathematical parsing code, EV A LU A TE.FO R 228

Appendix E LISP KBFE Objects and R ulebases..239

Appendix F LISP Inference Engine - Detail flow charts.. 271

Appendix G LISP KBFE code ...288

Appendix H LISP mathematical p a r s e r .. 379

Appendix I Pseudo real time control FORTRAN code ..381

Appendix J Published w o r k ..388

LIST OF FIGURES

Figure 3.1: The PHOENICS env ironm ent.. 31

Figure 3.2: PHOENICS cardinal notation .. 33

Figure 3.3: PHOENICS staggered grid ... 34

Figure 3.4: Unconfined jet im pingem ent... 37

Figure 3.5: Geometry and Specification associated with the two dimensional

unconfined thermal jet impingement ... 38

Figure 3.6: PHOENICS Q l.DAT data file after Figure 3.5 39

Figure 3.7: PHOENICS grid generation com m ands.. 42

Figure 3.8: Orthogonal mapping. Two dimensional cartesian onto a two

dimensional boundary fitted sy s tem .. 43

Figure 3.9: Roberts’ (1971) cell distribution profile between two walls for a given

number of c e l l s ... 44

Figure 3.10: Arbitrary one dimensional region between two parallel p la te s 47

Figure 3.11: Initial triangular profile function .. 49

Figure 3.12: Modified triangular profile fu n c tio n ... 50

Figure 3.13: Problematic profile function ... 52

Figure 3.14: Resulting grid distribution after Figure 3 .1 3 ... 52

Figure 3.15: Profile function for grid clustering in a d u c t ... 53

Figure 3.16: Resulting cell distribution after Figure 3.15 ... 55

Figure 3.17: Grid clustering in a duct, a ~ 0.5 ... 58

Figure 3.18: Grid clustering near a wall, a = 0 . 0 ... 59

Figure 3.19: Grid clustering: AR = 10, L = 1.733 mm, and h = 60 mm. (a) a — 0.0,

(b) a = 0.5, and (c) a = 1.0 .. 60

Figure 3.20: Grid clustering: AR = 5, L = 1.733 mm, and h = 60 mm. (a) a = 0.0,

(b) a = 0.5, and (c) a = 1.0 .. 61

Figure 3.21: Regionalised domain after Figure 3 .5 .. 62

Figure 3.22: Y axis regional m esh ing .. 63

Figure 3.23: Z axis regional m esh in g .. 63

Figure 3.24: Entire meshed domain after Figure 3.5 ... 64

Figure 4.1: Locality and role of a Knowledge Based Front E n d 66

Figure 4.2: Conceptual Knowledge Based Front End architecture 68

Figure 5.1: Human / Artificial Intelligence attributes ... 73

Figure 5.2: Conceptual structure of doubly linked l is ts ... 77

Figure 5.3: Preliminary architecture of the PHOENICS KBFE developed within the

LEONARDO shell .. 80

Figure 5.4: Detailed architecture for the data file checker 82

Figure 5.5: Possible order of data entries into the data file with sequential and

pseudo-sequential checking o rd e r s .. 83

Figure 5.6: Elemental structure for the COMSEQ one dimensional array for

pseudo-sequential checking inform ation ... 84

Figure 5.7: (a) COMSEQ one dimensional array, (b) Pseudo-sequential checking

order used for a manual data f i l e ... 86

Figure 5.8: Modularity of the Q l.D A T data file generator developed with

LEONARDO .. 90

Figure 5.9: Conceptual, complex, list structure within LEONARDO 91

Figure 6.1: Knowledge Based Front End system arch itectu re 98

Figure 6.2: Fundamental data entry functions : Geometry data entry screen - Nodal

coordinates .. 100

Figure 6.3: Fundamental data entry functions: Geometry data entry screen - Nodal

connectivity.. 101

Figure 6.4: User prompting functions: Data entry screen - Object enquiry 102

Figure 6.5: User prompting functions: Data entry screen - Assertion template

enquiry ..102

Figure 6.6: LISP special variable: *NODES*...103

Figure 6.7: LISP special variable: *BOUNDARIES* ...104

Figure 6.8: LISP special variable: *REGION S*... 105

Figure 6.9: Blackboard structure and abstract LISP representation.................. 108

Figure 6.10: Object frame and slots through LISP s tru c tu re s 109

Figure 6.11: Omission / Inclusion of rule name in User Rule Syntax112

Figure 6.12: System Rule Syntax after Figure 6 .1 1 ..114

Figure 6.13: (a) Conjunctive, (b) Disjunctive production r u l e s 115

xi

3

Figure 6.14: Transposition of a consequent only rule to a standard production rulctl6

Figure 6.15: INLET-FLOW-AREA-RB: Use of the functions XC 1, XC 2, YC 1, d
i?

i!

ZC_2 .. 121 |

Figure 6.16: Bindings manipulation consequents ..123

Figure 6.17: List quantification rule: System Rule S y n ta x ... 126

Figure 6.18: Consequent firing: (a) Default; (b) Applying the bindings list to each

consequent ... 128

Figure 6.19: Firing the consequents in b lo c k ...129

Figure 6.20: Inference Engine Logic ... 131

Figure 6.21: Inference Networks: Antecedent - Consequent linkages........................133

Figure 6.22: Abstracted inference network ... 134

Figure 6.23: Pattern matching and forward chaining 135 ; $

Figure 6.24: Forward chaining log ic..136

Figure 6.25: Bindings instantiation ..137

Figure 6.26: Rules, inference network and data used to illustrate backward chaining

o n ly 140

Figure 6.27: Antecedents, bindings and rule used to illustrate data transition through

inference netw orks..141

Figure 6.28: Logic associated with the function T R Y -R U L E143

Figure 6.29: Backward chaining: Bindings instantiation with*.* an associated rule 144

Figure 6.30: Bindings transition through inference networks146

Figure 6.31: Presentation facilities: (a) menu entry screen; (b) Assertion querying

s c re e n ...150

Figure 7.1: 2D confined jet im pingem ent..158

Figure 7.2: 2D meshed region of turbulent, confined, thermal jet impingement 168

Figure 7.3: Filled temperature contours and stream l in e s ...168

Figure 7.4 Two dimensional axisymmetric flow meter - Orifice p l a t e169

Figure 7.5: 2D meshed region of an axisymmetric flow m e te r179

Figure 7.6: Filled pressure contours and stream lin e s ..179

Figure 8.1: Initial instability followed by rapid convergence.

[Correlation coefficient = -0.9728] ... 182

Figure 8.2: Modified version of Figure 7.1 with outliers removed.

[Correlation coefficient = -0.9836] ... 183

Figure 8.3: Continuous rapid convergence... 184

Figure 8.4: Onset of oscillations indicating the limit of current relaxation factors.

[Correlation coefficient = -0 .9].. 185

Figure 8.5: Exacerbated oscillations with little or no convergence.

[Correlation coefficient = 0.0857]..186

Figure 8.6: A typical residual scatter p lo t ..189

Figure 8.7: Ann: - ^radient analysis for assessing the convergence of the

solution residuals..191

Figure F .l: U SE-R U LEB A SE...272

xiii

Figure F.2: USE-RULE .. 273

Figure F.3: USE-IF-THEN-RULE ... 274

Figure F.4: U SE-FO R -A LL-RU LE... 275

Figure F.5: A PPLY -FILTER S.. 276

Figure F.6: DISJUNCTIVE-ANTECEDENTS..277

Figure F.7: FILTER-BINDINGS-LIST ..278

Figure F.8: FILTER-BIN D IN G S..279

Figure F.9: EVALUATE-ANTECEDENT...280

Figure F.10: PRELIMINARY-EVALUATION-OF-THE-ANTECEDENT _____ 281

Figure F .l l : MATCH-ANTECEDENT-TO-ASSERTIONS-AND-ASSOCIATED-

R U L E S 282

Figure F.12: M ATCH-ANTECEDENT-TO-ASSERTIONS.. 283

Figure F.13: M ATCH-ANTECEDENT-TO-ASSOCIATED-RULES....................... 284

Figure F.14: TRY -ASSERTION S ..285

Figure F.15: TRY-RULE .. 286

LIST OF TABLES

Table 3.1: Tabulated progression through the Fourier Series for the modified

triangular profile function .. 51

Table 3.2: Tabulated progression through the final profile function 57

Table 6.1: Assertion tem p la tes ... 107

Table 6.2: Command synthesis tem p la te s ..125

NOMENCLATURE

Chapter 3

AR Aspect Ratio

h Height of arbitrary one dimensional region

L Smallest cell size

mi Gradients of the regional profile function, j = 1, 2, 3

N Number of cells within the region

y Down stream cell face distance from a datum

Subscripts

i Cell number

Greek

a Grid clustering parameter

<Xj Abscissa profile function parameters, j = 1, 2, 3, 4

/ 3 f(2ir«3)

<f> Dependent variable

X Cell aspect ratio

9 2 ir j

tp Maximum allowed f^ iry)

(«2 h) / (tt AR L)

ABBREVIATIONS

AI Artificial Intelligence

AIP Advanced Information Processing

BEM Back End Manager

CFD Computational Fluid Dynamics

CIM Computer Integrated Manufacture

D ol Department of trade and Industry

ES Expert System

ESPRIT European Strategic Programme of Research and develop

Information Technology

FE Front End

IFE Intelligent Front End

IKBS Intelligent Knowledge Based System

IT Information Technology

KB Knowledge Base

KBFE Knowledge Based Front End

KBS Knowledge Based System

MIS Management Information Systems

M IT Massachusetts Institute of Technology

MMI Man Machine Interfaces

MRP Materials Requirements Planning

PHOENICS Parabolic Or Elliptic Numerical Integration Code Series

PIL PHOENICS Input Language

SERC Science and Engineering Research Council

SRS System Rule Syntax

URS User Rule Syntax

VLSI Very Large Scale Integration

INTRODUCTION

1.1 Background

Software packages come in many forms ranging from simple teaching programs, through

database packages to extremely complex programs that solve problems based on the

fundamental laws of physics. Simple teaching packages usually require interactive input

from the user which might be a simple yes or no answer to a question. However, complex

and versatile programs conventionally rely on auxiliary input files to feed the main

executable code with data. These type of systems employ a specific language designed for

the package which are idiosyncratic because they contain encoded data. This data is

formulated from commands that the software can understand but appears unintelligible to

users who are unfamiliar with the command language. This is typical of software

developers who try to simplify concepts so much that they become too engrossed to realise

that other people do not appreciate the significance of specific commands. Each package

usually has its own specific command language used for entering data which describes the

problem to be analysed. There usually exists a bottleneck in the use of the software, for

novice users, which can be overcome by appropriate training. Progression through the

initial stages of the learning curve are prerequisites to becoming proficient with any

package. A similar situation is experienced when a new computer language is being

learnt. Furthermore, packages of a similar nature exhibit an overlap of concepts, as with

computer languages. This allows a proficient user of one particular package, say for stress

analysis, to understand the command language, of another stress analysis package,

relatively easily when compared with a novice. This is because a problem needs specific

data before it can be solved, occasionally in a predetermined order. Knowing what data is

required, and when, contributes to the problem of data entry.

Being able to communicate with a computer in English through an interactive session

whereby data relating to the execution of a particular package could be entered, would be

beneficial. Benefits would include reducing the training required, shortening the learning

curve and increasing the number of potential users. In order to allow communication of

this nature it would be necessary to insert, between the user and the target package,

secondary software that would act as an intermediary. This secondary software, often

referred to as the Front End (FE) would take the information given by the user and

transform, or synthesise, it into the commands required by the target program.

Introduction Chapter 1

1.2 Application

The processes of heat/mass transfer, chemical reactions and fluid flow pervade all aspects

of human life. These processes can be observed in engineering: combustion engines,

aircraft, rockets, heat exchangers, air conditioning plants, the natural environment:

pollution, storms, floods, fires and in the human body: blood flow, tem perature control via

heat and mass transfer. As a consequence of the enormous influence the processes have

on human life it is essential to be able to predict the behaviour in order to deal with them

effectively. Extensive research throughout the world, over many years, has yielded many

powerful numerical simulation packages.

Within the engineering industry the use of numerical simulation packages play an

extremely important role in computer aided design. Powerful microcomputers provide

relatively small companies access to comprehensive Computational Fluid Dynamics (CFD)

packages. CFD modelling of physical situations can be an extremely complex procedure

and it usually requires specialist expertise and familiarity with the package to establish a

working model. The generation of an input data file to a CFD package can be

cumbersome and simple modifications usually require extensive alterations to the format.

These modifications can be very susceptible to catastrophic failure due to the enormous

potential for human errors in typing or a momentary lack of concentration. This risk

increases directly with the size of a data file which is usually large in a realistic problem.

The data files contain information relating to the geometry, boundary conditions,

properties and the solution parameters associated with the package. In common with

other numerical schemes most CFD packages tend to be of a generic nature thus allowing

numerous permutations of analyses to be performed. For example a CFD package might

be able to consider laminar/turbulent flows, heat/mass transfer and chemical reaction

processes. The availability of a number of options for the user to choose increases the

number of commands he may have to enter, each of which informs the main executable

code to either include or omit a particular option from the analysis, thus limiting the

number of variables the program has to solve. Clearly, the marketability of the software

package relates to its versatility to model a variety of different classes of problems. Even

though the availability of CFD packages is increasing, their popularity and potential

market is yet to be fully realised, especially by small companies This is mainly because of

the costs involved in releasing engineers to attend the necessary training courses to

become proficient with the package, and the need for these engineers to have at least a

2

Introduction Chapter 1

basic understanding of the processes involved in order to get the full benefit from the

courses. The time to become familiar with a numerical stress analysis package, MARC, is

anything up to one year depending on the ability of the user, Bennet and Englemore

(1979). This timescale is typical for most software packages and experience has shown this

to be so for PHOENICS (versions 1.4, 1.5 and 1.6).

PHOENICS is a general purpose finite volume package designed for the simulation of

fluid flow, heat/mass transfer and chemical reaction processes. It achieves the simulation

by solving the associated governing differential equations of fluid motion, heat transfer

and the conservation of chemical species, Patankar (1980). PHOENICS solves the

governing equations in a discretised form, employing specifically designed solution

algorithms which are hidden from the user. Problems are formulated and then described

to PHOENICS with the PHOENICS Input Language (PIL). PIL is used for entering data

such as the geometry, fluid properties, boundary conditions and solution parameters. PIL

can be entered interactively, or into a data file which is read and interpreted by

PHOENICS. The latter method is possibly the most commonly used technique, which

requires a data file named Ql.DAT. For a beginner, the task of learning how to specify a

problem correctly using PIL is a very slow process. Some PIL commands require

background CFD knowledge, and as such an understanding of the techniques used to solve

CFD problems is usually advisable. Experience has shown that the learning curve for

PHOENICS can easily extend beyond twelve months: this would be required to become

familiar with the most commonly used commands, and to be made aware of the advanced

facilities within PHOENICS. Indeed experienced users still find commands or functions

available that they are not aware of.

Front Ends to software packages are usually designed to improve the data entry process

through the use of menus, interface screens and help facilities. Techniques such as these

are used to provide fixed interfaces, and as such could demand considerable time to

modify. Knowledge Based System (KBS) techniques rely on an inference engine to use a

set of rules contained within a Knowledge Base (KB) to extract the information from the

user and to perform the necessary presentation. The term Intelligent Front Ends (IFEs) is

used by some to describe user interfaces employing knowledge based techniques. The

term Knowledge Based Front Ends (KBFEs) is also used as an alternative, and is one

which is preferred because it describes the techniques used for the development of the

front end. However, the terms IFE and KBFE will be used synonymously.

3

Introduction Chapter 1

Over the last decade two initiatives were embarked upon for Information Technology (IT)

in Britain and Europe: ALVEY and ESPRIT. ALVEY was a British initiative which

commenced in 1983 for a five year period. There existed numerous research projects

under this initiative, one of which was directed towards IFEs. As a contrast to ALVEY,

ESPRIT was the European programme which established international collaboration from

industry and academia towards IT research. The infrastructure of ESPRIT was similar to

ALVEY in so much as they categorised the research interests. The area of Knowledge

Based Front Ends was the counterpart of the ALVEY IFE research theme. ALVEY and

ESPRIT are briefly discussed in Chapter 4.

An IFE, as defined by the SERC/Dol in their final report on Intelligent Knowledge Based

Systems (IKBS) architectures is as follows,

"[A] front end to [an] existing software package for example a finite element package, or

mathematical modelling system, [which] provides a user friendly interface (a "human

window") to packages which without it, are too complex and/or technically

incomprehensible to be accessible to many potential users. An intelligent front end builds

a model of the user’s problem through user-oriented dialogue mechanisms based on

menus or quasi-natural language, which is then used to generate suitably coded

instructions for the package.", Bundy et al. (1984).

The definition was taken by Bundy (1984a) and condensed into a more succinct statement,

"An intelligent front end (IFE) is a kind of expert system. It is a user friendly interface to

a complex software package which would otherwise be incomprehensible and/or too

complex to be accessible to many potential users."

13 Aims and Objectives

13.1 Aims

To establish a k n l e d g e based methodology ic ± rep are data for complex computer programs.

This was to be achieved through the development o f a Knowledge Based Front End for a

commercial Computational Fluid Dynamics package, PHOENICS.

Introduction Chapter 1

PHOENICS is such a complex package that the inclusion of all commands within the

KBFE and their interrelationships would not be feasible under this project. In order to

demonstrate the KBFE concepts, and how they should be implemented, a knowledge

domain was chosen which considered two-dimensional jet impingement.

Using this knowledge domain, the initial aim of the research was ...

• To assess, through the development of a prototype front end, how an expert system

shell would perform with respect to knowledge representation, data storage and

inferencing.

This, as will be shown, proved to be problematic, in so much as the chosen shell was

inadequate for this application in terms of knowledge representation and data storage

facilities. However, a useful introduction into the techniques of knowledge based systems

and the terminologies used was provided through the development of the prototype. The

experience gained using the shell contributed in the decision to move towards the use of a

traditional Artificial Intelligence language, LISP. This then lead to a modified research

aim consisting o f ...

• Using LISP, develop specialised knowledge representation formalisms, inference

techniques and a method of storing information for CFD purposes.

13.2 KBFE System Objectives

The objectives were to consider the requirements of CFD, and how the process of

formulating a problem and heuristically entering / controlling the analysis is performed.

To this end the following was addressed ...

• Establish methods of storing PHOENICS variables and data relating to boundary

conditions.

• Generate a rule based language for use within the knowledge bases. Achieve

knowledge categorisation through the use of multiple rule bases.

Introduction Chapter 1

• Implement forward and backward chaining techniques on the rule bases through

the use of inference networks.

• Establish and implement techniques to recognise when the KBFE needs data entry

from the user.

• Devise data synthesis rules to generate coded instructions for PHOENICS.

1.3.3 CFD Heuristic Objectives

• Establish techniques to mimic the heuristic processes performed manually by users

of PHOENICS for grid generation.

• Carry out a feasibility study into controlling the PHOENICS solution algorithm, by

monitoring the residuals and field values to sense when relaxation factor

modification is required.

• Investigate grid optimisation post processing procedures that have the possibility,

through incorporating code, to aid the analysis of results.

1.4 Chapter contents

A literature review is provided in chapter 2 which examines previous work in the field of

Artificial Intelligence (AI) and its application to CFD. This is preceded by a description

of what an expert system is, why they are used, and introduces criteria to be employed in

assessing the need for an expert system. An insight into Intelligent Front Ends (IFEs) is

given, which is a consequence of the Alvey project, and its ESPRIT counterpart

Knowledge Based Front Ends (KBFEs). There is very little difference between an IFE

and a KBFE, essentially in architecture structure, however the term KBFE is preferred but

both terms will be used synonymously. Application areas of KBFEs, and their associated

research, are presented which illustrates the wide use of such systems. Areas covered

include, but are not restricted to, program generation, databases, statistical packages, and

general engineering. General engineering encompasses KBFEs for finite element stress

analysis packages, mesh generation, building design and building energy simulation

packages. Finally, the interaction of AI and CFD is reviewed.

Introduction Chapter 1

Due to historical reasons, PHOENICS was chosen as the package with which to interface

the developed KBFE. PHOENICS is a Computational Fluid Dynamics package, and as

such chapter 3 concentrates on the architecture of PHOENICS and introduces the various

data entry techniques. This is preceded by briefly mentioning the basics of CFD with

respect to the discretisation and the governing differential equations that are solved in

order to numerically predict fluid flow. An example geometry and data file is given for

unconfined jet impingement in order to illustrate the PHOENICS Input Language. The

reasoning behind the integration of AI and a commercial CFD package is addressed which

is then extended to cover the type of knowledge required in order to formulate and specify

a problem using PHOENICS terminology. PHOENICS uses the finite volume integration

technique, and as such requires that the defined mesh for a specific geometry adheres to

certain guidelines in order to ensure representative flow results. One param eter that must

be considered is the cell aspect ratio when refining a mesh near a wall, in order to capture

the viscosity effects of near wall flows. A technique for heuristic finite volume mesh

generation is presented that utilises a region height, minimum cell size and a maximum

allowed aspect ratio. These parameters, when used with the developed equations, create a

smoothly varying mesh which does not exceed the maximum allowable aspect ratio.

A closer look at the historical background of Intelligent Front Ends and Knowledge Based

Front Ends is presented in chapter 4, through the resume of the ALVEY and ESPRIT

projects. A schematic representation is given which indicates the locality and role of a

KBFE. This is then expanded onto a more detailed scale whereby the architecture and

individual components of a KBFE are described. Expert system shells are mentioned with

respect to their role in the development of KBFEs.

A prototype KBFE was developed using the expert system shell LEONARDO, versions

3.17, 3.18 and 3.20. This was the first approach to be taken in the research, as illustrated

by the initial aim of the project. The LEONARDO KBFE is described in chapter 5,

whereby the architecture is presented, and problems that were encountered are

highlighted. It was these problems which prevented a useful system being developed and

contributed to the decision to modify the approach to use LISP. The prototype consisted

of two independent facilities: a data file checker, Hartle et al. (1993), and a data file

generator. Possibly the most important deficiency was LEONARDO’S use of pseudo-lists,

these are described and compared with doubly linked lists. The need for mathematical

parsing within KBFEs is presented.

Introduction Chapter 1

LISP was used to develop specialised knowledge representation formalisms, inference

techniques and a method of storing information for CFD purposes. This was a

consequence of the experience gained with LEONARDO, hence the modified research

aim. Chapter 6 presents the architecture of the KBFE, and describes the various specific

LISP functions. A brief discussion on symbolic manipulation precedes a detailed

examination of the KBFEs database and data storage through the use of LISP structures.

Assertions, usually referred to as facts, are used to compliment the data storage

techniques. A rulebase language is presented which has been developed specifically for

the project and incorporates traditional IF ... THEN and list quantification rules. A

detailed description of the inferencing techniques is given, and inference networks are

examined with respect to the implementation of forward and backward chaining.

Solution monitoring and control, along with adaptive grid optimisation, are tentatively

examined in chapter 7. The feasibility of incorporating the heuristic monitoring and

control of the PHOENICS solution algorithm is addressed through the partial

implementation of the technique. Adaptive grid optimisation is very briefly looked at

through the consideration of a grid iteration technique which endeavours to optimise the

convergence onto grid independent solutions.

The current study is concluded in chapter 8 whereby the observations and experiences

acquired through the research are presented. The pertinent areas of work are highlighted

in order to consolidate each of the chapter contents. Extensions of the project are

suggested in the recommendations for further work which includes the investigation of the

use of Neural Networks to aid in grid generation.

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

Expert systems have been given an enormous amount of attention during the last decade,

and were initially the first commercial by-product from the research directed towards

Artificial Intelligence (AI). More specifically, the research that is of current interest is

related to the application of expert systems, either using the classical languages such as

PROLOG or LISP, or through the implementation of any one of the numerous expert

system shells available. For rapid prototyping and a quick introduction to the techniques

employed by expert systems, implementation of shells are recommended due to the ease

with which one can become familiar with the specific semantics and syntax that they

employ. However, at the early stages of developing a system one must not totally isolate

the possibility of using a different tool or even a development language. The reasoning

behind this will become clearer in due course. The use of AI techniques, related to

integrating systems with other software, has been a constant area of research.

The main thrust of an expert system is to reduce the load placed upon an expert, in a

highly specialised area, by removing the necessity for him to perform relatively mundane

and tedious tasks. To this end, a system should be there purely as a slave and not as an

"expert". This is manifest since the system will only perform the tasks that it has been

"told" to, through the use of encoded rules, and it will not be able to apply new

information until the appropriate modification of the knowledge base has been completed.

The necessity for an expert system can be questioned by the sceptics who believe that a

computer can never replace a human. This can never be argued because all computer

programs, no matter how extensive the validation process, invariably contain hidden

"bugs". Their existence is only to aid the expert and to try and disseminate relatively low

level expertise. Criteria for assessing the need for an expert system can be based upon the

time required for an "expert" to perform a specific task. Kathawala et al. (1989) reports

on a checklist devised at the Massachusetts Institute of Technology (MIT) which

establishes whether a field is worthy of integrating an expert system. These conditions are:

1. There must be an expert in the field;

2. The task must require a few minutes to a few hours to complete, anything less

9

Literature Review Chapter 2

should be done manually;

3. The task must be of the sort typically taught to novices;

4. There must be a high payoff, in terms of money saved;

5. No common-sense must be required.

Furthermore, Morley and Taylor (1986) suggest, under point 2 above, an expert system

should not be used if it takes less than ten minutes to solve a problem. Under these

circumstances Aseo (1988) claims that such an application is not cost effective, and any

implementation exceeding a few hours is beyond the state of the art.

In this chapter, areas within KBFE design and implementation will be discussed.

Applications will be mentioned with particular attention to CFD and its associated facets.

The research undertaken by others in the field of KBFE applications will be reviewed and

pertinent points drawn from their publications. An assessment of general trends in

hardware and software environments will accompany information related to the techniques

used.

2.2 Intelligent front ends

The definition of an IFE, Bundy et al. (1984) and Bundy (1984a), indicates that the

implementation of developed systems are directed at improving the usability of existing

software packages which are technically incomprehensible and/or too complex, for the

novice user, to use. All packages that have IFEs developed for them have one feature in

common; they all have enormous potential for use. This is provided that the initial

learning obstacles can be overcome, which may take anything up to one year, Bennett and

Englemore (1979). The type of package that IFEs can service is virtually limitless.

Edmonds and McDaid (1990) report on an architecture for Knowledge-Based Front Ends

(KBFEs) which originated from the FOCUS project (ESPRIT2 project 2620: Front Ends

for Open and Closed User Systems). FOCUS is a collaborative project between industrial

and academic pa.*" ‘ O, Imperial College, LUTCIII, METEK, Phillips, Solvay,

University of Barcelona and the University of Muenster, and required fifty six man years

of work over a four year period, Brouwer-Janse (1990). The project sees KBFEs as

enhancing the usability of target software packages by providing improved interfaces and

knowledge-based support to the user. The main thrust of the project was to develop

Literature Review Chapter 2

generic tools for constructing and maintaining KBFEs. The KBFE concept is similar to

that proposed through the ALVEY project, Bundy et al. (1984), but isolates a unit within

the KBFE that separates the user, application package and knowledge-bases. This unit,

called the Harness, effectively contains the inference engine along with data presentation

routines. The Harness controls the dialogue and presentation of data and information

with respect to the formulation of a problem. The synthesis of data to commands

required by the application package is controlled by the Back End Manager (BEM),

Edmonds and McDaid (1990) and Prat et al. (1990). FOCUS allows similar application

packages to be utilised from the same KBFE through the generation of separate data

synthesis knowledge bases.

2 3 KBFE applications

There exists many application areas for KBFE development. A summary of some areas

will be given with a sample of some relevant publications. The areas to be considered

includes: Management Information Systems (MIS), Program generation, Databases,

Process plant, Simulation, Statistical packages, general engineering and CFD.

23.1 Management information systems

Drechsler and Peppard, (1988) describes the application of IFE technology to

Management Information Systems (MIS) and Computer Integrated Manufacturing systems

(CIM). The work was carried out under the ESPRIT project 319 relating to data transfer

between CIM and MIS sub-systems. The expert system, LSM (Lot-Sizing Module), was

designed to supply an answer to the lot-sizing problem in the context of Material

Requirements Planning (MRP). Given relevant data, the system chooses between

available lot-sizing techniques in order to provide data to the information system package.

LSM was developed using the ES/P ADVISOR expert system shell.

Kurstedt et al. (1988) discuss the development of a responsive system, MLSTRAIN, as an

IFE for computer-based management application programs. A conceptual background to

the responsive system is provided by the Management System Model (MSM), which details

the relationships between the manager, what is managed and the tools used to perform the

management. MLSTRAIN is designed to aid managers plan a training schedule for their

workers in order to become computer literate, through professional development.

Literature Review Chapter 2

23.2 Program generation

Barstow et al. (1982) report on the development of an automatic programming system

<FNIX, which was written using INTERLISP-D and runs on a Xerox 1100 processor. The

system was created for petroleum scientists who may not be knowledgeable about

computers but would benefit from the generation of computer models, using natural

concepts, to quantitatively interpret well-logs. The resulting model specifications can be

implemented in any of several different target languages, such as LISP or FORTRAN.

Engquist and Smedsaas (1980) describe the development of a system which generates

FORTRAN code for the numerical solution of systems of hyperbolic and parabolic

differential equations, DCG (Differential equation and Code Generator). The user

describes the system he wishes to model by interacting with the computer using a Problem

Description Language (PDL). DCG is divided into two separate systems: the analyser,

written in SIMULA, and the synthesiser, written in FORTRAN, which utilises a code

library. The analyser handles the user communication and symbolically processes the

problem through syntax and semantic analysis. The analyser generates an output file

containing instructions for the synthesiser in the form of patches of code to be used in the

final FORTRAN program, and flags indicating the characteristics of the problem. The

synthesiser utilises the information within the file and generates a program from a

"preprogram" in a code library according to the related instructions.

Fang et al. (1988) present an IFE, AUTOP-GPSS/C (AUTO Programming in GPSS/C),

that is used to aid the generation of GPSS-C programs for Discrete-Event Simulation

Systems (DESS). Turbo-PROLOG was used to develop the IFE on an IBM-PC/XT(AT).

The system incorporates three fundamental components: the man-machine interface,

module selection and program generation. The machine interface utilises natural language

dialogue controlled by rules contained within the rulebase. Every question asked relates

to certain DESS concepts and the information gathered is stored in a global database

called the blackboard. Module selection is performed via an inferencing process on the

knowledge base, containing more than one h u w e d rules, and utilises the data and

information stored on the blackboard. The system incorporates forward and backward

chaining. Ninety of the rules contained within the rulebase, when used with backward

chaining, create the resulting GPSS/C code.

Literature Review Chapter 2

Uschold et al. (1984) report on the development of an IFE for Ecological Modelling,

ECO, which aids an ecologist user build a customised FORTRAN program to simulate the

processes in an ecosystem. The user creates a system dynamics model through interacting

with the IFE using free-form dialogue. The system knowledge base contains information

relating to ecological modelling data and is subdivided into three modules: Module

library, Entities and the Process library. The Module library contains approximately forty

modules which are mathematical functions, each with an associated ecological context.

Entities are objects that can be linked together with processes by the user and IFE to

create a system dynamics model. The Process library includes all of the ecological

processes that the user can incorporate into the model. The dialogue subsystem

essentially consists of six command statements, such that when combined with objects and

processes produces an English like sentence that is interpreted by the IFE to create the

model. The program generation is created with the aid of a well defined program

template.

23.3 Databases

Banwell (1989) describes the empirical knowledge elicitation approach taken for the

development of an IFE to a library database of information. The emphasis of the initial

research was to create a methodology whereby an individual user model would be built up

interactively during dialogue sessions. This would then be coded into the working system.

A stereotyping paradigm is advocated which utilises a model that should be upgraded to

suit the particular user. This model could then be recalled when the user re-starts a new

interactive session.

Cornali (1990) presents four adaptive strategies for KBFEs incorporated in a prototype

system, TELOS, an adaptive front-end for a NAG FORTRAN library, and which is

encompassed by the FOCUS initiative. These strategies are (1) User Stereotyping, (2)

Adaptive Terminology, (3) Objective Qualifications, and (4) Context-Sensitive Examples.

User stereotyping is considered to be valuable for adaptive front ends provided that (a)

the attributes predict the user’s ability, (b) stereotyping is only a first approximation, and

(c) attributes are upgraded as the user progresses. An important feature of an IFE is its

ability to adapt the required terminology to suit the user. Objective hierarchies are used

within TELOS to ascertain the needs of the user through a question and answer session.

This leads to the generation of a goal which is used in the search for the best method to

Literature Review Chapter 2

accomplish the request. Context sensitivity relates to the ability of the system to provide

explanations in the context of the current user’s situation. This removes a level of

abstraction from the user and allows him to relate to the explanation

Ford et al. (1989) address the problems experienced by users of the NAG (Numerical

Algorithms Group) numerical and statistical software libraries. Such problems include

having to learn new programming languages and being able to find their way through

reference manuals containing thousands of pages in order to successfully implement a

chosen library routine. The paper describes the role NAG have adopted with respect to

the KBFE projects they have undertaken. The KBFEs are NAXPERT, KASTLE,

FOCUS, GLIMPSE and SISP. NAXPERT is a decision support system written in

PROLOG to aid the selection of numerical routines from a FORTRAN numerical library.

KASTLE (Knowledge Assisted Selection Tool for Library Environments) is a KBFE for

the NAG FORTRAN library written in PROLOG, Whitmore (1991). NAG was the

coordinating partner of the ESPRIT2 FOCUS project which has been previously discussed.

GLIMPSE utilises PROLOG as its symbolic language to interface a FORTRAN statistical

package, GLIM. Wolstenholme and Nelder (1986) report in detail the front end for

GLIM. SISP, reported by Reid (1990), is a front-end which operates on a PC to provide

the user with an interface to systems with which he wishes to interact. The systems can be

operating systems or software packages. SISP allows a non-computer literate to

communicate and use a variety of facilities contained on a PC.

Khabaza et al. (1988) suggest that it is extremely difficult to provide an IFE to a complex

database, such as an online ’help’ system for sophisticated software. The system is an

intelligent help-file-finder (HFF) for the POPLOG programming environment. To qualify

the difficulties, various factors that make finding online information troublesome are

presented. To alleviate the problem it was proposed to utilise the human brain as an

inference engine, due to its inherent power, thereby allowing the user to take decisions

and make inferences. A pre-requisite to this is that the database should be very well

organised and include considerable quantities of meta-information, i.e. information about

the contained information. The conclusions drawn from the work suggested that the task

of designing a truly intelligent HFF was beyond the state-of-the-art, but progress was

made by combining human intelligence with a well designed database.

Literature Review Chapter 2

Mao (1988) describes a model of a knowledge oriented human-computer interface that

takes an expert system as an IFE to a database package written in Turbo-PROLOG. Mao

expresses an opinion that the IFE should ideally transfer control of the dialogue back and

forth from the user to the system. This is because a menu system, which is computer

controlled, restricts the user and convicts him to progress through verbose questioning.

Whereas a user controlled dialogue session is reported to place the system requirement so

high, the need for natural language processing, that the generality of the user interface

design is lost. The interface model or IFE consists of five modules and a knowledge-base.

The Menu Module provides multiple windows whereby data entry can take place and

forms the user interface. The Input Analysing Module divides an English sentence into

nouns, verbs, relatives, determinatives and relevant phrases. Classification of the words

into a tree structure precedes keyword matching with the knowledge base. The Clustering

Module sorts and merges the result produced by the Input Analysing Module. The

Learning Module consists of knowledge acquisition and allows the renewing and

modification of the knowledge base. The Explaining Module describes the system

infrastructure to the user and explains, for example, the knowledge structure in the

knowledge base and the schema of the database.

Tou et al. (1982) developed RABBIT which is an intelligent database assistant that aids

the user to formulate a query. The retrieval paradigm is based on a psychological theory

of human remembering: retrieval by reformulation. The system has been developed

specifically for those users that are either casual users or who approach the database with

only a vague idea of what they want. The latter rely on the system to guide them through

a (re)formulation of their queries.

23.4 Process plant

Emmett (1987) discusses real time data acquisition from multiple plant sources, including

operator input from the console and signals from various transducers and instruments.

The associated problems, which include cable costs, plant noise and communications, are

discussed and appropriate solutions presented. Communications noise, in various forms, is

addressed through I/O processors. The IFE, as it is referred to, consists of a I/O

processor card fitted in the plant interface unit. This simulates parallel processing,

through each unit receiving and processing data before passing it to the controlling

processor for use with data from other interfaces which is captured in a similar manner.

Literature Review Chapter 2

PICON, Process Intelligent CONtrol, is an IFE designed to serve an existing distributed

control system. Moore (1985), describes PICON’s application to assisting operators in

dealing with the numerous alarms that can result from an interruption in the process

industry. PICON does not control any of the distributed system, but only diagnoses the

alarm systems and advises operators how to deal with them. The system was designed to

operate in the lambda/PLUS LISP machine, a parallel processing computer with a

dedicated LISP processor for symbolic processing tasks, and an MC68010 processor for

fast data acquisition.

2.3.5 Simulation

Elmaghraby and Jagannathan (1985) describe the design and implementation of an expert

system to assist simulationists in selecting a simulation language matched to their model

and computer resources. The expert system and relational database have been built using

a dialect of LISP (IQLISP) on an IBM personal computer. The rules are primarily

conjunctive with each clause being made up of disjunctive sub-clauses. A backward

chaining inference engine utilises the data contained within the database whilst trying to

fire the rules.

Guariso et al. (1989) describes the conceptual design and a prototype implementation of a

knowledge based interactive generator of simulation models. The system comprises three

major components: model base; knowledge base; and the data base. The model base

contains the numeric models in the form of executable simulation programs, written in

languages such as FORTRAN, which run on a 8088 processor (MS-DOS). Data for each

model is provided and if several models are linked together then supplementary

information needs to be provided. Management of the model base is performed by the

system manager and the knowledge base. Knowledge relating to how models can be

connected is coded into the knowledge base using INTERLISP-D. The database contains

the necessary data for correctly executing different component models using a frame based

system. The system manager consists of three components: a dialogue component; a

control unit; and a simulator. The dialogue component forms the user interface, whereas

the control unit performs various tasks including the maintenance of the different bases

and model consistency checking. The simulator monitoi s ll. execution of the simulation

models, calls the numeric programs from the model base and provides the necessary data

from the database.

Literature Review Chapter 2

Michelsen et al. (1988) describe the development of SEAT (Strategic Engagement

Analysis Tool) written in Common Windows, Common LISP and KEE (Knowledge

Engineering Environment). Most weapons simulations or battle simulations are

historically written in FORTRAN. SEAT consists of two primary components: a generic

IFE and time-driven simulation capabilities. The IFE enables the user to specify scenario

values for different objects within the simulation, and it ensures that the values are both

meaningful and consistent with one another. The development languages for the IFE

were the Symbolics Window system and Common LISP. KEE was used to create the

simulation environment that contained the knowledge bases and the supporting graphics

routines. Seven knowledge bases existed within the prototype that contained information

relating to the objects (actors) and the rules for each subsystem.

O’Keefe (1986) addresses the similarity between expert systems and simulation.

Furthermore, it is suggested that one of the most important application areas for

knowledge based methods is IFEs. Dialogue handling, user models and a model of the

target package are identified as useful intelligence attributes to be included in potential

IFEs. It is also mentioned that allowing a system to obtain and analyse the results of a

simulation and appropriately altering the supplied data would be beneficial. If a KBS

could be produced to perform such tasks easily then "the resulting system would be a very

sophisticated IFE".

Strandhagen (1989) gives an overview of the different uses of expert systems in

manufacturing simulation, including simulation and expert systems as a teacher, expert

systems for scheduling, and expert systems as analysts of simulation results. The main

goal of the SIMMEK research programme was to supply Norwegian industry with a

simulation tool that can be used at all levels of Production Management. SIMMEK is an

object oriented package that requires no programming experience to use the system and

the input data includes economical factors. The three main modules of SIMMEK consist

of: the Modeller, the Simulation Kernel and the Analyst. The Modeller is the IFE, and

essentially creates a model by joining together objects within a window environment. Two

sub-models constitute a complete model: the layout mod^i and the product flow model.

A model, stored in the database, is checked for consistency and then transformed to

program code readable to the simulation kernel.

17

j & i i r . i K y v " ' * n' I*."'iMu -

Literature Review Chapter 2

Tangen and Wretiing (1986) discuss the application of Intelligent Front Ends (IFEs) to

numerical simulation programs. The paper attempts to generalise the functional and

knowledge aspects of IFEs. The proposed functional aspects include the need for a

graphical interface, flexible presentation of simulation results and easily extendable

knowledge-bases. The flexible presentation of simulation results can be omitted if the

numerical simulation programs are provided with adequate post-processing facilities.

However, advice on analysing the results should be included within the system.

Knowledge aspects of IFEs presented give a flavour of the information required to

establish a working IFE, such as production rules, templates, parameter constraints and

typical parameter values. An IFE architecture is presented that relates to the described

system KIPS (Knowledge Interface to Process Simulation) which interfaces a process plant

simulation program. The paper, although addressing IFE requirements, only focuses on

simulation programs that rely on the user building models by interlinking objects from a

library of predefined components. This approach is slightly different to that required from

CFD in so much as the latter does not use libraries of predefined components to create a

model.

Xuesi and Zhengzhong (1988) describe the system architecture, contained knowledge,

control strategies, and explanation facilities of the Simulation Integration Algorithms

Selecting Expert System (SIASES). SIASES was written using the Simulation Algorithms

Expert System development Tool (SASEST), using Turbo-PROLOG, and forms the basis

of an IFE to the simulation software SL1. SIASES provides knowledge on mathematical

properties, advice on algorithm selection, and assistance on interpreting mathematical

expressions. The knowledge encoded into SIASES consists of declarative knowledge,

process knowledge and control knowledge which is represented using ten forms of selected

predicate symbol expressions. Control is performed through forward chaining on the

rules.

23.6 Statistical packages

Wittkowski (1991', ‘ , PANOS, a human-computor interface to a statistical

package. PANOS is described as a front-end graphical interface to statistical database

management and analysis systems, for biomedical research applications, written in

TURBO-PASCAL 5.5 for MS-DOS. Data is entered into the system through screen

forms using a specifically designed problem formulation language.

Literature Review Chapter 2

Wolstenholme and Nelder (1986) describes the progress made in the development of a

knowledge based front end for a statistics package, GLIM. GLIM was designed for the

analysis of generalised linear models (GLMs). The system runs on a VAX 11/750 and

employs logic programming through the use of sigma-PROLOG and its associated

programming environment APES (Augmented Prolog for Expert Systems). The main

features of APES highlighted as being useful for KBFE development were declarative

dialogue handling and inherent explanation facilities. Five requirements were formulated

for the system, these included (a) advice should be given to the user, based on broad

principles, indicating what actions are available; (b) the system should explain any advice

given; (c) several user levels; and (d) clarification of questions or terms used. The

conceptual structure of the system comprises three facets: an abstract statistician; a

translator; and the statistics package (GLIM). The abstract statistician enables basic

computations to be performed and can store and display data graphically or in tabular

form. This allows common features between similar packages to be performed, using

high level language possibly incorporating natural language understanding, but remains

independent of the target software. The translator synthesises the information into GLIM

commands. Depending on the rules used within the back-end manager, multiple packages

could be serviced, in this case GLIM.

23.7 General engineering

The area of general engineering has been so classified to encompass areas such as building

design, solid mechanics, control system design, and dynamical system analysis, among

many others.

Ambroziak and Kleiber (1990, 1991) discuss a blackboard consultation system for

constitutive modelling in solid mechanics. The system, CONMOD, utilises a central

communications facility for data storage. Even though the system is not exactly an IFE it

advises the user on what type of equation set should be employed to model a solid

mechanics problem. Furthermore, it is concluded that the work presented would be

important to those interested in materials data bases and front-ends to numeric packages.

Bennett and Englemore (1979) utilised EMYCIN, an extension of MYCIN, Shortliffe

(1975), to develop an IFE, SACON (Structural Analysis CONsultant), which advises

engineers in the use of a finite element structural analysis package, MARC. At no time

19

Literature Review Chapter 2

during the development of SACON did the authors find the representation formalism

(rule-based) of EMYCIN to be a hinderance relative to the formulation of knowledge or

its eventual implementation. Furthermore, for an engineering application it was found

that the inherent confidence factor mechanism was not implemented. This concluded that

the omission of uncertainties within the generation of data and information was not

required. Wager (1984) discusses the architecture of SACON in greater detail

concentrating areas such as the analysis strategy, knowledge base and the knowledge

manager.

Building design and building energy simulations have been performed using existing

Computer Aided Building Design (CABD) packages as discussed by Clarke (1990).

MacRandal (1987), Clarke et al. (1988), and Clarke and MacRandal (1991) describe the

form and content of an IFE for building design incorporating building energy simulation.

Clarke (1990) presents the evolution of energy models and indicates that the fourth

generation which includes Intelligent Knowledge Based Systems (IKBSs), the IFE, will

emerge in the early to late 1990s. The architecture of the IFE includes various co

operating software modules that includes human-computer interaction, data entry

validation and intelligent defaulting. The software modules are organised around a central

communications module, the ’blackboard’. This structure enables each software module to

access and write information onto the blackboard, thus sharing relevant data. The

’blackboard’ architecture is a problem-solving framework and was developed for the

HEARSAY-II speech-understanding system, Erman et al. (1980), and has been used as an

architecture for control, Hayes-Roth (1984, 1985). Reddy and O’Hare (1991) outlined the

three main components of the model: the blackboard attributes, knowledge source

attributes, and the general system attributes. These attributes are described and are used

to survey, as then, current applications.

Fink et al. (1987) describes ATHENA AIDE, an expert system used for the preparation of

input models for the ATHENA (Advanced Hydraulics Energy Network Analyser) thermal

hydraulics package. It is a menu driven graphics interface utilising rule-based and object-

oriented programn.L^ techniques and is executed on singb-user Xerox AI work-stations.

ATHENA models physical systems using objects such as pipes, pumps and valves from

libraries similar to the process plant simulation codes described by Tangen and Wretling

(1986). Knowledge representation is performed using an object-oriented language in

conjunction with Interlisp-D. Two user models are introduced through the automatic and

20

i

- j

I

: i

4?i
' !
i

a

Literature Review Chapter 2

passive modes of operating ATHENA AIDE. Automatic operation is intended for a

novice whereby the system guides the user through the data entry sequences, whereas

passive operation is intended for experienced system users who know when and what data

to enter.

Pang (1988) has taken the definition of an IFE given by Bundy (1984a) and has developed

an IFE for a control system design and analysis package SFPACK, which is similar to

MATLAB. The IFE is essentially an enhanced command interpreter with several fixed

user models to introduce system flexibility. The enhancement is produced by allowing

system adaptability to various users, guidance for the use of the application package,

command recoverability for errors in user input and to act as a tutoring tool. A multi

level approach has been adopted to introduce three user levels: Expert level (IFE as a

caretaker); Intermediate level (IFE as an assistant); Novice level (IFE as a tutor). The

IFE was developed using C as opposed to using a traditional AI language or an expert

system shell.

Ramirez and Belytschko (1989) describe an IFE, ETUDES (Expert Time integration

control Using Deep and Surface Knowledge System), which is used for setting time steps

in dynamic finite element programs written in FORTRAN. It was concluded that the only

suitable knowledge representation techniques to be used consisted of production rules and

frames. Furthermore, it was necessary to represent deep knowledge using mathematical

models. In order to facilitate these requirements and to correctly balance flexibility and

control, the system was developed using OPS5, a production rule system. The

fundamental inferencing process within OPS5 is forward-chaining, although backward-

chaining can be emulated.

Thomas et al. (1990) gives a brief description of an expert system interface (IFE) to a

suite of rotor dynamics programs. A more comprehensive report is provided by Thomas

et al. (1988). The overview states the requirement of the IFE to be (1) the generation of

an input data file for rotor dynamic simulation, (2) to control the execution of the suite of

FORTRAN programs, (3) extract the required data from the simulation output, and (4)

iteratively generate new test cases until a solution has been found. The ES interface was

developed using POP11 which resides in POPLOG and imp oments a forward chaining

inference technique on a knowledge base that contains approximately thirty large rules.

Exposing the system to engineers has resulted, in their opinion, that the system produces

Literature Review Chapter 2

the same, or better, results as they would by hand. The time taken to obtain a result

makes the system attractive, half a days work can be performed in approximately ten

minutes.

Weiss et al. (1982) developed an expert system, ELAS, which was integrated into existing

software of the petro-chemical company Amoco for monitoring, controlling and

interpreting the results from a well-log analysis program, INLAN written in FORTRAN.

ELAS is a production rule advice model using the EXPERT production rule system,

which is also written in FORTRAN, Weiss and Kulikowski (1979).

Wong et al. (1988) addresses the coupling of an expert system written in Common LISP

and several ancillary engineering programs, written in FORTRAN. The expert system is a

Seismic Risk Advisor (SRA) used to evaluate the seismic risk of a particular building

according to data and expertise expressed in rules. Fuzay sets are used to represent

uncertainties associated with the data and hence with the overall risk assessment. The

rules encoded into the system have a complex LISP structure which is difficult to decipher

without explanation. Data transfer between the FORTRAN and LISP codes is performed

by writing and reading the necessary information onto/from disk, this is the same approach

taken by Tong (1985).

Yu et al. (1988) proposed an IFE using rule-based techniques for Intelligent Computer-

Aided Control System Design (ICACSD) using a recently developed software system

called CADCSC. The expertise that was captured for the IFE consisted of problem-

describing, control-theory, problem-solving, algorithms, and executable knowledge. The

primary goals highlighted for the ICACSD included the development of knowledge

representation techniques for control systems design, and the development of a knowledge

base and data base for use with CADCSC. The architecture for the ICACSD is described

and attention is directed towards the main functions of the system: Supervisory Expert;

Modelling Expert; Analysis Expert; Design Expert; and the Simulation Expert. The

preceding "Experts" are individual units within the system each of which contains a

knowledge base, data base, inference engine and a user .nterface. Standard production

rules are used in the rulebases and both forward and backward chaining are implemented.

Literature Review Chapter 2

2.4 Integrating artificial intelligence and computational fluid dynamics

Abbott et al. (1988) performed a feasibility study for using a knowledge-based system to

aid the user of a sophisticated CFD program, FLUENT. The work performed has been

shown to be representative of the experiences throughout the familiarity with PHOENICS.

Experiments were performed with novices and a CFD expert to assess their performance

when presented with a problem. Three general conclusions were drawn from the study:

(1) Sufficient expertise exists for the effective use of CFD code with respect to the

accessibility, efficiency and quality of results; (2) Categorisation of CFD expertise as

physical, numerical and technical; (3) Automated assistance via AI techniques is possible.

CFD problem solving procedure involves setting up the problem, solving the problem and

analysing the results. CFD expertise categorisation is discussed and presented in a tabular

format. Important aspects that agree with the findings of Abbot et al. are incorporated in

this project.

Uzel et al. (1988) performed a feasibility study for using Intelligent Knowledge Based

Systems (IKBSs) in Computational Fluid Mechanics (CFM). Their study concentrated on

the development of an IKBS for PHOENICS whereby the CFD preprocessor accessed the

inference engine and knowledge bases. The method of performing this integration of the

IKBS into PHOENICS appeared to require the embedding of the chosen shell, EX-TRAN

7, into the CFD package. EX-TRAN 7 is written in FORTRAN 77. The attributes for

using a shell approach were hypothesised and they indicated that they could only speculate

on the facilities that should be obtainable. It is claimed that the system developed with

EX-TRAN 7 should be able to link the development environment into itself and create an

executable IKBS program.

Mehta and Kutler (1984) and Mehta (1986) are variations of the same publication

detailing the integration AI with aerodynamics with their idealised system

AERODYNAMICIST. When introducing expert systems they take on board the

fundamental definitions and reiterate the versatility of expert systems in symbolic

processing as:-onpiol.~ *■-> ^urely numeric processing. Furthermore, they suggest that

having expert system*; within a company shifts the normal distribution of expertise to a

situation whereby the distribution becomes heavily biased towards a higher level of

expertise. Seven levels of expert system development are introduced which includes

conception, feasibility demonstration, prototype construction, extended use in a prototype

23

Literature Review Chapter 2

environment and the acceptance of the performance of the prototype system. The final

two stages relate to commercially extending and releasing a system.

The characteristics of expert systems differ with respect to the characteristics of

conventional programs, Waterman (1986). Mehta (1986) indicates that some of the

features such as programming tools, programming style, program architecture and the type

of data allow expert systems to grow progressively, and as a result are easy to modify.

This is in contrast to conventional programs that grow by revision, and are difficult to

modify. A hierarchy of solution methods is presented which establishes a relationship of

program power against generality for various programming techniques. Expert systems

that possess both symbolic and algorithmic procedures are reported to have a greater

generality than their purely algorithmic counter-parts.

Mehta and Kutler (1984) state that CFD involves ten areas where expertise should reside.

For the development of an expert system to work with an existing CFD package then

some of these facets can be omitted. This reduction leaves the following facets for

consideration:

1. Problem definition and input;

2. Selection of necessary available turbulence models;

3. Grid generation;

4. Assignment of boundary conditions;

5. Assignment of initial conditions;

6. Assessment of the resulting flow fields;

7. Presentation of results.

Kutler et al. (1985) state that the most likely area for developing an expert system for

CFD application would be within the field of grid generation. This implies that the

designed system should purely act as a pre-processor and not as a post-processor. Clearly,

if the development of an expert system purely for grid generation is to be attempted, then

the ultimate goal would be to produce a system that could not only establish an initial

mesh but also adaptively refine it to optimise the grid in order to obtain grid independent

results.

Literature Review Chapter 2

Vogel (1989) has developed EZGrid which is a knowledge-based system for automated

flow field zoning and mesh generation for CFD. The zoning procedure produces zonal

regions whose individual meshes are discontinuous at the interface boundaries, this kind of

grid generation procedure is not ideal for finite volume formulation. EZGrid was

developed using three programming languages: C, Franz Lisp (a dialect of Common Lisp)

and MRS (Meta-level Representation System). The application area lies within the field

of grid generation around aerodynamic bodies.

Blacker et al. (1988a) and Blacker et al. (1988b) describe AMEKS (Automated MEshing

Knowledge System) which is a two dimensional automated quadrilateral mesh generating

system which uses a knowledge based approach. AMEKS was designed to create a

meshed domain for finite element modelling. The system architecture and procedures that

AMEKS implements for the decomposition of complex shapes are described. FASTQ, a

parametric-mapping mesh generator, is used to develop the resulting grid. Heuristics used

to produce the final mesh are presented, such as vertex and regional classifications. A

comparison of complex mesh generations with those created by analysts shows that

AMEKS can perform to the standard of human counterparts.

Dannenhoffer and Baron (1987) discuss the development of a tightly coupled hybrid

expert system for complex, local compressible flow analysis using CFD. The system,

MITOSIS, combines expert system control through the use of traditional inferencing

techniques with a rulebase and the inherent computational power of conventional

programming. An important concept is that all procedures share data contained within a

central data pool. The implication is that as long as the input and output structure for

each procedure are fixed, solution algorithms can be developed and tested independently

from other procedures. Rules within the rulebases essentially form the control of the

system through inferencing and are used to execute the required procedures.

Knight and Petridis (1992), discuss the experience gained in the design and

implementation of an experimental CFD software package incorporating an intelligent

knowledge-based component, FLOWES. FLO vv ES was constructed with the CFD source

code available within which to directly integrate, the IKBS component. Clearly, this is

advantageous because the system could interact with the numerical code. The example

described illustrates a two dimensional heat transfer problem.

Literature Review Chapter 2

Tong (1985) introduces the concept of coupling AI/ES and CFD techniques for the design

of aerodynamic bodies. The system architecture that is presented distinguishes the AI and

CFD modules as being separate entities within the Expert Design System (EDS). The AI

module essentially acts as a front end to the CFD programs and data transfer is

performed through a system message utility (file passing). The front end is written in

Franz LISP, implements the production rule system OPS5 and interfaces the FORTRAN

analysis code. The AI modules are put in hibernation while the analysis code is being

executed.

2.5 Conclusions

The generation of Knowledge Based Front Ends has increased significantly over the last

fifteen years. The various application areas covers management information systems,

program generation, database and statistical package interfaces, process plant intelligent

control, and simulation packages. The general field of KBFE research covers many

aspects from fundamental inference techniques, through data storage to the design and

implementation of different user models. The concept of a KBFE is to increase the

accessibility of various packages or programming languages to potential users. The

progress in the development of universal KBFE concepts is slow, but it is being addressed

through various ESPRIT projects. The increased availability of expert system shells gave

impetus in the number of developed systems. However, a comparable number of systems

have also been developed using traditional AI languages such as LISP or PROLOG, in

various dialects. Improved computing power, and the increased number of packages has

stimulated the research into KBFEs.

It is evident from the reviewed publications that there is no one preferred method of

developing KBFEs: either with an expert system shell or an AI language. The complexity

of the application package, and the intricacies of the required data preparation, are

governing factors as to which approach to take. The application might be able to sustain

the restrictions of an expert system shell, but the KBFE could easily expand such that the

development has to be written around the shell’s limitations. One possible solution to this

dilemma is to advance further the ESPRIT research programme to increase universal

KBFE concepts. This could be expedited through active dissemination of research results,

and an amalgamation of the remnants of the ALVEY and ESPRIT IFE/KBFE groups.

New research initiatives in the area of KBFE development would be extremely beneficial.

26

Literature Review Chapter 2

Commercial CFD packages have, until recently, often lacked an easy way of preparing,

creating and entering data, particularly for users who infrequently run a package. There

are many different aspects of defining a CFD problem, each of which requires expert

tuition and guidance. KBFEs for CFD packages have enormous advantages for users who

do not frequently use them, in that they become more accessible. The very nature of

KBFEs is to remove the ambiguities associated with computer packages. Conversing with

the user in their own language enables data to be extracted, and synthesised into package

commands through the use of symbolic processing. Symbolic processing is a major

component in expert systems, and as such is the only logical way with which to effectively

create knowledge base systems. Furthermore, the flexibility and extensibility of increasing

the knowledge base size, without affecting the reasoning process is a major advantage.

The continual research into the areas of natural language understanding, graphical user

interfaces, user models, and symbolic computing techniques are all going to contribute to

the advancement of universal KBFE concepts. A centrally coordinated committee of

KBFE research projects would consolidate existing results and provide a forum through

which adequate dissemination could occur. Dedicated journals relating to KBFE research

would advantageous.

In conclusion, KBFE research has grown significantly over the past 15 years. The field has

spawned new areas of research such as user modelling and natural language

understanding. Progress towards universal KBFE concepts has been initiated through the

ESPRIT project, which should be further encouraged.

CHAPTER 3

COMPUTATIONAL FLUID DYNAMICS

3.1 Introduction

This chapter aims to introduce the application area of the KBS development, namely

Computational Fluid Dynamics. It briefly discusses why CFD is required and mentions

two of the packages that are commercially available which implement different integration

techniques. The selected target package for the development, PHOENICS, is then

covered in more detail whereby the finite volume technique is briefly examined and the

PHOENICS environment is presented. The data file structure is introduced, and a simple

example for unconfined jet impingement is given. This is used to illustrate the

PHOENICS Input Language (PIL). The reasoning behind the integration of Artificial

Intelligence and a commercial CFD package is addressed, this is then extended to cover

the type of knowledge required in order to formulate and specify a problem using CFD

terminology. Finally, it is important to be able to establish a grid that can reliably predict

the viscosity effects of near wall flows, Roberts (1971), which is governed predominantly

by the mathematical models used, and still do not contravene the maximum allowable

The processes of heat/mass transfer, chemical reactions and fluid flow pervade all aspects

o f human life. These processes can be observed in engineering equipment, in the natural

environment and in living organisms. Engineering equipment and power production

systems involve heat and fluid flow processes, as do heating and air conditioning plants.

Combustion engines, aircraft, rockets, reactors, furnaces, heat exchangers, all involve

chemical reaction and thermofluid processes. Heat transfer is important within the design

and manufacture of electrical circuits as overheating has catastrophic effects. Pollution,

storms, floods and fires are affected by fluid flow and heat/mass transfer. The human |

body resorts to temperature control through heat and mass transfer via perspiration and ■%

complex non-Newtonian blood flow occurs through important organs such as the heart. u\

As a consequence of the enormous influence the processes have on human life it is 3J

essential to be able to predict the behaviour in order to deal with them effectively. There

aspect ratio within the integration domain. A technique for one dimensional finite volume

grid generation is presented that utilises the length of a region within the subdivided

domain, a predefined minimum cell size and the maximum allowed aspect ratio.

3.2 The need for computational fluid dynamics

28

a-Tm;

• - v rr
$m

Computational Fluid Dynamics Chapter 3

are two methods of predicting heat transfer and fluid flow behaviour: experimental

investigation and numerical calculation.

Experimental investigation involves the physical measurement of velocities and

temperatures within a flow region. Various techniques for velocity measurements are

available which include hot wire and laser doppler anemometry, both are capable of

measuring the fluctuation velocities and Reynolds stresses associated with turbulent flow. f

Temperature measurement is also possible through the use of various techniques

depending on the application. Available methods can be divided into discrete or whole

field measurement. Discrete measurement can be obtained by strategically placing direct

contact instruments such as thermocouples and platinum resistance thermometers, whereas

non-intrusive techniques includes the use of pyrometers. Whole field temperature

measurement techniques includes the use of holography, which exploits the change of fluid

density with temperature, and liquid crystal thermography. To aid the analysis of liquid

crystal thermography, in order to obtain surface heat transfer coefficients, it is possible to

apply image processing techniques, Ashforth-Frost et al. (1992).

A
Numerical calculations for heat transfer, fluid flow and chemical reaction involve the

discretisation of the governing differential equations: Navier-Stokes equations; energy

equation and the conservation of chemical species equation, into a form appropriate to the

integration technique being utilised. Finite volume, Patankar (1980), and finite element, |

Taylor and Flughes (1981), techniques are the most popular numerical methods used for

fluid flow. Extensive research throughout the world, over many years, has yielded many

powerful numerical simulation packages. CFD involves the numerical study of fluid flow

within predefined geometries based on the solution of discretised governing differential
S

equations. It is important not to solely rely on numerical techniques to establish a full ■%

field solution to a problem. Initial corroboration of numerical and experimental results ; |

generates a degree of confidence for the numerical solution. Attaining correlation of

initial experimental and numerical results allows the solution of different configurations to

be used with a greater degree of confidence.

3 3 Computational fluid dynamics packages

Established research institutions / industrial organisations develop and modify their own

CFD code to suit the situations that are under analysis. To allow industrial engineers the

29

■ ?!

 ■-.... tM , . V - , ; vy .

■q

Computational Fluid Dynamics Chapter 3

facility to analyse fluid flow, several commercial CFD packages have been made available,

such as PHOENICS (Parabolic Hyperbolic Or Elliptic Numerical Integration Code Series)

and FLOTRAN. PHOENICS utilises the finite volume discretisation method, whereas

FLOTRAN employs the finite element technique. FLOTRAN has been developed with

the integration into existing pre- and post-processing software as a major specification,

whereas CHAM, the developers of PHOENICS, appear to have followed a more

independent approach. File conversion programs could be written for PHOENICS to

enable compatibility, only if the structure of the resulting data files were known. Indeed,

FEMVIEW limited have recently been working with CHAM to develop independent pre-

and post-processing facilities for PHOENICS. Collaboration with CHAM has provided

FEMVIEW with the necessary information describing the structure of the resulting data

files, so that data conversion programs could be written.

For historical reasons, PHOENICS (Version 1.4, 1.5 and 1.6) was the preferred CFD tool

within the Department of Mechanical Engineering at The Nottingham Trent University,

and as such was an ideal target package for the development of a Knowledge Based Front

End (KBFE).

3.4 PHOENICS environment

PHOENICS is a general purpose finite volume CFD package that solves the governing

differential equations of motion, conservation of chemical species and heat transfer. The

finite volume technique discretises the governing differential equations using various

interpolation schemes between adjacent cells within a complete integration domain. An

introduction into numerical heat transfer and fluid flow is given by Patankar (1980). The

PHOENICS environment is shown in Figure 3.1 which consists of a pre-processor

(SATELLITE), the processor (EARTH) and the post-processor (PHOTON).

3.4.1 SATELLITE

SATELLITE is an interpreter which receives an instruction stack, or data file (Ql.DAT)

and translates the contents into a subsequent data file, EARDAT.DAT, which is directly

read by the main processor, EARTH, upon executing the PHCCNICS solution algorithm.

The translation that takes place is essentially performed by FORTRAN code that

recognises the format of valid PIL commands which describes the overall analysis to be

30

S '- * * *

Computational Fluid Dynamics Chapter 3

"The input file
Ql.DAT Interactive

VDU Input

E A R D A T .D A T

R E S U L T .D A T P H I D A .D A T

GROUND

Library
Files

S A T E L L I T E

Figure 3.1: The PHOENICS environment

performed. These commands are then synthesised into a highly structured numeric file,

EARDAT.DAT, which is read by EARTH.

3.4.2 EARTH

EARTH is the main processor of PHOENICS and contains the main solution algorithm

which solves the complete set of discretised linear algebraic equations associated with the

analysis. The results of the analysis are written to two files, RESULT.DAT and

PHIDA.DAT. RESULT.DAT is used to display the results in a cell by cell, slab by slab

manner so that the user can have easy access to the whole field values. PHIDA.DAT is

accessed by PHOTON in order to display graphically the results in the form of contours

and velocity vectors. P t * Tr> a OAT is also used for restarts when the user feels that the

results obtained from the previous run did not converge.

Computational Fluid Dynamics Chapter 3

3.4.3 PHOTON

PHOTON (PHOENICS OuTput OptioN) is the post processor that is used to represent

the resulting flow fields and scalar fields with vectors and contours respectively.

PHOTON uses different data entry commands to those defined in PIL.

3.5 Description of physical phenomena using PHOENICS

3.5.1 Dependent variables

Throughout the integration domain PHOENICS can solve for pressure, velocities,

temperatures and concentrations for one or two phase flows. These properties are known

as dependent variables and PHOENICS can solve for a default number of fifty such

variables. For a single phase analysis the available dependent variables are ...

PI Pressure

U1 the x-direction velocity

VI the y-direction velocity

W1 the z-direction velocity

R1 the volume fraction

KE the turbulence kinetic energy

EP the dissipation rate of turbulence kinetic energy

H I the specific enthalpy

C l concentration variable

C3 another concentration variable

C35

The velocities, volume fraction, enthalpy and concentration variables have corresponding

second phase dependent variables U2, V2, W2, R2, H2, C2, C4, C6, ..., C34.

Independent variables within PHOENICS consists of time and the three space dimensions.

Time is measured in the early-to-late direction with the variable'T*. The three space

Computational Fluid Dynamics Chapter 3

dimensions x, y and z are identified using the cardinals WEST to EAST, SOUTH to

NORTH and LOW to HIGH respectively, Figure 3.2.

Late time

Early time

+Y (NORTH)

+Z (HIGH) +X (EAST)

-X (WEST) -Z (LOW)

-Y (SOUTH)

Figure 3.2: PHOENICS cardinal notation

3.5.2 Discretisation of the continua

Pressure and other scalar dependent variables are computed at the centre of a set of finite

cells that are linked together to form a complete geometry. Velocities are calculated at

the cell faces on a staggered grid in order to eliminate pressure checker-boarding and

wavy velocity fields through implementing a piece-wise linear interpolation scheme for the

pressure and continuity equations, Patankar (1980). The relative positions of the

computed scalar d ep ^ d en t variables and velociti^ for a two dimensional grid in x and y

is shown in Figure 3.3.

Computational Fluid Dynamics Chapter 3

N +

+ E

S +

Figure 33: PHOENICS staggered grid

3.5.3 General differential equation solved by PHOENICS

The Navier-Stokes equations (momentum equations), energy equation and the

conservation of chemical species equation can all be represented using the general

differential equation given by equation (3.1).

— (p <j>) + div(p U 4>) - diviT grad <f>) + S
dt

Transient Convection Diffusion Source

term term term term

3.5.4 Linear algebraic discretisation equations

(3.1)

The finite volume discretisation for equation (3.1), applied over an entire integration

domain, results in the creation of a set of linear algebraic equations. Each dependent

Computational Fluid Dynamics Chapter 3

variable has an associated algebraic equation at each cell which takes on the general form

shown in equation (3.2).

<j> _ + a V$W + aN$N + aS$S * aĤ H + ai$L + aA r + $ Q 2)
aw + a„ + ac + aa + aT + a ,

where 4> is the dependent variable under consideration and the subscripts P, E, W, N, H,

and L correspond to the locations at which the variable is computed, in accordance with

the North, South, East, West, High and Low cardinal convention illustrated in Figure 3.2.

Furthermore, T relates to the previous time step. The coefficients in equation (3.2), given

as aE, w, n, s, h, l, t» are functions of the discretisation geometry (grid size), in-cell Peclet

number and the physical properties of the fluid. The full discretisation equations and

their associated coefficients for one, two and three dimensions are given, along with their

derivations, in Patankar (1980).

3.5.5 Solution to the algebraic equations

The algebraic equations given by equation (3.2) for different dependent variables are often

strongly coupled. This is particularly true for velocity and pressure and their associated

correction equations. This strong linkage dictates that an iterative technique be

implemented for the solution of the complete set of algebraic equations for a given

integration domain. PHOENICS utilises several iteration schemes which sweep through

the domain updating the coefficients and necessary terms after the current iteration cycle

is complete. The modifications are performed using the newly computed values of the

dependent variables.

3.5.6 Problem specification

The popular method of entering data to fully describe a problem, using PHOENICS, is to

create a data file, Ql.DAT, which contains the complete definition in command language

form. To simplify the understanding of the PHOENICS command structure, the data file

has been split into twenty four sections or groups (excluding a relatively new group used

for debugging purposes), this is a common division throughout the PHOENICS

environment. The twenty four groups are ...

Computational Fluid Dynamics Chapter 3

GROUP 1. Run title and other preliminaries.

GROUP 2. Time dependence and related parameters.

GROUP 3. x-direction grid specification.

GROUP 4. y-direction grid specification.

GROUP 5. z-direction grid specification.

GROUP 6. Body-fitting and other grid distortions.

GROUP 7. Variables (including porosities) named, stored and solved.

GROUP 8. Terms (in differential equations) and devices.

GROUP 9. Properties of the medium (or media).

GROUP 10. Interphase-transfer processes and properties.

GROUP 11. Initialisation of fields of variables, porosity etc.

GROUP 12. Unused

GROUP 13. Boundary and internal conditions and special sources.

GROUP 14. Downstream pressure (for free parabolic flow).

GROUP 15. Termination criteria for sweeps and outer iterations.

GROUP 16. Termination criteria for inner iterations.

GROUP 17. Under-relaxation and related devices.

GROUP 18. Limits on variables or increments to them.

GROUP 19. Data communicated by SATELLITE to GROUND

GROUP 20. Preliminary print-out

GROUP 21. Frequency and extent of field print-out.

GROUP 22. Location of spot-value and frequency of residual print-out.

GROUP 23. Variable-by-variable field print-out and plot and/or tabulation of spot-

values and residuals.

GROUP 24. Preparations for continuation runs.

GROUP 25. DEBUG group.

The command language consists of three templates that effectively cover all of the

commands available within PIL. These templates are ...

Variable = value

Commandfargument 1, argument 2, argument n)

Command^) = value

where

Computational Fluid Dynamics Chapter 3

Variable : This can be a system or a user declared variable. User declared variables

are initially given a specific type with the commands ARRAY, BOOLEAN,

CHAR, INTEGER or REAL. System variables such as R H O l and ENUL

are provided with default values which can be superseded by user values.

Value : This is an appropriate assignment with which to instantiate the variable

with.

Command : This is a PIL command that is used to define the problem or to specify

solution control.

Arguments : The arguments are related to the specific command that is being used to

define the problem. Arguments can consist of, but are not restricted to,

"Y" (yes), "N" (no), <f> s, variables and numeric values.

Outflow boundary 1

Nozzle

Impingement plate

Figure 3.4: Unconfined jet impingement

37

Computational Fluid Dynamics Chapter 3

Coordinates [mm]
Node (X, y. 2)
is (0, o. 0)
2: (0, 5. 0)
3; (0, 6, 0)
4; (0, 50 , 0)
5: (0, 5, 30)
6s (0. 6. 30)
7s (0, 0, 49)
8s (0. 50 49)
9: (0, 0, 50)
10 s <0, 50 50)

Outlet 2

Wall

Re - 1500 - (d Win)/u
U » 1.4619-5 m'2/s
p - 1.225 kg/m‘3
Tin - 21 *c
Twall - 100 °c
Win - 2.1915 m/s

Figure 3.5: Geometry and Specification associated with the two dimensional unconfined
thermal jet impingement

Figure 3,4 and Figure 3.5 show a typical jet impingement geometry which can be modelled

using the PHOENICS data file shown in Figure 3.6. Figure 3.4 indicates the physical

situation, and Figure 3.5 illustrates the geometry and the information required to be

entered into PHOENICS. The data file shown in Figure 3.6 is simplistic in that the

analysis is two dimensional, isothermal, incompressible and laminar. This serves only to

illustrate how a beginner might feel when initially confronted with such a bemusing

collection of commands and declarations. The fundamental commands that are most

frequently used are those that specify the geometry and define the grid, specify the

boundary/initial conditions, define the fluid properties and control and monitor the

convergence of the solution.

3.6 The need for artificial intelligence interaction

CFD packages tend to be generic in so much as the developers try to create code that is

as versatile as possible. This is clearly the case for PHOENICS, and because of its

38

Computational Fluid Dynamics Chapter 3

Talk-f; Run(l, l);vdu-tty
Text(2D Unconfined impinging round jet)
ReaI(win,ReJD)
Re=2000; D=10.0e-3
win-Re*enuI/D _____________________
Cartes-F
subgrd(y,l,l 1,d/2,1.0)
subgrdfy, 12,12,1 .Oe-3,1.0)
subgrd(y,13,49,0.369,1.0)
subgrd(z, 1,18,0.03,1.0)
subgrd(z,19,37,0.02,1.0)_______________
Solutn(pl,y,y,y,n,n,n)
Solutn(vl ,y,y An An)
Sohitn(wl,y,y,n,n,n,n)_________________
enuI=1.461e-5; rho1=1.2250-----------------
conpor(0.0,cell,l,l,-12,-12,l,-18)------------
fiinit(vl)-win
f i in it (w l)= w in ____________________________
patch(plate,hwall,l,l,l,ny,nz,nz,l,l)
coval(plate,vl,1.0,0.0)
coval(plate,wl,fixval,0,0)
patch(inle tjow, 1,1,1,11,1,1,1,1)
coval(Met,pl^xilu^hol*win)
coval(inlet,vl,onlyms,0.0)
coval(inlet,wl,onlyms,win)
patch(outletl,low,l,l,13,ny,l,l,l,l)
coval(outletl ,p 1 ,fixval,0.0)
patch(outlet2,north, 1 ,l,ny,ny, 1 ,nz, 1,1)
coval(outlet2,pl,fixval,0.0)____________
lsweep-300
resref(pl)-1.0e-8
resref(vl)-1.0e-8
resref(wl)=1 .Oe-8
relax(pl 4inrlx,0.8)
relax(vl ,falsdt,0.5)
relax(w 1 ,falsdt,0.5)
output(pl,y,y,y,y,y,y)
output(vl,y,y,y,y,y,y)
output(wl,y,y,y,y,y,y)
iymon=14; izmon=33
n plt-1
stop-

Preliminary Information

Grid definition

Dependent variables

Fluid properties
Grid definition
Initial values

Boundary conditions

Solution algorithm
control parameters and
result presentation
commands

Figure 3.6: PHOENICS Q l.D A T data file after Figure 3.5

Computational Fluid Dynamics Chapter 3

tremendous versatility it has been widely used as a research tool by academics and

industrialists. However, increased versatility causes difficulties when initial exposure to the

software is experienced, this directly affects the rate at which proficiency with the code is

attained. Experience has shown that in order to be able to use PHOENICS effectively an

understanding of the fundamentals associated with numerical heat transfer and fluid flow

is required, as well as becoming proficient with the specific command language provided

for data entry. As experience develops it is possible to interact with the solution

algorithms to carry out various tasks such as introducing non-standard fluid property

models.

Initially there are three methods which can be used to become familiar with any computer

package. Firstly, by attending the necessary training courses and being taught how to use

the software. This is undoubtedly the easiest approach to take because expert advice and

guidance is constantly at hand. Although training courses can be costly. Secondly, by

capitalising on the in-house experience with the software. Thirdly, if no in-house

experience exists then embark on a self learning programme, utilising supplied training

files and appropriate literature. The latter method is not a preferred option because the

rate of learning significantly reduces due to the overwhelming quantity of information that

needs to be considered to locate the detailed data that might resolve immediate problems.

Asking for information considerably reduces the time spent looking through manuals.

Mehta and Kutler (1984) highlighted ten areas within CFD where expertise should reside,

these included the construction and analysis of numerical methods for solving the

governing differential equations through appropriate algorithm development. With the

ability to use commercial CFD code such requirements automatically become redundant.

Thus leaving the need to capture expertise in areas such as problem definition and input,

selection of appropriate turbulence models, grid generation, and boundary / initial

condition assignments. Such areas of expertise are characteristic of those required for the

specification of a problem using commands within a data file for a CFD package.

The command languages provided by software developers are usually individualistic and

occasionally appear very ambiguous for the novice user or beginner. This situation could

be easily improved if a front end to a software package could be developed that converses

with the user in his native language and translates his requirements into the necessary

commands to fully describe the analysis. To introduce such a front end would potentially

Computational Fluid Dynamics Chapter 3

allow the availability and accessibility of the software to increase several fold because of

the relative ease with which a user could enter problem specifications. The use of AI

techniques and languages are ideally suited to such a problem because of the level of

symbolic processing involved. The necessary numerical processing could easily be

provided by the integration of traditional numerical code provided by FORTRAN or C.

The twenty four groupings, previously mentioned, within PHOENICS have provided an

ideal categorisation of the knowledge bases in the final KBFE for the isolation of rules

relating to the generation of the final data file.

3.7 Computational fluid dynamics knowledge elicitation

Throughout the duration of using PHOENICS a self learning programme was utilised to

become familiar with the intricacies of the software. This was the primary method of

knowledge acquisition in conjunction with conversing with other experienced users of

PHOENICS. Information required for the formulation and specification of a flow analysis

consists of fundamental parameters such as fluid properties, boundary conditions and

initial field values in conjunction with the grid data. Possibly the most important area of

simulating fluid flow with a CFD package is the generation of a suitable mesh that would

capture the flow characteristics of the geometry under consideration. Abbot et al. (1988)

evaluated the existence and value of "expert knowledge" in the use of CFD, and analysed

the nature of the knowledge for the possible development of a knowledge based assistant.

Implementing experimental procedures on predefined problems with two novice users and

a CFD expert resulted in the highlighting of a potential need for various expert assistants.

The proposed expert assistants consisted of: Engineering Assistant, Grid Generator,

Convergence Expert, Flow Analyst, Assumption Maker, Data Display Expert and

Application-Specific Experts.

3.8 Aspect ratio dependent finite volume grid generation

3.8.1 Introduction

The discretisation process associated with the finite volume technique requires that the

integration domain is made up of quadrilateral or cuboid orthogonal cells for a two or

three dimensional analysis respectively. In order to accommodate this, PHOENICS

provides five methods of specifying the geometry and corresponding cell discretisation.

Computational Fluid Dynamics Chapter 3

The methods are governed by the PIL commands SUBGRD, GRDPWR, FRACtions

(XFRAC, YFRAC, ZFRAC, TFRAC) and Body-Fitted Coordinates (BFCs). Specifying

the grid using FRACtions can be performed using either the "method of pairs" or the

"direct method". Each method, except BFCs, specify the cell face positions, on the

appropriate axis, which extend through the entire domain, see Figure 3.7. BFCs allow the

user to define a distorted grid that follows the geometrical body contour of the required

flow region.

SUBGRD {x, 1,6.0. 03,1.0)
GRDPWR(X , 6 , 0.03,1.0)

SUBGRD command
GRDPWR command

P R A C tio n a l
"m e th o d o f

p a i z a "

F R A C tlo n a l XFRAC(l)-0.005) XFRAC (2)-0 .01 YFRAC(1) -0,005; YFRAC(2)-0.01
" d i r e c t m e th o d " xfracO>-0.015; XFRAC(4)-0.02 YFRAC(3)-0.015; YFRAC(4>-0.02

XFRAC(5)-0.025; XFRAC(6)-0.03

XDLAST-0.03
XFRAC(l)--6; XFRAC(2)-0.1667

SUBGRD(y,1,4,0.02,1.0)
GRDPWR (y,4,0.02,1.0)
YVLAST-0.02
YFRAC(l)— 4; YFRAC (2)-0 .25

All f o u r m e th o d s
g e n e r a t e t h e sam e

g r i d c e l l
d i s t r i b u t i o n

R e s u l t i n g g r i d

Figure 3.7: PHOENICS grid generation commands

Grid generation methods have been, and are continually being researched in order to

automate meshing procedures, Vogel (1989) and Blacker et al. (1988a and 1988b). Most

physical problems inherently require the use of BFCs which have to be as orthogonal as

possible, for finite volume discretisation, and can be promoted by applying mapping

procedures similar to that introduced by Ryskin and Leal (1983 and 1984), Gilding (1988)

and Wang and Georgiadis (1989). The orthogonal mapping technique essentially

transforms a two dimensional cartesian system (x,y) of coordinates onto an orthogonal

boundary-fitted system (1,7?), Figure 3.8, and is defined by the covariant Laplace equation,

'\ i
'-a t
" t
M(■?
:!
'4

4

■■■ i

j

*

42

... „»ry , w

Computational Fluid Dynamics Chapter 3

Figure 3.8: Orthogonal mapping. Two dimensional cartesian onto a two dimensional
boundary fitted system

Ryskin and Leal (1983). The generation of the cartesian set of coordinates is a relatively

simple task for a uniform grid and should abstractly represent the shape of the physical

domain, Gilding (1988). For CFD it is desirable to capture near wall viscous effects, such

as boundary layer growth, by refining the grid next to wall boundaries and gradually

increasing the size of the cells as the distance from the wall increases. This enables

increased computational efficiency without requiring a fine uniform mesh within the

domain. Anderson et al. (1984) presents several transformations for cell distributions with

continuously varying cell sizes. The transformation equations cover grid clustering near a

wall, in a duct, and near an interior point of a computational grid. The presented

transformation equations are derived from the work performed by Roberts (1971) which

considers the generation of computational meshes for boundary layer problems. Roberts

established a cell distribution profile between two walls for a given number of cells,

Figure 3.9, and is given by equations (33) to (3.7).

Computational Fluid Dynamics Chapter 3

y

2 a

Figure 3.9: Roberts’ (1971) cell distribution profile between two walls for a given number of
cells

44

99

Computational Fluid Dynamics Chapter 3

where

or

or

or

(1 - «)* + a

-iftz) - (1 + z)

Az) - (1 + log(l + z)T l

Az) - (i + log { i + iog(i + z) } r 1

(33)

(3.4)

(3.5)

(3.6)

(3.7)

where a is the proportion of the mesh points which represent the boundary layer (0 < a

< 1) and n is the number of cells within the region to be meshed which is of length 2a.

The function, given by equation (33) varies linearly in the interior of the region and much

more rapidly, on a length scale of order d , in the boundary layers. When applying the

transformations to each axis and superimposing one on top of the other a mesh can be

obtained. However, using this method it is not possible to limit the resulting aspect ratios

within the grid, an important factor that can seriously affect both the convergence of a

solution and the results, Abbott et al. (1988). Indeed, in the experiments that Abbot et al.

performed, one of the novices experienced difficulty with obtaining solution convergence

for a particular analysis. Eventually, it was discovered that the cell aspect ratios at the

inlet were excessive at 40:1 and after considerable reduction convergence was obtained. It

is generally accepted that the aspect ratio for CFD should not exceed 10:1, when using

finite volume code, a limit advised by CHAM through private communications.

Furthermore, the cell density should be sufficient to obtain a gr'*J independent solution.

Grid independency is usually a result of an iterative analysis procedure whereby the mesh

density progressively increases. Grid independency is achieved when the predictions from

Computational Fluid Dynamics Chapter 3

the previous analysis do not significantly vary with the present results. The

transformations proposed by Roberts (1971) rely on the fact that the number of cells

required is known a priori.

As Abbott et al. illustrated, aspect ratios are important and the absence of this factor with

the technique presented by Roberts (1971) is a clear deficiency. To remove this

deficiency, a technique has been developed that establishes a cell distribution within a one

dimensional cartesian space, similar to Roberts, utilising the minimum cells size, maximum

aspect ratio, and the height/length of a region. This distribution is governed by the

smallest cell residing adjacent to a wall, and extending through the entire domain as

shown in Figure 3.7. The approach uses a dynamically generated function to establish

successive cell aspect ratios, taking the base metric as being the smallest cell size, which

varies from unity up to the predefined maximum. The cell aspect ratios are used to

establish the subsequent co-ordinate relative to the previous and the minimum cell size.

3.8.2 Symmetric formulation, grid clustering in a duct

Figure 3.10 shows an arbitrary region enclosed between two parallel plates. The smallest

cell size, L, the maximum aspect ratio, AR, and the height of the region h, are all pre

defined. It is required to obtain the number of cells and their associated co-ordinates

whereby the cell aspect ratio, A, continuously varies within the range 1 < A < AR.

Furthermore, the cell distribution should be symmetric about the centre line.

For the required distribution successive non-dimensional co-ordinates are given by :-

(3.8)

where

Computational Fluid Dynamics Chapter 3

Figure 3.10:

L / h

- 0 . 5 <; y <; 0 . 5

Arbitrary one dimensional region between two parallel plates

47

Computational Fluid Dynamics Chapter 3

^ log10(<4JQ (3.9)

0.0 <; fi2 Tty.) <; 1.0 (3.10)

(3.11)

yN - 0.5 (3.12)

N = calculated number of cells within the region

Therefore, from equation (3.9), it can be seen that the cell aspect ratio, A, can vaiy within

the range 1 to AR, this is provided that the limits of the function f(2iry;) are maintained,

as given by (3.11).

Development of the profile function, f(2Try,)

Equation (3.8) indicates that for the cell size to continuously vary then the cell aspect ratio

also needs to continuously vary. This leads to an initial triangular profile being assessed

for the correct characteristics to satisfy the limitations placed on the profile function,

Figure 3.11. In order to model the profile a Fourier series was developed to correlate the

relationship. This was chosen because of the ability of a Fourier series to model

discontinuous relationships. The standard Fourier series is given by ...

y(0) - ~ + £ [an cos(«0) + bn sin(n0)]
n *" 1

(3.13)

n

(3.14)

-1 f /(0)cos(/t0)d0 (3.15)

48

y , ^ T .

Computational Fluid Dynamics Chapter 3

t(2ny±)

0 It

Figure 3.11: Initial triangular profile function

n

bn - it"1 ffiQ) sin(«0>*e (3.16)
- I T

... where the function f(2rryj) is regionally defined. The triangular profile proved to be

inadequate because of the inability to force the centre cell to be located directly on, or

evenly distributed about the apex, f(0). The profile was then modified in order to account

for the ill-positioning of the mid-point cell, Figure 3.12. The profile characteristics a u a2,

and *F were initially pre-defined to force the profile to be triangular, as shown in

Figure 3.11. As the local aspect ratios are calculated, {aJ2v) is instantiated as the

absolute value of the penultimate negative value of y. Furthermore, {a jlrr) is instantiated

as the absolute value of y just preceding the penultimate negative value. Having obtained

and a2, W is given bj equation (3.17), with VI;N re sid ed up to the next ODD integer.

where

49 :•
•'J
4

'M

Computational Fluid Dynamics Chapter 3

f (2 n y ^)

12

Figure 3.12: Modified triangular profile function

log10[ARJ

* N ~ a ih (3.18)
7t AR L

However, the modified profile, although resolving the problem related to the ill-

positioning of the mid-point cells through the use of W, given by equation (3.17), created a

further problem that can only be illustrated through an example. Establishing the Fourier

series coefficients for Figure 3.12, and fixing n to be 100 gives the results shown in

Table 3.1.

Figure 3.13 and Figure 3.14 can be used to illustrate the problem associated with the

modified triangular profile. For all yi5 where i = 1 to 9, the resulting cell distributions are

calculated correctly using equation (3.8). However, from points 10 to 14, the

corresponding y{ values do not mirror those values associated with points 0 to 5, as shown

Computational Fluid Dynamics Chapter 3

Maximum aspect ratio, AR = 10
Minimum cell size, L = 1.7333 mm

Height, h = 60 mm

i yi 2-rryt f(27ry,) yi+i

0 -0.5 -7T 0 1 -0.471
1 -0.471 -2.96 0.058 1.143 -0.438
2 -0.438 -2.752 0.1237 1.3296 -0.4
3 -0.4 -2.5133 0.201 1.5871 -0.354
4 -0.354 -2.224 0.2923 1.96 -0.293
5 -0.293 -1.841 0.4055 2.544 -0.224
6 -0.224 -1.4074 0.5526 3.5694 -0.121
7 -0.121 -0.7603 0.7588 5.7388 2.711

Assigning values to a v a2 and W gives

a t = 1.4074, a2 = 1.841, W = 0.7129

Altering the Fourier coefficients and recommencing the calculations yields :-

6 -0.224 1.4074 0.7108 5.1375 0.075
7 -0.075 0.4712 0.7129 5.1625 0.074
8 0.074 0.465 0.7129 5.1625 0.223
9 0.223 1.4012 0.7121 5.1529 0.372
10 0.372 2.3373 0.2563 1.8043 0.424
11 0.424 2.6641 0.1521 1.4195 0.465
12 0.465 2.9217 0.0701 1.1752 0.499
13 0.498 3.1347 0.0024 1.0056 0.528

Table 3.1: Tabulated progression through the Fourier Series for the modified triangular
profile function

in Figure 3.14. The reasoning behind this lies with the assignment of the cell aspect ratio

for y9. For a comparable mirror image of the grid distribution about the centre line, y10

should be located roughly at the absolute value of y5, thus:-

Yio = y? + K (L/h)
and from Table 3.1

0.293 = 0.223 + A9 (1.7333/60)

.'. A9 = 2.4231

Computational Fluid Dynamics Chapter 3

12Point associated with the
1 final -y value

13

2 tty.

Figure 3.13: Problematic profile function

0.9

0 A

0.7

-V 0 *

♦ 0.5

o 0.4

0.3

01

0.1

0

1 / (Calculated number of colls, 14)

Figure 3.14: Resulting grid distribution after Figure 3.13

Computational Fluid Dynamics Chapter 3

Now, equation (3.9) gives

f(27ry9) = 0.3844

The most comparable value of i(2try^ with f(27ry9) in Table 3.1 occurs at i = 5. A similar

process takes place with cells 13 and 14 whereby the height of cell 14 should correspond

with the smallest cell size. This implies that f(27ry13) should be zero in order to force A13

to be unity.

Resulting profile and equations for grid clustering in a duct

0.7-

0.6

0.5

0.4-

0.3

0.2

0.1

Figure 3.15: Profile function for grid clustering in a duct

The resulting profile function is shown in Figure 3.15, and is defined with equations (3.19).

Computational Fluid Dynamics Chapter 3

X0) - 1 + ~ -n <; 0 <; - a 3
Tt

fi&) - + a 2) + i|r - a 3 £ 0 < ;-a2

y(0) - - a 2 5 0 ^)

y(0) - m 2(0 - «!> + t at z 0 ^a2

f(id) - m 3(0 - a2 s 0 s;a4

y(0) - 0 a 4 <: 0 ^ n

tjr - P

a 3 " «2

+ - P

a i " a 2

P

« 2 " «4

a i - | 27ty/ + 1

a 2 - 12*yi |

a 3 - I 2 l t 3'/-i

P “ A 2 7 t? ,_ ,)

(3.19)

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)

(3.25)

(3.26)

(3.27)

(3.28)

54

Computational Fluid Dynamics Chapter 3

_ logio K & b t /] ' 1)
log10(AR)

(3.29)

-
a2h

n A R L
(330)

1

O.ft

0.8

0.7

0.6

+ 0.5-
If)

o 0.4

0.3-

0.2-

0.1-

0

-± 2~
-±3~

-44- 15

~TT
10

0.2 0.4 0.6 0.8

i / (Calculated number of cells, 15)

Figure 3.16: Resulting cell distribution after Figure 3.15

Appendix A gives the values for the Fourier series coefficients a0, an, and bn, as defined by

equations (3.14) to (3.16), using the profile function definitions given by (3.19). In order

to reduce the severity of the transition to/from the linear distribution, generated by the

plateau on the profile function, from/to the continuously varying sections, it has been

found that should be rounded up to the next ODD integer. Figure 3.16 illustrates the

improvement on the symmetry of the grid distribution for the parameters shown in

Table 3.1 (h = 60 m m , T " ' 3 mm and AR = 10). It mast be noted, however, that

the modified function increases the number of cells by one.

55

Computational Fluid Dynamics Chapter 3

Evaluation of the profile parameters a t, a 2, or3, <*4, P and W.

Initially the gradients m2, and m3 are preset to rr1, -tt'1, and n '1 respectively. These

are required to initially force the profile function to be triangular. Furthermore, the initial

values of the profile constants are:-

= a 2 = 0, and a 3 = a 4 ~ tt

also

(3 = 0.0 and V = 1.0

Generation of the cell distribution commences from the initial value of y0 = -0.5.

Calculation of the associated cell aspect ratio from equation (3.9) and utilising equation

(3.8) yields the next cell co-ordinate. This procedure is then repeated until y; becomes

positive, only then can a 2, a 3, p and XV be determined. Table 3.2 fully illustrates this

procedure.

3.8.3 Generic formulation

Thus far the profile for determining the cell aspect ratios for successive cells has been

presented which enables the generation of a grid distribution within a duct. The

introduction of a clustering parameter, a, enables a generalisation of the procedure in

order to obtain grid clustering near a wall as well as within a duct, as shown in Figure 3.17

and Figure 3.18. Introducing the clustering parameter, a, requires the modification of

equations (3.11), (3.20), (3.25) and (3.26), as follows:-

y0 - a - 1 (331)

0f - Kyf. (1 - a)-1 (3.32)

a2 - | 07 (1 - a)"1 | (333)

a3 - | 0M (1 - a) '1 | (334)

56

Computational Fluid Dynamics Chapter 3

Maximum aspect ratio, AR = 10
Minimum cell size, L = 1.7333 mm

Height, h = 60 mm

i y» 0 fa-n-y,) A, yi+i

0 -0.5 -TT 0.002 1.0047 -0.471
1 -0.471 -2.9592 0.0581 1.1432 -0.438
2 -0.483 -2.7517 0.124 1.3306 -0.4
3 -0.4 -2.5102 0.201 1.5884 -0.354
4 -0.354 -2.2219 0.2928 1.9623 -0.297
5 -0.297 -1.8657 0.4061 1.5474 -0.223
6 -0.223 -1.4033 0.5533 1.5754 -0.12
7 -0.12 -0.7544 0.7599 5.7528 0.046

Now, yi+1 has become positive and I is classified as the index of the penultimate negative value of
Yi

.-.1 = 6

Thus, using equations (3.25), (3.26) and (3.28), we have

a2 = 1.4033, a 3 = 1.8657, /3 = 0.4061

Also, from (3.30) and (3.29), we have ...

V N = 1.5459 = 3 (rounded up to the next ODD integer)

'I ' = 0.7121

Thus, re-commencing from i = I

-0.223
-0.075

-1.4033
-0.4715

0.7104
0.7127

5.1337
5.1608

-0.075
0.074

Increasing i to 1+1, (3.24) and ? yield ...

= 0.4712, a A = 2.9601

and re-commencing

8 0.074 0.4652 0.7119 5.1516 0.223
9 0.223 1.4003 0.4072 2.5539 0.297
10 0.297 1.8639 0.2860 1.9319 0.353
11 0.353 2.2145 0.1945 1.5649 0.398
12 0.398 2.4986 0.1204 1.3194 0.436
13 0.436 2.7381 0.0579 1.1427 0.469
14 0.469 2.9455 0.0035 1.0082 0.5

Table 3,2: Tabulated progression through the final profile function

'M

57

i

Computational Fluid Dynamics Chapter 3

Figure 3.17: Grid clustering in a duct, a = 0.5

Furthermore, for grid clustering near a wall, a = 0, it has been found that WN should be

rounded up to the next EVEN number. This ensures that the last cell is not half the size

of the penultimate.

This technique has been successfully coded using the C programming language, Appendix

B, which has allowed grid clustering near top and bottom walls to be achieved through the

inversion of Figure 3.18. This is performed by recognising that a = 1 corresponds with

grid clustering near the top wall. Resulting grid distributions for various parameters can

be seen in Figure 3.19 and Figure 3.20.

58

Computational Fluid Dynamics Chapter 3

Figure 3.18: Grid clustering near a wall, a = 0.0

3.8.4 Example

Considering the geometry shown in Figure 3.5, it is first necessary to regionalise the

domain, as shown in Figure 3.21. Following the regionalisation, the alpha values are

assigned to characterise the type of grid clustering required, as shown on Figure 3.21.

Each region according to the reference axes is meshed separately, as shown in Figure 3.22

and Figure 3.23, given the minimum cell size and maximum allowed cell aspect ratio.

Figure 3.24 shows the entire domain having been meshed using this technique.

3.9 Conclusions

A brief introduction has been given to the PHOENICS environment, its infrastructure and

the terminology used to define CFD problems. An example has been given consisting of

an unconfined jet impingement geometry and the associated specification. The

corresponding data file is also presented. This example will be used throughout the thesis

to describe some of the pertinent points and to illustrate various techniques related to

knowledge representation, data storage and inferencing.

59

Computational Fluid Dynamics Chapter 3

Figure 3.19: Grid clustering: AR = 10, L = 1.733 mm, and h = 60 mm. (a) a = 0.0, (b)
a = 0.5, and (c) a — 1.0

60

Computational Fluid Dynamics Chapter 3

0.9
OJ
0.7

0 A

0.2

0.1

0.2 0.« OJ

(a)

09

OJ
07

OS
04

03

02 0.4 06 OJ

(b)

0.9
OJ
0.7
OJ
OJ

0.3

0.1

0 2 0.4 0.6 OJ

(C)

Figure 3.20: Grid clustering: AR = 5, L = 1.733 mm, and L = mm. (a) a = 0.0, (b) a
- 0.5, and (c) a - 1.0

i

61 J

if
M

■■ ■? J

. , M
' L* ' ' - -1 • ,-v . . . - - - v..„-■--

Computational Fluid Dynamics Chapter 3

ct(Zl) - 0.0

o(Z2) - 0.5

Z3

Y1Y2 Y3

Figure 3.21: Regionalised domain after Figure 3.5

A technique for aspect ratio finite volume grid generation has been presented which was

developed because cell aspect ratios can affect the resulting solution, Abbott et al. (1988).

The technique ensures that the cell aspect ratios within an integration domain never

exceed a predefined maximum. The methodology revolves around the height of a one

dimensional region, the minimum cell size and the overall maximum aspect ratio. A one

dimensional space is used, therefore allowing each axis to be considered independently,

and then superimposed on top of each other to accommodate either two or three

dimensional geometries.

62

Computational Fluid Dynamics Chapter 3

Figure 3.22: Y axis regional meshing

Figure 3.23: Z axis regional meshing

63

Computational Fluid Dynamics Chapter 3

Figure 3.24: Entire meshed domain after Figure 3.5

64

CHAPTER 4

INTELLIGENT / KNOWLEDGE BASED FRONT ENDS

4.1 Introduction

British and European interest in Information Technology developed with the ALVEY and

ESPRIT (European Strategic Programme of Research and development in Information

Technology). Both programmes commenced in the early 1980s and have established

research into Intelligent Front Ends and Knowledge Based Front Ends respectively.

Essentially they endeavour to address the same difficulties experienced with novices using

software packages. However, the two main differences as highlighted by Eustace (1985),

were that ALVEY concentrated on the collaboration of competing companies, academia

and industry, whereas ESPRIT was concerned with the collaboration of different countries.

Furthermore, ESPRIT had an element that looked directly at Computer Integrated

Manufacture (CIM), where ALVEY divided this into separate parts of the project.

The ALVEY programme of advanced IT research was a joint venture between three UK

Government Departments (the Department of Trade and Industry, the Ministry of

Defence, and the Department of Education and Science), British industry and academia.

The three government departments acted through the Science and Engineering Research

Council (SERC). The ALVEY programme was a five year commitment which

commenced in 1983 and published its final report in October 1988. The objective was to

stimulate British IT research into key technologies of Intelligent Knowledge Based

Systems, Man/Machine Interfaces (MMI), Software Engineering, Very Large Scale

Integration (VLSI) and Computing Architectures. The programme was named after Mr

John Alvey, chairman of the 1982 committee which recommended that such a national

programme should be mounted, in response to increasing overseas competition, and in

particular to the Japanese Fifth Generation Computer Systems initiative.

Within the ALVEY programme the key technology of IKBS highlighted nine research

themes: intelligent front ends; intelligent computer-aided instruction, expert systems,

natural language understanding, image interpretation, declarative languages, inference and

knowledge representation, parallel architectures and intelligent database systems. In 1983

the first IKBS research theme workshop relating to IFEs was held, Bundy et al. (1984). A

second workshop was held a year later, Bundy (1984b).

Intelligent / KBFEs Chapter 4

February 1984 saw the first stage of the ESPRIT programme commence. The programme

was to run over a ten year period, consisting of two five year phases, with three main

objectives: Firstly, to provide European IT industry with the basic technologies it needed

to meet the competitive requirements of the nineties; Secondly, to promote European

industrial cooperation in IT; Finally, to contribute to the development of internationally

accepted standards. ESPRIT concentrated on five technical areas: Microelectronics;

Software technology; Advanced Information Processing (AIP); Office Systems; and

Computer Integrated Manufacture. A document prepared by the commission of the

European communities reports on the progress and results of the first phase, COM(86)

687 final. The technical area of AIP essentially dealt with the development of Information

Processing technologies which addressed the following four key areas: Knowledge

Engineering; External Interfaces; Information and Knowledge Storage; and Computer

Architectures. The knowledge engineering sub-area is concerned with the construction

and use of knowledge-based systems and software tools to help the development process.

User

KBFE

Package

Figure 4.1: Locality and role of a Knowledge Based Front End

A KBFE, as shown in Figure 4.1, is designed to remove the complexities associated with

entering a problem specification to a numerical simulation package. Knowledge Based

66

Intelligent / KBFEs Chapter 4

Front Ends differ significantly from conventional data entry techniques in that they are

able to explicitly define a user’s problem in the terminology required by the package. This

is performed by asking the user questions, structured in English, that allow the IFE to

gather the necessary information in order to synthesise the user’s problem into the

commands required by the target package to fully describe the problem.

The need for KBFEs stems from the fact that conventional software is becoming more and

more sophisticated, and as a consequence users are tending to become apprehensive about

learning how to use a package. This is essentially what a KBFE endeavours to eliminate.

The KBFE concept is such that any user can have access to any package that has a

suitable front end to it. KBFEs can be developed for any conventional computer package

that requires user input by way of a data file or any other means of using package specific

commands, for example: interactive database packages, Mao (1988); interactive control

system design and analysis packages, Pang (1988); and engineering packages that are fed

with data from auxiliary data files, Thomas et al. (1990).

4.2 Knowledge based front end architectures

Various architectures are presented and described, examples of which are given by Clarke

et al. (1988), Tangen and Wretling (1986), Tong (1985), Edmonds and McDaid (1990),

and Drechsler et al. (1988). The major objective of all systems is to synthesise the user

requirements into package commands. The detailed architecture described by Clarke et

al. (1988), for a building energy simulation package, clearly indicates the fundamental

requirements of a KBFE which are centred around a BLACKBOARD structure, Hayes-

Roth (1983) and Reddy and O’Hare (1991). This orbital representation of modules

around a central communications facility allows data transfer between individual modules

within the KBFE. Figure 4.2 shows a conceptual architecture that utilises some of the

fundamentally important modules proposed by Clarke et al. (1988). The fundamental

modules consist of the user model, dialogue handler, package handler, and the knowledge

handler. These are supplemented with optional data manipulation routines.

4.2.1 The dialogue handler/user interface

Ramsay (1984) introduces the requirements for dialogue handling in KBFEs. Pertinent

points include being able to backtrack when required to amend previously entered

Intelligent / KBFEs Chapter 4

Central
Communications

Facility
Package

KBsKBs KBs

Data
File

Package
Handler

Dialogue
Handler

User
Module

Knowledge
Handler

Data
Manipulation

Routines

Figure 4.2: Conceptual Knowledge Based Front End architecture

information, being able to distinguish when a user requires superficial help or detailed

information relating to a specific task (this should be a function of the user model

employed) and appropriate dialogue monitoring.

The dialogue handler would be dependent on the type of user model specified. This is

essentially the user interface and controls the sequence of question and answer sessions

along with choosing which type of dialogue representation to use, i.e. menus or Natural

Language Understanding (NLU). The initial dialogue representation would consist of

implementing menus for a KBFE driven system. Research into extending the available

dialogue techniques to incorporate NLU would be necessary. ECO, Uschold et al. (1984),

used a constrained user driven dialogue handler, i.e. pseudo-NLU. The constraint placed

on the system was that predefined command statements were used for the task

specification. Even though the commands were English and had specific functions

(DOES, USES, SET, UNIFY, SPLIT and DISPLAY) the context still tended to be

ambiguous unless their explicit meanings were known. This implied that a manual, or

extensive help facilities had to be readily available.

68

Intelligent / KBFEs Chapter 4

4.2.2 The user model

Benyon (1987) suggests that "We need user models because users are complex systems and

we cannot deal with complex systems without models". Examples of these user model

attributes include identifiers (name etc.), relative ability to use the package and experience

with the software. Jerrams-Smith (1987) extends these requirements of the user model to

include behaviour patterns, previous background knowledge, goals and plans.

The overall purpose of the user model is to allow computer systems the ability to maintain

a record of the user and to enable him to specify the level at which the dialogue and help

routines should be directed. Clarke et al. (1988) allows this module to monitor the

interaction sequence taken with the user, thus recording the response speed, number of

errors, system default overrides, changes of mind and backtracks.

Ross (1984) indicates that the most common method of producing a user model is to

generate ’overlays’, or templates, that characterise the behaviour of the user with various

postulated models. Information contained within the overlays could relate to the areas

identified by Clarke et al. (1988), described above. Jerrams-Smith (1987) also mentions

the overlay approach for user models. Pang (1988) simplifies the concept of a user model

by constructing three generic categories, (i) the expert level (IFE as a caretaker), (ii) the

intermediate level (IFE as an assistant), and (iii) the novice level (IFE as a tutor). Each

level reacts to the user differently depending on his self appraisal for using the package,

and as such simplifies the developer’s need to incorporate extensive routines to consider

multiple user models. MacRandal (1987) also simplifies the user model used in the IFE

for building design software into two categories: the expert and the novice.

4.2.3 The knowledge handler and knowledge bases

The knowledge handler, usually referred to as the inference engine, operates deductively

and selects the relevant knowledge to reach a conclusion by implementing search

strategies. The most common search strategics are backward chaining, goal driven, or

forward chaining, data driven, with either depth first or breadth first search. Aseo (1988)

gives a good diagrammatic representation of the four combinations. The forward chaining

mechanism would usually be employed for systems that initially obtain data and then use

this to deduce some conclusion. Alternatively, backward chaining would be used for a

Intelligent / KBFEs Chapter 4

diagnostic system whereby a fault is known and the system would reason backwards to

identify the cause of the fault. Combining the two strategies has proved to be

advantageous for the KBFE to PHOENICS.

Within a knowledge base application the organisation of information into separate

knowledge bases is a popular technique because of the ability to categorise the rules. For

example, rules for choosing the correct turbulence model, selecting the correct command

to specify boundary conditions, etc. Knowledge bases would then be inferred upon by the

inference engine in order to deduce appropriate conclusions.

Bundy (1984b) presents a similar architecture for the IFEs which establishes that the

’synthesis’ of the task specification, the user definition of the problem, controls all of the

modules within the IFE. The synthesis of the task specification is basically the process

that transforms the user problem into the coded sequence of commands required by the

package. This was described by Bundy as a recursive procedure involving the interaction

of preconditions, effects of various methods, task specification and inferencing on

information which intelligently bridge any gaps that prevented a user goal to be satisfied.

This recursive nature of synthesising a task specification seems to be misleading in that for

a given package it is always necessary to specify certain information relating to the task

specification. For example, a fluid flow simulation requires that the geometry, fluid

properties and boundary conditions should be directly specified by the user. If these

parameters are not given then the simulation cannot be performed.

4 3 Knowledge based front ends developed with expert system shells

Prior to commencing the development of any expert system (ES) or KBFE using

commercially available ES tools it is common practice to assess the facilities against the

specified development requirements. Such requirements might be the use of inheritance,

rule-based knowledge representation, deep knowledge representation through the use of

mathematical procedures, and the use of frames to store data for use within the rules. It

is usually difficult to initially decide on the knowledge representation techniques to use

unless prior experience with the specific tool has been attained. Ramirez and Belytschko

(1989) describes one of the primary characteristics of expert system development as

"incomplete initial program specification". This implies that most expert systems are

initially developed as a prototype based on an original estimate of software specifications.

70

Intelligent / KBFEs Chapter 4

The prototype is then continually revised through a process of incremental development.

As the development takes place new problems occur with respect to knowledge refinement

which may lead to the decision to implement a different knowledge representation

technique. Thus, it is necessary to establish, in the early stages, whether a particular tool

will be worth the investment of time and money in the development and improvement of a

prototype. Barber (1984) suggests that an expert system shell is an adequate tool for the

development of some type of IFEs. However, he states that they "are weak on knowledge

representation".

An IFE is defined as "a kind of expert system", consequently it seems reasonable that an

expert system shell could be used for its development, in agreement with Barber (1984).

This was the approach taken with the development of the prototype KBFE for

PHOENICS using the expert system shell LEONARDO.

4.4 Conclusions

It is clear that KBFEs interface the user with some further software package known as the

application program. Two initiatives, ALVEY and ESPRIT, essentially address the global

issue of Information Technology with the sub areas concerned with IFEs and KBFEs

respectively. Conceptually IFEs and KBFEs are the same, and are treated as such

throughout this thesis. A KBFE utilises knowledge based techniques to provide a front

end to existing software packages and should translate the user’s requirements into

commands recognised by the application package. Facets used within KBFE architectures

include a knowledge handler, dialogue handler, user module and a package handler, as

shown in Figure 4.2. Knowledge handlers are usually known as inference engines, that is,

they handle the knowledge contained within the knowledge bases, databases, and rules. A

dialogue handler controls the communication between the KBFE and the user, in so much

as to target the correct level of questioning. This is determined by the information

contained within the model created for the user by the KBFE.

The approach taken for the initial development of a KBFE was to implement a

commercial expert system shell, LEONARDO.

71

- f i t ' l l . ». '•>« • i . ' f i

CHAPTER 5

PROTOTYPE KNOWLEDGE BASED FRONT END USING LEONARDO

5.1 Introduction

This chapter discusses the prototype development of a Knowledge Based Front End using

a commercially available expert system shell, LEONARDO. This is preceded by a brief

historical look at Expert Systems and how they differ from conventional programming

techniques. The chosen shell, LEONARDO, is then reviewed through the knowledge

representation formalisms and the problems encountered during its use are presented.

Two main features of the KBFE are described: the data file checker and the data file

generator. The data file checker is discussed in greater detail primarily because of the

techniques that had to be employed in order to develop the software around the

limitations of LEONARDO. However, the data file generator is only briefly mentioned

because the prototype has been replaced and improved upon through the development

using LISP, Chapter 6. The decision to use LISP was taken because of the potential

versatility that was experienced with the modular storage of data within the lists provided

by LEONARDO.

5.2 Expert systems

Expert Systems (ESs) have emerged from the generic area of Artificial Intelligence (AI).

AI is the field of study, associated with computer science, that attempts to duplicate with a

machine those activities normally referred to as intelligent when performed by humans.

This covers all aspects of human life, as shown in Figure 5.L

An Expert System is a knowledge based computer program that specialises in performing

domain specific professional tasks. These tasks could be classified by novice users as being

difficult, whereas the expert would probably regard them as trivial and time consuming.

ESs have been shown to be comparable to their human counterparts, Thomas et al.

(1988), in terms of accuracy and are generally faster for completing a specific task. The

competence exhibited by an ES at performing a given task should always be maintained,

but cannot be increased until new knowledge has been acquired and entered into the

knowledge bases. It must be emphasised that the system would only work and produce

correct results to a problem if the information and heuristics that the knowledge bases

contain are themselves correct. The cleche "garbage in, garbage out" equally applies to

Prototype KBFE using LEONARDO Chapter 5

ESs as well as conventional computer programs. However, ESs should have the ability of

checking the data that is input for validity and accuracy. If there exists any anomalies

then the system should automatically indicate that there is a potential error. Conventional

programs are just as capable of highlighting errors in data entry procedures by coding in

exhaustive checks for the allowed values.

Hunan Attributes Artificial Intalligttnce

Logical Processing Expert Systems

Image Processing Vision Systems
*Voice Recognition

Speech Synthesis
*

* Natural Language Processing

Limb Movements Robotics

Figure 5.1: Human / Artificial Intelligence attributes

Expert systems are a relatively new method of computer programming. The most

immediate distinction between conventional programs and ESs is that the latter is

primarily used for symbolic processing, whereas conventional programs are mainly used for

numeric processing. Waterman (1986) details how ES differ from conventional programs.

The main difference is that an expert system must have expertise, symbolic reasoning,

depth and self knowledge. ESs are sometimes known as Knowledge Based Systems

(KBSs) and is defined as "a software and hardware system that processes data, information

and knowledge", COM(86) 687 final (see references). Knowledge has also been defined as

"that part of symbolically described information that is used by competent experts in a

particular domain (medical, legal, etc.)".

Prototype KBFE using LEONARDO Chapter 5

Symbolic reasoning refers to the ability of the system to manipulate symbols rather than

numbers in order to obtain some form of solution. This is again analogous to the expert

whereby he chooses symbols to represent the problem concepts and applies rules or

heuristics to them. The type of symbolic manipulation employed is directly related to the

type of knowledge representation used.

The depth of the knowledge base relates to the extent of the information contained within

the system. That is, after development, would the system be able to resolve problems in

the real world? For this to be possible the knowledge within the knowledge base should

be as exhaustive as is feasibly possible.

Self knowledge relates to the system being able to recall the inferencing process that was

performed and to be able to explain its line of reasoning to the user. This is achieved by

the generation of inference chains during the interaction with the user and progression

through the inference networks. The utilisation of these inference chains within rules

relating to the accuracy, consistency and plausibility of its conclusions would have three

effects, Waterman (1986): Users would tend to have more faith in the results, hence more

confidence in the system; Assumptions made by the system would become explicit to the

user as opposed to being implied; and easier to predict and test the effects of various

changes within the system. Knowledge used for the assessment of the conclusions is called

meta-knowledge, or knowledge about knowledge.

The expertise that a system must have is usually coded in as rules and facts. Skilful

implementation of the rules within a robust structure is the secret of a good expert system.

This implies that the system should be able to apply its knowledge effectively and

efficiently, thus performing as an expert would under real situations.

There exists a growing number of tools available for the development of expert systems.

These tools, or shells, provide various knowledge representation formalisms including

frames, lists, rules and procedures. The utilisation of a commercial expert system shell,

LEONARDO, was the initial approach taken for the development of the prototype for

the KBFE to PHOENICS.

74

 ... - a .a - H „ . ,*1, _ •„

.
r

.
<

*
*

M

i
i

I
:

Prototype KBFE using LEONARDO Chapter 5

5 3 LEONARDO

Expert systems usually contain logical symbolic processing as well as conventional

computational techniques. They can be written using standard languages like FORTRAN

or PASCAL but are some what cumbersome and contain extra embedded knowledge, Alty

and Coombs (1984). This makes subsequent modifications to the control structure

difficult without rewriting the code. On the other hand a symbolic reasoning approach

which uses an inference engine with either backward or forward chaining automatically

considers new rules. Recent development of ES shells have adopted the latter approach

and are much easier to use because the KB can be easily modified. Several commercially

available ES shells were considered, but the ultimate restrictions of cost, potential versatility

and availability made LEONARDO the most favourable in this case.

LEONARDO was marketed by Creative Logic as a complete system with all the tools

necessary to design, develop, test and deliver expert systems. LEONARDO enabled the

developer to create a knowledge base using conventional production rules and

quantification rules. Both types of rule create objects which allowed the storage of data

within slots in object frames. Production rules are simple IF condition THEN action rules,

whereas quantification rules are used with class objects to facilitate inheritance. Each

object frame provides the basis for all available knowledge representation formalisms.

Deep knowledge could be coded in the LEONARDO procedural programming language,

within the frame of the appropriate object. Modularised RuleSets could be created by

locating the rules for a particular object within the object frame under the slot RuleSet:.

The inference, by default, was backward chaining with opportunistic forward chaining.

53.1 Spurious events within LEONARDO

Given the specification of LEONARDO, a novice to the field of ESs would seem very

impressed. Forsyth (1988) reviewed LEONARDO version 3.00, level 3, after its release

and "was unable to crash the system in three days’ usage, and formed the overall

impression that TJF 1 . — j is a robust piece of software." However, after eighteen

months’ use, through which the shell was subjected to a series of rigorous tests, the initial

impressions soon diminished as the software limitations became apparent. Possibly the

main problem that became obvious was the number of bugs that were present within the

software. These, it can be assumed, only became apparent because of the extent of the

Prototype KBFE using LEONARDO Chapter 5

application to which the shell was being applied. Other spurious events that were

experienced consisted of unexpected instantiation of objects during the execution of a

knowledge base; assignment of nonsensical ASCII characters to real, text and list objects;

spontaneous deletion of all objects and creation of large quantities of the same object.

Furthermore, the procedures, if too large, spontaneously became corrupt, a similar

experience occurred if the lists were allowed to become too long. These were but a few of

the problems that were encountered during prototype development.

S 3 .2 LEONARDO’S use of pseudo-lists

True lists or linked lists, Schildt (1990), have one distinct advantage over arrays: the initial

size does not have to be specified, however, as with arrays their size is memory dependent.

This allows dynamic creation and deletion of the values within the lists. That is, the actual

size can vary during run time, and the memory requirements vary accordingly. The

structure of a linked list permits the insertion and deletion of values quickly and easily.

This is possible because each element of information carries with it a link to the next data

item in the chain. Thus any type of data item can be located in any position within the

list. Figure 5.2 conceptually shows the structure of doubly linked lists. The list structure

that Creative Logic developed is not strictly a set of true lists, as described above, but can

be more accurately described as pseudo-lists. LEONARDO is written in FORTRAN77,

Forsyth (1988), and as such cannot implement true lists. To enable LEONARDO to

imitate lists Creative Logic utilised CHARACTER*1200 strings.

LEONARDO interprets a knowledge base and for a list object a CHARACTER* 1200

variable was assigned to represent the object in compiled FORTRAN77 code. This did

not allow numeric values to be stored in the lists, unlike LISP. This essentially confirms

Ramirez and Belytschko’s opinion that applications have to be written around the tool’s

limitations. In order to store real or integer values it was necessary to transform the

number into a string of characters depicted by the appropriate ASCII numbers and then

assign the text to the list. This decomposition of a number was performed by evaluating

the power of the number in standard form and then decomposing the number. This

essentially produced an exponential form of the number as a string of characters. The

following sequence indicates the steps taken for the transformation of the number 3479.7

into its appropriate string: -

76

—

Prototype KBFE using LEONARDO Chapter 5

D a ta D a ta D a ta

Termination value Termination value
indicating first / \ indicating last

value. / \ value.

Pointer to previous
element

Pointer to next
element

Figure 5.2: Conceptual structure of doubly linked lists

(a) Find the exponential power required to obtain the number in standard form. In

this case the power is 3 and the standard form of the number, omitting the

exponential part of the expression, is 3.4797

(b) Divide the number given, i.e. 3479.7, by 10Power to obtain a number between 1 and

10. The number becomes 3.4797

(c) Take the integer of the number and transform it into an ASCII number by the

addition of 48. This gives the ASCII number of the character required by the

string of text. For example the ASCII number for the integer number 3 is obtained

by 3+48 = 51, and the ASCII number 51 represents the character ’3’.

(d) Concatenate the string of text with the newly obtained character. The original

string of text, prior to commencing the process, was ”.

Prototype KBFE using LEONARDO Chapter 5

(e) Modify the original number by subtracting from it the value of the integer

multiplied by 10Power. For example the original number becomes 479.7 — 3479.7 - 3

* 103.

(f) Repeat from steps (b) to (e) until the original number has been reduced to zero.

(g) Insertion of decimal points should be performed as and when necessary. Finally

the exponential character ’E’ is attached to the string along with the original power

determined in (a) above.

After the numeric / text transformation has been completed the example string would be

’3.4797E3’. A procedure to perform the transformation was developed so that all numeric

values could be inserted into the necessary LEONARDO pseudo-list.

Simple concatenation of text values, or lists, to lists within LEONARDO could be

performed using different commands in the rule base and procedural languages. However,

insertion of values within lists was not possible, and as such warranted the development of

procedures to perform the addition and deletion of values within list objects.

53.3 LEONARDO’S run time response

When developing an ES of any type, be it for design optimisation or to act as an IFE,

then the response is important because a user would not expect to sit in front of a

computer that takes forever to perform a specific task. However, it must be emphasised

that the response times for various computers differ depending on their configuration.

For instance, there would be a significant variation on performing the same task on a PC

386, 100% IBM compatible compared with a workstation. For a networked mainframe

computer, the response times would depend upon the load on the computer, i.e. the

number of users logged onto the system. The response times on a PC 286 when

developing and running the prototype IFE for PHOENICS was found to be a major

problem. Excessive disk accessing times by the system increased processing times beyond

what was considered to be reasonable. Constant hard disk accessing was required to load

each ruleset and procedure into memory as and when it was called. Thus, if a large

number of procedures were continually called then constant disk accessing would be

required. Procedures within LEONARDO were ’recursive’, how this was coded with

78

Prototype KBFE using LEONARDO Chapter 5

FORTRAN77 seems puzzling, however, implementing recursion proved to be

tremendously slow and as such it was decided to utilise external procedures to perform

complex calculations. Extending the list processing facilities within LEONARDO by

introducing procedures to perform certain tasks, as described above, exacerbated the

response times. To further compound the problem, external procedures which could be

executed from within LEONARDO took considerably more time to produce results

compared with DOS execution. For example, the mathematical parsing FORTRAN code,

see section 5.4.3, when called from within LEONARDO to calculate the expression

2+(26.47/49) ^ 3 required 15.25 seconds. This is in contrast with an execution time of 1.51

seconds when run directly in DOS, based on the same expression. This shows that the

execution from within LEONARDO is approximately ten times slower than that in DOS.

53.4 Compilation times and debugging facilities

Within a knowledge base it is always necessary, as with conventional programs, to compile

and debug modified code. LEONARDO permitted the compilation of individual rulesets

or procedures. This initially proved to be beneficial because there seemed little point in

compiling a complete set of rules and procedures if only one had been modified.

However, after continual compilation of individual rulesets and/or procedures total

corruption of the knowledge base was experienced. In order to retrieve the entire KB a

complete compilation was necessary. This proved to be another annoying problem.

A trace facility provided for the user allowed the inferencing process to be followed within

the rulesets. However, this facility was not available for procedures, this proved to be

highly frustrating and inconvenient. Through private communications with Creative Logic,

it was established that there was a procedural debugging facility, but it was not

commercially available. Therefore, in order to perform effective debugging of procedures,

that were occasionally complex, it was necessary to insert appropriate diagnostics.

5.4 Prototype infrastructure

The prototype IFE was developed using LEONARDO (versions 3.17, 3.18 and 3.20) on an

IBM compatible 286 PC AT. The initial stages of development saw rapid progress

towards a working system. Unfortunately, the rate of system growth started to rapidly

decline as the software limitations became apparent, and the need to develop the system

Prototype KBFE using LEONARDO

around these limitations increased.

Chapter 5

data file
(Manual)

P H O E N IC S

FORTRAN
data files

FORTRAN
Support
routines

Data file Data file
checker Generator

knowledge base knowledge base

data file

Inference Engine
User Interface

GRID
data files

FORTRAN
Supportroutines

Figure S3: Preliminary architecture of the PHOENICS KBFE developed within the
LEONARDO shell

Figure 5.3 shows the initial infrastructure on which the development was based. As can be

seen there exists external FORTRAN code that is continually accessed to increase the

speed and flexibility of the KBFE. It became apparent during the early stages of the

development that LEONARDO could not perform rapid complex calculations, that is the

calculations could be performed but at the expense of response times. As a consequence

of this it was necessary to develop FORTRAN code to perform the grid generation and

mathematical parsing.

The primary reason for developing a KBFE was to enable novice users of CFD to become

familiar with the techniques employed to model fluid flow problems using a commercial

software package. To this end it was important to integrate into the system, knowledge

relating to the synthesis of the user’s problem definition to appropriate PHOENICS

commands. This can be seen to be the fundamental requirements placed upon an KBFE,

80

Prototype KBFE using LEONARDO Chapter 5

and as such would consist of generating a usable data file from an interactive session with

the user. This approach was suggested within the feasibility study, Uzel et al. (1988).

However, it was thought prudent to also allow partially experienced users the ability to

have their manually created data files checked prior to submitting them for analysis. This

facility would mimic the process of asking the advice of an expert who would indicate any

errors with the data and recommend possible improvements. Certain mistakes, for

example the inadvertent transposition of arguments within commands, have been shown to

be accepted by PHOENICS, thus indicating an acceptable data file, but have lead to

erroneous results. Errors such as these can take hours to find if a large data file has been

submitted. In order to eliminate the tedious task of checking the independently generated

data file manually, thus reducing the time involved, a prototype system, the data file

checker, was developed that would examine the contents of the file and would assess the

validity of the commands. This would upgrade the existing facility within the PHOENICS

preprocessor, which simply states that an error occurs on one or more lines, to a higher

level whereby detailed information regarding the invalid statements would be displayed.

The knowledge for the KBFE was obtained from three different sources. Firstly, practical

experience with PHOENICS as a user. The commands that have to be used to correctly

model a CFD problem are explicitly defined within the PHOENICS reference manual,

TR200 (1989). Experience with CFD concepts, Patankar (1980), is important because

PHOENICS appears to assume that the user has knowledge of various techniques used for

the discretisation process. This was thought to be possibly the most important method of

understanding the operation of PHOENICS, since there is no substitute for experience.

The second method was through directly conversing with experienced users, and extracting

their knowledge on problem specifications. Finally, by acting as a pseudo-expert when

supervising and advising inexperienced users. Knowledge acquired in this manner was

transformed into various rules which formed the infrastructure of the KBS.

5.4.1 The data file checker

The data file checker was developed to allow partially experienced users the ability to

check manually created files prior to their submission to PHOENICS, Hartle et al. (1993).

The structure of the checker can be seen in Figure 5.4. Sevci. problems arose during the

early stages, these were

81

Prototype KBFE using LEONARDO Chapter 5

: l e o o u t .d a t

Qll.DAT

Inference Engine

UserQ 1 .DAT

User Interface

Checked
Data file

PHOENICS^

Data File
Checker

Knowledge Base

External
executable

code,
COMSEQ.EXE

Figure 5.4: Detailed architecture for the data file checker

(1) PHOENICS could generally accept any valid command in any order, with

exceptions, which could be referenced to any other command. The position of the

referencing command is totally arbitrary. For example, the word "TEMP"

(Figure 5.5) appears as an argument within the command statement COVAL but is

assigned as the name of H I on the following line. This would present a problem if

sequential checking by the IFE was implemented, because PHOENICS requires an

independent variable or an assigned name as the second argument within the

COVAL statement. Therefore, the order in which the commands are checked

should be predefined prior to activating the KBFE. Even though this layout of the

Q l.D A T file could be accepted, there exists a recommended structure in which to

define the commands, see section 3.5.6.

(2) Commands within PHOENICS usually necessitate numeric values for, say, defining

specific boundary conditions, for example, a wall is I be held at a constant

temperature of 100 °C, or an inlet boundaiy is to have a mass influx of 1.235 kg s'1

m‘2. However, these boundaries could well be described using expressions involving

Prototype KBFE using LEONARDO Chapter 5

Command
Number

Section o£
input data file,

01.DAT

PATCH<INLET,L O W ,1,1,N¥,1,1*1,1)
COVAL(INLmr,T»H,PrXVAL,TINIJ:T)
NAMK(HI)-T

Checking order

Sequential Pseudo-sequential

Command z

Command 3

Command 1

Figure 5.5: Possible order of data entries into the data file with sequential and pseudo-
sequential checking orders

previously defined variables, in this case TWALL could be the wall temperature.

Similarly, the mass influx could be described as RH01*WIN, where the values of

R H O l and WIN would have been previously declared. To this end, the program

would inevitably fail if, it instead of being given a numerical variable, it was given a

character string as an expression in its place.

In order to avoid these problems a pseudo-sequential checking procedure and a

mathematical parser were developed.

5.4.2 Pseudo-sequential checking

The purpose of tne pseudo-sequential checking procedure is to initially read the data file,

Ql.DAT, and geaerate ~ ''M m and SEQuence, COMSEQ, which would be used by the

data file checker KB. External FORTRAN code, COMSEQ.FOR shown in Appendix C,

defines the order in which the commands are to be read by the KB. This establishes a

..." * V '\ TT-v ’ ’ v x :\ - * ‘ 1 ' V :'- . Vv * V ' -57 • • . r • .•*?? • . • ~ v , r . / jt . ; r f V . '

Prototype KBFE using LEONARDO Chapter 5

pseudo-sequential checking order, Jambunathan et al. (1991a). The pseudo-sequential

checking order is read directly into LEONARDO, in a pseudo-list format, through its

internal information passing files $$LEOINP.DAT and $$LEOOUT.DAT. The

information that is contained within the list can be seen in Figure 5.6, and is structured in

a predefined order.

11 k PATCH 15 12 16 19 35 56

Line numbers within Ql.DAT where
the command PATCH is located.

Number of occurances of PATCH

Command

Declarative command if '*•

Priority associated with PATCH

Figure 5.6: Elemental structure for the COMSEQ one dimensional array for pseudo-
sequential checking information

COMSEQ is a FORTRAN based code that works with a CHARACTER* 125 array which

is one dimensional with a maximum of 500 elements. The array stores a total of 377

possible PHOENICS (version 1.4) commands. The remaining 123 locations provides

adequate memory for user defined variables. The array of statements forms the pseudo-

sequential checking order after the Q l.D A T file has been read, and the priority of the

commands have been sorted. The two main operations performed by COMSEQ are (i)

the reading and modification of the array information, and (ii) the sorting of the

commands into a prioritised list. The basic structure of the information within the array is

given in Figure 5.6.

84

— _ _ _ _ — _ _ * 0 'i

I
I
-i
*

• *5-3

V.*--

Prototype KBFE using LEONARDO Chapter 5

The sequence of reading Ql.DAT, and generating the pseudo-sequential checking order is

as follows :~

(a) Read the current line in the data file

(b) Write the line to an auxiliary file, Q ll.D A T, which will be used for direct access by

the KBFE. Direct access reading within LEONARDO required that all records

within a file have the same record size, this was fixed at 75 characters.

(c) Check the line for one of the PHOENICS commands.

(d) If it is a command other than ’REAL’ or ’INTEGER’ then append the line number

to the appropriate character string in the one dimensional array. The line numbers

are delimited with commas.

(e) If the command is ’REAL’ or ’INTEGER’ then append to the end of the character

array all of the declared variables within the PIL command. For example,

REAL(WIN1,WIN2,WIN3) will append to the array the dynamic commands WIN1,

WIN2, and WIN3. Once these are declared within Q l.D A T they will take the form

of the structure shown in Figure 5.6.

(f) The data statements within COMSEQ.FOR, shown in Appendix C, contain

predefined settings according to the ability of one command referencing other

commands. These priorities are based on the decimal equivalent of the ASCII

numbers. For example, ’ | ’, which is ASCII 124, has the highest priority, and are

assigned to user declared variables. A blank in the first position has the lowest

priority with the ASCII equivalent of 32.

(g) A general bubble sorting routine shifts all of the commands that have been used

into the top ’n’ elements of the array, where ’n’ is the number of variables and

commands that have been defined within the data file.

(h) A printing routine formats the output from COMSEQ into one continuous string

and writes the entire contents to $$LEOOUT.DAT, which is read by LEONARDO

into a list object. Figure 5.7 shows a section of the one dimensional array in

Prototype KBFE using LEONARDO Chapter 5

*NY,1,7,
*YVXJtST,L,$,
*HZ,1,24,
•ZKLAST, 1,25,
*RH01,1,63,
YFRAC,15,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,
ZFRAC,36,26,27,26,29,30,31,32,33̂ 34,35,36,37,31,39,40,41,42,43,44,45,46,
47,46,49,50,51,52,53,54,55,56,57,56,59,60,61,
TALK,1,1,
TEXT,1,2,
CARTES,1,3, (a)SOLUTN,3,4,5,6,
PATCH,7,64,67,69,72,75,78,81,
COVAL,13,65.66,66,70,71,73,74,76,77,79,$0,82,63,
CONPOR,1,84,
L9WKEF,1,65,NPLT,1,86,
RBSREF,3,87,88,89,

| RELAX,3,90,91,92,
| OUTPUT,3,93,94,95,

STOP,1,96,

1 *NY,1,7, *YVLAST,1,8,*NZ,1,24,*ZWLAST,1,25,*BNUL,1,62,*RH01,1,63,YFRAC,15,
9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,ZFRAC,36,26,27,28,29,30,31,32,
33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,
57,5$,59,60,61,TALK,1,1,TEXT,1,2,CARTES,1,3,SOLUTN,3,4,5,6,PATCK,7,6,4,67,
69,72,75,78,81,COVAL,13,65,66,68,70,71,73,74,76,77,79,80,$2,83,CONPOR,1,84,
LSWEEP,1,85,NPLT,1,86,RBSRSF,3,87,88,89,RELAX,3,90,91,92,OUTPUT,3,93,94,95,
STOP,1,96*

Figure 5.7: (a) COMSEQ one dimensional array, (b) Pseudo-sequential checking order
used for a manual data file

COMSEQ and the output string in $$LEOOUT.DAT.

User defined declarative commands, such as WIN= 1.234, are read pseudo-sequentially

and stored internally within the KBFE for use at a later stage. The reason for storing the

commands and their respective values is that they may be referenced by subsequent

statements, such as

C0VAL(INLET,P1,FIXFLU,RH01*WIN1).

This, when read by the KBFE, would expect previously defined numeric values for R H O l

and WIN in order to calculate RHOl*W IN. The values for R H O l and WIN are stored

in a list structure of the form ...

Variable!, Value^ Variable2,Value2,...,Variablen,Valuen

86

Prototype KBFE using LEONARDO Chapter 5

... and when an expression is required to be evaluated the contents are used, in

conjunction with a mathematical parser, to calculate the expression. The values used for

resolving such expressions should have been instantiated by means of the priority settings

previously discussed. Once the expression has been evaluated the result is substituted

back into the command.

5.4.3 Parsing of mathematical expressions

Parsing with respect to A l and expert systems usually refers to analysing natural language.

Clocksin and Mellish (1984) introduce the concept of parsing using PROLOG grammar

rules to study the structure of an English sentence. However, the main thrust of the

problem that we are concerned with does not include parsing English sentences, but

mathematical expressions.

Parsing of mathematical expressions was highlighted as being an extremely important facet

of the KBFE. LEONARDO was used to stage the first development of the parser,

whereby recursive procedures were employed. This proved to be successful but was

extremely slow. To improve the response of the code a FORTRAN parser was developed,

EVALUATE.FOR, as shown in Appendix D.

Essentially the mathematical parser reduces an expression into the fundamental

components of operators and operands, and then proceeds to determine their values. The

dissection of an expression involves delimiting operators and operands within the

expression. Assume an expression to be made up of the following ...

NX/2+1

with the variable-value list containing ...

NX,400,NY,200,WIN,23.7

The expression and variable-value list are passed to $$LEOINP.DAT as character strings

and upon execution of EVALUATE.EXE, they are read from the transition file. As a

result of LEONARDO’S use of pseudo-lists, similar list manipulation functions as those

within LEONARDO were developed for EVALUATE.FOR. Dissecting and delimiting

>3
Prototype KBFE using LEONARDO Chapter 5 - ||

the expression with commas, leads to ...

NX,/,2,+,l

Substitution for the variables is performed by removing the appropriate value from the

variable-value string and performing the necessary insertion. The expression then becomes

400,/,2,+,l

Precedence rules, Kernighan and Ritchie (1988), are applied to determine the order of the

calculations, and for the given example the substitution and reduction leads to ... If

%
200,+,1 ' I

201 -I

Once there exists no operators within the expression the result has been obtained. If

parentheses were in the original expression then the order of precedence moves to the *§

inner most set of parentheses, where the sub-expression is resolved using the conventional

operator precedence. ,

During the checking process errors or omissions within the Q l.D A T file are registered in

a list structure that details the command, the line number, and the type of error associated

with the line. The latter information is coded into the system by using error numbers that

can be assigned to strings of text. The error list is used upon the completion of the initial

check when the appropriate error messages are displayed. At this point the user is able to

modify the entry into the data file interactively with the checker or he can exit from the

system and modify the results independently. After the error messages have been

displayed the system creates a summary of the analysis relating to the supplied information

and presents this to the user. The user can easily determine whether he has made any

obvious omissions that the system is unable to detect by reading the analysis summary.
I

I

j

Prototype KBFE using LEONARDO Chapter 5

5.4.4 The data file generator

Most numerical simulation/analysis packages utilise input data files for defining the

problem to be analysed. The usual information that they contain refers to the geometry,

material/medium properties, boundary conditions and possible solution parameters. The

most time consuming task that one must complete prior to becoming proficient with any

numerical simulation package concerns familiarisation of the semantics, syntax and

structure of the language used within the data file. This problem can be exacerbated if

the fundamentals behind the theory need to be appreciated in order to aid the learning

process. This combination of becoming familiar with the language and the fundamentals

behind the theory is essential if a moderate understanding in the usage of PHOENICS is

to be attained. The concepts that really need to be appreciated concern discretisation

methods (the requirements, techniques, limitations and implications), the reasoning behind

the method of assigning boundary conditions, and the control of the solution algorithm

which is heuristic in nature.

The necessity to become aware of fundamental concepts, as required by PHOENICS, can

be diminished if a KBFE were available to aid the user, allowing him to concentrate on

describing the problem to be analysed. That is, by describing the geometry, specifying the

necessary boundary conditions, and requesting specific output requirements. The task of

defining the grid, monitoring and controlling the solution algorithm, specifying the

necessary commands and submitting the job should be completed by the KBFE. This

leads to a convenient modularisation of the KBFE, as shown in Figure 5.8.

The analysis definition details the basic preliminary information regarding the type of

analysis to be performed. This consists of the number of dimensions required, type of

coordinate system (cartesian or cylindrical), extreme axis dimensions, number of inlets,

number of outlets, number of domain walls and the number of obstructions. The

specification of the geometry relates to the initial information and essentially consisted of

a combination of inlets, outlets and walls. The decomposition of a geometry into these

three items leads to a dynamic list structure for representing the geometric properties and

defined boundary conditions, to be discussed in section 5.4.5. Preliminary grid generation,

which utilised the stored geometric and boundary condition data, was performed using

external FORTRAN code. The FORTRAN routines progressively generated the mesh for

regionalised sections of the geometry using a power law relationship, and was a function of

89

Prototype KBFE using LEONARDO Chapter 5

Analysis definition

Geometry specification

Boundary condition assignment

Output requirements User in t e r a c t io n

Grid generation

Algorithm monitoring & control

Command generator and
external data file merger

IFE o p e r a t io n

Figure 5.8: Modularity of the Q l.D A T data file generator developed with LEONARDO

the minimum cell size and maximum allowed aspect ratio. Furthermore, they created the

necessary commands to fully describe the geometry and boundary conditions using the

appropriate PHOENICS commands. The final grid generation technique, discussed in

section 3.8, superseded the procedures developed for the prototype KBFE.

5.4.5 Information storage within pseudo-list structures

During the initial stages of the data entry procedures for the analysis definition, geometry

specification and boundary conditions the information was stored within pseudo-list

structures. The lists have an identical structure for each type of boundary, i.e. walls, inlets

and outlets. The stored information consists of the name of the boundary, the patch type

associated with the geometry, the coordinates required to totally describe the boundary,

the priority of the boundary for the grid generation routines, the dependent variables

specified at the boundary and the appropriate arguments re.]uirtti by the PHOENICS

COVAL statement for boundary condition specifications. The conceptual structure for the

lists is shown in Figure 5.9, and it simulates lists within lists as used within LISP for data

Prototype KBFE using LEONARDO Chapter 5

Name Patch type

Coordinates
Priority

Ng I ^ 14>g I |<t> (Ng) IqlvJCg |v2 C (Ng1) V (Ng)

Sections of the list from Name repeat for N boundaries

Figure 5.9: Conceptual, complex, list structure within LEONARDO

storage. The individual modules, the lists within the main list, are accessed by evaluating

the position of the required data from pre-determined equations. Individual sets of

equations are created for specific list structures. Equations (5.1) to (5.9) were used for

the location of specific data from the conceptual list structure shown in Figure 5.9. A

feasibility study of incorporating the mathematical parser and information storage using

pseudo-lists was performed, Jambunathan et al. (1991b). However, because of the

inherent slowness experienced with LEONARDO and the potential to exceed the

maximum number of allowed characters within the list structures, it was decided not to

implement the technique.

N [- 2 + 2 (i - 1) (5-1>

Nl2 - Ni + 1 (5-2)

91

J

Prototype KBFE using LEONARDO Chapter 5

i- 1

lndexi - 2 + 2N + £[4 + M n(lJV 2n) + 3(tf" + N%)\ (53)

Name. - /wdex. (5.4)

Pafc/j type{ - 7/ufex. + 1 (5.5)

Priority, - /ndex. + 3 + 3nJ (5.6)

4k. - Priority. + 1 + / (5.7)

Ĉ . - Priorityi + 2 + Nl2 + 2(j ~ 1) (5.8)

(5.9)

5.5 Conclusions

The performance of the expert system shell, LEONARDO, for knowledge representation,

inferencing and data storage when applied to the development of a prototype KBFE for

PHOENICS was assessed. Problems were experienced, such as the spontaneous

corruption of knowledge bases, poor data storage facilities and the use of pseudo-lists.

Re-emphasising the points made by Ramirez and Belytschko (1989) and Barber (1984),

expert system shells are generally restrictive in terms of knowledge representation

techniques and it is usual for the application to be written around the chosen shell.

The process of boundary condition assignment and data storage within pseudo-lists,

whereby access to specific data items required relatively complex indexing equations,

seemed rather cumbersome and as such new techniques for representing such knowledge

has been developed within LISP. The mathematical parser proved to be invaluable for the

data file checker.

LEONARDO was deficient in some of the modules shown in Figure 4.2. For example,

the intrinsic dialogue h a n ^ i only reliably permitted menus to be used which forced a

system controlled KBFE. There was no central communications facility which meant that

variables to be used within procedures required either global definition or explicit

Prototype KBFE using LEONARDO Chapter 5

transportation into the appropriate routines. User modelling routines were unavailable

unless specifically created and package handling procedures needed to be developed.

LEONARDO proved to be inadequate for the prototype development because of weak

knowledge representation facilities. However, the experienced gained through the use of

the expert system shell proved to be invaluable.

The inherent slowness, in conjunction with other factors forced the decision to abandon

LEONARDO and to commence further development using a different approach. The

experience gained with using LEONARDO proved to be beneficial in so much as to

create a foundation upon which to develop the LISP KBFE.

LEONARDO’S knowledge representation formalisms created a framework within which to

base the usage of lists and object data storage. These approaches were carried forward

into the LISP development and have proved to be extremely effective.

CHAPTER 6

A KNOWLEDGE-BASED FRONT END TO PHOENICS USING LISP

6.1 Introduction

This chapter describes the development of a Knowledge-Based Front End for PHOENICS

using a traditional Artificial Intelligence language, LISP. References that were found to

be excellent for the newcomer to LISP included Winston and Horn (1989), Steele (1990),

and Yuasa and Hagiya (1986).

Winston and Horn (1989) have dedicated two chapters to inferencing using forward and

backward chaining and one other to pattern matching. The concepts presented for

knowledge management formed the basis of the inferencing mechanisms developed for the

KBFE, also the pattern matching and unification techniques were utilised for the

inferencing processes. Furthermore, a method of representing rules and filtering

assertions through the antecedents, thereby resulting in a bindings list containing data for

use within the consequents to assert further information is described. Assertions were

found to be extremely beneficial to the storage of CFD data for boundary conditions.

A central communications facility was developed that contained data relating to the

boundary conditions and geometrical information, in the form of assertions. Assertions

were used to aid the knowledge representation required for CFD, and was complemented

with objects that were represented by frames having slots to store appropriate information

to fully describe a particular object. These objects were created to facilitate the storage of

non boundary condition data.

Prior to describing the techniques developed for the KBFE, an overview of the system is

given with a brief description of the architecture, auxiliary LISP functions and the data

manipulation functions and how these are used to initially set up the database. Object

structures are then discussed with a view to highlighting the role they have within the

rules. A brief introduction to pattern matching is also given. This leads onto the rulebase

language developed for the KBFE and indicates the firing mechanisms that were

formulated. Finally, the inference engine is described with respect to forward and

backward chaining thrc ;gh inference networks, an ’ how the objects have been included

within the rules.

A KBFE to PHOENICS using LISP Chapter 6

95

:

%

i

The core of this system revolves around the interaction of the inference engine,

knowledge-bases and the database. Extracting LISP functions written specifically for the

current application, as well as the associated objects and knowledge bases would leave the

inference engine code and the corresponding data representation formalisms. This would

then be able to be applied to a different application.

6.2 Symbolic pattern matching

Expressions within LISP are collective groups of atoms and lists. Pattern matching ')

considers two expressions: a pattern and a datum. Patterns contain elements called i

pattern variables which are atoms prefixed with $, whereas a datum is an expression which

contains knowledge. The following are examples of valid CFD patterns ...

(boundary name for $type $identity $nodes is $name)

(cardinal for surface $nodes is $cardinal)

... and appropriate datum expressions would be ...

I

(boundary name for inlet 1 (1 7) is entry)

(cardinal for surface (1 7) is west).

When a pattern contains no pattern variables, that pattern matches a datum only if the

pattern is exactly the same as the datum, with each corresponding position occupied by the

same atom. Thus ...

(X HAS 3 REGIONS) successfully matches (X HAS 3 REGIONS)

(X HAS 4 REGIONS) fails to match (X HAS 3 REGIONS).

When a pattern contains pattern variables, the corresponding position in the datum can

contain anything. Thus ...

(X HAS $N REGIONS) matches (X HAS 3 REGIONS)

(X HAS $N $N) fails to match with (X HAS 3 REGIONS)

;

A KBFE to PHOENICS using LISP Chapter

In the latter example failure occurs because the pattern variable $N is used twice, on the

second occasion the atom 3 is replaced, and the match fails. The function MATCH

performs the pattern matching operation and returns either an association list, NIL or

FAIL. Thus ...

(a) (match ’(x has $n regions) ’(x has 3 regions)) returns (($N 3))

(b) (match ’(x has 3 $?) ’(x has 3 regions)) returns (($? regions))

(c) (match ’(x has $n $?) ’(x has 3 regions)) returns (($N 3) ($? regions))

(d) (match ’(x has 3 regions) ’(x has 3 regions)) returns NIL

(e) (match ’(x has 3 regions) ’(x has 4 regions)) returns FAIL.

The pattern matching process, as indicated above, can return three possible answers: an

association list, NIL or FAIL. FAIL indicates that the match has been unsuccessful,

whereas an association list or NIL suggests a match has been performed. NIL indicates

that the match was positive with all atoms being identical in both pattern and datum,

without any pattern variables being present. An association list, on the other hand,

suggests that pattern variables were present, the answer giving the appropriate bindings.

6 3 Symbolic pattern unification

Pattern unification matches two patterns as opposed to one pattern and one datum.

However, the pattern variable is taken from the first pattern if both patterns have

variables in the same position. Thus ...

(a) (unify ’(x has $n regions) ’(x has 3 regions)) returns (($N 3))

(b) (unify ’(x has 3 regions) ’(x has $n regions)) returns (($N 3))

(c) (unify ’(x has $nl regions) ’(x has $n2 regions)) returns (($N1 $N2))

(d) (unify ’(x has 3 regions) ’(x has 3 regions)) returns NIL

A KBFE to PHOENICS using LISP Chapter 6

(e) (unify ’(x has 3 regions) ’(x has 4 regions)) returns FAIL.

As with pattern matching, unification can return one of three answers: FAIL, NIL or an

association list. The same conditions apply with the answers as with the pattern matching

described above.

6.4 Inferencing techniques

Forward and backward chaining are the two inferencing techniques incorporated within

the KBFE, the details of which will be described in section 6.9. Initially forward chaining

is performed with the implementation of backward chaining as and when further

information cannot be extracted from the assertions or objects. Both techniques extract

data from assertions and objects through the use of pattern matching and pattern

unification. Inference networks are used to link rules within knowledge bases, and are

used to prevent the unnecessary consideration of irrelevant rules. As the system

progresses through a network, a bindings list is created which stores current data extracted

from assertions. A bindings list consists of numerous lists of bindings. A set of bindings

is defined as an association list of pattern variables and corresponding values,

(($variable_l value_l) ($variable_2 value_2)). A bindings list is a list of association lists,

and will usually contain numerous identical variable-value pairs within each set of

bindings. The resulting bindings list, after complete progression through an inference

network back to the original base rule, will provide the data required to successfully fire

the rule consequents.

6.5 System architecture

The system was developed on a VAX 785 machine using Common LISP (Versions 13.6

and 14.1) within the POPLOG programming environment. The KBFE is independent of

PHOENICS in so much as it does not have to be run simultaneously. The KBFE creates

a data file on disk which is then read by PHOENICS after initiating an analysis to be

performed. The feasibility of pseudo real time monitoring of the solution algorithm has

been investigated, and could be initiated from within the KBFE. This will be discussed in

Chapter 7.

A KBFE to PHOENICS using LISP Chapter 6

Package
Data Mle Package

LISP
Functions Database

Knowledge
Bases

Auxiliary
Files ObjectsFacts

Inference EngineFunctions
KBFE

User

Figure 6.1: Knowledge Based Front End system architecture

Figure 6.1 shows the system architecture and indicates the interactions of the inference

engine, knowledge-bases, database, LISP and C functions. The LISP functions contain

user interface and data manipulation procedures. Simple user interface functions provide

the mechanism with which the user can converse with the system during preliminary input

of the geometrical information, for example nodal and connectivity data. The data

manipulation functions are those that are specific to each application and perform tasks

such as generating initial assertions from the geometrical data.

The three most important facets of the system are the inference engine, the knowledge

bases and the database. The interaction between these parts essentially forms the entire

platform on which the development has been built. The inference engine has been

developed from the fundamental concepts of forward and backward chaining and

implements depth-first search on appropriate inferencing networks. Knowledge-bases are

categorised into predefined areas and the database utilises two methods of storing and

representing data.

A KBFE to PHOENICS using LISP Chapter 6

In order to completely describe the interactions and the structure of each key facet it will

be necessary to initially consider the way in which the system stores and represents data or

information. This then enables a progression onto how the rules utilise this data through

describing the rule syntax and available rule firing mechanisms. Finally, a description of

the inferencing processes and how inferencing networks are created and used will be

given.

6.6 LISP functions

The LISP functions shown in Figure 6.1 consist of User Interface Functions (UIFs) and

Data Manipulation Functions (DMFs). The UIFs are used to provide interaction with the

user and consist of specific functions written for the application, and functions used by the

inference engine. The functions used by the inference engine prompt the user for

information relating to specific objects and / or assertion data. The DMFs are written

specifically for the application, and manipulate the data provided by the fundamental data

entry functions.

6.6.1 User interface functions

There are two types of user interface functions : (1) fundamental data entry and (2) user

prompting functions. Fundamental data entry functions are those which gather the initial

data required in order to generate a preliminary assertions list. Examples of such

fundamental data entry functions are those required to enter geometrical information such

as nodal co-ordinates and their connectivities. Also included are functions for entering

inlet, outlet and obstruction information. The fundamental data entry functions are

specific to the application.

The user interface functions generate dialogue to converse with the user, as indicated in

Figure 6.2 and Figure 6.3, which show the methods used for entering the nodal

coordinates and nodal connectivities. The fundamental data entry functions are used to

obtain data specifically for the application, whereas the user prompting functions are those

used by the inference engine to enquire about object values or factual assertions. The

user prompting functions will be discussed in section 6.10.

A KBFE to PHOENICS using LISP Chapter 6

Enter the radial ordinate for node 1 = = 0
Enter the axial ordinate for node 1 = = 0

Enter the radial ordinate for node 2 - - 5
Enter the axial ordinate for node 2 — = 0

Enter the radial ordinate for node 3 = = 6
Enter the axial ordinate for node 3 = = 0

Enter the radial ordinate for node 4 = = 50
Enter the axial ordinate for node 4 = = 0

Enter the radial ordinate for node 5 = = 5
Enter the axial ordinate for node 5 = = 30

Enter the radial ordinate for node 6 = = ?

The nodal-coordinates should be entered in < ram > depending on the prompt.
LIST - lists the nodes
M AXIS NO DE - modify the coordinate of the node on axis axis
M AXIS - modify the current nodal coordinate on axis

Enter the radial ordinate for node 6 — — list

((1 (0.0 0.0 0.0) (»
(2 (0.0 0.005 0.0) ())
(3 (0.0 0.006 0.0) 0)
(4 (0.0 0.05 0.0) 0)
(5 (0.0 0.005 0.03) ()))

Enter the radial ordinate for node 6 ===== 6
Enter the axial ordinate for node 6 = - 30

Enter the radial ordinate for node 7 = = 0
Enter the axial ordinate for node 7 = = 49

Enter the radial ordinate for node 8 = = 50
Enter the axial ordinate for node 8 = = 49

Enter the radial ordinate for node 9 = = 0
Enter the axial ordinate for node 9 = = 50

Enter the radial ordinate for node 10 = = 50
Enter the axial ordinate for node 10 = = 50

Enter the radial ordinate for node 1 1 = - end

Figure 6.2: Fundamental data entry functions : Geometry data entry screen - Nodal
coordinates

A KBFE to PHOENICS using LISP Chapter 6

Enter connectivity command, ? for help = = ?

— Connectivity HELP —
LIST - list nodal information

- Connects node_i to j z
- Connects node_i to j z
- Removes node_i from j ... z
- Removes node_i from j ... z

CONNECT n o d e j j z
C node_i j z
REM OVE node_i j z
R node i j z

Enter connectivity command, ? for help = = c 1 2 7
Enter connectivity command, ? for help = = c 2 3 5
Enter connectivity command, ? for help = = c 3 6 4
Enter connectivity command, ? for help = = c 5 6
Enter connectivity command, ? for help = = c 7 9 8
Enter connectivity command, ? for help = = c 8 4 10
Enter connectivity command, ? for help = = c 9 10
Enter connectivity command, ? for help = = list

((1 (0.0 0.0 0.0) (2 7))
(2 (0.0 0.005 0.0) (3 5 1))
(3 (0.0 0.006 0.0) (6 4 2))
(4 (0.0 0.05 0.0) (8 3))
(5 (0.0 0.005 0.03) (6 2))
(6 (0.0 0.06 0.03) (5 3))
(7 (0.0 0.0 0.049) (9 8 1))
(8 (0.0 0.05 0.049) (4 10 7))
(9 (0.0 0.0 0.05) (10 7))
(10 (0.0 0.05 0.05) (9 8)))

Enter connectivity command, ? for help - = end

Figure 63: Fundamental data entry functions: Geometry data entry screen - Nodal

Throughout the inferencing process the system endeavours to obtain data as and when it is

required, in order to prove or disprove the antecedent the engine is considering. This

involves prompting the user for an object value, a template value or initiating backward

chaining on the rulebase inference network. Backward chaining will be discussed in

section 6.9.4. Prompting the user for data is performed by specific functions developed for

either objects or templates, which will be discussed later. Provided that the data for the

object cannot be obtained through any of the associated slots, the system invokes a menu

connectivity

A KBFE to PHOENICS using LISP Chapter 6

function which utilises specific slot data to establish the means to ask the user for the

data. Again, the data entry under such circumstances is performed through dialogue.

PHOENICS essentially uses two types of coordinate systems - cartesian and
cylindrical. For two dimensional configurations which this system can initially
develop the XY plane will be utilised. This will be automatically translated into
the respective XY or YZ planes which phoenics requires depending upon your
choice of either cartesian or cylindrical coordinates.

1: CYLINDRICAL
2: CARTESIAN

Default value : CARTESIAN
Are the coordinates cartesian or cylindrical ?
(Enter 1 - 2) : = = 1

Figure 6.4: User prompting functions: Data entry screen - Object enquiry

Enter the w l velocity for jet = — 2.1915

Figure 6.5: User prompting functions: Data entry screen - Assertion template enquiry

Figure 6.4 and Figure 6.5 indicate typical data entry screens for object and assertion

template enquiry.

6.6.2 Data manipulation functions

The data manipulation functions are used primarily iui creating an initial assertions list

from information gathered using the fundamental data entry. Geometrical data entered

using the preliminary user interface functions consist of the nodal coordinates and the

associated connectivity. This is stored in the system global variable *NODES*, as shown

in Figure 6.6. This data is manipulated using auxiliary functions to regionalise the

102

A KBFE to PHOENICS using LISP Chapter 6

((1 (0.0 0.0 0.0) 0)
(2 (0.0 0.005 0.0) 0)
(3 (0.0 0.006 0.0) 0)
(4 (0.0 0.05 0.0) 0)
(5 (0.0 0.005 0.03) 0)
(6 (0.0 0.006 0.03) 0)
(7 (0.0 0.0 0.049) 0)
(8 (0.0 0.05 0.049) ())
(9 (0.0 0.0 0.05) 0)
(10 (0.0 0.05 0.05) ()))

(a) : Without connectivity data entered

((1 (0.0 0.0 0.0) (2 7))
(2 (0.0 0.005 0.0) (3 5 1))
(3 (0.0 0.006 0.0) (6 4 2))
(4 (0.0 0.05 0.0) (8 3))
(5 (0.0 0.005 0.03) (6 2))
(6 (0.0 0.006 0.03) (5 3))
(7 (0.0 0.0 0.049) (9 8 1))
(8 (0.0 0.05 0.049) (4 10 7))
(9 (0.0 0.0 0.05) (10 7))
(10 (0.0 0.05 0.05) (9 8)))

(b) : With connectivity data entered

Figure 6.6: LISP special variable: *NODES*

domain. Manipulation of this data to extract additional information results in the need

for further global variables, ♦BOUNDARIES* and * REGIONS*. These variables, as

shown in Figure 6.7 and Figure 6.8, contain information used to augment the assertions

list with templates such as ...

(Cardinal for surface $nodes is $cardinal)

(surface $nodes is part of $obstruction)

($axis has $N regions)

(surface $nodes is in $axis regions $start to $finish)

(surface $nodes interfaces $axis regions $start and $Iast)

103

A KBFE to PHOENICS using LISP Chapter 6

(((7 8) ((Cardinal LOW)
((5 6) ((Cardinal HIGH)
((3 6) ((Cardinal NORTH)
((2 5) ((Cardinal SOUTH)
((3 4) ((Cardinal LOW)
((4 8) ((Cardinal NORTH)
((1 2) ((Cardinal LOW)
((1 7) ((Cardinal SOUTH)

(Type OBSTRUCTION)
(Type OBSTRUCTION)
(Type OBSTRUCTION)
(Type OBSTRUCTION)
(Type OUTLET)
(Type OUTLET)
(Type INLET)
(Type WALL)

(Name WALL)))
(Name PIPE)))
(Name PIPE)))
(Name PIPE)))
(Name OUTLET2)))
(Name OUTLET1)))
(Name JET)))
(NameUNKNOWN)))

Figure 6.7: LISP special variable: *BOUND ARIES*

These templates, and the information contained therein, are used primarily by the

command synthesis rules.

6.7 System database

The system recognises three methods of storing and manipulating information: assertions,

objects and LISP variables. Assertions are stored within a pseudo-blackboard data list,

and objects as LISP structures. The inferencing process cannot control LISP variables,

examples of which are *NODES*, *REGIONS* and ^BOUNDARIES*. These do not

affect the system but are heavily used for creating the initial assertions from geometrical

data, and are used within the LISP functions shown in Figure 6.1. LISP variables can be

either lexical or special variables. A lexical variable is one which is only accessible within

a LISP virtual fence, Winston and Horn (1989). However, special variables are essentially

global to all LISP functions. Geometrical data is stored as special LISP variables for use

in functions that create initial assertions.

The two primary methods of storing data, as mentioned above, are assertions and objects.

Section 6.7.1 introduces the method of storing information within assertions, Section 6.7.2

explains how assertion categorisation enables a blackboard data structure to be

implemented. This is followed by the discussion of object declarations through LISP

structures.

A KBFE to PHOENICS using LISP Chapter 6

4%

I

((X 0)
(Y ((1 ((ALPHA 0.5)

(C l 0.0)
(C2 0.005)
(L 0.005)
(MESH (0.136527e-3 0.285139e-3 0.448656e-3 ...

... 0.004543 0.004706 0.004855 0.005))))
(2 ((ALPHA 0.5)

(C l 0.005)
(C2 0.006)
(L 0.001)
(MESH (0.136527e-3 0.378829e-3 0.621042e-3 0.86310 le-3

0.001))))
(3 ((ALPHA 0.0)

(C l 0.006)
(C2 0.05)
(L 0.044)
(MESH (0.136528e-3 0.273262e-3 0.410556e-3 ...

... 0.042998 0.043506 0.044))))))
(Z ((1 ((ALPHA 1.0)

(Cl 0.0)
(C2 0.03)
(L 0.03)
(MESH (0.43925le-3 0.899534e-3 0.001526 ...

... 0.029589 0.029727 0.029863 0.03)))
(2 ((ALPHA 0.5)

(C l 0.03)
(C2 0.049)
(L 0.019)
(MESH (0.136527e-3 0.275869e-3 0.418439e-3 ...

... 0.018692 0.018832 0.018968 0.019))))
(3 ((ALPHA 0.0)

(C l 0.049)
(C2 0.05)
(L 0.001)
(MESH (0.136527e-3 0.306063e-3 0.528761e-3 0.001)))))))

A
■ I
■ t

I

&
•I;
&

Figure 6.8: LISP special variable: *REGIONS*

105

A KBFE to PHOENICS using LISP Chapter 6

6.7.1 Assertions

An assertion is a list of LISP atoms that are combined in such a way as to create a

sentence or phrase. These have common, application specific, templates that when

applied to separate data create unique assertions. Wildcard variables reside within the

templates, prefixed with $, which are used to indicate where relevant data should be

located. Given the following assertion template ...

(Boundary name for $Type $Identity $Nodes is $Name)

... and a bindings l is t ...

((($Type Inlet) ($Identity 1) ($Nodes (1 7)) ($Name Inletl))

(($Type Outlet) ($Identity 1) ($Nodes (4 8)) ($Name Exit))),

the following assertions would result ...

(Boundary name for Inlet 1 (1 7) is Inletl)

(Boundary name for outlet 1 (4 8) is Exit)

The bindings list is generated dynamically through inferencing on the rules by a

combination of forward and backward chaining. This is explained in Section 6.9.3.

Table 6.1 gives a sample of current CFD assertion templates used in the KBFE.

6.7.2 Assertions list

The assertions list (blackboard) is part of the main system database used for storing

factual declarations or assertions organised into predefined levels or categories. The

blackboard is a common platform from which information can be easily accessible to any

knowledge base primarily via the inference engine. It does not cc,‘ 'dn linkages between

entries on the same or different levels and cannot pass data between the different levels,

as described by Reddy and O’Hare (1991). During the inferencing process data contained

106

A KBFE to PHOENICS using LISP Chapter 6

(((Boundary name for $type $identity $nodes is $name))
((Cardinal for surface $nodes is $cardinal))
((Surface Ssurface is part of Sobstruction))
((Sdependent-variable at $type boundary $name is $condition at Squantity))
(($axis has $n regions))
(($axis region $No cells $first to Slast))
(($axis region $No co-ordinates $first to $last))
((Surface Snodes is in $axis regions $start to $finish))
((Surface $nodes interfaces $axis regions Sstart and $last)))

Table 6.1: Assertion templates

within various levels of the blackboard is used within the rules which generate further data

to be written to any other level, including its own. Figure 6.9 shows the partitioning of the

various levels of information stored within the blackboard and how this has been

abstracted in LISP code. The blackboard is a complex list whose initial element within

each sub-list corresponds to the assertion categories, and the remaining values within each

list are the assertions for that partition.

Storage of facts using this technique reduces the number of pattern matching functions

required to extract relevant data associated with a rule under consideration by the

inference engine. Furthermore, this categorisation of assertions prevents the inefficient

consideration of facts that have no possible bearing on the evaluation of a rule.

6.7.3 Objects

Objects are created from LISP structures and store information that has a constrained

definition. The simulation of inheritance using POPLOG Common LISP, a non Common

LISP Object System (CLOS) version of LISP, can be achieved using structures.

Information required to be stored within the KBFE for CFD purposes, which could be

considered as being constrained, would consist of number-of-inlets, number-of-outlets,

flow-regime, and whole-field-variables. The LISP structure is sb~wn in Figure 6.10.

A KBFE to PHOENICS using LISP Chapter 6

^ASSERTIONS*
{ ({Template 1)

(Template applied to)
/ d ifferen t data to <.
‘ assert d ifferen t '
(fa c ts .)

(Template 1)

(

Assertions

(((Template 2))
((Template 3))
((Template 4))

((Template n)))

))

Figure 6.9: Blackboard structure and abstract LISP representation

LISP structures are predefined using the LISP command DEFSTRUCT, Steele (1990).

Such structures contain user defined fields, which allow inheritance of default values to

subsequent variables created using the LISP command (make-structure-name). These

fields have been likened to object slots for the KBFE development and, as such, create an

analogy that the LISP structures can be considered as objects. Extending this allows all

slots to reside within an object frame.

Figure 6.10 represents each object as a frame with slots associated with each structure

field. Each object inherits the field from the basic structure definition, and is only

overwritten if the field is explicitly defined for that object.

6.7.4 Object slot descriptions

DESCRIPTION - This slot auows the knowledge engineer developing the system the

facility of expanding on the name of the object if this does not adequately define its

purpose. The contents of this slot need to be in a list form, thus ’(....). The inference

108

M

A KBFE to PHOENICS using LISP Chapter 6

(Defstruct object
(Description nil)
(Type nil)
(Preface nil)
(FixedValue nil)
(DisallowedValues nil)
(AUowedValues nil)
(DefaultValue nil)
(ComputeValue nil)
(Units nil)
(Value nil)
(Prompt nil)
(Help nil)
(Status nil)
(RuleBase nil))

Figure 6.10: Object frame and slots through LISP structures

engine does not access this field as it is purely a documentation facility.

TYPE - This defines the type of object. Allowable types are: Integer, Real, List, Text or

String.

PREFACE - This is used to describe the purpose of the object to the user. It acts as a low

level help facility that is utilised by the inference engine and is always presented to the

user to compliment the object prompt. The preface should be entered as a list and can be

dynamically altered depending upon the current status of other objects.

FIXEDVALUE - Occasionally restrictions on the object value may be required whereby it

is necessary only to allow one value. Under such circumstances a fixed value is provided

to force the inference engine to accept the value within this slot. A typical situation would

be to let the value of number-of-dimensions be fixed if the knowledge base was only to

consider two dimensional problems. This prevents the system ever asking the user to

input a value.

109

A KBFE to PHOENICS using LISP Chapter 6

DISALLOWEDVALUES - This acts as a data input checking facility. Inclusion of a list of

values here would indicate to the system to match the user value with the list. Any

equivalences would be disallowed.

ALLOWED VALUES - Similar in operation to the DisAllowedValues except that an

equivalence would be allowed.

DEFAULTVALUE - Providing a list of allowed values enables the inference engine to

establish that the user is given a choice of answers to respond with. These choices are

then presented to the user using a menu function, an example of which is shown in

Figure 6.4. If a default value is declared then entering return would instantiate the object

with the default value.

COMPUTEVALUE - If the object requires some form of numerical computation to

establish a value, this slot would allow object instantiation as a result of executing some

other LISP function. A valid LISP statement or function name could reside in the slot.

UNITS - This slot is used to indicate to the user what units are to be used in association

with the object.

VALUE - This slot is allocated a value when the object has been instantiated as a result of

either being given a value by the user or through rule firing. Both methods of

instantiation are a consequence of the inferencing process.

PROMPT - This slot must be allocated a string prompt for use with the menu function if

the object is not a fixed value.

HELP - This slot contains additional information concerning the object. There exists four

different levels of help text associated with the active user model. The levels are

DEFAULT, NOVICE, EXPERIENCED, and ADVANCED. The slot contains a four

element association list ...

((DEFAULT (Text)) (NOVICE (Text)) (EXPERIENCED (Text)) (ADVANCED (Text)))

The text associated with each level follows the structure of the preface slot. If the

DEFAULT slot is instantiated, and the others are uninstantiated, then the default slot

A KBFE to PHOENICS using LISP Chapter 6

prevails. Specific, defined help overrides the default help.

STATUS - Initially all objects have a fixed status. This implies that once they have been

instantiated their value cannot be altered. However, a ’volatile’ status allows an object to

be reinstantiated whenever the inferencing process dictates. This was necessitated through

the use of variable boundary conditions requiring different assigned values.

RULEBASE - If TRUE (T), as opposed to the default of NIL (()), there exists a rulebase

of the same name as the object, concatenated with -RB. For example, an object with the

name DELTA, whose rulebase slot is T, would require a rulebase called DELTA-RB to

contain appropriate rules to instantiate this object. During inferencing this slot value is

given NIL while the rulebase is being operated upon. After completion the slot is

returned to its original value to allow further inferencing if necessary at a later date.

6.8 RuleBase language

The rulebase language has been developed to accommodate all possible knowledge

representation requirements for a KBFE to a CFD package. This has been an

evolutionary process and implements concurrent manipulation of the bindings list

generated throughout the inferencing process. The rule language basically has two

formats, the User Rule Syntax (URS) and the System Rule Syntax (SRS). The former is

entered by the knowledge engineer. The SRS is slightly different in so much as a rigid

representation is needed by the inference engine.

6.8.1 User Rule Syntax

As mentioned above, the user rule syntax is used directly for entering rules within a

knowledge base. Rules are entered into a file using a standard text editor and take the

form of a three element LISP structure ...

(REMEMBER-RULE RULEB AS E-NAME RULE)

The three element LISP structure is a macro call, the macro being REMEMBER-RULE.

The macro is used to create the system rule syntax. The RULEBASE-NAME is a LISP

variable used for storing all the rules associated with a particular category, examples of

111

A KBFE to PHOENICS using LISP Chapter 6

which are CONVERSION-FACTOR-RB, DELTA-RB, FLUID-RB, G13-RB, and

GEOMETRY-RB. The RULE must adhere to one of the three fundamental rule

structures, these are ...

(RULE-NAME ANTECEDENTS CONSEQUENTS)

(RULE-NAME CONSEQUENTS-ONLY)

(RULE-NAME LIST-QUANTIFICATION-RULE)

The rule-name is optional. Figure 6.11 shows the omission and inclusion of the rule-name

in the user rule syntax. The three fundamental rule structures, given above, are a

standard production rule, a consequent only rule and a list quantification rule respectively.

These are described in Sections 6.8.3, 6.8.4 and 6.8.9.

(REMEMBER-RULE Rulebase-name
’((IF (ANTECEDENT 1)

(ANTECEDENT 2))
(THEN (CONSEQUENT 1)

(CONSEQUENT 2))))

(a): Omission of the rule name from the User Rule Syntax

(REMEMBER-RULE Rulebase-name
’((RULE EXAMPLE RULE NAME)

(IF (ANTECEDENT 1)
(ANTECEDENT 2))

(THEN (CONSEQUENT 1)
(CONSEQUENT 2))))

(b): Inclusion of the rule name in the User Rule Syntax

Figure 6.11: Omission / Inclusion of rule name in User Rule Syntax

112

A KBFE to PHOENICS using LISP Chapter 6

Each rulebase, prior to creating the inference network described in section 6.9.2, is a list

taking the following form ...

(RULE-1 RULE-2 RULE-N)

where N is the number of rules within the associated rulebase.

6.8.2 System Rule Syntax

The system rule syntax is slightly different from the user rule syntax in that the rules have

to be a standard production rule or a list quantification rule. Furthermore, a rule-name

must be present. The macro REMEMBER-RULE performs this operation. During the

loading of the rules into each rule-base the system increments a count, *RULE-COUNT*,

which keeps a record of the number of rules entered. If a rule-name is present then this

is concatenated with -flJJLE-RuleNumber, where the RuleNumber is the current value of

* RULE-COUNT*. However, if a rule-name has been omitted then one is automatically

assigned using RULE-RuleNumber. Figure 6.12 shows the system rule syntax for the rules

given in Figure 6.11. Furthermore, all consequent only rules are transposed to standard

production rules whose antecedent becomes (IF NOTHING).

6.8.3 Production rules : Antecedents

Standard production rules, IF THEN rules, have by default conjunctively combined

antecedents. Disjunctive antecedents can be incorporated. Figure 6.13 shows conjunctive

and disjunctive production rules. Figure 6.14 shows the transposition of a consequent only

rule to the fundamental production rule structure.

Antecedents are used by the inference engine to establish whether a rule can be fired or

not. For a rule to be fired all antecedents must be true. Antecedents can consist of

templates which filter the current bindings being considered by the inference engine,

perform statement verification, or determine whether an assertion is instantiated or not.

A detailed discussion of the inference engine is given in Section 6.9. An antecedent

template can be the same as an assertion template or a consequent ;mplate, the binding

variables in both need not be the same. A statement verification antecedent consists of

the fundamental structure given below:-

A KBFE to PHOENICS using LISP Chapter 6

((RUUE-Rulenumber
(IF (ANTECEDENT 1)

(ANTECEDENT 2))
(THEN (CONSEQUENT 1)

(CONSEQUENT 2))))

(EXAMPLE-RULE-NAME-jRwfemnn&e/-
(IF (ANTECEDENT 1)

(ANTECEDENT 2))
(THEN (CONSEQUENT 1)

(CONSEQUENT 2))))

Figure 6.12: System Rule Syntax after Figure 6.11

(OPERAND-1 OPERATOR OPERAND-2)

Valid operators used by such an antecedent consist of:-

INCLUDES - Operand-1 must be a list, (a b c and Operand-2 is either a non-list

object, bindings variable or a fixed value. A true value for the antecedent is returned if

Operand-2 is a member of Operand-1.

EXCLUDES - The same conditions apply as for the INCLUDES operator, except that a

true value for the antecedent is returned if Operand-2 is not a member of Operand-1.

OVERLAPS - Both operands need to be lists, they can be derived from list objects,

bindings variables or fixed values. A true value is returned for the antecedent if both lists

intersect.

=, IS, ARE - These are equality operators, the first of which is used for numerical

Operands, the remaining are used for non-numerical Operands. "Are" has been included

for plural definitions, such as (co-ordinates are cartesian).

A KBFE to PHOENICS using LISP Chapter 6

(RULE -Rulenumber
(IF (ANTECEDENT 1)

(ANTECEDENT 2))
(THEN (CONSEQUENT 1)

(CONSEQUENT 2)))

(a): Conjunctive production rule

(RULE -Rulenumber
(IF (OR ((ANTECEDENT 1)

(ANTECEDENT 2))
((ANTECEDENT 3))))

(THEN (CONSEQUENT 1)
(CONSEQUENT 2)))

(a): Disjunctive production rule

Figure 6.13: (a) Conjunctive, (b) Disjunctive production rules

< > , IS-NOT, ARE-NOT - These are inequality operators.

> = , <=s, > , < . These are basic numerical operators.

Checking for assertion instantiation is instigated by an assertion with its last two atoms in

the template, being one of

(is instantiated), (are instantiated),

(is-not instantiated), (are-not instantiated),

(is uninstantiated) or (are uninstantiated).

This is exemplified in the rule-base BC-RB shown in Appendix E. The antecedent using

this facility is ...

($velocity at inlet boundary $Name is constant is uninstantiated).

115

A KBFE to PHOENICS using LISP Chapter 6

(REMEMBER-RULE Rulebase-name
*(->Ql ?= LSWEEP 100))

(a): User Rule Syntax

(RULE-Rulenumber
(IF NOTHING)
(THEN (->Q1 ?= LSWEEP 100)))

(b): After transposition: System Rule Syntax

Figure 6.14: Transposition of a consequent only rule to a standard production rule

This will check to see if the assertion, assuming that $Name is ENTRY, $velocity is W l,

and the value is 0.25 m/s, ...

(Wl at inlet boundary entry is constant at 0.25),

... exists within the assertions list. If it does exist then the antecedent would return NIL

(()), however a TRUE (T) value would be returned if such an assertion did not exist.

Objects can also be checked for instantiation using the same principles.

Consequent only rules are augmented by the macro REMEMBER-RULE with the

antecedent (IF NOTHING). The inference engine recognises this antecedent and moves

directly onto firing the rule consequents.

6.8.4 Production rules : Consequents

The consequents of a rule are fired providing all the antecedents are true. Upon entering

the firing routines, there exists a bindings list which has been dynamically expanded and

contracted as the progression through the antecedents advanced. This bindings list is used

to fire the consequents. Section 6.8.10 describes the firing modes with which the

116

A KBFE to PHOENICS using LISP Chapter 6

consequents can be implemented, after the antecedents have been successfully proven.

Consequents can be used to run LISP functions, instantiate objects, manipulate object

slots, manipulate bindings and synthesise stored data into the target package commands.

Each of these features is discussed below.

6.8.5 Object declaration and object slot manipulation consequents

This group of consequents instantiate objects with appropriate values. The structure is

given by ...

(OBJECT-NAME DECLARATOR VALUE)

The OBJECT-NAME is any valid object previously created using the macro

SET-OBJECT. Any of the valid declarators described below can be used.

ALLOWEDVALUES - Using this as a declarator indicates to the inference engine that the

object slot ALLOWEDVALUES is to be instantiated with VALUE, which should be a

list. The system automatically instantiates the slot DEFAULTVALUE with the first

element of the declared list. LEONARDO did not allow the ALLOWED VALUE slot of

an object to be altered during the running of a particular knowledge base. This was found

to be a problem because there were occasions where such a capability would have been

useful. This facility was therefore incorporated into the system.

STATUS - This declarator indicates that the status of a particular object is to be modified.

The status of all objects is determined when they are initially defined using the macro

SET-OBJECT. The status can be either FIXED or VOLATILE. The ability to alter an

object’s status was found to be necessary when specifying boundary conditions within a

CFD analysis. For example, the porosity of blockages within a domain need not be the

same, and as such it was necessary to allow the flexibility to alter individual porosity

values. The object POROSITY was initially defined as having a volatile status.

Depending upor fhe user’s responses to the ;?,ferencing performed on the rule-base,

POROSITY-DEFINITION-RB, the POROSITY status can be changed to FIXED. If the

status remains VOLATILE then every occurrence of the object, POROSITY, within a rule

forces the system to prompt the user to enter a value regardless of it already being

117

A KBFE to PHOENICS using LISP Chapter 6

instantiated. This is exemplified in the rule-base G ll-R B , Appendix E.

PROMPT - This declarator allows the system to dynamically alter an object’s user prompt.

This was found to be useful when the object’s status is VOLATILE. This is, again,

exemplified in the rulebase G ll-R B , where the porosity value for each blockage within a

domain need not be the same, but identification is important when prompting the user to

enter an obstruction’s porosity value.

EXCLUDES - For use when it is necessary to remove a value from a list object.

INCLUDES - For use when it is necessary to include a value in a list object.

= , IS, ARE - These are used for numeric and non-numeric declarations, for examples

(FLOW-REGIME IS LAMINAR), (COORDINATES ARE CARTESIAN) and

(DELTA = BOUNDARY-LAYER-THICKNESS / 3.0).

+ = - This declarator has been taken from the C language, its meaning is described by the

following two statements which are identical...

(INLET-FLOW-AREA = INLET-FLOW-AREA + $AREA)

(INLET-FLOW-AREA + = $AREA)

Within the structure of this type of consequent, i.e. (OBJECT-NAME DECLARATOR

VALUE), the value is determined prior to firing the consequent. When a consequent is

written in the user syntax form the structure need not necessarily contain just three

elements, as shown above in the description for the =, IS, ARE declarators where an

example consequent was (DELTA = BOUNDARY-LAYER-THICKNESS / 3.0), which

contains five atoms. The most important aspect is that the first atom must be an object,

i.e. DELTA, and the second atom must be a valid declarator, i.e. = . The value, which can

be considered as the remaining atoms commencing with the third entry, initially has all

object values inserted in place of the symbol and all bindings variables replaced with their

appropriate values. Upon completion of all necessary' replacements, the expression is

passed to a mathematical parser, Section 6.9.6, and the result is returned which is then

inserted in place of the expression. This automatically reduces the consequent to a three

element structure, which can then be fired, providing the necessary object declaration.

118

A KBFE to PHOENICS using LISP Chapter 6

6.8.6 Function calling consequents

The KBFE has a predetermined set of LISP functions that it can call from within rule

consequents. The name of these functions are stored within the special LISP variable,

IFE-FUNCTIONS, and are described below.

ABS - A standard mathematical function that returns the absolute value of a number.

ASK - This function has two definitions: to ask for an object value or to ask for a value

to a given template. The template may be an assertion template or a consequent

template. When querying the user for a value to a given object, the system utilises the

object slots to establish any restrictions that will have to be implemented by the menu

system. A full description of how this is performed is given in Section 6.10. When asking

for a value to a template, the consequent has to employ extra information detailing what

sort of data needs to be entered. This is utilised in the rule-base BC-RB, where, for

example, the consequent (U1 VALUE IS (ASK U1 VELOCITY AT $NAME ((TYPE REAL)

(UNITS "m / s") (HELP ((DEFAULT (AXIS-1 VELOCITY)))))) asks for an appropriate

value to be entered. This consequent is associated to an antecedent of the form ($VALUE

VALUE IS $QUANTITY), where $VALUE is U l. The bindings variable $QUANTITY will

be instantiated through the ASK condition in the consequent. This consequent, or

consequents adhering the same pattern, must abide by the following rules for their

implementation. The first atom must be ASK, the last atom of the template must be an

association list. The association list, used in conjunction with the ASK consequent for

assertions, contains slots which govern the type of answer the user can enter. The

association list includes the following possible keys: TYPE, ALLOWEDVALUES,

DISALLOWEDVALUES, DEFAULTVALUE, UNITS, PREFACE, and CONSEQUENT.

When the user is prompted to enter data which would result in a fact being asserted, the

system uses the association list key values to instantiate a temporary object, FACT. The

object slots are instantiated with the assertion slot values, and the fact is presented to the

user for response using the object enquiry functions.

INT - This function is most commonly used for the declaration of an object where its

position within the consequent is usually on the right hand side of a numerical declarator.

Its purpose is to return the integer part of a number, for example INT(3.4) would return

3. This function is used in rule-base G22-RB.

A KBFE to PHOENICS using LISP Chapter 6

JOIN - This function is used to concatenate two symbols, for example (JOIN N WALL)

would return NWALL. This is used in rule-base G13-RB.

MAX - Similar in purpose to INT, it is a mathematical function that returns the maximum

of two or more numbers. MAX(1 2) would return 2.

RUN - This needs to be the first atom of a consequent and requests that the function

given by the second atom should be executed as a result of firing the consequent under

consideration. An example of its use can be seen in the rule-base GRID-RB,

SYMBOL-SPLIT - This function is used to remove part of an atom. For example,

(SYMBOL-SPLIT 1 NORTH) would return N, and (SYMBOL-SPLIT 3 NORTH) would

return NOR.

XC_1, XC_2, YC_1, YC__2, ZC_1, ZC_2 - These functions are used within the rule-base

INLET-FLOW-AREA-RB. They are used to extract the coordinates from a two node

surface, hence the affixes _1 and _2. The surfaces are represented using a two element

list, such as (1 2), which indicates that the surface connects nodes 1 and 2. Figure 6.15

shows the rule used in INLET-FLOW-AREA-RB and the current status of the bindings

list for the specification given prior to firing the consequent. The base rule, IFA1-RULE-

rulenumber, is linked to the consequent IFAZ-RVLE-rulenumber, through its third

antecedent, ...

(Inlet area for $nodes = $area)

... is linked to ...

(inlet area for $nodes = (0.5 * (ABS (((YC_2)~2) - ((YC_1) ~ 2)))))

The third antecedent cannot be proved without backward chaining. As a consequence of

backward chaining, the returned bindings list contains the answer for the area given by

$AREA. The system recognised the functions YC_1 and YC_2 in the mathematical

expression, and utilised the bindings to extract from the special LISP variable, *NODES*,

the coordinates associated with nodes 1 and 2. Depending upon the function that is being

called, it will return either the first or second of the X, Y or Z coordinate.

-> Q l - This indicates that the consequent is used for command synthesis.

120

A KBFE to PHOENICS using LISP Chapter 6

%
Vi
$

RULEBASE: (Base rule and appropriate rules only)

((NETWORK)
((IFAl-RULE-Rulenumber

(IF (Boundary name for inlet $identity $node is $name)
(Cardinal for surface $nodes is $cardinal)
(Inlet area for $nodes = $area))

(THEN (INLET-FLOW-AREA + = $area)»)

((IFA2-RVLE-Rulenumber
(IF (Coordinates are cylindrical)

((High Low) includes $cardinal))
(THEN (Inlet area for $nodes =

(0.5 * (ABS (((YC2)~2) - ((YC_I) ~ 2)))))))))

The bindings list prior to firing the second rule, given above, is ...

((($identity I) ($nodes (1 2)) ($name jet) ($cardinal low)))

After successfully firing the second rule, the returned bindings list is

((($identity 1) ($nodes (1 2)) ($name jet)
($cardinal low)) ($area 1.8e-5)))

Figure 6.15: INLET-FLOW-AREA-RB: Use of the functions XC_1, XC_2, YC_1, ...,
ZC 2

■ A'A

vv

3

•1
1■a
4
A

1

->1.0E??? - This function is used for establishing a residual reference value required by

PHOENICS. The purpose is to establish the exponent part of a number and to

concatenate this to 1.0E as indicated by the symbol for the function. For example,

(->1.0E??? 1.786E-9) would return 1.0E-9. Its use can be seen in the rule-base G15-RB.

I
f,

1

121

■ - ■ ■ - -■ - 's.»L Ji

A KBFE to PHOENICS using LISP Chapter 6

6.8.7 Bindings manipulation consequents

These consequents are used to manipulate the current bindings list which results from

successfully proving all antecedents of a rule. The process of manipulating bindings is

indicated as a template within a consequent template. Current, valid, bindings

manipulation templates are:-

(AVERAGE variable FROM BINDINGS)

(SUM variable FROM BINDINGS)

where variable is the name of a bindings variable within the same rule but it is not

prefixed with a $. For example, a bindings variable named $ VELOCITY-VALUE would

be represented in a bindings manipulation template as VELOCITY-VALUE.

Bindings manipulation consequents can be used in rules which are linked to antecedents in

other rules in order to extract specific data during backward chaining. For example, if a

current antecedent cannot be matched with an assertion or cannot be proved to be

correct, backward chaining in the inference network commences and the antecedent is

unified with the consequents of associated rules. A match would result in an association

list containing the bindings variable in the antecedent and its matched value in the

consequent of the associated rule. Figure 6.16 shows two rules, the first of which proceeds

if Svalue is PI, the INLET-FLOW-AREA is greater than ZERO and the TOTAL INLET

VELOCITY is known. There exists no assertion that will allow the TOTAL INLET

VELOCITY to be obtained and, as such, backward chaining on the second rule would

commence. Unifying the antecedent...

(TOTAL INLET VELOCITY = $VELOCITY)

with ...

(TOTAL INLET VELOCITY = (SUM VELOCITY^ ALUE FROM BINDINGS))

would result in the following bindings ...

(($VELOCITY (SUM VELOCITY-VALUE FROM BINDINGS)).

A KBFE to PHOENICS using LISP Chapter 6

(KULE-Rulenumber
(IF ($value is PI)

(INLET-FLOW-AREA > 0)
(Total inlet velocity = Svelocity)
(Initial fluid-density = Sdensity))

(THEN (Residual reference for $value =
(->1.0e??? (0.01 * $density * Svelocity

* INLET-FLOW-AREA))))))

(RULE -Rulenumber
(IF (Boundary name for inlet Sidentity $nodes is $name)

(Cardinal for surface $ nodes is Scardinal)
($phi is perpendicular to $name)
($phi at inlet boundary $name is constant at $velocity-value))

(THEN (Total inlet velocity =
(SUM VELOCITY-VALUE FROM BINDINGS))))

The bindings list, after successfully proving the antecedents of rule 2, would be

((($value P I) (Sidentity 1) (Snodes (1 2)) ($name jet) ($cardinal low)
($phi w l) ($velocity-value 2.1915)))

... and the bindings list prior to firing the consequents of rule 1 would be ...

((($value P I) (Svelocity 2.1915)))

Figure 6.16: Bindings manipulation consequents

This indicates that SVELOCITY is a required binding and its value would be obtained

from the successful completion of the second rule. The bindings created during

progression through the first rule are carried forward into the second rule whilst trying to

prove the antecedent of first. This ensures that bindings variables in the second rule,

which can be instantiated from information gathered in the first, is performed. However,

bindings variables in me second rule that are not required in the first are not carried back

for use in the first rule upon completing the second rule. Only the information

established by the second, required by the first, is carried back. In this example the only

A KBFE to PHOENICS using LISP Chapter 6

binding carried back would be SVELOCITY and its appropriate value. Upon successful

completion of the second rule a bindings list results, which contains information relating to

one or more inlet boundaries and their associated perpendicular velocities. Figure 6.16

indicates the bindings list after successfully completing the second rule and how the

information contained within the bindings is translated into the bindings list needed to fire

the first rule. This inferencing process is discussed in detail in Section 6.9.

6.8.8 Command synthesis consequents

Command synthesis consequents are used to translate the information contained within

the database, objects and assertions, into appropriate PHOENICS commands. The user

syntax allows three types of rules to fire command synthesis consequents: consequent

only, list quantification and standard production rules. Consequent only rules, an example

of which is given in G15-RB, are used to synthesise PHOENICS declarative commands,

i.e. LSWEEP = 100. List quantification rules are used to fire command synthesis

consequents for PHOENICS variables, such as the analysis dependent variables, all of

which utilise the same PHOENICS commands. Examples of these commands are the

specification of how to solve for a dependent variable, relaxation factors, output

requirements and residual reference values. The rules used to perform the synthesis of

these examples are given in G7-RB, G17-RB, G21-RB, and G15-RB respectively,

Appendix E. Standard production rules simply employ conjunctive or disjunctive

antecedents, which need to be proved, to fire command synthesis rules.

Command synthesis rules form the base rules from which associated rules are connected

within the inference network. All command synthesis consequents must conform to the

following template:-

(-> Q I Command-template Command Argument-1 ... Argument-n)

The symbol ->Q 1 indicates that the consequent is to define a CFD package command

which is to be written to a list. Upon completing all of the rule-bases used to synthesise

the commands, the list containing all of the commands is then written to a predefined file.

Four types of commands can be accommodated within the system each of which is defined

with a Command-template. Table 6.2 shows examples of valid PHOENICS commands,

illustrating each of the four allowed Command-templates.

A KBFE to PHOENICS using LISP Chapter 6

Command
Template

Arguments PHOENICS command

m Solutn PI Y Y Y N N N Solutn(Y,Y,Y,N,N,N) 1

?n= Fiinit VI 0.01 Fiinit(Vl) = 0.01

?= R hol 1.225 R hol = 1.225

1 Message ^ Group 1. GROUP 1.

Table 6.2: Command synthesis templates

6.8.9 List quantification rules

Rules, when conforming to the system rule syntax, have either two or three elements

within the list. A list quantification rule is represented using the following template ...

(RULE-NAME (FOR ALL lisl-object ANTECEDENTS CONSEQUENTS))

The second element, which is a list, is used by the inference engine to establish whether

the current rule is a list quantification rule or a production rule. The first atom of this

second element is either IF or FOR. IF relates to a production rule, and FOR relates to a

list quantification rule, the latter operates using instantiated list objects. The antecedents

for a consequent only rule, specified under the system rule syntax, is (IF NOTHING).

List objects contain more than one value, for example the object DEPENDENT-

VARIABLES could contain U l, VI, and H I. Under these circumstances the value of

DEPENDENT-VARIABLES would be ’(U l VI H I). Figure 6.17 shows a list

quantification rule taken from rule-base G ll-R B . Essentially the only difference between

a production rule and a list quantification rule is that, on forward chaining, the production

rule within the list quantification rule is always passed an initial bindings list, whereas a

pure production ru ^ need not have a bindings H«t passed *o it. The initial bindings list

for a list quantification rule is generated using the values of the list object. The values

form the value of a bindings pair, and the bindings variable is $ VALUE. Taking the

example object DEPENDENT-VARIABLES given above, the initial bindings list, upon

entering the production rule within the list quantification rule, given in Figure 6.17, would

A KBFE to PHOENICS using LISP Chapter 6

be ...

((($VALUE U l))

(($VALUE VI))

(($VALUE H I)))

(RCLE-Rulenumber
(FOR ALL DEPENDENT-VARIABLES

(IF (Initial value for $value = $initial-value)
(THEN (->Q1 ?[]= fiinit $value $initial-value))))

Figure 6.17: List quantification rule: System Rule Syntax

... this is assuming that no bindings list was already passed to the quantification rule. If

the following bindings list was to be passed to the quantification rule ...

((($NAME JET))

(($NAME OUTLET1))

(($NAME OUTLET2)))

... the following bindings list would be used by the production rule within the list

quantification rule ...

((($NAME JET) ($VALUE U l))

(($NAME JET) ($VALUE VI))

(($NAME JET) ($VALUE H I))

(($NAME OUTLET1) ($VALUE U l))

(($NAME OUTLET1) ($VALUE VI))

(($NAME OUTLET1) ($VALUE H I))

(($NAME OUTLET2) ($VALUE U l))

((SNAME OUTLET2) ($VALUE VI))

(($NAME OUTLET2) ($VALUE H I)))

A KBFE to PHOENICS using LISP Chapter 6

The process of using each association list within the bindings list, to either prove or

disprove an antecedent, will be covered in Section 6.9.3.

6.8.10 Rule firing modes

Figure 6.18 shows two methods of firing rule consequents. Figure 6.18a illustrates how

each association list within the bindings list is applied to each consequent in turn, i.e. la,

lb, lc, 2a, 2b, 2c. Figure 6.18b illustrates how the sequence can be altered such that each

association list is used to complete the consequents, in turn, before using the next

association list, i.e. la, 2a, lb, 2b, lc, 2c. Deviation from the default method of firing the

consequents is performed by ensuring that the first consequent of the rule is ...

(APPLY BINDINGS TO EACH CONSEQUENT)

Upon successfully proving all antecedents within a rule, the function used to fire the rule

consequents, FIRE-CONSEQUENTS, is passed a bindings list. This bindings list contains

the necessary data required to fire each consequent. When specifying boundary

conditions for a CFD analysis, data is grouped relative to a common reference, which is

the boundary name. Extracting all of the necessary data to fully describe a boundary

condition is performed while progressing through the antecedents of the rule. It is

important to ensure that data for a particular boundary is successive within the bindings

list, and as such is achieved through the use of the consequent...

(FIRE IN BLOCK RELATIVE TO $NAME)

The last atom of this consequent need not be $NAME, but could be any other bindings

variable. It is important that the chosen bindings variable is common within each

association list. Indicating that such a grouping is to be performed, i.e. firing the

consequents in block, causes the bindings list to be reduced to more than one bindings list.

This facility is primarily used in G13-RB, and is illustrated in Figure 6.19.

6.9 Inference engine

The inference engine is the main reasoning mechanism within the system, and essentially

filters data through the antecedents of the rules in order to apply the surviving data to the

A KBFE to PHOENICS using LISP Chapter 6

List of Bindings

(0 0 0 <) ())

(0 0 0 0 0)

(0 0 0 0 () >

Consequents

(a)
(1)

(2)

Consequent

Consequent - Bindings list firing sequence ...

la, lb, lc, 2a, 2b, 2c.

Xalx Default consequent firing

List of Bindings Consequents

(() 0 0 0 0)
(<) 0 0 0 0 >
(0 0 0 0 0)

(a)
(l)

(b)

) (c)
(2)

Bindings list

Consequent - Bindings list firing sequence ...

la, 2a, lb, 2b, lc, 2c.

ifcli Applying the binding* to each consequent

Figure 6.18: Consequent firing: (a) Default; (b) Applying the bindings list to each
consequent

128

A KBFE to PHOENICS using LISP Chapter 6

The bindings list before encountering the consequent...

(FIRE IN BLOCK RELATIVE TO $NAME)

is ...

((($Type inlet) ($Identity 1) ($Nodes (1 2)) ($Name jet)
($Phi VI)) ($Co onlyms) ($Val 0.0))

(($Type inlet) ($Identity 1) ($Nodes (1 2)) ($Name jet)
($Phi W l) ($Co onlyms) ($Val 2.1915))

(($Type outlet) ($Identity 1) ($Nodes (4 8))
($Name outletl)($Phi PI) ($Co fixp) ($Val 0.0))

(($Type outlet) ($Identity 1) ($Nodes (3 4))
($Name outlet2)($Phi PI) ($Co fixp) ($Val 0.0)))

Upon leaving the bindings manipulation functions, there exists three separate
bindings lists, each grouped relative to the value of the bindings variable Name,
thus ...

Block 1

((($Type inlet) ($Identity 1) ($Nodes (1 2)) ($Name jet)
($Phi V I)) ($Co onlyms) ($Val 0.0))

(($ iype inlet) ($Identity 1) ($Nodes (1 2)) ($Name jet)
($Phi W l) ($Co onlyms) ($Val 2.1915)))

Block 2

((($Type outlet) ($Identity 1) ($Nodes (4 8))
($Name outletl)($Phi P I) ($Co fixp) ($Val 0.0)))

Block 3

((($Type outlet) ($ Identity 1) ($Nodes (3 4))
($Name outlet2)($Phi PI) ($Co fixp) ($Val 0.0)))

Figure 6.19: Firing the consequents in block

consequents. It uses rules contained within rule-bases and implements forward and

backward chaining. The system, upon compiling individual r 4 --bases, generates an

inference network which links rules together to reduce unnecessary pattern matching

processes performed by the inference engine. The inference networks prevent the

A KBFE to PHOENICS using LISP Chapter 6

inference engine considering rules that have no bearing on the base rules within the

particular rule-base. Forward chaining is initially performed on base rules, and backward

chaining is implemented, where appropriate, in order to prove individual antecedents of

the base rule. Figure 6.20 shows, diagrammatically, the structure of the inference engine,

and highlights the developed functions and the order in which they are used. The

functions given in bold are described with flow charts shown in Appendix F, and the LISP

functions given in Appendix G.

The inference engine is given a rulebase on which to operate. Within each rulebase there

exists a complete set of rules and an inference network. The engine initially forward

chains on each of the base rules by utilising one of the functions USE-FOR-ALL-RULE or

USE-IF-THEN-RULE. USE-IF-THEN-RULE is ultimately used in all instances. Forward

chaining is commenced through the function APPLY-FILTERS, which simulates the

filtration of data through the antecedents of a rule. For each antecedent, the initial

bindings is NIL. The function FILTER-BINDINGS-LIST accepts a bindings list and each

association list is, in turn, filtered using the function FILTER-BLNDINGS. Prior to

evaluating the antecedent, the pattern is instantiated with existing bindings, object values

are inserted and any mathematical parsing is performed. This essentially creates a unique

pattern with which to perform a preliminary evaluation and then, if appropriate, match

with current assertions. The function EVALUATE-ANTECEDENT coordinates the

evaluation of the antecedent. If the antecedent cannot be evaluated, or it cannot be

matched with any antecedents, the backward chaining process is initiated. The strategies

behind forward and backward will be discussed later.

6.9.1 Rulebases

Rule-bases are stored as LISP variables and are given meaningful names. The names

must end in -RB, examples of which are CONVERSION-FACTOR-RB, POROSITY-

DEFINITION-RB, DENSITY-THERMAL-DEPENDENCE-RB, VISCOSITY-

THERMAL-DEPENDENCE-RB, and TMP1-EQUATION-RB.

Generation of the rule-bases into their final form is performed using two processes:

loading rules into the rule-base and generating the inference ntivvork. Loading rules into

a rule-base is performed using the macro REMEMBER-RULE, discussed in Section 6.8.1,

and results in a LISP variable with the following structure:-

130

-v v * ;*

A KBFE to PHOENICS using LISP Chapter 6

tfM-rr-THwt-itoui

HODIFY- BIND1NGS - LIST-TO-INCLUDE-SVALUE3

FIRE - CONSEQUENTS

MAKS-BINDINGS-LIST-FROM-BINDINGS-LI STS rXLnOL-BXMDDKM

INSTANTIATE - BINDINGS
INSBRT-OBJECT- VALUES EVALUATE - AETECKHWT

COWTINUB - TO - INSERT-OB JECT-VALUES

M BLnmUZT-BVALOATKW -Or-

laroM-AifnciDBEF-To-MnKTZom-AiiD-AaaocunD-Mxuta

M A TCS-URW aanDR-TO-AM nTIOU

n r - u m n o n

f ^
MATCH UNIFY

DETERMINE - NHBTEHKR - THE - ANTECEDENT - IS - INSTANTIATED - OR - NOT

MATCH-AETBCEDnrT-TO-ASSOCIATED-WKJHI

UNIFY - ANTECEDENT -WITH -RULE - CONSEQUENTS

INSTANTIATE - BINDINGS

ESTABLISH - REOUIRED- BINDINGS - FROM - UNIFICATION ■ BINDINGS
MODIFY • BINDINGS -TO- INCLUDE - ORIGINAL-AND- REQUIRED - BINDINGS

Figure 6.20: Inference Engine Logic

y

131

A KBFE to PHOENICS using LISP Chapter 6

(RULE-1 RULE-2 ... RULE-n)

where n is the number of rules within the rule-base. Generating the inference network

causes the LISP structure of the rule-base to alter such that the appropriate network is

included. The resulting structure is as follows:-

(INFERENCE-NETWORK (RULE-1 RULE-2 ... RULE-n))

Manual alteration/modification of the network may be required in order to obtain desired

linkages between rules.

6.9.2 Inference networks

Inference networks link rule antecedents with consequents of another rule. This is

performed using pattern unification, described in Section 6.3, which matches the

antecedent of a rule with the consequents of all other rules within that rule-base. If the

antecedent and the consequent match, a link is formed. If the antecedent cannot be

proved by either matching with an assertion or verifying an object, then an associated rule

is used in backward chaining. If no associated rule exists, the rule fails. The purpose of

introducing inference networks was to reduce the unnecessary consideration of rules.

Figure 6.21 shows how an inference network links rules together. The rules within each

rule-base are referenced within the network as 1, 2, ..., n, where n is the total number of

rules within the rule-base. Figure 6.22 shows how the rules given in Figure 6.21 are

represented in an inference network which in turn is represented as a complex LISP

structure.

Each rule in a network is represented by a two element list, the first of which is the rule

number and the second a list containing associated rules, as given below:-

(Rule-number (Associated-rules))

For example, (2 ((1 ()))) indicates that rule number 2 has only one associated rule, which

is rule number 1. However, rule number 1 has no associated rules because of the NIL list.

A KBFE to PHOENICS using LISP Chapter 6

(Rule-1
(far fell deceudeet-VMiubfcs
(If (mtodotl r i a im c for $vtfcw - $re*cf))
(tkeo (->ql J0» rtrnnf Jvtloe fcmmf))))

(Rule-2
(IIf ({ v tto e b p l)

(inlet-ftow-etcu > 0)
(Mai Inlet velocity - 4 velocity) -
(initial ffuid-deoaky - $*uby)>

(then (teaUnal n ftt a w for $v*h» -
(->1.0eJJJ (0.01 * Meoahy * Jvdocky * fata-dowm**)))))

(Rule-3
Of (kdet-fknr-atee > 0)

(total inlet velocity - 3velocity)) ---
(then (taaidual tefm nce for lvalue -

(-»1.0eJTJ (<).01 * Ivelodty * lolet-floaeaea))))) - t o ---------

(Rule-4
(If (boundary name for inlet {identity {node* la Iname)

(cardinal fa t autface loodea la IcanSnal)
($phi b petpeatdkular to loatne)
({phi at inlet boundary Iname ia eonatant at Iveiocky-valae))

(then (total inlet velocity - (turn velodty-vahtt from bindiu*»)))) ,

(Rule-3
Of ((law high) inr ladca {cardinal))
(then (w l Ia peaitendteubtr to {name))) - t o -----------------------------------

(Rule-4
(if ((nntth anuth) inciadea {canilntl))
(then (»1 la peapendicnlar to Iname))) - t o --------------------------------

(Rule-7
(if ((eeat weal) include* {cardinal))
(then (til ia perpendicular to Iname))) - t o --------------------------------

(Rule-4
(if (fltkl cutnpcc - 'ibiiity ia inrampteaaibk)

(thecmal-terfuirementa ate iaqlhmtnai))
(then (initial fluid-denaity - deataky))) - to —

Figure 6.21: Inference Networks: Antecedent - Consequent linkages

The definition of a base rule is a rule that has no link between any of its consequents and

the antecedents of any other rule. Within a network these are the fundamental elements

of the LISP structure. Therefore, a network is represented by:-

(BASE-RULE-1 BASE-RULE-2 ... BASE-RULE-n)

where n is the total number of base rules within the rule-base. Each base rule

represented in the network then follows the two element list structure described above.

6.9.3 Forward chaining

The inference process initially commences with fui »vard chaining on the base rules within

the inference network, only backward chaining when necessary on associated rules. The

pattern matching process is identical in both forward and backward chaining. Figure 6.23

indicates the sequences associated with the pattern matching process in forward chaining.

A KBFE to PHOENICS using LISP Chapter 6

((1 ((2 ((8 0) (4 ((5 0) (6 0) (7 0)))))

(3 ((4 ((5 0) (6 0) (7 0))))))))

(a): Abstract Inference Network (b): LISP representation of the
Inference Network

Figure 6.22: Abstracted inference network

Initially any previously known bindings are inserted into the antecedent to make it unique

for that particular set of bindings. Having effectively created a new antecedent, the

templates contained within the assertions list are then individually matched with the new

antecedent. The assertion templates are referred to as datums and the antecedent is the

pattern.

Figure 6.24 illustrates the logic of the forward chaining mechanism. The inference engine

performs forward chaining on all base rules within an inference network. Initiation of the

forward chaining process is performed by calling the function USE-RULEBASE with the

LISP command ...

(USE-RULEBASE rulebase-name)

USE-RULEBASE takes the specified rule-base and sequentially calls the function USE-

RULE. This is performed until all the base rules have been considered. The function

USE-RULE is fed with a two element list used to reference the base rule and its

134

A KBFE to PHOENICS using LISP Chapter 6

((X has 3 regions)
(X region 1 cells 11
(X region 2 cells 81
(X region 3 cells 18

Facts

Initial Bindings
(($axis X))

($axis regions $N cells $F to $L)

(X region $N cells $F to $L)

((($axisX)($N1)($F1 ($L7»
(($axis X) ($N 2)($F 8) ($L 18))
(($axis X) ($N 3) <$F 19) ($L 37)))

Figure 6.23: Pattern matching and forward chaining

relationship with all associated rules, discussed in Section 6.9.2. Along with this two

element list, USE-RULE is also given a complete list of rules within the current rule base.

USE-RULE checks to see if the rule is either a production rule or a list quantification

rule, and calls either USE-IF-THEN-RULE, or USE-FOR-ALL-RULE respectively.

USE-FOR-ALL-RULE generates the initial bindings list, and reduces the rule to a

standard production rule, after which it calls USE-IF-THEN-RULE. The function USE-

IF-THEN-RULE checks the antecedents of the rule for the default of (IF NOTHING). If

this is the case, user syntax implied a consequent only rule and as such progresses on to

firing the consequents. However, if antecedents are present then the filtering process

commences with the first antecedent.

The forward chaining mechanism presented by Winston and Horn (1989) has been

modified and extended for use within the system’s inference engine. Extensions include

conjunctive / disjunctive antecedents, objects, mathematical expressions* and multiple

consequents. With the exception of changing the method of representing pattern variables

in the pattern matching process and how assertions and bindings lists are represented, the

135

A KBFE to PHOENICS using LISP Chapter 6

Enter USE-IF-THEN-RULE with parameters including
a rule and a bindings list

 Any more antecedents ? All antecedents
proved correct ?

fire consequents

Use next rulebase

Extract next antecedent

Any more bindings in the
bindings list ?

Instantiate pattern variables with
existing bindings in list

insert object values

mathematically parse the antecedent

Preliminary evaluation of the
antecedent

Answer

Match antecedent to the assertions

Answer

Backward chain

Store answer. Answer is a
bindings list

Figure 6.24: Forward chaining logic

A KBFE to PHOENJCS using LISP Chapter 6

assertions / antecedent filtering process is the same. The function FILTER-BINDINGS

contains major modifications that need to be discussed. This function contains all of the

essential forward chaining mechanisms, the logic of which is shown in Figure 6.24,

contained within the dotted line. The function is passed an antecedent, along with an

optional set of bindings, associated rules and a rulebase. Initially the antecedent is

instantiated with any bindings that are applicable. This is illustrated in Figure 6.25. The

new, modified, antecedent is then checked for any object names within the list. If a list

atom corresponds to any object name, the system inserts its value in place of the name.

Antecedent: (Cardinal for $nodes is $cardinal)

Bindings: (($nodes (1 2)) ($name jet))

Antecedent after instantiating the bindings is ...

(Cardinal for (1 2) is $cardinal)

Figure 6.25: Bindings instantiation

When trying to insert an object’s value into an antecedent, the system utilises the function

INSERT-OBJECT-VALUES. Provided the antecedent is not enquiring whether an object

is instantiated or not, the object’s slots are accessed to help determine its value. If the

object is uninstantiated or its status is volatile, the slots are used to try and determine the

value. The order of slot usage is: fixedvaiue, computevalue and rulebase. A fixedvalue

automatically instantiates an object. An entry in the computevalue slot implies that a valid

LISP command or function needs to be executed to determine the object value. Finally, a

rulebase slot instantiated as T suggests that there exists a knowledge base upon which

inferencing is to be performed. Failure to use any of these slots forces the system to ask

the user for the object’s value directly, using the function ASK-OBJECT.

Having obtained the object’s value, and correctly inserting it in the antecedent, complete

mathematical parsing is performed. This is implemented to reduce any resident

mathematical expressions to a single value. Mathematical parsing, relative to the LISP

A KBFE to PHOENICS using LISP Chapter 6

system, is discussed in Section 6.9.6.

Once the antecedent is in the fully modified form, evaluation commences with the

function EVALUATE-ANTECEDENT. Initially the antecedent undergoes a preliminary

examination to assess whether it is checking the validity of a statement. For example,

enquiring if an assertion or object is instantiated, or if a statement is true or false in either

equality or inequality. Examples of such antecedents are ...

... where Coordinates and Number-of-dimensions are defined objects. The third

statement, given above, is derived from the assertion template (Cardinal for surface

$nodes is $cardinal). For each of these antecedents the preliminary evaluation would

return either True (T) or False (NIL), depending on the validity. A true return would

force the system to retain the existing set of bindings and transform them into a bindings

list to be returned to the function FILTER-BINDINGS-LIST. A false, NIL, answer would

return NIL to the function FILTER-BINDINGS-LIST. This process is repeated for each

antecedent in the rule. If the antecedent did not conform to the requirements of the

preliminary evaluation the antecedent would be returned, thus indicating that the filtering

process needed to commence, using the function MATCH-ANTECEDENT-TO-

ASSERTIONS called from within the function MATCH-ANTECEDENT-TO-

ASSERTIONS-AND-ASSOCIATED-RULES. Matching the antecedent to the assertions is

essentially the same process as defined in Winston and Horn (1989), with the exception

that the blackboard structure adopted for the assertions list only requires a match with the

template to be performed. A successful match immediately extracts the data from the

assertions under that template. The need to continue through the assertions list looking

for other valid matches is removed due to the categorisation of the assertions.

If the antecedent cannot be proved to be correct in forward chaining, thereby losing the

bindings carried forward into the function FILTER-BINDINGS, backward chaining is

initiated through the use of the function MATCH-PATTERN-TO-ASSOCIATED-RULES.

(Coordinates are instantiated)

(Coordinates are cylindrical)

(Cardinal for surface (1 2) is instantiated)

(Number-of-dimensions = 2)

138

A KBFE to PHOENICS using LISP Chapter 6

6.9.4 Backward chaining

The backward chaining mechanism is invoked when an antecedent of the current rule

cannot be proved. If the antecedent is a statement that is given a true or false answer

during its preliminary evaluation, or if the antecedent matches an assertion, and an answer

results, backward chaining is not performed. An antecedent that conforms to a template

can only be used for backward chaining. If the antecedent does not match any of the

templates given as assertions, it is assumed that there exists a rule within the rulebase

whose consequents will provide the relevant match. Under these circumstances, each of

the associated rules are tried for successful unification with the antecedent, if no

unification results the rule fails. However, as soon as a rule is located whose consequents

provide the required link with the antecedent, backward chaining ceases and the rule is

made unique relative to the bindings, prior to forward chaining. In order to explain the

processes employed by the system during backward chaining, we shall consider two

separate situations, depicted in Figure 6.26 and Figure 6.27.

Figure 6.26 indicates an isolated view of three objects: Dependent-variables, Fluid-

compressibility and Thermal-requirements. The assertions list has been reduced to show

specific information and relevant data to be used in the rulebase G15-RB. The rulebase

has been reduced to one base rule and its associated rules for the purpose of explaining

the inference process. The inference network is also given.

Forward chaining commences with RULE-1. Upon entering the function USE-RULE,

hence USE-FOR-ALL-RULE, there exists no bindings list. However, because this is a list

quantification rule, the system generates a bindings list according to the list object,

Dependent-variables, and its associated value. This leads to the bindings list ...

((($VALUE PI))

(($VALUE U l))

((SVALUE VI)))

... being passed to the function USE-IF-THEN-RULE in conjunction with other required

parameters. Each of the association lists within the bindings list, given above, is applied

to each antecedent in the rule. All bindings are filtered through one antecedent before

progression onto the next. In this case there is only one antecedent. The function

'V '
vi v- v . • v '

A KBFE to PHOENICS using LISP Chapter 6

Objects: Dependent-variables: (PI U1 VI)
FluM-compreasibility: Incompressible
Thermal-requirements: Isothermal

Assertions: ((()

Rulebase:

((Boundary name for $type {identity $ nodes is {name)
(Boundary name fot Inlet 1 (1 2) is jet))

((Cardinal for surface {nodes is {cardinal)
(Cardinal for surface (1 2) is low))

(({dependent-variable at {type boundary {name is {condition at {quantity)
(wl at inlet boundary jet is constant at 2.1915)))

(Modified from the actual rulebase to illustrate the inference network and backward chaining
only. The first and last base rales have been omitted.)

(Rule-1
(for all dependent-variables
(if (residual reference for {value - {resref))
(then (->ql 7Q- resref {value {resref))))

(Rule-2
(if ({value is p i)

(inlet-flow-area > 0)
(total inlet velocity - {velocity)
(initial fluid-density - {density))

(then (residual reference for {value - (->1.0e??7 (0.01 * {density * {velocity * inlet-flow-area)))))

(Rule-3
(if (inlet-flow-area > 0)

(total inlet velocity - {velocity))
(then (residual reference for {value - (->1.0e?7? (0.01 * {velocity * inlet-flow-area)))))

(Rule-4
(if (boundary name for inlet {identity {nodes is {name)

(cardinal for surface {nodes is {cardinal)
({phi is perpendicular to {name)
({phi at inlet boundary {name is constant at {velodty-value))

(then (total inlet velocity - (sum velocity-value from bindings))))
(Rule-5
(if ((low high) includes {cardinal))
(then (wl is perpendicular to {name)))

(Rule-6
(if ((north south) includes {cardinal))
(then (vl is perpendicular to {name)))

(Rule-7
(if ((east west) includes {cardinal))
(then (ul is perpendicular to {name)))

(Rule-8
(if (fluid-compressibility is incompressible)

(thermal-requirements are isothermal))
(then (initial fluid-density - density)))

Figure 6.26: Rules, inference network and data used to illustrate backward chaining only

140

— i ■ - :

A KBFE to PHOENICS using LISP Chapter 6

Base rule antecedents:

(Rule-1
(if (Boundary name for $type Sidentity $nodes is $name)

(Cardinal for surface $nodes is $cardinal)

(A) ■> ($name x cells are $ixf to $ixl)

())
)))(then (

At (A) the bindings list for the inlet boundary is ...

(($type inlet) ($identity 1) ($nodes (1 2» ($name jet) ($cardinal low))

Associated rule:

(Rule-n
(if ((west low south) includes $cardinal)

($axis region 1 cells $if to $il))
(then ($name $axis cells are $if to $if)))

Figure 6.27: Antecedents, bindings and rule used to illustrate data transition through
inference networks

■i,:

1■A

■1

$
1
U

'I
I

4

FILTER-BINDINGS initially uses the bindings (($VALUE PI)) when trying to prove the

antecedent. As described in section 6.9.3, the antecedent has all pattern variables

instantiated with the values of corresponding pattern variables in the association list. In

this case the antecedent becomes ...

(residual reference for PI = $resref)

Insertion of object values and mathematical parsing are performed, these processes have

no significance with this antecedent. Preliminary evaluation of the antecedent fails

141

■ mm’,”- ■ ■ f

A KBFE to PHOENICS using LISP Chapter 6

because it is not a statement. This forces the system to try to match current assertions

with the antecedent. This, again, fails because it does not conform to any assertion

template. At this stage the system calls the function MATCH-ANTECEDENT-TO-

ASSOCIATED-RULES. As can be seen from the inference network, RULE-1, is only

linked to RULE-2 and RULE-3 through antecedent-consequent unification. In this case

both associated rules are linked to the same antecedent, because there is only one.

However, if there existed more than one antecedent, all associated rules need not

necessarily be linked to the same clause. The function MATCH-ANTECEDENT-TO-

ASSOCIATED-RULES controls the process of trying each associated rule. Backward

chaining is performed with the function TRY-RULE, the logic of which is shown in

Figure 6.28. The antecedent passed to TRY-RULE, (residual reference for P I = $resref),

has already been instantiated with the bindings (($value PI)). Rule 2 is now instantiated

with the same bindings, as shown in Figure 6.29. A set of unification bindings is now

obtained through unifying the rule consequents with the antecedent, this gives ...

(($resref (->1.0e??? (0.01 * $density * $velocity * inlet-flow-area))))

The initial bindings passed to TRY-RULE are modified, this is discussed under the

second example illustrated by Figure 6.27, and the required bindings are determined. A

required binding is defined as any pair within the unification bindings whose second

element is itself a pattern variable or a list. The latter forms a system function, as given

above, or a bindings manipulation consequent.

Once the required variables are determined the rule is instantiated with the unification

bindings. The rule has now been made unique with respect to the current bindings list

passed to the function TRY-RULE.

After completing the inferencing on the rule, and any other backward chaining deeper into

the inference network, the bindings in the resulting bindings list are each condensed to

include only the original bindings and the required bindings. This is performed using the

function MODIFY-BINDINGS-TO-INCLUDE-ORIGINAL-AND-REQUIRED-

BINDINGS. It is within this function that the pattern variables within the required

bindings are matched with the appropriate value from the bindings, which is to be

returned as part of the resulting bindings list. Furthermore, any bindings manipulations

and evaluation of system functions through object value insertion and mathematical

142

A KBFE to PHOENICS using LISP Chapter 6

I - ------------------
Antecedent already instantiated
with the bindings (() () ()>

t
Associated rule instantiated with the

same bindings

t
Unification bindings obtained from

unifying rule consequents with
the antecedent

t
Any unification bindings ? — next associated

rule
Y

T
Bindings modified and the required

bindings obtained

t
Rule instantiated with
unification bindings

t
Rule used

t
Bindings modified to indicate original

and required bindings only

t
Return

Figure 6.28: Logic associated with the function TRY-RULE

A KBFE to PHOENICS using LISP Chapter 6

(RULE-2
(IF (PI is PI)

(Inlet-flow-area > 0)
(Total inlet velocity = $velocity)
(Initial fluid-density = $density))

(THEN (Residual reference for PI =
(->1.0??? (0.01 * $density * $velocity

* Inlet-flow-area)))))

Figure 6.29: Backward chaining: Bindings instantiation within an associated rule

parsing are performed. This is exemplified by the required bindings list in the following

example.

Forward chaining performed on the antecedents presented in Figure 6.27 establishes the

following set of bindings upon reaching the antecedent indicated with arrow A ...

(($TYPE INLET) ($IDENTITY 1) ($NODES (1 2))

($NAME JET) ($CARDINAL LOW))

Instantiating the antecedent with the above bindings produces ...

(JET X CELLS ARE $IXF TO $IXL)

This antecedent cannot be proved, therefore backward chaining on the associated rule

commences. After instantiating the associated rule with the bindings we have ...

(if ((west low south) includes low)

($axis region 1 cells $if to $il))

(then (jet $axis cells are $if to $if))

144

£S- ’• \r ’

“

",
i'i"

*

IT
-*

—

~
—

f
|

p

A KBFE to PHOENICS using LISP Chapter 6

The unification bindings are (($AXIS X) ($IXF $IF) ($IXL $IF)). The required bindings

are established from these unification bindings, and are given by (($IXF $IF) ($IXL $IF)).

Also the actual bindings are modified to include unification bindings pairs whose second

element is itself not a list or pattern variable. This is necessary to ensure that continuity

within the rules is maintained when moving further into the inference network, i.e.

towards the leaf rules. This results in the bindings becoming ...

(($TYPE INLET) ($ IDENTITY 1) ($NODES (1 2))

($NAME JET) ($ CARD INAL LOW) ($AXIS X))

The rule is instantiated with the unification bindings, giving ...

(if ((west low south) includes low)

(x region 1 cells $if to $il))

(then (jet x cells are $if to $if))

Forward chaining is performed on the associated rule with the bindings being passed as a

bindings list, thus ...

((($TYPE INLET) ($IDENTITY 1) ... ($AXIS X))).

Upon completion of forward chaining, a bindings list is returned whose principal pairs

within each set of bindings are the original bindings, as well as other pairs obtained during

inferencing. These extra bindings would consist of the remaining pattern variables in the

rule, along with their corresponding values. For example, proving all antecedents to be

correct might result in ..

((($TYPE INLET) ($IDENTITY 1) ... ($AXIS X) ($IF 1) ($IL 1))

A KBFE to PHOENICS using LISP Chapter 6

... noting that the last two pairs in each set of bindings gives values for $IF and $IL. With

$IF being the subject of the required bindings, (($IXF $IF) ($IXL $IF)), the values of

$IXF and $IXL can be determined. Therefore, TRY-RULE would return the original

bindings along with the required bindings as a bindings list, thus ...

(((STYPE INLET) ($IDENTITY 1) ($NODES (1 2))

($NAME JET) ($CARDINAL LOW) ($IXF 1) ($IXL 1))).

6.9.5 Bindings transition through inference networks

(($VALUE PI))

Figure 630: Bindings transition through inference networks

Chaining through the inference network only permits bindings to be carried deeper into

the network. Whenever the system backtracks to lower level -” ies the bindings

information gathered for that rule is not carried back, only the original bindings and the

required bindings are. Figure 6.30 illustrates the inference nt ‘.work for rules 1, 2, 4, 5 and

8 given in Figure 6.26. Each rule is presented as a box within which is contained the

number of antecedents and consequents for the appropriate rule, shown as empty and

146

A KBFE to PHOENICS using LISP Chapter 6

hatched boxes respectively. The solid lines represent the links between antecedents and

consequents, whereas the dotted line shows the path taken by the inference engine. Points

A to H will be used to describe the status of the bindings, required bindings and the

bindings lists established through inferencing on each rule. The rules are given in

Figure 6.26

At (A), backward chaining has commenced from rule 1 to rule 2 in order to prove the

only antecedent. The bindings have been converted to a bindings list with which forward

chaining is to commence, thus ...

((($VALUE PI))),

and the required bindings are ...

(($RESREF (->1.0e??? (0.01 * $DENSITY * $VELOCITY * INLET-FLOW-AREA))))

The first two antecedents of rule 2 are successfully proved, as these are statements,

therefore not altering the bindings. The bindings list at (B) is the same as at (A), and

backward chaining on the third antecedent establishes the required bindings for rule 2 as

(($VELOCITY (SUM VELOCITY-VALUE FROM BINDINGS))). Forward chaining on

rule 4 is interrupted on its third antecedent, whereby further backward chaining on rule 5

yields the following required bindings: (($PHI W l)). The bindings list at point (C) is ...

((($VALUE PI) ($IDENTITY 1) ($NODES (1 2)) ($NAME JET)

($CARDINAL LOW))).

At point (E), rule 5 has been successful, and rule 4 is complete, therefore, the bindings list

is ...

((($VALUE PI) (SIDENTITY 1) ($NODES (1 2)) ($NAME JET)

($CARPT v ^ , ($PHI W l) ($VELOCITY-VALUE 2.1915))).

The required bindings for rule 2 states that the pattern variable $VELOCITY should be :

(SUM VELOCITY-VALUE FROM BINDINGS). This means that the bindings list

returned from rule 4 needs to be manipulated so that a single value for $VELOCITY

147

A KBFE to PHOENICS using LISP Chapter 6

would result. Only one set of bindings is within the bindings list, forcing the required

pattern variable, $ VELOCITY, to the calculated value 2.1915. At (F) the bindings list

consists of ...

((($VALUE PI) ($VELOCITY 2.1915))),

and the required bindings for rule 2 has been altered to suit the needs of the fourth

antecedent, thus: (($DENSITY DENSITY)). The fourth antecedent of rule 2, (INITIAL

FLUID-DENSITY = $DENSITY), caused problems during rule validation because the

atoms FLUID and DENSITY were not hyphenated. The atom DENSITY was treated to

be identical to the name of an object DENSITY, thus causing the system to insert the

appropriate object value making the antecedent senseless, i.e. (INITIAL FLUID 1.225 =

$DENSITY). This indicated that atoms within antecedent templates should not coincide

with object names unless intended. To avoid this problem the atoms FLUID and

DENSITY were hyphenated. The antecedents of rule 8 are statements thus causing the

bindings list to be unchanged, and the resulting bindings list is ...

((($VALUE PI) ($VELOCITY 2.1915))).

At (H) the returned bindings list contains the required pattern variable, $VELOCITY,

and its inferred value 2.1915. These items are being returned to the base rule as a

bindings list, thus ...

((($VALUE PI) ($VELOCITY 2.1915) ($DENSITY 1.225))).

The consequents of the base rule, rule 1, can now be fired with the bindings list resulting

from the inference process.

6.9.6 Mathematical parser

The need for a mathematical parser has already been presented, Section 5.4.3. The need

was further substantiated during the development of the rule base language using LISP.

Mathematical processing in LISP is possible but requires a rather unorthodox syntax with

which to present the expression. For example, the expression 4 * 3 + 5 would need to be

written as (+ 5 (* 4 3)). The more complex the expression, the more daunting the LISP

A KBFE to PHOENICS using LISP Chapter 6

equivalent. Furthermore, if the rulebase language was to permit the inclusion of

mathematical expressions in both the antecedents and consequents, it would be necessary

to enter the expression as a user would enter it, and not as a LISP expression. To this

end, a LISP mathematical parser was developed. Appendix H lists the LISP mathematical

parser which implements recursion. Again standard precedence laws and associativity

rules were utilised. A comparison with the equivalent FORTRAN parser, given in

Appendix D, illustrates the power of LISP.

6.10 Presentation facilities

The presentation facilities created for the KBFE revolve around system / user dialogue.

There exists two methods with which the system can ask the user for information:

defining an explicit ask command within the rule consequents, or the system automatically

asks for information when nothing can be inferred.

The presentation facilities for objects involve basic menu interfaces, whereas asking the

user for information to assert a fact consists of a single line of text which prompts the user

to enter a value. Both of these methods, shown in Figure 6.31, use the same presentation

facilities.

Defining an explicit ASK command within a rule consequent can be used for either

objects or assertions. The use of the ASK command for assertions has been discussed in

section 6.8.6. However, for objects, the system makes extensive use of some of the object

slots within the presentation facilities. The object slots are: Preface, Disallowedvalues,

Allowedvalues, Defaultvalue, Prompt, and Status. The slots for Allowedvalues, Status, and

Prompt can be altered / modified from within rule consequents using the template ...

(OBJECT SLOT-NAME VALUE)

... where OBJECT is the object name, i.e. porosity, density etc., SLOT-NAME is either

Allowedvalues, Status oi Prompt. VALUE is the new value to be assigned to the

particular object slot. Even though the system onlv allows the three slots to be modified

at this stage, it would be easy to include any of the remaining slots in the list of those

whose values may be allowed to vary. The function INSTANTIATE-OBJECT performs

the modifications relative to the information contained within the rule consequents. The

A KBFE to PHOENICS using LISP Chapter 6

Objects Preface

1 .
2 .

n.
Default value

Prompt

(a) Menu e n t r y s c r e e n

Prompt (P a r t o f a n a s s e r t i o n)

(b) A s s e r t i o n q u e r y in g s c r e e n

□

□

Figure 631: Presentation facilities: (a) menu entry screen; (b) Assertion querying screen

slot Allowedvalues can only be replaced with a list of alternatives, i.e. (option-1 option-2 ...

option-n), and Status can be either FIXED or VOLATILE. The need for altering the

prom pt slot was brought about because of the potential volatile nature of the object

POROSITY. For each blockage within a domain, if the porosity was to vary from

obstruction to obstruction, there needed to be a method of differentiating between

obstructions when asking for the porosity value. Rulebase G ll-R B accommodates the

possibility of using a potential volatile object, POROSITY, and illustrates the usage of

consequents to alter object slots.

The Preface slot utilises a method of relating data values to a phrase template, similar to

that used in MYCIN, Shortliffe (1975). This allows the preface to dynamically alter

according to the values of other objects within the database. The structure of the Preface

slot is ...

150

r/- - -v» ■ V...- ... -■ ■ -y;*- . V__- ■ ?■ ■

A KBFE to PHOENICS using LISP Chapter 6

(Template Value-1 Value-2 ... Value-n)

where the template has marked positions within the text for the location of Value-1.

V alue-2,..., Value-n. However, Value-1, Value-2 to Value-n may be omitted. The

positions of the values are indicated with a number in parentheses, the number being 1, 2,

..., n, corresponding to Value-1, Value-2,..., Value-n respectively. For example ...

((1) is (2) dependent and follows the relationship (3))

... where (1), (2) and (3) could be different values which would enable different facts to be

presented. For example, depending upon the type of analysis required by a user, who

might wish to specify that the kinematic viscosity of a fluid is temperature dependent.

Under these circumstances, PHOENICS allows the user to specify either one of the two

PHOENICS defined relationships between temperature and viscosity or a user model.

The latter is entered through GROUND coding, which has not been included within the

KBFE. The two PHOENICS predefined equations relate kinematic viscosity to

temperature via A +B T or A+BT+CT**2, and requires the instantiation of coefficients A,

B and/or C, given as PHOENICS variables ENULA, ENULB, and ENULC respectively.

The objects ENULA, ENULB, and ENULC in the KBFE database use the template/value

relationships in their preface slots. It was also found necessary to establish a method of

recognising which equation was required, performed through inferencing, and allowing the

preface of the objects used for the coefficients to change depending on the chosen

equation. This was achieved by defining the Preface slots of ENULA, ENULB and

ENULC as ...

((Viscosity equation - (1)) viscosity-equation).

During inferencing the system would ask the user which relationship they would like to

use, thus instantiating the object VISCOSITY-EQUATION. Furthermore, rules within

the rulebase, FLUID-RB, determine which coefficients to ask for, thereby forcing the

contents of the preface slots to be printed to the screen above the user prompt, see

Figure 6.31a. The function PRINT-TO-SCREEN is used to present the Preface to the

user in its final form, prior to this several stages are executed. Initially the structure is

instantiated with any object values, in this case, assuming that VISCOSITY-EQUATION

is instantiated with A+BT, the structure would become ...

A KBFE to PHOENICS using LISP Chapter 6

((Viscosity equation - (1)) A+BT)

This template is then modified such that the markers are replaced with their

corresponding values, thus ...

(Viscosity equation - A+BT).

The resulting list is then transformed to strings and printed onto the screen. The

transformation process takes into account the predefined width of the screen and truncates

the text to fit within the range. The text then commences on the next line. This process

continues until the entire preface has been presented to the user.

The sequence, operating on a more complex template, would be ...

(((1) (2) is related to (5) via the (4) relationship (3))

kinematic viscosity A+BT+CT**2 quadratic temperature)

This, when manipulated, would present the following statem ent...

Kinematic viscosity is related to temperature via the quadratic

relationship A+BT+CT**2

Using the same template, and different values ...

(((1) (2) is related to (5) via the (4) relationship (3))

NIL Temperature A +BT linear enthalpy)

yields ...

Temperature is related to enthalpy via the linear relationship A+BT

A KBFE to PHOENICS using LISP Chapter 6

6.11 Extensibility

The fundamental structure of the database, knowledge bases, and the inference engine of

the LISP KBFE have been developed with extensibility as an important factor. The

assertions templates consist of groups of symbols which have specific meanings for CFD

problems. The inclusion of other templates would automatically cause the inference

engine to consider their contents during forward chaining. Furthermore, if their context

were to be changed then any other knowledge domain could be considered. There is a

similar argument for the objects contained within the system. The quantity of objects

could be increased such that the breadth of the knowledge domain increases.

The ability to remove the existing objects, assertions, and knowledge bases, and to replace

them with equivalent counterparts relating to a different domain is a measure of the

extensibility of the system.

6.12 Conclusions

This chapter tried not to assume any prior understanding of LISP by the reader, and as

such, the principles of standard pattern matching and pattern unification were presented.

These processes are used to form the basis of the inference engine developed for the

KBFE. The inference engine initially uses forward chaining on a rulebase. The rulebase

contains, apart from the rules, an inference network which is used when backward

chaining is required.

The overall system architecture was presented, and the interactions of the inference

engine, rulebases and the database highlighted. LISP functions were used to provide the

user interface and data manipulation functions. User interface functions were developed

menus and prompting the user to enter data to assert factual information. The data

manipulation functions were required (a) to gather initial information from the user

regarding the geometry of the analysis to be performed, and (b) to manipulate this

to provide basic dialogue sessions with the user throughout inferencing, which consists of

information to assert facts which were to be used during inferencing on subsequent

rulebases. The functions written in the C language wer^ ir..’ tded to increase the

numerical processing power of the system for the grid generation techniques.

153

A KBFE to PHOENICS using LISP Chapter 6

The database consisted of two forms of data: assertions and objects. Assertions were used

for geometrical and boundary condition information, and objects were used for

PHOENICS variables and other specific data. Objects were created using a LISP

structure which essentially created a frame with slots. The slots consisted of the structure

fields, and were used to guide the inference engine through the possible methods of

establishing a value for the object, i.e. FixedValue, AllowedValues, ComputeValue,

Rulebase. Certain slots were used to store data related to the presentation facilities

developed within the system. The assertions were categorised using templates, each of

which could have applied to it varying items of data, thus representing different

boundaries. This categorisation lead to a modular assertions list, referred to as a

blackboard throughout. This blackboard is not the same as those described by Hayes-

Roth (1985), and Reddy and O’Hare (1991), in so much as that it does not contain

linkages between entries on the same or different levels. Furthermore, it cannot pass data

between the different levels. Even so, the technique reduced the number of pattern

matches required to consider all the assertions, thus improving the efficiency of the

inference engine.

The rulebases consist of a set of rules, written in a developed language. There exists two

types of syntax for the rules: User Rule Syntax (URS) and System Rule Syntax (SRS).

The URS allows a little more flexibility when defining the rules within each base, whereas

the system creates the SRS from the URS. The SRS must conform to a predefined

structure. There are two types of rule in the SRS: production rules and list quantification

rules. List quantification rules are rules that use list objects upon normal production

rules. Production rules allow either disjunctive or conjunctive antecedents with multiple

consequents. Various firing modes have been developed to suit different synthesis rules,

these determine the order of firing the bindings on the rule consequents. Furthermore,

block firing of bindings can be performed relative to reference data. The rulebases not

only contain the list of rules, but also an inference network that links the rules together.

Rules that do not have any links from their consequents to the antecedents of other rules

are classified as base rules. It is these base rules that are initially used when a new

rulebase is being considered by the inference engine. Foi vvard chaining on the base rules

is followed by backward chaining, when required, on any associated rules. Data

management in backward chaining allows data to be carried f rward deeper into the

network, but information obtained within the network cannot be brought back out of the

network, with the exception of the original data.

154

A KBFE to PHOENICS using LISP Chapter 6

Finally, the presentation facilities developed for the system are described. These facilities

are used by the inference engine to query the user for data entry. Menus and user

prompting are the two techniques used, implemented for objects and assertion data

gathering respectively. Generalisation of object prefaces has been performed using a

modified technique developed for the MYCIN project, Shortliffe (1975).

CHAPTER 7

CASE STUDIES

7.1 Introduction

This chapter illustrates the interaction of the user with the KBFE by presenting the

dialogue sessions for two case studies. For each study, a brief description of the geometry,

and required analysis will be given before presenting the listed interaction with the system.

The final data file, and the results of submitting the run to PHOENICS, will be presented.

PHOENICS requires certain data to be entered in order to completely define an analysis.

The essential data required by PHOENICS, which is created by the KBFE through

inferencing and user interaction, consists of ...

Preliminary information: This is used to define variables used within the data file, and

the standard commands that have to be present for PHOENICS to successfully execute

the data file. Furthermore, messages can be incorporated into the data file by inserting at

least two spaces before typing anything on the line of the data file.

Grid definition: The grid definition is synthesised using the calculated aspect ratio

dependent grid generation data. Initial interaction with the user establishes the nodal

coordinates and their connectivities which are used to establish the initial assertions from

which subsequent inferencing is performed.

Dependent variables: The dependent variables for the analysis consists of pressure and

velocities. Depending on the type of analysis, turbulence properties, and temperatures

may also be required. The rulebase DEPENDENT-VARIABLES-RB determines which

variables to include following user interaction.

Fluid properties: Inferencing on the rulebase FLUID-RB provides the required fluid

properties.

Initial values: PHOENICS is a finite volume package which requires an initial best guess

of dependent variable results. It is from this initial best guess that the iteration cycles

commence until convergence is achieved. The rulebase G ll-R B is used to establish the

best guess initial values.

156

Case studies Chapter 7

Boundary conditions: Depending on the type of analysis required by PHOENICS,

different boundary conditions would be required. The rulebase BC-RB is used to

determine, through inference, what type of boundary condition information is required.

The data obtained through inference is stored as assertions. The assertion data is

synthesised using the rulebase G13-RB.

Solution algorithm control parameters and result presentation commands: These are

determined through inference and intelligent defaulting using the rulebases G15-RB, G16-

RB and G17-RB.

Depending on the complexity of a problem, the size of the resulting data file could vary

from, say 30 lines, to, in excess of, 300 lines. Figure 3.6 indicates a simple data file with

the seven specific areas highlighted. The synthesis of the commands from the entered and

inferred data is performed using the rulebases Gl-RB, G2-RB,, G24-RB.

The two case studies that were chosen are: Two dimensional thermal jet impingement

(Turbulent), and a two dimensional axisymmetric orifice plate.

157

Case studies Chapter 7

7.2 Two dimensional thermal je t impingement - Turbulent

3 (25, 0)1 (0, 0) 2 (2.5, 0)

(Adiabatic)Roof

*(2.15,:$):

:7:(25, 25)

Plate (Isothermal) 100 °C
Dimensions are in mm

Figure 7.1: 2D confined jet impingement

Figure 7.1 shows the geometry of a confined impinging jet. The jet consists of compressed

air whose fluid properties can be taken as ...

Density,/? = 1.177 kg m'3

Kinematic viscosity, v = 1.568e-5 m2 s'1

Prandtl Number, Pr = 0.707

Also ...

Maximum Aspect Ratio = 10:1

To start the interactive session with the system, the command (PHOENICS) is entered at

the LISP prompt, = = .

158

Case studies Chapter 7

— — (phoenics)
;;; LOADING object.lsp

1: NOVICE
2: EXPERIENCED
3: ADVANCED

Default value : NOVICE

What type of PHOENICS user to you consider yourself to be ?
(Enter 1 - 3) : = = 2

1: NOVICE
2: EXPERIENCED
3: ADVANCED

Default value : NOVICE

What kind of KBFE user do you consider yourself to be ?
(Enter 1 - 3) : = = 2

The analysis title cannot be more than 40 characters long. The main
purpose of this is to be able to identify the analysis.

What is the analysis title ? = = 2d Thermal Jet Impingement - Turbulent

PHOENICS essentially uses two types of coordinate systems - cartesian
and cylindrical. For two dimensional configurations which this system can
initially develop the XY plane will be utilised. This will be
automatically translated into the respective XY or YZ planes which
phoenics requires depending upon your choice of either cartesian of
cylindrical coordinates.

1: CYLINDRICAL
2: CARTESIAN

Default value : CARTESIAN

Are the coordinates cartesian or cylindrical ?
(Enter 1 - 2) : = = 1

What are the coordinate units

1: M
2: MM

Default value : MM

What are the dimensional units ?
(Enter 1 - 2) : = =

159

Case studies

Enter the radial ordinate for node 1 = = 0
Enter the axial ordinate for node 1 = = 0

Enter the radial ordinate for node 2 = = 2.5
Enter the axial ordinate for node 2 = = 0

Enter the radial ordinate for node 3 = = 25
Enter the axial ordinate for node 3 — = 0

Enter the radial ordinate for node 4 = = 2.5
Enter the axial ordinate for node 4 = = 5

Enter the radial ordinate for node 5 = = 25
Enter the axial ordinate for node 5 = = 5

Enter the radial ordinate for node 6 = = 0
Enter the axial ordinate for node 6 = = 25

Enter the radial ordinate for node 7 = = 25
Enter the axial ordinate for node 7 = = 25

Enter the radial ordinate for node 8 = =5 end

Enter connectivity command, ? for help = = c 1 2
Enter connectivity command, ? for help = = c 2 3
Enter connectivity command, ? for help = = c 3 5
Enter connectivity command, ? for help = = c 4 5
Enter connectivity command, ? for help = = c 5 7
Enter connectivity command, ? for help = = c 6 7
Enter connectivity command, ? for help = = list

((1 (0.0 0.0 0.0) (2 6))
(2 (0.0 0.0025 0.0) (3 4 1))
(3 (0.0 0.025 0.0) (5 2))
(4 (0.0 0.0025 0.005) (5 2))
(5 (0.0 0.025 0.005) (7 4 3))
(6 (0.0 0.0 0.025) (7 1))
(7 (0.0 0.025 0.025) (6 5)))

Enter connectivity command, ? for help = = end

Default value : 1
How many inlets are within the domain ? = =

Enter the boundary name for inlet 1 = = jet

Current value of Surface nodes for jet : NIL
Surface nodes for jet = = 1 2 end

Case studies Chapter 7

Default value : 1
How many outlets are within the domain ? = =

Enter the boundary name for outlet 1 = = outlet

Current value of Surface nodes for outlet : NIL
Surface nodes for outlet = = 5 7 end

Default value : 0
How many obstructions are within the domain ? = = 1

For the blockages you can define a default porosity - 0 for a solid - 1
for no obstruction or greater than 1 for simulating expanded cells. The
default which you can predefine will be applied to all obstructions.
Alternatively you can individually specify obstruction porosities.

1: CONSTANT-O.O
2: CONSTANT-PREDEFINED
3: INDIVIDUALLY-DEFINED

Default v a lu e : CONSTANT-O.O

Porosity definition :
(Enter 1 - 3) : = =

Enter the boundary name for obstruction 1 = = roof

Current value of Surface nodes for roof : NIL
Surface nodes for roof = = 2 3 4 5 end

Enter the boundary name for wall surface (6 7) = = plate

1: THERM AL
2: ISOTHERMAL

Default value : ISOTHERMAL

Is the analysis thermal or isothermal ?
(Enter 1 - 2) : = = 1

Enter the Prandtl number for the fluid [Dimensionless] = = 0.707

161

Case studies Chapter 7

If you wish to simulate the change of viscosity within the domain
depending upon the calculated local temperatures then enter REQUIRED at
the prompt.

1: REQUIRED
2: NOT-REQUIRED

Default value : NOT-REQUIRED

Viscosity thermal dependence required or not-required ?
(Enter 1 - 2) : = =

Enter the kinematic viscosity [m ~ 2 / s] = = 1.568e-5

1: LAMINAR
2: TURBULENT

Default value : LAMINAR

Is the flow to be laminar or turbulent ?
(Enter 1 - 2) : = = 2

If you wish to simulate the change of density within the domain depending
upon the localised thermal conditions then enter the appropriate value.

1: NOT-REQUIRED
2: ENTHALPY
3: TEM PERATURE

Default value : NOT-REQUIRED

Density thermal dependence
(Enter 1 - 3) : = =

Default value : 1.0
Enter the density [kg / m ^ 3] = = 1.177

Enter the v l velocity at jet [m / s] = = 0

Enter the w l velocity at jet [m / s] = = 31.4

Default v a lu e : 0.01
Enter the turbulence intensity at jet
(inlet 1 nodes (1 2)) = =

162

Case studies Chapter 7

1: ISOTHERMAL
2: CONSTANT-HEAT-FLUX

Default value : ISOTHERMAL

Enter the thermal condition at jet
(inlet 1 nodes (1 2))
(Enter 1 - 2) : = =

Enter the temperature at jet
(inlet 1 nodes (1 2)) [Degrees Celsius] = = 20

Default v a lu e : 0.0
Enter the outlet pressure at outlet [N / m ^ 2] = =

1: ISOTHERMAL
2: ADIABATIC
3: CONSTANT-HEAT-FLUX

Enter the thermal condition at plate
(wall surface nodes (6 7))
(Enter 1 - 3) : = = 1

Enter the temperature at plate
(wall surface nodes (6 7)) [Degrees Celsius] = = 100

The recommended minimum cell size has been calculated as 0.08328 mm
according to the geometry and existing boundary conditions. You can accept
this default value by pressing return - or you can enter a new value.

Default value : 0.832803e-4
Enter the minimum cell size = =

Default v a lu e : 5
Enter the maximum allowed aspect ratio [Dimensionless] = = 10

Group 1 complete
Group 2 complete
Group 3 complete
Group 4 complete
Group 5 complete
Group 6 complete
Group 7 complete
Group 8 complete
Group 9 complete
Group 10 compi> ...
Group 11 complete
Group 12 complete
Group 13 complete
Group 14 complete
Group 15 complete
Group 16 complete

163

Case studies Chapter 7

Group 17 complete
Group 18 complete
Group 19 complete
Group 20 complete
Group 21 complete
Group 22 complete
Group 23 complete
Group 24 complete

Enter the target PHOENICS data file. Please include the file extension
- ie | target.file |

Default value : Q l.D A T
PHOENICS target data file = =

File has been written
NIL

The *ASSERTIONS* made during the session are ...

= = * assertions*
(((boundary name for |$type|] Sidentity | |$nodes| is |$nam e|)

(boundary name for inlet 1 (1 2) is jet)
(boundary name for outlet 1 (5 7) is outlet)
(boundary name for obstruction 1 (2 3 4 5) is roof)
(boundary name for wall surface (6 7) is plate))

((cardinal for surface | $nodes j is | $cardinal |)
(cardinal for surface (4 5) is high)
(cardinal for surface (2 4) is south)
(cardinal for surface (5 7) is north)
(cardinal for surface (1 2) is low)
(cardinal for surface (6 7) is high)
(cardinal for surface (1 6) is south))

((surface j Ssurface | is part of | $obstruction |)
(surface (4 5) is part of roof)
(surface (2 4) is part of roof))

((| $dependent-variable | at |$type| boundary |$nam e| is |$condition| at
| $quantity |)

(wl at inlet boundary jet is constant at 31.4)
(VI at inlet boundary jet is constant at 0.0)
(Ke at inlet boundary jet is constant at 1.64327)
(Ep at inlet boundary jet is constant at 1538.22)
(H I at inlet boundary jet is isothermal at 20.0)
(PI at outlet boundary outlet is constant at 0.0)
(H I at wall boundary plate is isothermal at 100.0))

((]$Axis| has |$nj regions)
(x has 1 regions)
(y has 2 regions)
(z has 2 regions))

((j$axis| region |$no| cells |$first| to |$ last|)
(x region 1 cells 1 to 1)
(y region 1 cells 1 to 13)

164

Case studies Chapter 7

(y region 2 cells 14 to 120)
(z region 1 cells 1 to 25)
(z region 2 cells 26 to 123))

((| $axis | region |$no | co-ordinates | $first | to |$ last|)
(y region 1 co-ordinates 0.0 To 0.0025)
(Z region 1 co-ordinates 0.0 To 0.005)
(Y region 2 co-ordinates 0.0025 To 0.025)
(Z region 2 co-ordinates 0.005 To 0.025))

((Surface |$nodes[is in |$axis| regions |$start| to |$finish|)
(surface (4 5) is in x regions 1 to 1)
(surface (4 5) is in y regions 2 to 2)
(surface (2 4) is in x regions 1 to 1)
(surface (2 4) is in z regions 1 to 1)
(surface (5 7) is in x regions 1 to 1)
(surface (5 7) is in y regions 2 to 2)
(surface (5 7) is in z regions 2 to 2)
(surface (1 2) is in x regions 1 to 1)
(surface (1 2) is in y regions 1 to 1)
(surface (1 2) is in z regions 1 to 1)
(surface (6 7) is in x regions 1 to 1)
(surface (6 7) is in y regions 1 to 2)
(surface (6 7) is in z regions 2 to 2)
(surface (1 6) is in x regions 1 to 1)
(surface (1 6) is in y regions 1 to 1)
(surface (1 6) is in z regions 1 to 2))

((surface |$nodes| interfaces |$axis| regions |$start| and |$ last|)
(surface (4 5) interfaces z regions 1 and 2)
(surface (2 4) interfaces y regions 1 and 2)))

... and the resulting data file is ...

Talk=F; R un(l, 1); VDU=TTY
GROUP 1 run identifiers and other preliminaries

Text(2d thermal jet impingement - turbulent)
GROUP 2 transience - time step specification
GROUP 3 x-direction grid specification

Cartes=F
Make sure that the array MAXFRC in SATLIT is at least 14760
GROUP 4 y-direction grid specification

Ny=120
Yvlast=0.025
Y frac(l)—0.836697e-4
Yfrac(2)=0.180809e-3
Yfrac(3)=0.296992e-3
Yfrac(4)=0.440924e-3

Yfrac(117)=0.023018
Yfrac(l 18)=0.023698
Y frac(119)=0.024351
Y frac(120)=0.025

165

Case studies Chapter 7

GROUP 5 z-direction grid specification
Nz=123
Zwlast=0.025
Zfrac(l)=0.458968e-3
Zfrac(2)=0.916301e-3
Zfrac(3)=0.001361

Zfrac(120)=0.024767
Zfrac(121)=0.024853
Zfrac(122)=0.024937
Zfrac(123)=0.025

GROUP 6 body fitted cylindrical
GROUP 7 variables - including porosities - named stored and

solved
Store(ENUT)
Vist=50
Name(50)= ENUT
Solutn(Pl,Y,Y,Y,N,N,N)
Solutn(H 1, Y, Y, Y,N,N,N)
Solutn(V 1, Y, Y,N,N,N,N)
Solutn(Wl,Y,Y,N,N,N,N)

GRO U P 8 terms - in differential equations - and devices
Terms(Hl,N,Y,Y,N,Y,N)

GRO U P 9 properties of the medium
Enul=0.1568e-4
R h o l= 1.177
P rnd tl(H l)=0.707
T urmod(KEMODL)

GROUP 10 interphase transport processes and properties
GROUP 11 initialisation of fields of variables porosities etc

Conpor(ROOF,0.0,CELL,1,1,-14,120,1,-25)
F iin it(E P)=1538.22
F iinit(K E)=1.64327
Fiinit(H l)=60.0
Fiinit(W l)=31.4
Fiinit(V l)=0.1

*** when restarting deactivate previous FIINIT commands and
activate the following RESTRT and FIINIT commands
Restrt(All)
Fiinit(p i)= readfi
Fiinit(v l)= readfi
Fiinit(w l)= readfi
Fiinit(h i)= readfi
Fiinit(ke)= readfi
Fiinit(ep)= readfi
Fiinit(enut) = readfi
GRO UP 12 unused
GROUP 13 boundary and internal conditions and special sources

Patch(JET,LOW ,1,1,1,13,1,1,1,1)
Coval(JET, PI, FIXFLU,36.9578)

166

4$

I
!

Case studies Chapter 7

i
Coval(JET,W l,ONLYMS,31.4)
Coval(JET,Vl,ONLYMS,0.0) -3
Coval(JET,EP,ONLYMS,1538.22)
Coval(JET,KE,ONLYMS, 1.64327)
Coval(JET,Hl,ONLYMS,20.0)
Patch(OUTLET,NORTH,1,1,120,120,26,123,1,1) 3
Coval(OUTLET,Pl,FIXP,0.0) J
Patch(PLATE,HWALL,1,1,1,120,123,123,1,1) ^
Coval(PLATE,Vl,GRND2,0.0)
Coval(PLATE,Wl,FIXVAL,0.0)
Coval(PLATE, H I, FIXVAL, 100.0)
Coval(PLATE,KE,GRND2,GRND2)
Coval(PLATE,EP,GRND2,GRND2)

GROUP 14 down stream pressure - for free parabolic flow.
GROUP 15 termination criteria for sweeps and outer iterations

Lsweep=100
Resref(EP)= 1.0e-7
Resref(KE)= 1.0e-7
Resref(Hl)=1.0e-7 -j?
Resref (W 1)=1 .Oe-7
Resref(Vl)=1.0e-7
Resref(Pl) — 1.0e-7

GROUP 16 termination criteria for inner iterations
GROUP 17 under-relaxation and related sources

Relax(Pl,LINRLX,0.8)
Relax(Vl,FALSDT,0.5)
Relax(Wl,FALSDT,0.5)
Relax(H 1 ,LINRLX, 1.0) |
Relax (KE.FALSDT,0.01)
Relax(EP,FALSDT,0.01)

GROUP 18 limits on variable values or increments to them
GROUP 19 data communicated by SATELLITE to GROUND |
GROUP 20 control of preliminary printout
GROUP 21 frequency and extent of field printout

Output(Pl,Y,Y,Y,Y,Y,Y)
Output(Vl,Y,Y,Y,Y,Y,Y)
Output(W 1, Y,Y, Y,Y,Y, Y)
Output(Hl,Y,Y,Y,Y,Y,Y)
Output(KE,Y,Y,Y,Y,Y,Y)
Output(EP,Y,Y,Y,Y,Y,Y)

Group 22 location of spot-value and frequency of residual
printout

Ixmon= 1
Iymon=67
Izmon=74

GROUP 23 variable-by-variable field printout
GROUP 24 preparations for continuation runs.

Stop

1

167 I

Case studies Chapter 7

M t lio im -'j 1 j e t i m p <m ji'iim 'iu

Figure 7.2: 2D meshed region of turbulent, confined, thermal jet impingement

A<\ t h e r m a l jr* i i r o p u u f m o n ! - v « i i l > u) o n t

Figure 73: Filled temperature contours and stream lines

168

Case studies Chapter 7

73 Two dimensional axisymmetric flow meter

Front Back
5

I
i

760)

1 (0, 0) 2 (0, 760)

Figure 7.4 Two dimensional axisymmetric flow meter - Orifice plate

Figure 7.4 shows the geometry of an orifice meter. The fluid is air whose properties can

be taken as ...

Density, p = 1.177 kg m'3

Kinematic viscosity, v = 1.568e-5 m2 s'1

Also ...

Maximum Aspect Ratio = 10:1

To start the interactive session with the system, the command (PHOENICS) is entered at

the LISP prompt, = = .

= = (phoenics)
;;; LOADING object.lsp

169

Case studies Chapter 7

1: NOVICE
2: EXPERIENCED
3: ADVANCED

Default value : NOVICE

What type of PHOENICS user to you consider yourself to be ?
(Enter 1 - 3) : = = 2

1: NOVICE
2: EXPERIENCED
3: ADVANCED

Default value : NOVICE

What kind of KBFE user do you consider yourself to be ?
(Enter 1 - 3) : = = 2

The analysis title cannot be more than 40 characters long. The main
purpose of this is to be able to identify the analysis.

What is the analysis title ? = = 2D Axisymmetric Flow Meter

PHOENICS essentially uses two types of coordinate systems - cartesian
and cylindrical. For two dimensional configurations which this system can
initially develop the XY plane will be utilised. This will be
automatically translated into the respective XY or YZ planes which
phoenics requires depending upon your choice of either cartesian of
cylindrical coordinates.

1: CYLINDRICAL
2: CARTESIAN

Default value : CARTESIAN

Axe the coordinates cartesian or cylindrical ?
(Enter 1 - 2) : = = 1

What are the coordinate units

1: M
2: MM

Default v a lu e : MM

What are the dimensional units ?
(Enter 1 - 2) : — =

Enter the radial ordinate for node 1 — = 0
Enter the axial ordinate for node 1 = = 0

Enter the radial ordinate for node 2 = = 0

170

Case studies Chapter 7

Enter the axial ordinate for node 2 = = 760

Enter the radial ordinate for node 3 = = 20
Enter the axial ordinate for node 3 = = 300

Enter the radial ordinate for node 4 = = 20
Enter the axial ordinate for node 4 = = 310

Enter the radial ordinate for node 5 = = 75
Enter the axial ordinate for node 5 = = 0

Enter the radial ordinate for node 6 = = h

The nodal-coordinates should be entered in < mm > depending on the
prompt.
list - lists the nodes
m axis node - modify the coordinate of node on axis axis
m axis - modify the current nodal coordinate on axis

Enter the radial ordinate for node 6 = = m y 3

Original coordinates (3 (0.0 0.02 0.3))
modify y ordinate for node 3 = = 25

Enter the radial ordinate for node 6 = = list

((1 (0.0 0.0 0.0) 0)
(2 (0.0 0.0 0.76) 0)
(3 (0.0 0.025 0.3) 0)
(4 (0.0 0.02 0.31) 0)
(5 (0.0 0.075 0.0) ()))

Enter the radial ordinate for node 6 = = m y 4

Original coordinates (4 (0.0 0.02 0.31))
modify y ordinate for node 4 = =.25

Enter the radial ordinate for node 6 = = list

((1 (0.0 0.0 0.0) 0)
(2 (0.0 0.0 0.76) 0)
(3 (0.0 0.025 0.3) 0)
(4 (0.0 0.025 0.31) 0)
(5 (0.0 0.075 0.0; {)))

Enter the radial o rd^a iu for node 6 = = 75
Enter the axial ordinate for node 6 = = 300

Enter the radial ordinate for node 7 = = 75
Enter the axial ordinate for node 7 = = 310

171

Case studies Chapter 7

Enter the radial ordinate for node 8 = = 75
Enter the axial ordinate for node 8 = = 760

Enter the radial ordinate for node 9 = - list

((1 (0.0 0.0 0.0) 0)
(2 (0.0 0.0 0.76) 0)
(3 (0.0 0.025 0.3) ())
(4 (0.0 0.025 0.31) 0)
(5 (0.0 0.075 0.0) 0)
(6 (0.0 0.075 0.3) 0)
(7 (0.0 0.075 0.31) 0)
(8 (0.0 0.075 0.76) ()))

Enter the radial ordinate for node 9 = = end

Enter connectivity command, ? for help = = c 1 2 5
Enter connectivity command, ? for help = = c 2 8
Enter connectivity command, ? for help = = c 3 4
Enter connectivity command, ? for help = = c 3 6
Enter connectivity command, ? for help = = c 4 7
Enter connectivity command, ? for help = = c 5 6
Enter connectivity command, ? for help = = c 6 7
Enter connectivity command, ? for help = = c 7 8
Enter connectivity command, ? for help = = list

((1 (0.0 0.0 0.0) (2 5))
(2 (0.0 0.0 0.76) (8 1))
(3 (0.0 0.025 0.3) (6 4))
(4 (0.0 0.025 0.31) (7 3))
(5 (0.0 0.075 0.0) (6 1))
(6 (0.0 0.075 0.3) (7 5 3))
(7 (0.0 0.075 0.31) (8 6 4))
(8 (0.0 0.075 0.76) (7 2)))

Enter connectivity command, ? for help = = end

Default value : 1
How many inlets are within the domain ? = =

Enter the boundary name for inlet 1 = = inlet

Current value of Surface nodes for inlet : NIL
Surface nodes for inlet = = 1 5 end

Default value : 1
How many outlets are within the domain ? = =

Enter the boundary name for outlet 1 = = outlet

Current value of Surface nodes for outlet : NIL

172

Case studies

Surface nodes for outlet = = 2 8 end

Default value : 0
How many obstructions are within the domain ? = = 1

For the blockages you can define a default porosity - 0 for a solid - 1
for no obstruction or greater than 1 for simulating expanded cells. The
default which you can predefine will be applied to all obstructions.
Alternatively you can individually specify obstruction porosities.

1: CONSTANT-O.O
2: CONSTANT-PREDEFINED
3: INDIVIDUALLY-DEFINED

Default v a lu e : CONSTANT-O.O

Porosity definition :
(Enter 1 - 3) : = =

Enter the boundary name for obstruction 1 = = opiate

Current value of Surface nodes for opiate : NIL
Surface nodes for opiate = = 3 4 6 7 end

Enter the boundary name for wall surface (7 8) = = back

Enter the boundary name for wall surface (5 6) = = front

1: THERM AL
2: ISOTHERMAL

Default value : ISOTHERMAL

Is the analysis thermal or isothermal ?
(Enter 1 - 2) : = =

Enter the kinematic viscosity [m ^ 2 / s] = = 1.568e-5

1: LAMINAR
2: TURBULENT

Default value : LAMINAR

Is the flow to be laminar or turbulent ?
(Enter 1 - 2) : = = 2

Default value : 1.0
Enter the density [kg / m ^ 3] = = 1.177

Enter the v l velocity at inlet [m / s j = = 0

Case studies Chapter 7

Enter the w l velocity at inlet [m / s] = = 1.05

Default value : 0.01
Enter the turbulence intensity at inlet
(inlet 1 nodes (1 5)) = =

Default v a lu e : 0.0
E nter the outlet pressure at outlet [N / m ̂ 2] = =

The recommended minimum cell size has been calculated as 0.91084 mm
according to the geometry and existing boundary conditions. You can accept
this default value by pressing return - or you can enter a new value.

Default value : 0.91084e-3
Enter the minimum cell size - =

Default value : 5
Enter the maximum allowed aspect ratio [Dimensionless] = = 10

Group 1 complete
Group 2 complete
Group 3 complete
Group 4 complete
Group 5 complete
Group 6 complete
Group 7 complete
Group 8 complete
Group 9 complete
Group 10 complete
Group 11 complete
Group 12 complete
Group 13 complete
Group 14 complete
Group 15 complete
Group 16 complete
Group 17 complete
Group 18 complete
Group 19 complete
Group 20 complete
Group 21 complete
Group 22 complete
Group 23 complete
Group 24 complete

Enter the target PHOENICS data file. Please include the file extension
- ie | target.file |

Default value : Q l.D A T
PHOENICS target data file = =

File has been written
NIL

174

Case studies Chapter 7

The *ASSERTIONS* made during the session are ...

= = * assertions*
(((boundary name for | $type | | Sidentity | | $nodes | is | $name |)

(boundary name for inlet 1 (1 5) is inlet)
(boundary name for outlet 1 (2 8) is outlet)
(boundary name for obstruction 1 (3 4 6 7) is opiate)
(boundary name for wall surface (7 8) is back)
(boundary name for wall surface (5 6) is front))

((cardinal for surface | $nodes \ is [$cardinal |)
(cardinal for surface (4 7) is high)
(cardinal for surface (3 4) is south)
(cardinal for surface (3 6) is low)
(cardinal for surface (2 8) is high)
(cardinal for surface (1 5) is low)
(cardinal for surface (7 8) is north)
(cardinal for surface (5 6) is north)
(cardinal for surface (1 2) is south))

((surface | $surface | is part of | $obstruction |)
(surface (4 7) is part of opiate)
(surface (3 4) is part of opiate)
(surface (3 6) is part of opiate))

((|$dependent-variable| at |$type| boundary |$nam e| is |$condition| at
| $ quantity |)

(wl at inlet boundary inlet is constant at 1.05)
(VI at inlet boundary inlet is constant at 0.0)
(Ke at inlet boundary inlet is constant at 0.001838)
(Ep at inlet boundary inlet is constant at 0.001917)
(PI at outlet boundary outlet is constant at 0.0))

((|$Axis| has |$n | regions)
(x has 1 regions)
(y has 2 regions)
(z has 3 regions))

((| $axis | region |$no | cells |$first| to |$ last|)
(x region 1 cells 1 to 1)
(y region 1 cells 1 to 13)
(y region 2 cells 14 to 37)
(z region 1 cells 1 to 130)
(z region 2 cells 131 to 135)
(z region 3 cells 136 to 330))

((| $axis | region |$no| co-ordinates |$first| to]$last|)
(y region 1 co-ordinates 0.0 To 0.025)
(Z region 1 co-ordinates 0.0 To 0.3)
(Y region 2 co-ordinates 0.025 To 0.075)
(Z region 2 co-ordinates 0.3 To 0.31)
(Z region 3 co-ordinates 0.31 To 0.76))

((Surface |$nodes| is in | Saxis | regions |$start| to | Sfinish |)
(surface (4 7) is in x regions 1 to 1)
(surface (4 7) is in y regions 2 to 2)
(surface (3 4) is in x regions 1 to 1)
(surface (3 4) is in z regions 2 to 2)
(surface (3 6) is in x regions 1 to 1)

175

Case studies Chapter 7

(surface (3 6) is in y regions 2 to 2)
(surface (2 8) is in x regions 1 to 1)
(surface (2 8) is in y regions 1 to 2)
(surface (2 8) is in z regions 3 to 3)
(surface (1 5) is in x regions 1 to 1)
(surface (1 5) is in y regions 1 to 2)
(surface (1 5) is in z regions 1 to 1)
(surface (7 8) is in x regions 1 to 1)
(surface (7 8) is in y regions 2 to 2)
(surface (7 8) is in z regions 3 to 3)
(surface (5 6) is in x regions 1 to 1)
(surface (5 6) is in y regions 2 to 2)
(surface (5 6) is in z regions 1 to 1)
(surface (1 2) is in x regions 1 to 1)
(surface (1 2) is in y regions 1 to 1)
(surface (1 2) is in z regions 1 to 3))

((surface |$nodes| interfaces |$axis| regions |$start| and |$Iast|)
(surface (4 7) interfaces z regions 2 and 3)
(surface (3 4) interfaces y regions 1 and 2)
(surface (3 6) interfaces z regions 1 and 2)))

... and the resulting data file is ...

Talk=F; R un(l, 1); VDU =TTY
GROUP 1 run identifiers and other preliminaries

Text(2d axisymmetric flow meter)
GROUP 2 transience - time step specification
GROUP 3 x-direction grid specification

C artes=F
Make sure that the array MAXFRC in SATLIT is at least 12210
GROUP 4 y-direction grid specification

Ny=37
Yvlast=0.075
Y frac(l)=0.915 le-3
Yfrac(2)=0.001993

Yfrac(35)=0.073927
Yfrac(36)=0.074849
Yfrac(37)=0.075

GROUP 5 z-direction grid specification
Nz=330
Zwlast=0.76
Z frac(l)=0.007794
Zfrac(2)=0.015581
Zfrac(3)=0.023203
Zfrac(4)=0.030415
Zfrac(5)=0.037259
Zfrac(6)=0.043769

176

Case studies Chapter 7

Zfrac(7)=0.049976
Zfrac(8)=0.055907

Zfrac(328)=0.749182
Zfrac(329)=0.754654
Zfrac(330)=0.76

GROUP 6 body fitted cylindrical
G ROUP 7 variables - including porosities - named stored and

solved
Store(ENUT)
Vist=50
Name(50)= ENUT
Solutn(Pl,Y,Y,Y,N,N,N)
Solutn(Vl,Y,Y,N,N,N,N)
Solutn(Wl,Y,Y,N,N,N,N)

GROUP 8 terms - in differential equations - and devices
GROUP 9 properties of the medium

Enul=0.1568e-4
R h o l= 1.177
Turmod(KEMODL)

GROUP 10 interphase transport processes and properties
GROUP 11 initialisation of fields of variables porosities etc

Conpor(OPLATE,0.0,CELL, 1,1,-14,37,-131,-135)
Fiinit(EP)=0.001917
Fiinit(KE)=0.001838
Fiinit(W l)=1.05
Fiinit(Vl)=0.1

*** when restarting deactivate previous FIINIT commands and
activate the following RESTRT and FIINIT commands
Restrt(All)
Fiinit(p i)= readfi
Fiinit(vl)= readfi
Fiinit(w l)= readfi
Fiinit(ke)= readfi
Fiinit(ep)= readfi
Fiinit(enut)= readfi
GROUP 12 unused
GROUP 13 boundary and internal conditions and special sources

Patch(INLET,LOW,1,1,1,37,1,1,1,1)
Coval(INLET, PI, FIXFLU, 1.23585)
Coval(INLET,Wl,ONLYMS,1.05)
Coval(INLET, V1 ,ONL YMS,0.0)
Coval(INLET,EP,ONLYMS,0.001917)
Coval(INLET,KE,ONLYMS,0.001838)
Patch(OUTLET,HIGH, 1,1,1,37,330,330,1,1)
Coval(OUTLET,P 1,FIXP,0.0)
Patch(BACK,NWALL,1,1,37,37,136,330,1,1)
Coval(BACK,Vl,FIXVAL,0.0)
Coval(B ACK, W 1, GRND2,0.0)

177

Case studies Chapter 7

Coval(BACK,KE,GRND2,GRND2)
Coval(BACK,EP,GRND2,GRND2)
Patch(FRONT,NWALL,1,1,37,37,1,130,1,1)
Coval(FRONT,Vl,FIXVAL,0.0)
Coval(FRONT, W 1,GRND2,0.0)
Coval(FRONT,KE,GRND2,GRND2)
Coval(FRONT,EP,GRND2,GRND2)

GROUP 14 down stream pressure - for free parabolic flow.
GROUP 15 termination criteria for sweeps and outer iterations

Lsweep=100
Resref(EP)=1.0e-5
Resref(KE)=1.0e-5
Resref (W 1)=1.0e-5
Resref (V1)=1.0e-5
Resref (P I)= 1.0e-5

GROUP 16 termination criteria for inner iterations
GROUP 17 under-relaxation and related sources

Relax(Pl,LINRLX,0.8)
Relax (VI,FALSDT,0.5)
Relax (Wl,FALSDT,0.5)
Relax(KE,FALSDT,0.01)
Relax(EP,FALSDT,0.01)

GROUP 18 limits on variable values or increments to them
GROUP 19 data communicated by SATELLITE to GROUND
GROUP 20 control of preliminary printout
GROUP 21 frequency and extent of field printout

Output(Pl,Y,Y,Y,Y,Y,Y)
Output(Vl,Y,Y,Y,Y,Y,Y)
Output(W 1, Y, Y, Y, Y, Y, Y)
Output(KE,Y,Y,Y,Y,Y,Y)
Output(EP,Y,Y,Y,Y,Y,Y)

Group 22 location of spot-value and frequency of residual
printout

Ixmon= 1
Iymon=19
Izmon=233

GROUP 23 variable-by-variable field printout
GROUP 24 preparations for continuation runs.

Stop

178

Case studies Chapter 7

Figure 7.5: 2D meshed region of an axisymmetric flow meter

m

Figure 7.6: Filled pressure contours and stream lines

179

CHAPTER 8

FEASIBILITY STUDIES

8.1 Introduction

During the process of learning the concepts and fundamentals of Computational Fluid

Dynamics, and becoming familiar with PHOENICS, various techniques were encountered

that were considered both interesting and important for CFD users. These consisted of:

grid generation, taking into account the importance of the cell aspect ratios, Abbott et al.

(1988); monitoring and control of the solution algorithm; and the analysis of results

through post processing and adaptive grid optimisation.

Grid generation is a pre-requisite to data file preparation, and as such needed to be fully

addressed. Furthermore, the importance of cell aspect ratios cannot be over emphasised,

but little, if any, work has been performed on aspect ratio dependent grid generation. The

work covered in Section 3.8 details the development of a technique implementing a

generalised Fourier Series for aspect ratio dependent grid generation.

The areas of solution monitoring and control, as well as the analysis of results through

post processing and grid optimisation were investigated. Feasibility studies were

performed which indicated the potential for further work. This chapter details the

feasibility studies into (a) the monitoring and control of the solution algorithm, and (b)

the analysis of results through post processing grid optimisation. The potential for each

area will be discussed.

8.2 Monitoring and control of the solution algorithm

During a typical PHOENICS analysis it is necessary to predefine the solution parameters

within the Q l.D A T data file. These include the number of iterations/sweeps, residual

reference values, and relaxation factors. Monitor spot values are used to determine the

condition to the solution at the end of the current number of sweeps.

The number of iterations/sweeps governs the maximum number of combined iterations

that are performed n the set of linear equation. Due to .he infrastructure of

PHOENICS, there exists several levels of iteration, the main level being the sweeps.

Sweeps govern the slab by slab iteration cycle, and enable elliptic solutions to be obtained.

180

Feasibility Studies Chapter 8

A non sweeping iterative cycle results in parabolic flow being assumed, where no

recirculation regions exist.

The residual reference values are used to increase the magnitude of the dependent

variable absolute residuals between successive sweeps. The residual reference values are

of the order of 1.0E-8, and are determined from predefined criteria. These are used by

PHOENICS to establish when the solution of a dependent variable has converged.

Relaxation factors are used to dictate the magnitude of the solution variable that is to be

carried forward into the subsequent iteration. The relaxation factor is a user defined

value between zero and unity for under-relaxation, and greater than unity for over

relaxation. These can be seen to be the controlling factor governing the convergence of a

solution.

8.2.1 Heuristic monitoring and control

The manual procedure used to submit, monitor and control the solution algorithm of

PHOENICS can be divided into four areas. These are ...

(a) Create the data file, set the residual reference values, monitor spot positions,

relaxation factors and number of sweeps. Submit to PHOENICS for analysis.

(b) Upon completion of the predefined number of sweeps, access the RESULT.DAT

file and assess the trends of the residuals and the monitor spot values for each

dependent variable. These are presented on a low resolution graph, sufficient for a

general "feel" of convergence stability.

(c) Determine the mass continuity of the analysis. If mass continuity does not exist,

the solution has not converged.

(d) Depending on the continuity and the trends shown on the graphs in the

RESULT.DAT file, modify the relaxation values (if necessary), and restart the

analysis from the end of the previous submission.

181

Feasibility Studies Chapter 8

110000

100000 Legend
90000 — Emperlcal
80000 • PHOENICS

70000

| 80000

3 50000cc
40000 V

30000 X. . . .
20000

10000

° J 20 40 60 80 100
Number of sweeps

Figure 8.1: Initial instability followed by rapid convergence.
[Correlation coefficient = -0.9728]

There exists several residual profiles during the convergence of a particular dependent

variable, which can be categorised into five stages. Initial convergence (Figure 8.1), where

the dependent variable required preliminary adjustment to bring it into line for the

subsequent rapid convergence; Removal of the outliers (Figure 8.2) using statistical

techniques; Rapid convergence (Figure 8.3), where the solution domain is being

continually refined according to the present relaxation factors; Figure 8.4 shows that the

limit of the current relaxation has been reached whereby oscillations have started in the

convergence trend; and Figure 8.5 shows the oscillations have become exacerbated with

little or no convergence resulting.

Convergence can be restored from in the last two stages by reducing the relaxation factors

for subsequent iterations. This would result in a situation similar to that shown in

Figure 8.1. Repeating this procedure with restarted runs could be seen to be infinitely

repetitive and thus requires a point at which the process should stop. Whenever a

distribution of residuals against sweep has been obtained similar to that shown in

182

Feasibility Studies Chapter 8

45000

40000

35000

30000

25000

20000

15000

10000

5000

20 80

Key

Emperlcal

PHOENICS

Number of sweeps

Figure 8.2: Modified version of Figure 8.1 with outliers removed.
[Correlation coefficient = -0.9836]

Figure 8.5, it is normal to consider the convergence performance of the monitor spot

values. Monitor spot values are those dependent variable values associated with a

predefined cell within a domain. The position of the cell is usually dependent on the

geometry and the anticipated flow field, and should coincide with an area which is

expected to converge slower compared with the main flow field. For example, an area

containing a recirculation zone would converge more slowly than a region within the main

stream of the flow. When the residual convergence profile is highly oscillatory, the

monitor spot values indicate whether the solution has fully converged. If the maximum

and minimum spot values are, say, within 10% of the average spot value and a similar

condition for the residuals exists, as well as continuity being satisfied, then it can be

assumed that the solution has fully converged. It must be noted that the residuals should

still be relatively small. Once a fully converged solution has been established, it is possible

to verify the solution by increasing the relaxation factors to unity and observing the effects

for a subsequent, say, fifty sweeps. A minimal change in the residuals and spot values

would give a degree of confidence in the convergence of the solution.

183

Feasibility Studies Chapter 8

570-1

520

470

420

370

320-

270

220

170

120

Loflend

- Empirical

• PHOENICS

Number of sweeps

Figure 83: Continuous rapid convergence

The technique of physically observing the profiles of the residuals and monitor spot values

is known as manual checking and control of the solution algorithm. There is an

alternative technique that is considerably less labour intensive when monitoring the

solution algorithm. Usually with the manual method, after several restarts of the analysis,

each of which reduces the relaxation factors further, the magnitude of the relaxation

factors can be quite small, of the order of 1.0E-2. The alternative method relies on the

fact that the initial relaxation factors would be set to their anticipated final values. Due to

these small relaxation factors, the number of iterations required would be correspondingly

large. Small relaxation factors would prevent the observed oscillations in the convergence

profile, thus indicating gradual convergence. An optimum situation would be to combine

the two methods. That is, allow the computer to control the convergence by monitoring

the residuals and appropriately modify the relaxation factors. This could be classified as

pseudo real-time control (PRTC).

Pseudo real time control for numerical simulation packages would allow the code to

automatically monitor the convergence of the solution. This would be performed using

184

Feasibility Studies Chapter 8

Legend

EmpericaJ

PHOENICS

Number of sweeps

Figure 8.4: Onset of oscillations indicating the limit of current relaxation factors.
[Correlation coefficient = -0.9]

standard statistical methods. The following describes the feasibility study, and the method

by which it could be implemented.

The overall structure of PHOENICS allows the user to enter his own FORTRAN coding

into a section of supplied source code, GROUND.FOR, figure 3.1. To run PHOENICS, a

data file, Ql.DAT, is initially prepared and interpreted by SATELLITE, which in turn

creates EARDAT.DAT. This is used as the primary input into EARTH. The data given

to EARTH via EARDAT.DAT details all the information required to perform the

analysis. It is also possible to pass from the Q l.DA T file integer, real and/or logical

variables for use in GROUND. During the execution, continuous visits are made by

EARTH to GROUND to execute any code that may reside there. The default GROUND

source file is empty of user code. Therefore, to implement user routines it is necessary to

compile the new ground code and to link the EARTH and GROUND object codes

together to create a single executable file, EAREXE.EXE.

185

Feasibility Studies Chapter 8

38

36

34

28

24

22

20
40

Number of sweeps
60

Legend

— Emperlcal

• PHOENICS

Figure 8.5: Exacerbated oscillations with little or no convergence.
[Correlation coefficient = 0.0857]

8.2.2 Directly requesting user declared code from Ql.DAT

To simplify the extremity of the GROUND code required, a logical variable was used to

flag whether the user defined routines needed to be executed. This logical variable, when

set to T, signals that the user defined routines needed to be executed. The logical variable

is defined in the Q l.D A T file, LG(20). A single line of code is all that is required in

GROUND to execute the user defined subroutines. The code is ...

if (LG(20)) call user subroutines

The user subroutines are separately coded FORTRAN sequences that have been compiled

and linked together wun UROUND and EARTH to create a single executable file.

Different logical vari. ’ 1 ould be used to call different routines. PHOENICS has

reserved a one dimensional logical array of twenty elements to be used from within

Q l.D A T for passing values directly to GROUND, hence LG(20).

186

Feasibility Studies Chapter 8

Within the user subroutines file there could exist code to perform a multitude of tasks,

each being called by using a different logical variable. Using different files, separate from

GROUND, allows the easy location and modification of the user’s own generated code, as

opposed to having to become familiar with the layout and structure of GROUND.FOR.

This is generally a more preferred method of interfacing with EARTH because new

versions of code that have subtle changes only required a single line of code inserting into

GROUND as opposed to large quantities of code.

8.2.3 Location of residuals and monitor spot values within GROUND

Having established a method of directly requesting the use of particular code from within

the Q l.D A T file it was then necessary to determine how to obtain and manipulate the

residuals and monitor spot values with respect to the sweeps. The access of the spot

values is relatively straight forward, and can be achieved by means of one of two methods,

TR200 (1990), (i) by using PHOENICS functions within GROUND, namely GETYX, or

(ii) by directly accessing the F-array from within the user defined code. Both techniques

allow access to the solution dependent variables for each cell within the domain.

However, access to the residuals for each sweep proved to be somewhat more awkward.

Private communications with CHAM established the method for accessing the residuals

during run time. This facility was not made available to the general user, for reasons only

known to CHAM. However, the only requirement, for the residuals to be accessed, was

that the following COMMON statement needed to be included in each subroutine that

accessed the residuals ...

COMMON /GR1/STOR(50)/GR2/SLBRES(50)/GR3/TOTRES(50)

The array TOTRES contains the TOTal RESiduals for the entire sweep. The array is one

dimensional with fifty elements which coincide with the fifty dependent variables

associated with PHOENICS. The single dimension of the array implies that the values are

modified for each sweep. Due to this it was necessary to locally store all of the residuals

for manipulation at a later stage.

Experience has shown that a typical number of sweeps required to produce a reasonable

assessment is approximately one hundred. The feasibility source code used for the

location of residuals, spot values, and the statistical analysis is shown in Appendix I.

187

Feasibility Studies Chapter 8

8.2.4 Location of relaxation values

As with the dependent variable residuals, the relaxation values are also stored within

memory. There are two methods of relaxing a variable: linear relaxation and false time

step relaxation. Linear relaxation is used for scalar variables, and false time step

relaxation for velocities. The two different techniques of relaxing a variable have the

associated value stored in the array DTFALS, which is one dimensional with fifty elements

associated with the fifty allowable dependent variables. Within the array, DTFALS, linear

relaxation for a particular variable is stored as negative for linear relaxation, and positive

for false time step relaxation. The magnitude being the most important as opposed to the

sign which indicates the type of relaxation. A pure declarative statement allows the

relaxation value to be modified. For example, assume that the original relaxations for

pressure, PI, and the z velocity, W l, are 0.8 and 0.5 respectively. To modify the values

within the user defined FORTRAN routines, ensuring that the appropriate COMMON

statements are present, would be ...

DTFALS(Pl) = -0.6

DTFALS(Wl) = 0.4

The two declarative statements would modify the linear relaxation of P I to 0.6, and the

false time step relaxation of W l to 0.4.

8.2.5 Statistical analysis

There exists three stages within the statistical analysis ...

(a) Curve fitting to obtain an approximate correlation,

(b) Scatter analysis,

(c) Gradient analysis.

Essentially, when analysing a graph of any son u is necessary to try and assess the

distribution of points. Curve fitting techniques were used to perform this assessment and

the degree of scatter was indicated through the correlation coefficient.

188

Feasibility Studies Chapter 8

Convergence of iterative solutions is, by nature, a function of an exponential relationship,

and as such logarithmic regression analysis can be used implementing the generic equation

y - A eSx (8*1)

Simplifying this into a linear, natural logarithmic relationship, we have ...

l°ge y ~ l°ge A + Bx (8.2)

'8

1•c
8.ELU
■o
§w
32
3oc

1
JS

iQ

-4

Number of sweeps

Figure 8.6: A typical residual scatter plot

Thus, standard linear regression techniques enables the constants C, B and the correlation

coefficient r to be obtained, where C = logeA. Having obtained the correlation equation,

the correlation residuals produce a typical scatter plot as shown in Figure 8.6. Calculating

the standard deviation for the scatter plot enables the outliers to be determine, thus

189

Feasibility Studies Chapter 8

removing them from the analysis. The standard deviation is the square root of the mean

of the squared deviations from the mean of a set of observations; the square root of the

variance. Therefore, the upper and lower limits are based on a factor multiplied by the

standard deviation. This factor is obtained from the t-distribution tables by Murdoch and

Barnes (1985), based on a 95% confidence interval requirement. The t-distribution

assumes that a normal distribution of the points on the scatter plot exists. This statistical

table was used because of the relatively small number of points used within the analysis,

i.e. one hundred sweeps. For the required 95% confidence interval on one hundred

sweeps, a factor of 2.0 was obtained. Thus the upper and lower limits for the correlation

residuals, and hence the solution residuals, was given by ...

Limits = ± 2.0 (Standard deviation)

Using these limiting factors it is possible to remove spurious points from the data that

would have an adverse effect upon the analysis. Having removed the necessary points, the

regression analysis is performed again on the modified data which produces the necessary

information to assess the convergence.

The gradient analysis consists of assessing the average gradient of the convergence profile

of the entire one hundred sweeps, as seen in Figure 8.7. A more complex gradient

analysis, consisting of differentiating the correlated equation, and calculating the change of

gradient at the first and last sweep could be performed, or by monitoring the change of

gradient for each sweep. This was considered excessive because a general trend was only

required, hence the use of the average gradient.

83 Post processing grid optimisation

The feasibility of introducing adaptive mesh refinement, or grid optimisation, into

PHOENICS has been considered. The approach to be taken would involve the

submission of an initial data file to PHOENICS which contains a best guess grid. The

converged solution would then be assessed, and a new mesh developed. The cycle, from

initial submission would then be repeated until a grid independent solution results.

Early numerical simulation packages utilised either finite element or finite difference

techniques, the former being the most popular and versatile for certain engineering

190

Feasibility Studies Chapter 8

900

8CKH Legend

700 — Emperical :

600 — Approximate Gradient

1 500
■ PHOENICS

! 400

300

200

100

Q
20 4b 60 80 16o

Number of sweeps

Figure 8.7: Approximate gradient analysis for assessing the convergence of the solution
residuals

problems. Due to the need for producing results which are grid independent, extensive

research work on grid optimisation has been performed. The main thrust of grid

optimisation research is towards the application to finite element techniques. However,

finite difference adaptive grid refinement has been investigated, Girdinio et al. (1983).

The method presented by Girdinio et al. (1983) applies to both finite element and finite

volume techniques, and implements a grid iteration method whereby the solution of the

previous analysis is manipulated to modify the grid for the subsequent analysis. The

method generates a normalised function, equation (83), for each cell within the domain,

and refines the grid depending upon the spacial gradient of the function.

N

«i | grad <|>{ | + a? | grad | grad <j>, | | } <8*3)

191

Feasibility Studies Chapter 8

where

«{ - a (o f (8-4)

j = 0, 1, 2

i = 1, 2, 3, 4, Number of <f>s

a { are factors to control grid generation

i"a ' ar« factors for normalisation o f
functions to be linearly combined

is the irt dependent variable

The terms jgrad <p\ and | grad | grad </> | | are obtained from the truncated Taylor series

expansion to the second order. A thorough understanding of the values assigned for the

of’s needs to be obtained.

Implementing the technique with values of a obtained from Viviani (1978) and Molinari

and Viviani (1979) into PHOENICS gave encouraging results for a purely thermal

analysis. Manually establishing a grid independent solution required in excess of ten

progressive analyses. Each analysis increased the fineness of the mesh. Using the grid

iteration method, three iterations were required which gave approximately the same cell

density and hence the same result.

One limiting factor placed upon the method is that vectorial dependent variables cannot

be used for the determination of the function given by (83), only scalar variables. To

overcome this problem it is anticipated that a scalar quantity can be established as a

function of the velocity. Such a quantity would be shear stress, r, given by ...

192

Feasibility Studies Chapter 8

(du
X " * { dy

8.4 Conclusions

Two different areas have been discussed relating to (1) the monitoring and control of the

PHOENICS solution algorithm, and (2) post processing grid optimisation.

Simulating manual control of the PHOENICS solution algorithm would be possible by

accessing residual values and the monitor spot values from within GROUND, or the user

defined routines, Appendix I, linked to GROUND, and using the gradient and scatter

analysis data. Heuristic values for the correlation coefficient and the approximate residual

gradient were not established for any particular analysis. To progress the feasibility into a

working facility, a research programme could be initiated whereby the monitoring of the

residuals and spot values, along with the approximate gradients, such that valid heuristics

could be established for a given set of problems. These heuristics would then be coded

into standard production rules in FORTRAN, located within the user defined routines

linked to GROUND, and be used for the control of convergence.

A feasibility study for the inclusion of pseudo real time monitoring and control of the

PHOENICS solution algorithm has been presented. The implementation of the technique

would require a thorough determination of the heuristic values applied to the

characteristics used for the analysis. These characteristics are represented by the

correlation coefficient, the average gradient and tolerances applied to the residuals and

the spot values. Having determined these, and after implementing the technique, it is

anticipated that a near optimum situation would result. This would consist of reduced

CPU time, compared with that obtained from the use of excessively low relaxation factors.

Furthermore, it would be less labour intensive compared with the traditional manual

method of monitoring convergence.

With respect to post processing grid optimisation, a full programme of work would have to

be undertaken to fully assess the feasibility of the grid iteration technique for use with

PHOENICS. Furthermore, the possibility of integrating run time mesh adaption should

be investigated. Private communications with CHAM has revealed that run time mesh

adaption is already being commercially investigated, the status of which is unknown.

193

CHAPTER 9

CONCLUSIONS AND RECOMMENDATIONS

9.1 Conclusions

The current study has concentrated on the development of a Knowledge Based Front End

(KBFE) to an existing commercial Computational Fluid Dynamics (CFD) package,

PHOENICS. Initially, an expert system shell, LEONARDO, was used for the KBFE.

When using a shell for the development of a system, it is important that the developer is

aware of the shell’s limitations of data storage, knowledge representation, and inferencing.

The experience that has been gained from this study leads to the conclusion that expert

system shells are too restrictive, and that the preferred option is the use of a traditional

Artificial Intelligence (Al) language, LISP. The use of an A l language removes the

restrictions associated with fixed knowledge representation formalisms, data storage

techniques and inferencing processes found within shells.

Computational Fluid Dynamics relies on a meshed geometry. The quality of the results is

affected by the mesh size, in particular the cell aspect ratios, Abbott et al. (1988). A novel

technique has been developed which automatically generates an aspect ratio dependent,

one dimensional mesh, given the smallest cell size, geometry, and the maximum allowed

aspect ratio. The technique uses a dynamic, generalised, Fourier series to calculate local

cell aspect ratios within one dimensional regions of the entire integration domain. In this

manner each axis can be considered separately, and superimposed together to provide

either a two or three dimensional mesh. The aspect ratio dependent mesh generation was

written in C code, and incorporated into the LISP KBFE.

The experience gained using LEONARDO was valuable. Problems were encountered,

such as the spontaneous corruption of knowledge bases, poor data storage facilities and

the use of pseudo-lists. The pseudo-lists were only intended to store text values separated

by commas, and list processing was restricted because of the inability to access data

contained within the list. Furthermore, and complex lists could not be created or used. A

method was developed to simulate compound lists using indexing techniques. The

routines that .v^re wnuen to overcome all of the deficiencies associated with data storage

severely affected th onse of the system. Mathematical parsing was found to be

extremely useful in the prototype KBFE for reducing mathematical expressions to

numerical values.

194

Conclusions and recommendations Chapter 9

The LISP version of the KBFE makes use of the experience gained through LEONARDO

by implementing some of the concepts of data storage and knowledge representation

through the use of frames. Data storage was provided through the use of facts and

objects. The facts were categorised under assertion templates to reduce the quantity of

pattern matching required, this was achieved by only matching the template as opposed to

all of the assertions. The assertions were used to store boundary condition data. The

objects provided storage for PHOENICS variables, and used LISP structures to simulate

frames. The slots within each object allowed the inference engine to use various methods

of establishing values to different objects. Multiple rulebases provided categorised

knowledge. Each rulebase contained the rules and an inference network. Inference

networks stream line the rulebases so that the inference engine only considers relevant

rules. Base rules in the rulebases are those rules which have no link between their

consequents and the antecedents of any other rule in the same rulebase. Forward

chaining commences on the base rules, and backward chaining is used when an antecedent

cannot be proved to be correct. The use of slots were extended for use in the rulebase

language for asking the user questions. Various consequent firing modes have been

established to suite different data synthesis requirements. A complete system has been

developed which implements many different techniques. Increased flexibility has been

experienced through the development of the system using LISP, compared with the

restrictions of using a shell. One major advantage of using a fundamental language is

that, if the knowledge representation technique is not available then the restriction is not

present because the technique can be developed.

The development of the KBFE has incorporated a rudimentary user model, which has the

ability to consider only three types of user: Novice, Experienced, and Advanced. The

fundamental nature of KBFEs implies that any type of user should be able to use the

system. This requires that improved user modelling concepts should be incorporated into

the system. Incorporating such models in a system is a research field in its own right.

Throughout the development of the system only one user type has been considered, which

consists of a proficient user of PHOENICS who is an engineer, knowledgeable in the field

of fluid mechanics. To incorporate other user models and to expand the availability to

other engineers who are not proficient users of PHOENICS, would required further

research into the area of user model design and implementation.

195

Conclusions and recommendations Chapter 9

Pseudo real time control of the PHOENICS solution algorithm has been tentatively

investigated. The technique emulates the heuristics used by manually monitoring and

controlling the convergence by incorporating, into the PHOENICS executable file, user

defined FORTRAN code, Appendix I. The code accesses stored values for each

dependent variable, and their respective residual values from appropriate PHOENICS

arrays. The residuals are filtered using conventional statistical techniques and then

examined for scatter and a change in approximate gradient between a predefined number

of sweeps. The results of the assessment would enable appropriate action to be taken in

order to control the convergence. To further aid the assessment a similar process for the

dependent spot values could be carried out. Finally, for a converged solution mass

continuity must be satisfied. Post processing grid optimisation was also investigated, using

the grid iteration technique, Girdinio et al. (1983).

9.2 Recommendations for further work

The following recommendations are aimed to provide possible directions for future work

with respect to the present research.

1. The presentation facilities provided as part of the user interface are for user

dialogue only. The inclusion of a graphical interface should be addressed, whereby

particular attention is directed towards the entry of the geometry and corresponding

boundary conditions. Screens for dialogue, error messages and other diagnostic

facilities should be provided. Essentially, a full user interface should be created

that utilises the developed inferencing processes, knowledge representation and

data storage techniques.

2. User model research is a field in its own right, and as such attention should be

directed towards the inclusion of more complex models. This would allow more

appropriate facilities to be incorporated.

3. Manual g*ld generation relies on patici.. recognition to a certain degree, especially

when using Body Fitted Coordinates (BFCs). Neural networks have shown promise

for pattern recognition, and as such could be potentially useful for grid generation.

196

Conclusions and recommendations Chapter 9

4. Further research into the implementation of the pseudo real time monitoring and

control of the solution algorithm should be carried out. This would include

developing a programme of experiments to extract the necessary parameters for the

scatter and gradient relationships relative to differing convergence rates. These

parameters, and their relationship, would form the basis of the deep knowledge

required to fully implement the control process described in chapter 8.

5. Post processing of the analysis, to assess for valid results from the requirements

specified by the user should be fully addressed. One area was briefly investigated:

iterative grid optimisation. An extension of this should be performed with the view

of possibly incorporating adaptive grid optimisation, i.e. grid optimisation during

solution.

197

REFERENCES

Abbott, G. D., Blake, K. R., and Sheikholeslami, M. Z., 1988. Feasibility of using a

Knowledge-Based Expert System in Computational Fluid Dynamics. Conference on

Computers in Engineering, San Francisco, 31 July to 4 August 1988, 377-382.

Alty, J.L., and Coombs, M. J., 1984. Expert Systems: Concepts and examples, NCC

publications.

Ambroziak, J. R., and Kleiber, M., 1990. A blackboard consultation system for

constitutive modelling in solid mechanics. In: Kleiber, M., (Ed), Artificial Intelligence in

Computational Engineering, 75-95.

Ambroziak, J. R., and Kleiber, M., 1991. Blackboard consultation in Solid Mechanics.

Engineering Applications in Artificial Intelligence, Vol 4, No 2, 85-95.

Anderson, D. A., Tannehill, J. C., and Pletcher, R. H., 1984. Computational Fluid

Mechanics and Heat Transfer. Series in Computational Methods in Mechanics and

Thermal Sciences, Hemisphere publishing, McGraw-Hill.

Aseo, J., 1988. Expert Systems: Picking the Right Problem. ESD: THE Electronic

System Design Magazine, 63-68.

Ashforth-Frost, S., Wang, L. S., Jambunathan, K., Graham, D. P., and Rhine, J. M., 1992.

Application of Image Processing to Liquid Crystal Thermography. IMechE International

Conference on Optical Methods and Data Processing in Heat and Fluid Flow, City University,

London, 2-3 April 1992, 121-126.

Banwell, L., 1989. Some thoughts on user modelling for the individual library user.

Proceedings o f the Eleventh BCS IRSG Research Colloquium on Information Retrieval, 5/6

July 1989, 83-91.

Barber, E., 1984. In: Bundy, A. (Ed), 1984. A LV E YIK B S Research Theme Workshop:

Intelligent Front Ends 2, University o f Sussex, 10/11 July 1984. IEE, Hitchin. 6-8.

198

References

Barstow, D., Duffey, R., Smoliar, S., and Vestal, S., 1982. An overview of 4>NIX.

Proceedings o f the National Conference on Artificial Intelligence, American Association for

Artificial Intelligence, Pittsburgh, Pennsylvania, August 1982.

Bennett, J. S., and Englemore, R. S., 1979. SACON: A Knowledge-Based Consultant for

Structural Analysis. Proceedings o f the Sixth International Joint Conference on Artificial

Intelligence, Tokyo, Japan, 1979.

Benyon, D., 1987. User Models: What’s the purpose. In: Cooper, M., and Dodson, D.,

(Eds), A L V E Y Knowledge based systems club, Intelligent Interfaces Special Group,

Proceedings o f the Second Intelligent Interfaces Meeting, The City University, May 28/29, 1987,

3-14.

Blacker, T. D., and Stephenson, M. B., 1991. PAVING: A new approach to automated

quadrilateral mesh generation. International Journal for numerical methods in engineering

vol. 32, 811-847.

Blacker, T. D., Stephenson, M. B., Mitchiner, J. L., Phillips, L. R., and Lin, Y. T., 1988.

Automated Quadrilateral Mesh Generation: A Knowledge System Approach. Proceedings

o f the A S ME Winter Annual Meeting, Chicago, Illinois, 27 November to 2 December 1988, 1-

9.

Blacker, T. D., Mitchiner, L. R., Phillips, L. R., and Lin, Y. T., 1988. Knowledge System

approach to automated two-dimensional quadrilateral mesh generation. Proceedings o f the

ASM E Conference on Computers in Engineering, Volume 3, 1988, 153-162.

Brouwer-Janse, M. D., 1990. A l Technologies for user interfaces: knowledge-based front-

ends. Proceedings o f the IEE Colloquium on A l in the User Interface, 27 April 1990, (Digest

No 118), 2/1-2/3.

Bundy, A., 1984a. Intelligent Front Ends. Intelligent Front Ends in Expert Systems.

Pergamon Infotech State of the Art Report "Expert Systems", Pergamon Infotech Ltd.,

1984, 1-12.

199

References

Bundy, A. (Ed), 1984b. A LV E YIK B S Research Theme Workshop: Intelligent Front Ends 2,

University of Sussex, 10/11 July 1984. IEE, Hitchin.

Bundy, A., Sharpe, B., Uschold, M., and Harding, N., 1984. A L V E Y IKBS Research Theme

Workshop: Intelligent Front Ends, 26127 September 1983, Cosener’s Houser, Abingdon,

England. IEE, Stevenage.

Clarke, J. A., 1990. Advanced Design Tools for Energy Conscious Building Design.

Proceedings o f the first World Renewable Energy Congress: Energy and the Environment.

Into the 1990s, Vol 4, 2265-2277.

Clarke, J. A., and MacRandal, D,, 1991. An Intelligent Front-End for computer-aided

building design. Artificial Intelligence in Engineering, Special Issue: Intelligent Front-Ends,

Guest Editor: Clarke, J. A., Volume 6, No 1, January 1991, 36-45.

Clarke, J. A., Rutherford, J., and MacRandal, D., 1988. An Intelligent Front End for

Building Energy Simulation. Working Conference o f users o f Simulation Hardware, Ostend,

6/8 September 1988, 165-171.

Clocksin, W.F., and Mellish, C.S., 1984. Programming in PROLOG , Second Edition,

Springer-Verlag, New York.

COM(86) 687 final, COMMISSION OF THE EUROPEAN COMMUNITIES. ESPRIT,

The first phase progress and results, Communication from the Commission to the Council.

Brussels, 8 December 1986.

Conner, R. R., and Purdon, D. J., 1986. PAN Air Knowledge System. American Institute

o f Aeronautics and Astronautics, 86-0239, January.

Cornali, D. J., 1990. Four Adaptive Strategies for Knowledge-Based Front-Ends.

Proceedings o f the UK IT 1990 Conference (Conference Publication Number 316), 371-378.

Dannenhoffer, III, J. F., and Baron, J. R., 1987. A H /bi!.1 Fxpert System for Complex

CFD Problems. American Institute o f Aeronautics and Astronautics, paper 87-1111.

200

References

Drechsler, F. S., and Peppard, J. W., 1988. An Intelligent Front End / Expert System

interface to a CIM module. In: Trappl, R., (Ed), Proceedings o f the meeting on Cybernetics

and System Research, Austria, 5/8 April 1988, 785-792.

Edmonds, E., and McDaid, E., 1990. An architecture for knowledge-based front ends.

Knowledge-Based Systems, Vol 3, No 4, December 1990, 221-224.

Elmaghraby, A. S., and Jagannathan, V., 1985. An Expert System for Simulationists. In:

Birtwistle, G., (Ed), Artificial Intelligence, Graphics and Simulation, 106-109.

Emmett, J., 1987. Intelligent Front Ends promote plant efficiency. Control and

Instrumentation GB, Volume 19, Part 4, April 1987, 74-75.

Engquist, B., and Smedsaas, T., 1980. Automatic Computer code generation for

hyperbolic and parabolic differential equations. Society for Industrial and Applied

Mathematics, Journal o f Scientific and Statistical Computing, Vol 1, No 2, June 1980, 249-

259.

Erman, L. D., Hayes-Roth, F., Lesser, V. R., and Reddy, D. R., 1980. The HEARSAY-II

Speech-Understanding System: Integrating Knowledge to Resolve Uncertainty.

Computing Surveys, Vol 12 No 2, June 1980, 213-253.

Eustace, P., 1985. Has ESPRIT got its sums right, now? The Engineer, 24 January 1985,

12-13.

Fang, C., ZhengZhong, W., RenShou, T., 1988. The Expert System in Discrete-Event

Simulation System. Proceedings o f IEEE International Conference on Systems, Man, and

Cybernetics, 8/12 August 1988, Beijing and Shenyang, China, Volume 2, 1054-1056.

Fink, R. K., Callow, R. A., Larson, T. K., and Ransom, V. H., 1987. ATHENA AIDE: An

Expert System for ATHENA code input model preparation. Idaho National Engineering

Laboratory EG and G Idaho Inc. Idaho Falls (USA), 7p.

Ford, B., Hague, S. J., and lies, R. M. J., 1989. Numerical Knowledge-based systems.

Mathematics and Computers in Simulation, 31, 395-400.

201

References

Forsyth, R., 1988. Software Review: LEONARDO. Expert Systems, Vol 5 No 2, May

1988, 160-164.

Gevarter, W. B.t 1983. Expert Systems: Limited but powerful. IEEE Spectrum, August

1983, 39-45.

Gilding, B. H., 1988. A Numerical Grid Generation Technique. Computers and Fluids,

Vol 16, No 1, 47-58.

Guariso, G,, Hitz, M., and Werthner, H., 1989. An intelligent simulation model generator.

Simulation, August 1989, 57-66.

Hartle, S. L., Li, H., Lai, E., Jambunathan, K., and Button, B. L., 1993. A Knowledge

Based Approach to Data File Checking for Numerical Simulation Packages using an

Expert System Shell. Submitted for publication in Engineering Applications o f Artificial

Intelligence.

Harvey, J. J., 1988. Expert Systems: An introduction. International Journal o f Computer

Applications in Technology, Vol 1, Nos 2/2, 53-60.

Hayes-Roth, B., 1984. A Blackboard Model of Control. Stanford University, Heuristic

Programming Project, Report No. 83-38.

Hayes-Roth, B., 1985. A Blackboard Architecture for Control. Artificial Intelligence, 26,

251-321.

Jambunathan, K., Lai, E., Hartle, S.L., and Button, B.L., 1991a. Development of an

Intelligent Front End for a Computational Fluid Dynamics Package. Artificial Intelligence

in Engineering, Volume 6, Number 1, January 1991. 27-35.

Jambunathan, K. T ’ Hartle, S.L., and Button, B.L., 1991b. Development of an

Intelligent Front End: An Experience. Engineering Applications o f Artificial Intelligence,

Volume 4, Number 5, 385-35.

202

References

Jambunathan, K., Lai, E., Hartle, S.L., and Button, B.L., 1991b. Development of an

Intelligent Front End using LISP. In the Proceedings o f the Seventh International

Conference on the Applications o f Artificial Intelligence in Engineering, A IE N G 92, University

o f Waterloo, Ontario, Canada, 14/16 July 1992, 229-243.

Jerrams-Smith, J., 1987. User Modelling. In: Cooper, M., and Dodson, D., (Eds), A L V E Y

Knowledge based systems club, Intelligent Interfaces Special Group, Proceedings o f the Second

Intelligent Interfaces Meeting, The City University, May 28/29, 1987, 23-24.

Kathawala, Y., Elmuti, D., and Timpner, C. J., 1989. Artificial Intelligence: the key to

the future? International Journal o f Computer Applications in Technology, Vol 2, No 1, 56-

61.

Kernighan, B. W., and Ritchie, D. M, 1988. The C Programming Language, Second

Edition. Prentice-Hall Software Series.

Khabaza, T., Sloman, A., and Law, A., 1988. Using a human inference engine. AISB

Quarterly, Issue 67, 4-7.

Knight, B., and Petridis, M., 1992. FLOWES: An Intelligent Computational Fluid

Dynamics System. Engineering Applications o f Artificial Intelligence, Volume 5, Number 1,

51-58.

Kurstedt, Jr. H. A., Lee, K. W., Mendes, P. M., and Berube, D. S., 1988. The Responsive

System: A New Challenge for AI. Proceedings o f the first International Conference on

Industrial and Engineering Applications o f Artificial Intelligence and Expert Systems IEA/AIE-

88, Vol 1, 177-184.

Kutler, P., Mehta, U. B., and Andrews, A., 1985. Potential Application of Artificial

Intelligence Concepts to Numerical Aerodynamic Simulation. Proceedings o f the Ninth

International Conference on Numerical Methods in Fluid Dynamics, Lecture Notes is Physics,

Vol 218, Berlin, West Germany: Springer-Verlag.

LEONARDO (Versions 3.17, 3.18, 3.20), Creative Logic Ltd., Brunei Science Park,

Kingston Lane, Uxbridge, Middlesex, England, UB8 3PQ.

203

References

MacRandal, D., 1987. The Application of Intelligent Front Ends in Building Design. In:

Srirarn, D., and Adey, R. A., (Eds), Artificial Intelligence in Engineering: Tools and

Techniques.

Mao, X., 1988. A knowledge-oriented human-computer interface model. Proceedings o f

the 1988 IEEE International Conference on Systems, Man, and Cybernetics (IEEE Cat No.

88CH2556-9), Beijing and Shenyang China, 8-12 August 1988, 670-673.

M ARC User information manual, available from MARC Analysis Research Corporation,

260 Sheridan Avenue, Court House Plaza, Suite 200, Palo Alto, California 94306.

McConnell, B. A., and McConnell, N. J., 1988. A Starter’s guide to Artificial Intelligence.

Collegiate Microcomputer, August, Vol VI, No 3, 239-246.

Mehta, U. B., and Kutler, P., 1984 Computational Aerodynamics and Artificial Intelligence.

National Aeronautics and Space Administration, NASA Technical Memorandum 85994.

Mehta, U. B., 1986. Knowledge based systems for Computational Aerodynamics and

Fluid Dynamics. In: Kowalik, J.S. (Ed), Knowledge Based Problem Solving 183-212.

Michelsen, C., Dreicer, J., and Morgeson, D., 1988. Strategic Engagement Analysis Tool

(SEAT). Proceedings o f the Tools for Simulation Profession, 18/21 April 1988, 26-29.

Moore, R. L., 1985. Adding Real-Time Expert System Capabilities to Large Distributed

Control Systems. Control Engineering USA, Volume 32, Part 4, April 1985, 118-121.

Morley, R. E., and Taylor, W. A., 1986. Why bother with Expert Systems? Digital Design,

July 1986, 47-49.

Murdoch, J., and Barnes, J. A., 1985. Statistical Tables: for Science, Engineering and

Management Stud'..., Second Edition. MacMT.ian Edu nation Ltd.

Oakley, B., and Owen, K., 1989. ALVEY: Britain’s Strategic Computing Initiative. MIT

Press, London, England.

204

References

O ’Keefe, R., 1986. Simulation and expert systems - A taxonomy and some examples.

Simulation 46:1, 10-16.

Pang, G. K. H., 1988. An Intelligent Front End for a control system design and analysis

package. Proceedings o f the Fourth IFAC Computer Aided Design in Control Systems

symposium, Beijing, China, 23-25 August, 1988, 329-334.

Patankar, S. V., 1980. Numerical Heat Transfer and Fluid Flow. Series in Computational

Methods in Mechanics and Thermal Sciences, Hemisphere Publishing Corporation,

London.

PHOENICS (Versions 1.4, 1.5.3 and 1.6). Parabolic Hyperbolic Or Elliptic Numerical

Integration Code Series, Concentration Heat And Momentum (CHAM) Limited, Bakery

House, 40 High Street, Wimbledon, London, SW19 5AU, England, UK.

POPLOG (Versions 13.6, 14.1), Integral Solutions Limited, University of Sussex.

Prat, A., Lores, J., Fletcher, P., and Catot, J. M., 1990. Back-end manager: an interface

between a knowledge-based front end and its application subsystems. Knowledge-Based

Systems, Vol 3, No 4, December 1990, 225-229.

Ramirez, M. R., and Belytschko, T., 1989. An Expert System for Setting Time Steps in

Dynamic Finite Element Programs. Engineering with Computers 5, 205-219.

Ramsay, A., 1984. A LV E YIK B S Research Theme Workshop: Intelligent Front Ends 2,

University of Sussex, 10/11 July 1984. IEE, Hitchin, 48-50.

Reddy, M., and O’Hare, G. M. P., 1991. The blackboard model: a survey of its

application. Artificial Intelligence Review, 5, 169-186.

Reid, I., 1990. Interfaces to numerical packages. Computer Physics Communications, 61

(112), 141-149.

205

References

Roberts, G. O., 1971. Computational Meshes for Boundary Layer Problems. Proceedings

o f the Second International Conference on Numerical Methods in Fluid Dynamics, Lecture

Notes in Physics, Vol 8, 171-177.

Ross, P., 1984. The Virtues and Problems of User Modelling. IEEE Colloquium on

Intelligent Knowledge Based Systems. 5/1-5/4.

Ryskin, G., and Leal, L. G., 1984. Numerical solution of free-boundary problems in fluid

mechanics. Part 1: The finite-difference technique. Journal o f Fluid Mechanics, Vol 148,

1-17.

Ryskin, G., and Leal, L. G., 1983. Orthogonal Mapping. Journal o f Computational

Physics, 50, 71-100.

Schildt, H., 1990. C: The Complete Reference, Second Edition, Osbourne McGraw-Hill,

California, USA.

Shortliffe, E. H., 1975. MYCIN: A computer-based computer program for advising

physicians regarding antimicrobial therapy selection. PhD Thesis, Stanford University,

California, USA.

Steel, Jr., G. L., 1990. COMMON LISP, The Language. Second Edition. Digital Press.

Strandhagen, J. O., 1989. Expert Systems in Manufacturing Simulation. In: Browne, J.,

(Ed), Knowledge Based Production Management Systems, 83-93.

Tangen, K., and Wretling, U., 1986. Intelligent Front Ends to Numerical Simulation

Programs. In: Brammer, M. A., (Ed), Research and Development in Expert Systems III,

254-265.

Taylor, C., and Hughes, T. G., 1981. Finite Element programming o f the Navier-Stokes

equations. Pineridge Press, Swansea.

Teresko, J., 1985. Artificial Intelligence: More fact than fantasy. Industry week, 21

January 1985, 53-60.

206

References

Thomas, G. B., Thomas, R. C., and Lai, C. C., 1988. An Expert System Interface to a

suite of rotordynamic programs. Institute o f Mechanical Engineers Conference Proceedings

"Vibrations in Rotating Machinery", 621-626.

Thomas, R. C., Thomas, G. B., and Littler, J. G., 1990. The cognitive role of an engineer

in a diagnostic task. Proceedings o f the UK IT 1990 Conference, Conference Publication

Number 316, Southampton, UK, 19122 March 1990, 259-263.

Tong, S. S., 1985. Design of Aerodynamic bodies using Artificial Intelligence/Expert

System technique. AIAA paper 85-0112, American Institute o f Aeronautics and Astronautics,

Aerospace Sciences Meeting, 23rd Reno, NV, 14117 January 1985, 1-6.

Tou, F. N., Williams, M. D., Fikes, R., Henderson, A., and Malone, T., 1982. RABBIT:

An Intelligent Database Assistant. Proceedings o f the American Association for Artificial

Intelligence, Part 82, 314-318.

TR100, 1989. The PHOENICS Beginner’s Guide. CHAM Ltd., Wimbledon, London,

SW19 5AU

TR200, 1989. The PHOENICS Reference Manual. CHAM Ltd., Wimbledon, London,

SW19 5AU

Uschold, M., Harding, N., Muetzelfeldt, R., and Bundy, A., 1984. An Intelligent Front End

for Ecological Modelling. Research paper 223, Department of Artificial Intelligence,

Edinburgh University, Edinburgh, UK.

Uzel, A. R., Edwards, R. J., and Button, B. L., 1988. A study into the feasibility of an

Intelligent Knowledge Based System (IKBS) in Computational Fluid Mechanics (CFM).

Engineering Applications o f Artificial Intelligence, Vol 1, September 1988, 187-193.

Vogel, A. A., 1989. A knowledge-based approach to automated flow field zoning for

computational fluid dynamics. PhD Thesis, Stanford University, UMI-8912946.

207

References

Wager, D. M., 1984. Expert systems and the construction industry. A study o f expert systems,

their nature, possible use and implications for the construction industry. Construction

Industry Computing Association.

Wang, M., and Georgiadis, J. G., 1989. Numerical Generation of Orthogonal Boundary-

Fitted Grids for Heat and Fluid Flow. National Heat Transfer Conference, HTD Vol 110,

Numerical Heat Transfer With Personal Computers and Supercomputing, 65-71.

Waterman, D. A., 1986. How do Expert Systems differ from conventional programs?

Expert Systems, January 1986, Vol 3, No 1, 16-19.

Webster, R., and Miner, L., 1982. Expert Systems Programming Problem-Solving.

Technology/2, January/February 1982, 62-91.

Weiss, S., and Kulikowski, C., 1979. EXPERT: A System for Developing Consultation

Models. Proceedings o f the Sixth International Joint Conference on Artificial Intelligence,

Tokyo, Japan, 942-947.

Weiss, S., Kulikowski, C., Apte, C., Uschold, M., Patchett, J., Brigham, R., and Spitzer, B.,

1982. Building Expert Systems for Controlling Complex Programs. Proceedings o f the

American Association for Artificial Intelligence, AAAI-82, 322-326.

Whitmore, R. W. H., 1991. KASTLE: A KBFE for a Software Library. Proceedings o f

the Teaching Company Scheme Expert Systems Seminar, Vol 1, No 6, 20 November 1991.

Whittkowski, K. M., 1991. A structured visual language for a knowledge-based front-end

to statistical analysis systems in biomedical research. Computer Methods and Programs in

Biomedicine, 35, Issue 1, May 1991, 59-67.

Winston, P. H., 1984. Artificial Intelligence. Second Edition. Addison-Wesley.

Winston, P. H., and Horn, B. K. P., 1989. LISP, Third Edition. Addison-Wesley.

Wolstenholme, D. E., and Nelder, J. A., 1986. A front end for GLIM. In: Haux, R., (Ed),

Expert Systems in Statistics, Gustav Fischer, 155-177.

208

References

Wong, F. S., Dong, W. M., and Blanks, M., 1988. Coupling of Symbolic and numerical

computations on a microcomputer. Artificial Intelligence in Engineering, 1988, Vol 3, No 1,

32-38.

Xuesi, J., and Zhengzhong, W., 1988. Simulation Integration Algorithms Selecting Expert

System. Proceedings o f the 1988 IEEE International Conference on Systems, Man, and

Cybernetics (IEEE Cat. No. 88CH2556-9), Vol 2, 1068-1070.

Yu, T., Dai, G., and Zhu, Z., 1988. Development of an expert system for computer-aided

control systems design. Proceedings o f the Fourth IFAC Computer Aided Design in Control

Systems Symposium, 1988, 353-358.

Yuasa, T. and Hagiya, M., 1986. Introduction to Common Lisp. Academic Press Inc.

209

APPENDIX A

Fourier series coefficients for the profile function shown in Figure 3.15

210

Appendix A

an - 1 f n «3
7u | 2 2rc

m

(2u - a 3) + ijf(a3 + a 2)

l(a\ + a2 - 2a2a3>

+ — (a 2 + a i - 2 a 1a 2)
(Al)

+ y (2 a 2a4 - a2 - a j)|

1 f (a 3 - n) . cos(na-) - cos(/m)
« „ i ------------- sinOiotj) + ----------------------------

m. m.
+ — (a 2sin(na2) - <x3sin(noc3)) + -± (co s(n a 2) - cos(«a3))

n n2
m. a 2 + ip

+ --------------(sin(na3) - sin(«a2»

l|j
+ —(sinCna^ + sin(rta2» + — (a2sin(na2) - ajS in^a,)) (A2)

n n

m2 ip - m7a.
+ — (cos(na2) - cos(naj)) + ------------- (sin(/m2) - sin(na,))

n2 n

m3 m,
+ — (c^smCwa^ - a 2sin(na2» + — (cos(na4) - cos(«a2))

n n2
m3a 4 j

----------(sinCna^ - sin(na2m

211

Appendix A

b . - i
a , - n sin(na,)
— ■ —cosCnttj)---------- —

nn nn

m. m.
+ —H a2cos(na2) - a3cos(nctJ) + —i (sin(na3) - sin(/ia2))

m. a2 + y ft
+ (cos(«a3) - cos(na2)) + - h c o s (na2) - cosCna^)

m2 m2
+ — (a 1cos(na1) - a 2cos(«a2» + — (sin(na2) - sin(na,»

n n2

^ - nt2a , m,+ (cosCnotj) - cos(«a2)) + — (a2cos(«a2) - a4cos(«a4»
n n

H!l
,2

m3a 4 1
(sinCna^ - sin(na2)) — (cos(n a j - cosCna^H

(A3)

212

APPENDIX B

Finite volume aspect ratio dependent C code

213

Appendix B

#include <stdio.h>
#include <m ath.h>

#define odd(i) (fmod((i), 2) = = 1.0 ? 1 : 0)
#define even(i) (fmod((i), 2) = = 0.0 ? 1 : 0)

/* Declare the functions */

float F(float theta);
void get_A0(float PI, float psi, float alphal, float alpha2,

float alpha3, float alpha4, float m l, float m2, float m3);
void get_AN(float PI, float psi, float alphal, float alpha2,

float alpha3, float alpha4, float m l, float m2,
float m3);

void get_BN(float PI, float psi, float alphal, float alpha2,
float alpha3, float alpha4, float m l, float m2,
float m3);

float PSI_N(float value, float alpha);

/* Declare GLOBAL variables */

float aO, an[101], bn[101];

mainQ
{

float AR, delta, h, eta, Y[1000];
float T;
float lambda;
float theta, f, f ja s t, last f last;
float PI = 3.141592654;
float alphal = 0.0, alpha2 = 0.0, alpha3 = PI, alpha4 = PI;
float beta = 0.0, psi = 1.0;
float m l - 1.0 / PI;
float m2 = -1.0 / PI;
float m3 = -1.0 / PI;
float psi_N, dummy, alpha;

int i = 0, reset_psi = ’N’, j, k, alpha l_i = -1;

printf("\nEnter the overall height of the region:");
scanf("%f', &h);
printf("\nEnter the maximum allowed aspect ratio: ");
scanf("%f\ &AR);
printf("\nEnter the minimum cell size:");
scan fC ^f1, &delta);
printf("\nEnter alpha (0.0, 0.5, or 1.0):");
scanf("%f, &eta);

T = delta / h; /* T is the datum metric */

214

Appendix B

if (eta — = 1.0)
alpha = 0.0;

else
alpha = eta;

Y[l] = alpha - 1.0;
f_last = 0.0;
f = 0.0;
get_A0(PI, psi, alphal, alpha2, alpha3, alpha4, m l, m2, m3);
get_AN(PI, psi, alphal, alpha2, alpha3, alpha4, m l, m2, m3);
get_BN(PI, psi, alphal, alpha2, alpha3, alpha4, m l, m2, m3);

while ((alpha - Y[i]) > = (0.1 * T)) {

theta = PI*Y[i] / (1.0 - alpha);
last_f_last = f la s t;
f ja s t = f;
f = F(theta);
lambda = pow(10.0, (f * loglO(AR)));
Y[i+1] = Y[i] + lambda * T;

if (i = = alphal_i) {
alphal = fabs(2.0*PI*Y[i]);
alpha4 = fabs(2.0*PI*(0.5-T));
m2 = (psi - beta) / (alphal - alpha2);
m3 = beta / (alpha2 - alpha4);
get_A0(PI, psi, alphal, alpha2, alpha3, alpha4,

m l, m2, m3);
get_AN(PI, psi, alphal, alpha2, alpha3, alpha4,

m l, m2, m3);
get_BN(PI, psi, alphal, alpha2, alpha3, alpha4,

m l, m2, m3);

if (Y[i+1]>0.0 && Y[i]<0.0 && resetjpsi = = ’N’) {
alpha l_i = i;
--i;
alpha2 = fabs(PI!,'Y[i] / (1.0 - alpha));
alpha3 = fabs(PPY[i-l] / (1.0 - alpha));
beta = last_f_last;
psi_N = PSI_N(alpha2/(PI*AR*T), alpha);
psi = loglO(alpha2/(PI*psi_N*T)) / loglO(AR);
m l = (psi - beta) / (alpha3 - alpha2);
get_A0(PI, psi, alphal, alpha2, alpha3, alpha4,

m l, m2, m3);
get_AN(PI, psi, alphal, alpha2, alpha3, alpha4,

m l, m2, m3);
get_BN(PI, psi, alphal, alpha2, alpha3, alpha4,

m l, m2, m3);
reset_psi = ’Y’;
--i;

}

215

$

Appendix B

+ +i;
}

Y[i] = alpha;

if (eta = = 0.0)
fo r(j= l; j < = i; j+ +)

YD] + = 1.0;
else if (eta = = 0.5)

fo r(j= l; j < = i; j+ +)
YD] + = 0.5;

else {
j = 0;
k = i;
while (k > = j) {

dummy = fabs(YD]);
YD] = fabs(Y[k]);
Y[k] = dummy;
j+ + ;
k - ;

}
}
for(j=l; j < = i; j++) YD] = h * YD+1];

>

float F(float theta)
{

float f = aO / 2.0;
int i = 1, j;

if (fabs(theta) = = 3.141592654)
f = 0.0;

else
fo r(i= l; i < = 100; i+ +)

f + = an[i]*cos(i*theta) + bn[i]*sin(i*theta);
return f;

>

float PSI_N(float value, float alpha)
{

float integral_part, fractional_part;

fractional_part = modf(value, &integralj3art);

if (fractional_part > 0.0) ++integral__part;
if even(integral_part) integral_part + = 2.0 * alpha;

return integral_part;
}

216

Appendix B

void get_AO(float PI, float psi_bar, float alphal, float alpha2,
float alpha3, float alpha4, float m l, float m2, float m3)

{
aO = PI / 2.0;
aO -= alpha3 * (2.0*PI - alpha3) / (2.0*PI);
aO + = psi_bar * (alpha3 4- alpha2);
aO -= m l * (pow(alpha3, 2.0) + pow(alpha2, 2.0) -

2.0*alpha2*alpha3) / 2.0;
aO + = m2 * (pow(alpha2, 2.0) + pow(aIphal, 2.0) -

2.0* alpha l*alpha2) / 2.0;
aO -f = m3 * (2.0*alpha2*alpha4 - pow(alpha2, 2.0) -

pow(alpha4, 2.0)) / 2.0;
aO /= PI;

}

void get_AN(float PI, float psi_bar, float alphal, float alpha2,
float alpha3, float alpha4, float m l, float m2, float m3)

{
int i;
float n;

fo r(i= l; i < = 100; i+ +) {

n = i * 1.0;
an[i] = (alpha3 - PI) * sin(n*alpha3) / (PI*n);
an[ij + = (eos(n*alpha3) - cos(n*PI)) / (PI*pow(n, 2.0));
an[i] + = ml*(alpha2*sin(n*alpha2) -

alpha3*sin(n*alpha3)) / n;
an[i] + = ml*(cos(n*alpha2) - cos(n*alpha3)) /

pow(n, 2.0);
an[i] + = (ml*alpha2 + psi_bar)*(sin(n*alpha3) -

sin(n*alpha2))/n;
an[i] + = psi_bar*(sin(n*alphal) + sin(n*alpha2)) / n;
an[i] + = m2*(alpha2*sin(n*alpha2) -

alphal*sin(n*alphal)) / n;
an[i] + = m2*(cos(n*alpha2) - cos(n*alphal)) /

pow(n, 2.0);
an[i] + = (psi_bar - m2*alphal)*(sin(n*alpha2) -

sin(n*alphal))/n;
an[i] + = m3*(alpha4*sin(n*alpha4) -

alpha2*sin(n*alpha2)) / n;
an[i] + = m3*(cos(n*alpha4) - cos(n*alpha2)) /

pow(n, 2.0);
an[i] -= m3*alpha4*(sin(n*alpha4) - sin(n*alpha2)) / n;
an[i] /= PI;

>
}

217

Appendix B

void get_BN(float PI, float psi_bar, float alphal, float alpha2,
float alpha3, float alpha4, float m l, float m2, float m3)

{
int i;
float n;

fo r(i= l; i < = 100; i+ +) {
n = i * 1.0;
bn[i] = (alpha3 - PI) * cos(n*alpha3) / (PI*n);
bn[i] -= sin(n*alpha3) / (PI*pow(n, 2.0));
bn[i] + = ml*(alpha2*cos(n*alpha2) -

alpha3*cos(n*alpha3)) / n;
bn[i] + = ml*(sin(n*alpha3) - sin(n*alpha2)) /

pow(n, 2.0);
bn[i] + = (ml*alpha2 4* psi_bar)*(cos(n*alpha3) -

cos(n*alpha2))/n;
bn[i] + = psi_bar*(cos(n*alpha2) - cos(n*alphal)) / n;
bn[i] + = m2*(alphal*cos(n*alphal) -

alpha2*cos(n*alpha2)) / n;
bn[i] + = m2*(sin(n*alpha2) - sin(n*alphal)) /

pow(n, 2.0);
bn[i] + = (psi_bar - m2*alphal)*(cos(n*alphal) -

cos(n*alpha2))/n;
bn[i] + = m3*(alpha2*cos(n*alpha2) -

alpha4*cos(n*alpha4)) / n;
bn[i] + = m3’|t(sin(n*alpha4) - sin(n*alpha2)) /

pow(n, 2.0);
bn[i] -= m3*alpha4*(cos(n*alpha2) - cos(n*alpha4)) / n;
bn[i] /= PI;

}
}

218

APPENDIX C

Command sequence program, COMSEQ.FOR, used for the data file checker.

219

Appendix C

Program Preleo

Integer Line,Finish,NCommands
Character Statements*50(500),Word*75,Uppercase*75

Common /Commands/ Statements
Common /word/ Word
Common /Integers/ Number,NCommands

Open(Unit=21,File=’Q l.D A T ,S tatus=’UNKNOWN’)
O pen(U nit=22,F ile=’$$LEOOUT.DAT,Status=’UNKNOWN’)
Open(Unit=23,File=’Q ll.D A T ,S tatus= ’UNKNOWN’)

Number= Nelem(Statements)
NCommands=0
Line=0

10 Read(21,15,End=30) Word
15 Format(A75)

Finish=Length(Word)
Word=Uppercase(Word)
L ine=L ine+ l
if (W ord(l:2).eq.’ ’) then

Write(23,15) Word
goto 20

else
if (W ord(l:l).eq.’ ’) Word=Word(2:Finish)
Write(23,15) Word

endif
Call Check(Line)

20 goto 10
30 Call Sort

Call Print
Close(21)
Close(22)
Close(23)
end

Subroutine Sort
Character*50 Statements(500),Dummy
Integer flag
Common /Commands/ Statements
Common /Integers/ Number,NCommands

15 flag=0
Do 20 i = 1,NCommands

if (ichar(SC::ments(i)(2:2)).eq.32) ther.
j = length(Statements(i))
Do 25 k—° j-1

25 Statem ents(i)(k:k)=Statem ents(i)(k+l:k+l)
Statements(i) (j :j)= char (32)
endif
if (i.eq.NCommands) goto 20

220

Appendix C

if (ichar(Statem ents(i+l)(l:l)).gt.
1 ichar(Statem ents(i)(l:l))) then

Dum m y=Statem ents(i+1)
Statem ents(i+1)=Statements(i)
Statements(i)= Dummy
flag= l
endif

20 Continue
if (flag.eq.l) goto 15
return
end

Subroutine Print
Integer Number
Character Statements*50(500)
Character* 10 Forchar(0:2),String,IntegerToText
Common /Commands/ Statements
Common /Integers/ Number,NCommands

Forchar(O)= *(A1,’
Forchar(2)= \ A l)’
i= length(Statements(N Commands))
Statements(NCommands) (i:i)=char(32)
j= 0
Do 10 i= 1,NCommands

10 j=j+Length(Statem ents(i))
String= IntegerToText(j)
i=Length (String)
Forchar(l)(l:i)=String
F o rch a r(l)(i+ l:i+ 2)= ’A r
write(22,Forchar) char(39),((Statements(i)(j:j),

1 j=2,length(Statements(i))),i= 1,NCommands),
1 char(39)

end

Subroutine Check(Line)
Integer Line,LPPosition,EQPosition,Position,CLength,

1 Number,WFinish
Character Statements*50(500),Word*75
Common /Commands/ Statements
Common /word/ Word
Common /Integers/ Number,NCommands

LPPosition=Locate(l,1,40,Word)
if (LPPosition.eq.O) LPPosition= 1000000
EQPosition=Locate(l, 1,61,Word)
if (EQPosition.eq.O) EQPosition= 1000000
if (EQPosition.eq.LPPosition) then

WFinish=length(Word)
goto 4

221

Appendix C

endif
WFinish=Min(LPPosition,EQPosition)-l

4 Do 10 i=l,N um ber
Position=Locate(l,l,44,Statements(i)) ! Locate comma
CLength=Position-1 ! StringFINISH=location-l
if (CLength.gt.O) goto 5
CLength=Length(Statements(i)) ! SFinish=Statement length

5 if (Statements(i)(3:CLength).eq.Word(l:WFinish)) then
if (Word(l:WFinish).eq.’REAL\or.Word(l:WFinish).eq.

1 ’INTEGER’) then
j=LPPosition
Last=j
k=Locate(l,LPPosition,41,Word)

6 N um ber=N um ber+l
n=Len(Statements(Number))
Do 7 m = l,n

7 Statements(Number)(m:m)=char(32)
Statements(N umber) (1: l) = ’j’
Statements(Number)(2:2)=
j = Locate(l,j,44,Word)
if (j.eq.O) then

j = Locate(- l,k,44, Word)
if (j.gt.LPPosition)

1 Statements(Number)(3:3+ k-LPPosition-2)=
1 W ord(j+l:k-l)

if (j.eq.O)
1 Statements(Number)(3:3+ k-LPPosition-2)=
1 W ord(LPPosition+l:k-l)

goto 8
endif
Statements(Number)(3:3 +j-Last-2)=

1 W ord(Last+l:j-l)
Last=j
j= j+ 1
goto 6

endif
8 Call AppendLines(i,Line)

return
endif

10 Continue

end

Subroutine AppendLines(i,Line)
Character*50 Insert,Statements(500),Dummy
Character *5 LineNumber,Occurances,IntegerToText
Integer Line,NOccurances,Start,CLength,Finish,TextToInteger
Integer NCommands
Common /Commands/ Statements
Common /Integers/ Number,NCommands

222

Appendix C

C Locate first comma for Occurances
Start= Locate(1, l,44,Statements(i))

LineNumber= IntegerToText(Line)
CLength=length(Statements(i)) ! Get total length
if (Start.eq.O) then ! First time located

NCommands= NCommands +1
Dummy = Statements(i)
Statements(i) - Statements(N Commands)
Statements(NCommands)= Dummy
i=NCommands
Statem ents(i)(C Length+l:C Length+l)=7 * Add a comma
Statements(i)(CLength-f2:Clength+3)=T,’ ! 1 occurance

else

C Locate next comma
Finish=Locate(l,Start+l,44,Statements(i))
NOccurances=TextToInteger(Start+l, Finish-1,

1 Statements(i))+1
Occurances=IntegerToText(NOccurances)
Statements(i)=Insert(Occurances,Start+l,Finish-1,

1 Statements(i))
endif
CLength= Length(Statements(i))
Statements(i)= Insert(LineNumber, CLength+1,CLength+1,

1 Statements(i))
CLength= Length(Statements(i))
Statem ents(i)(C Length+l:C Length+l)=7 ! Add a comma
return
end

Function TextToInteger(Start,Finish,String)
Character*(*) String
Character Substring* 10
Integer Start,Finish,SubLength,Power,TextToInteger
SubString= String(Start:Finish)
SubLength= Length(SubString)
Power= SubLength-1
TextToInteger=0
if (Power.eq.O) then

TextToInteger= ichar(SubString(1: l))-48
else

Do 10 i= 1,Power
10 TextToInteger=TextToInteger+

1 ((ichar(SubString(i:i))-48)*10**(Power))
endif
return
end

Function IntegerToText(Number)
Integer Number,Position,Power,FixNumber
Character*(*) IntegerToText

223

Appendix C

FixNumber= Number
Position=l
Power=3
j = len(Integertotext)
Do 5 i= l,j

5 IntegerToText(i:i)=char(32)

10 if (FixNumber-(10** (Power-1))) 20,15,15
15 i= Number/(10 * * (Power-1))

IntegerToText(Position:Position)= char(i+48)
Number= Number-i* 10* * (Power-1)
Position= Position+1

20 Power= Power-1
if (Power.ge.l) goto 10
Number= FixNumber
return
end

Function Insert(SubString,Start,Finish,String)
Character*(*) SubString,String,Insert
Integer Start,Finish,SubLength,StrLength

j=len(insert)
Do 10 i= l,j

10 Insert(i:i)=char(32)
if (Start.gt.l) Insert(l:Start-l)=String(l:Start-l)
SubLength= Length(SubString)
StrLength= Length(String)
Insert (Star t: Start+ SubLength-1)= SubString(1 :SubLength)
if (Finish+l.gt.StrLength) return
Insert (Star t+ SubLength: Star t+ StrLength+ SubLength-Finish-1)=

1 String(Finish+l:StrLength)
return
end

Function Locate(Direction,Start,ascii,String)
Integer Start,Finish,ascii,Direction
Character*(*) String
Finish— 1
if (Direction.eq.l) Finish=Length(String)
Do 10 i=Start,Finish,Direction

if (ichar(String(i:i)).eq.ascii) then
Locate=i
return
endif

10 Continue
Locate=0
return
end

224

Appendix C

Function Nelem(Array)
Character*(*) Array(500)
Do 10 1=500,1,-1

j = length(Array(i))
if (j.ne.O) then
Nelem=i
return
endif

10 Continue
end

Function Uppercase(String)
Character*(*) String,Uppercase
Integer ascii,Finish
Finish=Length(String)
Do 10 i—1,Finish

ascii= ichar(String(i:i))
if (ascii.ge.97.and.ascii.le.122) String(i:i)=char(ascii-32)

10 Continue
Uppercase=String
return
end

Function Length(String)
Character*(*) String
Integer Length,j,ascii
Length= len(String)
j=Length
Do 10 i= j,l,- l

ascii= ichar(String(i:i))
if (ascii.ne.32.and.ascii.ne.O) return
Length= Length-1

10 Continue
Length=0
return
end

BlockData PHOENICS
Character*50 Statements(500)
Common /Commands/ Statements

C The following statements, 1 to 74, are deemed to be the most popular

Data (Statements(i),i= 1,74) f TALK’,’ STOP’,’ RUN’,
V VDU’,
1’} INTEGER’,’} REAL’,’ T E X T ,’8 GRDPW R’,’_ SOLUTN’,’ ^ SOLVE’,
1’ STORE’,’ TERMS’,’ CONPOR’,’ INIT’,’7 PATCH’,
1’ R E ST R T /6 COVAL’,’ RELAX’,’ OUTPUT’,’ PLC '7 STEADY’,
1’ CARTES’,’ ONEPHS’,’ XCYCLE’,’ USEGRD’,’ USEGRX’,
1’ ECHO’,’ AUTOPS’,’ NOWIPE’,’ SAVE’,’ LSTEP’,
1’9*NX’,’9*NY’,’9*NZ7 FSWEEP’,’ LSWEEP7 IXMON’,

225

Appendix C

V IYMON’,
1’ IZM O N 7 NPRM NT,’ NPRMON’,’ TSTSWP’,’ IPLTF’,
I ’ IPLTL’,
1* N PR IN T ,’ NXPRIN’,’ NYPRIN’,’ NZPRIN’,’ LITER’,
1’ TFIRST’,’ TLAST,’9*XULAST,*9*YVLAST,’9*ZWLAST’,
1’ RINNER’,’ DIFCUT’,’ H U N IT ,’ ~ *ENUL’,’ ~ *ENU T,’ ~ *RHOT,
1*8 TFRAC’,’8 XFRAC’,’8 YFRAC’,’8 ZFRAC’,’ PRNDTL’,’ PRT’,
1* F IIN IT ,’ RESREF’,’ E N D IT ,’ VARMAX’,’ VARMIN’,
1’9 NAME’,’ NAM FI7 NAMGRD’/

Data (Statements(i),i=75,147) t CLEAR’,’ LOAD’,’ SATRUN’,
1’ DOMAIN’,’ FIXDOM ’,’ MAGIC’,’ READCO’,’ SEEPTS’,
1’ SETLIN’,’ SETPT,’ VIEW’,’ RADLAT,’ TURM OD’,
1’ PARAB’,’ BFC’,’ LIJ’,’ LIK’,’ U K ’,’ NONORT,
1’ RSTGEO’,’ SAVGEO’,’ SLIDE’,’ SLIDH’,’ SLIDL’,’ SLIDN’,
1’ SLIDS’,’ SLIDW’,’ UGEOM ’,’ UUP’,’ VUP’,’ WUP’,
1’ ADDDIF’,’ BLOCKZ’,’ DONACC’,’ EQDVDP’,’ GALA’,
1’ NEW RH1’,
1’ NEWENL’,’ NEW EN T,’ NEWRH2’,’ UCORR’,’ UDIFF’,
1’ UDIFNE’,
1’ UCONNE’,’ UCONV’,’ UCORCO’,’ USOLVE’,’ USOURC’,
1’ INIADD’,
1’ PICKUP’,’ DARCY’,’ DUDX’,’ DUDY’,’ DU D Z’,
1’ DVDX’,’ DVDY’,’ DVDZ’,’ DWDX’,’ DWDY’,’ DW DZ’,
1’ GENK’,
1’ LSG1’,’ LSG2’,’ LSG3’,’ LSG4’,’ LSG5’,’ LSG6’,
1’ LSG7’,
1’ LSG8’,’ LSG9’,’ LSG10’,’ DISTIL’,’ NULLPR’/

Data (Statements(i),i= 148,228)/* INIFLD’,’ SUBWGR’,
1’ XZPR’,
1’ YZPR’,’ LIBREF’,’ IMON’,’ JMON’,’ KMON’,’ LITXC’,
1’ LITYC’,’ LITZC’,’ MSWP’,’ N C R T ,’ D E N I’,’ DEN2’,
1’ EPOR’,’ HPOR’,’ IMB1’,’ IMB2’,’ INTFRC’,’ INTM DT,
1’ LENT,’ LEN2’,’ NPOR’,’ PCOR’,’ TEM PI’,’ TEMP2’,
1’ VISL’,’ V IST ,’ VPOR’,’ ICHR’,
1’ IURINI’,’ IURVAL’,’ KELIN’,’ IPARAB’,
1’ ISWC1’,’ ISWR1’,’ ISWR2’,’ ITHC1’,’ LITC’,’ LITFLX’,
1’ LITYHD’,’ ISG1’,’ ISG2’,’ ISG3’,’ ISG4’,
1’ ISG5’,’ ISG6’,’ ISG7’,’ ISG8’,’ ISG9’,’ ISG10’,
1’ ISG11’,’ ISG12’,’ ISG13’,’ ISG14’,’ ISG15’,’ ISG16’,
1’ ISG17’,’ ISG18’,’ IZW1’,’ IURPRN’,
1’ IPROF’,’ ISTPRF7 ISTPRL’,’ ISWPRF’,
1’ ISWPRL’,’ ITABL’,’ IXPRL’,’ IXPRF’,’ IYPRF’,
1’ IYPRL’,’ IZPRF’,’ IZPRL’,’ NCOLCO’,’ NCOLPF’,’ NPLT’,
1’ NROWCO’,’ NTPRIN’,’ NTZPRF’,’ NUMCLS’/

Data (Statements(i),i=229,314)/’ LG’,’ IG’,’ AZXU’,
1’ AZYV’,’ AZDZ’,’ ZWADD’,’ TMP2’,’ TMP2A’,
1’ FIXCOR’,’ RELXC’,’ RELYC’,’ RELZC’,
1’ RLOLIM’,’ RUPLIM’,’ U1AD’,’ U2AD’,’ V1AD’,
1’ V2AD’,’ W1AD’,’ W2AD’,’ ZDIFAC’,’ DRH1DP’,’ DRH2DP’,

226

Appendix C

V EL17 ELIA ’,’ EL1B7 ELIC’,’ EL2’,’ EL2A’,’ EL2B\
1’ EL2C’,’ ENULA’,’ ENULB’,’ ENULC’,
1’ ENUTA’,’ ENUTB’,’ ENUTC’,’ PRESSO’,’ PHNH1A’,
1’ PHNH1B’,
1’ PHNH1C7 PRLC1A’,’ PRLC1B’,’ PRLC1C’,’ PRLC2A’,
I ’ PRLC2B’,’ PRLC2C’,’ PRLC3C’,’ PRLC4A’,’ PRLC4B’,
1’ PRLC4C’,’ PRLH1A’,’ PRLH1B7 PR L H 1C / R H O IA ’,
1’ RH O IB ’,’ R H O IC ,’ R H 02’,’ R H 02A ’,’ R H 02B ’,’ R H 0 2 C ,
I ’ TEM PO’,’ TMP1’,’ TMP1A’,’ TMP1B’,’ TMP1C’,
1’ TMP2B’,’ TMP2C’,’ CFIPS’,’ CFIPA’,’ CFIPB’,
1’ CFIPC’,’ CFIPD’,’ CINH1A’,’ CINH1B’,’ CINH1C’,
1’ CINH2A’,
1’ CINH2B’,’ CINH2C’,’ CM DO T,’ CMDTA’,’ CMDTB’,’ CMDTC’,
1’ CMDTD’,’ HEATBL’,’ AZPH’/

Data (Statements(i),i=315,377) /* PBAR’,’ CONM DT,
1’ OVRRLX’,
1’ AZW1’,’ BZW1’,’ CZW1’,’ DZW1’,’ RSG1’,’ RSG2’,
1’ RSG3’,
1’ RSG4’,’ RSG5’,’ RSG6’,’ RSG7’,’ RSG8’,’ RSG9’,
1’ RSG10’,
1’ RSG11’,’ RSG12’,’ RSG13’,' RSG14’,’ RSG15’,’ RSG16’,
1’ RSG17’,’ RSG18’,’ RSG19’,’ RSG20’,’ RSG21’,’ RSG22’,
1’ RSG23’,’ RSG24’,’ RSG25’,’ RSG26’,’ RSG27’,’ RSG28’,
1’ RSG29’,’ RSG30',’ DSTTOL’,’ ABSIZ’,’ ORSIZ’,
1’ PH IN T ,’ CINT*,’ RG’,’ EX’,’ CG’,’ CSG1’,
1’ CSG2’,’ CSG3’,’ CSG4’,’ CSG5’,’ CSG6’,’ CSG7’,
1’ CSG8’,’ CSG9’,’ CSG10’,’ NAMSAT,
1’ UCRT ; U2CR’,’ VCRT7 V2CR’,’ W CRT,’ W2CR’,
1’ SKIP’/

end

227

APPENDIX D

FORTRAN mathematical parsing code, EVALUATE.FOR

228

Appendix D

Program Evaluate

Integer*4 DP,Start,Finish,llength
Real TextToNumber,rvalue
Character*80 Expression,uppercase,Values,String,Calculate,

1 Insert,IntegerToText
Character* 10 Forchar(0:2)
Character* 1 RP,LP,PLUS,MINUS,MULTIPLY,DIVIDE,POWER,

1 COMMA,POINT
Character*4 CLOG,CLOGE,CEXP

Common /Signs/ LP,RP,PLUS,MINUS,MULTIPLY,DIVIDE,POWER,
1 COMMA,POINT,CLOG,CLOGE,CEXP

Common /Integer/ DP

O pen(Unit=10,File=’$$LEOINP.DAT\Status=’UNKNOWN’)
O pen(U n it= ll,F ile= ’$$LEOOUT.DAT,Status=,UNKNOWN’)

Do 1 i=0,2
k=len(Forchar(i))
Do 2 j= l ,k

2 Forchar(i)(j:j)=char(32)
1 continue

Forchar(0)(l:4)=’(A l,’
Forchar(2)(l:4)=’,A l)’

read(10,*) Expression,Values

Expression= uppercase(Expression)
V alues= uppercase(V alues)
Finish= locate(1, l,COMM A, Values)-1
String=Values(l:Finish)
rvalue= int(TextToNumber(String))
DP=int(rvalue)
Call SortExpression(Expression,Values)

10 llength=length(Expression)
Start=locate(-l,llength,LP,Expression)
if (Start.eq.O) then

Expression= Calculate(Expression)
else

Finish=locate(l, Start, RP, Expression)
String=Expression(Start+1 :Finish-1)
String= Calculate(String)
Expressions Insert(Start, Finish, String, Expression)
goto 10

endif

llength=length(Expression)
String= IntegerToText(llength)
i=length(String)

229

Appendix D

Forchar (1) (1 :i)= String(1 :i)
F o rch a r(l)(i+ l:i+ 2)= 'A r
w rite(ll,Forchar) char(39),(Expression(i:i),i= 1,llength),

1 char(39)
close(lO)
close(ll)

end

c *************** Subroutines and Functions ************

BlockData Symbols
Character* 1 LP,RP,PLUS,MINUS,MULTIPLY,DIVIDE,POWER,

1 COMMA,POINT
Character*4 CLOG,CLOGE,CEXP
Common /Signs/ LP,RP,PLUS,MINUS,MULTIPLY,DIVIDE,POWER,

1 COMMA, POINT, CLOG, CLOGE.CEXP
Data LP,RP,PLUS,MINUS,MULTIPLY,DIVIDE,POWER,COMMA,POINT,

I CLOG,CLOGE,CEXP
1 7 ,’ ’LOG’,’LOGE’,’EXP’/

end

Function IntegerToText(Number)
Integer Number,Position,Power,FixNumber
Character*(*) IntegerToText
FixNumber= Number
Position =1
Power=3
j = len(IntegerToText)
Do 5 i= l,j

5 IntegerToText(i:i)= char(32)
10 if (FixNumber-(10**(Power-l))) 20,15,15
15 i-Number/(10**(Power-l))

IntegerToText(Position:Position)=char(i+48)
Number=Number-i* 10** (Power-1)
Position= Position+1

20 Power= Power-1
if (Power.ge.l) goto 10
Number= FixNumber
return
end

Subroutine SortExpression(String,Values)
Integer*4 ascii,VStart,VFinish,DP,llength,SubLength,Position

Character String*(*),Values*(*),Substring*80,Insert*80
Character * 1 RP,LP,PLUS,MINUS,MULTIPLY,DIVIDE,POWER,
COMMA,POINT
Character*4 CLOG,CLOGE,CEXP

Common /Signs/ LP,RP,PLUS,MINUS,MULTIPLY,DIVIDE,POWER,
COMMA,POINT,CLOG,CLOGE.CEXP

230

Appendix D

Common /Integer/ DP

i= l
10 llength=length(String)
15 if (i.gt.llength) then

return
endif
ascii= ichar(String(i:i))
if (ascii.ge.65.and.ascii.le.90) then

if (ascii.eq.69.and.
1 (ichar (String(i +1 :i+1)) .eq .43 .or.
1 ichar(String(i+ l:i+ l)).eq.45).and.
1 (ichar (String(i-1 :i-1)) .ge.48.and.
1 ichar(String(i-l:i-l)).le.57)) then

i= i+ l
goto 15
elseif (String(i:i+3).eq.CLOGE) then

i= i+ 4
goto 15
elseif (Str ing(i: i+2) .eq. CLOG.or.

1 String(i:i+2).eq.CEXP) then
i= i+ 3
goto 15

endif
j - i + l

20 jascii=ichar(String(j:j))
if (jascii.eq.40.or.jascii.eq.41.or.jascii.eq.42.

1 or.jascii.eq.43.or.jascii.eq.45.or.jascii.eq.
1 47.or.jascii.eq.94.or.j.ge.Uength) then

Substring=String(i:j-1)
if (j.eq.llength.and.jascii.ne.40.and.jascii.ne.41)

1 then
Substrings String(i:j)
j= j+ l ! Increment j by 1 for correct insertion

endif
SubLength= length(SubString)
Position=0

30 VStart=locate(l,Position+1,Substring,Values)
if (Values(VStart-l:VStart-l).ne.COMMA.and.

1 Values(VStart+l:VStart+l).ne.COM M A) then
Position = VStart
goto 30

endif
VStart=V Start+SubLength+l
VFinish=locate(l, VStart,COMMA, Values)-1
if (VFinish.lt.O) VFinish=length(Values)
Substrings Values(VStart:VFinish)
Strings Insert(i,j-1,Substring,String)
i s i+ length (Substring)
goto 10

else
j= j+ l

231

Appendix D

goto 20
endif

endif
i= i+ l
goto 15
end

Function Calculate(String)
Integer*4 DP,Start,Finish,Position
real numberl,number2
Character String* (*),Calculate*(*)
Character*80 NumberToText,Insert,Substring
Character*4 CLOG,CLOGE,CEXP
Character* 1 RP,LP,PLUS,MINUS,MULTIPLY,DIVIDE,POWER,

1 COMMA,POINT

Common /Signs/ LP,RP,PLUS,MINUS,MULTIPLY,DIVIDE,POWER,
1 COMMA,POINT,CLOG,CLOGE,CEXP

Common /Integer/ DP

10 Position=locate(l,l,CLOGE,String)
if (Position.ne.O) then

Call SingleNumbers(Numberl,Position+4,String,Finish)
SubString=NumberToText(LOG(Numberl))
String=Insert(Position,Finish,Substring,String)
goto 10

else
20 Position=locate(l, 1,CLOG,String)

if (Position.ne.O) then
Call SingleNumbers(Numberl,Position+3,String,Finish)
SubString=NumberToText(LOG10(Numberl))
String=Insert(Position,Finish,Substring,String)
goto 20

else
30 Position=locate(l,l,CEXP,String)

if (Position.ne.O) then
Call SingleNumbers(Number 1,Position+3,String, Finish)
SubString=NumberToText(EXP(Numberl))
String=Insert(Position,Finish,Substring,String)
goto 30

else
40 Position=locate(1,1,POWER,String)

if (Position.ne.O) then
Call DoubleNumbers(Numberl,Number2,Position,String,

1 Start,Finish)
Substring= N umberToText(Numberl**Nu mber2)
String=Insert(Start,Finish,Substring,String)
goto 40

else
50 Position= locate(1,1,MULTIPLY,String)

if (Position.ne.O) then
Call DoubleNumbers(Numberl,Number2,Position,String,

232

Appendix D

1 Start,Finish)
SubString=NumberToText(Numberl*Number2)
String=Insert(Start,Finish,Substring,String)
goto 50

else
60 Position=locate(l,l, DIVIDE, String)

if (Position.ne.O) then
Call DoubleNumbers(Numberl,Number2,Position,String,

1 Start,Finish)
SubString=NumberToText(Numberl/Number2)
String=Insert(Start,Finish,Substring,String)
goto 60

endif
endif
endif
endif
endif
endif

c Perform the addition and subtraction
70 Position=0
80 Position= locate(l, Position+1, PLUS, String)

if (Position.ne.O) then
if (String(Position-l:Position-l).eq.’E’) goto 80
Call DoubleNumbers(Numberl,Number2,Position,String,

1 Start,Finish)
SubString=NumberToText(Number 1+Number2)
String=Insert(Start,Finish,Substring,String)
goto 80

else
90 Position=0
100 Position=locate(l,Position*1,MINUS,String)

if (Position.ne.O) then
if ((Position.gt.l.and.String(Position-l:Position-l).

1 eq.’E’).or.Position.eq.l) goto 100
Call DoubleNumbers(Numberl,Number2,Position,String,

1 Start,Finish)
SubString=NumberToText(Numberl-Number2)
String=Insert(Start,Finish,Substring,String)
goto 100

endif
endif
Calculate=String
return
end

Function uppercase(String)
Character String*(*),uppercase*(*)
Integer ascii,llength
llength= length(String)
Do 10 j= l,llength

ascii= ichar(String(j :j))

233

Appendix D

if (ascii.ge.97.and.ascii.le.122) then
String(j:j)=char(ascii-32)

else
String(j:j)= char (ascii)

endif
10 continue

uppercase=String
return
end

Function length(String)
Character*(*) String
length=len(String)
llength= length
Do 10 j=llength, 1,-1

if (ichar(String(j:j)).ne.32) return
length= length-1

10 continue
length=0
return
end

Function locate(direction,start,Substring,String)
Integer*4 direction,start,finish,SubLength
Character SubString*(*),String*(*)
SubLength= Iength(SubString)
finish= 1
if (direction.eq.l) finish=length(String)
Do 10 i= start,finish,direction

if (String(i:i+SubLength-l).eq.Substring) then
locate=i
return

endif
10 continue

locate=0
return
end

Function Insert(istart,ifinish,Substring,String)
Integer*4 istart,ifinish,llength,tlength
Character SubString*(*),String*(*),Insert*(*)
j=len(Insert)
Do 10 i= l,j

10 Insert(i:i)=char(32)
if (istart.gt.l) Insert(l:istart-l)=String(l:istart-l;
llength=length(SubString)
tlength= istar t-1 + llength
Insert(istart:istart-bllength-l)=SubString(l:llengi.h)
llength= length(String)
if (ifinish+l.gt.ilength) return
Insert(tlength+ l:tlength+llength-ifinish+1)=

234

Appendix D

1 String(ifinish+1 :llength)
return
end

Function LocateMaths(Direction, Start,String)
Integer*4 Direction,Start,Finish

Character*(*) String
if (Direction^)) 10,10,20

10 Finish =1
goto 30

20 Finish= length (String)
30 Do 40 i=Start,Finish,Direction

ascii=ichar(String(i:i))
if ((ascii.eq.42.or.ascii.eq.43.or.ascii.eq.45.

1 or.ascii.eq.47)) then
if (i.eq.start.and.ichar(String(i:i)).eq.45) goto 40
if (i.gt.l.and.ichar(String(i-l:i-l)).eq.69) goto 40
if (Direction.eq.l) then

LocateM aths=i-l
else

if (i.eq.l) then
LocateMaths=i
return

endif
LocateM aths=i+l

endif
return

endif
40 continue

LocateMaths=Finish
return
end

Function TextToNumber(String)
Integer*4 llength,DP,EPos,Ipower,Start,PSign,Sign
Character String* (*),E*1
Character* 1 RP,LP,PLUS,MINUS,MULTIPLY,DIVIDE,POWER,

1 COMMA,POINT
Character*4 CLOG,CLOGE,CEXP
Real TextToNumber
Common /Signs/ LP,RP,PLUS,MINUS,MULTIPLY,DIVIDE,POWER,

1 COMMA,POINT,CLOG,CLOGE,CEXP
Common /Integer/ DP
E = T ’
lpower=0
Sign = 1
TextToNumber=0
llength= length (String)
if (String(l:l).eq.MINUS) then

Sign=-1

235

Appendix D

String=String(2:llength)
llength=llength-1

endif
EPos=locate(-l,llength,E,String)
if (EPos.gt.O) then

j=llength-EPos-l
S tart= E P os+ l
PSign =1
if (String(EPos+l:EPos+ l).eq.PLUS.or.

1 String(EPos+ l:EPos+ l).eq.MINUS) then
j=llength-EPos-2
Start=EPos+2

endif
if (String(EPos+l:EPos+ l).eq.MINUS) PSign=-l

Do 5 i=Start,llength
Ipower= Ipower+ ((ichar(String(i: i)) -48) * (10 * *j))

Ipower= PSign * Ipower
String=String(l:Epos-l)
llength=length(String)

endif
if (locate(l,l,POINT,String).eq.O) then

j=llength-1

j = locate(l,l,POINT,String)-2
endif

Do 20 i=l,llength
if (ichar(String(i:i)).eq.46) goto 20
TextToNumber=TextToNumber+

1 ((float(ichar(String(i:i)))-48.0)
1 *(10.0**float(j)))

TextToNumber=Sign*TextToNumber*(10.0**float(Ipower))
return
end

Function NumberToText(Number)
Character*80 NumberToText,DummyScreen
Real Number,Inumber
Integer DP,Sign,Power,Start
Common /Integer/ DP
Start= 1
Do 5 i= l,80

5 continue

else

10
20

j= j- l
continue

5 NuinberToText=char(32)
if (number-0.0) 7,8,9
NumberToText(l: 1)=
Start=2
Number= abs(Number)
goto 9
NumberToText=’0’

7

8

236

Appendix D

return
9 if (number-1.0) 10,20,30
10 S ign= l

goto 35
20 N um berToText=T

return
30 Sign=-1

C Get the number into a standard form

35 Power=0
40 Inumber=number*(10.0**(float(Sign)*float(Power)))

write(DummyScreen,110) Inumber ! DO NOT remove this line
if (Inumber.ge.l.O.and.Inumber.lt.10.0) goto 50
Power= Power+1
goto 40

50 Inumber=(float(int((Inumber*(10.0**float(DP+l)))+0.5)))/
1 (10.0**float(DP+l))

c jnumber=int(inumber*(1.0+1.0*10.0**(-l*(DP))))
write(DummyScreen,110) Inumber ! DO NOT remove this line
NumberToText(Start:Start)=char(int(inumber)+48)
NumberToText(Start+1: Start+ 1)=char(46)
Inumber= (Inumber-float(int(Inumber))+0.5 * 10.0 * * (-1 * DP)) * 10.0
Do 60 i= l,D P -l

write(DummyScreen,110) Inumber ! DO NOT remove this line
NumberToText(i+ Start +1: i+ Start + 1)= char ((int(Inumber)) +48)
Inumber= (Inumber-float(int(Inumber))+

1 0.5*10.0**(-1*DP))*10.0
60 continue

Uength=length(NumberToText)
65 if (ichar(NumberToText(llength:Ilength)).ne.48) goto 70

NumberToText(llength:llength)=char(32)
llength= llength-1
goto 65

70 if (Power.eq.0) then
if (ichar(NumberToText(llength:llength)).eq.46)

1 NumberToText(llength:llength)=char(32)
return

else
NumberToT ext(llength+1: llength + 1)= char(69)
if (0-Sign) 80,80,90

80 NumberToText(llength+2:llength+2)=char(45)
goto 100

90 NumberToText(llength+2:llength+2)=char(43)
100 if (Power.lt. 10) then

N umberToText(llength+3: lie tii+ 3)= char(Power+48)
elseif (Power.lt. 100) then

NumberToT ext(llength+3. ’length+3) -=
1 char(int(float(Power)/10.0)+48)

Power=Power-(int(float(Power)/10.0))*10
N umberToT ext(llength+4: llength+4)=

1 char(Power+48)

237

Appendix D

endif
endif

return
110 Format(E20.15)

end

Subroutine DoubleNumbers(Numberl,Number2,Position,String,
1 Startl,Finish2)

Real Numberl,Number2,TextToNumber
IntegerM Position,Startl,Finish2
Character*(*) String
Star 11= LocateMaths(-1,Position-1 .String)
Finish2=LocateM aths(l,Position+l,String)
Numberl=TextToNumber(String(Startl:Position-l))
Number2=TextToNumber(String(Position+l:Finish2))
return
end

Subroutine SingleNumbers(Number,Start,String,Finish)
Real Number,TextToNumber
IntegerM Start,Finish
Character*(*) String
Finish=LocateM aths(l, Start, String)
Number=TextToNumber(String(Start:Finish))
return
end

238

APPENDIX E

LISP KBFE Objects and Rulebases

239

Appendix E

OBJECTS

(set-object TargetUserModel
:Type ’text
:AllowedValues ’(novice experienced advanced)
:DefaultValue ’novice
.•Prompt "What type of PHOENICS user to you consider yourself to be ?")

(set-object UserModel
:Type ’text
:AllowedValues ’(novice experienced advanced)
:DefaultValue ’novice
:Prompt "What kind of KBFE user do you consider yourself to be ?")

(set-object fact)

(set-object boundary-names
:type ’list
:Prompt ’never)

(set-object trace
:Type ’text
:Value ’off)

(set-object inlet-flow-area
:Type ’real
:Rulebase t)

(set-object number-of-bindings
.’Type ’integer)

(set-object x-min
:type ’real)

(set-object x-max
:type ’real)

(set-object y-min
:type ’real)

(set-object y-max
:type ’real)

(set-object z-min
:type ’real)

(set-object z-max
:type ’real)

(set-object minimum-region-size

240

Appendix E

:type ’real
: Compute Value ’ (set-minimum-region-size))

(set-object porosity-definition
:Type ’text
:Preface ’(For the blockages you can define a default porosity -

0 for a solid - 1 for no obstruction or greater
than 1 for simulating expanded cells. The default
which you can predefine will be applied to all
obstructions. Alternatively you can individually
specify obstruction porosities.)

:DefaultValue ’constant-0.0
:AllowedValues ’(constant-0.0 constant-predefined

individually-defined)
: Prompt "Porosity definition
:Rulebase t)

(set-object porosity
:TyPe ’real
:Status ’volatile
:DefaultValue 0.0
:AllowedValues ’(> = 0.0 < = 10.0)
:Prompt "Porosity value")

(set-object x-grid
:Type ’list)

(set-object y-grid
:Type ’list)

(set-object z-grid
:Type ’list)

(set-object dimensional-units
:Type ’text
:DefaultValue ’mm
•.AllowedValues ’(m mm)
:Preface ’(What are the coordinate units)
•.Prompt "What are the dimensional units ?")

(set-object conversion-factor
:Type ’real
:RuleBase t)

(set-object number-of-dimensions
:Type ’integer
:DefaultValue 2

: Fixed Value 2
:AllowedValues’(> = 1 < = 3)
:Preface ’(The geometry can be either 2 or 3 dimensional.)
:Prompt "Number of dimensions")

241

Appendix E

(set-object axis-1
:Type ’Text
: Allowed Values ’(unused x circumferential))

(set-object axis-2
:Type ’Text
:AllowedValues ’(unused y radial))

(set-object axis-3
:Type ’Text
:AllowedValues ’(unused z axial))

(set-object store-variables
:Type ’list)

(set-object delta
:Type ’real

:Prompt "Enter the minimum cell size"
.‘RuleBase t)

(set-object boundary-layer-thickness
:Type ’real
:ComputeValue ’(get-boundary-layer-thickness))

(set-object slab-wise-variables
:’iype ’list)

(set-object whole-field-variables
:Type ’list
:Value ’(p i))

(set-object target-file
:Description ’(Target PHOENICS data file)
:Type ’string
:Preface ’(Enter the target ~ PHOENICS data file. Please include

the file extension - ie target.file)
:Default Value "Ql.D AT'
:Prompt "PHOENICS target data file")

(set-object laminar-prndtl
:Description ’(Laminar Prandtl number)
:Type 'real

:Units "Dimensionless"
:Prompt "Enter the Prandtl number for the find")

(set-object viscosity
:Type ’real

:Units " m ^ 2 /s "
:Prompt "Enter the kinematic viscosity")

242

Appendix E

(set-object viscosity-thermal-dependence
:Type ’text
:AllowedValues ’(required not-required)
:DefaultValue ’not-required
:Preface ’(If you wish to simulate the change of viscosity within

the domain depending upon the calculated local
temperatures then enter ^ required at the prompt.)

:Prompt "Viscosity thermal dependence required or not-required ?"
:RuleBase t)

(set-object viscosity-equation
:Type ’string
:AllowedValues ’("A+BT' "A+BT+BT**2")
.-DefaultValue "A+BT*
: Prompt "Enter the viscosity equation which is appropriate")

(set-object enula
:Type ’real
:DefaultVaIue 0.0
.•Preface ’((Viscosity equation - (1)) viscosity-equation)
:Prompt "Enter coefficient A of the viscosity equation")

(set-object enulb
:Type ’real
:DefaultValue 1.0
:Preface ’((Viscosity equation - (1)) viscosity-equation)
:Prompt "Enter coefficient B of the viscosity equation")

(set-object enulc
:IYpe ’real
:DefaultValue 0.0
:Preface ’((Viscosity equation - (1)) viscosity-equation)
:Prompt "Enter coefficient C of the viscosity equation")

(set-object tmp 1-equation
:Type ’string
:AllowedValues ’(constant "A+BH")
:DefaultValue "A+BH"
:Preface ’(Temperature can be expressed a a function of enthalpy.

Enter the equation which expresses the relationship of
temperature as a function of enthalpy.)

: Prompt "T = f(H)"
-.RuleBase t)

(set-object tmp la
:Ty -)e ’
:DefaultValue 0.0
:Preface’f ' ^ —perature/enthalpy relationship - (1))

tmp 1-equation)
:Prompt "Enter coefficient A in the temperature/enthalpy relationship")

243

Appendix E

(set-object tmp lb
:Type ’real
:Default Value 1.0
:Preface ’((Temperature/enthalpy relationship - (1))

tmp 1-equation)
:Prompt "Enter coefficient B in the temperature/enthalpy relationship")

(set-object density
:Type ’real
:DefaultValue 1.0

:Units " k g /m 'N3"
:Prompt "Enter the density")

(set-object density-thermal-dependence
:Type ’text
:AllowedValues ’(not-required enthalpy temperature)
:DefaultVaIue ’not-required
:Preface ’(If you wish to simulate the change of density within

the domain depending upon the localised thermal
conditions then enter the appropriate value.)

:Prompt "Density thermal dependence"
rRulebase t)

(set-object density-equation
:iype ’string
:AllowedValues ’("A +BT’ ”1/(A+BH)" "C+A(P)**B" "A +B T’ "B(P)AT')
:DefaultValue "A+BT'
:Prompt "Enter the density equation which is appropriate")

(set-object rho la
.-Type ’real
:DefaultValue 0.0
:Preface ’((Density equation - (1)) density-equation)
:Prompt "Enter coefficient A of the density equation")

(set-object rholb
:Type ’real
:DefaultValue 1.0
rPreface ’((Density equation - (1)) density-equation)
:Prompt "Enter coefficient B of the density equation")

(set-object rholc
:Type ’real
:DefaultValue 0.0
:Preface ’((Density equation - (1)) density-equation)
:Prompt "Enter coefficient C of the density equation")

244

Appendix E

(set-object presso
:Type ’real
•.Default Value 0.0
:Preface ’(The datum static pressure is the pressure that needs to

be added to the pheonics solution pressure field so
that the pressure dependent physical quantities can be
calculated.)

:Prompt "Enter the datum static pressure")

(set-object coordinates
:Type ’text
:AllowedValues ’(cylindrical cartesian)
:DefaultValue ’cartesian
:Preface ’(^Phoenics essentially uses two types of coordinate

systems - cartesian and cylindrical. For two
dimensional configurations which this system can
initially develop the /s XY plane will be utilised. This
will be automatically translated into the respective
^ XY or /v YZ planes which phoenics requires depending upon
your choice of either cartesian of cylindrical
coordinates.)

:Prompt "Are the coordinates cartesian or cylindrical ?")

(set-object analysis-title
:Type ’string
:Preface ’(The analysis title cannot be more than 40

characters long. The main purpose of this is
to be able to identify the analysis.)

:Help ’((Novice (This is the novice help))
(Experienced (This is the experienced help))
(Advanced (This is the advanced help)))

: Prompt "What is the analysis title ?")

(set-object thermal-requirements
:Type ’text
:AIlowedValues ’(thermal isothermal)
:DefaultValue ’Isothermal
:Prompt "Is the analysis thermal or isothermal ?")

(set-object number-of-inlets
:Type ’integer
:AllowedValues ’(> 0)
•.DefaultValue 1
:Prompt "How many inlets are within the domain ?")

(set-object number-of-outlets
:Type ‘Integer
:AllowedVaIues’(> = 1)
:DefaultValue 1
: Prompt "How many outlets are within the domain ?")

245

Appendix E

(set-object number-of-obstructions
:iype ’integer
:AllowedValues ’(> = 0)
:DefaultValue 0
: Prompt “How many obstructions are within the domain ?")

(set-object flow-regime
:Type ’text
.’AllowedValues ’(Laminar Turbulent)
:DefaultValue ’laminar
:Prompt "Is the flow to be laminar or turbulent ?")

(set-object fluid-compressibility
:Type ’text
:AllowedValues ’(compressible incompressible)
: Default Value ’incompressible

:Fixedvalue ’incompressible
:Preface ’(Gases such as air act as incompressible fluids for

mach numbers less than 0.3.)
:Prompt “Is the fluid compressible or incompressible ?")

(set-object aspect-ratio
:Type ’integer

:AllowedValues ’(> = 1 < = 10)
:Units "Dimensionless"

: Default Value 5
: Prompt "Enter the maximum allowed aspect ratio")

246

Appendix E

RULEBASES

Rulebase: BC-RB
Network: ((1 ())

(2 ((5 ((6 0) (7 0) (8 0) (14 ())))
(12 ((13 0) (14 0) (15 ())))
(16 0)
(17 0)
(18 0)
(19 0)
(20 0)
(21 0)
(22 0)
(23 0)
(24 0)
(25 0)
(26 ())))
(3 ((12 ((13 0) (14 0) (15 ())))))
(4 ((5 ((6 0) (7 0) (8 0) (14 ())))))
(9 ((5 ((6 0) (7 0) (8 0) (14 ())))
(12 ((13 0) (14 0) (15 ())))
(16 0)
(17 0)
(18 0)
(19 0)
(20 0)
(21 0)
(22 0)
(23 0)
(24 0)
(25 ())
(26 ())))
(10 ((16 ())))
(11 ((17 0) (18 0) (19 0) (20 0) (21 0) (22 ()) (23 ()))))

Rules:
(rule-1 (if (dependent-variables are uninstantiated))

(then (instantiate dependent-variables)))

(rule-2 (for all dependent-variables
(if ((u l v l w l) includes | lvalue |)

(boundary name for | $type | | Sidentity | | Inodes | is | Inam e |)
(| |ty p e | is inlet)
(| lvalue | condition is | Icondition |)
(| lvalue j value is ||q u an tity |))

(then (assert }lvalue) at |lty p e | boundary |Inam e | is |Icondition| at
|lquantity |))))

(rule-3 (if (dependent-variables includes ke)
(boundary name for | Stype J ||iden tity | | Inodes | is | Inam e j)
(| Itype | is inlet)

247

Appendix E

(ke value is | {quantity |))
(then (assert ke at inlet boundary | Iname | is constant at ||quan tity |))))

(rule-4 (if (dependent-variables includes ep)
(boundary name for inlet | lidentity | [Inodes | is | Inam e |)
(ep value is ({quantity)))

(then (assert ep at inlet boundary | Inam e | is constant at
| Iquantityj)))

(rule-5 (if (ke at inlet boundary | {name | is constant at | Ike |)
(cardinal for surface |Inodes) is ||ca rd in a l|)
(characteristic length for |Inam e) = ||gm ixl|))

(then (ep value is ((| Ske | | ~ | 1.5) * 0.1643 / (||G m ix l| * 0.09)))))

(Rule-6 (if (coordinates are cartesian)
((north south) includes | Icardinal |))

(then (characteristic length for | Iname | = (abs ((xc_2) - (xc_l))))))

(rule-7 (if (coordinates are cylindrical)
((north south) includes | Icardinal |))

(then (characteristic length for | Iname | = (abs ((zc_2) - (zc_l))))))

(rule-8 (if (or ((coordinates are cartesian)
((west east) includes | {cardinal |))

((coordinates are cylindrical)
((low high) includes j Icardinal |))))

(then (characteristic length for | {name) = (abs ((yc_2) - (yc_l))))))

(rule-9 (for all dependent-variables
(if ((u l v l w l p i ep ke) excludes | {value|)

(boundary name for |{type| |{identity) |Inodes| is |Inam e))
(| {type | is inlet)
(j lvalue | condition is) {condition |)
(j lvalue j value is | {quantity |))

(then (assert | {value (at) {type j boundary | {name | is | {condition | at
| {quantity |))))

(rule-10 (if (dependent-variables includes p i)
(boundary name for | {type | | {identity | | Inodes | is) {name |)
(| {type | is outlet)
(p i value is |{quantity)))

(then (assert p i at |ltypej boundary Jlname) is constant at |{quantity))))

(rule-11 (if (dependent-variables includes h i)
(boundary name for) {type | | {identity| | {nodes | is |{nam e|)
(j {type | is wall)
(h i condition is | {condition |)
(h i value is |{quantity)))

(then (assert h i at |{typej boundary ({name) is |{condition! at |{quantity))))

(rule-12 (if (u l for |{nam e| is){ul-value|)
(vl for | {name | is |{vl-value|)

248

Appendix E

(wl for | {name | is |{w l-value|)
(turbulence intensity for | {name | is | {ti |))

(then (ke value is
((IStil / 6) *
((|$ul-value| | ~ | 2) + ($vl-value| | ~ | 2) + (|$w l-value| | ~ | 2))))))

(rule-13 (if (|{velocity) at inlet boundary |{nam e| is constant is
uninstantiated))

(then ([{velocity) for |{nam e| is 0.0)))

(Rule-14 (if (({velocity) at inlet boundary |{name) is constant at
) {velocity-value |))

(then (| {velocity | for |{nam e| is | {velocity-value))))

(rule-15 (if (flow-regime is turbulent))
(then (turbulence intensity for | {name | is

(ask turbulence intensity at ({nam e)
(|{ type | ({identity) nodes |{nodes|)
((type real)
(allowedvalues (> 0 < 0.5))
(Defaultvalue 0.01)
(Help ((default (enter the turbulent intensity as a percentage of

the root mean squared velocity at | {name | - your entered value should be between 0 and
1 this is usually in the range of 1 percent - ie 0.01)))))))))

(Rule-16 (if () {type | is outlet))
(then (p i condition is constant)

(p i value is
(ask outlet pressure at | {name |

((type real)
(units "n / m '', 2")
(defaultvalue 0.0)
(Allowedvalues (> = 0.0))
(Help ((default (fluid velocity fields are driven by | pressure. |

| ^ Phoenics | requires that at least one) ^ outlet (pressure is | fixed, j TTiis is usually at
atmospheric gauge | pressure. | Please enter the known value - if this is unknown then
accept the default | value.))))))))))

(Rule-17 (if ((u l vl wl ep ke) includes | {value |))
(then (| {value | condition is constant)))

(rule-18 (if (| {type | is inlet))
(then (h i condition is

(ask thermal condition at | {name |
([{type) ({identity| nodes |{nodes))
((type text)
(defaultvalue isothermal)
(allowedvalues (isothermal constant-heat-flux)))))))

(rule-19 (if (|{ type | is inlet) (| {condition | is isothermal))
(then (h i value is

(ask temperature at]{name|

249

(j{type| |{identity| nodes |{nodes))
((type real) (units "degrees Celsius"))))))

(rule-20 (if () {type | is inlet) (| {condition | is constant-heat-flux))
(then (h i value is

(ask heat flux at |{nam e|
(|{ type | |{identity) nodes |{nodes|)
((type real)
(allowedvalues (> 0))
(units "w / m ~2"))))))

(rule-21 (if (] {type j is wall))
(then (h i condition is

(ask thermal condition at |{nam e|
(|{ type | ({identity| nodes |{nodes))
((type text)
(allowedvalues
(isothermal adiabatic constant-heat-flux)))))))

(rule-22 (if (| {type) is wall) (| {condition | is isothermal))
(then (h i value is

(ask temperature at | {name |
(|{ type | |{identity| nodes |{nodes))
((type real) (units "degrees Celsius"))))))

(rule-23 (if (| {type (is wall) ([{condition) is constant-heat-flux))
(then (h i value is

(ask heat flux at | {name |
(|{ type | |{identity) nodes |{nodes|)
((type real) (units "w / m ̂ 2"))))))

(rule-24 (if (| {type | is inlet))
(then (u l value is

(ask u l velocity at |{nam e|
((type real)
(units "m / s")
(help ((default (axis-1 velocity)))))))))

(rule-25 (if (| {type | is inlet))
(then (vl value is

(ask v l velocity at ({name)
((type real)
(units "m / s")
(help ((default (axis-2 velocity)))))))))

(rule-26 (if ([{type] is inlet))
(then (wl value is

(ask w l velocity at | {name |
((type real)
(units "m / s")
(help ((default (axis-3 velocity)))))))))

Appendix E

Rulebase: DEPENDENT-VARIABLES-RB
Network: ((1 ()) (2 ()) (3 ()) (4 ()) (5 ()) (6 ()) (7 ()) (8 ()))

Rules:
(rule-1 (if ((laminar turbulent) includes flow-regime))

(then (dependent-variables includes p i)))

(rule-2 (if (axis-1 is-not unused))
(then (dependent-variables includes u l)

(slab-wise-variables includes u l)))

(rule-3 (if (axis-2 is-not unused))
(then (dependent-variables includes v l)

(slab-wise-variables includes v l)))

(rule-4 (if (axis-3 is-not unused))
(then (dependent-variables includes w l)

(slab-wise-variables includes w l)))

(rule-5 (if (thermal-requirements is thermal))
(then (dependent-variables includes h i)

(whole-field-variables includes h i)))

(rule-6 (if (or ((density-thermal-dependence is temperature))
((density-thermal-dependence is enthalpy))
((thermal-requirements is isothermal)
(fluid-compressibility is compressible))))

(then (store-variables includes rhol)))

(rule-7 (if (viscosity-thermal-dependence is required))
(then (store-variables includes enul)))

(rule-8 (if (flow-regime is turbulent))
(then (dependent-variables includes ke)

(dependent-variables includes ep)
(store-variables includes enut)))

Rulebase: CONVERSION-FACTOR-RB
Network: ((1 ()) (2 ()))

Rules:
(rule-1 (if (dimensional-units are m)) (then (conversion-factor = 1.0)))
(rule-2 (if (dimensional-units are mm)) (then (conversion-factor = 0.001)))

Rulebase: DELTA-RB
Network: ((1 ((2 ()) (3 ()))))

Rules:
(rule-1 (if (i v t w * w w d smallest cell size = | {delta |))

(then (delta defaultvalue | {delta |)
(delta ::dvalues

(> = | {delta | < (minimum-region-size / 2)))
(delta preface

(the recommended minimum cell size has been
calculated as

251

Appendix E

(| {delta | / conversion-factor)
dimensional-units according to the geometry and
existing boundary | conditions. | You can accept
this default value by pressing return - or you
can enter a new | value. |))

(Ask delta)))

(rule-2 (if (minimum-region-size < (2 * boundary-layer-thickness)))
(then (recommended smallest cell size =

(0.1 * Minimum-region-size))))

(rule-3 (if (minimum-region-size > = (2 * boundary-layer-thickness)))
(then (recommended smallest cell size =

(boundary-layer-thickness / 3.0))))

Rulebase: FLUID-RB
Network: ((1 ())

(2 0)
(3 0)
(4 0)
(5 0)
(6 0)
(7 0)
(8 0)
(9 0)
(10 0)
(11 0)
(12 ())
(13 0)
(14 ()))

Rules:
(rule-1 (if (thermal-requirements is thermal)

(laminar-prndtl is uninstantiated))
(then (ask laminar-prndtl)))

(rule-2 (if (or ((thermal-requirements is isothermal)
(viscosity is uninstantiated))

((thermal-requirements is thermal)
(viscosity-thermal-dependence is-not required))))

(then (ask viscosity)))

(rule-3 (if (flow-regime is laminar)
(thermal-requirements is thermal)
(viscosity-thermal-dependence is required)
(viscosity-equation is "a+bt"))

(then (ask enula) (ask enulb) (ask tmp 1-equation)))

(rule-4 (if (flow-regime is laminar)
(thermal-requirements is thermal)
(viscosity-thermal-dependence is required)
(viscosity-equation is "a+bt+ct**2"))

252

Appendix E

(then (ask enula) (ask enuib) (ask enulc) (ask tm pl)))

(rule-5 (if (or ((fluid-compressibility is incompressible)
(thermal-requirements is isothermal)
(density is uninstantiated))

((thermal-requirements is thermal)
(density-thermal-dependence is-not required))))

(then (ask density)))

(rule-6 (if (thermal-requirements is isothermal)
(fluid-compressibility is compressible))

(then (density-equation is "c+a(p)**b")))

(rule-7 (if (thermal-requirements is thermal)
(density-thermal-dependence is enthalpy))

(then (density-equation allowedvalues ("a+bh" "1/a+bh"))))

(rule-8 (if (thermal-requirements is thermal)
(density-thermal-dependence is temperature)
(fluid-compressibility is compressible))

(then (density-equation is "b(p)/t")))

(rule-9 (if (thermal-requirements is thermal)
(density-thermal-dependence is temperature)
(fluid-compressibility is incompressible))

(then (density-equation is "a+bt")))

(rule-10 (if (thermal-requirements is thermal)
(density-thermal-dependence is enthalpy)
(density-equation is "a+bh"))

(then (ask rhola) (ask rholb)))

(rule-11 (if (thermal-requirements is thermal)
(density-thermal-dependence is enthalpy)
(density-equation is "l/(a+bh)"))

(then (ask rhola) (ask rholb)))

(rule-12 (if (thermal-requirements is isothermal)
(fluid-compressibility is compressible)
(density-equation is "c+a(p)**b"))

(then (ask rhola) (ask rholb) (ask rholc) (ask presso)))

(rule-13 (if (thermal-requirements is thermal)
(density-thermal-dependence is temperature)
(densny-equation is "a+bt"))

(then (ask rhola) (ask rholb) (ask tmpl-equation)))

(rule-14 (if (thermal-requirements is thermal)
(density-thermal-dependence is temperature)
(fluid-compressibility is compressible)
(density-equation is "b(p)/t"))

253

Appendix E

(then (ask rholb) (ask presso) (ask tmp 1-equation)))

Rulebase: Gl-RB
Network: ((1 ()) (2 0) (3 ()))

Rules:
(rule-1 (if nothing)

(then (-> q l message | ^ group | 1 run identifiers and other
preliminaries)))

(rule-2 (if (analysis-title is instantiated))
(then (-> q l |?[]| Text analysis-title)))

(rule-3 (if nothing) (then (-> screen group 1 complete)))

Rulebase: G2-RB
Network: ((1 ()) (2 ()))

Rules:
(rule-1 (if nothing)

(then (-> q l message | ^ group | 2 transience - time step
specification)))

(rule-2 (if nothing) (then (-> screen group 2 complete)))

Rulebase: G3-RB
Network: ((1 ()) (2 ()) (3 ()) (4 ()) (5 ()) (6 ()) (7 ()) (8 ()))

Rules:
(rule-1 (if nothing)

(then (-> q l message | ^ group | 3 x-direction grid specification)))

(rule-2 (if (coordinates are cylindrical)) (then (-> q l |?= | Cartes f)))

(rule-3 (if (x has j$x| regions)
(x region |$x| cells j$xfirst| to |$xlast|)
(y has | $y | regions)
(y region |$y| cells |$yfirst| to |$ylast|)
(z has |$z | regions)
(z region |$z| cells |$zfirst| to |$zlast|)
((|$xlastj * |$ylast| * |$zlast|) > 1000))

(then (-> q l message make sure that the array | /'s maxfrc| in
| ^ satlit | is at least
(|$xlast| * |$ylast| * | $zlast j))))

(rule-4 (if (x has |$nreg| regions)
(x region |$nreg| cells j Sstart | to j$finish|)
(|$finish | > 1))

(then (-> q l |? = | Nx | Sfinish |)))

(rule-5 (if (x-max > 0.0)) (Then (-> q l [? = | Xulast x-max)))

(rule-6 (for all x-grid
(if nothing)
(then (-> q l |?[]= [Xfrac |$index| |$value|))))

254

Appendix E

(rule-7 (if nothing) (then (-> screen group 3 complete)))

(rule-8 (if (x has | $n | regions)
(x region |$n | cells |$first| to |$ last|)
(| $last | > 100))

(then (-> q l message alter the array nxfr in satlit to be | Slast j)))

Rulebase: G4-RB
Network: ((1 ()) (2 ()) (3 ()) (4 ()) (5 ()))

Rules:
(rule-1 (if nothing)

(then (-> q l message | ^ group] 4 y-direction grid specification)))

(rule-2 (if (y has |$nregj regions)
(y region |$nreg| cells |$start| to | Sfinish |)
(| Sfinish | > 1))

(then (-> q l]?=] Ny |Sfinish|)))

(rule-3 (if (y-max > 0.0)) (Then (-> q l |? = | Yvlast y-max)))

(rule-4 (for all y-grid
(if nothing)
(then (-> q l |? []= | Yfrac j$index| (Svaluej))))

(rule-5 (if nothing) (then (-> screen group 4 complete)))

Rulebase: G5-RB
Network: ((1 ()) (2 ()) (3 ()) (4 ()) (5 ()))

Rules:
(rule-1 (if nothing)

(then (-> q l message | ^group] 5 z-direction grid specification)))

(rule-2 (if (z has |$nreg| regions)
(z region |$nreg| cells |$startj to | Sfinish |)
(| Sfinish | > 1))

(then (-> q l |? = | Nz | Sfinish |)))

(rule-3 (if (z-max > 0.0)) (Then (-> q l]?= | Zwlast z-max)))

(rule-4 (for all z-grid
(if nothing)
(then (-> q l |? []= | Zfrac [Sindexj |$value|))))

(rule-5 (if nothing) (then (-> screen group 5 complete)))

Rulebase: G6-RB
Network: ((1 ()) (2 ()))
(rule-1 (if nothing)

(then (-> q l message | ^ group | 6 body fitted coordinates)))

(rule-2 (if nothing) (then (-> screen group 6 complete)))

255

Appendix E

Rulebase: G7-RB
Network: ((1 ()) (2 ()) (3 ()) (4 ()) (5 ()) (6 ()))

Rules:
(rule-1 (if nothing)

(then (-> q l message | ~ group | 7 variables - including porosities -
named stored and solved)))

(rule-2 (if (store-variables is instantiated))
(then (-> q l j?[]| Store store-variables)))

(rule-3 (if (flow-regime is turbulent) (store-variables includes enut))
(then (-> q l j? = | Vist 50) (-> q l |? []= | Name 50 enut)))

(rule-4 (for all whole-field-variables
(if nothing)
(then (-> q l |?[]| Solutn |$value| y y y n n n))))

(rule-5 (for all slab-wise-variables
(if nothing)
(then (-> q l |?[]| Solutn |$value| y y n n n n))))

(rule-6 (if nothing) (then (-> screen group 7 complete)))

Rulebase: G8-RB
Network: ((1 ()) (2 ()) (3 ()))

Rules:
(rule-1 (if nothing)

(then (-> q l message | ^ group | 8 terms - in differential equations -
and devices)))

(rule-2 (if (thermal-requirements are thermal))
(then (-> q l | ?[] | Terms h i n y y n y n)))

(rule-3 (if nothing) (then (-> screen group 8 complete)))

Rulebase: G9-RB
Network: ((1 ())

(2 0)
(3 0)
(4 0)
(5 ())
(6 0)
(7 0)
(8 0)
(9 0)
(10 0)
(11 0)
(12 0)
(13 0)
(14 0)
(15 ()))

256

Appendix E

Rules:
(rule-1 (if nothing)

(then (-> q l message | ^ group | 9 properties of the medium)))

(rule-2 (if (viscosity-thermal-dependence is not-required))
(then (-> q l |? = | Enul viscosity)))

(rule-3 (if (viscosity-thermal-dependence is required)
(viscosity-equation is "a+bt"))

(then (-> q l }?=j Enul grndl)
(-> q l | ?= | Enula enula)
(-> q l j? = j Enulb enulb)))

(rule-4 (if (viscosity-thermal-dependence is required)
(viscosity-equation is "a+bt+ct**2"))

(then (-> q l | ?== [Enul grnd2)
(-> q l | ?= | Enula enula)
(-> q l j ?= j Enulb enulb)
(-> q l |? = | Enulc enulc)))

(rule-5 (if (density-thermal-dependence is not-required)
(fluid-compressibility is incompressible))

(then (-> q l | ?— | Rhol density)))

(rule-6 (if (density-thermal-dependence is enthalpy)
(density-equation is "a+bh"))

(then (-> q l |?= | R hol grndl)
(-> q l | ?= | R hola rhola)
(-> q l j ?= j Rholb rholb)))

(rule-7 (if (density-thermal-dependence is enthalpy)
(density-equation is "l/(a+bh)"))

(then (-> q l |? = | R hol grnd2)
(-> q l | ?= | R hola rhola)
(-> q l | ?=j Rholb rholb)))

(rule-8 (if (density-thermal-dependence is not-required)
(fluid-compressibility is compressible))

(then (-> q l j ?= j Rhol grnd3)
(-> q l | ?== | R hola rhola)
(-> q l | ?= j R holb rholb)
(-> q l i?=j R holc rholc)
(-> q l |? = | Presso presso)))

(rule-9 (if (density-thermal-dependence is temperature)
(density-equation is "a+bt"))

(then (-> q l |? = [Rhol grnd4)
(-> q l |? = | R hola rhola)
(-> q l |? = | R holb rholb)))

(rule-10 (if (density-thermal-dependence is temperature)
(density-equation is "b(p)/t"))

257

Appendix E

(then (-> q l |? = | Rhol grnd5)
(-> q l | ?— | Rholb rholb)
(-> q l j? = j Presso presso)))

(rule-11 (if (thermal-requirements are thermal)
(tmp 1-equation is constant))

(then (-> q l |? = j Tm pl grndl) (-> q l |? = | Tmp la tm pla)))

(rule-12 (if (thermal-requirements are thermal) (tmp 1-equation is "a+bh"))
(then (-> q l |? = | Tm pl grnd2)

(-> q l j?= | Tm pla tm pla)
(-> q l j?=j Tmp lb tmp lb)))

(rule-13 (if (thermal-requirements is thermal))
(then (-> q l |? []= | Prndtl h i laminar-prndtl)))

(rule-14 (if (flow-regime is turbulent)) (then (-> q l (?[] | Turmod kemodl)))

(rule-15 (if nothing) (then (-> screen group 9 complete)))

Rulebase: G10-RB
Network: ((1 ()) (2 ()))

Rules:
(rule-1 (if nothing)

(then (-> q l message | ^ group | 10 interphase transport processes
and properties)))

(rule-2 (if nothing) (then (-> screen group 10 complete)))

Rulebase: G ll-R B
Network: ((1 ())

(2 ((15 ((14 0) (16 0) (17 0) (18 0) (19 ())))))
(3 0)
(4 ((8 0) (9 ((10 0) (11 ()))) (12 0) (13 ())))
(5 0)
(6 ())
(7 ())
(20 ()))

Rules:
(rule-1 (if nothing)

(then (-> q l message | ^ group | 11 initialisation of fields of
variables porosities etc)))

(rule-2 (if (boundary name for obstruction |$num ber| |$allnodes| is
| $name |)

(|$nam e| x cells are |$ixf| to |$ixl|)
(j$name j y cells are ($iyf j to |$iyl|)
(|$nam e| z cells are j $izf j to | $izl |))

(then (porosity prompt (enter the porosity for j>t>nar : [))
(-> q l | ?[]| Conpor |$name) porosity cell |$ixf| |$ixl|

j $iyf | | $iyl | |$izf| j$izl|)))

258

Appendix E

(rule-3 (if (dependent-variables are uninstantiated))
(then (instantiate dependent-variables)))

(rule-4 (for all dependent-variables
(if (initial value for |$value| = | $initial-value |))
(then (-> q l |? []= | Fiinit |$value| | $initial-value |))))

(rule-5 (if nothing)
(then (-> q l message *** when restarting deactivate previous

| ^ fiinit | commands and activate the following
j ^ restrt | and j ^ fiinit | commands)

(-> q l message "restrt(all)")))

(rule-6 (for all dependent-variables
(if nothing)
(then (-> q l message "fiinit(" |$valuej ")= readfi"))))

(rule-7 (for all store-variables
(if (initial value for |$value| = | Sinitial-value j))
(then (-> q l |? []= | Fiinit |$value| |$initial-value|))))

(rule-8 (if (|$value| is h i)
(h i at |$type| boundary |$nam e| is isothermal at

| $temperature |))
(then (initial value for h i = (average temperature from bindings))))

(rule-9 (if ((u l v l w l) includes |$value|)
((lva lue | at inlet = |$velocity|))

(then (initial value for | lvalue (=
(average velocity from bindings))))

(rule-10 (if (or ((|$value| at inlet boundary |$nam e| is constant is
uninstantiated))

((| $value | at inlet boundary | $name | is constant at
| $velocity-value |)

(| $velocity-value | = 0.0))))
(Then (|$value| at inlet = 0.1)))

(Rule-11 (if (|$value| at inlet boundary |$nam e| is constant at
j $velocity-value |)

(| $velocity-value j > 0.0))
(Then (| $value | at inlet = j $velocity-value |)))

(rule-12 (if (boa- ' .e for inlet |SidentityJ |$nodes| is |$nam e|)
(ke at inlet boundary ($name | is constant at | $tkein |))

(then (initial " ’ ' for ke = (average tkein from bindings))))

(rule-13 (if (boundary name for inlet |Sidentity| |$nodes| is |$nam ej)
(ep at inlet boundary | Sname | is constant at j $epin |))

(then (initial value for ep = (average epin from bindings))))

259

Appendix E

(rule-14 (if (surface |$nodes| is part of |$nam e|)
(surface j $nodes | is in | $axis (regions | $start | to | Sfinish |))

(then (|$nam e| is in |$axis| regions |$start| to | Sfinish |)))

(rule-15 (if(|$ n am e | is in |$axis| regions | Sstart | to | Sfinish |)
(| Saxis | region | Sstart | cells |$isf| to |$ isl|)
(| Saxis) region j Sfinish | cells |$iff| to j$ifl()
(first | Saxis (cell = | Sfirst |)
(last | Saxis | cell = |$ last|))

(then (|$nam e| |Saxis) cells are |Sfirst| to J$last[)))

(rule-16 (if (|$ isf| > 1)) (then (first (Saxis) cell = (-1 * JSisfJ))))

(rule-17 (if (|Sisf| = 1)) (then (first |$axis| cell = (Sisf|)))

(rule-18 (if (| Saxis (has |$nj regions)
((Saxis| region |$n | cells (Snfirst| to |$nlast|)
(j Sisl | < | $nlast |))

(then (last |Saxis) cell = (-1 * {$ifl())))

(rule-19 (if (| Saxis | has |$n | regions)
((Saxis| region |$n | cells (Snfirst) to |Snlast()
(j$ifl| = | Snlast ())

(then (last (Saxis) cell = jSifl|)))

(rule-20 (if nothing) (then (-> screen group 11 complete)))

Rulebase: G12-RB
Network: ((1 ()) (2 ()))
Rules:
(rule-1 (if nothing) (then (-> q l message | ^group) 12 unused)))

(rule-2 (if nothing) (then (-> screen group 12 complete)))

Rulebase: G13-RB
Network: ((1 ())

(2 ())
(3 ((4 ())
(8 ((5 ()) (6 ()) (7 ())))
(9 ((4 ()) (5 ()) (6 ()) (7 ())))
(10 ())
(11 0)
(12 ())
(13 ((5 ()) (6 ()) (7 ())))
(14 ())
(15 0)
(16 ())
(17 ((5 ()) (6 ()) (7 ())))
(18 ((5 ()) (6 ()) (7 ())))
(19 ((5 ()) (6 ()) (7 ())))
(21 ((22 ()) (23 ()) (24 ())))
(25 ())

260

Appendix E

(26 0)
(27 ())))
(20 ((5 0) (6 0) (7 ())))
(28 ()))

Rules:
(rule-1 (if nothing)

(then (-> q l message | ^g roup | 13 boundary and internal conditions
and special sources)))

(rule-2 (if (dependent-variables are uninstantiated))
(then (instantiate dependent-variables)))

(rule-3 (if (boundary name for |$type| |$identity| |$nodes| is |$nam e|)
(cardinal for surface |$nodes| is |$cardinal|)
(patch type for | $name | is | $patch-type |)
(|$nam e| x cells are |$ixf| to |$ixl|)
(|$nam ej y cells are |$iyf | to |$iyl|)
(j$nam ej z cells are |$izf| to |$ izl|)
(consider |$ph i|)
(coval for | $phi } at | $type | is | $co | | $val |))

(then (fire in block relative to |$nam e|)
(-> q l | ?[] | Patch |$nam e| |$patch-type| |$ixf| |$ixl|

1 $iyf| | $iyl | | $izf | |$izl| 1 1)
(-> q l | ?[J | Coval |$nam e| |$phi| |$co| | $val |)))

(rule-4 (for all dependent-variables
(if (or ((| $type | is inlet))

((| $type | is outlet) (|$value| is p i))
((I $type j is wall)
((u l v l w l h i ke ep) includes |$value|))))

(then (consider |$value|))))

(rule-5 (if (or ((| $cardinal | is west)) ((|$cardinal| is east))))
(then (| $name | is on constant x)

(vl is parallel to | $name |)
(wl is parallel to | $name |)
(u l is perpendicular to |$nam e|)))

(rule-6 (if (or ((| $cardinal | is north)) ((| $cardinal | is south))))
(then (| $name | is on constant y)

(wl is parallel to [$name |)
(u l is parallel to |$nam e|)
(vl is perpendicular to |$nam e|)))

(rule-7 (if (or ((|$cardinal| is high)) ((| $cardinal | is low))))
(then (| $ n 1 ‘ - constant z)

(u l is parallel to | $name |)
(vl is p '”" '” - 1 tG |$nam e|)
(wl is perpendicular to |$nam e|)))

(rule-8 (if ((west low south) includes j$cardinal|)
(|$nam e| is on constant |$axis|)

261

Appendix E

(surface |$nodes[is in | Saxis | regions j Sstart J to | Sfinish |)
(| Sstart| = 1)
(j Saxis | region 1 cells | $if | to | Sil |))

(then (|$nam e| j$axis| cells are |$if| to |$ if |)))

(rule-9 (if (| Sname | is on constant | Saxis |)
(surface | Snodes | is in J Saxis | regions | Sstart | to | Sfinish J)
(| Sstart | = | Sfinish |)
(jSaxis| has |$n-regions| regions)
(j Saxis j region |$n-regions| cells |$if| to | Sil |))

(then (| Sname | j Saxis | cells are |$il| to j $il |)))

(rule-10 (if (surface | Snodes | is in | Saxis | regions | Sstart | to | Sfinish |)
(| Saxis | region | Sstart | cells | Sisf | to |$ isl|)
(j Saxis j region j Sfinish | cells |$ilf| to | Sill |))

(then (j Sname | | Saxis | cells are |$isfj to j Sill})))

(rule-11 (if ((inlet outlet) includes | Stype |))
(then (patch type for | Sname | is | Scardinal |)))

(rule-12 (if (jStype| is wall))
(then (patch type for | Sname | is

(join (symbol-split 1 |Scardinal)) wall))))

(rule-13 (if (J Svelocity | is perpendicular to | Sname |)
(| Svelocity | at inlet boundary | Sname | is constant at
| Smagnitude |))

(then (coval for p i at inlet is fixflu (| Smagnitude | * density))))

(rule-14 (if (| Stype | is outlet)
(p i at outlet boundary | Sname | is constant at |$pressure|))

(then (coval for p i at outlet is fixp | Spressure|)))

(rule-15 (if (or (((u l v l w l) includes | Sphi |)
(|Sphi| at inlet boundary |Sname) is constant at j$valj))

((| Sphi j is h i)
(h i at inlet boundary | Sname | is isothermal at | Sval |))))

(then (coval for | Sphi | at inlet is onlyms | Sval |)))

(rule-16 (if (| Sphi | is h i)
(h i at) Stype | boundary | Sname | is constant-heat-flux at

| Sval I))
(then (coval for h i at (Stype) is fixflu)Sval|)))

(rule-17 (if (|S phi| is perpendicular to (Sname)))
(then (coval for | Sphi) at wall is fixval 0.0)))

(Rule-18 (if (flow-regime is laminar) (| Sphi J is parallel to | Sname |))
(then (coval for | Sphi | at wall is 1.0 0.0)))

(Rule-19 (if (flow-regime is turbulent) (|$ph i| is parallel to |Sname)))
(then (coval for j Sphi | at wall is grnd2 0.0)))

262

Appendix. E

(Rule-20 (if ((u l v l w l) includes |$ph i|)
(j $phi | is perpendicular to | Sname |)
(j $phi j at inlet boundary | $name | is constant at | Smagnitude |))

(then (value for | Sphi | at j Sname | = | Smagnitude j)))

(rule-21 (if (h i at |Stype| boundary |Sname) is |$condition| at
|$thermal-value|)

(coefficient for h i at |Sname) is |$coefficient)))
(then (coval for h i at (Stype) is |Scoefficient| |Sthermal-value|)))

(rule-22 (if (] Scondition) is isothermal) ((Stype | is inlet))
(then (coefficient for h i at | Sname | is onlyms)))

(rule-23 (if (| Scondition j is isothermal) (| Stype | is wall))
(then (coefficient for h i at |Sname) is fixval)))

(rule-24 (if (| Scondition] is constant-heat-flux))
(then (coefficient for h i at |Sname) is fixflu)))

(rule-25 (if (flow-regime is turbulent) ((ke ep) includes | Sphi |))
(then (coval for | Sphi] at wall is grnd2 grnd2)))

(rule-26 (if (flow-regime is turbulent)
(ke at inlet boundary | Sname | is constant at j Squantity |))

(then (coval for ke at inlet is onlyms | Squantity |)))

(rule-27 (if (flow-regime is turbulent)
(ep at inlet boundary j Sname) is constant at | Squantity |))

(then (coval for ep at inlet is onlyms | Squantity |)))

(rule-28 (if nothing) (then (-> screen group 13 complete)))

Rulebase: G14-RB
Network: ((1 ()) (2 ()))

Rules:
(rule-1 (if nothing)

(then (-> q l message | ^ group| 14 down stream pressure - for free
parabolic |flow.|)))

(Rule-2 (if nothing) (then (-> screen group 14 complete)))

Rulebase: G15-RB
Network: ((1 ())

(2 0)
(3 ((4 ((6 ((7 0) (8 0) (9 ()))) (10 ())))
(5 ((6 ((7 0) ;S 0) (9 ())))))))
(11 ()))

Rules:
(rule-1 (if nothing)

(then (-> q l message | ^group) 15 termination criteria for sweeps
and outer interations)))

263

Appendix E

(rule-2 (if nothing) (then (-> q l |? = | Lsweep 100)))

(rule-3 (for all dependent-variables
(if (residual reference for |$value| = |$resref|))
(then (-> q l |? []= | Resref |$valuej |$resref|))))

(rule-4 (if (|$value| is p i)
(inlet-flow-area > 0)
(total inlet velocity = | Svelocity |)
(initial fluid-density = |$density|))

(then (residual reference for | $value | =
(| -> 1.0E??? |
(0.01 * |$Density| * (Svelocity) *

inlet-flow-area)))))

(rule-5 (if (inlet-flow-area > 0) (total inlet velocity = | Svelocity |))
(then (residual reference for | Svalue | =

(|-> 1 .0E ???|
(0.01 * |$Velocity| * inlet-flow-area)))))

(rule-6 (if (boundary name for inlet | Sidentity | | Snodes | is | Sname |)
(cardinal for surface | Snodes | is | Scardinal |)
(| Sphi | is perpendicular to | Sname |)
(j Sphi j at inlet boundary | Sname j is constant at

| Svelocity-value |))
(then (total inlet velocity = (sum velocity-value from bindings))))

(rule-7 (if ((low high) includes | Scardinal |))
(then (wl is perpendicular to | Sname |)))

(rule-8 (if ((north south) includes | Scardinal |))
(then (vl is perpendicular to | Sname |)))

(rule-9 (if ((east west) includes | Scardinal |))
(then (u l is perpendicular to | Sname |)))

(rule-10 (if (fluid-compressibility is incompressible)
(thermal-requirements are isothermal))

(then (initial fluid-density = density)))

(rule-11 (if nothing) (then (-> screen group 15 complete)))

Rulebase: G16-RB
Network: ((1 ()) (2 ()))

Rules:
(rule-1 (if nothing)

(then (-> q l message | /Ngroup) 16 termination criteria for inner
iterations)))

(rule-2 (if nothing) (then (-> screen group 16 complete)))

264

Appendix E

Rulebase: G17-RB
Network: ((1 ()) (2 ((3 ()) (4 ()) (5 ()) (6 ()))) (7 ()))

Rules:
(rule-1 (if nothing)

(then (-> q l message | ^ group | 17 under-relaxation and related
sources)))

(rule-2 (for all dependent-variables
(if (relaxation method for | Svalue | is | $method |)

(relaxation factor for |$value| is |$factor|))
(then (-> q l | ?[] | Relax | $value | | $method | | $factor |))))

(rule-3 (if (|$value| is p i))
(then (relaxation method for |$value| is linrlx)

(relaxation factor for | $value | is 0.8)))

(Rule-4 (if ((u l v l w l) includes |$value|)) '
(then (relaxation method for | Svalue | is falsdt)

(relaxation factor for | Svalue | is 0.5)))

(Rule-5 (if ((ke ep) includes | Svalue |))
(then (relaxation method for | Svalue | is falsdt)

(relaxation factor for j Svalue | is 0.01)))

(Rule-6 (if (| Svalue | is h i))
(then (relaxation method for | Svalue | is linrlx)

(relaxation factor for | Svalue | is 1.0)))

(Rule-7 (if nothing) (then (-> screen group 17 complete)))

Rulebase: G18-RB
Network: ((1 ()) (2 ()))

Rules:
(rule-1 (if nothing)

(then (-> q l message | ^ group | 18 limits on variable values or
increments to them)))

(rule-2 (if nothing) (then (->screen group 18 complete)))

Rulebase: G19-RB
Network: ((1 ()) (2 ()))

Rules:
(rule-1 (if nothing)

(then (-> q l message | ^ group| 19 data comminucated by | ^ satellite|
to | g r o u n d |)))

(rule-2 (if nothing) (then (-> screen group 19 complete)))

265

Appendix E

Rulebase: G20-RB
Network: ((1 ()) (2 ()))

Rules:
(rule-1 (if nothing)

(then (-> q l message | /N group | 20 control of preliminary printout)))

(rule-2 (if nothing) (then (-> screen group 20 complete)))

Rulebase: G21-RB
Network: ((1 ()) (2 ()) (3 ()))

Rules:
(rule-1 (if nothing)

(then (-> q l message | ^ group | 21 frequency and extent of field
printout)))

(rule-2 (for all dependent-variables
(if nothing)
(then (-> q l | ?[] | Output | $value| y y y y y y))))

(rule-3 (if nothing) (then (-> screen group 21 complete)))

Rulebase: G22-RB
Network: ((1 ()) (2 ((5 ()) (6 ()))) (3 ((5 ()) (6 ()))) (4 ((5 ()) (6 ()))) (7 ()))

Rules:
(rule-1 (if nothing)

(then (-> q l message group 22 location of spot-value and frequency
of residual printout)))

(rule-2 (if (x monitor cell = |$ixmon|))
(then (-> q l |? = | Ixmon j$ixmon|)))

(rule-3 (if (y monitor cell = | $iymon |))
(then (-> q l | ?=j Iymon |$iymon|)))

(rule-4 (if (z monitor cell = | $izmon |))
(then (-> q l |? = | Izmon |$izm on|)))

(rule-5 (if (|$axisj has 1 regions) (|$axis| region 1 cells 1 to 1))
(then (|$axis| monitor cell = 1)))

(rule-6 (if (boundary name for outlet 1 |Snodes) is |Snam e|)
(surface |Snodes| is in |Saxis) regions (Sfirst) to |$ lasl|)
(| Saxis | region | Sfirst | cells |$ff| to) $fl))
(j Saxis j region |$last| cells)$lf) to) $111))

(then (| Saxis | monitor cell =
(max 1 (int ()$ff| + ((|$11(- |$ ff |) / 2)))))))

(rule-7 (if nothing) (then (-> screen group 22 complete)))

266

Appendix E

Rulebase: G23-RB
Network: ((1 ()) (2 ()))

Rules:
(rule-1 (if nothing)

(then (-> q l message j ~ group | 23 variable-by-variable field
printout)))

(rule-2 (if nothing) (then (->screen group 23 complete)))

Rulebase: G24-RB
Network: ((1 ()) (2 ()))

Rules:
(rule-1 (if nothing)

(then (-> q l message | ^ group| 24 preparations for continuation
| runs. |)))

(Rule-2 (if nothing) (then (-> screen group 24 complete)))

Rulebase: GEOMETRY-RB
Network: ((1 ()) (2 ()) (3 ()) (4 ()) (5 ()) (6 ()) (7 ()))

Rules:
(rule-1 (if (analysis-title is uninstantiated)) (then (ask analysis-title)))

(rule-2 (if (number-of-dimensions = 2) (coordinates are cartesian))
(then (axis-1 is x) (axis-2 is y) (axis-3 is unused)))

(rule-3 (if (number-of-dimensions = 3) (coordinates are cartesian))
(then (axis-1 is x) (axis-2 is y) (axis-3 is z)))

(rule-4 (if (number-of-dimensions = 2) (coordinates are cylindrical))
(then (axis-1 is unused) (axis-2 is radial) (axis-3 is axial)))

(rule-5 (if (number-of-dimensions = 3) (coordinates are cylindrical))
(then (axis-1 is circumferential)

(axis-2 is radial)
(axis-3 is axial)))

(rule-6 (if (conversion-factor > 0))
(then (run enter-nodes) (run geometry) (use name-walls-rb)))

(rule-7 (if (trace is on)) (then (-> screen <nl> <- geometry-rb < n l>)))

Rulebase: GRID-RB
Network: ((1 ()))

Rules:
(rule-1 (if (delta > 0) (aspect-ratio > 0))

(then (run mesh-regions) (run assert-grid-information)))

267

Rulebase: INITIAL-RB
Network: ((1 ()))

Rules:
(rule-1 (if nothing)

(then (instantiate targetusermodel) (instantiate usermodel)))

Rulebase: POROSITY-DEFINITION-RB
Network: ((1 ()) (2 ()))

Rules:
(rule-1 (if (porosity-definition is | constant-0.01))

(Then (porosity status fixed) (porosity = 0.0)))

(Rule-2 (if (porosity-definition is constant-predefined)
(porosity is uninstantiated))

(then (porosity status fixed)))

Rulebase: DENSITY-THERMAL-DEPENDENCE-RB
Network: ((1 ()) (2 ()))

Rules:
(rule-1 (if (thermal-requirements is isothermal))

(then (density-thermal-dependence is not-required)))

(rule-2 (if (thermal-requirements is thermal)
(density-thermal-dependence is uninstantiated))

(then (ask density-thermal-dependence)))

Rulebase: VISCOSITY-THERMAL-DEPENDENCE-RB
Network: ((1 ()) (2 ()))

Rules:
(rule-1 (if (thermal-requirements is isothermal))

(then (viscosity-thermal-dependence is not-required)))

(rule-2 (if (thermal-requirements is thermal)
(viscosity-thermal-dependence is uninstantiated))

(then (ask viscosity-thermal-dependence)))

Rulebase: TMP1-EQUATION-RB
Network: ((1 ((3 ()))) (2 ((3 ()))))

Rules:
(rule-1 (if (density or viscosity thermal dependence is temperature)

(tmpl-equation is constant))
(then (ask tm pla)))

(rule-2 (if (density or viscosity thermal dependence is temperature)
(tmpl-equation is "a+bh"))

(then (ask tm pla) (ask tmp lb)))

(rale-3 (if (or ((density-thermal-dependence is temper«uur''*)
((viscosity-thermal-dependence is temperature))))

(then (density or viscosity thermal dependence is temperature)))

Appendix E

Rulebase: INLET-FLOW-AREA-RB
Network: ((1 ()) (2 ((3 ()) (4 ()) (5 ()) (6 ()) (7 ()))))

Rules:
(rule-1 (if nothing) (then (inlet-flow-area = 0.0)))

(Rule-2 (if (boundary name for inlet |$identity| | Snodes | is | Sname |)
(cardinal for surface | Snodes | is | Scardinal |)
(inlet area for |Snodes] = |$area |))

(then (inlet-flow-area+ = |$area |)))

(rule-3 (if (coordinates are cylindrical)
((high low) includes | Scardinal |))

(then (inlet area for | Snodes | =
(0.5 * (Abs (((yc_2) | ~ | 2) - ((yc_l) | - | 2)))))))

(rule-4 (if (coordinates are cylindrical) (| Scardinal | is north))
(then (inlet area for | Snodes | =

(abs ((yc_l) * ((zc_2) - (zc_l)))))))

(rule-5 (if (coordinates are cartesian)
(axis-1 is x)
((north south) includes | Scardinal |))

(then (inlet area for | Snodes | = (1 * (abs ((xc_2) - (xc_l)))))))

(rule-6 (if (coordinates are cartesian)
(axis-3 is z)
((north south) includes | Scardinal |))

(then (inlet area for | Snodes | = (1 * (abs ((zc_2) - (zc_l)))))))

(rule-7 (if (coordinates are cartesian)
((west east low high) includes | Scardinal |))

(then (inlet area for | Snodes | = (1 * (abs ((yc_2) - (yc_l)))))))

Rulebase: NAME-WALLS-RB
Network: ((1 ()) (2 ()) (3 ()) (4 ()) (5 ((6 ()) (7 ()))) (8 ()) (9 ()))

Rules:
(rule-1 (if (boundary name for | Stype | jSidentity] | Snodes | is] Sname |))

(then (boundary-names includes | Sname |)))

(rule-2 (if nothing) (then (define surfaces :type ’list)))

(rule-3 (if (cardinal for surface | Snodes | is | Scardinal |))
(then (surfaces includes j Snodes j)))

(rule-4 (if (boundary name for |Stype| |Sidentity| |Snodes| is |Snam e])
((inlet ‘ :ludes |Stype])
(surfaces includes] Snodes |))

(then (surf"™'' -""eludes]Snodes])))

(rule-5 (if (coordinates are cylindrical)
(number-of-dimensions = 2)
(cardinal for surface | Snodes | is | Scardinal|)

269

Appendix E

(| Scardinal | is south)
(first node y coordinate is | $yl |)
(second node y coordinate is | $y21)
(! $ y l | = 0)
(I$y2| = 0))

(then (surfaces excludes | Snodes [)))

(rule-6 (if nothing) (then (first node y coordinate is (yc_l))))

(rule-7 (if nothing) (then (second node y coordinate is (yc_2))))

(rule-8 (if (surface | Snodes | is part of | Sobstruction |)
(surfaces includes | Snodes |))

(then (surfaces excludes | Snodes |)))

(rule-9 (for all surfaces
(if nothing)
(then (ask boundary name for wall surface | Svalue |

((type text)
(disallowedvalues boundary-names)
(consequent boundary-names includes answer)))))))))

270

APPENDIX F

LISP Inference Engine - Detail flowcharts

271

Appendix F

Figure F.l:

Function: USE-RULEBABE (RULEBASE)

START

(first RULEBASE)NETWORK

(second RULEBASE)RULES

(endp NETWORK) ? END

RULE = (first NETWORK)
(USE-RULE RULE RULES)

NETWORK - (rest NETWORK)

USE-RULEBASE

272

Appendix F

Function: T7SE-RULB (RULE-PAIR RULES &optional bindings -list
&key (fixe-actions T))

start

RULE « A ppropria te r u le
(listp (first RULE-PAIR)) ?

from RULES liet

(first RULE-PAIR)RULE

(second RULE-PAIR)ASSOCIATED-RULES

(second RULE)ANTECEDENTS

USE-XF-THEK-RULE

(first ANTECEDENTS) IF ?

Return

(firstn 2 ANTECEDENTS)

'(FOR ALL) ?

USX-FOR-ALL-RULE

'rule-format-error

Figure F.2: USE-RULE

273

Appendix F

Function: USE-IF-THEN-RTTLE (RULE RULES ASSOCIATED-RULES BINDINGS-LIST
FIRE-ACTIONS)

^ Start ^

(SECOND rule) - N
(IF NOTHING) ?

1 Y

N

¥ Y
BINDINGS -LIST - ’(())

(second RULE) * JJ
' (IF NOTHING) ?̂

_____________ J_Y ____________

BINDINGS-LIST - APPLY-FI LRUS

BINDINGS-LIST * NIL ?

Return BINDINGS -LIST

Figure F.3: USE-IF-THEN-RULE

Appendix F

Function: USE-FOR-ALL-RULE (RULE RULES ASSOCIATED-RULES BINDINGS-LIST
FIRE-ACTIONS)

Start

ANSWER - USE-IF-THEN-RULE

BINDINGS -LIST = MODIFY-BINDINGS-LIST-TO-INCLUDE- $VALUES

RULE

LIST-OBJECT = (third (second RULE))
VALUES - (object-value (symbol-value LIST-OBJECT))

(,(first RULE) ,«(butlastn 3 (second RULE)))

Return ANSWER

A list object contains two or more values, thus '(Ul VI). This
function appends to a list of bindings the list object values. Thus

(a) Bindings list - ().
Modified list = •((($value Ul))

(($value VI)))
(b) Bindings list = ’((($Name INLET))).

Modified list = 1((($Name INLET) ($value Ul))
(($Name INLET) ($value VI)))

Figure F.4: USE-FOR-ALL-RULE

275

Appendix F

Function: APPLY-FILTERS (ANTECEDENTS ftoptional ASSOCIATED-RULES
RULES BINDINGS-LIST)

S t a r t

ANTECEDENTS - ANTECEDENTS
ANTECEDENT

ANTECEDENT-NUMBER - 1

ANTECEDENT-NUMBER

BINDINGS-LIST
- NIL ?

Return
BINDINGS-LIST

(endp ANTECEDENTS) ?

(first ANTECEDENTS)ANTECEDENT

(first ANTECEDENT)
- 'OR ?

BINDINGS-LIST
DISJUNCT IVX-ANTE CEDX2TTS

BINDINGS-LIST - T IL T H -B U ID I1 K J 3 - L IS T

(rest ANTECEDENTS)ANTECEDENTS
ANTECEDENT-NUMBER +- 1

Figure F.5: APPLY-FILTERS

276

Appendix F

Function: D ISJU N C TIV E - ANTECEDENTS (OR-ANTECEDENTS BINDINGS -LIST
ASSOCIATED-RULES RULES)

Start

OR-ANTECEDENTS « OR-ANTECEDENTS
ANTECEDENTS - NIL

ANTECEDENTS-BINDINGS-LIST - BINDINGS-LIST
ANTECEDENT-SET-COUNT

ANTECEDENT-SET-COUNT

ANTECEDENT-BINDINGS -LIS'
* NIL ?

Return
ANTECEDENTS -BINDINGS- LIST

(endp ANTECEDENTS) ?

ANTECEDENTS - (first OR-ANTECEDENTS>

A IX -A im CBD BITt-JU M fl-aO T-LZan ?

(,ANTECEDENTS)ANTECEDENTS

ANTECEDENTS-BINDINGS-LIST - APPLY-FILTERS

(rest OR-ANTECEDENTS)OR-ANTECEDENTS
ANTECEDENT-SET-COUNT +- 1

Figure F.6: DISJUNCTIVE-ANTECEDENTS

277

Appendix F

Function: riL T E R -BIN D IN G S-L IS T (ANTECEDENT &optional BINDINGS - LIST
ASSOCIATED-RULES RULES)

BINDINGS-LIST * NIL ?

Return ANSWER

ANSWER - F IL T E R -B IN D IN G S

ANSWER “ INSERT-OBJECT-VALUES-IN-BINDINGS-LIST

ANSWER I-BINDINGS-LIST-FROM-BINDINGS-LISTS

(FILTER-BINDINGS))

Figure F.7: FILTER-BIND INGS-LIST

278

Appendix F

Function: FILTER -B IN D IN G S (ANTECEDENT &optional BINDINGS
ASSOCIATED-RULES RULES)

(^Star tP̂)

PHRASE = (INSTANTIA TE- BINDINGS ANTECEDENT BINDINGS)
PHRASE - (HPARSE (INSERT-OBJECT-VALUES PHRASE))

ANSWER - EVALUATE-ANTECEDENT

ANSWER - (remove-duplicates ANSWER)

^Return ANSWER^)

Figure F.8: FILTER-BINDINGS

279

Appendix F

Function: EVALUATE- ANTECEDENT (ANTECEDENT BINDINGS ASSOCIATED-RULES
RULES)

Start

ANSWER - PRELIMINARY-EVALUATION-OF-THE-ANTECEDENT

ANSWER Return '(/BINDINGS)

Return NILANSWER = NIL ?

MATCH- ANTECEDENT- TO-ASSERTIONS- AND- ASSOCIATED- RULES

Return

Figure F.9: EVALUATE-ANTECEDENT

280

Appendix F

Function: PRELIMINARY- EVALUATION- O F- THE- ANTECEDENT (ANTECEDENT)

Start

(length ANTECEDENT) Return ANTECEDENT

(second ANTECEDENT)
'INCLUDES 9^-— ""

■(second ANTECEDENT)''
6 (first ANTECEDENT) Return T

Return NIL

(second ANTECEDENT)
V - ’EXCLUDES X

*k
The sectioned area of the flow chart is repeated, and modified
accordingly, to facilitate the following operators: EXCLUDES,
OVERLAPS, -, IS, ARE, <> (not equal to), IS-NOT, ARE-NOT, >-, <-, >
and <.

Figure F.10: PRELIM IN ARYTiV ALU ATION-OF-THE-ANTECED ENT

281

Appendix F

Function

Figure F .ll:

MATCH - ANTECEDENT - TO - ASSERTIONS - AMD - ASSOCIATED - ROUES

(ANTECEDENT BINDINGS ASSOCIATED-RULES RULES)

Start

Return ANSWER

ASSERTIONS-ANSWER
v. # NIL ? ^

MATCH-ANTECEDENT- TO- ASSOCIATED- HULKS

ASSOCIATED-RULES-ANSWER

ASSERTIONS-ANSWER - MATCH-ANTECEDENT-TO-ASSERTIONS

ANSWER (,^ASSERTIONS-ANSWER
,•ASSOCIATED-RULES-ANSWER)

M A TCH-A N TECED EN T-TO-ASSERTIONS-AN D-A SSOCIATED-
RULES

282

Appendix F

Function: MATCH -ANTBCBDEtn!- TO- ASSERTIONS (ANTECEDENT BINDINGS)

Start

Return

(endp * ASSERTIONS*)

Return ANSWER

ANSWER * NIL ?

(last ANTECEDENT) €
• (INSTANTIATED
UNINSTANTIATED) ?

♦ASSERTIONS*
ANSWER - NIL

♦ASSERTIONS*

DETEIUIINE-WHETHER-THE-AWTECEDEHT-
1 8 -INSTANTIATED-OR-HOT

ANSWER

♦ASSERTIONS*

(TRY-ASSERTIONS ANTECEDENT ...)

(rest *ASSERTIONS*)

Figure F.12: MATCH-ANTECEDENT-TO-ASSERTIONS

283

Appendix F

Function: MATCH- ANTECEDENT- TO- ASSOCIATED- RULES (ANTECEDENT BINDINGS
ASSOCIATED-ROLES RULES)

Start

ASSOCIATED-RULES - ASSOCIATED-RULES
RULE = NIL

SECONDARY-ASSOCIATED-RULES - NIL

(endp ASSOCIATED-RULES) ?

ANSWER * NIL ? ^

Return ANSWER

I

RULE = remove r u le from RULES v ia in dex

SECONDARY-ASSOCIATED-RULE -
(second (first ASSOCIATED-RULES))

ANSWER = (TRY-RULE ANTECEDENT RULE ...)
ASSOCIATED-RULES - (rest ASSOCIATED-RULES)

Figure F.13: MATCH-ANTECEDENT-TO-ASSOCIATED-RULES

284

Appendix F

Function: TRY- ASSERTIONS (ANTECEDENT ASSERTIONS BINDINGS)

Start

Return ANSWER

(UNIFY ANTECEDENT TEMPLATE)
\ ?» 'FAIL ?

ANSWER - match a n teced en t w ith a l l a s s e i t io n s

ASSERTIONS
TEMPLATE

ANSWER = NIL
(first ASSERTIONS)
■ (rest ASSERTIONS)

Figure F.14: TRY-ASSERTIONS

285

Appendix F

Function: TRY-RULE (ANTECEDENT RULE BINDINGS ASSOCIATED-RULES RULES)

UNIFICATION- BINDINGS
\ * 'PAIL ? ^

UNIFICATION-BINDINGS

ANSWER * NIL ?

REQUIRED - BINDINGS
* NIL ?

Return Answer

ANSWER

XSTABLISH-UOUIRKD-BIMDimS
nCtt-UMIFICATICW-BIXDINOa

ANSWER - MODI»T-BIKDI»0«-TO-I»CLUD*'
ORIGINAL - AM D-UQUIBED-BUDIM OS

RULE - (INSTANTIATB-BINDINGS RULE UNIFICATION-BINDINGS)
ANSWER - (OrSi-lDLK '(.RULE .ASSOCIATED-RULES)

RULE

UNIFICATION-BINDINGS -
UNirT-ANTBCBDNWT-WITH-RUIJI-CCBWNQPNNTa

(nM TAXTIATB-BXXDINGfl RULE BINDINGS)

Figure F.15: TRY-RULE

286

1 • ,?r. yp* . it i

- a-; \-.T: - a

Page intentionally left blank

287

‘• A t..
1

Appendix F ”f

1

}2

Z. ■• •* ■

APPENDIX G

LISP KBFE Code

A copy of the LISP source code

can be obtained on disk by writing to

The author or Dr K Jambunathan

at

The Nottingham Trent University
Faculty of Engineering and Computing
Department of Mechanical Engineering

Burton Street
Nottingham

NG1 4BU
England

Appendix G

Loading the system is carried out by loading one file, IFE.LSP. This is performed by
entring at the LISP prompt, = = , (load "ife.lsp"). The contents of IFE.LSP are ...

Filename: IFE.LSP

(load "initialise.lsp") initialisation file
(load "macro.lsp") ;Macros

(load "external.lsp") ;External Functions
(load "control.lsp") ; Control file
(load "inference.lsp") ;Inferencing code

(load "geom.lsp") ;Geometry specification file

(load "object.lsp") ;Object file
(load "rules.lsp") ; Rules

End-Of-File

The contents of the other files are listed in the same order as they appear in IFE.LSP,
with the exception of OBJECT.LSP and RULES.LSP, which are given in Appendix E.

Filename: INITIALISE.LSP

;;;; — INITIALISATIONS —

(setq popll::popm em lim 1000000)

(defstruct object
(Description nil)
(Type nil)
(Preface nil)
(FixedValue nil)
(DisallowedValues nil)
(AllowedValues nil)
(DefaultValue nil)
(ComputeValue nil)
(Units nil)
(Value nil)
(Prompt nil)
(Help nil)
(status nil)
(RuleBase nil))

(defvar Q1 nil)
(defvar * symbol-counter* 0)
(defvar * debug* nil)

(defvar *objects* nil)
(setf *objects* nil)

(defvar TargetUserModel ())

289

Appendix G

(setf TargetUserModel ’Experienced)
(defvar UserModel ())
(setf UserModel ’novice)

(defvar *boundaries* nil)
(defvar *regions* ’((x ()) (y ()) (z ())))
(defvar *nodes* nil)
(defvar *rule-count* 0)

; The following variables need to be SPECIAL variables as opposed to
; LEXICAL variables because the function MAKE-REGIONS uses the LISP
; function SYMBOL-VALUE. The function cannot access LEXICAL variables.

(defvar axis ())
(defvar x ())
(defvar x l ())
(defvar x2 ())
(defvar y ())
(defvar y l ())
(defvar y2 ())
(defvar z ())
(defvar z l ())
(defvar z2 ())

(defvar * assertions* ())
(defun reset-assertions ()
(setf * assertions*

’(((boundary name for $type $identity $nodes is $name))
((cardinal for surface $nodes is $cardinal))
((surface $surface is part of Sobstruction))
((Sdependent-variable at $type boundary $name is $condition at $quantity))
((Saxis has $n regions))
((Saxis region $No cells $first to $last))
(($axis region $No co-ordinates $first to $last))
((surface $nodes is in $axis regions Sstart to Sfinish))
((surface $nodes interfaces $axis regions $start and Slast)))))

(reset-assertions)

(defvar *ife-functions* ())
(setf * if e-functions* ’(join ask concat-symbol xc_l xc_2 yc_l yc_2

zc_l zc_2 run fetch -> q l symbol-split abs
->Screen ->1.0e??? int max use define instantiate))

(defvar general-completion ’(stop end finish quit exit complete))

(defvar *manipulation-templates* ())
(setf *manipulation-tempIates* ’((average Svariable from bindings)

(sum Svariable from bindings)
(Svariable prompt Sprompt)
(Svariable status Sstatus)))

Filename: MACRO.LSP

(defmacro set-object (name &key
(Description nil)
(Type nil)
(Preface nil)
(FixedValue nil)
(DisAllowedValues nil)
(AllowedValues nil)
(DefaultValue nil)
(ComputeValue nil)
(Units nil)
(Value nil)
(Prompt nil)
(Help nil)
(Status nil)
(RuleBase nil)
&allow-other-keys)

‘(progn
(unless (member \nam e ’(archive restore target-file fact surfaces))

(setf *objects* (cons
(cons ’,name ’((:Description description

:Type .Type
rPreface ,Preface
:FixedValue , FixedValue
:DisAllowedValues .DisallowedValues
:AllowedValues ,AllowedValues
:DefaultValue , DefaultValue
: ComputeValue ,ComputeValue
:Units ,Units
:Value .Value
: Prompt .Prompt
:Status ,(if status status ’’fixed)
:Help .Help
: RuleBase .RuleBase)))
objects)))

(setf .name
(make-obi'ect :Description .Description

•Type .Type
:Preface .Preface
: FixedValue .FixedValue
:DisAllowedValues .DisallowedValues
:AllowedValues .AllowedValues
: DefaultValue .DefaultValue
:ComputeValue .ComputeValue
:Units .Units
:Value .Value
:Prompt .Prompt
:Status ,(if status status ’Y :d)
rHelp .Help
: RuleBase .RuleBase
:Allow-other-keys t))))

Appendix G

(defmacro remember-rule (rulebase rule)
; 11 April 1992
J
; Calling Function: All rulebase files

‘(let ((macro-rule (re-structure-rule-to-rule-template .rule)))
(unless (member macro-rule .rulebase)

(setf .rulebase (append .rulebase (list macro-rule))))))

(defmacro < > (il i2) ‘(not (equal ,il ,i2)))

(defmacro modify-list (original-list)
‘(dolist (item ,original-list t)

(when (y-or-n-p (concatenate ’string "Remove "
(write-to-string item)

(setf ,original-list (remove item ,original-list :count 1)))))

(defmacro augment-rulebase (rulebase)
; 11 April 1992

; Calling Function: Control structure or = = prompt

; This macro take a rulebase that has been built using REM EM BER-RULE and
; restructures the list to contain (NETWORK RULES).

‘(let ((clist (do ((rulebase .rulebase (rest rulebase))
(count 1 (incf count)) (1st ()))

((endp rulebase) (reverse 1st))
(setf 1st (cons (list count) 1st)))))

(do ((rules .rulebase (rest rules))
(rule ())
(prc 1 (incf prc))
(antecedents ())
(consequents ())
(answer ()))

((endp rules) clist)

(setf rule (first rules)
consequents (rule-consequents rule))

(do ((rulebase .rulebase (rest rulebase))
(src 1 (incf src)))

((endp rulebase))

(setf answer ())

(dolist (consequent consequents t)
(when (< > (rule-antecedents (first rulebase))

’(nothing))
(setf answer (unify-consequent-with-antecedents

consequent

Appendix G

(rule-antecedents (first rulebase)))))
(when answer

(rplacd (assoc prc clist)
‘(.(remove-duplicates

(cons src
(second (assoc prc clist))))))))))

(setf ,rulebase ‘(.(create-inference-network clist) „rulebase))
0)

(defmacro -> (object value)
‘(setf (object-value .object) .value))

(defmacro ? (object)
‘(object-value .object))

(defmacro > > (object value)
‘(setf (object-value .object) ’.value))

End-Of-F»le

Filename: EXTERNAL.LSP

; 15 April 1992
y
; This file contains all of the external functions that need to be called
; for use within the IFE code.

(require ’external)
(external-load-files "mesh.obj" ’(("grid" generate-mesh)))

End-Of-File

Filename: CONTROL.LSP

(defvar inference-network ())
(defvar preliminary ())
(defvar synthesise ())

(setf preliminary ’(initial-rb Geometry-rb Fluid-rb BC-rb Grid-rb))
(setf synthesise ’(gl-rb g2-rb g3-rb g4-rb g5-rb g6-rb g7-rb g8-rb g9-rb

glO-rb g ll-rb gl2-rb gl3-rb gl4-rb gl5-rb
gl6-rb gl7-rb gl8-rb gl9-rb g20-rb g21-rb g22-rb
g23-rb g24-rb))

(defvar inference-chain ())
(setf inference-chr:-

(defun phoenics (&^~,;—--I bypass)

(setf inference-chain synthesise)

(unless bypass

Appendix G

(reset)
(setf inference-network ‘(.(©preliminary,(©synthesise)))

(setf inference-chain ())
(dolist (rulebase-name inference-network ’network-complete)

(use-rulebase rulebase-name))

(write-to-file))

(defun write-to-file ()

(fetch ’target-file)

(with-open-file (file-stream (object-value target-file)
:direction :output
:if-does-not-exist rcreate
:if-exists : rename)

(format file-stream "~% T alk=F ; Run(l, 1); VDU =TTY'))

(dolist (statement q l (format t " ~ %File has been written ~% "))
(w rite->ql statement))

(with-open-file (file-stream (object-value target-file)
•direction routput
:if-does-not-exist :create
:if-exists :append)

(format file-stream "Stop")))

Filename: INFERENCE.LSP

(defvar DefaultValueError ())
(setf DefaultValueError " ~ %Sorry, no Default Value, enter definite value. ~ %")
(defvar HelpErrorMessage ())
(setf HelpErrorMessage " ~ %Sorry, no help available. ~ %")

;;;;; — INFERENCE FUNCTIONS —

(defun add-binding (bindings-variable bindings-value bindings)
; 3 April 1992

; This takes a variable $BINDINGS-VARIABLE, a datum
; $BINDINGS-VALUE and a list
; of bindings (()()()...()), and adds the pair
; ($BINDINGS-VARIABLE BINDINGS-VALUE). Thus giving
; (()()()...()($BINDINGS-VARIABLE BINDINGS-VALUE)).

(if (eq bindings-variable)
bindings
(cons (make-binding bindings-variable bindings-value) bindings)))

(defun all-antecedents-are-not-lists (antecedents)
; 6 April 1992

Appendix G

; Calling Function: DISJUNCTIVE-ANTECEDENTS
; Return: T or NIL

; This function takes a list, antecedents, which can be a single antecedent,
; or a list of multiple antecedents. If the list consists of all
; antecedents it will return NIL, alternatively, if it is only one antecedent
; it will return T.

(do ((antecedents antecedents (rest antecedents))
(answer ()))

((or (endp antecedents) answer) answer)
(when (not (listp (first antecedents)))

(setf answer t))))

(defun all-integerp (1st)
(if (member nil (mapcar # ’integerp 1st)) nil t))

(defun all-realp (1st)
; 14 April 1992

(if (member nil (mapcar # ’floatp 1st)) nil t))

(defun all-textp (1st)
; 14 April 1992

(if (member t (mapcar # ’numberp 1st)) nil t))

(defun all-numberp (1st)
; 14 April 1992

(if (member t (mapcar # ’ (lambda (item)
(if (numberp item) nil t))

1st))
nil t))

(defun antecedent-is-instantiated (antecedent &aux instantiations)
; 2 April 1992

; Calling Function: DETERMINE-WHETHER-THE-ANTECEDENT-
; IS-INSTANTIATED-OR-NOT
; Returns: T or NIL

; This function takes an antecedent and appends to it the instantiations one
; at a time and checks to see if there exists a match with the assertions.
; The variable ‘Instantiated’ is T if there c.„Lts a template and one or more
; assertions associated with that template.

(setf instantiations ’((= $value) (is $value) (is-not $value) (are $value)
(are-not $value) (at $value))

antecedent (butlastn 2 antecedent))

Appendix G

(do* ((tails instantiations (rest tails))
(tail (first tails) (first tails))
(pattern (append antecedent tail) (append antecedent tail))
(instantiated ()))

((or (endp tails) instantiated)
(if (eq instantiated ’assertion-present) t nil))

(do* ((*assertions* *assertions* (rest *assertions*))
(assertions (first *assertions*) (first *assertions*))
(template (first assertions) (first assertions)))

((or (endp *assertions*) instantiated) instantiated)

(when (< > (unify pattern template) ’fail)
(if (and (rest assertions)

(antecedent-matches-with-template-assertions
pattern (rest assertions)))

(setf instantiated ’assertion-present)
(setf instantiated ’no-assertions))))))

(defun antecedent-matches-with-template-assertions (antecedent assertions)
; 16 April 1992

; Calling Function: ANTECEDENT-IS-INSTANTLATED
; Returns: T or NIL

(do ((assertions assertions (rest assertions))
(answer ()))

((or (endp assertions) answer) answer)
(when (< > (match antecedent (first assertions)) ’fail)

(setf answer t))))

(defun apply-filters (antecedents &optional Associated-rules rulebase-name
bindings-list)

; 6 April 1992

; Calling Functions: USE-IF-THEN-RULE.
; Returning: ((()()()) (()()()) (()()()))

; This function is the first level of the inferencing process. The filters
; are the antecedents to the rule under consideration and these are applied
; to the bindings-list. Each antecedent is considered one at a time through
; the use of subsequent functions, FILTER-BINDINGS-LIST and
; FILTER-BINDINGS.
; The list of bindings within the bindings-list expands and contracts
; relative to the infomation gathered from the assertions and objects.

(when (intersection ’(all apply-filters) *debug*)
(format t " ~ % > APPLY-FILTERS.")
(format t " ~ %Antecedents: ~ a" antecedents)
(format t " ~ %Bindings-list ~ a" bindings-list)
(pause))

Appendix G

(do ((antecedents antecedents (rest antecedents))
(antecedent ())
(antecedent-number 1 (incf antecedent-number)))

((or (and (> antecedent-number 1)
(not bindings-list))

(endp antecedents)) bindings-list)

(setf antecedent (first antecedents))

(if (eq (first antecedent) ’or)
(setf bindings-list

(disjunctive-antecedents (rest antecedent) bindings-list
associated-rules rulebase-name))

(progn
(update-inference-chain antecedent-number)
(setf bindings-list

(filter-bindings-list antecedent bindings-list
associated-rules rulebase-name))))))

(defun ask-fact (pattern &aux (slots (car (last pattern)))
prompt type assignment consequent units)

(set-object fact)

(setf (object-prompt fact) (make-prompt ‘(enter the ,@(butlast pattern)))
(object-type fact) (second (assoc ’type slots))
(object-Description fact) (string-upcase (make-prompt (butlast pattern)))
(object-allowedvalues fact) (second (assoc ’allowedvalues slots))
(object-defaultvalue fact) (second (assoc ’defaultvalue slots))
(object-disallowedvalues fact)

(second (insert-object-values (assoc ’disallowedvalues slots)))
(object-units fact) (second (assoc ’units slots))
(object-help fact) (second (assoc ’help slots))
consequent (rest (assoc ’consequent slots))
assignment (instantiate-assignment-according-to-type (object-type fact)))

(ask-object ’fact)

(remember-assertion ‘(,@(butlast pattern) ,assignmenl,(object-value fact)))

(when consequent
(fire-consequent ‘(,@(butlast consequent) ,(object-value fact))))

(object-value fact))

(defun instantiate-assignment-according-to-type (type)
(cond ((member type ’(text string logical) :test # ’equal) ’is)

((member type ’(integer-list real-list list text-list) :test # ’equal) ’are)
((member type ’(real integer) :test # ’equal) ’=)))

297

(defun ask-object (object
&aux (type (object-type (symbol-value object)))
(value ()))

; 14 April 1992

; Calling Functions: CONTINUE-TO-INSERT-OBJECT-VALUES,
; FETCH, MAKE-ASK-FORM

(when (not (object-prompt (symbol-value object)))
(setf (object-prompt (symbol-value object))

(concatenate ’string (stririg-upcase
(write-to-string object)) " ")))

(cond ((and (member type ’(text string))
(object-allowedvalues (symbol-value object)))

(setq value (menu object)))
((eq type ’text)
(setq value (enter-text object)))

((member type ’(integer real))
(setq value (enter-numeric object)))

((member type ’(integer-list text-list real-list list))
(setq value (enter-list object)))

((eq type ’string)
(setq value (enter-string object)))

(t t))
(setf (object-value (symbol-value object)) value))

(defun average-variable-from-bindings (variable bindings-list &aux answer)
; 2 June 1992

; Calling Function: MANIPULATE-BINDINGS

(do ((bindings bindings-list (rest bindings))
(count 1 (incf count))
(sum 0)
(bindings-alist ()))

((endp bindings) (setf answer (float (/ sum (- count 1)))))

(setf sum (+ sum (second (assoc variable (first bindings))))))

(setf bindings-list
(remove-variable-pair-from-bindings-list

variable bindings-list)
variable
(intern (coerce (cddr (butlast (coerce (write-to-string variable)

’list)))
’string)))

(subst answer ‘(average ,variable from bindings)
bindings-list :test # ’equal))

Appendix G

(defun binding-is-a-required-binding (binding required-bindings)
; 3 April 1992

; Calling Function: MODIFY-BINDINGS-TO-INCLUDE-ORIGINAL-
; AND-REQUIRED-BINDINGS
; Returns: T or NIL

; This function determines whether the binding (Svariable value) is a
; required-binding. This is true if the Svariable appears as the second
; argument in any one of the required-bindings.

(do ((required-bindings required-bindings (rest required-bindings))
(answer ()))

((or (endp required-bindings) answer) answer)
(when (equal (second (first required-bindings)) (first binding))

(setf answer t))))

(defun bindings-manipulation-template (phrase)
; 11 April 1992

; Calling Functions: ESTABLISH-REQUIRED-BINDINGS-FROM-
; UNIFICATION-BINDINGS,
; MANIPULATE-CURRENT-BINDINGS-LIST
; Returns: T or NIL

(manipulation-template-? phrase))

(defun bindings-p (p &aux 1st)
; 3 Aprh 1992

; Determines whether the symbol P is a bindings-variable by looking at the
; first element within the coerced list. If this is a $ then the symbol is a
; bindings-variable.

(setf 1st (coerce (write-to-string p) ’list))

(if (and (> (length 1st) 2)
(eq (intern (coerce ‘(,(second 1st)) ’string)) ’$))

t
nU))

(defun bindings-p-in-antecedent (antecedent &aux answer)

; 14 July 1993

(do ((element ()))
((or (endp antecedent) answer) answer)
(setf element (first antecedent)

antecedent (rest antecedent))
(when (bindings-p element) (self answer t))))

299

Appendix G

(defun butfirstn (number 1st &optional (length-of-original-list (length 1st)))
(cond ((> = number length-of-original-list) nil)

((= (length 1st) (- length-of-original-list number)) 1st)
(t (butfirstn number (rest 1st) length-of-original-list))))

(defun butlastn (number 1st &optional (original-lst 1st))
(cond ((> = number (length original-lst)) nil)

((eq (length 1st) (- (length original-lst) number)) 1st)
(t (butlastn number (butlast 1st) original-lst))))

(defun check-value (object value
&optional (range nil range-s)
&aux (type (object-type

(symbol-value object)))
(AV (if range-s

range
(object-allowedvalues

(symbol-value object))))
(front-operator (first (firstn 2 AV)))
(front-operand (second (firstn 2 AV)))
(back-operator (first (lastn 2 AV)))
(back-operand (second (lastn 2 AV)))
(form nil))

; 14 April 1992

; Calling Functions: ENTER-NUMERIC, ENTER-TEXT

; This function CHECKS the VALUES of objects with their ALLOWEDVALUES
; slot.

(when (intersection ’(all check-value) *debug*)
(format t " ~ %> CHECK-VALUE.")
(format t " ~ %Variable: ~ a" object)
(format t " ~ %Value: ~ a" value)
(format t " ~ %AllowedValues: ~ a" av)
(format t " ~ %Front operator: ~ a" front-operator)
(Format t " ~ % Front operand: ~ a" front-operand)
(format t " ~ %Back operator: ~ a" back-operator)
(format t " ~ %Back operand: ~ a" back-operand)
(pause))

(cond ((not AV) (setq form t))
((member type ’(integer real))
(cond ((eq (length AV) 2)

(setq form ‘(,front-operator ,value ,front-operand)))
(t

(setq form
‘(and (,front-operator ,value ,front-operand)

(,back-operator ,value ,back-operand))))))
(t (setq form ‘(member ’,value ’(,@AV)))))

(when (intersection ’(all check-value) *debug*)

Appendix G

(format t " ~ %Form: ~ a" form)
(pause))

(cond ((eval form) t)
((equal object ’fact)
(format t " ~ % Allowed values for ~ aare ~ a. ~ %"

(object-Description (symbol-value object)) AV))
(t (format t " ~ % Allowed values for ~ a are ~ a. ~ %" object AV)

NIL)))

(defun concat-symbol (&rest parts)
; 11 April 1992

; Calling Function: JOIN
; Returns: A symbol which is joined together ie (this is an example) becomes

THISISANEXAMPLE

(if (listp (first parts))
(intern (apply # ’concatenate ’string (mapcar # ’string (car parts))))
(intern (apply # ’concatenate ’string (mapcar # ’string parts)))))

(defun continue-to-insert-object-values (phrase)
; 11 April 1992

; CaUing Function: INSERT-OBJECT-VALUES
; Returns: PHRASE

(cond ((endp phrase) nil)
((listp (first phrase))
(cons (continue-to-insert-object-values (first phrase))

(continue-to-insert-object-values (rest phrase))))
((eval ‘(object-p ,(first phrase)))
(when (or (not (object-value (symbol-value (first phrase))))

(eq (object-status (symbol-value (first phrase)))
’volatile))

(when (eq (object-status (symbol-value (first phrase)))
’volatile)

(setf (object-value (symbol-value (first phrase))) ()))
(when (not (try-object-slots (first phrase)))

(ask-object (first phrase))))
(cons (object-value (symbol-value (first phrase)))

(continue-to-insert-object-values (rest phrase))))
(t

(cons (first phrase)
(continue-to-insert-object-values (rest phrase))))))

(defun create-inference-network (nodal-list &aux (branch-nodes ()))
; 11 April 1992

; Calling Function: AUGMENT-RULEBASE

(setf branch-nodes (find-network-branches () nodal-list))

301

(create-network nodal-list branch-nodes))

(defun create-network (nodal-list branch-nodes &aux node node-alist
aux-nodal-list)

; 11 April 1992

; Calling Function: CREATE-INFERENCE-NETWORK

(setf node (first branch-nodes)
node-alist (assoc node nodal-list))

(cond ((endp branch-nodes) ())
((member node (second (assoc node nodal-list)))
(setf aux-nodal-list (delete node-alist nodal-list)

node-alist ‘(>node ,(remove node (second node-alist))))
(cons (cons node

‘(((,node
,(create-network ‘(,@aux-nodal-list,node-alist)

(find-network-branches (first branch-nodes)
‘(,@aux-nodal-list,node-alist)))))))

(create-network ‘(,@aux-nodaI-list,node-alist)
(rest branch-nodes))))

(t
(cons (cons node

‘(, (create-network nodal-list
(find-network-branches

(first branch-nodes)
nodal-list))))

(create-network nodal-list (rest branch-nodes))))))

(defun debug (&rest fnctns)
; 14 April 1992

; Calling Functions; Any that have diagnostic requirements.

(when (not fnctns)
(format t " ~ %— Debug — ~ %")
(format t " ~ % ~ a ~ %" *debug*)
(format t " ~ %function_name")
(format t " ~ %ALL ~ %PAUSE ~ %RESET')
(format t " ~ %REMOVE function_l function ^ ... function n")
(format t "~% D E B U G > ? ")

(setf fnctns (read-sentence)))
(if (not fnctns) * debug*
(cond ((eq (first fnctns) ’reset)

(setf * debug* nil))
((eq (first fnctns) ’remove)
(setf *debug* (set-difference * debug* fnctns))
(debug))

((eq (first fnctns) ’all)
(setf * debug* ’(all))
(debug))

Appendix G

(t
(setf *debug* (union *debug* fnctns))
(debug)))))

(defun determine-whether-the-antecedent-is-instantiated-or-not
(antecedent bindings)
; 2 April 1992

; Calling Function: MATCH-ANTECEDENT-TO-ASSERTIONS
; Returns: () or ((()()()) (()()()) ... (()()()))
y
; This function determines whether the pattern is instantiated within the
; assertions list. If it is then the preceeding atom of the phrase, i.e ’is’
; or ’are’ establishes whether the bindings are returned in a bindings list
; form or NIL is returned.

(if (antecedent-is-instantiated antecedent)
(if (equal (last antecedent) ’(instantiated))

(if (member (first (lastn 2 antecedent)) ’(is are))
(cons bindings ())
nil)

(if (member (first (lastn 2 antecedent)) ’(is are))
nil
(cons bindings ())))

(if (equal (last antecedent) ’(instantiated))
(if (member (first (lastn 2 antecedent)) ’(is are))

nil
(cons bindings ()))

(if (member (first (lastn 2 antecedent)) ’(is are))
(cons bindings ())
nil))))

(defun dir (&rest parameters &aux files d (ext "disk$mec:[mec3hartlsl."))
(if (not parameters)

(format t " ~ %(dir ’*.* lisp.rbs) where LISP.RBS must be in double
quotes ~ % ~ %")

(progn
(setf files (first parameters)

d (second parameters)
files
(coerce

(rest (butlast (coerce (write-to-string files)
’list))) ’string)

ext (concatenate ’string ext d "]"))
(directory (concatenate ’string ext files)))))

(defun disjunctive-antecedents (or-antecedents bindings-list
associated-rules rulebase-name
&aux (state ()))

; 6 April 1992

; Calling function: APPLY-FILTERS

303

; Returns: ((()()()) (()()()) ... (()()()))
9
; This performs the inferencing on disjunctive antecedents. As soon
; answer is obtained the search stops.

(do ((or-antecedents or-antecedents (rest or-antecedents))
(antecedents ())
(antecedents-bindings-list bindings-list)
(antecedent-set-count 1 (incf antecedent-set-count)))

((or (and (> antecedent-set-count 1) antecedents-bindings-list)
(endp or-antecedents)) antecedents-bindings-list)

(setf antecedents (first or-antecedents))

(when (all-antecedents-are-not-lists antecedents)
(setf antecedents ‘(.antecedents)))

(setf state (first inference-chain)
inference-chain ‘((,(first state) (,antecedent-set-count 0)

,(third state)) ,@(rest inference-chain))
antecedents-bindings-list
(apply-filters antecedents associated-rules

rulebase-name bindings-list))))

(defun elements-p (p d)
(and (atom p) (atom d)))

(defun enter-list (object &key (type ’list)
&aux 1st prompt AV DAV DV error-prompt units)

; 28 May 1993

(if (and (not (stringp object))
(boundp object))

(progn
(PrintPreface object)
(setq prompt (object-prompt (symbol-value object))

type (object-type (symbol-value object))
AV (object-allowedvalues (symbol-value object))
DV (object-defaultvalue (symbol-value object))
DAV (object-disallowedvalues (symbol-value object))
Units (object-units (symbol-value object))
error-prompt (concatenate ’string "The list should be"

(cond ((eq type ’integer-list)
" an integer list")

((eq type ’text-list)
" a text list")

f(en tvne ’’•"'d-list)
a real list")

(t " a lisf 'm i)
(setq prompt object))

(format t " ~ %Current value of ~ a: ~ a" prompt 1st)
(format t " ~ %")

(format t prompt)
(format t "")
(when units (format t "[~ a] " units))

(do ((input (read-sentence) (read-sentence)))
((member ’end input :test # ’equal)
(terpri)
(remove ’end (union (reverse 1st) input)))

(cond ((intersection input ’(why w)) (why))
((intersection input ’(h help))
(help prompt)
(enter-list object))

((or (and (eq type ’integer-list)
(all-integerp input))

(and (eq type ’text-list)
(all-textp input))

(and (eq type ’real-list)
(all-realp input))

(eq type ’list))
(setq 1st (union (reverse 1st) input)))

(t
(format t error-prompt)
(format t " ~ %Please re-enter.")))

(format t " ~ %Current value of ~ a: ~ a" prompt 1st)
(format t " ~ % ~ a " prompt)))

(defun enter-numeric (object &key (terminus ’(end next))
(type nil) &aux prompt DV value units)

; 14 April 1992

(if (and (not (stringp object))
(boundp object))

(progn
(PrintPreface object)
(setq prompt (object-prompt (symbol-value object))

type (object-type (symbol-value object))
units (object-units (symbol-value object))
DV (object-defaultvalue (symbol-value object))))

(setq prompt object))

(when (and DV (not (eq DV ’allow-none)))
(format t " ~ %Default value : ~ a" DV))

(if (stringp object)
(format t prompt)
(progn (format t " ~ %") (format t prompt)))

(format t " ")
(when units (format t "[~ a] " units))
(setq value (first (read-sentence)))

Appendix G

(when (and (member type ’(real integer))
(numberp value))

(if (eq type ’integer)
(setq value (truncate value))
(setq value (float value))))

(cond ((member value terminus) value)
((intersection (list value) ’(w why)) (why)
(enter-numeric object :type type))

((intersection (list value) ’(h help))
(help object)
(enter-numeric object :type type))

((and (eq value nil)
(not (eq DV ’allow-none)))

(if (eq DV nil)
(progn

(format t DefaultValueError)
(enter-numeric object :type type))

DV))
((and (member type ’(real integer))

(not (numberp value)))
(format t " ~ %You must enter a numeric value. ~ %")
(enter-numeric object :type type))

((and (stringp object)
(numberp value))

value)
(t (if (check-value object value)

value
(enter-numeric object :type type)))))

(defun enter-read-filename (&aux (file nil)
(file-set nil)
(file-success nil)
(success-switch t))

(setq file (enter-text ’read-filename)
file-set (list (join (list file ’.asrt))

(join (list file ’.nod))
(join (list file ’.var)))

file-success (mapcar # ’probe-file file-set))

(do ((file-set file-set (rest file-set))
(file-success file-success (rest file-success)))

((endp file-set) success-switch)
(if (not (first file-success))

(progn
(setq success-switch nil)
(when (n<M (eq ’none file))

(format t " ~ %File ~ a is NOT present." (first file-set))))
(format t " ~ %File ~ a is present." (first file-set))))

(cond (success-switch

Appendix G

file)
((and (not success-switch) (eq file ’none))
’none)

(t (terpri) (enter-read-filename))))

(defun enter-string (object &aux prompt DV value units)
; 14 April 1992

(if (and (not (stringp object))
(boundp object))

(progn
(PrintPreface object)
(setq prompt (object-prompt (symbol-value object))

units (object-units (symbol-value object))
DV (object-defaultvalue (symbol-value object))))

(setq prompt object))

(when (and DV (not (eq DV ’allow-none)))
(format t " ~ %Default value : ~ a" D V))

(format t " ~ % ")
(format t prompt)
(format t " ")
(when units (format t "[~ a] " units))
(setq value (read-sentence))

(cond ((intersection value ’(w why))
(why)
(enter-string object))

((intersection value ’(h help))
(help object)
(enter-string object))

((and (= (length value) 0)
(eq DV ’allow-none))

nil)
((= (length value) 0)
(if (eq DV nil)

(progn
(format t DefaultValueError)
(enter-string object))

DV))
(t

(setf value (-> string value)))))

(defun enter-text (object &aux prompt type AV DV DAV value units)
; 14 April 1992

(if (and (not (stringp object))
(boundp object))

(progn
(PrintPreface object)
(setq prompt (object-prompt (symbol-value object))

307

Appendix G

type (object-type (symbol-value object))
AV (object-allowedvalues (symbol-value object))
units (object-units (symbol-value object))
DV (object-defaultvalue (symbol-value object))
DAV (object-disallowedvalues (symbol-value object))))

(setq prompt object))

(when (and DV (not (eq DV ’allow-none)))
(format t " ~ %Default value : ~ a" DV))

(format t " ~ %")
(format t prompt)
(format t "")
(when units (format t "[~ a] " units))
(setq value (first (read-sentence)))

(cond ((and (eq value nil) (not (eq DV ’allow-none)))
(if (eq DV nil)

(progn
(format t DefaultValueError)
(enter-text object))

DV))
((intersection (list value) ’(w why))
(why)
(enter-text object))

((intersection (list value) ’(h help))
(help object)
(enter-text object))

((numberp value)
(format t " ~ %You must enter a text value. ~ %")
(enter-text object))

((stringp object) value)
((and (not AV)

DAV)
(if (member value DAV :test # ’equal)

(progn
(format t " ~ %Sorry, the answer you gave is a DISALLOWED VALUE.")
(format t " ~ %Current disallowed values are ... ~ %")
(dolist (DisAV DAV t)

(print DisAV))
(terpri)
(enter-text object))

value))
(t (if (check-value object value)

value
(enter-text object)))))

(defun establish-required-bindings-from-unification-bindings
(bindings unification-bindings antecedent

&aux (new-bindings bindings) (required-bindings ()))
; 3 April 1992

; Calling Function: TRY-RULE

Appendix G

; Returns: (()()()) and (()()())

; This function receives three arguments (1) the original-bindings (2) the
; unification bindings that have been generated from unifying the antecedent
; with the consequents of an associated rule, and (3) the antecedent. The
; function is a MULTIPLE-VALUE-BIND call and as such returns new-bindings
; and the required-bindings. The new-bindings contain unification-bindings
; whose second argument is not a bindings-variable, ie (Svariable xxxx) as
; opposed to ($variable_l $variable_2), this covers the fact that the
; consequent directly relates to a number, text or a list. However, if the
; second argument is a bindings-manipulation-template, as (AVERAGE AXIAL-
; VELOCITY FROM BINDINGS) from G ll-R B then this has to be included in the
; required variables.

(dolist (pair unification-bindings
(values new-bindings required-bindings))

(when (member (first pair) antecedent)
(if (or (bindings-p (second pair))

(listp (second pair)))
(setf required-bindings (cons pair required-bindings))
(setf new-bindings (cons pair new-bindings))))))

(defun evaluate (consequent &optional bindings-list)
; 14 April 1992

; Calling Function: FIRE-CONSEQUENT

(when (and (listp consequent)
(equal (first consequent) ’-> q l)
(listp (car (last consequent))))

(setf consequent ‘(,@(butlast consequent) ,@(car (last consequent)))))

(cond ((atom consequent) consequent)
((member (first consequent) *tfe-functions*)
(evaluate-function (mparse (evaluate-recursively consequent bindings-list))

bindings-list))
(t (evaluate-recursively consequent bindings-list))))

(defun evaluate-recursively (consequent &optional bindings-list)
; 14 April 1992

; Calling Function: EVALUATE, EVALUATE-RECURSIVELY

(cond ((endp consequent) nil)
((listp (first consequent))
(let ((consequent

(cons (evaluate (first consequent)
bindings-list)

(evaluate (rest consequent) bindings-list))))

(if (member (first consequent) *ife-functions*)

(cons (evaluate-function (mparse (first consequent)) bindings-list)
(evaluate-recursively

(rest consequent) bindings-list))
consequent)))

(t (cons (first consequent)
(evaluate-recursively (rest consequent) bindings-list)))))

(defun evaluate-function (form bindings-list)
; 14 April 1992

; Calling functions: EVALUATE, EVALUATE-RECURSIVELY

(eval (make-form form bindings-list)))

(defun evaluate-antecedent (antecedent &optional bindings Associated-rules
rulebase-name)

; 3 April 1992

; Calling Function: FILTER-BINDINGS
; Returns: T, (bindings) or ((()()()) (()()()) ... (()()()))
>
; The function evaluates the antecedent and returns NIL for a failed
; antecedent, the orignal bindings in a bindings-list form for a correctly
; fired antecedent, or the resulting bindings-list from using the function
; MATCH-ANTECEDENT-TO-ASSERTIONS-AND-ASSOCIATED-RULES.

(let ((answer (preliminary-evaluation-of-the-antecedent antecedent)))
(cond ((eq answer t) (cons bindings ()))

((eq answer nil) nil)
(t (match-antecedent-to-assertions-and-associated-rules

antecedent bindings Associated-rules rulebase-name)))))

(defun evaluate-pattern (pattern &optional bindings-list)
; 14 April 1992

; Calling Functions: INSERT-OBJECT-VALUES-IN-BINDINGS-LIST
; Returns: Evaluated pattern.

; This functioncheck to see if there exists a command within the pattern
; that requires subsequent evaluateion, ie JOIN. If there is no such
; requirement then it is not necessary to perform the evaluateion. This
; is why the pattern is returned if the success-switch is not T.

(do ((new-pattern pattern (rest new-pattern))
(success-switch nil))

((or (endp new-pattern) success-switch)
(if success-switch

(evaluate (instantiate-bindings pattern bindings-list)
bindings-list)

Appendix G

pattern))
(when (and (listp (first new-pattern))

(eq (first (first new-pattern)) ’join))
(setq success-switch t))))

(defun extract-bindings-value (binding)
(second binding))

(defun extract-bindings-variable (binding)
(first binding))

(defun fetch (object &key type &aux (assignment nil)
(variable ())
(bindings nil) (answer ()))

; 14 April 1992

; Calling functions: MAKE-FETCH-FORM

; This function returns the value for an object or a certain phrase, for
; example. AXIAL INLET VELOCITY FOR ENTRY = $VALUE

(cond ((and (symbolp object)
(eval ‘(object-p .object)))

(when (eq (object-status (symbol-value object)) Volatile)
(setf (object-value (symbol-value object)) ()))

(when (not (object-value (symbol-value object)))
(try-object-slots object)
(when (not (object-value (symbol-value object)))

(ask-object object)))

(object-value (symbol-value object)))
(t

(setq bindings
(determine-whether-the-antecedent-is-instantiated-or-not

object))
(cond ((endp bindings)

(setf answer (ask-fact object))
answer)

(t (extract-bindings-value (caar (last bindings))))))))

(defun filter-bindings (antecedent &optional bindings associated-rules
rulebase-name
&aux (phrase ()) (answer ()))

; 2 April 1992

; Calling Function: FILTER-BIND INGS-LIST
; Returns: ((()()()) (()()()) ... (()()()))

; This takes an antecedent, filters the list of bindings, (()()()), through

311

; it and returns a bindings list

(when (intersection * debug* ’(filter-bindings all))
(format t "~% >FILTER-BINDINGS.")
(format t % Antecedent: ~ a” antecedent)
(format t " ~ %Bindings: ~ a" bindings))

(setf phrase (instantiate-bindings antecedent bindings)
phrase (mparse (insert-object-values phrase)))

(when (intersection *debug* ’(filter-bindings all))
(format t " ~ %Phrase: ~ a" phrase)
(pause))

(setf answer (evaluate-antecedent phrase bindings associated-rules
rulebase-name)

answer (remove-duplicates answer :test # ’equal))

(when (intersection * debug* ’(filter-bindings all))
(format t " ~ % < FILTER-BINDINGS.")
(format t " ~ % Answer: ~ a ~ %" answer)
(pause))

answer)

(defun filter-bindings-list (antecedent &optional bindings-list
associated-rules rulebase-name &aux (answer ()))

; 2 April 1992

; Calling Function: APPLY-FILTERS
; Returns: ((()()()) (()()()) ... (()()()))
>

; This takes an antecedent and a bindings-list. The bindings within the
; bindings-list are systematically filtered one by one. Each list of
; bindings are returned as a complete bindings-list. Therefore, the
; complete set of bindings-lists for the original bindings-list needs to
; be joined together to create one bindings-list. The STREAM-CONCATENATE
; function desperately needs removing and a simple joining mechanism
; introducing.

(when (intersection * debug* ’(all filter-bindings-list))
(format t " ~ % > FILTER BINDINGS LIST.")
(format t " ~ %Antecedent: ~ a" antecedent)
(format t " %Bindings list: ~ a" bindings-list)
(format t " ~ % Associated rules: ~ a ~ %" associated-rules)
(pause))

(if bindings-list
(setf answer

(make-bindings-list-from-bindings-lists
(mapcar # ’(lambda (bindings)

(filter-bindings antecedent bindings

Appendix G

associated-rules rulebase-name))
bindings-list)))

(setf answer (filter-bindings antecedent () associated-rules
rulebase-name)))

(setf answer (insert-object-values-in-bindings-list answer))

(when (intersection "‘debug* ’(all filter-bindings-list))
(format t " ~ % < FILTER BINDINGS LIST.’*)
(format t " ~ % Antecedent: ~ a" antecedent)
(format t " ~ % Answer: ~ a ~ %" answer)
(pause))

answer)

(defun find-binding (bindings-variable bindings)
; 3 April 1992

; Bindings-variable = $X
; Bindings = ’(($A 2) ($X 4))
; Returns = ($X 4)

(unless (eq ’$_ bindings-variable)
(assoc bindings-variable bindings)))

(defun find-network-branches (root-node connectivity)
; 11 April 1992

; Calling Function: CREATE-INFERENCE-NETWORK, CREATE-NETW ORK

(remove ()
(mapcar # ’ (lambda (node)

(when (or (member root-node (second node))
(and (not root-node)

(not (second node))))
(first node)))

connectivity)))

(defun fire-consequent (consequent &optional bindings)
; 10 April 1992

; Calling Function: FIRE-CONSEQUENTS
; Returns:

; This function fires the consequent. If the consequent is an IFE-FUNCTION
; ie RUN -> SCREEN etc, the consequent is fed into the function EVALUATE.
; Secondly, if the consequent is OBJECT (= IS ARE INCLUDES EXCLUDES)
. ? ? 9 9 9 >)
; the function INSTANTIATE-OBJECT is called. Finally, remember-assertion
; is called if appropriate.

(when (intersection *debug* ’(fire-consequent all))

313

(format t FIRE-CONSEQUENT')
(format t " ~ %Consequent: ~ a" consequent)
(format t " ~ %Bindings: ~ a" bindings)
(pause))

(cond ((member (first consequent) *ife-functions*)
(evaluate consequent bindings) nil)

((eval ‘(object-p ,(first consequent)))
(instantiate-object consequent))

((eq ’assert (first consequent))
(remember-assertion (evaluate (rest consequent) bindings))))

(when (intersection *debug* ’(fire-consequent all))
(format t " ~ % < FIRE-CONSEQUENT’)
(pause)))

(defun fire-consequents (consequents bindings-list
&aux (first-list ()) (second-list consequents) (dummy-list ())
(switch 0) (block-firing ()) (index 0))

; 8 April 1992

; Calling Function: USE-IF-THEN-RULE
; Returns: Bindings-list

; This function ...

; (when (and (not bindings-list)
; (no-bindings-variables-in-consequents consequents))
; (setf bindings-list ’(())))

; Note: The preceeding LISP command is required to ensure that the
; consequents are fired if the bindings-list is NIL and the consequents
; do not contain any bindings-variables. The is exemplified in the first
; rule of INLET-FLOW-AREA-RB.

(when (intersection ’(all fire-consequents) * debug*)
(format t " ~ % > FIRE-CONSEQUENTS")
(when (member ’pause * debug*)

(format t " ~ %-— Printer ? - Return if not required — ")
(pause))

(format t " ~ %Consequents: ~ a" consequents)
(format t " ~ %Bindings list: ~ a" bindings-list)
(when (member ’pause * debug*) (pause)))

(setf block-firing (match ’(fire in block relative to $ variable)
(first conseq""nts)))

(if (< > block-finng ’fail)
(dolist (bindings (group-bindings-wrt-???

(second (assoc ’$variable block-firing))
bindings-list)

t)

(fire-consequents (rest consequents) bindings))
(progn

(setf first-list (manipulate-bindings bindings-list))
(when (equal (first second-list)

’(apply bindings to each consequent))
(setf dummy-list first-list

first-list (rest second-list)
second-list dummy-list
switch t))

(do ((first-list first-list (rest first-list))
(second-list second-list second-list))

((endp first-list))
(when (not switch)

(incf index))

(do ((second-list second-list (rest second-list))
(first-item t nil) (result ()) (item ()) (position ()))

((endp second-list))

(cond ((and switch first-item)
(setf index 1))

(switch (incf index)))
(if switch

(setf result (instantiate-bindings (first first-list)
‘(,@(first second-list) ($index ,index))))
(setf result (instantiate-bindings (first second-list)
‘(,@(first first-list) ($index ,index)))))

(setf result (insert-object-values-in-consequent
result))

(fire-consequent result
(if switch (first second-list)

(first first-list)))))))
(when (intersection ’(all fire-consequents) * debug*)

(if switch
(format t " ~ %< FIRE-CONSEQUENTS: ~ a ~ % " second-list)
(format t " ~ % < FIRE-CONSEQUENTS: ~ a ~ % " first-list))

(pause))

(if switch second-list first-list))

(defun firstn (number 1st)
(cond ((> = number (length 1st)) 1st)

((eq number (length 1st)) 1st)
(t (firstn number (butlast 1st)))))

(defun group-bindings-wrt-???
(variable bindings-list &aux (value ()) (complex-grouping ()) (answer ()))
; 8 April 1992

; Calling Function: FIRE-CONSEQUENTS

Appendix G

; Returns: Modified bindings-list ((()()()) (()()()) ... (()()()))
>

; This function takes a variable, $name, and groups the bindings with the
; same variable together in one block. The complex grouping list becomes
; (($variable_value_l (bindings with the value $variable_value_l))
; ($variable_value_2 (bindings with the value $variable_value_2))
; (... ()))

(dolist (bindings bindings-list complex-grouping)
(setf value (second (assoc variable bindings)))
(if (assoc value complex-grouping)

(rplacd (assoc value complex-grouping)
‘((>@ (second (assoc value complex-grouping))

,bindings)))
(setf complex-grouping

(append complex-grouping ‘((>value (,bindings)))))))

(dolist (bindings complex-grouping answer)
(setf answer (cons (second bindings) answer))))

(defun insert-object-values (phrase)
; 11 April 1992

; Calling Functions: INSERT-OBJECT-VALUES-IN-BINDINGS-LIST,
; FILTER-BINDINGS,
; INSERT-OBJECT-VALUES-IN-CONSEGUENT
; Returns: PHRASE

(cond ((and (atom phrase)
(object-p phrase))

(object-value (symbol-value phrase)))
((atom phrase) phrase)
((or (member (rest phrase) ’((is instantiated) (is-not instantiated)

(is uninstantiated) (are instantiated)
(are-not instantiated) (are uninstantiated))

:test # ’equal)
(eq (first phrase) ’define)
(and (= (length phrase) 2) (equal (first phrase) ’instantiate)

(boundp (second phrase))))
phrase)

(t (continue-to-insert-object-values phrase))))

(defun insert-object-values-in-bindings-list (bindings-list)
; 13 April 1992

; Calling Function: FILTER-BINDINGS-LIST
; Returns: bindings-list

(mapcar # ’(lambda (bindings)
(mapcar # ’(lambda (pair)

(evaluate-pattern (insert-object-values pair)))
bindings))

Appendix G

bindings-list))

(defun insert-object-values-in-consequent (consequent &aux item position)
; 10 April 1992

; Calling Function: FIRE-CONSEQUENTS
; Returns: Consequent

; This function takes a consequent which is about to be fired and inserts
; the values for all of the objects within it. However, a consequent which
; is instantiating or modyfying an object must not re-insert the value but
; must avoid that object. This is performed using the premise that any object
; before the symbols ’(= IS ARE INCLUDES EXCLUDES) is not replaced.
; Furthermore, object-slot-manipulation-templates, ie those templates which
; modify the slots of an object (status prompt etc...), and ASK consequents
; are also left unaltered.

(if (or (object-slot-manipulation-template consequent)
(equal (first consequent) ’ask))

consequent
(progn

(setf item (intersection ’(+ = -= = is are includes excludes
prompt defaultvalue allowedvalues
status preface)

consequent)
position (locate (first item) consequent))

(mparse ‘(,@(firstn position consequent)
,@(insert-object-values

(butfirstn position consequent)))))))

(defun insert-objects-in-values (a-values &aux (r-values nil))
; 14 April 1992

; Calling Function: PRINT-TO-SCREEN

; a-values -- Accepted-VALUES, r-values - Returned-VALUES
; This function takes a list of symbols and checks to see if any are objects.
; If this is so then the object value is inserted in its place and the new
; list is returned.

(when (intersection ’(all sort-values) * debug*)
(format t " ~ % > SORT-VALUES.")
(format t " ~ %a-values: ~ a ~ %" a-values))

(dolist (value a-values (reverse r-values))
(if (and (atom value)

(eval ‘(ohject-p ,value)))
(setq r-values (cons (object-value (symbol-value value))

r-values))
(setq r-values (cons value r-values)))))

(defun insert-template-values (&rest template-values &aux template values)
; 15 May 1992

; CaUing Function: MAKE-REGIONS

(setf template (first template-values)
values (rest template-values)
values (insert-objects-in-values values))

(do ((count 1 (incf count)))
((> count (length values)) template)
(setf template

(subst (nth (- count 1) values)
‘(,count)
template
:test # ’equal))))

(defun insidep (variable expression bindings)
(if (equal variable expression)

nil
(inside-or-equal-p variable expression bindings)))

(defun inside-or-equal-p (variable expression bindings &aux 1st)

(setf 1st (coerce (write-to-string expression) ’list))

(cond ((equal variable expression) t)
((atom expression) nil)
((and (> (length 1st) 2)

(eq (intern (coerce ‘(,(second 1st)) ’string)) ’$))
(let ((binding (find-binding expression bindings)))

(when binding
(inside-or-equal-p variable

(extract-bindings-value binding)
bindings))))

(t (or (inside-or-equal-p variable
(first expression)
bindings)

(inside-or-equal-p variable
(rest expression)
bindings)))))

(defun instantiate-bindings (pattern bindings)
; 2 April 1992

; Calling Functions: INSTANTIATE-BINDINGS, TRY-RULE,
; FILTER-BINDINGS,
; FIRE-CONSEQUENTS
; Returns: pattern with included bindings replaced wb ° e appropriate.

; This function takes a pattern, i.e. ’A Template with a $Binding’, and a
; list of bindings (()()()). The function bindings-p indicates whether the

; atom is a binding by considering the first character of the symbol. If
; the first character is equal to $ the appropriate binding in the list of
; bindings is extracted and inserted in place of the atom. The function
; is RECURSIVE.

(cond ((bindings-p pattern)
(let ((binding (find-binding pattern bindings)))

(if (and binding (< > (first binding) (second binding)))
(instantiate-bindings

(extract-bindings-value binding) bindings)
pattern)))

((atom pattern) pattern)
(t (cons (instantiate-bindings (first pattern) bindings)

(instantiate-bindings (rest pattern) bindings)))))

(defun instantiate-object
(consequent &aux (object (first consequent))

(operator (second consequent))
(value (car (last consequent)))
(type (object-type (symbol-value object))))

; 14 April 1992

; Calling Function: FIRE-CONSEQUENT

(when (intersection ’(instantiate-object all) *debug*)
(format t " ~ % > INSTANTIATE-OBJECT.")
(format t " ~ %Variable: ~ a" object)
(format t " ~ %Operator: ~ a" operator)
(format t " ~ %Value: ~ a" value)
(format t " ~ %Type: ~ a" type)
(pause))

(when (and (not (listp value))
(eval ‘(object-p ,value)))

(setf value (object-value (symbol-value value))))

(cond ((eq operator ’allowedvalues)
(setf (object-allowedvalues (symbol-value object)) value)
(when (eq (object-type (symbol-value object)) ’list)

(setf (object-defaultvalue (symbol-value object))
(car value))))

((eq operator ’defaultvalue)
(setf (object-defaultvalue (symbol-value object)) value))

((eq operator ’preface)
(setf (object-preface (symbol-value object)) value))

((eq operator ’status)
(setf (object-status (symbol-value object)) value))

((eq operator ’prompt)

Appendix G

(setf (object-prompt (symbol-value object))
(make-prompt value)))

((and (member operator ’(excludes includes))
(eq type ’list))

(if (eq operator ’includes)
(unless (member value

(object-value (symbol-value object)) :test # ’equal)
(setf (object-value (symbol-value object))
(append (object-value (symbol-value object))

(list value))))
(setf (object-value (symbol-value object))

(remove value
(object-value (symbol-value object)) :test # ’equal))))

((and (member operator ’(is are))
(member type ’(string text)))

(setf (object-value (symbol-value object)) value))

((and (eq operator ’=)
(member type ’(integer real)))

(setf (object-value (symbol-value object))
(mparse (evaluate value))))

((and (eq operator ’+ =)
(member type ’(integer real)))

(setf (object-value (symbol-value object))
(4- (object-value (symbol-value object))

(mparse (evaluate value)))))
(t

(format t "~% Inconsistant type/operator for object ~a."
object))))

(defun join (1st)
; 11 April 1992

; Calling Functions: UPGRADE, REMEMBER-RULE, MAKE-FORM,
; EVALUATE-P,
; TRY-OBJECT-SLOTS
; Returns: From (This is an example) to THISISANEXAMPLE

(concat-symbol (mapcar # ’(lambda (item) (write-to-string item)) 1st)))

(defun lastn (number 1st)
(cond ((> = number (length 1st)) 1st)

((eq number let)) jst)
(t (lastn number (rest 1st)))))

Appendix G

(defun locate (item pattern)
; 11 April 1992

; Calling Function: INSERT-OBJECT-VALUES-IN-CONSEQUENT
; Returns: Numeric value

(do ((count 1)
(pattern-length (length pattern))
(pattern pattern (rest pattern)))

((or (endp pattern)
(equal item (first pattern)))

(if (endp pattern) 0 count))
(incf count)))

(defun make-ask-form (arguments &aux (assignment nil)
(type (car (last arguments)))
(variable ()))

; 14 April 1992

; Calling Function: MAKE-FORM

(if (eval ‘ (o b j e c t - p ,(first arguments)))
‘(ask-object \(first arguments))
‘(ask-fact arguments)))

(defun make-binding (bindings-variable bindings-value)
(list bindings-variable bindings-value))

(defun make-bindings-list-from-bindings-lists (bindings-lists &aux answer)
; 11 April 1992

; Calling Function: FILTER-BINDINGS-LIST
; Returns: ((()()()) (()()()) ... (()()())) from (((()()())
; (()()()))
; ((()()())
; ((()()())))
(dolist (bindings-list bindings-lists answer)

(dolist (bindings bindings-list t)
(setf answer (cons bindings answer)))))

(defun make-fetch-form (arguments)
; 14 April 1992

; Calling Function: MAKE-FORM
; Template "(sentence (type rulebase))" OR "(sentence rulebase)"

(if (listp (car (last arguments)))
‘(fetch \(butlast arguments)

:type (first (car (last arguments)))
:rulebase ,(second (car (last arguments))))

‘(fetch \(butlast arguments) :RuleBase ,(car (last arguments)))))

Appendix G

(defun make-for-all-rule (name rule &aux (object (third rule)))
; 25 April 1992

; Calling Function: RE-STRUCTURE-RULE-TO-RULE-TEMPLATE
; Returns: Rule

(if (and (eq (car (fifth rule)) ’then)
(eq (car (fourth rule)) ’if))

(setf rule ‘(.name ,rule))
(setf rule ‘(.name (for all .object

(if nothing)
(then ,@(butfirstn 3 rule)))))))

(defun make-form (form &optional bindings-list &aux (function (first form))
(arguments (rest form)))

; 14 April 1992

; Calling Function: EVALUATE-FUNCTION

(cond ((eq function ’abs)
‘(abs ,©arguments))

((eq function ’reset)
‘(re se t,©(mapcar # ’(lambda (a) ‘*,a) arguments)))

((eq function ’join)
‘(join ’(,©arguments)))

((eq function ’remove)
‘(remove-assertion ’(,©arguments)))

((eq function ’ask)
(make-ask-form arguments))

((eq function ’fetch)
(make-fetch-form arguments))

((eq function ’run)
(make-run-form arguments bindings-list))

((eq function ’-> q l)
(make-->ql-form arguments))

((eq function ’-> Screen)
(m ake->Screen-form arguments))

((eq function ’symbol-split)
‘(symbol-split .(first arguments) ’.(second arguments)))

((member function ’(xc_l xc_2 yc_l yc_2 zc_l zc_2))
‘(.function ’,bindings-list))

((eq function ’->1.0e???)
‘(->1.0e??? ©arguments))

((eq function ’max)
‘(max ,©arguments))

((eq function ’’>se)
‘(use-rulebase ’,©arguments))

((eq function ’int)
‘(floor ,©arguments))

((equal function ’Define)
‘(set-object,©arguments))

((equal function ’instantiate)

Appendix G

‘(fetch ©arguments))
(t t)))

(defun no-bindings-variables-in-consequents (consequents)
; 22 May 1992

; Calling Function: FIRE-CONSEQUENTS
(do ((consequents consequents (rest consequents))

(variable-present nil))
((or (endp consequents) variable-present)
(if variable-present nil t))

(do ((consequent (first consequents) (rest consequent)))
((or (endp consequent) variable-present))
(when (bindings-p (first consequent))

(setf variable-present t)))))

(defun make-prompt (&rest template-values &aux (template nil) (values nil)
(phrase nil) (p rom pt""))

; 14 April 1992

; Calling Functions:
; Returns: A prompt in the form of a string.

; This functions receives a list ’((template) vail val2 ... vain). Initially
; all of the values in the template given by (number) are replaced. This
; list is then converted to a list of strings and concatenated together to
; form the prompt which is returned.

(setq template (first template-values)
values (rest template-values))

(setf phrase (dolist (value values template)
(setf template (substitute value

‘(.(locate value values))
template :test # ’equal))))

(make-prompt-string phrase))

(defun make-prompt-string (phrase)
; 16 April 1992

; Calling Function: MAKE-PROMPT

(do ((phrase phrase (rest phrase))
(word ())
(scrn-wdth 50)
(line-length 0)
(count 1 (incf count))
(newline () ())
(string"")

(last-word "."))
((endp phrase) (concatenate ’string string ’’ "))

323

(setf word (string-downcase (write-to-string (first phrase))))

(when (eq # \ | (first (coerce word ’list)))
(setf word (coerce (rest (butlast (coerce word ’list)))

’string)))

(when (and (not (equal word "<nl>"))
(equal # \< (first (coerce word ’list)))
(equal # \> (car (last (coerce word ’list)))))

(setf word (string-upcase
(coerce (rest (butlast (coerce word ’list))) ’string))))

(when (eq # \. (car (last (coerce last-word ’list))))
(setf word (string-capitalize word)))

(when (> = (+ line-length (length word) 2) scrn-wdth)
(setf string (concatenate ’string string " ~ %")

newline t
line-length 0))

(cond ((eq # \. (car (last (coerce last-word ’list))))
(setf string (concatenate ’string string

(if (= count 1) ' ") word)
last-word word
line-length (+ line-length (length word)

(if (= count 1) 0 2))))
((or (e q u a l " l a s t - w o r d) (equal"<nl>" last-word))

(setf string (concatenate ’string string word)
last-word word
line-length (+ line-length (length word))))

((or (equal " ~ %" word) (equal "<nl>" word))
(setf string (concatenate ’string string " ~ %")

line-length 0))
(t

(setf string (concatenate ’string string
(if newline "" " ") word)
last-word word
line-length (+ line-length (length word) 1))))))

(defun make-rule-name (&optional name)
; 25 April 1992

; Calling Function: RE-STRUCTURE-RULE-TO-RULE-TEMPLATE
; Returns: symbol

(incf *rule-count*)
(if name

(setf name (join ‘(,©(mapcar # ’(lambda (item)
(eval ‘(join ’(.item -))))

name)
rule- ,*rule-count*)))

(setf name (join ‘(rule - ,*rule-count*)))))

Appendix G

(defun make-run-form (arguments bindings-list)
; 14 April 1992

; Caling Function: MAKE-FORM

(if (eq (second arguments) ’bindings)
‘(,(first arguments) bindings-list ,@(rest (rest arguments)))
‘(,©arguments)))

(defun make-unique-local-required-bindings
(local-required-bindings current-bindings &aux answer tail)
; 27 April 1992

; Calling Function: MODIFY-BINDINGS-TO-INCLUDE-ORIGINAL-AND-
; REQUIRED-BINDINGS

(dolist (pair local-required-bindings answer)

(if (bindings-manipulation-template (second pair))
(setf tail (second (assoc (first pair) current-bindings)))
(setf tail (mparse

(evaluate
(insert-object-values

(instantiate-bindings
(second pair) current-bindings))

current-bindings))))
(when (listp tail) (setf tail (mparse tail)))

(setf answer (cons ‘(,(first pair) ,tail) answer)))
answer)

(defun modify-bindings-to-include-original-and-required-bindings
(required-bindings current-bindings-list original-bindings

&aux answer)
; 3 April 1992

; Calling Function: TRY-RULE
; Returns: ((()()()) (()()()) (()()()))

; The required bindings ALWAYS consists of two bindings-p variables, or one
; bindings-p variable and a bindings-manipulation template. The first is
; always the variable in the antecedent, and the second, where applicable,
; is the variable within the body of the rule.

; This function takes the current-bindings and removes all of the bindings
; that are not either in the required-bindings list or the original
; bindings. Furthermore, the second argument in the required-bindings, ie
; the variable within the body of the rule, or the manipulations template,
; is replaced with the corresponding value from the current-bindings-list.

(when (member ’mbtioarb *debug*)
(format t " ~ % >

Appendix G

MODIFY-BINDINGS-TO-INCLUDE-ORIGINAL-AND-REQUIRED-BINDINGS")
(format t " ~ %Required-bindings: ~ a" required-bindings)
(format t " ~ %Current-bindings-list: ~ a" current-bindings-list)
(format t " ~ %Original-bindings: ~ a" original-bindings)
(pause))

(setf current-bindings-list (manipulate-current-bindings-list
required-bindings current-bindings-list))

(setf answer
(remove-duplicates

(mapcar # ’(lambda (current-bindings &aux
(local-required-bindings required-bindings))

(setf local-required-bindings
(make-unique-local-required-bindings

required-bindings current-bindings))
‘(,©original-bindings ,@local-required-bindings))

current-bindings-list)
:test # ’equal))

(when (member ’mbtioarb *debug*)
(format t

MODIFY-BINDINGS-TO-INCLUDE-ORIGINAL-AND-REQUIRED-BINDINGS")
(format t ” ~ % Answer: ~ a" answer)
(pause))

answer)

(defun m ak e-> q 1-form (arguments &aux (template (first arguments))
(arguments (rest arguments))
(form ‘(-> q l \tem plate)))

(do ((arguments arguments (rest arguments))
(argument ()))

((endp arguments) form)
(setf argument (first arguments))
(if (symbolp argument)

(setf form (append form ‘(’,argument)))
(setf form (append form ‘(,argument))))))

(defun m ake->Screen-form (arguments)
; 14 April 1992

; Calling Function: MAKE-FORM

‘(print-to-screen arguments))

(defun manipulate-bindings (bindings-list &aux variable answer)
; 2 June 1992

; Calling Functions: FIRE-CONSEQUENTS,
; MANIPULATE-CURRENT-BINDINGS-LIST
; Returns: bindings-list

Appendix G

; G ll-R B contains a rule that requires the IFE to obtain an initial value
; for a dependent variable. The rule fire writes to the data file the
; PHOENICS FIINIT command. For this rule to be fired the system backward
; chains on the rules in G ll-R B to asscertain the $initial-value. One of the
; rules has a consequent INITIAL VALUE FOR $VALUE = (AVERAGE
; AXIAL-VELOCITY
; FROM BINDINGS). Now, the antecedents to this rule gather from the
; assertions all of the velocity (U l, VI or W l) axial-inlet values and
; stores these in the bindings-list. In order to to obtain the average, as
; required by the consequent, the IFE must be requested to do so from within
; the rules. The

(do ((success ())
(bindingslist bindings-list (rest bindingslist)))

((or success (endp bindingslist))
(if success (manipulate-bindings bindings-list)

(remove-duplicates bindings-list :test # ’equal)))

(do ((bindings (first bindingslist) (rest bindings))
(value ()))

((or success (endp bindings)))

(setf value (second (first bindings)))

(cond ((< > ’fail (unify value ’(average $variable from bindings)))
(setf answer

(unify value ’(average $variable from bindings))
variable
(intern

(concatenate ’string "$"
(write-to-string (second (first answer)))))

bindings-list
(average-variable-from-bindings

variable bindings-list)
success t))

((< > ’fail (unify value ’(sum $variable from bindings)))
(setf answer

(unify value ’(sum $variable from bindings))
variable
(intern

(concatenate ’string "$"
(write-to-string (second (first answer)))))

bindings-list
(sum-variable-from-bindings

variable bindings-list)
success t))))))

Appendix G

(defun manipulate-current-bindings-list
(required-bindings current-bindings-list &aux (answer ()))
; 10 April 1992

; Calling Function: MODIFY-BINDINGS-TO-INCLUDE-ORIGINAL-AND-
; REQUIRED-BINDINGS
; Returns: Modified CURRENT-BINDINGS-LIST

; This function recieves a list of required bindings and the current bindings
; list from the above function. It steps through the required-bindings and
; checks to see if the second argument of the pair is a
; manipulations-template. If it is then the pair is CONSed to the entire
; set of current-bindings and then sent to the function
; MANIPULATE-BINDINGS.
; The current-bindings are then updated and the procedure repeated until all
; of the required-bindings have been checked.

(dolist (pair required-bindings current-bindings-list)
(when (bindings-manipulation-template (second pair))

(setf answer ())

(dolist (current-bindings current-bindings-list t)
(setf answer (cons (cons pair current-bindings) answer)))

(setf current-bindings-list (manipulate-bindings answer)))))

(defun manipulation-template-? (phrase)
; 11 April 1992

; Calling Functions: BINDINGS-MANIPULATION-TEMPLATE,
; OBJECT-SLOT-MANIPULATION-TEMPLATE
; Returnd: T or NIL

(do ((manipulation-templates
manipulation-templates (rest manipulation-templates))

(success-switch ()))
((or (endp manipulation-templates) success-switch) success-switch)
(when (< > ’fail (match (first manipulation-templates) phrase))

(setf success-switch t))))

(defun match (p d &optional bindings)
(cond ((bindings-p p)

(match-variable p d bindings))
((elements-p p d)
(match-atoms p d bindings))

((recursive-p ” As
(match-pieces p d bindings))

(t ’fail)))

Appendix G

(defun match-antecedent-to-assertions (antecedent bindings)
; 2 April 1992

; Calling Function:
; MATCH-ANTECEDENT-TO-ASSERTIONS-AND-ASSOCIATED-RULES
; Returns: () or ((()()()) (()()()) ... (()()()))

; This matches the antecedent that has already had its objects
; and the current bindings inserted into it, with the assertions list. The
; value returned from this procedure is the resulting bindings in a bindings
; list form.

(if (member (car (last antecedent)) ’(instantiated uninstantiated))
(determine-whether-the-antecedent-is-instantiated-or-not

antecedent bindings)
(do ((answer ())

(*assertions* * assertions* (rest *assertions*)))
((or (endp * assertions*) answer) answer)
(setf answer (try-assertions antecedent (first *assertions*)

bindings)))))

(defun match-antecedent-to-assertions-and-associated-rules
(antecedent bindings associated-rules rulebase-name

&aux (variables ()) (assertions-answer ())
(associated-rules-answer ()) (answer ()))

; 3 April 1992

; Calling Function: EVALUATE-ANTECEDENT
; Returns: () or ((()()()) (()()()) ... (()()()))

; This function takes the antecedent and initially matches it with the
; assertions. If there are no assertions that have been matched then the
; antecedent is matched with the associated rules. The function returns
; a bindings-list that originates from the received bindings.

(when (intersection * debug* ’(mataaar all))
(format t " ~ % > MATCH ANTECEDENT TO ASSERTIONS AND

ASSOCIATED RULES.")
(format t " ~ %Antecedent: ~ a" antecedent)
(format t " ~ %Bindings: ~ a" bindings)
(format t " ~ %Associated rules: ~ a" associated-rules)
(pause))

(setf assertions-answer
(match-antecedent-to-assertions antecedent bindings))

(when (intersection *debug* ’(mataaar all))
(format t " ~ %Matched antecedent with assertions.")
(format t " ~ %Assertions-answer: ~ a" assertions-answer)
(pause))

(when (not assertions-answer)

329

Appendix G

(setf associated-rules-answer
(match-antecedent-to-associated-rules antecedent bindings

associated-rules rulebase-name)))

(when (intersection *debug* ’(mataaar all))
(format t %Matched antecedent with associated rules.")
(format t " ~ % Associated-rules-answer: ~ a" associated-rules-answer)
(pause))

(setf answer ‘(,@assertions-answer
,@associated-rules-answer))

(when (intersection * debug* ’(mataaar all))
(format t "~% <M A T C H ANTECEDENT TO ASSERTIONS AND

ASSOCIATED RULES.")
(format t " ~ % Answer: ~ a ~ %" answer)
(pause))

answer)

(defun match-antecedent-to-associated-rules
(antecedent bindings associated-rules rulebase-name &aux (answer ()))
; 2 April 1992

; Calling Function: MATCH-ANTECEDENT-TO-ASSERTIONS-AND-
; ASSOCIATED-RULES
; Returns: () or ((()()()) (()()()) ... (()()()))

; The function steps through the associated rules for the particular rule that
; the antecedent is a child of. For each associated rule the function
; TRYJRULE is called and should return a bindings list. As soon as a answer
; is obtained the searching stops.

(when (intersection ’(all match-antecedent-to-associated-rules) * debug*)
(format t " ~ % > MATCH-ANTECEDENT-TO-ASSOCIATED-RULES.")
(format t " ~ % Antecedent: ~ a" antecedent)
(format t " ~ %Bindings: ~ a" bindings)
(format t " ~ %Associated~rules: ~ a ~ associated-rules)
(pause))

(do ((associated-rules associated-rules (rest associated-rules))
(rule ()) (secondary-associated-rules ()))

((or (endp associated-rules) answer))

(setf rule (nth (- (first (first associated-rules)) 1)
(second (symbol-value rulebase-name)))

secondary-associated-rules (second (first associated-rules))
answer (try-rule antecedent rule bindings

secondary-associated-rules rulebase-name)))

(when (intersection ’(all match-antecedent-to-associated-rules) *debug*)
(format t " ~ %Answer: ~ a" answer)

330

(pause))

answer)

(defun match-atoms (p d bindings)
(if (eql p d) bindings ’fail))

(defun match-pieces (p d bindings)
(let ((result (match (first p) (first d) bindings)))

(if (eq ’fail result)
’fail
(match (rest p) (rest d) result))))

(defun match-variable (p d bindings)
(let ((binding (find-binding p bindings)))

(if binding
(match (extract-bindings-value binding) d bindings)
(add-binding p d bindings))))

(defun menu (object
&aux (AV (object-allowedvalues (symbol-value object)))
(units (object-units (symbol-value object)))
(prompt

(concatenate
’string
(object-prompt (symbol-value object))
"~% (E nter 1 - "
(write-to-string (length AV))
") : ’’))

(reply nil)
(DV (object-defaultvalue (symbol-value object)))
(DAV (object-disallowedvalues (symbol-value object))))

; 14 April 1992

; Calling Function: ASK-OBJECT

(PrintPreface object)

(do ((count 1 (1+ count)))
((> count (length AV)))
(format t " ~ % ~ a : ~a" count (nth (1- count) AV)))

(if DV (format t " ~ % ~ %Default value : ~ a ~ %" DV)
(format t " ~ %"))

(format t " ~ % ")
(format t prompt)
(when units (format t "[~ a] " units))

(setq reply (first (read-sentence)))

Appendix G

DV)
((intersection (list reply) ’(why w)) (why)
(menu object))

((intersection (list reply) ’(h help))
(help object)
(menu object))

((and (not (integerp reply))
(member reply AV :test # ’equal))

reply)
((and (not AV)

(not (integerp reply))
DAV)

(if (member reply DAV :test # ’equal)
(progn

(format t " ~ %Sorry, the answer you gave is a DISALLOWED VALUE.
Current disallowed values are ...")

(dolist (value DAV t)
(print value))

(menu object))
reply))

((and (not (integerp reply))
(not (member reply AV)))

(format t " ~ % You must enter an integer between 1 and ~ a, or type an allowed
value. ~ %"

(length av))
(menu object))
((or (< reply 1)

(> reply (length av)))
(format t " ~ %You must enter an integer between 1 and ~ a, or type an allowed

value. ~ %"
(length av))

(menu object))
(t

(nth (1- reply) AV))))

(defun modify-bindings-list-to-include-$vaIues
(values &optional (bindings-list ()) &aux (answer ()))
; 7 April 1992

; Calling Function: USE-FOR-ALL-RULE
; Returns: ((()()()) (()()()) ... (()()()))

; This function adds to each binding within the bindings-list each of the
; $values associated with the list object used in USE-FOR-ALL-RULE. If the
; was a bindings-list of 4 elements and a values list of 3 elements then the
; resulting bindings-list would consist of 12 elements. That is the size of
; the returning list is the multiple of the number of elements in the values
; and bindings-list.

(if bindings-list
(dolist (bindings bindings-list answer)
(dolist (value values t)

332

(setf answer ‘(,@answer (,©bindings ($value .value))))))
(dolist (value values answer)

(setf answer ‘(,@answer (($value .value) ,@bindings-list))))))

(defun mparse (expression &aux (operators ’([] * / * ~ expt - + - ()))
(opl ()) (operator 1 ())
(op2 ()) (operator2 ()) (result 0))

(if (or (listp expression) (numberp expression))
(progn

(when (numberp expression) (setf expression (list expression)))

(setf op l (first expression)
operatorl (second expression)
op2 (third expression)
operator2 (fourth expression))

(cond ((eq operatorl ’~)
(setf operatorl ’expt))

((eq operator2 ’^)
(setf operator2 ’expt))

(t t))

(cond ((endp expression) nil)
((and op l (listp opl))
(setf result (mparse opl))
(if (listp result)

(cons result (mparse (rest expression)))
(mparse (cons result (rest expression)))))

((or (not (numberp opl))
(not (member operatorl operators)))

(setf result (mparse (rest expression)))
(if (listp result)

(cons op l result)
(cons op l ‘(.result))))

((and (numberp opl)
(not operatorl)) opl)

((and op2 (listp op2))
(setf result (mparse op2))
(mparse ‘(.opl .operatorl .result ,@(cdddr expression))))

((or (member operator2 (member operatorl operators))
(not (member operator2 (member operatorl operators))))

(setf result (eval ‘(.operatorl ,opl ,op2)))
(mparse (cons result (cdddr expression))))

(t
v,~r ^ i o r l ,opl .(mparse (cddr expression)))))))

expression))

Appendix G

(defun multiple-argument-command (arguments &aux (command ()) (string ""))
; 14 April 1992

; Calling Function: ->Q1

(setf command (first arguments)
arguments (rest arguments)
string (concatenate ’string

(string-capitalize (write-to-string command))
"("))

(when (eval ‘(object-p .(first arguments)))
(setf arguments ‘(.(object-value

(symbol-value (first arguments))))))

(do ((arguments arguments (rest arguments))
(argument ()))

((endp arguments) string)
(setf argument (first arguments))
(if (= (length arguments) 1)

(setf string (concatenate ’string
string
(if (stringp argument)

argument
(write-to-string argument))

(setf string (concatenate ’string
string
(if (stringp argument)

argument
(write-to-string argument))

V)))))

(defun object-slot-manipulation-template (phrase)
; 11 April 1992
9

; CaUing Function: INSERT-OBJECT-VALUES-IN-CONSEQUENT
; Returns: T or NIL

(manipulation-template-? phrase))

(defun pause (&aux answer)
; 11 April 1992
9

; Calling Functions: All functions with diagnostic requirements.

(when (member ’pause * debug*)
(format t " ~ %— Pause —")
(format t " ~ %Enter a command or RETURN to continue ...")
(setf answer (first (read-sentence)))
(if (not answer)

(format t "OK - Continuing ... ~%")

Appendix G

(progn
(when (eval ‘(object-p .answer))

(setf answer ‘(print .answer)))
(eval answer)
(terpri)
(pause)))))

(defun preliminary-evaluation-of-the-antecedent (antecedent)
; 3 April 1992

; Calling function: EVALUATE-ANTECEDENT
; Returns: T, NIL, or antecedent

; The preliminary-evaluation-of-the-antecedent checks for a list of three
; elements, ie (Argl operator Arg2), and then evaluates the condition. The
; function returns T or NIL for an evaluated antecedent. Alternatively, the
; orginal list is returned if the length is greater than three elements.
; This allows for the antecedent to be a template under which the function
; MATCH-ANTECEDENT-TO-ASSERTIONS-AND-ASSOCIATED-RULES
; needs to be called.

(cond ((> (length antecedent) 3)
antecedent)

((and (= (length antecedent) 3)
(bindings-p-in-antecedent antecedent))

antecedent)
((equal (second antecedent) ’includes)
(if (eval ‘(member ’,(third antecedent) ’,(first antecedent)

:test # ’equal))
t nil))

((equal (second antecedent) ’excludes)
(if (eval ‘(not (member ’.(third antecedent)

’.(first antecedent)
:test # ’equal)))

t nil))
((equal (second antecedent) ’overlaps)
(if (eval ‘(intersection ’.(third antecedent)

’.(first antecedent)
:test # ’equal))

t nil))

((member (second antecedent) ’(is are))
(cond ((equal (third antecedent) ’instantiated)

(if (object-value (symbol-value (first antecedent)))
t nil))

((equal (unrd antecedent) ’uninstanuated)
(if (object-value (symbol-value (first antecedent)))

nil ij)
(t (eval ‘(equal ’.(first antecedent)

’.(third antecedent))))))

((equal (second antecedent) ’=)

Appendix G

(cond ((equal (third antecedent) ’instantiated)
(if (object-value (symbol-value (first antecedent)))

t nil))
((equal (third antecedent) ’uninstantiated)
(if (object-value (symbol-value (first antecedent)))

nil t))
(t (eval ‘(= ’.(first antecedent)

’.(third antecedent))))))

((member (second antecedent) ’(is-not are-not))
(cond ((equal (third antecedent) ’instantiated)

(if (object-value (symbol-value (first antecedent)))
nil t))

((equal (third antecedent) ’uninstantiated)
(if (object-value (symbol-value (first antecedent)))

t nil))
(t (eval ‘(not (equal ’.(first antecedent)

’.(third antecedent)))))))

J

((equal (second antecedent) ’< >)
(cond ((equal (third antecedent) ’instantiated)

(if (object-value (symbol-value (first antecedent)))
nil t))

((equal (third antecedent) ’uninstantiated) |
(if (object-value (symbol-value (first antecedent)))

t nil))
(t (eval ‘(not (= ’.(first antecedent)

’.(third antecedent)))))))

((equal (second antecedent) ’> =)
(eval ‘(> = .(first antecedent) .(third antecedent))))

((equal (second antecedent) ’< =)
(eval ‘(< = .(first antecedent) .(third antecedent))))

((equal (second antecedent) ’>)
(eval ‘(> .(first antecedent) .(third antecedent))))

((equal (second antecedent) ’<) |
(eval ‘(< .(first antecedent) .(third antecedent))))

(t antecedent)))

(defun PrintPreface (object)
(when (object-preface (symbol-value object))

(print-to-screen (object-preface (symbol-value object)))))

(defun prepare-message (&rest template-values
&aux (template (first template-values))
(values (rest template-values))
(phrase nil)
(scrn-wdth 60)
(lin e"")
(string" ")
(line-length 0)
(scrn-text nil))

336

; Calling Function:
; Returns a string value formated to be printed

(when (intersection ’(print-to-screen all) * debug*)
(format t " ~ %> PRINT-MESSAGE.")
(format t " ~ %Template-Values: ~a" template-values)
(format t " ~ %Template: ~ a" template)
(format t 11 ~ %Values: ~ a" values)
(pause))

(when (listp (first template))
(when (symbolp (first (first template)))

(setq values (rest template)
template (first template))))

(setq values (insert-objects-in-values values))

(do ((template template (rest template)))
((endp template) (setf phrase (reverse phrase)))
(if (and (listp (first template))

(= (length (first template)) 1)
(numberp (car (first template))))

(setq phrase (cons (nth (1- (car (first template))) values)
phrase))

(setq phrase (cons (first template) phrase))))

(do* ((phrase phrase (rest phrase))
(word "")
(line-length 0)
(last-word ".") ;This is to force the first word to be capitalized
(coerced-word ())
(lin e"")
(string" "))

((endp phrase) string)

(if (stringp (first phrase))
(setf word (string-downcase (first phrase)))
(setf word (string-downcase (write-to-string (first phrase)))))

(setf coerced-word (coerce word ’list))

(when (eq # \. (car (last (butlast coerced-word))))
(setq word

(coerce (rest (butlast coerced-word)) ’string)))
(when (eq # \. (car (last (coerce last-word ’list))))

(setq word (string-capitalize word)))

(cond ((or (equal (string-upcase word) "<NL>")
(equal (string-upcase word) "<NL>."))

(setf string (concatenate ’string string " ~ % ")

((eq # \ ' s (second coerced-word))
(setf string (concatenate ’string string ""

(string-upcase
(coerce (rest (rest (butlast coerced-word))) ’string)))))

((> = (+ line-length (length word)) (- scrn-wdth 2))
(setf string (concatenate ’string string " ~ % " word)

line-length 0))
((< = (+ line-length (length word)) (- scrn-wdth 2))
(setq string (concatenate ’string string " " word))
(if (eq # \. (car (last coerced-word)))

(setq line-length (+ line-length (length word) 2))
(setq line-length (+ line-length (length word) 1))))

(t
(setq line-length (length word))))

(setq last-word word)))

(defun print-to-screen (&rest template-values
&aux (template (first template-values))
(values (rest template-values))
(phrase nil)
(scrn-wdth 75)
(line nil)
(line-length 0)
(scrn-text nil))

; 14 April 1992

; Calling Function: ASK-OBJECT

(when (intersection ’(print-to-screen all) *debug*)
(format t " ~ %> PRINT-TO-SCREEN.")
(format t " ~ %Template-Values: ~ a" template-values)
(format t " ~ %Template: ~ a" template)
(format t " ~ % Values: ~ a" values)
(pause))

(when (listp (first template))
(when (symbolp (first (first template)))

(setq values (rest template)
template (first template))))

(setq values (insert-objects-in-values values))

(do ((template template (rest template)))
((endp template) (setf phrase (reverse phrase)))
(if (and (listp (first template))

(= (length (first template)) 1)
(numberp (car (first template))))

(setq phrase (cons (nth (1- (car (first template))) values)
phrase))

(setq phrase (cons (first template) phrase))))

(do* ((phrase phrase (rest phrase))
(word (string-downcase (write-to-string (first phrase)))

(string-downcase (write-to-string (first phrase))))
(line-length 0)
(last-word ".") ;This is to force the first word to be capitalized
(coerced-word (coerce word ’list) (coerce word ’list))
(line nil))

((endp phrase) (if (eq (last (last scrn-text)) (first line))
scrn-text
(write-line-to-screen line))

(format t " ~ %"))

(when (eq # \. (car (last (butlast coerced-word))))
(setq word

(coerce (rest (butlast coerced-word)) ’string)))
(when (eq #\. (car (last (coerce last-word ’list))))

(setq word (string-capitalize word)))

(cond ((or (equal (string-upcase word) "<NL>")
(equal (string-upcase word) "<NL>."))

(write-line-to-screen line)
(setq line () line-length 0))

((< = (+ line-length (length word)) (- scrn-wdth 2))
(setq line (append line (list word)))
(if (eq # \. (car (last coerced-word)))

(setq line-length (+ line-length (length word) 2))
(setq line-length (+ line-length (length word) 1))))

(t
(write-line-to-screen line)
(setq line (list word))
(setq line-length (length word))))

(setq last-word word)))

(defun re-structure-rule-to-rule-template (rule &aux name)
; 25 April 1992

; Calling MACRO: REMEMBER-RULE
; Returns: Rule

(when (atom (first rule))
(setf rule (cons rule ())))

(if (equal (first (first rule)) ’Rule_)
(setf name (make-rule-name (rest (first rule)))

rule (rest rule))
(setf name (make-rule-name)))

(cond ((or (member (first (first rule))
’(use ask run -> q l define -> screen instantiate))

(eval ‘ (o b j e c t - p ,(first (first rule)))))

‘(,name (if nothing) (then ,@rule)))
((equal (first (first rule)) ’for)
(make-for-all-rule name (first rule)))

(t ‘(.name ,@rule))))

(defun read-sentence (&optional (p rom pt""))
; 16 April 1992

; Calling Functions: Multiple

(when (listen) (read-line))
(format t prompt)
(with-input-from-string

(input (read-line))
(do ((word (read input nil)

(read input nil))
(sentence nil))

((not word) (return (reverse sentence)))

(if (symbolp word)
(progn

(setf word (string-upcase (write-to-string word))
word (coerce word ’list))

(when (intersection ’(#\. # \? #\!) word)
(setf word (rest (butlast word))))

(setf word (remove #\. word)
word (remove # \? word)
word (remove #\! word)
word (coerce word ’string)
word (intern word))

(push word sentence))
(push word sentence)))))

(defun recursive-p (p d)
(and (listp p) (listp d)))

(defun remember-assertion (assertion)
; 13 April 1992

; Calling Function: FIRE-CONSEQUENT

(do ((head ())
(assertions ’(this is to initially force a list))
(template ())
(tail * assertions* (rest tail))
(inserted ()))

((or (endp assertions) inserted)
(when inserted (setf * assertions* ‘(,@head ,@tail))))

(setf assertions (first tail)
template (first assertions))

Appendix G

(when (and (< > (unify template assertion) ’fail)
(not (member assertion (rest assertions) :test # ’equal)))

(setf assertions ‘(,©assertions .assertion)
inserted t))

(setf head ‘(,@head .assertions))))

(defun remove-assertion (assertion &optional (assertions *assertions*))
; 11 April 1992

; Calling Function: MAKE-FORM

(mapcar # ’(lambda (assertions)
(delete assertion assertions :test # ’equal))

* assertions*))

(defun remove-variable-pair-ffom-bindings-list
(variable bindings-list &aux answer)
; 2 June 1992

; Calling Function: MANIPULATE-BINDINGS

(dolist (bindings bindings-list answer)
(setf answer (cons (delete (assoc variable bindings) bindings)

answer))))

(defun reset (&rest objects)
(if objects

(dolist (object objects t)
(eval *(set-object .object,©(second (assoc object *objects*)))))

(progn
(setf q l ())
(setf *boundaries* ())
(setf * regions* ’((x ()) (y ()) (z ())))
(setf * nodes* nil)
(setf * assertions* (reset-assertions))
(load "object.lsp"))))

(defun restore ()
(setf *nodes* () *boundaries* () *regions* () *assertions* ())
(load "object.lsp")
(load "store.lsp"))

(defun rule-antecedents (rule)
(cond ((equal v̂ _„ond rule)) ’for)

(if (equal (first (fourth (second rule))) ’if)
(rest (foui </ . jond rule)))
()))

(t (rest (second rule)))))

Appendix G

(defun rule-consequents (rule)
(cond ((equal (first (second rule)) ’for)

(if (equal (first (fourth (second rule))) ’if)
(rest (fifth (second rule)))
(butfirstn 3 (second rule))))

(t (rest (third rule)))))

(defun rule-name (rule) (first rule))

(defun save-assertions ()
(with-open-file (file-stream "assert.lsp" :direction :output

:if-exists :over-write)
(format file-stream "(setf *assertions* ’~s)" * assertions*)))

(defun single-argument-command (arguments &aux (command (first arguments))
(variable (second arguments))
(value (third arguments))
(string""))

; 14 April 1992

; Calling Function: ->Q 1

(when (eval ‘(object-p .value))
(setf value (object-value (symbol-value value))))

(concatenate ’string (string-capitalize (write-to-string command))
"(" (write-to-string variable) ")="
(if (stringp value) value

(write-to-string value))))

(defun store (&aux value key 1st)
(with-open-file (stream "store.lsp" :direction .-output

:if-exists :rename-and-delete)
(format stream " ~ %(setf *nodes* ’ ~a)" *nodes*)
(format stream "~% (setf *boundaries* ’ ~a)" *boundaries*)
(format stream "~% (setf *regions* ’~a)" *regions*)
(format stream "~% (setf *assertions* ’~a)" *assertions*)
(dolist (object *objects* t)

(format stream " ~ %(set-object ~ s" (first object))
(do ((1st (second object))

(key ())
(value ()))

((endp 1st))
(setf key (first 1st)

value (second 1st)
1st (rest (rest 1st)))

(format stream " ~ % ~ s ~ s" key value))
(format stream ")"))))

342

(defun sum-variable-from-bindings (variable bindings-list &aux (sum 0) answer)
; 2 June 1992

; Calling Function: MANIPULATE-BINDINGS

(when (member ’sum-variable-from-bindings *debug*)
(format t " ~ % > SUM-VARIABLE-FROM-BINDINGS.")
(format t " ~ %Variable: ~ a" variable)
(format t " ~ %Bindings: ~ a" Bindings-list)
(pause))

(do ((bindings bindings-list (rest bindings)))
((endp bindings))

(setf sum (+ sum (second (assoc variable (first bindings))))))

(setf bindings-list
(remove-variable-pair-from-bindings-list

variable bindings-list)
variable
(intern (coerce (cddr (butlast (coerce (write-to-string variable)

’list)))
’string)))

(setf answer (subst sum ‘(sum .variable from bindings)
bindings-list :test # ’equal))

(when (member ’sum-variable-from-bindings * debug*)
(format t " ~ % < SUM-VARIABLE-FROM-BINDINGS.")
(format t *' %Answer: ~ a" answer)
(pause))

answer)

(defun symbol-split (number symbol &aux (string (write-to-string symbol))
(1st (coerce string ’list))
(counter 0) (total (length string)))

; 14 April 1992

; Calling Function: MAKE-FORM

(do ((result ())
(1st 1st (rest 1st))
(counter 0 (incf counter)))

((= counter number) (intern (coerce result ’string)))
(setf result (append result (list (first 1st)))jj)

(defun try-assertioj.j (antecedent assertions b h a n g s &aux template answer)
; 11 April 1992

; Calling Function: MATCH-ANTECEDENT-TO-ASSERTIONS
; Returns: Bindings-list

Appendix G

(when (intersection ’(all try-assertions) * debug*)
(format t " ~ % > TRY-ASSERTIONS.")
(format t ” ~ % Antecedent: ~ a" antecedent)
(format t " ~ % Assertions: ~ a" assertions)
(format t " ~ %Bindings: ~ a ~ %" bindings)
(pause))

(setf template (first assertions)
assertions (rest assertions))

(when (< > (unify antecedent template) ’fail)
(setf answer

(remove ’fail (mapcar # ’(lambda (assertion)
(match antecedent assertion bindings))

assertions))))

(when (intersection ’(all try-assertions) *debug*)
(format t " ~ % < TRY-ASSERTIONS.")
(format t " ~ % Answer: ~ a" answer)
(pause))

answer)

(defun try-object-slots (object)
; 11 April 1992

; Calling Functions: CONTINUE-TO-INSERT-OBJECT-VALUES, FETCH

(cond ((object-fixedvalue (symbol-value object))
(setf (object-value (symbol-value object))

(object-fixedvalue (symbol-value object))))
((object-computevalue (symbol-value object))
(setf (object-value (symbol-value object))

(eval (object-computevalue (symbol-value object)))))
((object-rulebase (symbol-value object))
(setf (object-rulebase (symbol-value object)) nil)
(eval ‘(iise-rulebase ’,(join (list object ’-RB))))
(setf (object-rulebase (symbol-value object)) t))

((equal (object-prompt (symbol-value object)) ’never) t)
(t nil)))

(defun try-rule (antecedent rule bindings associated-rules rulebase-name
&aux (required-bindings ()) (answer ())
(unification-bindings ()))

; 3 April 1992

; Calling Function: MATCH-ANTECEDENT-TO-ASSOCIATED-RULES
; Returns: () or ((()()()) (()()()) ... (()()()))

; This function effectively introduces the backward chaining mechanism into
; the inference engine. The antecedent is taken from a rule that is
; currently under consideration, it has been instantiated with the bindings

Appendix G

; and has had all of the necessary objects instantiated with the appropriate
; values. TRY-RULE initially makes the rule unique by instantiating the
; binding-variables within the rule with the bindings passed to this
; function. The UNIFICATION-BINDINGS are then created which are used to
; establish which bindings are required after the rule has been fired. If
; there are no unification bindings but the rule will still allow the
; antecedent to be validated then there is no need to find the required
; bindings or to make the rule unique again.

(when (intersection ’(ah try-rule) * debug*)
(format t " ~ % > TRY-RULE.")
(pause))

(setf rule (instantiate-bindings rule bindings)
unification-bindings (unify-antecedent-with-rule-consequents

antecedent (rule-consequents rule)))

(when (< > unification-bindings ’fail) ;NIL or some value, (()())
(when unification-bindings

(multiple-value-bind
(new-bindings new-required-bindings)
(establish-required-bindings-from-unification-bindings

bindings unification-bindings antecedent)
(setf required-bindings new-required-bindings

bindings new-bindings))

(setf rule (instantiate-bindings rule unification-bindings)))

(setf answer (use-rule ‘(,rule ,associated-rules)
rulebase-name ‘(,bindings) :fire-actions ())

inference-chain (rest inference-chain)))

(when (intersection ’(all try-rule) * debug*)
(format t " ~ %— TRY-RULE —")
(format t " ~ %Required-bindings: ~ a" required-bindings)
(format t " ~ % Answer: ~ a" answer)
(format t " ~ %Bindings: ~ a ~ %" bindings)
(pause))

(when answer
(if required-bindings

(setf answer
(modify-bindings-to-include-original-and-required-bindings

required-bindings answer bindings))
(setf answer ‘(.bindings))))

(when (intersection ’(all try-rule) * debug*)
(format t " ~ % < TRY-RULE.")
(format t " ~ %Antecedent: ~ a" antecedent)
(format t " ~ %Rule: ~ a" rule)
(format t " ~ %Bindings: ~ a" bindings)

Appendix G

(format t " ~ %Associated rules: ~ a" associated-rules)
(format t " ~ %Unification bindings: ~ a” unification-bindings)
(format t " ~ % Required bindings: ~ a ~ % " required-bindings)
(format t " ~ % Answer: ~ a ~ %" answer)
(pause))

answer)

(defun unify (p i p2 &optional bindings)
(cond ((bindings-p p i)

(unify-variable p i p2 bindings))
((bindings-p p2)
(unify-variable p2 p i bindings))

((elements-p p i p2)
(unify-atoms p i p2 bindings))

((recursive-p p i p2)
(unify-pieces p i p2 bindings))

(t ’fail)))

(defun unify-atoms (p i p2 bindings)
(if (eql p i p2) bindings ’fail))

(defun unify-pieces (p i p2 bindings)
(let ((result (unify (first p i) (first p2) bindings)))

(if (eq ’fail result)
’fail
(unify (rest p i) (rest p2) result))))

(defun unify-variable (p i p2 bindings)
(let ((binding (find-binding p i bindings)))

(if binding
(unify (extract-bindings-value binding) p2 bindings)
(if (insidep p i p2 bindings)

’fail
(add-binding p i p2 bindings)))))

(defun unify-antecedent-with-rule-consequents (antecedent consequents)
; 2 April 1992

; Calling Function: TRY-RULE
; Returns: (()()())

; This takes an antecedent that has had all the bindings and objects
; instantiated from the associated list of bindings and the object values
; respectively. It then tries to UNIFY the antecedent with each consequent.
; Success results in a list of bindings being returned from the calling
; function. If there exists bindings in both the antecedent and the
; consequent then the antecedent binding is the first in the pair. For
; example ... (UNIFY ’(THIS IS A $B1 $B2) ’($B3 IS A $B4 EXAMPLE)) gives
; (($B3 THIS) ($B1 $B4) ($B2 EXAMPLE)).

(do ((consequents consequents (rest consequents))

346

Appendix G

(result nil)
(success-switch ’fail))

((or (< > success-switch ’fail) (endp consequents)) success-switch)
(let ((result (unify antecedent (first consequents))))

(when (< > result ’fail) (setq success-switch result)))))

(defun unify-consequent-with-antecedents (consequent antecedents
&aux (success-switch ()))

; 11 April 1992

; Calling Function: AUGMENT-RULEBASE

(if (eq (first (first antecedents)) ’or)

(do ((antecedents (rest (first antecedents)) (rest antecedents)))
((or (endp antecedents) success-switch) success-switch)
(setf success-switch (unify-consequent-with-antecedents

consequent (first antecedents))))

(do ((antecedents antecedents (rest antecedents)))
((or (endp antecedents) success-switch) success-switch)
(when (< > (unify consequent (first antecedents)) ’fail)

(setf success-switch t)))))

(defun use-for-all-rule (rule rulebase-name associated-rules
bindings-list fire-actions
&aux (list-object ()) (values ()) answer)

; 7 April 1992

; Calling Function: USE-RULE
; Returns: ((()()()) (()()()) ... (()()()))

; This function checks to see if the list quantification rule,
; ie FOR ALL ???, where ??? is a list-object, has a traditional production
; rule bound to it or simply requires the firing of given consequents. The
; bindings-list that is passed to this function is initially modified to
; accomodate the values contained within the list-object. If the consequents
; only are to be fired then ’(IF NOTHING) is concatenated to the rule in
; order to utilise the function USE-IF-THEN-RULE. This is checked for in
; in the function.

(when (intersection *debug* ’(use-for-all-rule all))
(format t "~% >USE-FOR-ALL-RULE")
(format t " ~ %Rule: ~ a" rule)
(pause))

(setf list-object (third (second rule))
values (object-value (symbol-value list-object))
rule ‘(>(first rule) ,@(butfirstn 3 (second rule))))

(when (intersection *debug* ’(use-for-all-rule all))
(format t " ~ %List object: ~ a" List-object)

Appendix G

(format t " % Values: ~ a" values)
(format t " ~ %Bindings list: ~ a" bindings-list)
(pause))

(setf bindings-list
(modify-bindings-list-to-include-$values values bindings-list))

(when (intersection *debug* ’(use-for-all-rule all)) Vf
(format t " ~ %Bindings list:' ~ a ~ %" bindings-list) f
(pause))

(when bindings-list
(setf answer (use-if-then-rule rule rulebase-name associated-rules

bindings-list fire-actions)))

(when (intersection * debug* ’(use-for-all-rule all))
(format t " ~ %<USE-FOR-ALL-RULE")
(format t " ~ % Answer: ~ a" answer)
(pause))

answer)

(defun use-if-then-rule (rule rulebase-name associated-rules
bindings-list fire-actions

&aux (antecedents (rule-antecedents rule)))
7 April 1992

Calling Function: USE-RULE
Returns: ((()()()) (()()()) ... (()()()))

This infers on a traditional production rule if....then. The ’dummy ifs’
are generated by the USE-FOR-ALL-RULE function. If there are no dummy
ifs
then try and confirm the antecedents within the rule else only fire the
consequents. The consequents will only be fired if fire-actions is true.
This is the default and is only NIL when USE-RULE is called from
TRY-RULE.

(when (intersection ’(all use-if-then-rule) *debug*)
(format t " ~ % > USE-IF-THEN-RULE.")
(format t " ~ %Rule Name: ~ a" (rule-name rule))
(format t " ~ %Bindings-list: ~ a ~ %" bindings-list)
(pause))

(when (and (equal (second rule) ’(if nothing))
(not bindings-list))

(setf bindings-list ’(())))

(when (< > (second rule) ’(if nothing))
(setf bindings-list (apply-filters (rule-antecedents rule)

associated-rules rulebase-name bindings-list)))

348

Appendix G

(when (intersection ’(all use-if-then-rule) * debug*)
(format t USE-IF-THEN-RULE. —")
(format t " ~ %Antecedents: ~ a" antecedents)
(format t " ~ ^Consequents: ~ a" (rule-consequents rule))
(format t " ~ %Bindings-list: ~ a" bindings-list)
(format t %Fire-actions: ~ a ~ %" fire-actions)
(pause))

(when (and bindings-list fire-actions)
(fire-consequents (rule-consequents rule) bindings-list))

(when (intersection ’(all use-if-then-rule) *debug*)
(format t " ~ % < USE-IF-THEN-RULE.")
(format t " ~ %Bindings-list: ~ a" bindings-list)
(pause))

(setf inference-chain (rest inference-chain))
bindings-list)

(defun use-rule (rule-pair rulebase-name &optional (bindings-list ())
&key (fire-actions t)
&aux (rule ()) (associated-rules ())
(antecedents ()))

; 6 April 1992

; CaUing Functions: (1) USE-RULEBASE, (2) TRY-RULEBASE
; Returns: ((()()()) (()()()) ... (()()()))

; This function decides when to use the FOR-ALL rule or the IF-THEN rule.
; Furthermore, the key word FIRE-ACTIONS only becomes NIL when
; USE-RULE
; is called from TRY-RULE. This is a consequence of the backward chaining
; mechanism (there is no need to fire the consequents as only one is being
; proved correct by firing the rule, namely the consequent related to the
; previous antecedent under consideration). When called from TRY-RULE the
; rule-pair consists of an actual rule, as opposed to a rule number, and the
; associated rules.

(if (listp (first rule-pair))
(setf rule (first rule-pair))
(setf rule (nth (- (first rule-pair) 1)

(second (symbol-value rulebase-name)))))

(setf associated-rules (second rule-pair)
antecedents (second rule))

(when (intersection *debug* ’(all use-rule))
(format t " ~ % > l _ *UJLE.")
(format t " ~ %Rule: ~ a" rule)
(format t " ~ % Associated rules: ~ a" associated-rules)
(format t " ~ % Antecedents: ~ a" antecedents)
(format t " ~ %Bindings list: ~ a ~ %" bindings-list)

Appendix G

(pause))

(setf inference-chain ‘((.(first rule-pair) (1) ,rulebase-name)
,©inference-chain))

(cond ((equal (first antecedents) ’if)
(use-if-then-rule rule

rulebase-name
associated-rules
bindings-list
fire-actions))

((equal (firstn 2 antecedents) ’(for all))
(use-for-all-rule rule

rulebase-name
associated-rules
bindings-list
fire-actions))

(t
(print ’rule-format-error))))

(defun use-rulebase (rulebase-name &aux (rulebase ())
(network ())
(rules (second (symbol-value rulebase-name)))
(rule ()))

; 3 April 1992

; Calling function: NON (called from control network or = = prompt)
; Returns: ’RULEBASE-COMPLETE

; This takes a rulebase (network rules) and initiates a forward chaining
; inferencing process on the rules. Backward chaining is performed as and
; when required.

(do ((network (first (symbol-value rulebase-name)) (rest network)))
((endp network) ’rulebase-complete)

(setf rule (first network))

(when (intersection ’(all use-rulebase) * debug*)
(format t " ~ %USE-RULEBASE.")
(format t " ~ %Network: ~ a" network)
(format t " ~ %Rule: ~ a" rule)
(pause))

(setf inference-chain ‘(.©inference-chain))
(use-rule rule rulebase-name)))

(defun variable-command (arguments &aux (command (first arguments))
(value (second arguments)))

; 14 April 1992

; Calling Function:->Q 1

Appendix G

(when (eval ‘(object-p .value))
(setf value (object-value (symbol-value value))))

(concatenate ’string (string-capitalize (write-to-string command))
"=" (if (stringp value) value

(write-to-string value))))

(defun write-line-to-screen (line &aux 1st)
; 14 April 1992

; Calling Function: PRINT-TO-SCREEN

(format t " ~ % ")
(dolist (word line t)

(setf 1st (coerce word ’list))

(cond ((eq # * (second 1st))
(format t " ~ a " (string-upcase

(coerce (rest (rest (butlast 1st))) ’string))))
(t

(format t " ~ a " word)))

(when (eq # \. (car (last 1st)))
(format t " "))))

; Inference Chain: (Antecedent-rule
; antecedent-number
; rulebase-name)

;(setf inference-chain ’((4 (2 1) g ll-rb) (7 (1) g ll-rb) (8 (1) g ll-rb) (1 (2) g ll-rb)))

(defun why (&optional (chain inference-chain) (print-p t)
&aux (state ()) (rulebase-name ())
(rule ()) (antecedent ()) (action ())
(prompt "KBFE - Why "))

(if chain
(progn

(setf state (first chain)
rulebase-name (third state)
rule (nth (- (first state) 1) (second (symbol-value rulebase-name))))
(if (eq (length (second state)) 1)

(setf antecedent (nth (- (first (second stated (rule-antecedents rule)))
(setf antecedent (nth (- (second (second state)) 1)

(nth (first (second state)) (first (rule-antecedents rule))))))

(when print-p
(format t " ~ % l am inferring on the rulebase ~ a," rulebase-name)
(format t " ~ %and trying to fire the following rule ... ~% ")
(print rule)

Appendix G

(format t " ~ % ~ %... by proving the antecedent... %")
(print antecedent)
(terpri)
(terpri)))
(format t"~ % S orry , end of inference chain. ~ % ~ %"))

(setf action (read-sentence prompt))

(cond ((intersection action ’(exit quit q)) ())
((intersection action ’(help h))
(why-help)
(why chain nil))

((intersection action ’(display d))
(print (symbol-value (second action))) (terpri) (terpri)
(why chain nil))

((intersection action ’(| j))
(if (eval ‘(object-p ,(second action)))

(format t " ~ % ~ a : ~ a ~ ~
(second action) (object-value (symbol-value (second action))))
(format t " ~ %Sorry, there is no such object. ~ % ~% "))

(why chain nil))
((intersection action ’(show s))
(format t " ~ % Inference chain: ~a" inference-chain)
(format t " ~ % Remaining chain: ~ a ~ % ~ %" chain)
(why chain nil))

((intersection action ’(rulebase rb))
(print (symbol-value rulebase-name))
(terpri)
(terpri)
(why chain nil))

((intersection action ’(top t))
(why inference-chain))

((intersection action ’(bottom b))
(why ‘(,@(last inference-chain))))

((intersection action ’(position p))
(format t " ~ % ~ a level(s) remaining to base rule." (length chain))
(format t " ~ % ~ a level(s) in current inference chain. ~ % ~ %"

(length inference-chain))
(why chain nil))

((intersection action ’(r repeat))
(why chain))

((intersection action ’(bu backup))
(if chain

(setf chain (butfirstn
(max (- (locate state inference-chain) 2)

0)
inference-chain))

(setf chain ‘(,@(last inference-chain))))
(why chain))

((intersection action ’(why w))
(why (rest chain)))

(t

352

Appendix G

(format t 11 %Sorry, I don’t understand your response. ~ % ~ %")
(why chain nil))))

(defun update-inference-chain
(antecedent-number &aux (state ()) (antecedent-no ()))

(setf state (first inference-chain)
antecedent-no (second state))

(if (eq (length antecedent-no) 1)
(setf antecedent-no ‘(,antecedent-number))
(setf antecedent-no ‘(>(first antecedent-no) ,antecedent-number)))

(setf inference-chain ‘((>(first state) ,antecedent-no ,(third state))
,@(rest inference-chain))))

(defun -> string (phrase &aux (scrn-text""))
; 18 November 1992

; Calling Function:

(do* ((phrase phrase (rest phrase))
(word-count 1 (incf word-count))
(word (string-downcase (write-to-string (first phrase)))

(string-downcase (write-to-string (first phrase))))
(coerced-word (coerce word ’list) (coerce word ’list))
(last-word ".")) ;This is to force the first word to be capitalized

((endp phrase) scrn-text)

(cond ((eq #\. (car (last (butlast coerced-word))))
(setf word (coerce (rest (butlast coerced-word)) ’string)

scrn-text (concatenate ’string scrn-text " M word)))
((eq # \ ^ (second coerced-word))
(setf word (string-upcase (coerce (rest (rest (butlast

coerced-word))) ’string))
scrn-text (concatenate ’string scrn-text" " word)))

((eq #\. (car (last (coerce last-word ’list))))
(setf word (string-capitalize word))
(if (> word-count 1)

(setf scrn-text (concatenate ’string scrn-text" " word))
(setf scrn-text (concatenate ’string scrn-text word))))

(t
(setf scrn-text (concatenate ’string scrn-text " " word))))

(setq last-word word)))

(defun ObjectHelp (object &aux default-help novice-help experienced-help
advanced-help)

(setf default-help (second (assoc ’default (object-help (symbol-value object))))
novice-help (second (assoc ’novice (object-help (symbol-value object))))
experienced-help (second (assoc ’experienced
(object-help (symbol-value object))))

353

Appendix G

advanced-help (second (assoc ’advanced (object-help (symbol-value object)))))

(when (not novice-help) (setf novice-help default-help))
(when (not experienced-help) (setf experienced-help default-help))
(when (not advanced-help) (setf advanced-help default-help))

(cond ((and novice-help (eq (object-value TargetUserModel) ’novice))
(print-to-screen novice-help))

((and experienced-help
(eq (object-value TargetUserModel) ’Experienced))

(print-to-screen experienced-help))
((and advanced-help (eq (object-value TargetUserModel) ’Advanced))
(print-to-screen advanced-help))

(t (format t HelpErrorMessage))))

(defun help (&optional (object ()) (pass ())
&aux (action ()) (Prompt "KBFE - Help "))

(cond ((and object
(not (stringp object))
(boundp object)
(not pass))

(ObjectHelp object)
(terpri)
(Help object t))

((and object (stringp object))
(format t HelpErrorMessage))

(setf action (read-sentence prompt))

(cond ((intersection action ’(q exit quit)) ())
((intersection action ’(h help))
(help-help object)
(help object t))
((intersection action ’(ID)
(if (eval ‘(object-p ,(second action)))

(format t " ~ ~ a : ~ a ~ % ~ % "
(second action) (object-value (symbol-value (second action))))

(format t " ~ %Sorry, there is no such object. ~ % ~ %"))
(help object t))
((and object (intersection action ’(s show)))
(format t " ~ ~ a ~ ~ (symbol-value object))
(help object t))
((and object (intersection action ’(v value)))
(format t " ~ ~ a : ~ a ~ % ~ % " object (object-value

(symbol-value object)))
(help object t))
((intersection action ’(Help h))
(help-help object)
(Help object t))
((intersection action ’(TUM))

Appendix G

(format t " ~ %Target User M odel: ~ a ~ % ~ %"
(object-value TargetUserModel))

(Help object t))
((intersection action ’(UM))
(format t " ~ %User M odel: ~ a ~ % ~ %"

(object-value UserModel))
(help object t))
(t
(format t " %Sorry, I don’t understand your response. ~ % ~ %")

(Help object t))))))

(defun link (filename &aux (file-success nil)
(rb-name ()))

(setf filename (concatenate ’string filename ".lsp")
file-success (probe-file filename))

(if (not file-success)
(format t " ~ %File ~ a is NOT present. (string-upcase filename))
(progn

(with-open-file (stream filename direction :input)
(setf rb-name (second (read stream))))

(load filename)
(format t LINKING ~ a ~ %" (string-downcase filename))
(eval ‘(augment-rulebase,rb-name)))))

;;;; — FUNCTIONS W ITHOUT ALPHA-NUMERIC LEADING CHARACTERS —

(defun -> q l (&rest arguments)
(unless (member arguments q l :test # ’equal)

(setf q l ‘(>@^1,arguments))))

(defun ->1.0e??? (number &aux operator (exponent 0) string)
; 2 June 1992

; Calling Function: MAKE-FORM

(if (> = number 10.0)
(setf operator ’/

string "LOe")
(setf operator ’*

string "1.0e-"))

(do ((success ()))
(success)

(setf number (eval ‘(,operator ,number 10.0))
exponent (1+ exponent))

(when (and (> = number 1) (< number 10.0))
(setf success t)))

Appendix G

(concatenate ’string string (write-to-string exponent)))

(defun write~>ql (arguments &aux (template ()) (file-stream ()))
; 14 April 1992

; Calling Function: PHOENICS

(setf template (first arguments)
arguments (rest arguments))

(with-open-file (file-stream (object-value target-file)
:direction :output
:if-does-not-exist xreate
:if-exists :append)

(cond ((equal template ’?[])
(format file-stream

(multiple-argument-command arguments)))
((equal template ’?[]=)
(format file-stream

(single-argument-command arguments)))
((equal template ’?=)
(format file-stream

(variable-command arguments)))
((equal template ’message)
(format file-stream

(Prepare-Message arguments))))))

(defun why-help
(format t " ~
(format t

" - % = = = = = =

0
WHY Help

(format t
(format t
(format t
(format t
(format t
(format t
(format t
(format t
(format t
(format t

rule. ~ %")
(format t
(format t
(format t

" - % = = = = =

(terpri))

%Why (W) - Explain the need for the inference shown.")
%Repeat (R) - Repeat explanation of current position.")
%BackUp (BU) - Backup through inference chain.")
%Bottom (B) - Move to base rule (root rule) in inference chain.")
%Top (T) - Move to the leaf rule in the inference chain.")
%Position (P) - Show position of interrogation in inference chain.")
%RuleBase (RB) - Lists rules in rulebase.")
%? <object> - What is the current value of <object> ?")
%Display ? (D) - Display the object frame given by ?")
%Show (S) - Show inference chain and remaining chain to base

’ %Help (H) - Shows this list.")
%Quit (Q) - Leave WHY interrogation.")

%")

356

Appendix G

(defun help-help (&optional (object ()))
(format t HELP H e lp ■“)
(format t

" - % = = = = = = = = = = = = = = = = = = =: = = = = = =: = = = = = = = = = = = = =: = =
= = = = = = = = = = = = = = = = = = =: = = = = = = = = : -)

(when object
(format t %Show (S) - Show ~ a structure." object)
(format t " ~ %Value (V) - Show ~ a value." object))
(format t "~% T arget User Model (TUM) - Show the Target User Model.")
(format t " ~ %User Model (UM) - Show the User Model.")
(format t " ~ %? <object> - Display the object given by ? ~ %")
(format t " ~ %Help (H) - Shows this list.")
(format t " ~ %Quit (Q) - Leave Help")
(format t

' • - % = = = = = = = = = = = = = = = = = = = = = = =: = =: = = =: = = = =: = = = = = = = =
= = == = = = = = = = === = = = = = = = = = =: = = = = = = - % ")

(terpri))

End-Of-File

Filename: GEOM.LSP

(defun array-to-mesh-list (array limit &aux (1st ()))
; 14 May 1992

; Calling Function: MESH-REGIONS

(do ((i 0 (1+ i))
(last-i -1))

((and (> = last-i 0) (= (aref array last-i) limit)) 1st)
(setf 1st (append 1st (list (aref array i))))
(incf last-i)))

(defun assert-boundary-cardinal-information ()
; 8 May 1992

; Calling Function: ASSERT-GEOMETRICAL-INFORMATION

(dolist (boundary * boundaries* t)
(remember-assertion

‘(cardinal for surface ,(first boundary) is
.(second (assoc ’cardinal (second boundary)))))))

(defun assert-geometrical-information ()
; 8 May 1992
9

; Calling Function: ^^^M E T R Y

(assert-boundary-cardinal-information)
(assert-obstruction-surface-information))

357

•/t s. -'..V . f t , - , - ; ; , . - s . - v . v w i v . ..

Appendix. G

(defun assert-grid-information ()
; 8 May 1992

; Calling Function: GRID

(assert-regional-information)
(assert-regional-boundary-containment))

(defun assert-obstruction-surface-information ()
; 8 May 1992

; Calling Function: ASSERT-GEOMETRICAL-INFORMATION

(dolist (boundary * boundaries* t)
(when (eq ’obstruction (second (assoc ’type (second boundary))))

(remember-assertion
‘(Surface ,(first boundary) is part of

,(second (assoc ’name (second boundary))))))))

(defun assert-regional-boundary-containment
(&aux (start 0) (end 0) (regions ()) (axis ()) (surface ())

(FC 0.0) (LC 0.0) (nodes ()) (number-of-regions 0)
x l x2 y l y2 z l z2 dummy 1 dummy2)

; 8 May 1992

; Calling Function: ASSERT-GRID-INFORMATION

(dolist (boundary *boundaries* t)
(setf nodes (first boundary)

surface (first boundary)
x l (first (get-coordinates (first nodes)))
x2 (first (get-coordinates (second nodes)))
y l (second (get-coordinates (first nodes)))
y2 (second (get-coordinates (second nodes)))
z l (third (get-coordinates (first nodes)))
z2 (third (get-coordinates (second nodes))))

(dolist (axis *regions* t)
(setf regions (second axis)

number-of-regions (length regions)
start 0
end 0
axis (first axis)
dummyl (symbol-value (eval ‘(join ’(,axis 1))))
dummy2 (symbol-value (eval ‘(join ’(,axis 2))))
FC (min dummyl dummy2)
LC (max dummyl dummy2))

(if regions
(do ((regions regions (rest regions))

(answer ()))
((or answer (endp regions)))

(setf answer
(interface-boundary axis regions FC LC surface))

(when (not answer)
(setf answer

(domain-boundary axis regions FC LC surface))))

(remember-assertion
‘(surface ,surface is in ,axis regions 1 to 1))))))

(defun assert-regional-information
(&aux (cell-count 1) (regions ()) (region-count 1) (number 0)

(cell ()) (1st ()) (datum 0.0) (symbol ()) c l c2)
; 8 May 1992

; Calling Function: ASSERT-GRID-INFORMATION

(dolist (axis *regions* t)
(setf regions (cadr axis) axis (first axis) cell-count 1

region-count 1 number (eval ‘(max 1 ,(length regions))))
(remember-assertion ‘(,axis has ,number regions))

(when (not regions)
(remember-assertion ‘(,axis region 1 cells 1 to 1)))

(dolist (region regions t)
(setf 1st (cadr (assoc ’mesh (cadr region)))

number (length 1st)
datum (cadr (assoc ’cl (cadr region)))
c l (cadr (assoc ’c l (cadr region)))
c2 (cadr (assoc ’c2 (cadr region))))

(remember-assertion
‘(,axis region ,region-count cells ,cell-count to
,(+ (1- cell-count) number)))

(dolist (cell 1st t)
(setf symbol (join ‘(.axis -grid))

(object-value (symbol-value symbol))
‘(,@(object-value (symbol-value symbol))
,(+ datum cell)))

(incf cell-count))
(incf region-count))))

(defun assign-regional-alpha-values ()
; 14 May 1992

; Calling Function: GEOMETRY

(dolist (axis ’(x y z) t)
(dolist (region (second (assoc axis *regions*)) t)

(when region

(rplacd (assoc ’alpha (second region))
(list

(evaluate-alpha
axis
(second (assoc ’c l (second region)))
(second (assoc ’c2 (second region))))))))))

(defun assign-surface-type (pair surfaces
&aux (surfacel (first pair)) (surface2 (second pair))
(direction (first (second (assoc surfacel surfaces))))
(ordinatel nil) (ordinate2 nil))

; 8 May 1992

; Calling Function: DEFINE-OBSTRUCTION-CARDINALS

(cond ((eq ’west direction)
(setq ordinatel (first (get-coordinates (first surfacel)))

ordinate2 (first (get-coordinates (first surface2)))))
((eq ’south direction)
(setq ordinatel (second (get-coordinates (first surfacel)))

ordinate2 (second (get-coordinates (first surface2)))))
((eq ’low direction)
(setf ordinatel (third (get-coordinates (first surfacel)))

ordinate2 (third (get-coordinates (first surface2))))))

(if (> ordinatel ordinate2)
(values (second (second (assoc surfacel surfaces)))

(first (second (assoc surfacel surfaces))))
(values (first (second (assoc surfacel surfaces)))

(second (second (assoc surfacel surfaces))))))

(defun average (1st &aux (sum 0))
; 14 May 1992

; Calling Functions: GET-BOUNDARY-LAYER-THICKNESS

(if (all-numberp 1st)
(progn

(dolist (num 1st t)
(setq sum (+ sum num)))

(* 1.0 (/ sum (length 1st)))) ;< — Answer being returned,
(format t " ~ %Error: ~ a should be a purely numeric list.")))

(defun boundary-surface-plane-number (axis surface-nodes)
; 8 May 1992

; Calling Function: INTERFACE-BOUNDARY

(let ((answer (same-plane axis surface-nodes))
(plane 1))

(if answer
(do ((regions (second (assoc axis ^regions*)) (rest regions))

Appendix G

(success-switch ()))
((or success-switch (endp regions)) plane)
(if (= answer (second (assoc ’c l (second (first regions)))))

(setf success-switch t)
(incf plane)))

nil)))

(defun cardinals (&aux (surface nil) (a-list nil) (cardinal nil)
(X 0) (y 0) (z ()))

; 8 May 1992

; Calling Function: GEOMETRY

(dolist (boundary ^boundaries* t)
(setq surface (first boundary)

a-list (second boundary))
(when (and (not (assoc ’cardinal a-list))

(member (second (assoc ’type a-list))
’(inlet outlet wall)))

(setf x (same-plane ’x surface)
y (same-plane ’y surface)
z (same-plane ’z surface))

(cond ((and (not (eq (object-value axis-1) ’unused)) x)
(if (equal x (object-value x-min))

(setf cardinal ’west)
(setf cardinal ’east)))

((and (not (eq (object-value axis-2) ’unused)) y)
(if (equal y (object-value y-min))

(setf cardinal ’south)
(setf cardinal ’north)))

((and (not (eq (object-value axis-3) ’unused)) z)
(if (equal z (object-value z-min))

(setf cardinal ’low)
(setf cardinal ’high))))

(rplacd
(assoc surface *boundaries* :test ’equal)
(list (aeons ’cardinal

(list cardinal)
(second (assoc surface

boundaries
:test # ’equal)))))))

(define-obstruction-cardinals))

(defun check-connectivity (node connector)
; 8 May 1992

; Calling Function: MAKE-SURFACES

(if (member connector (get-connectivity node)) t nil))

361

(defun connect-node-to-connections (node connections &aux old)
; 1 May 1992

; Calling Function: ENTER-CONNECTIVITIES

(setf old (assoc node *nodes*))
(nsubst ‘(,(first old)

,(second old)
,(remove-duplicates ‘(.©connections (third old))))

old * nodes*)

(dolist (connection connections t)
(setf old (assoc connection *nodes*))
(nsubst ‘(.(first old)

, (second old)
, (remove-duplicates (cons node (third old))))

old * nodes*)))

(defun convert (value)
; 15 May 1992

; Calling Function: ENTER-NODAL-COORDINATES

(* (object-value conversion-factor) value))

(defun define-obstruction-cardinals
(&aux (names (get-obstruction-names)) (surfaces nil)

(x 0) (y 0) (z 0) (pairs nil)
(surface-type 1 nil) (surface-type2 nil))

; 8 May 1992

; Calling Function: CARDINALS

(dolist (name names t)
(setq surfaces (get-obstruction-surfaces name))
(dolist (surface surfaces t)

(setf x (same-plane ’x (first surface))
y (same-plane ’y (first surface))
z (same-plane ’z (first surface)))

(when (not (assoc ’cardinal
(second (assoc (first surface)

boundaries
:test # ’equal))))

(cond ((and (not (eq (object-value axis-1) ’unused)) x)
(rplacd surface ’((west east))))

(y
(rplacd surface ’((south north))))

((and (not (eq (object-value axis-3) ’unused)) z)
(rplacd surface ’((low high))))

(t t))))
(setq pairs (pair-surfaces surfaces))
(when (not (eq nil pairs))

Appendix G

(dolist (pair pairs t)
(multiple-value-bind

(surface-typel surface-type2)
(assign-surface-type pair surfaces)

(rplacd
(assoc (first pair) * boundaries* :test # ’equal)
(list (aeons ’cardinal

(list surface-typel)
(second (assoc (first pair) *boundaries* :test # ’equal)))))

(rplacd
(assoc (second pair) *boundaries* :test # ’equal)

(list (aeons ’cardinal
(list surface-type2)
(second (assoc (second pair) *boundaries* :test # ’equal))))))))))

(defun domain-boundary (axis regions FC LC surface &aux (start 1) (end 1))
; 8 May 1992

; Calling Function: ASSERT-REGIONAL-BOUNDARY-CONTAINMENT

(do ((regions regions (rest regions)))
((endp regions))
(when (= start 1)

(when (= FC (second (assoc ’cl (cadr (first regions)))))
(setf start (first (first regions)))))

(when (= LC (second (assoc ’c2 (cadr (first regions)))))
(setf end (first (first regions)))))

(if (= start end)
(progn

(eval ‘(remember-assertion
’(surface .surface is in .axis regions .start to .start))) t)

(progn
(eval ‘(remember-assertion

’(surface .surface is in .axis regions .start to .end)))
t)))

(defun enter-connectivities ()
; 8 May 1992

; Calling Function: ENTER-NODES

(terpri)
(do ((prompt "Enter connectivity command, ? for help ")

(response ()))
((member (first response) ’(complete end)))

(setf response (read-sentence prompt))

(cond ((member (first response) ’(11 h help))
(print-connectivity-help) (terpri))

((equal response ’(list)) (print *nodes*) (terpri) (terpri))

Appendix G

((and (member (first response) ’(c connect))
(> (length response) 2)
(all-integerp (rest response)))

(connect-node-to-connections (second response)
(butfirstn 2 response)))

((and (member (first response) ’(r remove))
(all-integerp (rest response)))

(remove-connectivities (second response)
(butfirstn 2 response)))

((not (member (first response) ’(complete end)))
(format t " ~ %Connectivity command error. ~ %”)))))

(defun enter-inlets ()
; 8 May 1992

; Calling Function: GEOMETRY

; Notes: This function uses some semi-inferencing through the use of the
; function ASK-FACT

(fetch ’number-of-inlets)
(do ((i 1 (1+ 0)

(name nil)
(nodes nil))

((= i (1+ (object-value number-of-inlets))))
(setf name (ask-fact ‘(boundary name for inlet ,i

((type text) (disallowedvalues boundary-names)
(consequent boundary-names includes $value))))

nodes
(enter-list (make-prompt ‘(surface nodes for ,name))))

(remember-assertion ‘(boundary name for inlet ,i .nodes is .name))

(update-boundaries (make-surfaces nodes) :name name :type ’inlet)))

(defun enter-nodes (&aux coordinates)
; 30 April 1992

; Calling Function: ????????

(do ((node 1 (incf node)))
((equal coordinates ’end) (setf *nodes* (reverse *nodes*)))

(when (and (= node 1) *nodes*)
(setf node (1+ (length *nodes*))))

(setf coordinates (enter-nodal-coordinates node))

(when (< > coordinates ’end)
(setf *nodes* (cons ‘(.node .coordinates ()) *nodes*))))

(enter-connectivities))

364

Appendix G

(defun enter-nodal-coordinates (node)
; 30 April 1992

; Calling Function: ENTER-NODES

(terpri)
(do ((axes ’(axis-1 axis-2 axis-3))

(axis 0) (prompt ()) (response ’(0-0) ’(&0))
(x 0.0) (y 0.0) (z 0.0) (terminate-entry ()))

((or (endp axes)
terminate-entry)

(if terminate-entry ’end ‘(.(convert x) >(convert y) ,(convert z))))

(setf axis (first axes))

(when (< > (object-value (symbol-value axis)) ’unused)
(setf prompt (make-prompt

‘(enter the ,(object-value (symbol-value axis))
ordinate for node ,node))

response (read-sentence prompt)))

(cond ((and (> (length response) 1)
(member (first response) ’(m modify)))

(setf response (modify-xyz node ‘(,x ,y ,z) response)
x (first response)
y (second response)
z (third response))

(terpri))
((member (first response) ’((| h help))
(print-enter-nodal-coordinates-help) (terpri))

((equal (first response) ’list)
(print (reverse *nodes*))
(terpri) (terpri))

((equal response ’(enc0)
(if (or (equal axis ’axis-1)

(and (equal axis ’axis-2)
(equal (object-value coordinates)

’cylindrical)))
(setf terminate-entry t)
(format t " ~ %Enter a numeric value.")))

((numberp (first response))
(cond ((equal axis ’axis-1)

(setf x (float (first response))))
((equal axis ’axis-2)
(setf y (float (first response))))

(t (setf z (iioat rursi response)))))
(setf axes (rest axes)))

(t (print ’error)
(terpri)))))

365

(defun enter-obstructions ()
; 8 May 1992

; Calling Function: GEOMETRY

(fetch ’number-of-obstructions)
(do ((i 1 (1+ i))

(name nil)
(nodes nil))

((= i (1+ (object-value number-of-obstructions))))
(when (= i 1) (fetch ’porosity-definition))
(setf name (ask-fact ‘(boundary name for obstruction ,i

((type text) (disallowedvalues boundary-names)
(consequent boundary-names includes $value))))

nodes
(enter-list (make-prompt ‘(surface nodes for ,name))))

(remember-assertion
‘(boundary name for obstruction ,i .nodes is .name))

(update-boundaries
(make-surfaces nodes) :name name :type ’obstruction)))

(defun enter-outlets ()
; 8 May 1992

; CaUing Function: GEOMETRY

(fetch ’number-of-outlets)
(do ((i 1 (1+ i))

(name nil)
(nodes nil))

((= i (1+ (object-value number-of-outlets))))
(setf name (ask-fact ‘(boundary name for outlet ,i

((type text) (disallowedvalues boundary-names)
(consequent boundary-names includes $value))))

nodes
(enter-list (make-prompt ‘(surface nodes for .name))))

(remember-assertion ‘(boundary name for outlet ,i .nodes is .name))

(update-boundaries (make-surfaces nodes) :name name :type ’outlet)))

(defun evaluate-alpha (axis cl c2 &aux (nodes ‘(() ()))
(coordinates ())
(ordinate 0))

; 14 May 1992

• Calling Function: ASSIGN-REGIONAL-ALPHA-VALUES
(dolist (node * nodes* t)

(setq node (first node)
coordinates (get-coordinates node))

366

(cond ((eq axis ’x)
(setq ordinate (first coordinates)))

((eq axis ’y)
(setq ordinate (second coordinates)))

((eq axis ’z)
(setq ordinate (third coordinates))))

(when (= c l ordinate)
(rplaca nodes (append (first nodes) (list node))))

(when (= c2 ordinate)
(rplacd nodes (list (append (second nodes) (list node))))))

(let ((First-Nodes (first nodes))
(Last-Nodes (second nodes))
(First-Pairs nil)
(Last-Pairs nil))

(do* ((first-nodes first-nodes (rest first-nodes))
(last-nodes last-nodes (rest last-nodes))
(first-node (first first-nodes) (first first-nodes))
(last-node (first last-nodes) (first last-nodes)))

((and (endp first-nodes) (endp first-nodes)))
(when (rest first-nodes)

(dolist (node (rest first-nodes) t)
(setf First-Pairs (append First-Pairs

‘((,first-node .node))))))
(when (rest last-nodes)

(dolist (node (rest last-nodes) t)
(setf Last-Pairs (append Last-Pairs

‘((,last-node .node)))))))
(setf nodes (cons First-Pairs (cons Last-Pairs nil))))

(let ((alpha 0.0)
(side-1 0)
(side-2 ()))

(setf side-1 (remove nil (get-boundary-type-list (first nodes)))
side-2 (remove nil (get-boundary-type-list (second nodes))))

(cond ((and (intersection ’(wall obstruction) side-1)
(intersection ’(wall obstruction) side-2))

0.5)
((and (intersection ’(wall obstruction) side-1)

(not (intersection ’(wall obstruction) side-2)))
0 .0)

(t
1-0))))

(defun geometry nil
; 8 May 1992

; Calling Function: RULEBASE - GEOMETk if-RB

(set-domain)
(make-boundaries)
(enter-inlets)

Appendix G

(enter-outlets)
(enter-obstructions)
(cardinals)
(remove-redundant-boundaries)
(make-regions)
(assign-regional-alpha-values)
(assert-geometrical-information))

(defun get-boundary-type-list (nodes)
; 14 May 1992

; Calling Function: EVALUATE-ALPHA

(mapcar # ’(lambda (item)
(do* ((boundaries *boundaries* (rest boundaries))

(boundary (first boundaries) (first boundaries))
(a-list (second boundary) (second boundary))
(surface (first boundary) (first boundary))
(answer nil))

((or (endp boundaries)
answer) answer)

(if (or (equal item surface)
(equal (reverse item) surface))

(setq answer (second (assoc ’type a-list)))
(setq answer nil))))

nodes))

(defun get-boundary-layer-thickness (&aux (X-min 0) (U-Bar 0) (ldelta 0))
; 14 May 1992

; Calling Function: OBJECT SLOT

; X-min: Smallest length of the wall/obstruction surfaces
; U-Bar: Average inlet mainstream velocity
; IDelta: Boundary layer thickness based on the following :-

; IDelta = 5 (Nu*X-min/U-Bar) ~ 0.5

; This is the equation for the LAMINAR boundary layer thickness.
; (Schlichting, H., page 598 - >) .

(setq X-min (eval ‘ (n u n ,@(get-wall-lengths)))
U-Bar (average (get-inlet-velocities))
IDelta (* 5.0

(sqrt (/ (* (object-value viscosity)
X-min)

U-Bar))))
ldelta)

Appendix G

(defun get-coordinates (node)
; 8 May 1992

; Calling Function: Any function that uses the nodal coordinates

(second (assoc node *nodes*)))

(defun get-connectivity (node)
; 8 May 1992

; Calling Function: CHECK-CONNECTIVITY

(third (assoc node *nodes*)))

(defun get-inlet-velocities (&aux (stream ()))
; 14 May 1992

; Calling Function: GET-BOUNDARY-LAYER-THICKNESS

(setq stream
(apply-filters

’(($phi at inlet boundary $name is constant at $velocity)
((u l v l w l) includes $phi))))

(do ((stream stream (rest stream))
(velocities ()))

((endp stream) velocities) ;< — Returning list VELOCITIES
(setq velocities (append (cdr (assoc ’$velocity (first stream)))

velocities))))

(defun get-obstruction-surfaces (name &aux (surfaces nil))
; 8 May 1992

; Calling Function: DEFINE-OBSTRUCTION-CARDINALS

(mapcar # ’ (lambda (boundary)
(when (eq (second (assoc ’name (second boundary)))

name)
(setq surfaces (aeons (first boundary)

(list ’())
surfaces))))

boundaries)
surfaces)

(defun get-obstruction-names ()
; 8 May 1992

; Calling Function: DEFINE-OBSTRUCTION-CARDINALS
(let ((names nil))

(mapcar # ’(lambda (boundary)
(when (eq (second (assoc ’type (second boundary)))

’obstruction)

369

Appendix G

(setq names (union (list (second
(assoc ’name (second boundary))))

names))))
* boundaries*) names))

(defun get-wall-lengths (&aux (lengths ()) (coords 1 ()) (coords2 ()))
; 14 May 1992

; Calling Function: GET-BOUNDARY-LAYER-THICKNESS

(dolist (boundary *boundaries* t)
(dolist (surface (make-surfaces (first boundary)) t)

(setf coordsl (get-coordinates (first surface))
coords2 (get-coordinates (second surface))
lengths ‘(.©lengths ,(abs (- (first coordsl)

(first coords2)))
,(abs (- (second coordsl)

(second coords2)))
,(abs (- (third coordsl)

(third coords2)))))))
(remove-duplicates (remove 0.0 (mapcar # ’float lengths))))

(defun interface-boundary (axis regions FC LC surface)
; 8 May 1992

; Calling Function: ASSERT-REGIONAL-BOUNDARY-CONTAINMENT

(let ((plane (boundary-surface-plane-number axis surface))
(number-of-planes (1+ (length regions))))

(cond ((not (numberp plane)) nil)
((and (> plane 1)

(< plane number-of-planes))
(eval ‘(remember-assertion

’(surface ,surface interfaces ,axis regions ,(- plane 1) and
,plane))) t)

((= plane 1)
(eval ‘(remember-assertion
’(surface ,surface is in ,axis regions 1 to 1))) t)

((= plane number-of-planes)
(eval ‘(remember-assertion
’(surface ,surface is in ,axis regions ,(- plane 1) to

,(- plane 1)))) t)
(t nil))))

(defun list-nodes ()
; 8 May 1992

; Calling Function: MAKE-BOUNDARIES

(let ((1st nil))
(do times (number (length * nodes*) (reverse 1st))

(setq 1st (cons (1+ number) 1st)))))

Appendix G

(defun make-boundaries ()
8 May 1992

Calling Function: GEOMETRY

(setq * boundaries* nil)
(let ((surfaces (make-surfaces (list-nodes))))

(dolist (surface surfaces t)
(setq *boundaries*

(aeons surface
’(((name unknown) (type wail)))
boundaries)))))

(defun make-regions (&aux (xs Q) (ys ()) (zs ()))
14 May 1992

Calling Function: GEOMETRY

(setq ‘ regions* ‘((x ()) (y ()) (z 0))
x l 0 *2 () y l () y l 0 z l () Z2 ())

(dolist (node *nodes* t)
(setf xs (cons (first (get-coordinates (first node))) xs)

ys (cons (second (get-coordinates (first node))) ys)
zs (cons (third (get-coordinates (first node))) zs)))

(setf xs (sort (remove-duplicates xs) # ’<)
ys (sort (remove-duplicates ys) # ’<)
zs (sort (remove-duplicates zs) # ’<))

(do* ((xl xs (rest xl))
(yl ys (rest y l))
(zl zs (rest zl))
(x2 (rest x l) (rest xl))
(y2 (rest y l) (rest y l))
(z2 (rest z l) (rest zl))
(form nil)
(count 1 (1+ count)))

((and (endp x2) (endp y2) (endp z2)) t)
(dolist (axis ’((x x l x2) (y y l y2) (z z l z2)) t)

(when (first (symbol-value (third axis)))
(rplacd (assoc (first axis) *regions*)

(list
(append

(second (assoc (first axis) * regions*))
‘((,count ((alpha 0)

(cl ,(first
(symbol-value (second axis))))
(c2 , (first
(symbol-value (third axis))))
(1,(- (first (symbol-value (third axis)))

(first (symbol-value (second axis)))))

371

Appendix G

(mesh ())))))))
(remember-assertion

‘(, (first axis) region ,count co-ordinates
.(first (symbol-value (second axis))) to
.(first (symbol-value (third axis)))))))))

(defun make-surfaces (nodes &optional (1st nil))
8 May 1992

Calling Function:
(cond ((endp nodes) nil)

(t (dolist (node (rest nodes) t)
(if (check-connectivity (first nodes) node)

(setq 1st (cons
(sort ‘(.(first nodes) .node) # ’<)

1st))
0)

(concatenate ’list 1st (make-surfaces (rest nodes))))))

(defun mesh-regions (&aux (alpha 0.0) (L 0.0) (regions ()) (1st ()) (y ()))
14 May 1992

Calling Function: GRID

(setf y (make-array 1000 :element~type ’single-float))
(dolist (axis *regions* t)

(setf regions (cadr axis))
(dolist (region regions t)

(when region
(setf alpha (float (cadr (assoc ’alpha (cadr region))))

L (float (cadr (assoc ’L (cadr region)))))
(external-call generate-mesh (float (object-value

aspect-ratio))
(float (object-value delta))
L alpha y)

(rplacd (assoc ’mesh (cadr region))
(list (array-to-mesh-list y L)))))))

(defun modify-xyz (current-node xyz response &optional (p rom pt"")
&aux axis prompt modifiable-node answer)
30 April 1992

Calling Function: ENTER-NOD AL-COORDINATES

(terpri)
(setf axis (second response))

(unless prompt
(setf prompt (make-prompt

‘(Original coordinates (,current-node ,xyz) <nl>
Modify .axis ordinate for node ,current-node))))

372

Appendix G

(if (and (= (length response) 3)
(< > (third response) current-node))

(let* ((modifiable-node (third response))
(x (/ (first (second (assoc modifiable-node *nodes*)))

(object-value conversion-factor)))
(y (/ (second (second (assoc modifiable-node *nodes*)))

(object-value conversion-factor)))
(z (/ (third (second (assoc modifiable-node *nodes*)))

(object-value conversion-factor))))
(if (> modifiable-node current-node)

(format t " ~ %This has not yet been defined. ~ %")
(progn

(nsubst ‘(>niodifiable-node
,(modify-xyz modifiable-node

*(,(convert x) ,(convert y) ,(convert z))
(butlast response) prompt)

, (third (assoc modifiable-node * nodes*)))
(assoc modifiable-node *nodes*)

nodes)
X * ,y ,z))))

(cond ((equal axis ’x)
(if (first xyz)

‘(,(convert (enter-numeric prompt :type ’real))
, (second xyz) , (third xyz))

(print ’modify-x-error)))
((equal axis ’y)
(if (second xyz)

‘(,(first xyz)
, (convert (enter-numeric prompt :type ’real))
,(third xyz))

(print ’modify-y-error)))
(t (if (third xyz)

‘(,(first xyz) .(second xyz)
.(convert (enter-numeric prompt :type ’real)))
(print ’modify-z-error))))))

(defun name-walls (&aux (surface nil) (a-list nil)
(sentence ’(Boundary name for wall surface))
(p rom pt"") (name nil))

; 8 May 1992

; Calling Function: GEOMETRY

(dolist (boundary *boundaries* t)
(setq surface (first boundary))
(setq a-list (seeoin* ' /))
(when (eq (second (assoc ’type a-list)) ’wall)

(setq name (entc. ' ‘ 'make-prompt ‘(>@sentence,surface))))
(remember-assertion ‘(,@sentence .surface is .name))
(update-boundaries (list surface)

:name name))))

373

Appendix G

(defun orientate-nodes (n l n2) ;order nodes so that angle 0 -> 90 degrees
; 8 May 1992

; Calling Function:
(let ((angle (surface-angle n l n2)))

(if (and (> = angle 0.0) (< = angle 1.5708)) ;Radians
(cons n l (cons n2 nil))
(cons n2 (cons n l nil)))))

(defun pair-surfaces (surfaces &aux (west-east nil) (south-north nil)
(low-high nil) (answer ()))

; 8 May 1992

; Calling Function: DEFINE-OBSTRUCTION-CARDINALS

(dolist (surface surfaces t)
(cond ((eq ’west (first (second surface)))

(setq west-east (cons (first surface) west-east)))
((eq ’south (first (second surface)))
(setq south-north (cons (first surface) south-north)))

((eq ’low (first (second surface)))
(setq low-high (cons (first surface) low-high)))

(t 0))
(when west-east

(setf answer (cons west-east answer)))
(when low-high

(setf answer (cons low-high answer)))
(when south-north

(setf answer (cons south-north answer)))
answer)

(defun print-connectivity-help ()
; 1 May 1992

; Calling Function: ENTER-CONNECTIVITIES

(format t " ~ %— Connectivity HELP —")
(format t " ~ %LIST - list nodal information")
(format t " ~ %CONNECT node_i j z - Connects node_i to j z")
(format t " ~ %C node_i j z - Connects node i to j z")
(format t " ~ % REMOVE node_i j z - Removes node_i from j ... z")
(format t " ~ %R node_i j z - Removes n o d e j from j ... z")
(terpri))

(defun print-enter-nodal-coordinates-help ()
; 8 May 1992

; Calling Function: ENTER-NODAL-COORDINATES

(print-to-screen ‘(The nodal-coordinates should be entered in
< ,(object-value dimensional-units)> depending on the prompt. <N L>
LIST - Lists the nodes <NL>

374

Appendix G

M AXIS NODE - Modify the coordinate of NODE on axis AXIS <N L>
M AXIS - Modify the current nodal coordinate on AXIS)))

(defun remove-connectivities (node connections &aux old)
; 1 May 1992

; Calling Function: ENTER-CONNECTIVITIES

(dolist (connection connections t)

(setf old (assoc node * nodes*))
(nsubst ‘ (> (f h s t old)

, (second old)
, (remove connection (third old)))

old *nodes*)

(setf old (assoc connection *nodes*))
(nsubst ‘(>(first °ld)

, (second old)
,(remove node (third old)))

old * nodes*)))

(defun replace-name-of-boundary (boundary name)
; 8 May 1992

; Calling Function: UPDATE-BOUNDARIES

(let ((surface (car boundary))
(data (cadr boundary)))

(cons surface
(list (aeons ’name (list name)

(remove-key-from-alist ’name data))))))

(defun replace-nth (position value 1st &aux (lst-len (length 1st)))
(do ((count 1 (incf count))

(success-switch ())
(head ()))

((or (> position lst-len)
success-switch)

(append (reverse head) 1st))

(if (= position count)
(setf head (cons value head)

success-switch t)
(setf head (cons (first 1st) head)))

(setf 1st (rest 1st))))

(defun replace-type-of-boundary (boundary type)
; 8 May 1992

; Calling Function: UPDATE-BOUNDARIES

375

(let ((surface (car boundary))
(data (cadr boundary)))

(cons surface
(list (aeons ’type (list type)

(remove-key-from-alist ’type data))))))

(defun remove-key-from-alist (key 1st)
; 8 May 1992

; Calling Function: REPLACE-TYPE-OF-BOUNDARY,
REPLACE-NAME-OF-BOUNDARY

(if (eq (first (first 1st)) key)
(rest 1st)
(cons (first 1st) (remove-key-from-alist key (rest 1st)))))

(defun remove-redundant-boundaries
(&optional (boundaries ^boundaries*)

&aux (boundary (first boundaries))
(x (first (get-coordinates (caar boundary))))
(y (second (get-coordinates (caar boundary))))
(z (third (get-coordinates (caar boundary)))))

; 8 May 1992

; Calling Function: GEOMETRY

(cond ((endp boundaries) nil)
((and (eq (cadr (assoc ’type (second boundary))) ’obstruction)

(or (and (not (eq (object-value axis-1) ’unused))
(same-plane ’x (first boundary))
(or (= x (object-value x-min))

(= x (object-value x-max))))
(and (same-plane ’y (first boundary))

(or (= y (object-value y-min))
(= y (object-value y-max))))

(and (not (eq (object-value axis-3) ’unused))
(same-plane ’z (first boundary))
(or (= z (object-value z-min))

(= z (object-value z-max))))))
(remove-redundant-boundaries (rest boundaries)))

(t
(setq *boundaries* (cons (first boundaries)

(remove-redundant-boundaries
(rest boundaries)))))))

(defun set-minimum-region-size (&aux (minimum l.OelO))
; 8 May 1992

; Calling Function:

(dolist (axis *regions* minimum)
(dolist (region (second axis) t)

Appendix G

(setf minimum
(eval ‘(min ,minimum

,(second (assoc ’1 (second region)))))))))

(defun same-plane (axis surface-nodes
&aux (index

(- (length (member axis ’(z y x))) 1))
(nodel (first surface-nodes))
(ordl (nth index (get-coordinates nodel)))
(surface-nodes (rest surface-nodes))
(ord2 0) (node2 ()))

; 8 May 1992

; Calling Function: BOUNDARY-SURFACE-PLANE-NUMBER,
; CARDINALS,
; DEFINE-OBSTRUCTION-CARDINALS,
; REMOVE-REDUNDANT-BOUNDARIES

(cond ((endp surface-nodes) ordl)
((= o rd l (nth index (get-coordinates (first surface-nodes))))
(same-plane axis surface-nodes))

(t nil)))

(defun set-domain (&aux (coordinates ()))
; 8 May 1992

; Calling Function: GEOMETRY

(setf (object-value x-min) 1.0e35 (object-value x-max) -1.0e35
(object-value y-min) 1.0e35 (object-value y-max) -1.0e35
(object-value z-min) 1.0e35 (object-value z-max) -1.0e35)

(dolist (node *nodes* t)
(setf coordinates (get-coordinates (first node)))
(when (< (first coordinates) (object-value x-min))

(setf (object-value x-min) (first coordinates)))
(when (> (first coordinates) (object-value x-max))

(setf (object-value x-max) (first coordinates)))
(when (< (second coordinates) (object-value y-min))

(setf (object-value y-min) (second coordinates)))
(when (> (second coordinates) (object-value y-max))

(setf (object-value y-max) (second coordinates)))
(when (< (third coordinates) (object-value z-min))

(setf (object-value z-min) (third coordinates)))
(when (> (third coordinates) (object-value z-max))

(setf (object-value z-max) (third coordinates)))))

(defun surface-angle (n l n2)
; 8 May 1992

; Calling Function: ORIENTATE-NODES

(let* ((xf (first (get-coordinates nl)))

377

Appendix G

(yf (second (get-coordinates n l)))
(xl (first (get-coordinates n2)))
(yl (second (get-coordinates n2)))
(h (sqrt (+ (sqr (- xl xf)) (sqr (- yl yf))))))

(if (< yl yf)
(* -1.0 (acos (/ (- xl xf) h)))
(acos (/ (- xl xf) h)))))

(defun sqr (x) (* x x))

(defun update-boundaries (surfaces &key name type)
; 8 May 1992

; CaUing Functions: ENTER-INLETS, ENTER-OUTLETS,
; ENTER-OBSTRUCTIONS,
; NAME-WALLS

(dolist (surface surfaces t)
(let* ((boundary (assoc surface *boundaries* :test # ’equal)))

(setq *boundaries* (remove boundary *boundaries*))
(when name

(setq boundary (replace-name-of-boundary boundary name)))
(when type

(setq boundary (replace-type-of-boundary boundary type)))
(setq *boundaries* (cons boundary *boundaries*)))))

(defun xc_l (bindings)
(first (get-coordinates (first (second (assoc ’$nodes bindings))))))

(defun xc_2 (bindings)
(first (get-coordinates (second (second (assoc ’$nodes bindings))))))

(defun yc_l (bindings)
(second (get-coordinates (first (second (assoc ’$nodes bindings))))))

(defun yc_2 (bindings)
(second (get-coordinates (second (second (assoc ’$nodes bindings))))))

(defun zc_l (bindings)
(third (get-coordinates (first (second (assoc ’$nodes bindings))))))

(defun zc_2 (bindings)
(third (get-coordinates (second (second (assoc ’$nodes bindings))))))

; NON ALPHA-NUMERIC FUNCTION NAMES

(defun ^ (n l n2) (exp (* n2 (log n l))))

378

APPENDIX H

LISP mathematical parser

379

. . •

*'■

 ̂

‘5"J"“
^

"*

'''""
1

'
~

—

— —

r

—
"

‘
s

~
'

~
g

Appendix H

(defun mparse (expression &aux (operators ’([] * / * ^ expt - + - ()))
(opl ()) (operator 1 ())
(op2 ()) (operator2 ()) (result 0))

(when (numberp expression) (setf expression (list expression)))

(setf o p l (first expression)
operatorl (second expression)
op2 (third expression)
operator2 (fourth expression))

(cond ((eq operatorl ’ ^)
(setf operatorl ’expt))

((eq operator2 ’ ~)
(setf operator2 ’expt))

(tt))

(cond ((endp expression) nil)
((and o p l (listp opl))

(setf result (mparse opl))
(if (listp result)

(cons result (mparse (rest expression)))
(mparse (cons result (rest expression)))))

((or (not (numberp opl))
(not (member operatorl operators)))

(setf result (mparse (rest expression)))
(if (listp result)

(cons o p l result)
(cons o p l ‘(.result))))

((and (numberp opl)
(not operatorl)) opl)

((and op2 (listp op2))
(setf result (mparse op2))
(mparse ‘(.opl ,operatorl .result ,@(cdddr expression))))

((or (member operator2 (member operatorl operators))
(not (member operator2 (member operatorl operators))))

(setf result (eval ‘(.operator! ,opl ,op2)))
(mparse (cons result (cdddr expression))))

(t
(eval ‘(.operatorl ,opl .(mparse (cddr expression)))))))

380

APPENDIX I

Pseudo real time control FORTRAN code

381

Appendix I

Subroutine SERTIC
Include ’PHOINGSATEAR’
Include ’PH OIN GGRDLO C
Include ’PHOINGGRDEAR’

common/serticl/Residuals(50,100),IshINum,IshPhi(0:50),
1 shC(50,3),IRange(50),shMonitor(50,100),TRatio,shRes(50,100),
1 IshRange

common/lgrnd/lg(20)/igrnd/ig(20)/rgrnd/rg(20)

if (isweep.eq.l) return

if (isweep.eq.2) then
call OpenFiles
call Initialise
call GetVariables
return

endif

if (IshINum.lt.IG(19)) return ! IG(19) = lower limit for range
! IG(20) = Upper limit for range

call GetResiduals
call GetMonitorValues
IshIN um =IshIN um +1

if (IG(20)-IG(19)-IshINum) 10,10,20

10 IshINum= 1

call CurveFit

call CloseFiles

20 return
end

Subroutine OpenFiles

open(unit=51,file=’pjet.bef,status=’unknown’)
open(unit=52,file=:’pjet.aft,,status=’unknown,)
open(unit=53,file=’sertic.log’,status=,unknown’)
open(unit=54,file=’residuals.dat’,status=’unknown’)

return
end

382

Appendix I

Subroutine CloseFiles

close(51)
close(52)
close(53)
close(54)

return
end

Subroutine Initialise

Include ’PHOINGSATEAR’
Include ’PH O IN G G RD LO C
Include ’PHOIN G GRD EAR’

common/serticl/Residuals(50,100),IshINum,IshPhi(0:50),
1 shC(50,3),IRange(50),shMonitor(50,100),TRatio,shRes(50}100),
1 IshRange

common/lgrnd/lg(20)/igrnd/ig(20)/rgrnd/rg(20)
IshINum= 1
if (IG(19).eq.O) IG(19)=1
TRatio=2.0
return
end

Subroutine GetVariables

Include ’PHOINGSATEAR’
Include ’PHOINGGRDLOC’
Include ’PHOINGGRDEAR’

common/serticl/Residuals(50,100),IshINum,IshPhi(0:50),
1 shC(50,3),IRange(50),shMonitor(50,100),TRatio,shRes(50,100),
1 IshRange

C The variables to be solved are highlighted in the array ISLN(IshPhi).
C Solved variables are given a value greater than 2.

IshCount=0
Do 10 Ish=l,50

10 if (ISLN(Ish).gt.2) IshCount=IshCount-f 1
IshPhi(O)= IshCount
IshCount= 1
Do 20 Ish=l,50

if (ISLN(Ish).g*">) then
IshPhi(IshCount)= Ish
IshCr»unt=IshCount+1

endif
20 continue

return
end

383

Appendix I

Subroutine GetMonitorValues
Include ’PHOINGSATEAR’
Include ’PHOINGGRDLOC’
Include ’PHOINGGRDEAR’

COMMON/GR1/STOR(50)/GR2/SLBRES(50)/GR3/TOTRES(50)
common/serticl/Residuals(50,100),IshINum,IshPhi(0:50),

1 shC(50,3),IRange(50),shMonitor(50,100),TRatio,shRes(50,100),
1 IshRange

if (IZ.eq.IZMON) then
Do 10 Ish=l,IshPhi(0)

10 shMonitor(IshPhi(Ish),IshINum)=
1 f(IOf(lbiffv(IshPhi(Ish))+ 1YMON+ NY* (IXMON-1)))

endif
return
end

Subroutine GetResiduals
Include ’PHOINC:SATEAR’
Include ’PHOINGGRDLOC’
Include ’PHOINGGRDEAR’

COMMON/GR1/STOR(50)/GR2/SLBRES(50)/GR3/TOTRES(50)
common/serticl/Residuals(50,100),IshINum,IshPhi(0:50),

1 shC(50,3),IRange(50)>shMonitor(50,100),TRatio,shRes(50,100),
1 IshRange

DO 10 Ish=l,IshPhi(0)
10 Residuals(IshPhi(Ish)tIshINum)=TOTRES(IshPhi(Ish))

return
end

Subroutine CurveFit
Real shX,shY,shSX,shSY,shSXX,shSXY,shSYY,shCO

Dimension shX(85),shY(85)

common/serticl/Residuals(50,100),IshINum,IshPhi(0:50),
1 shC(50,3),IRange(50),shMonitor(50,100),TRatio,shRes(50,100),
1 IshRange

common/lgrnd/lg(20)/igrnd/ig(20)/rgrnd/rg(20)

Do 10 Ish=l,IshPhi(0)
10 IRange(IshPhi(Ish))=IG(20)-IG(19)-2

Do 20 Ish=l,IshPhi(0)
IModify=0

25 shSX=0.0
shSY=0.0
shSXY=0.0
shSXX=0.0

384

Appendix I

shSYY=0.0

Do 30 Ish 1 = l,IRange(IshPhi(Ish))

shSX=shSX+float(Ishl)
shSY=shSY+log(Residuals(IshPhi(Ish),Ishl))
shSXX=shSXX+(float(Ishl) * *2.0)
shSY Y = shSYY4-

1 (log(Residuals(IshPhi(Ish),Ishl)))**2.0
shSX Y = shSXY+ float(Ish 1) *

1 log(Residuals(IshPhi(Ish),Ishl))
30 continue

shSXX=shSXX-(shSX**2.0)/float(IRange(IshPhi(Ish)))
shSYY=shSYY-(shSY**2.0)/float(IRange(IshPhi(Ish)))
shSXY= shSXY-(shSX* shSY)/float(IRange(IshPhi(Ish)))
shC(IshPhi(Ish),2)= shSXY/shsXX
shC(IshPhi(Ish), 1)=exp(

1 (shSY/float(IRange(IshPhi(Ish))))-
1 shC(IshPhi(Ish),2)*shSX/
1 IRange(IshPhi(Ish)))

shC(IshPhi(Ish),3)=shSXY/(sqrt(shSXX*shSYY))

if (IModify.eq.O) then
c write(54,*) ’Before’,’Phi = ’,IshPhi(Ish)
c else
c write(54,*) ’After’,’Phi = ’,IshPhi(Ish)
c endif

c Do 40 Ishl = l,IRange(IshPhi(Ish»
if (IshPhi(Ish).eq.7) then
write(IUnit,l) ’A’
write(IUnit,3) ’0 0’
write(IUnit,3) ’W l*’
write(IUnit,l) ’*’
write(IUnit,l) ’*’
write(IUnit,l) ’*’
write(IUnit,l)
write(IUnit,l) ’*’
write(IUnit,l) ’1*
write(IUnit,5) ’X,1,0’
w rite(IU nit,ll) IRange(7)

I format(al)
3 format(A3)
5 format(a5)
II format(i3)

Do 40 Ishl = l,IRange(7)
shRes(IshPhi(Ish),Ishl)=

1 shC(IshPhi(Ish),l)*
1 exp(shC(IshPhi(Ish),2)*Ishl)-
1 Residuals(IshPhi(Ish),Ishl)

385

Appendix I

write(54, *) Ish 1 ,shRes(IshPhi(Ish), Ish 1)
40 continue

shSY=0.0
shSYY=0.0

Do 50 Ishl=l,IRange(IshPhi(Ish))
shSYY= shSYY+shRes(IshPhi(Ish),Ishl) * *2.0
shSY=shSY+shRes(IshPhi(Ish),Ishl)

50 continue

Stdev=sqrt((shSYY-
1 (shSY*shSY/float(IRange(IshPhi(Ish)))))/
1 IRange(IshPhi(Ish)))

write(54,*) ’Stdev = ’,Stdev
endif
endif
I s h l= l

if (IModify.eq.l) goto 20

if (IshPhi(Ish).eq.7) call PA4(51)

60 if (Ishl.gt.IRange(IshPhi(Ish))) goto 90
if (abs(shRes(IshPhi(Ish),Ishl))-Tratio*Stdev) 80,80,70

70 Do 75 Ish2= Ish l,IRange(IshPhi(Ish))-1
Residuals(IshPhi(Ish),Ish2)=

1 Residuals(IshPhi(Ish),Ish2+l)
shRes(IshPhi(Ish),Ish2)=

1 shRes(IshPhi(Ish),Ish2+1)
75 continue

IRange(IshPhi(Ish))=IRange(IshPhi(Ish))-l
IM odify=l
goto 60

80 Ish l= Ish l + l
goto 60

90 if (IModify.eq.l) then
goto 25

endif
20 continue

call PA4(52)
return
end

Subroutine MINITAB(IUnit)

common/serticl/Residuals(50,100),IshINum,IshPhi(0:50),
1 shC(50,3),IRange(50),shMonitor(50,100),TRatio,shRes(50,100),
1 IshRange

COMMON/GR1/STOR(50)/GR2/SLBRES(50)/GR3/TOTRES(50)
common/lgrnd/lg(20)/igrnd/ig(20)/rgrnd/rg(20)

386

Appendix I

Do 10 Ish= l,(ig(20)-ig(19)-2)
write(IUnit,*) Ish,(Residuals(IshPhi(Ishl),Ish),

1 Ishl=l,IshPhi(0))
10 continue

return
end

Subroutine PA4(IUnit)

Character*8 Text

common/serticl/Residuals(50,100),IshINum,IshPhi(0:50),
1 shC(50,3),IRange(50),shMonitor(50,100)>TRatio,shRes(50>100),
1 IshRange

COMMON/GR1/STOR(50)/GR2/SLBRES(50)/GR3/TOTRES(50)

c Do 10 Ish=l,IshPhi(0)
c write(IUnit,*) ’*** New data ***’

T ext=’After.*’
write(IUnit,l) ’A’
write(IUnit,3) ’0 0’
write(IUnit,3) ’W l*’
if (IUnit.eq.51) Text=’Before*’
write(IUnit,7) Text
write(IUnit,*) shC(7,3)
write(IUnit,l)
write(IUnit,l) ’*’
write(IUnit,l) ’*’
write(IUnit,l) ’2’
write(IUnit,5) ’X,1,0’
write(IU nit,ll) IRange(7)
Do 20 Ishl=l,IR ange(7)

c Do 20 Ishl = l,IRange(IshPhi(Ish))
c20 write(IUnit,*) Ishl,Residuals(IshPhi(Ish),Ishl)
20 write(IUnit,*) Ishl,Residuals(7,Ishl)

write(IUnit,5) ’X,1,0’
w rite(IU nit,ll) IRange(7)
Do 30 Ishl = l,IRange(7)

shAA=shC(7,l)*exp(shC(7,2)*
1 float(Ishl))

write(IUnit,*) Ishl,shAA
30 continue

1 format(al)
3 format(a3)
5 format(a5)
7 format(a7)
11 format(i3)
clO continue

return
end

387

' ’§;

APPENDIX J

Published work

388

I

r » '■ - - ̂ -ft,.: A*:>W - ,ri_____

Development of an Intelligent Front-End for a
Computational Fluid Dynamics Package

Appendix J

K. Jambunathan, E. Lai, S. L. Hartle and B. L. Button

Department o f Mechanical Engineering, Nottingham Polytechnic, Burton Street, Nottingham .
N G l 4BU, UK

C om puter modelling based on num erical sim ulation packages is becoming increasingly popular to
aid design. A prelim inary developm ent of an Intelligent Front-E nd (IFE) for integration into a
comm ercial C om putational Fluid Dynam ics (C FD) package is described. An expert system
environm ent, L EO N A R D O , is used to implement the IFE thus facilitating rapid developm ent and
easy access to externally located data. The m ethodology used for knowledge acquisition and
representation in conjunction with external FO R T R A N coding has been shown to be a powerful
approach in im proving response times.

Key W ords: Intelligent F ron t-E nds, IFE, expert systems, PH O E N IC S, C om putational Fluid
Dynamics, C FD , num erical sim ulation packages. Intelligent Knowledge Based System, IKBS.

NOMENCLATURE

Br
B-.

cr
d
k
P
r
T
T * all
7]e,
V
IV
W,„

R adial body force contribution
Axial body force contribution
Specific heat a t constant pressure
D iam eter of jet
T herm al conductivity
Pressure
Radial distance
T em perature
Im pingem ent wall tem perature
Je t inlet tem perature
R adial velocity
Axial velocity
M ean je t velocity at nozzle exit
Axial distance
M axim um value 'of z

Greek
p Lam inar dynam ic viscosity
p Density

1. INTRODUCTION

1.1. Numerical simulation packages
W ithin the engineering industry the use of num erical

sim ulation packages, such as finite element, boundary
element o r finite difference schemes play an extremely
im portan t role in com puter aided design. Recent
emergence of cheap yet powerful m icrocom puters has
enabled relatively small companies to access com prehen
sive C om putational Fluid Dynamics (C FD) packages.
C F D modelling of physical situations can be an extremely
complex procedure and it u.;ua'!- pecialist
expertise and familiarity with tne package to establish a

Accepted O ctob er 1990. D iscussion closes June i w t

working model. The generation o f an input data file to a
C F D package can be cum bersom e and simple m odifica
tions usually require extensive alterations to the form at.
These m odifications can be very susceptible to
catastrophic failure due to the enorm ous potential for
hum an errors in typing o r a m om entary lack of
concentration. This risk increases directly with the size of
a d a ta file which is usually large in a realistic problem . The
da ta files contain inform ation relating to the geometry,
boundary conditions, properties and solution param eters
associated with the analysis. In com m on with other
num erical schemes most C F D packages tend to be of a
generic nature thus allowing num erous perm utations of
analyses to be performed. F o r exam ple a C F D package
m ight be able to consider lam inar/turbulent flows,
heat/m ass transfer and chemical reaction processes. The
availability of a num ber of options for the user to choose
increases the num ber of com m ands he may have to enter,
each of which informs the m ain source code to either
include o r om it a particular option from the analysis, thus
lim iting the num ber of variables the program needs to
solve. Clearly the m arketability of the software package
relates to its versatility to m odel a variety of different class
of problem s. Even though the availability of C FD
packages is increasing, their popularity and potential
m arket is yet to be fully realised, especially by small
com panies. This is mainly because of the costs involved in
releasing engineers to attend the necessary training
courses to become proficient with the package, and the
need for these engineers to have at least a basic
understanding of the processes involved in order to get the
full benefit from the courses. The time required to become
familiar with a num erical stress analysis package1 is
anything up to one year depending on the ability of the
user-. This timescaie is typical for most software packages
and experience has shown this to be so for P H O E N IC S 3,
which is being used as an example for this work and to
which an Intelligent Front-End (IFE) is being developed.

1991 C o m p u ta tio n a l M ech an ics P u b lica tio n s Artificial Intelligence in Engineering. 1991. I'nl 6. No I 27

Appendix J

Development o f cm Intelligent Front-End fo r a Computational Fluid Dynamics Package: K . Jambunathan et al.

User

R esults

P re-processor

Input
Data f i l e

Hein
Solution
Algorithn

User ava ilab le subroutine
GROUND-FOR

Fig. I. Simplified overall program structure o f PH O ENICS

{A] - User with an appreciation of CFO concepts
[6] - User with no appreciation of CFD conctpts

c
U
oc.a

«
>

Time

Fig. 2. Suggested learning curves fo r P H O E N IC S users

PH O E N IC S is a general-purpose finite difference
package designed for the sim ulation of fluid flow,
heat/m ass transfer and chemical reaction processes. The
program structure of PH O E N IC S is basically divided
into two sections: the preprocessor and the solution
algorithm (Fig. 1). A user defines the problem using the
PH O E N IC S Input Language to generate an input data
file which will be interpreted and com piled by the
preprocessor. The compiled version of the da ta file is then
subm itted to the solution algorithm for analysis and the
resuits are written to an output file. Figure 2 suggests how
the learning curves for two individual users of

PH O E N IC S may differ when one has prior knowledge of
C F D concepts and finite difference techniques, while the
o ther has not.

1.2. IFE based on I K B S techniques
An IFE. as shown in Fig. 3, is designed to remove the

complexities associated with entering a problem
specification to a num erical sim ulation package. IFE 's
differ significantly from conventional data entry tech
niques in that they are able to explicitly define a user's
problem in the term inology required by the package. This
is performed by asking the user questions, structured in

28 Artificial Intelligence in Engineering. 1991. Col 6. Xu 1

f

Appendix J

Development o f an Intelligent Front-End fo r a Computational Fluid Dynamics Package: K. Jambunathan et al.

Dialogue

Results

User

Analysis of
R esults

Problem
S p ec ifica tio n

Numerical
Simulation
Package

Fig. 3. The typical structure o f an Intelligent Front-End (IFE)

English, that allow the IFE to create the necessary
com m ands to correctly specify the com plete problem to
be analysed. The questions asked by the IFE are entered
into a Knowledge Base (KB) using either a classical
artificial intelligence language such as LISP or
PR O L O G , o r by using a commercially developed Expert
System (ES) shell o r environm ent. These questions are
then inferred upon by the knowledge m anager or
inference engine, and depending on the order in which
they are presented to the user the necessary com m ands are
generated. T he num ber of questions to be entered reflects
the num ber of possible com m ands the num erical package
has. Usually the questions are entered into the KB as a set
of rules that have been generated by a process of
knowledge elicitation, and these rules have to be
represented within the KB. The IFE should provide post
processing facilities4, to assess the results of the analysis,
and to advise the user on possible m odifications to the
input d a ta file. A true IFE should not be limited to one
application of an ES. Indeed it should contain various
com binations of the ten areas highlighted as potential ES
app lications5. Examples of such com binations are
in terpreta tion , m onitoring and advice. ES’s have been
coupled with aerodynam ic packages to aid the design
process of axial cooling fans5. O ther applications of IF E 's
are given in Refs 2, 7 -1 1.

The feasibility of introducing an IKBS to P H O E N IC S
was investigated12. The authors concluded that there was
a need for developing such a system because the
P H O E N IC S compiler only superficially exam ines the
input d a ta file for specific syntax errors and it does not
indicate any omissions from the data file that could affect
a successful analysis. The study also hF 'M'ghted a need for
an on-line adviser that would aid the correct m odelling
sequence and which can be accomplished by using a set of
structured questions to be infei upon by the
knowledge m anager.

1.3. Selection o f Artificial Intelligence tool
Artificial Intelligence (Al) and more specifically ES

usually contain logical symbolic processing as weli as
conventional com putational techniques13-14. ES's can be
written by using standard languages like FO R TR A N but
these have one distinct disadvantage over symbolic
processing techniques; the developer m ust introduce a
pseudo-inferencing procedure into the code. This require
ment makes subsequent m odifications difficult without
rewriting the code. O n the o ther hand the symbolic
reasoning approach which uses an inference engine with
either backward or forward chaining will autom atically
consider the new rules. Recent developm ent of ES shells
or environm ents has adopted the latter approach and
they are much easier to use because the KB can be easily
modified. Several commercially available ES environ
ments were considered15 17 but the ultim ate restrictions
of cost, potential versatility, and availability made
L E O N A R D O 18 the m ost favourable in this case.

L EO N A R D O utilises num erous knowledge represen-
a tion techniques including frames, production rules,
quantification rules and a procedural language. It also
allows interfacing to externally compiled conventional
program s and various database files. The hierarchial class
structures often used for representing the object/parent-
object relationships are performed by quantification
rules. L EO N A R D O also facilitates the use of lists which
have been used extensively in this project.

1.4 Computational Fluid Dynamics
C F D utilises the capacity o f digital com puters to

perform vast am ounts of repetitive calculations to solve
the governing equations of m otion: Navier-Stokes.
continuity, energy and pressure equations19. These
equation? ran be solved iteratively using either finite
difference or finite element m ethods.

2. CASe, STU D Y : P R E D IC T IO N O F JE T
IM P IN G E M E N T H EAT TR A N SFER

The initial developm ent of the front end was performed on
an IB M -PC AT com patible using the LEO N A R D O ES

Artificial Intelligence in Engineering. 1991. I nl 6. \ o / 29

391

- - . . — 7. „ ■ -. — . ' r

Appendix J
Development o f an Intelligent Front-End for a Computational Fluid Dynamics Package : K . Jambunathan et al.

ztw

ZHU

r (v)

Nozzle

Outflow boundary 1 1

W]«t

Impingewnt p la te

Fig. 4. Unconfined je t impingement geometry

J

environm ent. T he system was designed with the eventual
transporta tion to a VAX-785 machine in mind. A case
study was conducted to analyse a lam inar jet impinging
upon a surface within an unconfined region, as shown in
Fig. 4. The governing equations of m otion are as follows.

Velocity profile at nozzle exit

The Navier-Stokes equations

do dp f t 1 cc
p V — + W — = - — + H \ — + — -------- T l + B rV cr d z j cr \ c r z r cr cz~ r j

(1)

cw cw \ cp (c~w 1 cw c~w\ „
p i v — + w — = — — + jul — -I-— + — + B _

cr oz J cz \ c r r cr cz~ J

(2)

where B r and B . represent the radial and axial body force
contributions respectively. The additional viscous
d issipation term s are neglected.

The continuity equation

- -T-(rc)+ ~ = 0 (3)/• cr cz

The energy equation

1 c c _ I t ' (rk c T \ c (k i . .
- ~ { r p T v) + — (p T n j= - — { -----—)+ — ---— (4)
r cr cz r c r \ c p < r j c z \ c p c

The boundary conditions a re :-

Im pingem ent plate

w = 0, r = 0
T = r . . , .

at : = Z„

Flat w —W,JCl

T em perature at nozzle exit

T = T1 1 jet

Outflow boundaries 1 and 2

p = 0.0 at z = 0

and r -3 1 .5 d

C onsidering the problem specification given above, it
would take a proficient user approxim ately fifteen
m inutes to form ulate the correct m odel for PH O E N IC S .
This assumes that the flow conditions involved are
thoroughly understood and the overall boundary
conditions are known. The PH O E N IC S input d a ta file
for the case study is shown in Fig. 5. On overage it would
take in excess of thirty m inutes, for an experienced user, to
simply type in the com ands, to be followed by m anually
checking for typing errors o r omissions

3. AN INTELLIGENT FRONT-END FOR
PHOENICS
The prim ary reason for developing an IFE was to enable
novice users of C F D to become familiar with the
techniques employed to model fluid flow problem s using a
commercial software package. T o this end it was
im portant to integrate into the system, knowledge
relating the m etam orphosis of the user's problem
definition to appropria te PH O E N IC S com m ands. This
can be seen to be the fundam ental requirem ents placed
upon an IFE, and as such would consist of generating a
usable data file from an interactive session with a user.
This approach was suggested within the feasibility

30 Artificial Inte/liaence in Engineer mu. IWI. I i d 4. ,Vc; /

392

Appendix J
Development o f an Intelligent Front-End for a Computational Fluid Dynamics Package: K. Jambunathan et al.

YFRAC(2)-9.09091E-3
YFRAC(4)-4.45455E-3
YFRAC (6)*“1 .82746E-2

ZFRAC(2)«
ZFRAC(4) ■

.66667E-3

.11111E-3

TALK- .RUN(1, 1);VDU-TTY
TEXT(2D UNCONFINED IMPINGING ROUND JET - THERMAL)
REAL(WIN)
WIN-1500*ENUL/0.01
CARTES-F
NY-61
YVLAST—0. 05
YFRAC(l)— 11.0,
YFRAC(3)-1.0,
YFRAC(5)—49.0,
NZ-37
ZWLAST— 1.0
ZFRAC (1)— 18.0,
ZFRAC(3)“ 19.0,
SOLUTN (PI, Y, Y, Y, N,N, N)
SOLUTN (VI, Y, Y,N, N, N, N)
SOLUTN (W1, Y, Y, N, N, N, N)
SOLUTN(HI,Y,Y,Y,N,N,N)
ENUL-I.461E-5
RHOl-1.2250
CONPOR(0.0,CELL,1,1,12,12,1,18)
FIINIT(PI)-RH01*WIN
FIINIT(VI)-WIN
FIINIT(Wl)-WIN
FIINIT(Hl)—21.0
PATCH(WALL,CELL,1,1,1, NY, NZ,NZ,1,1)
COVAL(WALL,VI,FIXVAL, 0.0)
COVAL(WALL,Wl,FIXVAL,0.0)
COVAL(WALL,HI,FIXVAL,100.0)
PATCH(REGION,CELL,1,1,1,11,1,18,1,1)
COVAL(REGION,VI,FIXVAL, 0.0)
PATCH(INLET,LOW,1,1,1,11,1,1,1,1)
COVAL(INLET,Wl,ONLYMS,WIN)
COVAL(INLET,PI,FIXFLU,RH01*WIN)
COVAL (INLET,H1,ONLYMS,21.0)
PATCH(OUTLET1,NORTH,1,1,NY,NY,1,NZ-1,1,1)
COVAL(OUTLET1,PI,FIXVAL,0.0)
PATCH(OUTLET2,LOW,1,1,13,NY,1,1,1,1)
COVAL(OUTLET2,PI,FIXVAL,0.0)
PATCH<PLATE,HWALL,1,1,1,NY,NZ-1,NZ-1,1,1)
COVAL(PLATE,Wl,FIXVAL,0.0)
COVAL(PLATE,VI,1.0,0.0)
PATCH(PIPEOUT,SHALL, 1,1,13,13, 1,18, 1, 1)
COVAL(PIPEOUT,Wl,1.0, 0.0)
COVAL(PIPEOUT,VI,FIXVAL,0.0)
PATCH(PIPEIN,NWALL,1,1,11,11,1,18,1,1)
COVAL(PIPEIN,W1,1.0,0.0)
COVAL(PIPEIN,VI,FIXVAL, 0.0)
LSWEEP-300
RESREF(Wl)-1.OE-8
RESREF(VI)— 1.OE-8
RESREF(PI)-1.0E-8
RESREF(HI)-l.0E-8
RELAX(VI,FALSDT,0.5)
RELAX(W1,FALSDT,0.5) *
RELAX(PI,LINRLX,0.8)
RELAX(HI,FALSDT,1.0)
ECHO-F
OUTPUT (HI, Y, Y, Y, Y, Y, Y)
OUTPUT(P1,Y,Y,Y,Y,Y,Y)
OUTPUT (VI, Y, Y, Y, Y, Y, Y)
OUTPUT (Wl,Y,Y,Y,Y,Y,Y)
IYMON-14
IZMON-33
NPLT-1
STOP
Fig. 5. Laminar je t impingement PH OENICS data file

stu d y 12. However, it was thought prudent to also allow
partially experienced users the ability to have their
manually created da ta files checked prior to subm itting
them for analysis. This facility would mimic the process of
asking the advice of an expert who would indicate any
errors with the data and recom m end possible im prove
ments. Certain mistakes, for exam ple the inadvertent
transposition of argum ents within com m ands, have been
shown to be accepted by P H O E N IC S . thus indicating an
acceptable da ta file, but have lead to erroneous results.
Errors such as these can take hours to find if a large data
file has been subm itted. In o rder to eliminate the tedious
task of checking the independently generated da ta file
m anually, thus reducing the time involved, a prototype

system was developed t i t would examine the contents of
the file and would assess the validity of the comm ands.
This would upgrade the existing facility within the
PH O E N IC S preprocessor, which simply states that an
erro r occurs on one or more lines, to a higher level
w hereby detailed inform ation regarding the invalid
statem ents would be displayed.

Figure 6 shows the status o f the developm ent to date
and how the da ta file generator and the data file checker
are utilised within the overall system.

3.1. Knowledge elicitation
The knowledge for the IFE was obtained from three

different sources. Firstly, practical experience with
PH O E N IC S as a user. The com m ands that have to be
used to correctly model a C F D problem are explicitly
defined w ithin the PH O E N IC S reference m anuals. This
was thought to be possibly the m ost im portant m ethod of
understanding the operation of PH O E N IC S since there is
no substitu te for experience. The second m ethod was
through directly conversing with experienced users, and
extracting their knowledge on problem specifications.
Finally, by acting as a pseudo-expert when supervising
and advising inexperienced users. Knowledge acquired in
this m anner was transformed into various rules which
formed the infrastructure of the KB.

3.2. Knowledge representation and structuring
Production rules were the primary method of knowledge

representation together with a com bination of o ther
s tandard techniques such as procedural language, class
structures, frames, singular objects and lists. The
knowledge bases were structured in a m anner which
would allow inferencing processes to be performed on the
rulesets sequentially. The initial arrangem ent was such
that for a specific question there would be a corresponding
object (or defined variable) instantiated. This approach
soon exceeded the size lim itation of L EO N A R D O since
its PC version can only accom m odate a maximum of one
thousand objects. Subsequent modifications of the
structure of the KB led to the categorisation of statem ents
which defined a C F D problem into seven areas o r lists, as
illustrated below. Inform ation organised in this way
significantly reduce the num ber of objects and hence the
possibility of exceeding the size lim itation.

Category

G rid specification
Solution variables
Fluid properties
Initial conditions
B oundary conditions
Solution param eters
O u tp u t requirements

M ethod of acquisition

Defined or Inferred
Inferred
Defined
Inferred
Defined
Inferred
Defined

The proto type IFE was developed for specific analyses
in je t im pingem ent and as such would not permit a generic
problem definition. Figure 6 shows an IFE without post
processing facilities.

3.3. IFE data file checker;advisor
The infrastructure of the data file checker/adviser is

shown in Fig. 7. In its present form PH O E N IC S only
superficially examines the input data file and gives
am bieuous e rro r messaiies reiatinn to the svntax which

1
.1

:J

I

3

'1
I

?!

,4
$
$

In ,t id a l Intelligence in Enaineenna. /W /. I id 6. \ (l / 31

393

Appendix J

Development o f an Intelligent Front-End for a Computational Fluid Dynamics Package: K . Jambunathan et al.

PHOENICS
PHOENICS

data f i l e
(Manual)

PHOENICS
data f i l e

Problea specific
knowledge base

(Scenario)
Data f i l e
checker

knowledge baae-

Ooaein specific
knowledge bees
(Co Bund
constraints)FORTRAN

data f i le i
BRIO

la ta f i le s

Inference Engine

FORTRAN
support

rou tines

FORTRAN
support

rou tines

User In te rface

User

Fig. 6. Preliminary infrastructure o f PH O EN ICS IFE

PHOENICS

User
In te rface

COHSEQ.OAT
User input
f i l e

External
FORTRAN
Code

Inference
Engine

IKBS : Oata
f i l e checker/
adviser

i_________________________
Fig. 7. Infrastructure fo r data file checker'adviser

can be frustrating, even for experienced users. W ith this in
m ind, a file checker/adviser was developed within the
fram ework of an IFE to check a da ta file and to provide
on-iine advice prior to PH O E N IC S subm ission.

C om m ands in the da ta file can be entered in any order,
thus allowing named variables to be used within a
statem ent before they are declared. For example, the
name “T E M P ” (Fig. 8) appears as an argum ent within
the com m and statem ent C OV AL but is assigned as the
name of H I on the following line. This would present a
problem if sequential checking by the IFE is to be
implemented, because PH O E N IC S requires a solution
variable or an assigned nam e as the second argum ent

within the COV AL statem ent. Therefore, the order in
which the com m ands are checked must be predefined
before activating the IFE . This is accomplished by sub
m itting the data file to an external FO R TR A N program
that generates a file, C O M SE Q .D A T . which contains the
com m ands in a pseudo-sequential checking order. The
entries in C O M SE Q .D A T (Fig. 9) are arranged in
modules each of which contains three elements. The first
two elements identifies the PH O E N IC S com m ands under
consideration and the num ber of occurrences. The third
indicates the line num bers where the comm and could be
found. The response time of the system appeared to be
considerably increased if data is continually accessed

32 Artificial Intelligence in Engineering. 1991. I'ol 6. No I

394
*

Appendix J

Development o f an Intelligent Front-End for a Computational Fluid Dynamics Package: K . Jambunathan et al.

Command
Number

Section of
Input data f i l e

Checking order

Sequential paeudo-eequentlal

PATCH (INLET. LOW. 1. 1, 1. NY. 1. 1. 1. 1)

COVAL (INLET, TEHP . FIXAL. TINLET)

NAME (HI) - TEHP

Command 1

Command 3

Command 2

Command 1

Command 2

Command 3

Fig. 8. Simplified overall program structure o f PH O E N IC S

A section of COMSEQ.DAT Element 1 :

Element 2 :

PATCH Element 3 :

COVAL

SUMMARY:

PHOENICS command
under conalderatlon

Number of occurrences the
coamand appeare w ith in
the data f i l e

Line numbers w ithin
the data f i l e

the data f i l e twice on lin e s 14
and 15

REPRESENTATION

I

J

Fig. 9. An example o f C O M SE Q .D A T relating to Fig. 8

from external files. Consequently the da ta within
C O M SE Q .D A T is initially read and then stored in tern
ally, as the checking order, within a list object.

The da ta entries could be in the form of purely num eric
values, m athem atical expressions or a com bination of
bo th , for example:

G R D PW R IX . 10 .0 .5 .1 .0)----------------- Declares NX = 10
G R D PW R (Y . 10 .0 .3 ,1 .0).......................Declares NY - 10

PA TCH 1INLET. LOW . NX/2 + I . NX. 1, NY. 1 .1,1 .1)
PA T C H (IN L E T . LOW . 6 .1 0 .1 .1 5 .1 .1 ,1 ,1)

Substitution of the m athem atical expressions for their
numeric values is autom atically performed within
PH O EN IC S. However, the file checker/adviser within
the IFE requires the developm ent of a mathematical,
interpreter, which im plem ents a com bination of locally
generated lists and recursive procedures, to evaluate any
m athem atical expression.

The information relating to the com m ands, and their
validity, is rep re sen t..' sing the classical production rule
technique, of the form . . .

if [condition] then [conclusion]

Irtifh ial Intelligence in Engineering, 199 /. I W 6. \<> I 33

395

Appendix J
Development o f an Intelligent Front-End for a Computational Fluid Dynamics Package: K . Jambunathan et al.

S olu tlD n-parase teri daflnad

Z -v«loclty lo lu tlo nY-v«loclty lolutlan
comnd daflntd

Ptcmutc id lu tlo n X-vtloclty (olution

SOLUTN (Ul. Y. Y. K Y. N. Y)SOLUTN {Ul, Y, Y, Y, KN. Y)SOLUTN (Ui. Y, Y. Y. N. N. N] SOLUTN (UI.Y.Y.N.Y.N.N)

TRUEU16 SV
Htrmnlc avtPiging o f

•xehtngt coafflclentc
is required

Point by point
■ettiod of solution
Is required

SV : Solution v ariab les - l i s t of param eters to ba salved, la PI. HI. Ul, VI, Wl etc

SVL : Solution v a riab les l i s t - l i s t of 'SOLUTN* coaaands

Fig. 10. Knowledge structure fo r inferring “S O L U T N " commands

. . . where the conclusion, in the m ajority of cases, initiated
a message within an error iist.

At the end o f a checking process, the list identifying all
the errors would be presented to the user in a report
form at. Using this the user could either alter the
com m ands interactively o r modify the d a ta file
independently.

3.4. Laminar je t impingement I K BS data file generator
Figure 6 shows the data file generator to com prise of

two separate KB; the problem specific, o r scenario, and
dom ain specific KB. The problem specific KB has the
ability to contain predefined values which allow generic
param eters to be subsumed within the dom ain specific
KB. F or example the num ber of dim ensions which
defaults to 2, in the scenario KB. indicates that the axial
and radial velocities, w and t>, are to be assigned the
appropria te SO LU TN com m and. Furtherm ore, the data
file generator utilises external FO R TR A N code, which is
supplied with informtion from the system, to au tom atic
ally mesh the geometry supplied by the user. The files
produced by the FO R TR A N code contain the mesh
topology and the boundary condition definitions. Further
inform ation required by PH O E N IC S which specify the
solution param eters are established through inferencing
on the dom ain specific KB.

The jet impingement application requires specific input
data relating to the type of confinement which allows the
num ber of boundary conditions to be inferred, which is
contained within the scenario KB. The knowledge/rules
which are entered into an object frame within the ruleset
slot, are represented in a m odular form at for easy
m odifications. The process of assigning values to an
object m ight require the knowledge m anager to search
different rulesets in order to establish further object
values. The inferred objects thus formed are constantly
used for subsequent inference. Figure 10 is an exam ple of a
knowledge structure for inferring the solution variables
required and the selection of the appropria te com m ands.

4. C O N C L U D IN G REM ARKS

An expert system environm ent. L EO N A R D O , was used
for the development of an IFE to a commercially available
C F D package, PH O E N IC S. The IFE presently allows
m anually generated data files to be checked for possible
errors and gives advice on appropria te corrections. It also
permits users to enter into a question and answer session
which autom atically generates the da ta file for a flow
analysis problem . The techniques employed in knowledge
representation consist of lists, production rules, classes
and procedures all of which are implemented intrinsically
within rulesets. These com binations have led to improved
responses through optim ised external file accessing, and
have also reduced the num ber of defined variables for
specific PH O E N IC S com m ands. Statem ents for defining
a C F D problem have been generically categorised into
lists. Depending upon the users responses the inference
process within the rulesets allow the specific definition of
com m ands to be generated. O n com pletion of user
consultation these com m ands are written using p ro
cedural language to an external file readv for submission
to PH O E N IC S.

5. FU T U R E D E V E L O PM E N T

The IFE in its present form allows repetitive numerical
modelling of lam inar je t impingement applications using
PH O E N IC S. Future developm ent will allow turbulent
flow sim ulations to be included. A ttem pts are being made
to em bed further KB into G R O U N D .F O R , a subroutine
within P H 0 CNIlC S available for user developed
FO R TR A N code. Em bedding an IKBS into the
G R O U N D .F O R routine, as shown in Fig. 11, would
allow the system to m onito r the solution algorithm of
PH O E N IC S a r' eudo-real-tim e basis. This has not. as
yet. been implemented and the problem s cannot be
foreseen. However, a prelim inary assessment has been
carried out and the overall concept is considered feasible.

34 Artificial Intelligence in Engineering. 1991. i'ol 6. A'o I

396

Appendix J

Development o f an Intelligent Front-End fo r a Computational Fluid Dynamics Package: K . Jambunathan et al.

User

Results

GROUND.FOR

Input
Data f i l e

Inference
Engine

Fig. 11. Proposed future developments

A KB dedicated to analysing the results for continuity
and o ther such requirem ents would assess the validity of
the solution. If a problem needs to be repeated, for
exam ple to assess grid independency, the system would
alter the d a ta file for resubmission.

Intelligent grid optim isation using an iterative
approach is also being considered with the view to
incorporating the technique into a KB. This would allow
the system to advise the user on a suitable mesh
specification ensuring a grid independent solution.

ACKNOWLEDGEMENTS

The work was carried out in the D epartm ent of
M echanical Engineering using com puter facilities p ro
vided by the Polytechnic’s C om puter services. The
research assistantship held by M r. S. L. H artle is funded
by the Polytechnics and Colleges Funding Council
PC FC), under their special research initiative, and is
gratefully acknowledged. Thanks are also due to Creative
Logic Ltd., for the technical support provided.

REFERENCES

1 M A R C U ser in form ation m anual, available from M A R C
A nalysis Research C orp oration . 260 Sheridan A venu e. Court
H ou se P laza. Su ite 200. Palo A lto. California 94306

2 B ennett. J. S. and E nglem ore, R. Sacon . A K n ow ledge-B ased
C on su ltan t for Structural A nalysis. In: Proceeding.* of the six th
In ternational Join t Conference on A rtific ia l Intelligence. T ok yo .
Japan. 1979. 4 7 -4 9

3 P H O E N IC S , Parabolic H yperbolic O r Elliptic Num erical
Integration C o d e Series. C on centration Heat And M om entum
Lim ited. C H A M . Bakerv H ouse. 40 Hie*' ^ W i m b l e d o n .
L O N D O N . S W I9 5A U . Ent

4 Bundy, A. Intelligent Front Ends in E xpert S ystem s. P ergam on
Infotech State o f the Art Report "Expert System s’*. Pergam on
Infotech Ltd.. 1984

5 H ayes-R oth . F .. W aterm an. D . S. and Lenat. D . B. (eds.l

Building E xpert S ystem s. A d dison-W esley P ub lish ing C om p an y ,
Inc.. 1983

6 T on g , S. S. D esign o f aerodynam ic bodies using Artificial
Intelligence/E xpert System techn iqu e. A /A A pa p er 85-0112,
A m erican In stitu te o f A eronautics a n d A stron au tics. A erospace
Sciences M eeting, 23rd. R eno. N V , January 1 4 -1 7 , 1985

7 W iess. S ., K ulikow ski. C ., A p te, C ., U sch o ld , M ., P a tch ett. J.,
Brigham , R. and Spitzcr. B. Building expert system s or
contro llin g com p lex program s. In: Proceedings o f the A m erican
A ssocia tion f o r A rtific ia l Intelligence. 1982, 3 2 2 -3 2 6

8 Barstow , D ., Duffey, R.. Sm oliar. S . and V esta l, S. An overview o f
P H IN IX . In: N ational Conference on A rtif ic ia l Intelligence.
A m erican Association f o r A rtific ia l In telligence. P ittsburgh,
P ennsylvania, A ugust. 1982. 3 6 7 -3 6 9

9 U sch o ld , M ., H arding, N .. M uetzelfeldt. R. and Bu ndy, A. An
Intelligent Front End f o r E cological M odelling. Research paper
223. D ept, o f Artificial Intelligence, Edinburgh U n iversity . 1984

10 T an gcn . K . and W retling, U . Intelligent Front Ends to
N u m erical S im ulation Program s. In: Bram er. M . A . ed. Research
a n d D evelopm ent in Expert S ystem s III, 1986, 2 2 4 -2 6 5

11 F ink , R. K ., C allow , R. A.. Larson. T . K . and R an som , V. H .
A T H E N A A ID E : An E xpert S ystem fo r A T H E N A code input
m odel preparation. Idaho N ation a l Engineering Lab oratory EG
and G Idaho Inc., Idaho Falls (U S A), 1987, 7p

12 U zel. A. R.. Edwards. R. J. and B u tton . B. L. A stu dy in to the
feasibility o f an intelligent k now ledge based system (IK B S) in
c om p u tation a l fluid m echanics (C F M). Engineering A pplica tion s
o f A rtific ia l Intelligence. 1988. V ol. I, Septem ber, 187-193

13 M ehta . U . B. and K utler. P. C om pu ta tion a l A erodyn am ics an d
A rtijic ia l Intelligence. N ational A eronautics and Space A d m inis
tration , 1984, N A SA Technical M em orandum 85994

14 M ehta . U . B. K now ledge based system s for com p utation a l
aerodynam ics and fluid d ynam ics. In: K ow alik . J. S. ed.
K n ow ledge B ased Problem Soloing, 1986, 183-212

15 Xi P L U S . Expertech Ltd.. 172 Bath R oad. S lou gh . SL I 3X E
16 E G E R IA . Intelligent Svstem s International L td.. 11 O akdene

R oad . Redhill, Surrey. RH1 6B T
17 C R Y ST A L . Intelligent Environm ents Lim ited. N orthum berland

H ou se. 15-19 Pertersham R oad , R ichm on d-U p on -T h am es,
Surrey, T W in 6TP

18 L E O N A R D O . Creative Logic Ltd.. Brunei Science Park.
K ingston Lane, U xbridge. M iddlesex. U B 8 3PQ

19 Patankar. S. V. Num erical H eat Transfer an d Fluid Flow.
M cG raw -H ill scries in C om p u tation a l M ethod s in m echanics
and thermal sciences. 1980

Artificial Intelligence in Engineering. 19VI. IV;/ 6. ,\V; / 35

397

Appendix J

Engrtg Apptic. Artif. Intell. Vol. 4, No. 5, pp. 385-392. 1991 0952-1976/91 $3.00+0.00
Printed in G reat Britain. All rights reserved Copyright © 1991 Pergamon Press pic

Contributed Paper

Development of an Intelligent Front End: An Experience
K. JA M B U N A TH A N

Nottingham Polytechnic

E. LAI
Nottingham Polytechnic

S. L. H A R T L E
Nottingham Polytechnic

B. L. BU TTON
Nottingham Polytechnic

This paper describes the techniques used in the development o f a prototype Intelligent Front End
(IFE) for a Computational Fluid Dynamics (CFD) package. The prototype was developed using a

■ commercially available Expert System (ES) shell, LEO N ARD O, on an IBM PC-AT compatible.
The experience has highlighted the inadequacies o f attempting to use LEO N ARD O for the creation o f
a practical IFE, and as such led to the development using a traditional Artificial Intelligence (Al)
language, LISP.

Keywords: Intelligent front ends, IFE, computational fluid dynamics, CFD, PHOENICS, expert
systems, ES.

INTRODUCTION

Numerical simulation packages
Within the engineering industry the use of numerical
simulation packages, such as finite element, boundary
element or finite difference schemes play an extremely
important role in computer aided design. The recent
emergence of cheap, yet powerful, microcomputers has
enabled relatively small companies to access compre
hensive Computational Fluid Dynamics (CFD) pack
ages. CFD modelling of physical phenomena can be an
extremely complex procedure and it usually requires
specialist expertise and familiarity with the package to
establish a working model. The generation of an input
data file to a CFD package can be cumbersome, and
simple modifications usually require extensive alter
ations to the format. These modifications can be very
susceptible to catastrophic failure due to the enormous
potential for human errors in typing or a momentary
lack of concentration. This risk increases directly with

Correspondence should be sent to: K. Jam bunathan, Department of
Mechanical Engineering, Nottingham Polytechnic, Burton Street,
Nottingham N G t 4BU, U.K.

the size of a data file which is usually large in a realistic
problem. The data files contain information relating to
the geometry, boundary conditions, properties and
solution parameters associated with the analysis. In
common with other numerical schemes most CFD
packages tend to be of a generic nature, thus allowing
numerous permutations of analyses to be performed.
For example a CFD package might be able to consider
laminar/turbulent flows, heat/mass transfer and chemi
cal reaction processes. The availability of a number of
options for the user to choose from increases the
number of commands he may have to enter, each of
which informs the main source code to either include or
omit a particular option from the analysis, thus limiting
the number of variables the program needs to solve.
Clearly the marketability of the software package
relates to its versatility to model a variety of different
classes of problems. Even though the availability of
CFD packages is increasing, their popularity and
potential market is yet to be fully realised, especially by
small companies. This is mainly because of the costs
involved in releasing engineers to attend the necessary
training courses to become proficient with the package,
and the need for these engineers to have at least a basic
understanding of the processes involved in order to get

Appendix J

386 K. JAM BUNATHAN et al.: DEVELOPM ENT OF AN INTELLIGENT FRO N T END

I n t e r a c t i v e
VOU Input

0 1 . DAT

■PHIDA.DAT

L ib ra r y
F i l e s

(e a r t h)

(s a t e l l i t e '

Fig. 1. The PHOENICS environment.

the full benefit from the courses. The time required to
become familiar with a numerical stress analysis
package1 is anything up to 1 year, depending on the
ability of the user.2 This timescale is typical for most
software packages and experience has shown this to be
so for PHOENICS,3 which is being used as an example
for this work and to which an Intelligent Front End
(IFE) is being developed.

Computational fluid dynamics
The processes of heat/mass transfer, chemical reac

tions and fluid flow pervade all aspects of human life.
These processes can be observed in engineering (com
bustion engines, aircraft, rockets, heat exchangers, air
conditioning plants, etc.), the natural environment
(pollution, storms, floods, fires, etc.), and in the human
body (blood flow, temperature control via heat and
mass transfer). A s a consequence of the enormous
influence the processes have on human life, it is essen
tial to be able to predict their behaviour in order to deal
with them effectively. Extensive research throughout
the world, over many years, has yielded many powerful
numerical simulation packages. The basis of such
numerical packages lies with the solution of the govern
ing differential equations of fluid flow and heat/mass
transfer. The most popular numerical techniques are
finite element, finite difference and finite volume.
PHOENICS is a general-purpose finite volume package
designed for the simulation of fluid flow, heat/mass
transfer and chemical reaction processes. The program
structure of PHOENICS is basically divided into two
sections: the preprocessor, SATELLITE, and the solu
tion algorithm, EARTH (Fig. 1), A user defines the
problem using the PHOENICS Input Language (PIL)
to generate an input data file which will be interpreted
and compiled by the preprocessor to form a data file
EARDAT.DAT, which is read by EARTH. After the
analysis has been completed ;he results are written to
two files, RESULT.DAT and PHIDA.DAT. The
former is used for a tabular presentation of the result
ing flow field, whereas the latter is used for restarts and
post processing packages for graphical output.

Intelligent front ends
Under the Alvey programme which commenced in

1983 five key technology areas were highlighted, one of
which dealt with Intelligent Knowledge Based Systems
(IKBS). Within this key technology existed nine
research themes: intelligent front ends, intelligent
computer-aided instruction, expert systems, natural
language understanding, image interpretation, declara
tive languages, inference and knowledge represen
tation, parallel architectures, and intelligent data base
systems. A succinctly modified version of the original
SERC/Dol definition of an IFE is “An intelligent front
end (IFE) is a kind of expert system. It is a user-
friendly interface to a complex software package which
would otherwise be technically incomprehensible
and/or too complex to be accessible to many potential
users”.4 As part of the Alvey project there have been
two workshops on IFEs at which discussions on the
overall research areas took place.5,6

An IFE, as shown in Fig. 2, is designed to remove the
complexities associated with entering a problem specifi
cation to a numerical simulation package. IFEs differ
significantly from conventional data-entry techniques in
that they are able to explicitly define a user’s problem
in the terminology required by the package. This is
performed by asking the user questions, structured in
English, that allow the IFE to create the necessary
commands to correctly specify the complete problem to
be analysed. There exist several developed IFEs for
various application packages, examples of which are
given in Refs 7-14.

Expert system shells
Artificial Intelligence (Al), and more specifically

ESs, usually contain logical symbolic processing as well
as conventional computational techniques.15,16 Recent
development of ES shells has allowed the integration of
symbolic and numeric processing for ES applications.
Several commercially available ES shells were con
sidered for the development of the IFE,17"19 but the
ultimate restrictions of cost, potential versatility, and
availability made LEONARDO20 appear the most

r i
D i a l o g u e

User

ResultsAnalysis of
results

Problem
specification

Numerical
simulation
package

I I
i _________________ I

IFE
Fig. 2. This typical structure of an IFE.

Appendix J

K. JAM BUNATHAN et at.: D EVELOPM EN / O F AN INTELLIGENT FRONT END 387

favourable in this case. LEONARDO is written in
FORTRAN and utilises numerous knowledge-
representation techniques including frames, production
rules, quantification rules', lists and a procedural lan
guage. It also allows interfacing to externally execu
table files and various database files. Forsyth21 reviewed
LEONARDO version 3.00, level 3. The initial impres
sion that was conveyed gave a rather glowing report on
the facilities contained therein. Indeed, any new user to
LEONARDO would easily come to the same conclu
sion. However, after eighteen months exposure to the
system, during which the shell was subjected to a series
of rigorous tests, the initial views became very dim and
cloudy due to its inherent slowness and unreliability,
the latter included unexpected spontaneous corruption
of knowledge bases which were only recoverable from
previously saved files.

PROTOTYPE PHOENICS INTELLIGENT
FRONT END

PHOENICS has had no interactive front end until
recently. The PC version has been given a limitedly
flexible menu-driven interface which allows semi
complex problems to be defined. Further, the main
frame version has a much-reduced menu interface
which proves to be painfully slow and does not afford
user-friendliness. Both menu systems assume that users
have some prior knowledge on the use of the package
■and that they are conversant with the terminologies
used in CFD and PHOENICS.

Finite element packages such as FLOTRAN22 have
been developed with the integration into existing
Computer Aided Design (CAD) software in mind, the
limiting factor being the data transfer between one
package and another. However, Concentration Heat
And Momentum (CHAM) Ltd,3 who develop
PHOENICS, appear to have ignored compatibility with
existing CAD software. File conversion programs could
be written only if the structure of the various
PHOENICS output files, EARDAT.DAT and
PHIDA.DAT shown in Fig. 1, are known. Indeed,
FEMVIEW23 have recently been working with CHAM
to develop independent pre- and post-processing facili
ties for PHOENICS, as their collaboration allows them
access to this information. The software developed by
FEMVIEW is not marketed with PHOENICS.

The PHOENICS IFE attempts to assist a user in the
generation of the mesh, by applying heuristicSswhere
appropriate, and in the process of defining the problem
to be analyzed, having once established the user’s
proficiency with PHOENICS. The IFE reduces the
need to become familiar with the command syntax
required in order specify a problem; however, it does

not negate the need for an understanding of fundamen
tal fluid mechanics.

The prototype IFE that has been developed thus far
has been written using a commercially available expert
system shell, LEONARDO (Versions 3.17, 3.18 and
3.20). The initial stages of development saw rapid
progress towards a working system. However, this
progress could not be maintained as the demands of an
IFE caused the limitations of the software to emerge.
Inadequate validation of LEONARDO gave rise to a
large number of “bugs” in the software that caused
havoc at certain stages of the development.
Implementation of pseudo-lists, which are character
*1200 strings within the FORTRAN code, created the
situation where it was not possible to store numeric
values within the structure. This resulted in a numeric-
to-string converter code having to be created, further
lengthening the response times. Excessive disk access
ing proved to be the greatest problem, whereby simple
tasks could take considerable time to perform. This is
exemplified in the evaluation of a simple string expres
sion, “2 + (26.47/49) 3” using a specifically developed
mathematical parser (see below) which required 15.25 s
to complete when executed through LEONARDO.
This is in contrast with an execution time of 1.51 s when
run directly in DOS, based on the same expression.
Figure 3 shows the initial infrastructure on which the
development has been based.24

The infrastructure of the IFE centres around the
inference engine and its interaction with the knowledge
bases and supplementary external FORTRAN rou
tines. The latter are used to improve the performance
of the system by reducing response times through not
constantly accessing overlay files when using internal
LEONARDO procedures to perform complex calcula
tions. The knowledge bases have two distinct roles: a
data file checker and a data file generator. The data file
checker25 is aimed at partially experienced users of
PHOENICS who are capable of creating a data file
which is then checked prior to submission to
PHOENICS.

The data file generator, which assists the user in the
generation of a data file through an interactive session,
has two sub-knowledge bases: first, the problem-
specific knowledge base which contains rules relating to
the limitations of the system given a specific appli
cation. Second, the domain-specific knowledge base
contains rules relating to the syntax of the PHOENICS
commands.

The knowledge for the IFE was obtained from
three different sources: practical experience with
PHOENICS as a user; directly conversing with exper
ienced users; and by acting as a pseudo-expert when
supervising and advising inexperienced users.

Throughout the development of the IFE, a number
of limitations were identified when representing knowl
edge within LEONARDO, and as such various tech
niques were created to aid such representation.

400
■6

>T- '7,Y>;-„

Appendix J

388 K. JAM BUNATHAN et al.: D EV ELO PM EN T OF AN INTELLIGENT FRONT END

Further, it was necessary to integrate into the data file
checker a mathematical parser in the form of an exter
nal FORTRAN code. Two applied techniques are de
scribed in the following sections.

APPLIED TECHNIQUES

Mathematical parser
Parsing with respect to Al usually refers to analyzing

natural language. Clocksin and Mellish26 introduced the
concept of parsing using PROLOG grammar rules to
study the structure of an English sentence. However,
the main thrust of the problem concerned here does not
include parsing English sentences, but mathematical
expressions. Parsing of mathematical expressions can
be considered as being an extremely important facet of
the IFE. The application of the parser is two-fold:
firstly, by directly evaluting an expression within a
command where a numeric value should reside; and
secondly, by applying the necessary equations that
could be stored in a list form to aid the storage of
information within list structures.

The need for a mathematical parser within an IFE
manifested itself from the development of an
Intelligent Data File Checker (IDFC).25 Within the
PHOENICS data file it is possible to insert mathemati
cal expressions, using previously declared variables,
where numeric values should reside. The PHOENICS
preprocessor handles the necessary transposition of
variables and deals with the subsequent calculations.
However, sequential reading of the data from within
the IFE would instantiate a text string where a numeri
cal value is to be expected. This would cause the system
to fail unless an equivalent numeric value could be

calculated, hence the need to develop the mathematical
parser.

In order to successfully implement mathematical
parsers it is necessary to continually store variables and
their associated values within a list, whereby transpo
sition of variables for their values in an expression
would facilitate direct evaluation. Essentially, a mathe
matical parser reduces an expression into the funda
mental components of operators and operands, and
then proceeds to determine their values. This dissection
of an expression involves delimiting operators and
operands within the expression. Assuming an expres
sion is given by:

N Y + (W IN /N Z y3 ,

with the variable-value list containing the following
information:

N Y,20,N Z,49,WIN,26.47, plus others.

Dissecting the expression and then delimiting it with
commas produces the following:

NY, + ,(,W I N ,/ ,N Z ,) ,\3.

Substitution for the variables is performed by removing
the appropriate value from the variable-value list and
inserting it into the expression. In the example given
this would result in:

20,+, (26.47,/,49,), ,3.

Standard precedence rules and associativity laws apply

PHOENICS
PHOENICS

data file
(Manual)

PHOENICS
data file

(IFE)

Problem specific
knowledge base

(Scenario)
Domain specific
knowledge base

(Command
constraints)

Data file
checker

knowledge
base GRID

data files
FORTRAN
data files

Inference Engine

FORTRAN
support
routines

FORTRAN
support
routines

User Interface

User

Fig. 3. Preliminary infrastructure of the PHOENICS IFE.

401

U . . a , / : ; :

Appendix J

K. JAM BUNATHAN et al.: DEVELOPM ENT OF AN INTELLIGENT FRONT END 389

11
10
9
8
7
6
5
4
3
2
1

Nl 0.15 m/s

PATCH (INLET, LOW, 1, 1, 1. 11, 1, 1, 1, 1)
COVAL (INLET, Wl, ONLYMS, 0.15)

Fig. 4. Specification of an inlet boundary condition for a flat velocity profile.

to the evaluation process where the expression is col
lapsed into a single resulting value. Recursion would be
the ideal technique to use on such a problem, which
would be best implemented in C or LISP; however
FORTRAN77 does not allow recursion. Therefore,
subroutine looping was used, which enabled the calcu
lations to be performed.

The parser highlights an operator and removes the
associated operands from the expression, together with
the operator, and calculates the result. The answer is
then fed back into the expression in place of the
extracted information. If parentheses are present then
the innermost set will be determined first and a gradual
outward growth leads to the final answer. In the exam
ple given the final value is determined in the following
manner:

20, + , 0.5402, ,3

20, + , 0.15764

20.15764.

IFE information storage within list structures
It has been mentioned above that LEONARDO uses

pseudo-lists. This, when compared to LISP, heavily
restricts the developer in terms of flexibility and avail
ability of potential information-storage techniques.
Limited list-processing functions within LEONARDO
reduce its flexibility, and complex list structures such as
lists within lists are not available. These have proved to
be invaluable for the LISP development.27 Complex list
structures can be used to store, in a modular form, the
associated information for the boundary conditions.
In order to effectively utilize the lists within
LEONARDO it was necessary to establish LISP-like
structures so that multiple data blocks could be stored
in one list, thus establishing pseudo-lists within lists.

This approach was adopted for storing information
relating to the boundary conditions required for a fluid-
flow problem specification.

Within PHOENICS each boundary condition
requires a set of commands which (a) locate the named
regions within the meshed domain using cell numbers
and surface notation, and (b) specify the applied con
dition. For example, the boundary condition com
mands required to specify an inlet velocity of 0.15 m/s
at entry to a mesh defined in Fig. 4 are as follows:

PATCH(INLET, LOW , 1,1,1,11,1,1,1,1)

COVA L(INLET, W 1, ONL YMS,Q. 15)

The cell numbers within the PATCH command, repre
sented by the last eight arguments, are generated by the
grid-generation routines. Information that is required
by the routines is the absolute co-ordinates of the
boundary and the following specifications:

Patch name: IN LET

Patch type: LO W

Dependent variable: Wl

PHOENICS coefficient: ONLYM S

PHOENICS value : 0.15

Information is then stored using the template shown in
Fig. 5. The “Name” is the index for each boundary
module within the list and it is possible to directly
access information pertaining to the boundary con
ditions using the equations given in the Appendix.

Information stored within the lists is passed to the
external grid-generation program which creates all of
the necessary commands in order to specify the grid to
be used and the associated boundary conditions.

402
*

Appendix J

390 K. JAM BUNATHAN et al.: DEVELOPM ENT OF AN INTELLIGENT FRONT END

n ;

Name Patch Type n ;

•Coordinates
Priority

n !0,0 0(Nj) c, V4C2 V 2 CIN) V (N

Sections of the list from ’Na m e ’ repeat for N boundaries
Fig. 5. Conceptual list structure.

Feasibility study of integrating the mathematical parser
and information storage within list structures

A feasibility study into the possibility of storing
equations of the kind shown in the Appendix and using
them for locating information within lists was per
formed. The potential benefit would be to reduce the
amount of code required to locate information from
several lists, through developing generic routines to
operate upon the stored equations. The concept
involves generating an initial module at the front of the
list which contains the equations for that list (Fig. 6).
The equations in the Appendix would have to be
modified in order to account for the length of the

equation module. The equations would then be
retrieved and used by the parser to calculate the
position of a specific item of information. This tech
nique was not implemented because of the inherent
slowness experienced with LEONARDO, and the
potential to exceed the allowed number of characters
within the pseudo-lists.

CONCLUDING REMARKS

A preliminary Intelligent Front End (IFE) to a com
mercially available Computational Fluid Dynamics
(CFD) package, PHOENICS, based on a commercially

Modified concep tua l
l i s t s t r u c t u r e

Equat ion Module
- v
- V 3« -

Conceptual l i s t
s t r u c t u r e
(f igu re 5)

Equat i ons

Informa t ion r e q u i r e d ____________
(ie. ' p a t ch t yp e ' for ith module)

P o s i t i o n r e q u i r e d

Generic

Equat i on

Rout ine

Mathemat ical

P a r se r

(i e . p o s i t i o n of ' p a t ch t y p e ’ for ith module)

Fig. 6. Integration of the mathematical parser and information storage within list structures.

403

Appendix J

K. JAM BUNATHAN et at.-. DEVELOPM ENT OF AN INTELLIGENT FRONT END

available E xpert System (E S) shell, L E O N A R D O , has
been developed. This developm en t, w hilst confirm ing
the feasibility,28 enab led the inadequacies o f using
L E O N A R D O for such applications to be highlighted.
In h eren t bugs, slowness and inflexibility in know ledge
represen tation necessitated th e ab an d o n m en t o f the
concept o f developing a practical IF E using an existing
shell. E xperience in the use o f techn iques such as a
m athem atical parser to handle a lgebraic expressions,
and the use o f pseudo-lists to facilitate m odu lar infor
m ation storage within L E O N A R D O , estab lished a
foundation upon which redevelopm en t o f the IF E using
C and L ISP has com m enced.

C reating pseudo-lists w ithin th e list struc tu res o f
L E O N A R D O partially sim ulated the list-processing
available w ithin LISP. H ow ever, the am o u n t of da ta
requ ired to perform this sim ulation was increased
because o f the necessary indexing values requ ired .

T he unreliability o f L E O N A R D O proved to be a
m ajo r p rob lem because o f the freq u en t occurrence of
softw are bugs that w ere located . R eliance upon soft
w are support by the supplier is th ere fo re critical.
H ow ever, this problem can be e lim inated due to the
self-containm ent o f softw are develo p m en t using LISP
and as such debugging facilities, w hen req u ired , are
available in-house.

T o d a te the decision to use LISP fo r fu tu re develop
m en t of an IF E instead o f using an existing shell looks
prom ising.

Acknowledgements— The work was carried out in the Department of
Mechanical Engineering using computer facilities provided by the
Polytechnic’s Computer services. The research assistantship held by
Mr S. L. Hartle is fundecfby the Polytechnics and Colleges Funding
Council (PCFC), under their special initiative, and is gratefully
acknowledged. Thanks are also due to Creative Logic Ltd. for their
technical support. Figures 2 and 3 are used with the kind permission
of Computational Mechanics Publications.

REFERENCES
1. MARC User information manual, available from MARC

Analysis Research Corporation, Palo A lto, CA.
2. Bennett J. S. and Englemore R. SACON: A knowledge-based

consultant for structural analysis. In Proc. Sixth Int. Joint Conf.
Artificial Inteligence, Tokyo, Japan, pp. 47-49 (1979).

3. PHOENICS Versions 1.4, and 1.5.3. Parabolic Hyperbolic Or
Elliptic Numerical Integration Code Series, CHAM Ltd,
London.

4. Bundy A. Intelligent Front Ends in Expert Systems, Pergamon
Infotech State of the Art Report “Expert Systems” . Pergamon
Infotech (1984).

5. Bundy A ., Sharpe B., Uschold M. and Harding N. A lvey IKBS
Research Theme Workshop: Intelligent Front Ends, Abingdon,
England. IEE, Stevenage (1984).

6. Bundy A. (Ed.) A lvey IK BS Research Theme Workshop:
Intelligent Front Ends 2, University of Sussex. IE E, Hitchin
(1984).

7. Tangen K. and Wretling U. Intelligent front ends to numerical
simulation programs. In Research and Development in Expert
Systems III (Bramer M. A ., Ed.), pp. 254—265 (1986).

8. Pang G. K. H. An intelligent front end for a control system
design and analysis package. Proc, Fourth I FA C Computer Aided

391

Design in Control Systems Symposium, Beijing, China, pp. 329-
334 (1988).

9. Thomas G. B., Thomas R, C. and Lai C. C. An expert system
interface to a suite of rotordynamic programs. Inst. Mech. Engng
Conf. Proc, Vibrations in Rotating Machinery, pp. 621-626
(1988).

10. Clarke J. A ., Rutherford J. H. and MacRandal D. M. An
intelligent front-end for building energy simulation. Working
Conf. o f Users o f Simulation Hardware, Ostend, pp. 165-171
(1988).

11. MacRandal D. The application of intelligent front ends in
Building Design. In Artificial Intelligence in Engineering: Tools
and Techniques (Sriram D . and Adey R. A ., Eds), pp. 361-370.
Computational Mechanics Publication (1987).

12. Fink R. K ., Callow R. A ., Larson T. K. and Ransom V. H.
A T H E N A A ID E : A n Expert System fo r A T H E N A Code Input
Model Preparation. Idaho National Engineering Laboratory EG
and G Idaho Inc, Idaho Falls (1987).

13. Tong S. S. Design of aerodynamic bodies using Artificial
Intelligence/Expert system technique. Am . Institute o f
Aeronautics and Astronautics, Aerospace Sciences Meeting,
Reno, NV (A IA A paper 85-0112) (1985).

14. Uschold M ., Harding N ., M uetzelfeldt R. and Bundy A. A n
Intelligent Front End fo r Ecological Modelling, Research paper
223. Department of Artificial Intelligence, Edinburgh University
(1984).

15. Metha U. B. and Kutler P. Computational Aerodynamics and
Artificial Intelligence. NASA Technical Memorandum 85994,
National Aeronautics and Space Administration (1984).

16. Mehta U. B. Knowledge based systems for computational aero
dynamics and fluid dynamics. In Knowledge Based Problem
Solving (Kowalik J. S., Ed.), pp. 183-212 (1986).

17. CRYSTAL. Intelligent Environments Limited, Richmond-
upon-Thames.

18. EGERIA. Inference Europe, Slough.
19. Xi PLUS. Inference Europe, Slough.
20. LEONARDO. Creative Logic Ltd, Uxbridge.
21. Forsyth R. Software review: Leonardo. Expert Systems 5, (2),

160-164 (1988).
22. FLOTRAN, STRUCOM— Structures and Computers Limited,

Finite Element Consultants. UK and European Representatives
for ANSYS and FLOTRAN, Croydon.

23. FEMVIEW Ltd. FEM GEN TO PHOENICS 1.5 INTERFACE
PROGRAM AND PHOENICS TO FEMVIEW INTERFACE
PROGRAM , Leicester.

24. Jambunathan K., Lai E ., H artle S. L. and Button B. L.
Development of an intelligent front end for a computational fluid
dynamics package. Art if. Intell. Engng 6, (1), 27-35 (1991).

25. Jambunathan K., Lai E ., H artle S. L .. Li H. and Button B. L.
An intelligent data file checker for a computational fluid
dynamics package. In preparation.

26. Clocksin W. F. and Mellish C. S. Programming in PROLOG,
2nd edn. Springer, New York (1984).

27. Andrews-Vogel A. A Knowledge-Based Approach to Automated
Flow-Field Zoning fo r Computational Fluid Dynamics. National
Aeronautics and Space Adiminstration, NASA Technical
Memorandum 101072 (1989).

28. Uzel A. R ., Edwards R. J. and Button B. L. A study into the
feasibility of an intelligent knowledge based system (IKBS) in
computational fluid mechanics (CFM). Engng Applic. Artif.
Intell. 1. 187-193 (1988).

APPENDIX A

Equations used for information location in pseudo-iists

#', = 2 + 2(1—1) (1)
) = # ',+ 1 (2)

i-i
Index, = 2 + 2 # + 2) (4 + M in(l, # ?) + 3(#? + # ?)) (3)

Appendix J

K. JAM BUNATHAN et at.-. DEVELOPM ENT OF AN INTELLIGENT FRONT END

Name, = Index,

Patch Type, = Index, + I

Priority, = Index, + 3 + 3/V,

<pji - Priority, + 1 + /

(4)

(5)

CA = Priority, + 2 + A"2 + 2 (/ - 1)

F* = C„ + 1
(8)

(9)

where: N - number of boundaries in the list; JV, = number of co-
(6) ordinates for the boundary; N \~ n u m b er of dependent variables

specified on the boundary; i - 1 , 2 , 3 , . . . ,N ; ; '= 1 ,2 ,3 , . i ' - t -
(7) n = 1 ,2 ,3

Appendix J

Development of an Intelligent Front End using LISP
K. Jambunathan, E. L a i, S . L. H a r t le , B. L. B utton

D epartm en t o f M echan ical E n g in e e r in g , N ottingham P o l y t e c h n i c ,
B u r to n S t r e e t , N o ttingh am , NG1 4BU, UK.

ABSTRACT

A ttem p ts to d e v e lo p an I n t e l l i g e n t Front End (IFE) to a
C om putational F lu id Dynamics (CFD) package th rou gh a
co m m erc ia lly a v a i la b le E xpert System (ES) s h e l l have p roved to
be u n s u c c e s s fu l . The in a d e q u a c ie s o f th e te c h n iq u e s a v a i la b le
f o r know ledge r e p r e s e n ta t io n and the m a n ip u la tio n w ith in a
s h e l l environm ent ren d ered th e u se o f th e s h e l l approach fo r
su ch a d evelopm ent to e n g in e e r in g a p p lic a t io n s im p r a c t ic a l .
N e v e r th e le s s t h i s v a lu a b le e x p e r ie n c e has h e lp e d in th e
red evelop m en t o f an IFE u s in g Common LISP. Im p lem en ta tion o f
e x i s t i n g te c h n iq u e s fo r cu sto m ise d knowledge r e p r e s e n ta t io n
w h ich a llo w s f o r th e f l e x i b i l i t y req u ired fo r th e IFE i s
d e s c r ib e d . I n te g r a t in g v a r ia b le s , ex p re ssed th rou gh LISP
s t r u c t u r e s , and f a c t s , e x p r e s se d a s symbol l i s t s , h as en a b led
a com b in ation o f th e s e te c h n iq u e s to be used e f f e c t i v e l y .
S tan dard p a t te r n m atch ing te ch n iq u e s in c o n ju n c t io n w ith
m o d ifie d in f e r e n c in g p r o c e s s e s have been used to i n t e r a c t w ith
m u lt ip le know ledge b a s e s . Furtherm ore, in t e g r a t io n o f
e x t e r n a l C r o u t in e s has enhanced th e num erical co m p u ta tio n o f
LISP fo r com plex CFD mesh g e n e r a t io n .

INTRODUCTION

The B r i t i s h c o o r d in a te d develop m en t o f I n t e l l i g e n t F ron t Ends
(IF E s) stem s from th e e a r ly s ta g e s o f th e A lvey programme,
d is c u s s e d by O akley and Owen [1] , which commenced in 1983, and
p u b lish e d i t s f i n a l r e p o r t in O ctober 1988. The A lvey
programme o f advanced in fo r m a tio n tech n o lo g y (IT) was a j o i n t
v e n tu r e betw een th r e e UK Government D epartm ents (th e
Departm ent o f Trade and In d u stry , the M in is try o f D e fen ce , and
th e Departm ent o f E d u cation and S c ie n c e) , B r i t i s h in d u s tr y and
academ ia . The programme was co o rd in a ted by th e UK S c ie n c e and
E n g in ee r in g R esearch C o u n cil (SERC). The o b j e c t iv e was to
s t im u la te B r i t i s h IT r e s e a r c h in to f i v e key t e c h n o lo g ie s , one

406

Appendix J

o f w h ich was I n t e l l i g e n t Knowledge Based System s (IK BS), In
re sp o n se to I n c r e a s in g o v e r se a s c o m p e tit io n in th e f i e l d o f
in fo r m a tio n te c h n o lo g y . I n t e l l i g e n t Front Ends was
h ig h l ig h t e d a s one o f th e n in e r e se a r c h them es w ith in th e
o v e r a l l k ey te c h n o lo g y * o f IKBS and th e r e has b een two
w orkshops, r e p o r te d by Bundy e t a l . [2] and Bundy [3 1 , on
r e s e a r c h p r o j e c t s r e la t e d to IFEs.

IFEs can be d ev e lo p ed fo r any k ind o f so ftw a re pack age,
exam ples o f w hich a re g iv e n in r e fe r e n c e s 4 to 10, and a re
e s s e n t i a l l y d e s ig n e d to remove t h e ir in h e r e n t c o m p le x it ie s and
id io s y n c r a s ie s e x p e r ie n c e d by th e u s e r . To t h i s end an IFE
sh o u ld in t e r a c t w ith a u ser in h i s own langu age and u l t im a t e ly
s y n t h e s i s e th e in fo rm a tio n o b ta in e d in to th e language re q u ired
by th e p ack age. C om putational F lu id Dynamics has p r o g r e sse d
o v er th e y e a r s to a s ta g e whereby n u m erica l f lo w a n a ly s i s i s
becom ing more r e a d i ly a v a i la b le to s o lv e com plex p rob lem s.
T h is in c r e a s e d a v a i l a b i l i t y has prom oted th e u se o f CFD, and
in o rd er to im prove th e u ser market has been a c o n s ta n t area
o f a p p l ic a t io n o f AI fo r many y e a r s , p a r t i c u la r ly in th e f i e l d
o f g r id g e n e r a t io n , V ogel [1 1] . Com prehensive CFD program s
have been d ev e lo p ed w hich can s im u la te v i r t u a l l y any flo w
s i t u a t i o n , c o n se q u e n tly th e packages a re c o r r e sp o n d in g ly
com plex e s p e c i a l l y fo r n ew /n o v ice u s e r s . E x p er ien ce in
d e v e lo p in g an IFE u s in g an E xpert System s h e l l h a s been
p r e s e n te d , Jambunathan e t a l . [1 2 , 1 3]. The f in d in g s have le d
to th e cu r r e n t r e se a r c h w hich im plem ents a t r a d i t io n a l
A r t i f i c i a l I n t e l l i g e n c e (AI) lan g u a g e, LISP, f o r th e
d evelop m en t o f th e IFE. I n te g r a t io n o f C in to th e LISP code
f o r com plex n u m erica l c a lc u la t io n s r e in fo r c e s th e b e n e f i t s o f
com bin ing sy m b o lic and num eric com pu tation fo r CFD/AI
a p p l ic a t io n s p r e se n te d by Mehta and K u tle r [14] and Mehta
[1 5] .

Im p lem en ta tion o f Common LISP, S t e e le [1 6] , has shown to
be a p o w erfu l langu age w ith which to d ev e lo p an IFE.
E s ta b lis h e d te c h n iq u e s fo r p a tte r n m atch ing and in f e r e n c in g ,
in tro d u c ed by W inston and Horn [1 7] , have been u sed and
e x t e n s iv e ly m o d if ie d , where a p p r o p r ia te , to accommodate b oth
v a r ia b le s and f a c t s r e la t e d to a s p e c i f i c a p p l ic a t io n .
D a ta -g ra b b in g p ro ced u res form th e in fo rm a tio n g a th e r in g
o p e r a t io n w hich fe e d s th e d ata d r iv en in f e r e n c in g p r o c e s s . An
a r c h i t e c t u r e o f m u lt ip le r u le b a ses a llo w s e f f i c i e n t
in f e r e n c in g whereby u n n ecessa ry sca n n in g o f r u le s i s
m in im ised .

COMPUTATIONAL FLUID DYNAMICS

The p r o c e s s e s o f h ea t/m a ss tr a n s fe r , ch em ica l r e a c t io n s and
f l u i d f lo w pervade a l l a s p e c t s o f human l i f e . These p r o c e s s e s
can be o b serv ed in e n g in e e r in g , th e n a tu r a l en v iron m en t, and
in th e human body. As a conseq u en ce o f th e enormous in f lu e n c e

407

Appendix J

th e p r o c e s s e s have on l i f e i t i s e s s e n t ia l to be a b le to
p r e d ic t th e b eh av iou r in o rd er to d e a l w ith them e f f e c t i v e l y .
C om putational F lu id Dynamics (CFD) u t i l i s e s th e r e s u l t s o f
many y e a r s o f r e se a r c h to a id e n g in e e r s in p r e d ic t in g th e
e f f e c t s o f f l u i d f lo w w ith or w ith o u t h ea t/m a ss t r a n s f e r .

C om m ercially a v a i la b le CFD packages u s u a l ly r e q u ir e th e
u s e r to g e n e r a te a d a ta f i l e to be read by th e main program .
D epending upon th e v e r s a t i l i t y o f th e package and th e
c o m p le x ity o f th e problem to be a n a ly se d , th e s i z e and
i n t r i c a c y o f th e d a ta f i l e can v a ry c o n s id e r a b ly . Some o f th e
te c h n iq u e s used in th e d evelop m en t o f an IFE can be d e s c r ib e d
w ith th e a id o f a s im p le CFD problem as d e fin e d in f i g u r e 1,
and th e co rresp o n d in g CFD d a ta f i l e , f ig u r e 2 . When d e f in in g
a problem to be a n a ly se d u s in g CFD i t i s p o s s ib l e to
c a t e g o r i s e th e in fo r m a tio n to be o b ta in ed in th e f o l lo w in g
m anner.

G eom etrica l in fo r m a tio n - c o o r d in a te s , c o n n e c t iv i t y .
Boundary c o n d it io n s - i n l e t / o u t l e t , w a ll b o u n d a r ie s .

F lu id p r o p e r t ie s - d e n s i t y , v i s c o s i t y , tu rb u le n c e m odel.

(0.60.0) (0. 80.90) [0. 80. 130) (0. 80.210)

Hall 2

OPUTE

u =Q .5 m /s

(0.30.90) (0.30.130)

w.o.o) C o o r d in a t e s (x, y, z) [mm] (0. 0. 210)

Y

(Low)

(North)

— Z (High)

(South)

Analysis inforaation
Incoapressible
Isotherital (Tart - 23 Deg. C)
Single Phase

Mediu* : Air
Density - 1.225 kg/ora

Kinematic Viscosity - 1.248E-5 ■''E/s

Figure 1: Simpl.' CFD problem

, T a lk = f;Run(1 , 1) ; VDU=TTY
T ex t(S im p le CFD problem)
SubgrdC y,1 ,5 ,0 . 0 3 ,1 . 0)
S u b g r d (y ,6 ,1 2 ,0 .0 5 ,1 .0)
S ubgrdC z,1 , 1 0 ,0 .0 3 ,1 .0)
S ubgrdC z,1 1 ,1 5 ,0 .0 4 ,1 .0)
S u b g r d (z ,1 6 ,2 6 ,0 .0 8 ,1 .0)
S o lu t n (P l ,y ,y ,y ,n ,n ,n)
S o lu t n (V l ,y ,y ,n ,n ,n ,n)
S o lu t n (W l ,y ,y ,n ,n ,n ,n)
R h o l= l.2 2 5
E n u l= l. 246e~5
C o n p o r (o p ia te ,0 . 0 , c e l l , 1 , 1 , - 6 , - 1 6 , - 1 1 ,1 5)
F i i n i t (V l) = 0 .01
F iin it (W 1)= 0 .5
P a t c h (in l e t , lo w ,1 , 1 , 1 , NY,1 ,1 ,1 ,1)
C o v a l(i n l e t , P I , f i x f l u , Rho1 * 0 .5)
C o v a l(i n l e t , W1, on lym s,0 .5)
P atch (o u t l e t , h ig h , 1 , 1 , 1,NY,NZ,NZ, 1 ,1)
C o v a l (o u t l e t ,P I , f i x p ,0 .0)
P a t c h (w a l l l ,n w a l l ,1 , 1,NY,NY,1 ,1 0 ,1 ,1)
C o v a l(w a ll1 , V I, f i x v a l ,0 .0)
C o v a l(w a l l l ,W l,1 .0 ,0 .0)
P a t c h (w a l l2 ,n w a l l ,1 , 1 , NY,NY,1 6 ,N Z ,1 ,1)
C o v a l(w a l1 2 ,V I, f i x v a l ,0 .0)

. C o v a l(w a ll2 ,W l,1 .0 ,0 .0)
Lsweep=100
R e l a x (P l , l i n r l x ,0 .8)
R e la x (V I , f a l s d t , 0 .5)
R e la x (w l, f a l s d t , 0 .5)
O u t p u t (P I ,y ,y ,y ,y ,y ,y)
O u tp u t(V I, y , y , y , y , y ,y)
O u t p u t (W l,y ,y ,y ,y ,y ,y)
Iymon=10
Izmon=17
N p lt= l
S top

F ig u re 2: CFD d ata f i l e

409

Appendix J

D a ta -g ra b b in g p ro ced u res form th e b a s is fo r o b ta in in g th e
g e o m e tr ic a l In fo rm a tio n . S to ra g e o f n od a l d a ta and
c o n n e c t iv i t y in fo r m a tio n i s perform ed u s in g g lo b a l
a s s o c i a t i v i t y l i s t s (a - l i s t s) . In form ation such a s th e number
o f i n l e t s , .number o f o u t l e t s , f l u i d c o m p r e s s ib i l i t y , therm al
re q u irem en ts , d e n s i t y and v i s c o s i t y a re f ix e d f o r a s p e c i f i c
a p p l ic a t io n , and a s such a re s to r e d a s IFE v a r ia b le s w hich
would be s u b se q u e n tly u sed w ith in th e r u le b a s e s . F a c ts
r e la t i n g to th e geom etry a re s to r e d a s a l i s t o f symbol l i s t s .
The d if f e r e n c e betw een v a r ia b le s and f a c t s and how th ey
in t e r a c t w ith in r u le s w i l l be d is c u s s e d la t e r .

IFE ARCHITECTURE

F ig u re 3 shows th e a r c h it e c tu r e o f th e IFE and i l l u s t r a t e s th e
in t e r a c t io n o f th e in fe r e n c e e n g in e , d a ta b a se , know ledge
b a s e s , C and LISP fu n c t io n s . The LISP fu n c t io n s c o n ta in a l l
o f th e d a ta -g r a b b in g and d a ta -m a n ip u la tio n p ro ced u res re q u ir e d
to e s t a b l i s h th e i n i t i a l in fo rm a tio n co n ta in e d w ith in th e
d a ta b a se . S in c e LISP i s a sy m b o lic m a n ip u la tio n la n gu age and
o n ly a f f o r d s l im ite d n um erica l p r o c e s s in g power, C cod e was
In te g r a te d in to th e sy stem to a llo w com plex CFD mesh
g e n e r a t io n , H a r tle e t a l . [1 8] . The d a ta b a se c o n s i s t s o f two
form s o f d a ta s to r a g e : v a r ia b le s and f a c t s .

Im p lem entation o f m u lt ip le know ledge b a se s re d u ce s r u le
sc a n n in g , and a llo w s th e fo rm a tio n o f an o r g a n ise d s t r u c tu r e
whereby b lo c k s o f r u le s r e la t in g to s p e c i f i c t o p ic s a r e s e l f
c o n ta in e d . F undam entally , th e r e a re two c a t e g o r ie s o f r u le s :
d a t a - e s t a b l i s h in g r u le s and d a t a - s y n t h e s i s r u le s .
D a t a - e s t a b l i s h in g r u le s a re th o se th a t e n r ic h th e d a ta b a se
w ith in fo rm a tio n r e la t in g to th e a n a ly s i s . D a ta - s y n t h e s is
r u le s are th o se th a t combine th e in fo rm a tio n c o n ta in e d w ith in
th e d a ta b a se to form th e commands req u ired by th e CFD p ack age,
th e s e a re th e l a s t s e t o f r u le s to be used by th e IFE.

Once a problem has been d e f in e d , as shown in f ig u r e 1,
th e r e le v a n t in fo rm a tio n req u ired fo r th e a n a ly s i s w i l l need
to be e s t a b l i s h e d . In form ation o f t h i s ty p e i s s to r e d w ith in
th e IFE a s v a r ia b le s , and i s o b ta in ed through in f e r e n c in g
perform ed on th e r u le b a se s . D ata -grab b in g r o u t in e s a re u sed
to e s t a b l i s h g e o m e tr ic a l in fo rm a tio n and to a s s e r t p r e lim in a r y
f a c t s . T y p ic a lly , t h i s p rocedu re perform ed m anually would
c o n s i s t o f o b ta in in g th e r e le v a n t d a ta , w orking through th e
r e fe r e n c e manual and c r e a t in g a d a ta f i l e u s in g a p p r o p r ia te
commands to f u l l y d e f in e th e problem . T h is e s s e n t i a l l y form s
what i s known a s a d a ta d r iv e n p r o c e s s , and i s e x e m p lif ie d in
th e IFE through th e prim ary u se o f forw ard c h a in in g . Backward
c h a in in g i s im plem ented to sea r ch through know ledge b a se
in f e r e n c e n etw orks.

Appendix J

PackageDataFile Package

LISP
Functions

Database

Knowledge
BasesAuxiliary

Files Facts Variables

Inference Engine
Functions IFE

User

F ig u re 3: IFE a r c h ite c tu r e

VARIABLES, FACTS AND RULES

V a r ia b le s
IFE v a r ia b le s c o n ta in d a ta th a t i s unique to a s p e c i f i c
a n a ly s i s , and a s su ch i s r i g i d l y c o n s tr a in e d , f o r exam ple a
f l u i d can be e i t h e r c o m p r e ss ib le or in c o m p r e ss ib le , no o th e r
o p t io n i s a v a i la b le . To c o n s tr a in th e u ser to e n te r c e r t a in
v a lu e s each v a r ia b le i s equ ipped w ith s l o t s (s t r u c tu r e
k eyw ord s), one o f w hich form s th e A llow ed V alu es. IFE
v a r ia b le s are c r e a te d from a LISP s tr u c tu r e shown in f i g u r e 4,
and a re d e f in e d u s in g a LISP macro, ’ s e t - v a r ia b le * .

Appendix A shows a s e l e c t i o n o f v a r ia b le d e c la r a t io n s .
The s tr u c tu r e keyw ords: D e s c r ip t io n , Type, P r e fa c e , . . . ,
R u leB ase, form th e e x p l i c i t d e c la r a t io n o f th e v a r ia b le s to be
found in th e r u le b a s e s . Use o f th e keywords a l lo w s the
in fe r e n c e en g in e to e s t a b l i s h w h eth er, fo r exam ple, to ap p ly
D e fa u ltV a lu e s , ComputeVaiues or to perform in fe r e n c in g upon
fu r th e r r u le b a se s . Furtherm ore, i t i s p o s s ib le f o r th e r u le s
to d y n a m ica lly a l t e r th e c o n te n ts o f th e s l o t s . T h is i s
p a r t i c u la r ly u s e fu l under c e r t a in c o n d it io n s w hereby, fo r
exam ple, th e A llow ed V alu es o f a v a r ia b le need to be
d y n a m ic a lly a l t e r e d .

411

Appendix J

(d e f s t r u c t v a r ia b le
(D e s c r ip t io n n i l
(Type n i l
(P r e fa c e n i l
(F ixed V alu e n i l
(D isa llo w ed V a lu es n i l
(A llow edV alu es n i l
(D e fa u ltV a lu e s n i l
(ComputeValue n i l
(V alue n i l
(Prompt n i l
(H elp n i l
(S ta tu s n i l
(R uleB ase n i l

F ig u re 4: IFE V a r ia b le LISP s tr u c tu r e

F a c ts
U n lik e IFE v a r ia b le s which c o n ta in unique in fo r m a tio n w ith in a
p r e d e f in e d s tr u c tu r e , f a c t s have common te m p la te s w h ich when
a p p lie d to in d iv id u a l d a ta form new a s s e r t io n s . F a c tu a l
te m p la te s c o n ta in a s s e r t io n v a r ia b le s , $xxxx , in d ic a t in g where
d a ta sh o u ld r e s id e . These a s s e r t io n v a r ia b le s a r e c r e a te d
through a s e r i e s o f p a tte r n m atching r o u t in e s w ith th e
a n te c e d e n ts and cu rren t a s s e r t io n s d u r in g in f e r e n c in g on a
s p e c i f i c r u le . The v a r ia b le s are s to r e d w ith t h e ir
co rresp o n d in g v a lu e in a LISP a - l i s t . C o n s id e r in g th e
geom etry shown in f ig u r e 1, each su r fa c e can be a s s ig n e d a
c a r d in a l (N orth , South , High or Low) d ep en d in g upon th e
p o s i t io n in sp a ce . Assuming th a t an a - l i s t o f d a ta h as been
g en er a ted u s in g LISP fu n c t io n s . . .

(((^ s u r fa c e (5 6)) (^ ca rd in a l N o rth))

((^ s u r fa c e (4 7)) (^ ca rd in a l H ig h)))

. . . w hich can be a p p lie d to a fa c t u a l tem p la te . . .

(C ard in a l fo r s u r fa c e ^ su r fa ce i s ^ c a r d in a l)

g iv e s th e fo l lo w in g a s s e r t io n s

Appendix J

(C ard in a l f o r s u r fa c e (5 6) i s N orth)

- (C ard in a l f o r s u r fa c e (4 7) i s High)

V a r ia b le s and f a c t s a re used s im u lta n e o u s ly w ith in th e r u le
sy n ta x .

R u les
R u les w ith in th e IFE r e s id e in c a te g o r is e d r u le b a se s .
T r a d it io n a l ’ i f . . . t h e n ’ r u le s a re supplem ented by l i s t
q u a n t i f i c a t io n r u le s . The l a t t e r a re used fo r l i s t v a r ia b le s
a s opposed to c l a s s s t r u c tu r e s . A LISP macro ’ rem em ber-ru le’
i s u sed to load th e r u le s in to th e a p p r o p r ia te r u le b a se .
A n tec ed en ts w ith in a r u le a r e , by d e f a u l t , c o n ju n c t iv e ly
com bined, however d is j u n c t iv e r u le s can a ls o be in tro d u ced .
The s t r u c tu r e o f th e r u le s a re shown in f ig u r e s 5 .1 and 5 .2 .
The r u le s u t i l i s e v a r ia b le s and f a c t s to a s s e s s w hether to
e v a lu a te th e co n seq u en ts by e i t h e r m atching th e a n te c e d e n ts
w ith th e f a c t s , w hich r e s id e in an a s s e r t io n s l i s t , or to
v a l id a t e an a n tec ed en t w ith th e v a r ia b le v a lu e . A n teced en ts
have to be s y n t a c t i c a l l y a c c u r a te fo r th e r u le to be p r o ce ssed
c o r r e c t ly . I f th e f i r s t operand in an a n tec ed en t i s a
v a r ia b le th en th e sta te m en t i s checked u s in g a n a tu r a l
lan gu age p a r se r (th e p a r se r i s to be im plem ented a t a la t e r
d a te a s an in t e r f a c e to th e IFE fo r ex p er ie n c ed u s e r s) .
C o n v er se ly , an a n te c e d e n t w hich can be regarded a s a f a c t i s
checked u s in g p a tte r n m atching te ch n iq u e s in tro d u ced by
W inston and Horn [173 . M athem atical e x p r e s s io n s w ith in
a n te c e d e n ts and co n seq u en ts a re e v a lu a te d , p r io r to any
m a n ip u la tio n or e v a lu a t io n , w ith th e a id o f a m athem atical
p a r s e r . R e p r esen tin g d a ta u s in g f a c t s a llo w s th e system to
g e n e r a te many s y n th e s is e d commands from a s i n g l e r u le . In
o rd er to f i r e a r u le a l l a n te c e d e n ts must be c o r r e c t .
Appendix B shows a s e l e c t i o n o f r u le s from v a r io u s r u le b a se s .

I n te r a c t io n o f v a r ia b le s and f a c t s w ith in r u le s
F ig u re 6 shows a r u le co n ta in e d w ith in a know ledge b a se fo r
d ete rm in in g a datum param eter re q u ired fo r th e CFD mesh
g e n e r a t io n cod e. The r u le c o n s i s t s o f th re e a n te c e d e n ts and a
s i n g l e co n seq u en t. A com b in ation o f v a r ia b le and fa c tu a l
a n te c e d e n ts are u sed in c o n ju n c tio n w ith m athem atica l p a rs in g
to e s t a b l i s h w hether th e r u le sh ou ld be f i r e d . The f i r s t
a n te c e d e n t r e q u ir e s th a t th e b o u n d a r y -la y e r -th ic k n e ss be
g r e a te r th? . I n fe r e n c in g w i l l i n i t i a l l y check to s e e i f
th e v a r ia b le b o u n d a r y -la y e r -th ic k n e ss i s in s t a n t ia t e d , i f so
th e n a tu r a l 1" age p a rser w i l l e v a lu a te th e a n te c e d e n t . The
sy stem w i l l prompt th e u se r fo r a v a lu e i f th e v a r ia b le i s
u n in s ta n t ia t e d . The second a n tec ed en t i s r e c o g n ise d as a f a c t
and a s such i s in te r p r e te d by p a tte r n m atching r o u t in e s . The
r o u t in e s tr y to s y m b o lic a lly match each p r e v io u s ly made

413

Appendix J

a s s e r t io n w ith th e a n te c e d e n t , and i f one o r more a s s e r t io n s
a re found to match th en a b in d in g l i s t i s c r e a te d which
c o n ta in s th e a - l i s t v a r ia b le and th e co rresp o n d in g v a lu e . For
exam ple, m atch ing th e secon d a n te c e d e n t in f ig u r e 6 w ith th e
a s s e r t io n ’ minimum r e g io n s i z e = 10’ e s t a b l i s h e s an a - l i s t
c o n s i s t i n g o f ((($MRS 1 0))) . The a - l i s t i s th en used f o r th e
th ir d a n te c e d e n t whereby th e $MRS v a lu e i s r e p la c e d and th e
e v a lu a t io n commences. The r ig h t hand operand, b e in g a
m a th em a tica l e x p r e s s io n , i s e v a lu a te d p r io r to a n te c e d e n t
e v a lu a t io n . A s im ila r p rocedu re i s perform ed f o r th e
co n seq u en t p ro v id ed th a t a l l a n te c e d e n ts a re s a t i s f i e d .

(name (name
(i f (a n te c e d e n t 1) (i f (OR ((a n te ced en t 1)

(a n te c e d e n t 2) (a n te ced en t 2)

(a n te c e d e n t n)) (a n te ced en t n))
(th e n (co n seq u en t 1) (th en (con seq u en t 1)

(con seq u en t 2) (con seq u en t 2)

(co n seq u en t m))) (con seq u en t m))))

F ig u re 5 . 1 : D is ju n c t iv e and C o n ju n ctiv e ’ I f . . . Then’ r u le s

(name (name
(f o r a l l v a r ia b le -n a m e (fo r a l l v a r ia b le -n a m e

(i f (a n te c e d e n t 1) (con seq u en t 1)
(a n te c e d e n t 2) (con seq u en t 2)

(a n te c e d e n t n)) (con seq u en t m)))
(th e n (co n seq u en t 1)

(co n seq u en t 2)

(co n seq u en t m))))

Figure 5.2 List quantification rules

414

Appendix J

(rem em ber-ru le D e lta -r b
’ (d e l t a - r b l

(i f (b o u n d a r y - la y e r -th ic k n e s s > 0)
(minimum r e g io n s i z e - $MRS)
($MHS < (2 * b o u n d a r y - la y e r - th ic k n e s s)))

(th e n (d e l t a - (0 . 1 * $MRS)))))

F ig u re 6: I n te r a c t io n o f v a r ia b le s and f a c t s w ith in IFE r u le s

D a ta - s y n th e s is r u le s do n o t a s s e r t new in fo r m a tio n or
a s s ig n v a lu e s to IFE v a r ia b le s , ra th e r th ey w r it e to an
e x te r n a l package d a ta f i l e th e commands n e c e s s a r y to
c o m p le te ly d e f in e th e problem to be a n a ly se d . The co n seq u en ts
w ith in th e r u le s have a s p e c i f i c s tr u c tu r e r e la t i n g to the
ty p e o f command th ey have to s y n t h e s i s e . E s s e n t i a l l y , th e
fo l lo w in g tem p la te d e s c r ib e s th e s y n th e s is co n seq u en ts

(->Q1 Command-temp l a t e Command Argument-1 . . . A rgum ent-n)

The symbol ->Q1 in d ic a t e s th a t th e con seq u en t i s to d e f in e a
CFD package command w hich i s to be w r it t e n to a p r e d e f in e d
f i l e . Three typ e o f commands can be accommodated w ith in th e
sy stem each o f w hich i s d e f in e d w ith th e Com m and-tem plate.
T able 1 shows an exam ple o f each o f th e co m m an d-tem pla te s
r e la t e d to f ig u r e 2.

Commarid
t e m p la te Command A rg u m en ts -1, . . .

. . . , n Example

7(3 S o lu tn PI Y Y Y N N N S o l u t n (P l , Y,Y,Y,N, N, N)
? [] = F i i n i t VI 0 . 01 F i i n i t (V I } = 0 . 01
? s s Rhol 1 .2 2 5 R h o l= l.2 2 5

Table 1: Example o f com m and-tem plates

P r o g r e ss in g through th e know ledge b a se s a llo w s th e system
to o b ta in in fo rm a tio n r e la t in g to th e a n a ly s i s r e q u ir e d by the
u s e r . T his in fo r m a tio n , when used in c o n ju n c t io n wi t h
su b seq u en t r u le s w i l l a s s e r t fu r th e r f a c t s and i n s t a n t ia t e or
r e in s t a n t i a t e v a r ia b le s . C om pletion o f th e d a ta -g r a b b in g
p r o c e s s I n i t i a t e s th e w r it in g o f th e CFD commands a p p r o p r ia te
to th e req u ired a n a ly s i s . T h is p ro ce ss would g e n e r a te a d a ta
f i l e s im i la r to th a t shown in f ig u r e 2.

415

Appendix J

CONCLUSIONS
E x p e r ien ce u s in g an E xpert System s h e l l h as p r e v io u s ly been
shown to be in a d eq u a te fo r th e developm ent o f an IFE to a CFD
p ack age, Jambunathan e t a l . [1 3] . The d e f i c i e n c i e s were
r e la t e d to l im ite d know ledge r e p r e s e n ta t io n and
d a ta -m a n ip u la tio n f a c i l i t i e s . To a llo w u n lim ite d f l e x i b i l i t y
d u r in g th e developm ent o f th e IFE and th e a b i l i t y to c r e a te
new f a c i l i t i e s a s and when r e q u ir e d , Common LISP (S t e e l e
[1 6]) , h as been u sed to d e v e lo p th e IFE. Furtherm ore,
in fo r m a tio n c a t e g o r i s a t io n has been perform ed fo r n o d a l and
r e g io n a l d a ta w ith th e in h er en t a b i l i t y to c r e a te compound
l i s t s t r u c tu r e s .

M u lt ip le r u le b a ses f o r d a t a - e s t a b l i s h in g and
d a t a - s y n t h e s is r u le s a re in t e g r a l p a r ts o f th e sy stem which
a llo w s th e e s ta b lis h m e n t o f s e l f c o n ta in ed r u le s r e la t in g to
c a t e g o r is e d know ledge, and th u s red u ces th e r u le sca n n in g
r e q u ir e d . R ule sy n ta x u s in g c o n ju n c t iv e and d is j u n c t iv e
a n te c e d e n ts in c o r p o r a te s f a c t u a l and IFE v a r ia b le in fo rm a tio n .
F a c tu a l in fo r m a tio n , e x p re ssed a s a l i s t o f symbol l i s t s , has
a llo w ed command s y n t h e s is u s in g s in g le r u le s , w h ile IFE
v a r ia b le s have u n iq ue d e f i n i t i o n s th a t c o n s tr a in th e u s e r to
e n te r c e r t a in v a lu e s . Furtherm ore, th e system i n i t i a l l y t r i e s
to e v a lu a te a v a r ia b le , through ch eck in g fo r f ix e d v a lu e s , and
e x e c u t in g any a tta c h e d p ro ced u res In d ic a te d w ith in th e
ComputeValue s l o t (s t r u c tu r e keyword) b e fo r e I n fe r e n c in g upon
an a tta c h e d r u le b a se (i f a p p r o p r ia te) p r io r to a sk in g th e
u se r fo r a v a lu e .

As w ith any know ledge b ased sy stem , r u le s a re o n ly f i r e d
i f a l l o f th e a n te c e d e n ts a re proved to be c o r r e c t . P a tte r n
m atch ing te c h n iq u e s have been em ployed fo r a s s e r t io n s or
f a c t u a l a n te c e d e n ts , w hereas th e e v a lu a t io n o f a n te c e d e n ts
th a t c o n ta in v a r ia b le s i s perform ed u s in g a n a tu r a l langu age
p a r se r th a t in t e r p r e t s th e c o n te n ts o f th e c o n d it io n .
M athem atical p a r s in g has been used fo r e s t a b l i s h in g th e r e s u l t
o f an e x p r e s s io n p r io r to any e v a lu a t io n o f a n te c e d e n ts or
co n seq u en ts .

ACKNOWLEDGEMENTS

The work was c a r r ie d ou t in th e Department o f M echanical
E n g in ee r in g u s in g computer f a c i l i t i e s p ro v id ed by th e
P o ly te c h n ic ’ s Computer S e r v ic e s . The r e se a r c h a s s i s t a n t s h ip
h e ld by Mr S L H a rtle i s funded by th e P o ly te c h n ic s and
C o lle g e s Funding C ou n cil (PCFC), under t h e ir s p e c ia l
i n i t i a t i v e , and i s g r a t e f u l ly acknow ledged.

Appendix J

REFERENCES

1. OAKLEY, B ., and OWEN, K. A lv e y . B r i t a i n ' s S t r a t e g i c
Computing I n i t i a t i v e . The MIT P r e s s , London , E ngland ,
1989.

2 . BUNDY, A ., SHARPE, B. , USCHOLD, M. , and HARDING, N.
A lv e y IKBS r e s e a r c h Theme Workshop: I n t e l l i g e n t F ront
Ends, C osen er’ s H ouse, Abingdon, E ngland, 2 6 -2 7 Septem ber
1983, IEE. S tev e n a g e , H e r t s . , E ngland, 1984

3* BUNDY, A ., (E d .) . A lv e y IKBS R esearch Theme Workshop:
I n t e l l i g e n t F ront Ends 2 , U n iv e r s ity o f S u sse x , UK, 10-11
J u ly 1984, IEE, H itc h in , H e r t s . , UK, 1984.

4 . BENNETT, J . S . , and ENGLEMORE, R. ‘SACON: A
k now ledge-B ased C o n su lta n t f o r S tr u c tu r a l A n a l y s i s . ’ In:
P r o c e e d in g s o f th e s i x t h I n t e r n a t i o n a l J o i n t C o n fe re n c e
on A r t i f i c i a l I n t e l l i g e n c e , Tokyo, Japan, 4 7 -4 9 , 1979.

5 . TANGEN, K ., and WRETLING, U. I n t e l l i g e n t F ront Ends to
N um erical S im u la tio n Program s. In: Bramer, M.A. (e d .) ,
R esea rc h and Developm ent in E x p er t S y s tem s I I I , 2 5 4 -2 6 5 ,
1986.

6 . PANG, G.K.H. An i n t e l l i g e n t fr o n t end fo r a c o n tr o l
sy stem d e s ig n and a n a ly s i s package. P r o c e e d in g s o f th e
f o u r t h IFAC Computer A ided D esig n in C o n tr o l S y s te m s
symposium, B e i j in g , China, 2 3 -2 5 A ugust, 1988, 3 2 9 -3 3 4 .

7 . CLARKE. J . A . , RUTHERFORD, J . H . , and MacRANDAL, D.M. An
i n t e l l i g e n t fr o n t -e n d fo r b u ild in g en ergy s im u la t io n .
Working c o n fe r e n c e o f u s e r s o f s i m u l a t i o n h ardw are .
O stend 6 -8 Septem ber 1988, 165-171 .

8 . FINK, R . K. , CALLOW, R . A . , LARSON, T . K . , and RANSOM, V.H.
ATHENA AIDE: An E x p er t S y s tem f o r ATHENA c o d e in p u t
model p r e p a r a t i o n . Idaho N a tio n a l E n g in eer in g L ab o ra to ry
EG and G Idaho I n c . , Idaho F a l l s (USA), 7p, 1987.

9 . TONG, S . S . D esig n o f aerodynam ic b o d ie s u s in g A r t i f i c i a l
I n te l l ig e n c e /E x p e r t system tech n iq u e . AIAA p a p e r
8 5 -0 1 1 2 , American I n s t i t u t e o f A e r o n a u t ic s and
A s t r o n a u t i c s , A erospace S c ie n c e s M eeting , 23rd , Reno, NV,
January 1 4 -1 7 , 1985.

10. USCHOLD, M ., HARDING, N . , MUETZELFELDT, R . , and BUNDY, A.
An I n t e l l i g e n t F ront End f o r E c o lo g ic a l M o d e l l in g .
R esearch paper 223 . Department o f A r t i f i c i a l
I n t e l l i g e n c e , Edinburgh U n iv e r s ity , Edinburgh, UK, 1984.

j
■|

Appendix J

11. VOGEL,. A A. A K now ledge-B ased approach to a u to m a ted f l o w
f i e l d zo n in g f o r C om puta tiona l F lu id Dynamics. PhD
T h e s is , S ta n fo rd U n iv e r s i ty , 1989.

18. HARTLE, S.L. , JAMBUNATHAN, K. , LAI, E and BUTTON, B.L.
A spect r a t io dependent f i n i t e volume g r id g e n e r a t io n . In
p r e p a r a t io n .

418

12. JAMBUNATHAN, K ., LAI, E . , HARTLE, S . L . , and BUTTON, B.L.
Developm ent o f an I n t e l l i g e n t Front End f o r a
C om putational F lu id Dynamics Package. A r t i f i c i a l ^
I n t e l l i g e n c e i n E n g in e e r in g , Volume 6 No 1, S p e c i a l
I s s u e : I n t e l l i g e n t F ront Ends, ed. C la rk e , J . A . , 2 7 -3 5 ,
1991.

13. JAMBUNATHAN, K. , LAI, E. , HARTLE, S.L. , and BUTTON, B.L.
Developm ent o f an I n t e l l i g e n t Front End: An E x p e r ien ce .
E n g in ee r in g A p p l i c a t i o n s o f A r t i f i c i a l I n t e l l i g e n c e ,
Volume 4, No 5 , 3 8 5 -3 9 2 , 1991.

14. MEHTA, U.B. , and KUTLER, P. C om puta tiona l A erodyn am ics
and A r t i f i c i a l I n t e l l i g e n c e . N a tio n a l A e r o n a u tic s and
Space A d m in is tr a tio n , NASA T ech n ica l Memorandum 85994 ,
1984.

15. MEHTA, U.B. Knowledge based system s fo r co m p u ta tio n a l
aerodynam ics and f l u i d dynam ics. In: K ow alik , J . S . (ed .)
Knowledge Based P rob lem S o lv in g , 183 -212 , 1986.

16. STEELE, G . L . , Jr . COMMON LISP: The la n g u a g e . D i g i t a l
P r e s s , 1990.

17. WINSTON, P . H . , and HORN, B.K.P. LISP. A d d ison -W esley 4
P u b lish in g Company, 1989.

A

I

■h -■

Appendix J

APPENDIX A: SELECTION OF IFE VARIABLE DECLARATIONS

(s e t - v a r i a b l e w h o le - f ie ld - v a r ia b le s
:Type ’ l i s t
: V alue ' (P I))

(s e t - v a r i a b le s la b - w is e - v a r ia b le s
:Type ’ l i s t)

(s e t - v a r i a b l e d e l t a
' :Type ’ r e a l

:R u leB ase t)

(s e t - v a r i a b l e a x is - 1
:Type ’ T ext
:A llow ed V alu es ’ (unused x c ir c u m fe r e n t ia l))

(s e t - v a r i a b l e v is c o s ity - th e r m a l-d e p e n d e n c e
: Type ’ t e x t
•.A llow edV alues ’ (r e q u ir e d n o t-r e q u ir e d) ,
:D e fa u ltV a lu e ’ n o t-r e q u ir e d
: P r e fa c e ’ (I f you w ish to s im u la te th e change o f v i s c o s i t y

w ith in th e domain dep en din g upon th e c a lc u la t e d
tem p era tu res th en e n te r <required> a t th e
p ro m p t.)

:Prompt " V is c o s ity therm al dependence re q u ired or
n o t-r e q u ir e d ? "

:R u leB ase t)

(s e t - v a r i a b l e n u m b e r -o f- in le t s
: Type ’ in t e g e r
.•A llow edV alues ’ (> 0)
:D e fa u ltV a lu e 1
:Prompt "How many i n l e t s a re w ith in th e domain ? ")

(s e t - v a r i a b l e f lo w -reg im e
: Type ’ T ext
:A llow ed V alu es ’ (l aminar tu r b u le n t)
:D e fa u ltV a lu e ’ Laminar
:Prompt “I s th e f l ow to be lam inar or tu rb u le n t ? ")

(s e t - v a r ia b le a n a l y s i s - t i t l e
:Type ’ s t r in g
:P r e fa c e ’ (The a n a ly s is t i t l e cannot be more than 40

c h a r a c te r s lo n g . The main purpose o f t h i s i s
to be a b le to id e n t i f y th e a n a l y s i s .)

: Prompt “What i s the a n a ly s i s t i t l e ? ")

419

Appendix J

APPENDIX B: SELECTION OF IFE RULES FROM VARIOUS RULE BASES

(rem em ber-ru le BC-RB
’ ((i f (Boundary name fo r i n l e t Snumber Snodes i s $name)

(a x ia l i n l e t v e l o c i t y fo r $name i s u n in s t a n t ia t e d))
(th e n (ask a x ia l i n l e t v e l o c i t y fo r Sname = r e a l))))

(rem em ber-ru le F luid-R B
’ ((i f (OR ((f lu id - c o m p r e s s ib i l i t y i s c o m p r ess ib le)

(th erm a l-req u irem en ts i s iso th e r m a l)
(d e n s i ty i s u n in s ta n t ia t e d))

((th erm a l-req u irem en ts i s therm al)
(d e n s ity -th e r m a l-d e p e n d e n c e i s - n o t r e q u i r e d))))

(th e n (a sk d e n s i t y))))

(rem em ber-ru le F luid-R B
’ ((i f (th e rm a l-r eq u ire m en ts i s th erm al)

(d e n s ity -th e r m a l-d e p e n d e n c e i s e n th a lp y))
(th e n (d e n s ity -e q u a t io n A llow ed V alu es ("A+BH" ”1/ (A+BH)")))))

(rem em ber-ru le F luid-R B
’ ((i f (th erm a l-req u irem en ts i s th erm al)

(d e n s ity -th e r m a l-d e p e n d e n c e i s en th a lp y)
(d e n s ity -e q u a t io n i s "1/ (A+BH)"))

(th e n (a sk r h o la)
(a sk r h o l b))))

(rem em ber-ru le Grid-RB
' ((i f (A s p e c t -r a t io > 0) *

(D e l t a > 0))
(th en (run g r i d))))

(rem em ber-rule Gl-RB
’ (g r i d l

(i f (a n a l y s i s - t i t l e i s in s t a n t ia t e d))
(th e n (->Q1 ? [] t e x t a n a l y s i s - t i t l e))))

(rem em ber-rule G3-RB
’ (c a r t e s

(i f (c o o r d in a te s are c y l i n d r i c a l))
(th e n (->Q1 ?= c a r te s f))))

(rem em ber-rule G7-RB
’ (s la b -w is e -v a r ia b le s -> Q l

(f o r a l l s la b -* ” s e - v a r ia b le s
(—>Q1 ?U s o lu tn $ v a lu e y y n n n n)) J)

420

