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A b stra ct

A new parallel detection algorithm is devised based on the automatic construction 

and execution of Petri nets for sequential source programs. The algorithm forms 
part of a hybrid data-flow and MIMD compiler written in POP-11 and accepts 

Pascal-S source code.

During the compilation process a Petri net model of the input program is con­

structed. Execution of the resulting net generates a multi-layered code to reveal 

the full parallelism inherent in the source program. Each layer consists of several in­
dependent parallel statements, which are statically allocated to available processing 

nodes. The allocator optimizes the communication overhead by using a novel static 
load balancing technique. Both medium and fine grain parallelism are exploited. 

Fine grain parallelism is implemented by introducing the co-processor concept.

The implementation offers several other novel features including table-driven anal­

ysers (potentially adaptable for different source languages), an algorithm for ma­

nipulating symbol tables, and combining parallelism detection and scheduling to 

eliminate the multiple assignment problem.

Full description of all algorithms including many examples is provided.
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C h ap ter  1

In tro d u ctio n

1.1 O verview

In an attempt to reduce program execution time, much attention has been given to 

the processing in parallel of various program components. These components range 

from the level of subroutines to the level of micro instructions [Gonzalez 71].

The need for faster computers in solving problems in such diverse applications as 

weather forecasting and natural language processing has been increasingly apparent 

[Treleaven 79].

By definition, parallel processing is the simultaneous processing of two (or more) 

portions of the same program by two (or more) processing units [Baer 73]. Among 
the latter, I/O  processors are excluded; i.e., the overlapping of I/O  operations 

with arithmetic or logical instructions is not considered to be parallel processing. 

Furthermore, parallel processing should not be confused with multi-programming, 

which is the time and resource sharing of a computer system by a number of pro­

grams resident simultaneously in primary memory.
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Technological developments have promoted significant improvements in computer 

speed, but these advances will approach physical limitations, beyond which im­

provements in computer architecture and compilation technology are required to 

solve larger problems [Desrochers 86]. These limitations can be broadly grouped 

into two areas [Cytron 78] :

1. The physical properties of the devices used to construct the components under 

consideration.

2. The architectural characteristics of the collected components within a system.

Since the fundamental limitations of electron flow, gate switching and the overall 

characteristics of the traditional von Neumann architecture necessarily restrict the 

ultimate speed attainable in executing large programs serially, therefore, parallel 

processing seems to be the most promising way forward.

Flynn [Flynn 66] outlined four classes for the organisation of high speed computers. 
These four classes are based upon the nature of the instruction and data streams 

used. These two streams are classified according to their degree of multiplicity, 

either single or multiple. Thus there are four possible classifications;

1. single instruction single data (SISD)

2. single instruction multiple data (SIMD)

3. multiple instruction single data (MISD)

4. multiple instruction multiple data (MIMD)

The first organisation is the familiar von Neumann architecture which consists of 

a processor and some Random Access Memory (RAM) where the instructions and 

data reside [Ibbett 82]. The second and third class although very powerful in special
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applications, e.g. vector processors in class two, they can not be regarded as general 

purpose computers.

Finally, the last class encompasses a diverse group of computers which are radically 
different in their behaviour and the style of their programming, but they all share 

the principle that multiple instructions and data are processed simultaneously on 
the Processing Units (PU) of the system when possible. For example, ALICE graph 

reduction machine [Darlington 81], the Manchester dataflow machine [Gurd 84] and 

the Alliant FX series [Lackey 86] are all MIMD machines of different architecture.

This new generation of computers poses a number of challenging questions to com­

puter scientists and the computer industry. Are existing imperative languages, 

which were designed for sequential machines, suitable for the new computing en­

vironments? The answer is perhaps no. As a result, research has concentrated 

on adapting existing languages for new computers by adding extensions to them 

[Brinch 75,Meakawa 76]. Such extended languages have been particularly suitable 
for networked and loosely-coupled systems in which each element is essentially a 

von Neumann machine, e.g. parallel Pascal.

Another area of research has concentrated on new programming languages specially 

designed for parallel computers; Occam [Ericson 87] and SISAL [McGraw 83] are 

two such languages. Occam being tailored for transputer networks and SISAL for 

data flow machines.

Insights into the nature of parallel processes can be gained from the study of formal 

models on the one hand and from the detection of potential parallelism in existing 
sequential programs on the other. These provide a sound basis for the develop­

ment and evaluation of languages and architectures intended for parallel processing 

[Volansky 70]. Furthermore, it is economically important to use existing software 

as much as possible, although in some cases redesign of existing algorithms to new 

parallel ones may be inevitable.
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Another question raised is: are programmers to be responsible for the task of effi­

ciently using the many processors on these parallel systems and indicating the appro­

priate parallelism in the software? Explicit parallelism, has a number of drawbacks. 
Firstly, as stated by Maekawa [Meakawa 76] “if GOTO statements are harmful, then 

the construction of parallel programs by users would be more dangerous” . Human 

nature makes the task of verification of parallel processing programs much more 

difficult. Automatic detection of parallelism by compilers is thus more desirable 

for constructing more reliable programs and reducing programmers’ workloads and 

hence increasing their productivity.

Secondly, without careful analysis it is likely that the user will fail to take full 

advantage of all the parallelism available in the problem. High level parallelism 

at the process level is easily detectable and leads to concurrent processes being 
executed in parallel. However, low level parallelism at the instruction level is more 

tedious to detect and is likely to be ignored [Barrett 85]. It is most unlikely that 

the explicit approach will allow users to take full advantage of systems with many 

hundreds or thousands of processors.

Hence automatic support of parallelism has grown rapidly and led to the creation 

of D ata Flow machines and their associated compilers where parallelism at the 
instruction level is supported automatically. Furthermore, parallelizing compilers 

allowing detection of coarser grain parallelism have been developed for other types 

of MIMD computers [Kuck 86].

1.2 A rchitectures

MIMD machines can broadly be classified into four groups [Duckworth 84]:

1. Demand driven

2. Data driven
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3. Control driven

4. Hybrid, a combination of the above.

Types 2 and 3 are of particular interest to our discussion and will be studied in 

more detail in separate sections.

Demand driven or Reduction systems cause activity to be triggered by the de­

manding of a result, hence the name. These demands cause further demands for 

results and eventually, at some point, the demands find actual values rather than 

more subprograms. These results are then combined operationally providing results 

which are the values required earlier on. This process eventually provides the overall 

program results. Demand driven systems are graph based and the demands pass 

down the graph until they reach nodes that have the required data, at which points 
the results start moving back upwards through the graph. This approach can be 

viewed to be a “top-down” method. Normally this method leads to a lazy eval­

uation strategy, the only results that are calculated being those that are actually 

needed.

Although demand driven systems are not particularly suitable for arithmetic ex­
pression calculations, in contrast to data flow models [Allsopp 86], they have the 

advantage of having fewer race condition possibilities. This type of system proved 

to be very useful in the implementation of functional and logic languages. For 

example ALICE [Darlington 81] being developed at Imperial College supports the 

parallel functional language PARLOG [Clark 86].

1.2 .1  D a ta  D riven  S ystem s

In this group of parallel processors it is the sequence of data, not instructions, 

that controls the execution of the machine. In a data flow architecture, operations 

on data occur when the operands themselves are ready to be operated on. This
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is in contrast to von Neumann architecture in which the sequence of instructions 

determines when an operation is to be performed. Thus, the data driven systems 

lack program counters or sequencing facilities.

Furthermore, in a data flow machine there is no global memory in which values 

can be held for multiple access. Because of this, identifiers must be treated in a 
different manner to those on conventional computers. Results must be passed to all 

the instruction nodes which require that result.

In a similar way to demand driven systems, any particular computation is repre­

sented in a graphical way by operations as nodes, and data dependencies as arcs. 

For example, consider the expression :

( ( X * Z ) - ( 4 * 5 ) ) /X

Figure 1.1 is the data flow representation of this expression which shows the flow 

of data to each node.

Clearly, the availability of data for operation£*’ depends on the previous statements. 

The value of ‘X’ is needed in two instances and hence the operation DUP is used to 
duplicate the value. The only condition needed to perform the operation of a node 

(firing rule) is the availability of all data for that node.

The abstract form of data flow programs, however, does not provide a good mech­
anism for physical implementation. For this reason, most data flow architectures 

utilise packaged units that contain the operation to be performed, the data to be 

used as operands, and the destination process for the result. These packages are 

sometimes referred to as cells and appear as shown in figure 1.2.

The organisation of a typical data flow machine is depicted in figure 1.3 and is often 
referred to as circular pipeline.

The instruction execution unit executes the operation specified by a node on its as-
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Figure 1.3: Functional Blocks of a DF Machine

sociated input data. The generated result is transmitted by the result transmission 

network which is then matched to the cells waiting for that result. The instruc­

tion transmission network checks the availability of “ready for execution cells” and 

allocates them to the executing units.

L im itations:

Despite its power, the pure data flow sj'stem suffers from a number of drawbacks 

which makes a hybrid between data flow and other organizations desirable. How­

ever, data flow graphs which are purposely designed for pure data flow machines 

may not be suitable for hybrid machines.

1. The absence of storage (in the form of variables) in data flow requires data 

items to be copied logically. This causes excessive copying particularly when 

large data structures are used [Srini 86]. For example, if the value X is to be 
stored in the i’th element of an array, then conceptually a new structure has 

to be created with the value for the i’th element changed and the rest of the 

elements having the same set of values as the original array. Clearly a shared 

memory MIMD machine does not suffer in this way.

J
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2. A major requirement of most programming languages is to support iterative 

loop constructs and recursive procedure calls. Lack of variable storage does 
not allow any easy implementation of these language constructs. In static data 

flow machines the nodes of the graph are created at compile time and are not 

changed during execution. This leads to a problem in the implementation of 

reentrant code. Thus, recursive procedure calls are not possible in static data 

flow machines.

3. To preserve the value of variables generated by the different invocations of 
a procedure there is a different class of data flow machines called dynamic 

data flow machines that generates copies of nodes and subgraphs at run time 
(dynamic code copying). This method has the obvious advantage of sup­

porting reentrant code and specially recursive procedure calls but has the 

overhead of creating nodes at run time which can be expensive both in terms 

of hardware and execution time. There is another method called dynamic 

code labelling [Gurd 85] which labels the tokens flowing through the system. 

The node execution rules are extended to allow operations to proceed only if 

operand tokens with the same label values are present.

4. In data flow machines the job of matching data to nodes requiring them is 

carried out by a functional unit called the matching store. A symptom called 

starvation can arise if the number of processing units is increased beyond a 

certain limit. This is due to the limitations of matching store not being able 
to generate enough matched cells to keep the majority of the processing units 

busy. On the other hand, if the number of processing units is not large enough 

then there can be a race condition whereby a pool of instructions is ready for 

execution but there is not enough processing resource. This means a delicate 

balancing act has to be done depending on the amount of parallelism present 

in the particular application.

Furthermore, a total lack of control flow in the execution of programs in data flow 

machines creates a situation where debugging and tracing of program execution in
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the development of a program becomes very difficult, if not impossible.

1.2 .2  C ontrol D riven  sy stem s

In contrast to data flow machines there are other classes of MIMD machines that are 

not based on the concept of data flow control. Figure 1.4 depicts the general form 

of this class of multiprocessors. Cray X-MP is an example of a computer belonging 

to this group.

Here each processing node is typically a von Neumann machine which executes a set 
of instructions allocated to it either dynamically at run time or statically at compile 
time. However, each node is allowed to read or write to a global memory where 

common data are kept. In order to preserve the data dependency of a program, a 

number of synchronisation primitives are used.

In Cedar multiprocessor system [Fang 87], each synchronisation variable has two 

fields: Key and Data, to store synchronisation information and variable value re­
spectively. The format of a Cedar synchronisation instruction is given by :

{X; test on X .key, operation on X.key, operation on X.data]

Here X is the synchronisation variable name. The t e s t  on X.key specifies the 

condition to be tested between the key fields of X and a value provided by the 

instruction. Operations on X.key include increment, decrement, add, fetch, store, 

fetch and increment, fetch and decrement and No-op. Operations on X .data include 
fetch, store and no action. The whole synchronisation instruction is executed in each 

shared memory module and is indivisible.

Cedar synchronisation primitives are very effective in handling low level synchroni­

sations required in numerical computations.
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Memory
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Figure 1.4: Organisation of a processor array multiprocessor

Some of the problems encountered in data flow machines are not present here, 

however, there is a very large synchronisation overhead that may prove to be critical 

in cases where there is a large amount of fine to medium grain parallelism present. 
In general in this type of machine where all the synchronisation is carried out by 

software, in some cases the overhead becomes unacceptable particularly for fine 

grain parallelism. Addition of some hardware support for reducing this overhead is 

highly desirable.

A major drawback of these systems is that the complexity of the interconnection 
network increases very rapidly with the number of processors. Hence the cost 

limitation of adding more processors to the system hinders the construction of large 

multiprocessor systems of this type.
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1.3 Languages

To achieve parallelism, algorithms and languages for parallel hardware have devel­

oped in a variety of ways. These developments have included new languages, numer­
ical methods and a variety of schemes to analyse programs to exploit simultaneous 

processing, the latter including both hardware and software devices [Kuck 72].

Utilisation of user defined parallelism (explicit parallelism ) in imperative language 

programs necessitates the introduction of special constructs to represent the new 

dimension of parallel computing. The basic concept behind these extensions is that 
of FORK-JOIN, SPLIT-ASSEM BLE  or START-EALT  primitives [Al-Dabass 87]. 

Equivalent extensions in higher level languages include;

• DOTOGETHERE- HOLD

• FORK - JOIN - TERMINATE

• PARBEGIN - PAREND

All of these work on a local block basis.

The hazards of explicit parallelism have already been discussed but there exist 
situations where inherent parallelism in a piece of code cannot be revealed by any 

other means. Consider the following Pascal code :

fo r  I  :s  1 to  10 do 

begin

i f  A ( I )  = 0 
then  

begin 

J  — I ; 

goto LABEL
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end;

end;
LABEL :

which represents a sequential process looking for the first null element in an array. 

Although the last action is purely parallel, no automatic analysis can detect the 

parallelism inherent in the code. Thus, language extensions described earlier can 

enhance the power of an automatic analyser.

C om pilers w ith  Parallelism  D etection :

A different technique for identifying the parallel paths in ordinary sequential pro­

grams is the automatic parallelism detection by a compiler. Generally speaking, all 
of the existing methods are based on some sort of analysis of the various dependen­

cies in the program. These dependencies can be any of flow, data and data output 

dependencies. A further dependency is called data anti-dependence [Wolfe 82].

If si and s2 represent some statements then s2 is data flow dependent on s i if si 

can compute a value and store it into a variable x; and s2 might use the value of 

x later on in program execution. S2 is data anti-dependent on s i if si uses the 

value of a variable x, and s2 might store a new value into x later on. S2 is data 

output-dependent on si if si stores a value in a variable x and s2 might store a new 

value in x later on.

Data anti-dependence and data output-dependence are artificial dependencies. They 

appear in standard computer programming languages, but in some functional and 

logic languages these kind of data dependencies can not happen, due to rules gov­

erning the construction of programs in these languages.

Some of the techniques in parallelism-detection entail the construction of some sort 

of data dependence graphs (DAGs) based on the various dependencies discussed
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above [Kuck 82]. One of the better known of such systems is PARAFRASE devel­

oped at the University of Illinois, which is claimed to be a very powerful system in 

detecting the parallelism in Fortran programs; but even it has difficulty in detecting 

all the parallelism in a program as shown.

S p ecia l Languages:

The first step towards the creation of new programming languages to enhance 

the power of multiprocessing environments was taken as early as 1962. Brown 

[Brown 62] proposed a method ‘free, at least above a certain minimal level, from 

the kind of over specification of sequence constraints that characterise present pro­

gramming’. His ideas, together with the advent of non control-based architectures, 

led to the development of a new class of programming languages, both functional 

and logical, based on the single assignment rules. In conventional languages reuse 

of variables is very common, mainly to save memory space. But if a variable is used 

in several independent loops as a control variable then it would be difficult to detect 
that all these loops can be executed in parallel. With this sort of problem in mind, 

languages that aid rather than hinder parallelism detection were designed. A few 

examples of the more recent languages in this category will be discussed fully in the 

next chapter. However, features seen as desirable in this class of language can be 

listed as [Perrott 86] :

• No inherent sequentiality
Statements can be executed in any order without affecting the result of pro­

gram subject to data dependencies.

• Clean semantics

All functions are pure functions, and these can have many separate invocations 

running in parallel.
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• No side effects
The prohibition of reassignment, and hence the lack of variables, means that 
each variable is in fact a name for a value and that value can not be altered 
anywhere in the program. This prevents the side effects that are prevalent in 

imperative languages.

• Increased locality
This is of great use in systems that have a very large number of processors, as 

the decreased need for global communication makes it much easier to identify 
independent sections, and to run these sections on different processors without 

greatly increasing the communication overhead.

Some of these languages, e.g. Lucid [Ashcroft 77,Ashcroft 85], also facilitate easy 

program-proving and formal program verification.

1.4 M odels

The design of a system, software or hardware, essentially consists of building a model 

of the system which is then implemented. This model can be analysed to derive im­
portant system characteristics and detect design errors before any implementation 

is attempted. This implies that the form of design implementation is of primary im­

portance in system design [Varadharajan 88]. A number of representation schemes 

for software systems have been proposed over the last decade, ranging from very 

graphical to highly analytical forms; e. g., flow charts, structured diagrams, data 

flow graphs and Petri nets. Some of these methods have dynamic characteristics 
and can therefore model the dynamic behaviour of a program, e. g. data flow graphs 

and Petri nets, while others are viewed as static modelling tools.

For automatic parallelism detection, however, the reverse of the design process 

needs to be carried out. Given a program, a model representing it is built, by say
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a compiler, and then analysed to detect the parallel paths in the program.

1.4 .1  D F D s and D F G s

Data flow graphs are extensively used for modelling programs for data flow ma­

chines. The aim here is to model computational processes in such a way that they 

closely resemble how computers actually operate [Miller 73]. As there is no control 

mechanism in data flow machines other than flow of data, data flow graphs that 

essentially show flow of data are a very suitable choice.

Conditional instructions, however, present a difficulty which requires special nodes 
to implement controlled branching. The conditional jump of a control flow program 

is represented in a data flow graph by BRANCH nodes. The most common form is 

the one depicted in figure 1.5;

value

control

false true

Figure 1.5: A Branch Node

A copy of the token absorbed from the value port is placed on the true or on the 
false output arc, depending on the value of the control token.

Figure 1.6 illustrates problems that may arise when the graph contains a cycle 

[Veen 86] associated with the modelling of iterative and recursive constructs. The 
simple graph on the left will deadlock unless it is possible to initialise the graph 

with a token on the feedback arc. The node in the graph on the right will never stop 
firing once started. To prevent these problems special precautions must be taken.
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(b)(a)

Figure 1.6: Showing ‘deadlock’ and an ‘infinite loop’ in data flow graphs

Thus, this maximum concurrency can lead to indeterministic behaviour unless spe­
cial measures are taken. Reference [Veen 86] gives full coverage of these problems. 
Figure 1.7 illustrates the correct way of showing the while loop represented by the 

following piece of code:

w hile f (x)  do 

begin

x := g(x);  

y := g(y);  
end;

Subgraph g is an example of a reentrant graph; its nodes can fire repeatedly while 

the strict enabling rules ensure that before subgraph g is fired the compound branch 

nodes cannot fire.

In an ordinary program there may be a sequence of I/O  statements. For example 

a number of write statements may simply be outputting a series of messages one 

after the other according to their sequence in the program. In this situation there 

is no data dependency, but only control dependency determines the sequence of 
execution. DFGs are not able to show this sort of dependency.
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Key:
Duplicator = 

P rocessnew xnew y
Branch

□

Figure 1.7: The Correct Way of Showing a Loop Construct

1.4 .2  P etr i N e ts

A Petri net is an abstract, formal model of information flow [Peterson 77] which 

allows one to bring a high degree of mathematical formalism to the modelling 

process, and hence to the analysis of systems which exhibit parallelism. Systems 

best suited to Petri net modelling are those with very many interacting components 
[Peterson 79]. A full treatment of Petri net theory is given in appendix A.

A marked Petri net graph models the static properties of a system, much as a flow 

chart represents the static properties of a system, be it hardware or software. In 

addition, a marked Petri net also shows the dynamic behaviour of a system as a 

result of its execution.

Marked Petri nets are able to model all the common constructs found in program­

ming languages together with any sequence and data dependencies in any program. 
Figures 1.8 and 1.9 show equivalent diagrams to DF graphs of figure 1.6 (a) and



19

1.7.

The graph of figure 1.8 will never get into a position of deadlock. As soon as a 

token is put on the place 1 (p i) the transition can fire and be ready for the next 
reentrancy, since the token removed by execution of the transition is immediately 

replaced by the transition itself. The situation depicted in figure 1.6 (b) simply 

does not arise.

The while loop depicted by figure 1.9 is easier to understand compared to its DFG 

model and would closely match the way that a computer executes it.

Petri nets are primarily chosen as our modelling technique for extracting parallelism 

in programs since they satisfy all the features that are required from a scientific 

modelling tool. These features are listed [Varadharajan 88] as:

• The ability to describe a system at various levels of detail.

• Their graphical and precise nature.

• Their structural generality.

• The existence of analytical tools for determining and verifying the dynamic 

behaviour of systems from their structure.

• Their ability to represent concurrency.

1.5 Com pilers

The design and implementation of compilers and the processes involved is a very 

well known subject. However, there still remains a number of key questions to be 

answered when such a problem as parallelism detection is to be tackled.
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P1

p2

Figure 1.8: A Loop Without Deadlock

Figure 1.9: A WHILE Loop
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W ith the advent of powerful compiler-compilers such as YACC [Johnson 86] it 
is possible to write a compiler for a given language fairly rapidly. The use of 
such compiler writing tools however, limits the flexibility of the compiler produced.

For example, for parallelizing/optimising compilers there are a number of extra 

processes that need to be embedded in the compilation process, such as modelling 

of the source code. To incorporate these extra processes in the structure of the 

program that these compiler-compilers create can be a difficult and time consuming 

process. Writing a compiler from scratch could also be very expensive, specially if 

the aim is to generate compilers for different languages quickly and frequently.

These problems lead to the formulation of a new concept in compiler technology 

that is fundamental to the compiler being discussed in this thesis and will be argued 

through in the coming chapters. Briefly, the concept is based on the use of table 

driven lexical and syntax analysis methods, where users supply the tables appropri­

ate to any language using compiler writing tools like YACC [Al-Dabass 86,Al-Dabass 86].
This can be made easier by interfacing a table generator to the compiler system. .J

' 1
"ff

The packaged system can be viewed as a general purpose compiler, GPC, that allows f

a compiler writer to quickly configure the system for compiling different languages. Tf
Presently, only the front end of the compiler (lexical and syntax analysers) are tl

general purpose. The extra phases of an optimising/parallelizing compiler normally 

lie between the tree generation and translation phase and are treated separately.

After the early stages of compilation, a tree structure is normally used to represent 

the source code. Tree construction involves a significant amount of list processing, 

as trees are invariably modelled as a list of lists. Modelling of the source program 

from the syntax tree and the subsequent parallelism detection involves further list 

processing activities. This calls for the use of an implementation language that 
is powerful in list processing and allows easy use of AI techniques in parallelism 

detection algorithms. Further requirements of a compiler implementation language 

could be noted as follows [Nakhaee 85]; I
4
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• The implementation language and the language being implemented must have 

similar characteristics even if it is at a lower level. This point is true particu­

larly for implementing interpreters.

• Allowing recursive calls, as many actions of a compiler can be programmed 

more elegantly using this feature.

• Advanced list processing facilities, specially if a lot of matching and use of AI 

techniques is envisaged in a specialised compiler.

• String handling facilities.

• Availability of a rich built-in library of functions and procedures.

• It is also useful if the implementation language supports structured program­

ming, e.g. Pascal.

All of the above points are desirable but not essential.

POP-11, an AI language, is particularly suitable for prototyping and is rich in 
list processing facilities, and was found to fit the project requirements very well 

[Laventhol 87,Shadbolt 87,Sloman 86]. The use of POP-11 makes it further possible 

to devise and use new techniques in the storage and access of data in the symbol 

table. The new technique has a number of advantages over existing methods and is 

discussed in full in chapter 3.

1.6 O bjectives

MINNIE (Multi Interface Node Network for Iterative Environment) is a prototype 

parallel processing machine which was intended to demonstrate certain principles, 

namely the associative addressing technique for data communication among a large 
number of nodes in a parallel system.
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In parallel with the design and construction of hardware (MINNIE), work was also 

started on the creation of a Software Development Tool (SDT) for it. The software 

development tool is primarily to assist in the testing of MINNIE and also for high­
lighting limitations in the current version and suggesting enhancements that can be 

made in future versions of the machine and their SDT.

It was found desirable to develop a General Purpose Compiler (GPC) for an ordi­

nary imperative language like Pascal-S, rather than for a data flow type language 

for the reasons given in the preceding sections.

The developed GPC must carry out the usual compilation processes, e.g. lexical 

analysis and syntax analysis, and also create a graphical model of the source code 

using Petri nets. The net is then executed in order to discover the possible parallel 

paths in the program at any given time.

Having established the parallel paths in the source code, the compiler must then 

allocate them to different nodes inserting the necessary code for communication 
and synchronisation. Translation of the source code is into native 6809 assembly 

language with the embedded instructions for data communications.

As the proposed system can have a large number of processing units it was decided 

to support fine grain parallelism as well, in cases where an expression could be 

divided into a number of sub-expressions and there are more processing elements 

in the system than parallel paths at a higher level. Considerable effort was used 

in finding a method for optimum decomposition of a long expression; with due 
consideration to the machine architecture the concept of co-processors was devised 

for implementing fine grain parallelism.

Chapter 2 contains a review of current research in compiler techniques and languages 

for parallel processing architectures together with associated aspects of modelling 

and automatic parallelism detection techniques. Chapter 3 puts forward a new 

combination of concepts to devise a compiler for parallel systems. The next chapter
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gives a detailed exposition of the steps taken in the design and realisation of this 

compiler. Chapter 5 and 6 present results and their interpretation together with 
conclusions made and recommendations.
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C h a p ter  2 

C urren t R esearch

2.1 O verview

The process of devising new compilers for parallel processing systems is unlikely to 

yield successful results without a thorough knowledge of current and past attempts 

in the field. Three areas of research are seen to be major contributors to new 

development;

• the architecture of the machines which execute the object code generated by 

the compiler.

• languages that help the user to explicitly specify the parts of the program 

that are suitable for parallel processing.

• techniques for parallelism detection embedded in special software processors 

which remove the burden from the programmer.

The work reported here spans projects that are either currently in progress, or have 

made significant contributions to parallel processing.
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2.2 A rchitectures

Computer architecture has been dominated by the Data Flow concept over the past 

decade. Data Flow (DF) machines may be broadly divided into two general types, 

static and dynamic architectures. The dynamic machines can be further subdivided 

into code copying and tagged token machines. Data flow machines with potentially 

the highest level of parallelism are those of the dynamic data flow type. They 

employ either code copying or tags to protect the reentrant graphs.

2 .2 .1  N o ttin g h a m  P o ly tech n ic ’s M IN N IE

The target machine for the compiler described in this thesis is MINNIE (Multi 
Interface Node Network for Interactive Environment). The hardware and the com­

piler were developed concurrently. MINNIE [Hammes 89] could be viewed as a 

global data flow machine where each processing node is based on Von Neumann 

architecture. Therefore, each processing node is a computing machine in its own 

right, processing a task and communicating with other tasks being computed in the 
network of processing elements. Familiarity with the architecture of this machine 

is essential for the understanding of some of the material being presented in the 

subsequent chapter.

T h e M IN N IE  A rch itecture

The prototype mark 1 MINNIE consists of 8 processing nodes. Each node has a 
6809 microprocessor, local memory (4K RAM and 2K ROM), and an interface. 

Figure 2.1 shows the block diagram of MINNIE.

All the nodes are connected via a global bus and communication is based on the 

associative memory addressing technique.
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Figure 2.1: The block diagrams showing the architecture of MINNIE.



28

Any processing node, wishing to send a piece of data, writes the data on to a 

particular location in the interface (viewed by the processor as another memory 
location). When the interface obtains control of the bus it places its node address 

onto the bus combined with the data. All the nodes which contain the address of 

the node which is sending the data, in their receive registers, will copy the data into 

one of their input registers.

Similarly for receiving data the processor writes the address of the sending node 
into a particular location in the interface and whenever that data is broadcast by 

the sender a copy of it is taken by the interested interfaces. The interface and 

the processor’s work is overlapped. Each node of the current version has one send 

register and 3 receive registers. In other words each node can only send one piece of 
data and receive three pieces of data without the danger of any loss of data which 
may lead to deadlock. Appendix H gives a programmers model of the hardware.

2 .2 .2  N o ttin g h a m  U n iversity  M U SE  M achine

This project involves the designing of a static data flow machine. It is based on a 

structured architecture supporting both serial and parallel processing which allows 

the abstract structure of a program to be mapped onto the machine in a logical way 

[Brailsford 85].

The prototype (mark 0) version of the MUSE machine has been built, processing 

4 streams and 16 environments. A stream is used, in the MUSE context, to in­

dicate a physical partitioning of the program among the processing resources and 

environment, or colour, on the other hand identifies different blocks of program 

code.

The processor for each stream was constructed from AMD bit slice components 

whilst the sequencer is constructed from SSI and MSI logic circuits. The block 

diagram in figure 2.2 shows the pipelined ring structure of the MUSE.



stream 1

stream 2

stream 3

stream 4

y  out

processor

processor

processor

processor

program store
sequencer

program store
sequencer

program store
sequencer

program store
sequencer

s w i tc hmatching store

Figure 2.2: The structure of the MUSE machine
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The data flow graph representing a program is divided among local memory modules 

of the nodes or streams. Within each stream further partitioning takes place, by 
the compiler, to decompose the code into a series of environments.

The processor on each stream accepts a complete node description and carries out 

the function described by the operation code. The generated result is passed to 
the switch which handles input and output. If the result is not destined for I/O  

then it will be passed on to the matching store. This consists of a conventional 
coordinate addressable memory device which matches tokens destined for the same 

instruction, i.e., instructions with multiple, and different, operand fields. In contrast 

to the Manchester machine’s matching store, it does not support matching of labels 

or other fields. When both operands are available for a particular instruction the 

matching store sends them to the required stream.

The radical diversion of MUSE from other DF machines is the presence of a se­

quencer at each node which supports demand driven computing within the stream. 

This gives some measure of control flow to the machine and is similar to the pro­

gram counter in the Von Neumann model. The lack of support for reentrant code is 
a major limitation of the system. Also the external bus structure between streams 

is time multiplexed and may represent a communications bottleneck.

The interesting part of this particular design is the use of what is called environ­
ment switching. The load associated with each stream is divided into a number 

of environments. Each environment consists of a set of instructions and a pro­

gram counter. Whenever computation is held up in any environment on a given 

stream, an automatic internal interrupt occurs and control is transferred to some 
other environment where computation can proceed. The different environments are 

labelled by a number and are referred to by the alternative terminology of colour. 
For example the computations
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e +  /* # //*

are divided between the streams and environments as shown in figure 2.3.

Environments --------------►

Q_Q
EZJc
E
CDv_ -+-< cn

0 1 2

0
a; ^1; +; ^ 2 ;  - e; ^ 1 ;  +

1
b; c; ^  0 ^ 2 ; h; 1; | o

2 d; ^ 0 f; g; *;

3

Figure 2.3: Table of environments and streams for MUSE

Down arrows, J,, show the situation where a result is expected to arrive from another 
stream, while up arrows, f , represent the sending of data to another stream. The 

send and receive actions must correspond exactly.

2.2 .3  D istr ib u ted  D ata  P rocessor M achines (D D P )

This first packet communication data flow machine was built by Texas Instruments 

in 1980 [Cornish 79].

This machine was designed for executing Fortran programs using the static data flow 

concept. Although the compiler creates additional copies of a procedure to increase 

parallelism, this copying occurs statically and DDP uses a locking method to protect 

reentrant graphs. It is a one-level machine with a ring-structured communication 

unit, augmented with a direct feedback link for tokens that stay within the same 

processing unit.
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The program graph corresponding to a Fortran program is generated by a compiler 

in the host processor. Using a cluster detection algorithm the graph is partitioned 

into a number of subgraphs. The subgraphs are then loaded into the memory units 

of processing elements [Srini 86].

When a node of the subgraph is enabled, it is executed by the ALU of the processing 

element. The result of a node execution is forwarded to other nodes, in the pro­

cessor’s memory unit or another processing element’s memory unit. Interprocessor 
communication is via an interconnection network, the E-Bus, carried out as a series 

of 34 bits packets.

The DDP provides a separate bus, in each processing element, the maintenance 
bus, to load and dump the contents of memory, monitor the performance of the 

processor and diagnose the processor when faults occur [Srini 86].

A number of benchmark programs have been run on the processor. The results 

showed that performance can be improved in a linear manner by adding more 

processors. The major short-coming is the lack of support for recursive procedure 
calls. The DDP architecture supports the data types allowed in Fortran iv and a 

semaphore data type, used for sharing code blocks e. g. subroutines in programs.

2 .2 .4  T h e H ughes D ata  F low  M u ltip rocessor

This is also a static DF machine developed at the Hughes aircraft company for 

signal and data processing. According to the original paper [Velder 85] a completed 

machine was planned for 1985. However in [Veen 86], published in 1986, all results 

and references to this particular machine were still based on simulation.

A programming environment has been developed which allows high level program­

ming in a language called HDFL (Hughes Data Flow Language). HDFL is a func­

tional language similar to VAL, permitting full expression of parallelism. The lan­
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guage is value orientated allowing only single assignment to variables. Its features 

include strong typing, data structures including arrays and records, conditionals, 
iterations, parallel iterations (forall) and streams.

The compiler developed for HDFL translates a program to a data flow graph form 

composed of primitive data flow actors. These primitive actors, 39 in all, are im­

plemented directly in hardware. Figure 2.4 shows some of these actors, where 

figure 2.4(a) is an actor used in the invocation of functions and figure 2.4(b) is a 

representation of conditionals.

fo r w a r d

Ack

v is sen t to ad d ress  a 
Ack := v

(a)

s w i t c h

if p then t := v 
else f := v

(b )

Figure 2.4: Representation of some constructs as data flow actors

The architecture consists of many relatively simple identical processing elements, 
communicating with each other via a global packet switching network.

The processing elements are arranged on a three dimensional bussed cube network, 

the maximum distance between any two elements being three. Figure 2.5 shows the 

physical arrangements of the processing units.

Each processing element consists of two parts, the communications functionality, 

and a processing engine which performs the primitive actor operations and the data 
flow sequencing control. Each element has its own local memory which is used for
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Figui'e 2.5: The architecture of Hughes DF machine
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both program and data storage; there is no global memory. The peak performance 

is expected to be 2-5 mips.

2 .2 .5  M an ch ester  D a ta  F low  M achine

This was the first tagged-token dynamic DF machine built by Gurd and Watson at 

Manchester University [Gurd 85,Gurd 80]. Figure 2.6 shows block diagram of its 

structure.

The architecture consists of four functional units arranged in a circular pipeline 

fashion:

1. Token queue

To smooth out the irregular output rates of two other units in the pipeline, 

the matching unit and the functional unit.

2. M atch ing unit

To accept tokens from the queue and store either single operands, or form 

matching pairs of operands. Complete sets of input tokens are sent to the 

fetching unit.

3. F etching unit

Combines a set of input tokens with the description of destinations to create 

an executable code.

4. Functional unit

This unit consists of a number of processors and a distributor which allocates 

the executable packet to a free node for processing.

All communication paths are parallel, up to 166 bits wide, transmitting a complete 

packet at a time. Each unit is internally synchronous but communicates with other 

modules through asynchronous protocols.



[Functional  unit

pre-processor

PEn

PE 1

Fetching unit

Memory for 
nodes

Matching unitToken queue

Memory for 
tokens

Figure 2.6: Block diagram of Manchester data flow machine
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Concurrent reentrancy is supported by means of token labelling. Each activation 

of a piece of reentrant code generates an associated tag for data values generated. 
Node firing rules are extended to allow execution only if operands of the same 

tag-value are present.

Since a further constraint is introduced, that is the presence of the operands of the 
same tag, the role of the matching store becomes much more critical. To satisfy 

the additional constraint the matching store must search for a token of equal tag- 

value to input tokens. If this search is serial then it would severely limit the token 

throughput rate of the ring.

To increase the matching speed, therefore, an associative check of token tags is 

required. However it was determined that simulating this by means of a hardware- 

hashing mechanism is more cost effective [Veen 86].

For programs which do not fill the 16K deep matching store space this mechanism 

is satisfactory. In cases where a large number of operands are generated before a 

successful match can take place, the matching store can overflow. In these cases 
the tokens are forwarded to an overflow unit, with subsequent loss of performance. 

This symptom is likely to occur when handling large data structures.

In cases where a token does not need to match another, e. g. the input to a monadic 

operator or a dyadic operator with a literal, the matching operation B Y  (BYpass) 

is used. BY is the simplest matching function, which forces the bypass of the 

matching unit. As a result, a group containing the token and a piece of data of type 
NULL is constructed and output from the unit. For all other matching functions, 

the matching store is searched.

Benchmarking the initial model showed a performance of 1-2 mips. However, the 

prototype is implemented in medium performance technology and an upgrading to 

around 10 mips is expected by using alternative technologies.

As a result of running a number of test programs, the Manchester group found that
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as the number of processing units is increased, the speed of the machine at first 

increases linearly but then levels off at around 1 mips, figure 2.7. If a program is 
used that bypasses the matching store then this symptom does not occur. Gurd 
and Watson concluded that the problem is due to occasional gaps in the sequence 

of results, causing processors to become idle. The suggested solution is a buffer 

of matched tokens, the so-called pool, to smooth out fluctuations in the supply of 

pairs.

2 .2 .6  O ther D a ta  F low  M achines

There are many more data flow projects being carried out around the world. For ex­

ample the Japanese have embarked on a number of projects in this field [Amamyia 86,Ito 85,

Amamiya and his colleagues designed a data driven system for scientific calculations 

[Amamyia 86]. The machine was constructed at the electrical communication labo­

ratory of NTT and is optimised for list processing. It contains separate processing 

and structure elements. Functional units are integrated with the structure elements 

as well, since many nodes are expected to operate on structures. The constructed 
experimental system EDDY  (Experimental system for Data Driven processor ar- 

raY) has a 4 by 4 array of PEs and two broadcast control units to handle program 

loading and I/O. Amamiya has been able to show, by using EDDY, that the design 

is capable of exploiting parallelism sufficiently to support some 64 functional units 

on even small programs. This machine is a tagged token DF computer.

The institute for new generation computer architectures (ICOT) initiated research 

on the parallel execution of logic programs. One result is the design for a parallel 
inference machine [Ito 85] based on data flow. A distributed mechanism allocates a 
function invocation on the same processing element, on a neighbouring element or 

on a distant element, depending on the value of a load factor, which is maintained 

by periodic exchange of information between processing units.



39

actual mips

1 . 6—

100% utilization
1 . 5 —

1.4—

1 . 2—

1. 1  —

1 .0 ----
actual

0.8

0.7

0.6

50% utilization 
of matching unit

0.5

0.4

0.3

0 .2 —

0.0
0.0 0.2 0.4 0.6 0.8

potential  mips

Figure 2.7: The performance of Manchester DF
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A prototype has been built consisting of 4 processing elements and 3 structure 

memories connected by a two-level bus.

In Belgium, a machine was designed (not yet constructed) with elaborate memory 
management systems [Caluwaerts 82]. Each processing element has its own memory 

manager, but these managers can also communicate with each other, so that the 
total memory space is shared. Each invocation of any procedure results in the 

allocation of a fresh memory area for the tokens belonging to the new invocation. 

To achieve even load distribution the area is allocated in a neighbouring processing 

element. Thus, when a node is enabled, its description must be fetched from another 

processing element. By using caches, local copies are created and in fact memory is 

paged and complete pages are copied. Data structures are treated in the same way 

as programs by the memory system managers.

2.3 D ata  Flow  Languages

One of the main advantages of data flow computers is their ability to exploit fine 

grain parallelism. As already seen in the previous chapter, conventional languages 

are not able to provide a vehicle to use all the inherent parallelism in a sequential 

program, despite the development of sophisticated tools such as Parafrase.

The solution adopted by many researchers is to use Single Assignment Languages 

(SAL), first proposed by Tesler and Enea in 1968 [Tesler 86], The fundamental 

feature of these languages is that any variable may only be assigned a value once, 

in the definition of the program or a block. The difficulty arises when iterative con­

structs are needed. The concept of single assignment means that when an element 

of a data structure, such as an array, is changed then a brand new array is created 

and the old array remains the same.

SAL’s belong to the class of value oriented , or applicative languages. That is, each 

data item is considered a value on its own right and is not subject to alterations.
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SAL’s are also expression oriented; that is, each language construct is an expression 

which delivers a result. An expression can be part of a larger expression. In this 

context even a loop construct can deliver a result.

The SAL rule presents a problem for the semantic actions to be taken on statements 

like I : = I + 1; within a loop body. Firstly, in each iteration of the loop a new 
value is assigned to the variable I and secondly because the ddefinition is circular. 

In SAL languages the problem is solved by insisting that the SAL rule is applied 

within a loop body and allowing redefinition of variables local to the loop at the 

boundary between iterations.

Other problems are also caused by the functional semantics of SAL’s. For example, 

lack of history sensitivity makes a pure SAL unsuitable for applications like database 

management. One solution to this problem is the introduction of concepts like 

s tream s. A stream is very much like an array, however, they differ in a number 

of important details. As an example, the elements of a stream must be accessed in 
order. That is, an stream is an ordered set of values where each item has an integer 

index. The result is that it is not possible to access element n + 1 before element 
n. An important property of an stream is that it has no upper bound; ie. there is 

no limit on the number of elements in the stream.

Because of the importance of SALs to parallel processing some of their major im­

plementations are reviewed below.

2.3 .1  Lucid

Lucid can be described as a functional data flow language. That is, it combines 

the aspects of functional programming with the concept of data flow. By being a 

functional language, Lucid is a mathematically “pure” language, in which no side 

effects can be generated [Flaming 86]. Thus, one can express parallel computa­
tion, iteration and at the same time utilise the provability properties inherent in
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functional languages.

The two main non-mathematical features in programming languages are transfer 

of control and assignment. However, it is difficult to eliminate them as, iterative 

constructs seem to make essential use of them [Ashcroft 77].

The way that Lucid brings mathematical respectability to these constructs is by the 

use of first and next reserved words. Consider the Fortran statement of: 1 = 1 + 1. 

Although this may look like a mathematical assertion, in fact it is mathematically 

just false. The equivalent statement in Lucid is:

f i r s t  I = value 

next 1 = 1 + 1

The first statement simply initialises I to a value. The second statement can be 

viewed as a function with domain JV =  {0,1, • • •}, generating an infinite sequence 

of values for I.

The variables and expressions in Lucid formally denote not single objects, but rather 

infinite sequence of data objects. The ordinary data operations, relations, and 

logical connectives work much in the same way. Since in Lucid x denotes a sequence 

of values {.Ti,r2 , • • •} and y denotes {yi,ij2 , ' * •} then x + y would generate {aq + 

2 / i ,  +  3/2 +  • • • } •

In addition Lucid has the binary operator as soon as which extracts values from 
a loop, e. g. ,

Next 1 = 1 + 1

output = I as soon as cond ition

Therefore in general, a Lucid program is a set of equations specifying a set of 

variables. A variable may be specified by the following equations where V and VO 
can be arbitrary expressions.
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f i r s t  I = VO 

next I = V

VO must be syntactically a constant; built up from data constants, terms of the 

kind f i r s t  x or x as soon as cond ition ; see examples below:

f i r s t  1 = 2

f i r s t  II  = f i r s t  I

f i r s t  I I I  = 10 as soon as I eq 3

All variables must be specified except “input” and no variables may be specified 

twice.

Informally, a Lucid program can be regarded as a number of simple loops. If the 

result of a loop is required in building another loop then the loops are concatenated. 

For example [Ashcroft 77]:

f i r s t  ( i ,  j )  = ( 1 , 1 ) ; {1}

next  ( i , j )  = ( i+ 1 , ( i + 1 ) * j ); {2}

m = j as soon as i equ 10; {3}

f i r s t  k = m; {4}

next  k = k /2 ; {5}

The last loop (line 5) needs the value m generated by line 3. Therefore, the result of 

the ( i , j ) loop is used to initialise the k loop. So it can not begin until m has been 

computed. In addition to concatenation, loop nesting is also possible in Lucid.

It is interesting to note that in Lucid, there is no conditional statement, but instead 

a conditional expression. Therefore, i f  • • • then  • • • e ls e  is also regarded as just 

another mathematical function. In the following example, the expression iterates x 

depending on the condition, until x reaches the value of v .



44

next x = i f  x < v then  x+1 e lse  x - i  

ou tpu t = x as soon as x equ v

Lucid programs are particularly suitable for representation in a data flow network 

and execution on a data flow machine [Bush 79]. The advantage of this approach is 

that independent computations can be carried out in parallel. This type of imple­

mentation is favourable as there are no side effects and sequencing other than by 

data dependence requirements. Other implementations, particularly on sequential 

machines, have also been reported in the literature [Flaming 86].

2 .3 .2  VAL

Value oriented Algorithmic Language, VAL, was originally designed by Dennis and 

Ackerman in 1979 [Dennis 79]. It was primarily devised as a high level language for 
programming the MIT static data flow machine. VAL has many of its features and 

concepts based on ID and CLU [Liskov 77]. ID being a SAL and CLU a non-SAL 

language designed more for easy data abstraction.

An area where Val differes markedly from most other languages is its treatment of 

errors. It supports a large set of error values. For every run-time error that occurs 
the program returns a value. For example, illegal array access in some languages 

causes a catastrophic termination of the program where as in Val it merely returns 

the value undef. This philosophy is based on the concept, seen earlier, which 

requires that all expressions must return a value.

D a ta  S tru ctures and T yp es

VAL is a strongly typed language, requiring that every value name is declared to be 

of a specific type. Common types in other programming languages such as integer, 

real, boolean etc are also found in VAL. Other data structures like records and



45

arrays are also permitted. User-defined data structures can be created using basic 

types, through the reserved word TYPE.

All structures must have their length defined at compile time and dynamic extension 
of records or arrays is not possible. Similar to many other scientific languages, both 

arrays and records come with a set of operators for their manipulation: namely 

operators exist for creation, element replacement and array concatenation.

VAL also has the capacity for allowing a value to be one of several types, much 

the same as ALGOL68 union, by using the reserved word oneof. For example the 

declaration:

Z : oneof [x : r e a l ;  y : character ] ;

is legal and specifies that Z can either take the value of a real or a character but 

not both.

A ssign m en t

The assignment operator is the familiar “:=” sign. One peculiarity of VAL is its 

use of concepts like tuples and arity. A tuple is a collection of values separated 
by commas whose arity is the number of values it contains. The values in a tuple 

being independent of each other. Based on this concept, the left hand side in an 

assignment statement must match the right hand side both in arity and in type. To 

illustrate, consider the following example;

x , y  : in t e g e r ;  */,d e c l a r a t io n s

z : ch aracter

x , y  := 1 ,2 ;  ftthis  i s  l e g a l

z , y  := i f  co n d i t io n  then  

7 2 7 ,3
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e lse  

4 , 5  

e n d if ;

The “else” part is not legal since the types mismatch. The concepts outlined above 

make a program both shorter and neater.

An important semantic observation here is that the values composing a tuple are 
not dependent on each other and therefore can be evaluated in parallel.

Let C onstruct

The construct:

l e t

d e f in it io n s

in

expression

en d le t

is essentially a formalised version of the ID block-expression.

The d e f in it io n s  part can be any collection of statements and the expressions 

part can be an arbitrary tuple of values. A VAL version of a program to solve a 

quadratic equation can thus be;

r l , r 2  : r e a l ;  
r l , r 2  := l e t

x : r e a l  sq rt (b*b“4*a*c); 

y : r e a l  := 2.0*a;
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in

(-b + x )/y  , ( - b - x ) /y ;  

e n d l e t .

Note that an object can be declared and defined in either two separate places (as 

for r l  and r2) or declared and defined at the same place (as for x and y).

Loops

VAL supports two types of loops; for loops and forall loops. The forall loop is 

straightforward. The loop takes a range of integer values, and can either create 

an array using this range, with construct, or apply some operator to all the value, 

using eval. Eval and construct may be mixed in a loop. The following example 

from [Allsopp 86] is given as an illustration:

f o r a l l  j  in  [ l ,n ]

x : r e a l  := s q r t  ( r e a l ( j ) ) ;  

e v a l  p lu s  j * j ;  

c o n s t r u c t  j , x , - x ;  

endf o r ;

The outputs of this fo r  loop are: an integer equal to an array of integers

from 1 to n and two arrays of the positive and negative square roots of those integers 

in the range 1 to n.

In the second form of fo r  loop, the reserved word iter is used, which acts as a kind 

of a global new to indicate the rebinding of values to loop variables in different 

iterations. For example, the following piece of code would iterate 100 — n times if 

n < =  100.
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f o r  j := n do

i f  j <= 100 then

j '/.exit f o r  loop

e l s e  i t e r

j := j+1 ' / . i te ra te

e n d i t e r  

e n d if  

en d fo r

An equivalent sequence, say in Pascal, would be: 

j := n
w hile  j <= 100 do

j := j  + i ;

C ond itionals

Conditional statement is also supported in VAL:

i f  e x p re ss io n  then  

a c t io n  

e l s e i f  ex p re ss io n  then  

a c t io n

e l s e

a c t io n

e n d if
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where expression  will yield a boolean result and ac tio n  is a number of statements. 

The e l s e i f  and e lse  part are optional. The conditional statement can return an 
arbitrary tuple, but all branches of the conditional must match both in arity and 

type.

If the predicate of the conditional evaluates to one of the error values, then the 

whole conditional returns an error. However, if there are a number of boolean 

expressions forming the predicate, joined by boolean operators, evaluation of the 
condition ceases as soon as the truth value of the condition is certain. For example, 

if the first expression in a pair linked by an “and” operator evaluates to false then 

no further evaluation of the condition is carried out. Although in this case later 

expressions might be in error, they are ignored.

Fu nctions and M odularity

The definition of a function in VAL is much the same as other languages. It consists 

of a header showing the values being passed to and returned from a function body. 

For example, the following function takes two real numbers as input and returns a 

character.

fu n c tio n  te s t ( x ,y  : r e a l  re tu rn s  c h a ra c te r) ;

BODY; 
endfun;

Functions in VAL are free from side effects, using only internal storage. Furthermore 

recursive function calls and mutually recursive calls are not legal.

Programs written in VAL can be modular, since modular compilation is possible. 

This allows a programmer to specify the invisibility of certain functions and also 

allows for the splitting of a program over separate files.
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The original proposed language Val had no facility for streams. Furthermore, the 

loop form using i t e r  proved to be difficult in practical use and could not be easily 

made to accept stream extensions.

2 .3 .3  SISA L

SISAL (Streams and Iteration in a Single Assignment Language) was designed 

jointly by Lawrence Livermore National Laboratory, Colorado State University, 

DEC and Manchester University [ref. manu. 84].

The original motivation for the design of SISAL and the lower level language IF  
were to allow comparison of various parallel processing systems by using a common 
high level language (SISAL) compiled into a common intermediate format (IF) with 

a number of machine specific parsers [Allsopp 86]. This approach makes it possible 
for other languages to be compiled into IF, allowing their use on all the machines.

SISAL is a functional data flow language, designed to express algorithms for execu­
tion on computers capable of highly concurrent operations. However the primary 

targets for translation of SISAL programs are data flow machines. The designers 

hope that SISAL will evolve into a general purpose language, one suitable for pro­

gramming future highly parallel computers. SISAL has inherited many of the VAL 

language constructs. The l e t  construct and conditional expressions are exactly 
the same in both languages. Reference [Chambers 84] gives a good introduction to 

SISAL.

T y p es and D a ta  Structures

Having been based on VAL, SISAL has all the basic types and operations of VAL, 

for example, records, arrays etc. As the name suggests, a further type, stream, 
is also supported. There are a number of operations that can be carried out on
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stream types, e.g., create, append, concatenate etc. A stream type consists of two 

components:

• A range (1,HI) being the inclusive bounds on the defined elements. If HI 

equals 0 then the stream has no elements.

• A sequence of HI elements of the declared type. Note that the elements of a 

sequence must be exactly as specified by range.

As with oneof in VAL, the type union allows a data object to take one of a number 

of types. Consider the following declaration.

union z [nl : ty p e l;  n2 :ty p e 2 ];

This specifies that z can take either a value of type ty p l or typ2 , but not both. 

User-defined data structures are permitted and can be constructed using the basic 
types. SISAL is a strongly typed language and type checking is performed by the 

translator. It ensures that the type of each expression or sub-expression matches 
the type required by the context in which it appears.

All calculations must produce a result in SISAL even if that result is an error,

i.e., undef.

L oops

There are two general forms of looping constructs available in SISAL, known as 

the product and the non-product form. The product form is a special case of the 
non-product form. Any loop written using the product form can be rewritten in 

an equivalent non-product form but not vice-versa. The product form is merely 

to provide iteration on arrays and streams in a more concise way, while the non­

product form is to perform sequential iterations in which one iteration cycle depends 

on the results of previous cycles.
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All loops can return a result tuple of arbitrary type by using reduction operators, 
a generalized form of eval statement from VAL f o r a l l  loops. There are several 

reduction operators available ranging from least, to specify the return of the smallest 
value generated in successive loops, to operators altering the order in which the 

reduction operators affect their operands. For example,

re tu rn s  value of le a s t  < expression >

signifies that the final value returned by expression  in the loop is the smallest one 

of them all. Also the left, and the right tree operators specify the reduction order; 

for example, if a loop successively returns a value for I from 1 to 5 then:

re tu rn  value of l e f t  sum I

would yield ((((1 -j- 2) +  3) +  4) -f 5) and:

re tu rn s  value of r ig h t sum I

yields (1 -f (2 +  (3 +  (4 -f- 5)))) and similarly:

re tu rn s  value of t r e e  sum I

yields ((1 +  2) +  (3 +  4) + (5)).

F u nctions and M odularity

Function declaration and invocation is much the same as VAL but with one major 

difference. VAL does not allow recursive or mutually recursive calls, but on the 

other hand SISAL allows mutually recursive calls by using a forward definition. 

The declaration of a function name as forw ard, before its definition, allows the 

compiler to gather the type information necessary before fully defining the body of 

the calling function. A function invocation is itself an expression whose arity and 
types are the number and types of the values returned by the function.
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SISAL allows modular program design and provides function availability over mod­

ule boundaries by means of export and import keywords.

One major difference between SISAL and Val is its support for streams. It is possible 

to return an array or stream using the return constructs a rray s  of and stream  

of. These behave in a manner similar to ID’s re tu rn  a l l  clause for loops. They 

return an array with one element for each iteration of the loop or a stream with 

at most one element for each iteration. The semantics of streams imply [Sarkar 88] 
sequential access to the stream elements and allow for non-strict evaluation

2.4 Parallelism  D etection  Techniques

It has already been shown how parallelism could be explicitly stated by the pro­

grammer. Here, attention is focused on available methods for the detection of 

inherent parallelism in a sequential program. It is worth noting that hardware 

mechanisms exist to detect possible concurrent execution/loading of instructions at 
run time, given a sequential stream of instructions [Baer 73]. For example in the 

IBM 360/91, a hardware mechanism is included for detecting and dispatching float­

ing point instructions to respective functional units. The scheme achieves high level 

of concurrency based on a tagging process which does not significantly decrease the 

execution time of the instruction [Tomasulo 67].

There are several different (distinct) processes that the phrase “parallelism-detection” 

can be applied to. Although all of these processes try to improve the execution time 

of a program in some way, they can be conceptually very different from each other. 

For example, the type of parallelism detection a vectorizing compiler carries out is 
very different to the way a compiler for a data flow machine works. The interest 

here is mainly on the type of parallelism detection techniques that can be useful for 

DF-like or processor-array type machines.

Generally speaking, there are two kinds of dependency in a computer program
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which hinder parallel execution. Control dependence, which is a consequence of the 

flow of control in a program due to, say, the outcome of a condition test, and data 

dependence, which is a consequence of the flow of data [Wolfe 82].

2.4 .1  P arafrase

This is based on the creation of a directed acyclic graph (DAG) to represent a pro­

gram satisfying the data dependencies seen earlier [Allsopp 86,Kuck 82]. At this 

point a series of complex processes are carried out to remove as many dependency 

arcs as possible (restructuring the source code). Finally, several abstract trans­
formations are performed to eliminate cycles in the graph. For example, a flow 

dependent cycle can be replaced with a recurrence node. Similar operations are 

performed for cycles of anti and output dependence.

The resulting graph consists of a number of nodes. The nodes in each anti-chain 

of the DAG can be executed simultaneously. The Parafrase system is designed 

for Fortran programs and is commercially available. It is particularly powerful 

for detecting and vectorizing dependencies caused by array indices. Although this 
system is very powerful it has a number of drawbacks. It is only a restructurer 

and its output must be compiled by a vectorizing compiler for a particular parallel 
machine. There are cases where this restructuring reduces performance due to the 

special features of a compiler and its target machine. Finally Parafrase is mainly 

concerned with inter loop (Do loop) parallelism and is not particularly useful for 

data flow applications. The modelling technique, used by Parafrase (DAG), is not 

capable of representing the dynamic behaviour of a given program and therefore 

is not suitable for pre-execution (static) analysis of how a program behaves at run 
time.
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2 .4 .2  R u sse ll’s M eth od

Here again, a directed graph representation of the original program is constructed 
along with boolean connectivity and precedence matrices [Russel 69]. The feedback 

arcs of loops are detected and deleted at the time to generate a DAG. By analysing 

the DAG a parallel equivalent graph and associated boolean matrices are generated, 

figure 2.8.

Russell’s method yields only limited success in detecting parallelism for three rea­

sons [Baer 73]:

• Arrays are treated as one single object, and no subscript analysis is performed.

• There is no attempt to recover hidden parallelism due to variable reuse.

• No attempt is made to replicate loops if possible, where most of the parallelism 

can be found.

2 .4 .3  M aekaw a’s M eth od

Maekawa [Maekawa 76] proposed a method for detecting the parallelism of compu­

tational elements using a generalised form of pipelining. This pipelining method is 

more flexible than Russell’s method but requires queues, thus incurring more over­

head. This concept is carried a step further through multi-level pipelining scheme. 

However, he concludes that this scheme is not effective in small programs due to 

excessive overhead, even though at a global level the overheads become negligible.

To express multi-level pipelining he introduces the primitive “activate” which is a 

similar construction to cobegin in concurrent Pascal. When an activate primitive 

is executed by a sender process a message buffer containing all the current values 
of arguments and the procedure name is placed at the tail of the queue, and the
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(b) parallel graph(a) sequential graph

Figure 2.8: A sequential program model and its equivalent parallel model
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receiver process is activated. While the queue head is not empty the receiver process 

continues. To illustrate, consider the following example in Pascal.

f o r  i  := 1 to  n do 

beg in

j  := f ( i ) ; 
k ( i )  := g ( j ) ; 

w r i t e l n ( k ( i ) ) ; 

end;

Statements 1 and 2 are data dependent on each other and cannot be executed in 

parallel. However loop replication is possible. The algorithm by Maekawa does not 

use loop replication but instead recognises that the code above can be decomposed 

into the equivalent piece of code:

f o r  i  := 1 to  n do w hile  queue not empty do

j  := f ( i ) ; begin

s e n d ( j , i )  -----------> queue  > r e c e i v e ( j , i ) ;

k ( i )  := g ( j ) ; 

w r i t e l n ( k ( i ) ) 

end;

{1}
{2}
{3}

The actual algorithm can be found in [Maekawa 76].
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2 .4 .4  B ird ’s M eth od

This method uses a topological sort as a vehicle for detecting both intra block and 

inter block parallelism [Bird 85]. The process is illustrated by way of an example; 

consider the following piece of code:

a := co n st ;  

b := co n s t;  

c := a + b; 

d := a + co n s t ;

For each variable or object in the program, two sets of values are computed: the 

dependency .count and dependent_nodes, where:

dependency.count(o) — cardinality({of\o6o/}); 

dependent.node s(o) — {ot\ofSo)]

Note that ({o/|o£o/}) is interpreted as all objects o/ that object o is dependent on.

Using the computed values an augmented data dependency graph is constructed. 

Figure 2.9 shows the graph for the sample program. Each node of the graph has 

two fields: one containing the dependency .count and the other its output. The arcs 

in the graph represent the sets of dependent_nodes.

The topological sort can now be applied to traverse the tree. Suitable candidates 

for parallel execution are those with zero dependency count. After a node has been 
released all dependent nodes have their dependency count decremented.

D ata dependencies between objects are determined by examining the input set 

and the output set of an object. All three data dependencies described earlier are 
examined by this method however, control dependence is not covered.
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Figure 2.9: An augmented data dependency graph

The method will work if the constructed graph does not have any cycles. As far as 

intra-block analysis is concerned the computational elements are statements. The 

statements within a block have a linear order; there cannot be execution cycles 

within a block. This implies that there is not a data dependency cycle and the 

graph is a partial order.

For inter-block analysis however, the method only deals with structured flow pro­

grams, i.e., those without goto statements. There are two other types of control 

flows that can create data dependency cycles: iterative control structures, e. g. while 
and for loops; and recursive or mutually recursive function calls. Data dependency 

cycles in these types of constructs must also be eliminated or their effect on the 

graph eradicated by encapsulating the cycling portion as a single node before the 

method works.
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2 .4 .5  In terval A n alysis T echnique

In his paper [Schneck 72] Schneck puts forward a method for automatic detection of 
suitable statements in a Fortran program for parallel processing. The output is in 

the form of a Fortran program which uses extensions to the language for explicitly 

showing paralleism. Suitable target machine for his technique are listed as ILLIAC- 
IV, STAR and ASC. In general the method is only suitable for pipeline or vector 

machines.

The compiler uses “interval analysis” to detect parallelism. It consists of 3 main 

steps:

• Statement classification
As source statements are read in they are classified as one of 40 Fortran 

statement types. Appropriate routines for processing each type are then called 

to transform the statement into an intermediate text representation which 

is convinient for further analysis. At the same time information regarding 
program flow is gathered for later use. Each appearance of a variable, constant 

or label is entered in a “reference table” . When all of the statements are read 
in and processed in this way control is passed to the next phase.

• Flow analysis

Here a model of the program in terms of some “basic blocks” is created. A 

“basic block” is defined to be a section of code with only one point of entry 

and one point of exit and no internal flow. Having identified the basic blocks 

they are then grouped into “intervals” . An interval is the maximal set of basic 
blocks with the property that all the basic blocks within the interval, except 

for the head, have their predecessors in the in the interval. The resulting 

intervals which now have some partial ordering are treated as basic blocks 

and the process continues until no further intervals could be made.

• Recognition of parallel or vector operations
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By examining the variables and constants within each interval an attem pt is 

made to vectorize operations within the interval

One of the major problems with this method is that any calculation which is con­
ditional, and thus loop dependent, cannot be performed in parallel. This would in 

practice eliminate a great many operations from parallel processing.

2 .4 .6  T h e P aralyzer

The work presented here [Presberg 75] is specific to the ILLIAC-IV array processor. 
The vectorizing process is only applicable to DO loop constructs and can be viewed 

as a an optimisation step specific to this processor.

The technique used is based on the coordinate and Hyperplane methods. In general 

terms, the coordinate method determines parallelism which can be expressed in 

terms of the original DO loops and their index values. The sequential loop data 

dependencies are preserved by rearranging the loop body statements so that flow of 

control from statement to statement in the parallel loop compensates for the fact 

that each statement is executed for all index values before its successor is executed.

The Hyperplane method is applicable only to nests of two or more DO statements. 
It determines parallel execution which is expressible in a more drastic reordering of 

the loop index than that given by the coordinate method.

The actions of the technique consists of three distinct parts:

• Setup:

It amounts to cleaning-up of an arbitary nests of DO loops to create an 

analysable form.

• Analysis:
This is based on examining the form of array elements within loops. Time
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seperation values for pairs of access to same memory locations are evaluated. 

The crucial computation structure to be preserved in the rewriting is the data 

dependencies among the array references. Thus, an important time relation­

ship exist between generation and use references. This is given by the time 

seperation values which are computed for every array modified by the loop.

• Synthesis:
Once the time separation sets are constructed one of the rewriting methods 

is employed by the Paralyzer; Coordinate or the Hyperplane method.

The major setbacks of this method are due firstly to its sole concentration on loops 

and secondly because it is very specific to the target architecture.

2 .4 .7  P arallelism  D etec tio n  for A p p lica tive  Languages

In this paper [Arvind 80] it is argued that Fortran like languages, with or without 

parallel extensions, are inadequate to utilise high performance parallel architectures. 

It is claimed that efficient multiple processor architectures cannot be developed un­

less it supports the execution of parallel processing language systematically. A 

method for automatic decomposition of a program written in an applicative lan­

guage is then presented.

The scheme is useful for applicative programs which have loops as their primary 

control structure. The operations on bounded-size data structures is shown to be 

decomposable in 3 steps:

• The nested loop structures are unrolled into a network of computation cells.

• Data structure elements are assigned to the cells.

• And finally the network of computation cells is mapped onto the actual pro­

cessors of the system.
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A computation cell is regarded as a virtual processor to which a program and local 

data has been assigned. However, the virtual processor program may also refer 
to data which is not local, in which case a communication between the virtual 

processors needing and holding the data takes place.

2 .4 .8  P ara llelisa tion  o f CALL sta tem en ts

The research in this area is more concerned to establish the effect of procedure calls 

on data-dependencies with the view to increase parallelism at the statement and 

loop levels. Two different sets of work are discussed here.

In a paper [Triolet 86] Triolet presents a method for determining and analysing the 
effect of a CALL statement. It has four main steps:

• Statement Effect Computation (SEC) which is the effect of computing state­

ments within a procedure, including the effect of any further procedure calls.

• Procedure Effect Computation (PEC) which is the global effect of a procedure 

call.

• Dependence Graph Computation (DGC) which can be deduced as a result of 

computing SEC.

• Restructuring and Parallelism Detection (RPD).

The end result of applying this technique to programs is to transform CALL state­

ments to asynchronous CALLs. They call this “Direct Parallelization” as opposed 

to parallelization of procedures themselves. The DO loops may be transformed into 

DOALL or DOACROSS as a direct result of applying this technique.

From the result of experiments that they carried out it is concluded that a speed up 

of around 60% is achievable in certain cases where DO loops contain several CALL
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statements. In the prototype model tests not involving COMPLEX parameters 

were considered only.

The method suggested by Burke [Burke 86] is different with that of Triolet in two 

different ways:

Firstly, this method distinguishes between CALL graphs which have static and 

dynamic cycles. Like the earlier method it rejects graphs with dynamic cycles 
(recursive CALLs) but it does accept static cycles. Secondly, the method is capable 
of taking into account the effect of variable aliasing.

2.5 Sym bol Table M anipulation

The reminder of this chapter describes existing techniques for symbol table con­

struction, storage and access. It also evaluates each method with reference to its 

speed of access and storage, memory space consumption and finally ease of con­

struction. Chapter 3 presents a new method for construction and manipulation of 

symbol tables which reduces access time and memory space requirements. Refer­

ence [Al-Dabass 86] describes existing methods in a comprehensive way.

2.5 .1  U se o f  H ash Tables

This method is based on a doubly linked list of tables with the use of hashing for 

indexing. Figure 2.10 shows the topology of a symbol table for a typical program.

At the beginning of compilation a main table with a fixed size is created. The size 
is based on the maximum number of variables which is envisaged to be declared in 

a program. The table has three fields: type of variable, an information field which 
had a tree structure and finally a pointer field.
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type info, pointer overflow table

overflow table

Figure 2.10: A hashed symbol table organisation.



6 6

The following operations can be performed using a hash-table:

• Storage:
By means of a hashing function, a hash-number is generated when a variable 

declaration is encountered. The table is indexed by this number to store the 

variable definition in the table. Before a variable is stored in the table a check 
is made to ensure that its hash-number was not used previously (collision).

If there is a collision (the entry in the table is already used) then the pointer 
field would point to another table which is called the overflow table. The new 

table will hold the information about this new variable if there is no further 

collisions. In the event of additional collisions the process of using overflow 

tables is continued.

In order to reduce the number of collisions the table size must be significantly 

(about 50%) bigger than the actual size thought needed. This would cause a 
significnt rise in the memory space requirement of a symbol table.

As functions and procedures are defined a new table is created for each, con­
taining the local variables and their types. A pointer from parent links, the 

entry point of the child’s name in the parent table, to child’s table. This is 

necessary to keep track of variable scoping.

• Access:
To examine the information about a particular variable the table has to be 

searched. Again the search is carried out by generating a hash-number to 
index the table. In cases where a collision occured during storage overflow 

tables may need to be searched for extraction of the relevant information.

When a variable referenced in the body of a procedure is being examined 
then the current table is searched. If the variable is not found then the search 

process continues in the table of the parent, until either the variable is found 

in one of the parent tables or it reaches the stage that there is no more parent 

table to be searched.
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The information field is usually a tree structure, containing various data depending 

on the requirement. A typical information field is shown in figure 2.11. This is a 

compromise between the hash table method and the binary tree method explained 
below.

In fo rm ation

ub = u p p e r bound 
lb  = low er bound .

a r r a y  ( 7type

Figure 2.11: A typical information field of a symbol-table.

2 .5 .2  B inary  Tree

This is an alternative data structure for representing symbol tables. Each node of 

the structure represents a variable and points to an information field. A node also 
has a left and right pointer which points to other nodes. This ensures that the
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constructed tree is a balanced binary tree. This technique offers less performance 

compared to hash table method, in most cases, but provides less implementation 
effort and uses less memory space.
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C h a p ter  3 

A  H yb rid  C om p iler  w ith  

A u to m a tic  P ara lle lism  D e te c t io n

Software written in procedural languages has to be redesigned for parallel comput­

ers and rewritten in modern parallel languages which make efficient use of these 
machines. In the short to medium term, it would be cost effective to utilise existing 

software but by means of a parallelizing compiler which would generate code for 
parallel processing syterns.

3.1 N et C onstruction

A program or system may be designed by using a modelling system like Petri nets, 

specially if the system is likely to exhibit concurrency or the program is to be 

executed on a parallel machine. This design methodology allows the user to analyse 

the system before coding, and devise a parallel algorithm for the application. Having 

generated a Petri net model of the system, the user can code it in an appropriate 
language. Such a model enables a user to examine the degree of parallelism available 

in the program at any given time during its execution.
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The proposed method is a reversal of this process, i.e., given a piece of source code, 

the compiler models it by a Petri net and then extracts the parallel paths inherent 

in the program by executing the net. The model is constructed subject to the 
following constraints:

1. Any procedure call is treated as one instruction and is thus represented by 

one transition in the model. A call to the procedure is made on all the nodes 

that have been allocated to execute a part of the procedure body.

2. Any conditional statement is treated as a block, represented by one transition.

3. Any loop construct is initially treated as one block; loop fission takes place 
later on during allocation. Only loops without transfers of control in their 

bodies are analysed for parallelization and decomposition.

3.1 .1  D efin itions

• D efin ition  1: P etri net

A Petri net is an abstract, formal method of modelling information and control 

flow (for a full formal treatment see appendix A). It is a powerful way of mod­

elling and analysing systems particularly those that may exhibit asynchronous 

and concurrent activities. A Petri net graph models the static properties of 

a system, in much the same way as a flowchart represents the static proper­

ties of a computer program. In addition, a Petri net model can represent the 
dynamic characteristics of a system as a result of its execution.

The graph is made of two types of node circles, called places, and bars, called 

transitions. These nodes, places and transitions, are connected together by 
directed arcs, from places to transitions and from transitions to places.

Figure 3.1 represents the Petri net model of the program shown in figure 3.2, 

and its abstract form stored in a computer for clarification.
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Transition List
........  far

Transition 1 --------

r

1 /

Transition 2

out 2

a

i

" if- th e n -e ls e "

aname

Figure 3.1: A sample Petri net model and its internal representation
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As can be seen from the diagram the input to transition 2 (T2) is 2 which 

corresponds to output of T l. A transition can have any number of input 

places but only one output place. Statements or blocks that assign to at 
least one variable always have an output place, but blocks with an empty 

output variable set do not have an output place. For example, statements 

like “writeln” never have an output place. In cases where the input variable 

set is empty for the block then its input place will be 1, which indicates that 

it is not dependent on any other statement. For example, a statement that 

outputs a message is not data dependent on any other statement. However if 
there are a number of such statements, then in order for the message to make 

sense, there must be a flow dependence between them.

• D efin ition  2: input and output variable sets

If s is a statement or a block of statements then IN(s) will denote the set of 

input variables of s . Usually, input variables are those to which references 

are made but whose contents are not modified 1 (read only).

For an assignment statement:

IN(s)  — variables that appear on the right hand side

And for a procedure call statement:

IN(s)  =  all the arguments to the procedure and all the global

variables to the procedure referenced in the procedure body

And finally for a conditional statement:

I N ( s ) =  (variables used in the control part ) (J

(variables referenced in the “then” part) (J

(variables referenced in the “else” part)

1The exception to this rule is when a statement like a := a + 3; has variable a both as input 
and output.



Similarly the output variables of a statement or block of statement are denoted 

by OUT(s); where OUT(s) represents all the variables that have been changed 

(written to). For example, the output variable of an “if” statement can be 

written as:

OUT(s)  =  (output variables of the “then” p a rt)[J  

(output variables of the “else” part)

This is a conservative output variable set for a conditional statement due to 

the uncertainty of the run time outcome. Figure 3.2 shows a sample program 

and its statements’ input and output variable sets.

• D efin ition  3 : data dependence relations

Given two statements Sj and Sf. in this order then the following data depen­
dence relations should hold true between Sj and s*.

If XeOUT(sj)  and XelN(sk)  then Sk is data flow dependent on Sj denoted 

by SjSsk.

If, however, X e lN (s j )  and XeOUT(sk)  then Sk is data anti-dependence on Sj 
denoted by SjSsk.

Finally, if XeOUT(sj)  and XeOUT(sk)  then is data output dependent on 
sj denoted by Sj6°Sk.

•  D efin ition  4 : loop fission

If a loop body consists of a number of independent components or blocks then 

it is possible to construct a number of independent or communicating loops 

which can be executed in parallel with each other. The combined effect of these 
independent or communicating loops is exactly equivalant to the original loop. 

This action is named loop fission.

D a ta  F low  D ep en d en ce

The procedure to construct a Petri net for a source program is developed as follows:



program t e s t ;

var i , j , k , l  : in te g e r ;

procedure name (var a : in teg er ;  b 

begin

1 : = a + b + j ; 

end;

begin

i f  i  < k then i  := j e l s e  j := 1; 

aname ( i  ,k)  

en d .

: i n t e g e r ) ;

1

2

IN (1) = ( i ,  j ,  k, 1) IN (2) = ( i ,  j ,  k)

OUT (1) = ( i ,  j )  OUT (2) = (1 ,  i )

Figure 3.2: A sample program and its input and output sets
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1. The syntax ti’ee is first transformed into a suitable form to group all logically 
related statements together. The tree can then be viewed as a linked list 
whose elements are the successive statements of the program. Some of these 

elements can be a collection of statements that form a block. A block can be 

an entire “for” loop, an “if-then-else” statement or just a procedure call. At 

this stage no attempt is made to model the data dependencies within a block 

and therefore no block decomposition is made.

2. This is a top down approach where coarser grain parallelisms are detected first 
and while allocation of this coarse grain parallelism is being carried out, an 

attempt is made to detect finer grain parallelism and perform such operations 

as loop fission if possible. For example, while a block made up of a “for” loop 

is being allocated to a certain processor, the body of the loop can be modelled 

by a net and analysed for possible spread over a number of processors, with 

the communication codes added by another part of the compiler.

3. The fundamental net is cycle free, since all constructs leading to a cycle in 
the net, e. g. loops, are treated as single blocks. A fundamental net is the 

net model of the main program body. This approach eradicates the effect of 

cycles on the net and avoids lengthy procedures needed to overcome their side 
effect.

4. The process starts with the first block in the main program body and is 

repeated for every block until every one of them is represented by a transition 

of the Petri net.

5. The net is represented internally by a linked list whose elements are linked 

lists too. Successive elements of this list give the net attributes of successive 

blocks in the program, starting from block one and ending with the last block. 

Each element of this structure represents a transition in the net providing a 
list of its input places and its output place.
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6. Since all independent transitions have 1 as their input place then theoretically 

they can all be executed at the same time. To preserve flow dependence, the 

order of transitions in the net is taken into account by the allocator. Thus all 

I/O  statements, irrespective of their data dependencies, are allocated to node 

1 and flow dependence is strictly enforced.

7. In situations where an input variable to a block has not been assigned to a 

previously uninitialised variable, then the input place to this transition will 

be 0. When execution takes place this causes the particular transition to be 
identified as unexecutable, and a warning message is output by the compiler.

S. To construct the net, start with block 1 and extract the input variable set of 

the block. For each variable in the set, traverse back the syntax tree keeping 

a cross i-eference to the transition list built so far. While traversing each node 

of the tree check if the variable in hand exists in the output variable set of 

the node. If it does then the number associated with the output place of the 

current node is assigned to the input place set of the current block. If not, 
continue traversing until reaching the root, at which point 0 is assigned to the 

input place set of the current block. Blocks with no input variable set are 

connected to place 1.

Example 1

w r ite ln  (" th i s  i s  a message"); {1}

w r i t e ln  ("input A and B"); {2}

read ln  (a ,  b ) ; {3}

d := a + b; {4 }

c := a * b; {5 }

Starting from block 1, there is no input variable set or output variable set 

for block 1 therefore a transition is created with input place 1 and no output 
place;

©
-----?—  Writeln( "a message");

1 output

iA i



Similarly for block 2 to give:

1 1
t 2

1 output
2 outPuM

For block 3, there will be an output place but there is no input variable set, 

therefore the input to its transition is place 1.

t 3

1 output 
1 output 
1 output 2

Block 4 has an input variable set, consisting of variables a and b, both of 
which form the output variable set of block 3 whose output place is 2, hence:



1 1 t 3

t 4
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1 output 
1 output 
1 output 2
2 output 3

Finally adding the net for block 5 gives:

t 1

A n ti and O utput D ep en d en cies

1 output
1 output
1 output 2
2 output 3
2 output 4

Further tests need to be incorporated in the construction. The necessity for these 

tests is derived as follows :

1. Consider the following example where si and sn are program statements: 

s i  a := 5;



sn is data output dependent on si, and therefore theoretically these two state­

ments can not be executed in parallel. If a statement between si and sn uses 
the value of variable “a” then sn must wait until the reference by that state­

ment is complete, hence there must be a test to check if the output variable 
set of sn appears in the input variable set of any block between si and sn, 

and to create the necessary arcs. If however, the value of “a” in si is not 
referenced anywhere in between, then the arc between si and sn need not be 

created. To get round this problem many compilers rename the variable “a” 

in sn and every use of it after sn until a new assignment to “a” takes place. 

This means that the source code is internally changed, by those compilers, 

and different memory locations are used to store the different assignments to 
the same variable. This is avoided in the proposed compiler.

To maximise the number of parallel paths, the above is necessary in archi­

tectures where there is only the possibility of storing a variable in a unique 
memory location accessible by all nodes (global memory architecture), or in 

distributed memory systems where any node can directly access any memory 

segment via a switching network.

In data flow systems or message passing machines based on associative mem­

ory addressing, different values of the same variable (old and new) can be 
kept in different cells or local memory locations situated on different nodes. 

In the latter case during allocation, if two potentially parallel statements store 
values in the same memory location then they must be allocated to different 

nodes, providing there are no other detremental side effects to the efficiency. 

Hence in the above example the two statements may be executed on differ­

ent nodes and therefore each assignment to variable “a” may, as a result, be 

stored in the memory location reserved for that variable on the relevant pro­

cessing nodes of the machine. The compiler does not necessarily allocate two
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parallel statements on different nodes and other considerations will be taken 

into account, as will be seen later.

This allows use of the maximum number of parallel paths without renaming 

variables and without any need to consider data output and data anti depen­

dencies. The method also lets the net model the data flow characteristics of 

a program and hence be easily converted into a real physical representation 
of a program stored in a computer memory (cell), executable by a true data 

flow machine.

3. Consider the following piece of code :

s i a • zs 5;

s2 b I s 2;

s3 c • =2 a + 2

s4 a : = a - b

s5 b : = b - 2

s6 a ; = 6 + c

The usual way of representing the above example is shown in figure 3.3. This 

represents a loosely connected net which does not enforce the output depen­

dencies present in the original code.

However, figure 3.4 represents a strongly connected net for the same example. 

In this case all dependencies have been taken into account.

Up to transition 3 the net is fairly straightforward to construct. Transition 

4 models statement 4 which has {a, b} as its input variable set. In the first 

instance it looks as though it is dependent on statements si and s2. But s4 is 

assigning a value to variable “a” as well as referencing it, and since “a” is last 

referenced in s3 therefore s4 is also dependent on s3. But s3 itself is dependent 
on s i therefore the link between si and s4 is superfluous. Transition 5 is also 

simple but for transition 6 note that the value of “a” is both referenced and 

assigned to in transition s4 and hence the link is necessary. This is central to
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Figure 3.3: A loosely connected Petri net model



t 2

14

t 6

1 output 2

1 output 3

2 output 4

3.4 output 5 

5 output 6

4.5 output 7

Figure 3.4: A strongly connected Petri net model
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keeping all the dependency information without having too many arcs. The 
flow dependence is particularly important during allocation for non-data flow 

architectures.

Note that during allocation si and s6 may not be on the same node and all 

statements after s6 will receive the value of “a” from the node holding s6, if 

they require it. If s6 happens to be allocated on the same node as si then 

strict flow dependence will be enforced as will be seen in the section describing 

the functionality of the allocator in this compiler.

4. Consider a simple example: 

s i  a := 1;

sn a : -  2;

A problem arises if an instruction sx, located between si and sn, references 
variable “a” and is allocated to the same processor that executes sn. In this 

case if the value of variable “a” is communicated to that node, from the node 

that executes s i, then the local value of “a” will be lost 2. Two options 

are available. One is to make sure that during allocation two numbers, a 

transition number and a processor number associated with each transition 

set, are stored in the symbol table. Thus in this example “a” will have two 
sets of numbers in the symbol table associated with it, say {1, 1} and {6, 2}. 

These numbers show that ua” is represented by two transitions, 1 and 6, at 

the same time placed on nodes 1 and 2 of the system for execution. From 

this point if a transition referencing “a” is to be allocated then its transition 

number is checked against 1 and 6. If it is less than 6 then the transition must 

not be allocated to processor 2. Therefore, s3 cannot be allocated to processor

2Parallelism is organised in layers, therefore, in the first instance, statements si and sn are 
allocated to two nodes as they can be executed in parallel. In the next layer the allocator may 
decide to allocate sx to the same node that executes sn, thus communication of the value of “a” 
from the other processor (executing si) will overwrite the local value of “a” , generated by executing 
sn.



84

2 since its transition number is 3. As soon as a new set of assignments to “a” 

occurs then the entry in the symbol table changes. This will be referred to as 

invocation X  reference set.

The second option is to create a strongly connected net, outlined in 3, and 

enforce all the dependencies depicted in the model with the resultant loss of 
some parallelism. In this case Sx will be allocated to the same node that 
executes si and the allocation process will be a simple mapping of the net to 

the hardware system.

In cases where the former scheme causes deadlock in allocation then the more 

conservative method just seen is adapted for deadlock prevention. In systems 

with a very large number of nodes the possibility of deadlock in allocation is 

very low and is resolved by the alternative scheme in any case.

Loop B odies

If the block being scheduled is a loop construct then the loop body is further anal­

ysed through its Petri net model. The analysis can result in three distinct outcomes.

However, before considering the result of analysis a further dependence test must 

be examined. This is required in modelling a loop body or any reentrant piece of 

code.

Forward D ata  D ependence: This may exist between blocks in the body of a

loop. These dependencies are as a result of different iterations of a loop body. If 

loop fission is to take place then these tests are necessary to enable the insertion 

of the correct communication code. Consider a simple loop body where i is a loop 

index:

s i  a := b + a;

s2 b := Rand ( i )  ;
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By inspection it can be deduced that the two statements are independent of each 

other if they were not part of a loop body. However, si is dependent on s2 in the 

second invocation of the loop body. To account for this type of dependency while 
modelling loop bodies, the input variable set of any block in the body is tested for 

possible forward assignment to it. The net representing the above example is shown 

in figure 3.5

1,3 output 2 
1 output 3

Figure 3.5: A loop with forward dependence

One of the inputs to transition t l  is place 3, which numerically is greater than its 

own output place, representing a forward data dependence.

Since there is no data dependence, except forward dependency, between the two 

statements in the loop body then it is possible to allocate each block of the loop 

to a different processor. To apply loop fission here, it is necessary that the value 

of variable “b” is sent to other relevant nodes before execution of statement 2 can 

begin. This would create an extra communication which may not be required if the 

node executing si already has the first value of variable “b” in its local memory. 

The code with communication instruction for the above example would appear as;
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P ro c esso r  1 p rocessor  2

l a b e l  : la b e l  :

r e c e iv e  b send b

a := b + a; b := rand ( i ) ;

goto  la b e l  goto  la b e l

L oop A nalysis O utcom e: The three possible outcomes of the loop body analysis 

can now be discussed.

1. The first outcome is when nothing can be done to exploit any parallelism in the 

loop body due to dependencies or existence of transfer of control instructions 

in the loop.

2. When in an iterative loop, e.g., “for” loop, there are no forward dependencies 

in the body of the loop then it is possible to spread the iteration space over 
a number of processors. This is called vertical parallelism. For example, the 

following loop can be spread over 10 processors, with each processor executing 
one iteration of the loop. However, the compiler needs to know the bounds of 

the loop at compile time.

f o r  i  :3 1 to  10 do

begin

a : = i ** 2;

b : = i ** 0 .5 ;

b : = a -  b;

end;

3. The third possibility is when a loop contains some data dependencies and 

cycles due to forward dependencies. In these cases the loop body can be 

spread over a maximum number of processors. This maximum number is the



87

number of parallel paths found in the loop body due to usual dependencies, 
with communication codes inserted by the compiler to take care of forward 
dependencies. Consider the following piece of code in a loop body: whose 
Petri net representation is shown in figure 3.6.

s i a := a + 1;

s2 b := b -  1;

s3 d := a * b;

1 output 2 
1 output 3 
2,3 output 4

Figure 3.6: Model of a loop without forward dependence

Note that si and s2 do not create any forward data dependencies as they refer 

and assign to variables “a” and “b” respectively. If, however, later on in the 
loop body variable “a” is assigned to again then a forward dependency will 
exist if the two statements are allocated to different processing elements.

In this example there is a maximum of two parallel paths and therefore the
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loop can be executed by two processors. Statement s3 requires a data commu­

nication. Loop fission or splitting could therefore be applied to this example.

The same principle can be applied to the modelling and parallelizing of pro­

cedure bodies.

The code, including the communication code, for the above net is: 

P rocessor 1 Processor 2

l a b e l :  la b e l :

a := a + 1 b := b -  1

r e c e iv e  b send b

d := a * b

goto la b e l  goto la b e l

This type of parallelism is termed horizontal parallelism. Vertical parallelism 

is more desirable as it has no communications between iterations.

3.2 N et E xecution  for Parallelism  D etection

The rules for executing a Petri net are fully covered in appendix A. The procedure 
for executing a net is fairly straightforward, once a correct net is constructed and 

the allocation strategy is clear.

Execution begins with assigning a token to the place 1. It is followed by scanning 

the net structure and disconnecting the arcs that connect any transition to place 1. 

That is, the input place set of each transition is scanned and if it contains number 

“1” then it gets deleted. Some of the transitions (at least one) must have an empty 

input place set. All such transitions are collected together as the first set of parallel 
independent blocks. This is equivalent to firing all those transitions with only place
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1 as their input instantaneously at the same time. The transitions that have just 

been fired are deleted from the transition list.

These firings must put tokens in other places which in turn enable the firing of 
some more transitions. From a practical point of view, if any of the transitions 

just fired has an output place, then these places now have tokens in them and thus 

a recursive call of the executor procedure and scan of the new transition list can 

extract the second and subsequent levels of parallelism in the net, provided all the 

places with a token are identified. Thus this repeated scan must consist of finding 

and deleting all the input place sets that have any number belonging to the output 
place set that just have received tokens. It then continues with deleting new set of 

transitions that have empty input place sets, yielding more parallel paths or in the 

worst case a single transition for firing (sequential).

The process continues until such time that either the transition list becomes empty, 

indicating a successful firing of all transitions, or a situation where no more tran­

sitions can be fired, for example, due to being connected to place 0 indicating a 

non initialised variable being referenced, which prompts the user with an appropri­

ate warning message. Another example is when a conditional transfer of control 

renders some piece of code unexecutable at all times. This leads to dead code col­

lection. Again the user must be prompted that some dead portion of code is being 

eliminated.

A complication that may arise in the execution phase is when a forward data de­

pendency exists in the piece of code being analysed. Depending on the efficiency 

and speed of the data communication system being used, two approaches can be 

adopted.
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3 .2 .1  E lim inating  Forward D ata  D ep en d en cies

This approach removes forward data dependencies discovered in a loop body by 
using loop fission and insertion of extra communication code. This method is spe­

cially useful if vertical parallelism can be applied to a large portion of a loop body, 

however, it must be noted that this scheme generates more communication overhead 
and can only be evaluated for individual applications.

The main feature of this method is that if the transition creating the forward depen­

dence is allocated to a different node,.compared to preceding statements in the loop 

body, then the output variable set of that transition must be communicated •prior 
to its execution and not after. Consider the following piece of code representing 

the body of a loop where i is the loop index. Figure 3.7 shows the Petri net model 

of the loop below.

s i c : = c + 1;

s2 a : = a + i ;
s3 b : = b + 1 + c;

s4 b : = i * 2 + a;
s5 d : = c ** a;

Assuming two processing nodes in the system, the following piece of code is gener­

ated which includes the communication code.

P ro cesso r  1 P rocessor  2

la b e l :  la b e l :

c := c + 1; a := a + 1;

r e c e iv e  b send b;

b := b + 1 + c; send a;

r e c e iv e  a b := i  * 2 + a;
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d := c ** a; 

goto  la b e l goto la b e l

Note that on processor 2, “a” is computed and then communicated but “b” is 

communicated and then computed.

t

t

1 output 2 
1 output 3 
2,5 output 4 
3,4 output 5 
2,3 output 6

Figure 3.7: A Petri net model showing forward dependence elimination in a loop

To implement this approach the above net execution procedure can be used with 
some extensions. With reference to figure 3.7, it must be noted that the appearance 

of digit 5 in the third row of the internal representation of the net (in transition 4) 

does not constitute an arc. It is there simply to enforce the communication protocol 

just seen. The original list of places containing a token is thus places 1 and 5. This 

is to reflect all the forward data dependencies in the loop body. The net execution
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procedure thus changes to:

f o r  a l l  p la c e s  in  th e  l i s t  o f  p la c e s  with token do 

f o r  a l l  the  t r a n s i t i o n s  in  th e  net do

i f  th e  input p la ce  l i s t  in c lu d e s  p lace  with token  

then  remove i t .

i f  th e  p la c e  w ith  token i s  g r e a te r  than th e  output p lace

of t h i s  t r a n s i t io n  

then mark th e  t r a n s i t i o n  corresponding to  a p la c e  with  

a token fo r  communication b efore  e x ec u t io n .

endfor  

endfor

a l l o c a t e  a l l  t r a n s i t i o n s  w ith  empty input p la c e  s e t  

update th e  new l i s t  of p la c e s  with tokens  

r e c u r se  u n t i l  no more t r a n s i t i o n s  can be executed

If there are other blocks in the loop body that require the value of “b” after the 

execution of the fourth statement, then a further communication is needed after its 

execution.

3 .2 .2  In trodu cing  False D ata  D ep en d en ce

The other approach, adopted here, is to force the forward dependent parts of any 

loop to be allocated on the same processing node. This has the advantage of re­

ducing communication overheads, specially if there are both data and forward de­
pendence between the same blocks in a loop body. Effectively an artificial data 

dependency is created between the two blocks, which can be viewed as a critical 
flow dependence. For the above example therefore a critical flow dependence can 

be created between s3 and s4 and the resulting net is shown in figure 3.8. The 

subsequent execution of the net identifies the parallel paths, while the scheduler,
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seen later, ensures that s3 and s4 are on the same processing node because of their 

forward data dependencies. Hence the following allocation of the loop body takes 
place which includes a different communication code compared to the last approach.

p ro cesso r  1 p rocessor  2

l a b e l : l a b e l :

c := c + 1; 

send c

b := b + 1 + c; 

r e c e iv e  a 

b := i  * 2 + a; 

goto la b e l

a := a + 1; 

send a 

r e c e iv e  c 

d := c ** a;

goto la b e l

If several parallel blocks are forward dependent on another block then their par­

allelism is ignored and all blocks are allocated to the same processing node that 

contains the block creating the forward dependence.

3.3 A H ybrid Scheduler I

Parallel programming consists of three separate activities; two of them, identifica­

tion of parallelism and partitioning of the program into layers of parallel paths, have 

been dealt with. The third activity is concerned with the scheduling or placement 
of the code making up each layer on the multiprocessor system.

Thus, the scheduler or allocator is responsible for assigning each block of code to 
the most suitable processor for subsequent processing. This implies that for any 
change in the number of processors in the system the program must be recompiled 

in order to carry out a re-allocation by the scheduler. This action is analogous to the

Zl%
n
-I
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t 2

t 3 1 output 2
1 output 3
2 output 4 
3,4 output 5 
2,3 output 6

Figure 3.8: A Petri net model showing a loop with forward data dependence in its 
body
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configuration process carried out in systems like a transputer network where there 

is a notion of connectivity or topology of connection. The allocation is carried out 

statically and does not change at run time. The terms “scheduler” and “allocator” 

are used interchangeably throughout.

By executing the net, a new representation of the source program is generated. This 
new representation is a multi-layered code, with each layer containing a number 

of parallel independent blocks of code. The original sequentiality is lost and the 

structure does not resemble the old program. The layers must however be executed 

sequentially.

Although within each layer there is no need for any synchronisation, the transfer 

from one layer to another requires synchronisation and a number of data commu­

nications: inter-layer communication. The synchronisation is achieved purely by 
way of data flow between the processing nodes. A layer would have at least one 

statement; in this case there is no parallelism in that layer.

Associated with each block is a send and receive list. At this stage send and receive 
lists are merely the names of variables that each block has to send or receive and 

some cross reference information between sends and receives. A typical list at this 

stage may look like;

[ [receive 10 var B integer var c real]
[d := [b +  c]]

[send 16,18] ]

Receive 10 indicates that this is the receive list of statement 10 which receives a 

value for integer b and one for real c. The send list shows the destination of variable 

d, that is block 16 and 18. This information is only used by the allocator since the 
sending node simply puts a value on the bus and does not care about its destination.

To summarize, scheduling is concerned with minimizing the communication over­
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head without overloading any one of the processing nodes in the system. Parallelism 

detection and the subsequent scheduling are both based on static compile time anal­

ysis of the Petri net representation of the original sequential code.

3.3 .1  Scheduling for M IN N IE

This is a much more complex task, compared to scheduling for purely data flow 

machines, as a number of issues must be taken into account. The first point to be 

considered is due to the way that a Petri net is constructed by this compiler. It 
is important to remember that two statements which assign to the same variable 

can be executed in parallel, that is, they are assigned to two different processing 

nodes provided that all the intermediate statements referencing the variable are not 

assigned to the same processing node as the last of the two statements was.

Consider the case when in a particular layer there are more such statements than 

processors in the system. It is evident that the specified condition cannot be satisfied 
in this case. Therefore, the original net, although correct, would not be suitable 

for mapping into a particular hardware system. Also it may be that a particular 

user would like to use only one processing node. Instead of altering the net building 

mechanism, which reveals the maximum number of parallel paths in the program, 

the allocation phase can be made to take these conditions into account and adjust 

the allocation strategy accordingly. The point can be best illustrated through a 

simple example. Consider the following piece of code:

s i a : = 2;

s2 b • s a + 2

s3 a • 8 3;

s4 b • = b /  a;

s5 a ; zz 4;

The execution of the resulting net creates the following multi layered parallel paths,
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represented in the POP-11 style list of list format;

Layer 1:

Layer 2: 

Layer 3:

[ [ [receive 1] [a 2] [send 2]

[receive 3] [a := 3] [send 4]

[receive 5] [a := 4] [send ] ]

[ [receive 2 var a] [b := [a -f 2]] [send 4] ]

[ [receive 4 var a var b] [b [b /  a]] [send j ] j

The first layer has three independent parallel paths but all those statements assign 

to the same variable. The second layer is only one block and so is the third layer 

indicating their sequentiallity.

To utilize the maximum degree of parallelism, at least three processors are needed, 

specially when all three parallel paths have the same output variable set. If the 

system had three processors or if the output variable sets of the three parallel 

paths were not the same, then the allocation would be fairly simple. In this case, 
however, the compiler allocates the first two blocks to the two available processors. 
The symbol table at this stage holds the following information for variable “a”:

[2 1] [4 2] { th e  f i r s t  f ig u r e  i s  the  p lace  number}

This shows that the latest values assigned to variable ua” are on processor 1 and 

2 in the same order. All subsequent layers requiring these values are allocated to 

the appropriate processor before any other statement assigning to variable “a” is 

allocated. Further allocation of statements assigning to variable “a” will result in 
the update of the symbol table. In this example, therefore, statement 2 is allocated 

before the third element of the first layer could be assigned to a processor.

p ro c e sso r  1 processor  2
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a := 2; a := 3;

b := a + 2; r e c e iv e  b

send b b b /  a;

a := 4;

A  N ew  M ethod  for M inim ising Interprocessor C om m unication

The other issue to be addressed is the problem of keeping the communication over­

head to a minimum. A new empirical method based on the greedy principle is 

developed allowing the communication requirements to be kept to a minimum. A 

specification is developed as follows:

1. Each processing node has two values associated with it, a load factor LF, 
and a communication factor CF. When allocating a block that does not need 

communication then it is allocated to a node with the least LF. For example, 

if there are five blocks in the first layer (blocks in the first layer do not receive 

any data), then they are allocated to nodes 1 to 5, if the system has that 

many nodes. This brings the load factor of each node to 1 and the total load 
factor of the system to 5. The communication factor remains zero for all 

nodes unless the results generated by this layer are required by subsequent 

layers. Note that if all blocks were allocated to the same node then the total 

load factor would still be 5 but the total load factor on node 1 (Y,LF i ) would 

be 5 too, with CF remaining zero. Since, in MINNIE’s case, execution and 

communication overlap and take place at the same time, the aim is to keep a 

balance between LF and CF for each node.

2. Communication can often take longer than execution. To avoid serious per­

formance degradation due to load imbalance, the ratio of CF to LF should 

be set to 2:3, for example. If this ratio is used to counter the imbalance then 
in subsequent layers, blocks are allocated one at a time to any processor that 

offers least ( £  CFn * 2) +  (X) LFn * 3). Such a node is excluded from further
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allocation until all the nodes have been allocated for a particular layer and 

there are still more blocks left in the layer for allocation, or a new layer has 

been started. Both situations lead to the release of all excluded nodes for new 

allocation.

3. Note that when a block is assigned to a processor then the amount of data 
it has to receive affects the calculation of CF for another block requiring the 

data. In other words, the maximum number of communications a layer needs 

is equal to the number of different variables that exist in the receive lists of 
all the blocks in the layer. Hence for each layer, where n is the total number 

of blocks in a layer:

n

M a x ( C F )  =  cardinality({J (variables in receive list)t-)
i = i

4. As soon as a block is assigned to a processing node then its receive list is 

updated with the address of the sending node, for all the variables in the 

list. The send list of the sending node is also updated and a record of the 

communication for each variable is kept in the symbol table as already seen.

5. The pseudo code below shows the structure and functionality of this part of 

the scheduler which ensures an acceptable level of communication overhead.

While la y e r s  e x i s t  do

f o r  each element of th e  la y e r  do

i f  (e le m e n t 's  p la c e  number >  th e  symbol

t a b le  entry  f o r  i t s  output v a r ia b le )  then  

i f  (p rocessor  number in  the

symbol ta b le  = no of p ro cesso r  

in  th e  system) then  

rearrange th e  net 

end i f  

end i f
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f o r  each node in  th e  system do

compute th e  t o t a l  LF + th e  t o t a l  CF f o r  th e  node 

s to r e  the  r e s u l t  in  an array r e p r e se n t in g  th e  nodes  

end fo r

s e l e c t  th e  node w ith  the l e a s t  combined load

a s s ig n  th e  la y e r  element to  t h i s  node

end fo r  

end w hile

6. For scheduling of conditional blocks: in parallel systems based on associative 

memory addressing for interprocessor communication, a problem arises when 

a conditional block is being allocated.

A node requiring a piece of data from another node must have the address of 

the sending node made available to it at some stage, and in MINNIE’s case 
at compile time. If a variable from the output variable set of a conditional 

block is required by another block on a different node then the receive list 

of the receiving block must reflect this. The execution of a conditional block

does not update all the variables in its output variable set, and the updating

depends on the path that the conditional block takes. The solution is to wait 

until all the conditional blocks are executed and then send any of the variables 
needed elsewhere.

Scheduling for D ata  F low  M achines

Generation of cells for data flow machines from this structure is fairly simple and 

no complications exist, as shown by the following algorithm:

1. Starting from the first layer, where there is no data to be received from any­

where, create cells for each block and connect the result of each cell to desti­
nation cells indicated by the send list.
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2. If a destination list has more than two numbers, generate “dup” cells for 

multiple data flow.

3. Cells created in this way can then be refined down to individual operations 

level to utilize finer grain parallelism. In effect this involves decomposition of 

a large cell into a number of smaller sub-cells.

3.4 F ine Grain Parallelism  D etection

Parallel computers with many processing elements may best be utilized if fine grain 

parallelism is exploited in some circumstances too. A scheme for identifying fine 
grain parallelism in a program and its mapping onto a network of processors is 

developed based on the following points.

1. If finer grain sub-expressions are to be evaluated by nodes which are also par­

ticipating in coarse grain computations then this can lead to situations where 

a processing node may be held up, waiting for the result of a simple calcula­
tion. This can happen if the node evaluating the sub-expression is involved in 

a time-consuming computation, say a loop iteration, prior to computing the 

sub-expression.

2. Using the communication system provided by MINNIE it is possible to use a 

different scheme for utilizing fine grain parallelism without introducing long 

delays in computing sub-expressions. This proposed scheme is based on the 
idea of using co-processors for the computation of simpler fine-grain arithmetic 

expressions which need to be carried out quite urgently.

3. If the sub-expressions consist of constant values then there is no commu­

nication overhead except for sending the result of the computation. Sub­

expressions which require the values of variables to be communicated to them,
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e.g. (a * *6 + 3) * *a, do not usually increase the communication overhead ei­

ther. This is because of the associative memory addressing technique used. 

In the example above, it is most probable that variables a and b have to be 

communicated for other reasons in any case. As a result the node performing 

the fine grain parallelism will be able to obtain a copy of the value of those 

variables from the bus at no extra cost.

4. After the coarser grain parallel paths are scheduled 3, there probably remains 

several other free processing nodes in the system. The remaining free nodes, if 
any, are reserved for exploiting fine grain parallelism. For example, in a system 

with 20 processing nodes and an application program with a maximum of 13 

parallel paths in one of its layers, 13 processing nodes will be reserved for 

exploiting coarser grain parallelism and the remaining 7 nodes will be set 

aside for finer grain parallel computation.

5. The nodes set aside for fine grain parallel computation of sub-expressions may 

send the result of their computations to the destination node as soon as they 
are available. Some of these results may even arrive at their destination before 

being needed.

6. Although the co-processor concept reduces possible delays in receiving the 

result of sub-expression computation, this can only be guaranteed if fine grain 

parallelism inside loop bodies are not used at the same time. This is because 

the sub-expression evaluation for an expression inside a loop has to have the 

same number of iterations as the other parts of the loop body, in other words, 

loop constructs are introduced on the nodes that carry out fine grain paral­

lelism. To avoid this either fine grain parallelism inside a loop must be ignored 

altogether, or such evaluations must be restricted to one per processing node 
and must be the last block of code to be evaluated on such nodes.

3The number of nodes used for coarse grain parallel paths is equal to the maximum number of 
parallel paths in the layer with the largest number of elements.
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7. Since systems like MINNIE are envisaged to have thousands of processing

inates the delay in receiving results of sub-expression evaluations from other 

nodes, except for the usual availability of data. Fine grain computations with­

out any loops are safely allocated to the same node since such expressions are 

evaluated very quickly.

Different schemes for exploiting fine grain parallelism in a computational unit will 

now be considered. Each scheme offers a different number of parallel paths and 

a certain necessary communication overhead. Examples of these schemes are pre­

sented here to show their effectiveness.

Consider the following expression, taken from a test program, and the compiler 

output which shows its decomposed form. The compiler output is in intermediate 

code. The character # in the intermediate code tells the translator to take what is 
on the evaluation stack as an operand for the operation which is to be carried out 

or it can indicate that the result of a sub-expression is needed.

a ; s= -  z + b * a + ( c  + k) ;

The tree representing the entire expression and its decomposed compiler generated 

internal form are shown below:

nodes, it is more efficient to restrict the allocation of such fine grain iterative 
constructs to one per node without any other load on that node. This elim-

[ [  [[ -  z l l  [[[b * a]] [[ c + k]] [ #  + *

longest branch 
of the tree
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In the above internal form, each element represents a node of the tree and the 

symbol #  represents the result of a sub-expression computation. Therefore symbol 

#  represents a non-terminal node.

Four possible schemes are considered for the decomposition and allocation of sub­

expressions for exploiting fine grain parallelism. The result of applying each of the 
four schemes to the expression above is shown below. In each case the possible 

distribution of the expression over a number of processing nodes is shown together 

with the communication overhead incurred.

• Schem e 1

output : processorl processor2 processor3 processor4
-z
#  +  #  
a := #

#  +  #  c +  k b * a

C om m ents

Three communications and three parallel paths.

R equired processor cycles

82

• Schem e 2

output : processorl processor2 processor3 processor4
#  +  #

#  +  #  
a := #

c +  k b * a

C om m ents

This is the more traditional method which is based on the longest branch of 
the tree. It involves two communications and two parallel paths.

R equired  processor cycles  

125
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• Schem e 3

output : processorl processor2 processor3 processor4
c -f* k 
#  +  #

#  +  #  
a := #

b * a

C om m ents

One communication and two parallel paths. 

R equired  processor cycles

150 

• Schem e 4

output : processorl processor2 processor3 processor4
-z c T k b * a
#  +  #  
a := #

4k 4- 4btr  i tr

C om m ents

This involves two communications and offers three parallel paths. It gives the 

maximum number of parallel paths with the minimum amount of communi­

cation overhead.

R equired  processor cycles

82

The last scheme provides the best possible result and this is the scheme adopted 

by the compiler. It must be noted that the priority of operators is taken into 

consideration when allocation takes place. For example, if the above expression was 

a : = - z + b + a + ( c + k ) ;  then the allocation would be different since the * 
operator (between b and a) has precedence over the + operator (between b and a).
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output : processorl processor2 processor3 processor4
-z c +  k
b +  a
#  +  #
#  +  #
a #

The tree representation of the expression above is shown in figure 3.9.

z

Figure 3.9: A tree showing the effect of operator precedence.

This is an important observation. It shows that a user can assist the compiler in 

detecting the maximum amount of fine grain parallelism by rearranging an expres­

sion. For example, by using brackets and grouping operations together the shape 

of the tree generated will change and the amount of parallelism detected will differ 

too. In the above example, if the user rewrites the expression as a := ~z + (b + 

a) + (c + k) ; then the shape of corresponding tree will be as shown below and 
will offer greater amount of fine grain parallelism compared to the expression in its 
original form.



Figure 3.10: A tree showing the effect of expression regrouping.
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While the remainder of this chapter introduces a new scheme for symbol-table man- 

angement and an approach to variable storage in parallel processing environments, 

appendix B gives an insight into the structure of the compiler and its more tradi­

tional components like the lexical analyser.

3.5 Sym bol Table

Symbol tables store information about identifiers, i.e., type, value (if a constant), 

bounds, fields and memory addresses. Scope of variables and declaration points can 

also be deduced from the table.

Compilers for parallel machines decompose the source code into parallel paths and 

subsequently allocate them to different nodes, and these make further uses of symbol 

tables. This can take the form of keeping information like the node address of a 
variable where its latest value can be found. In some architectures, e.g. MINNIE, 
a variable can have old and new values on different nodes. This kind of information 

can help an allocator to distribute the code appropriately and insert the correct 

communication code.

During the compilation process, storage and retrieval of information on and from 

the symbol table can take a large part of the whole compilation time, specially if 

the number of variables is high.

In languages like Fortran and Basic where only a finite number of simple data types 

exist and no nested procedure definitions is allowed, the actual symbol table can 

take a very simple form. For other languages with complex data types and nested 

variable scoping, a more complex method is required.
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3.5 .1  A  D yn am ic Sparse Sym bol Table

To increase performance and reduce memory space required for symbol table stor­
age, a new method is proposed. The features of the method are developed as 

follows:

1. The method should allow definition of variables of the same name but different 

scoping and attributes, as required by languages like Pascal.

2. Figure 3.11 shows the data structure used to store the symbol table. Symbol 

tables are inherently sparse and therefore, for efficiency considerations a spe­

cial sparse table storage method should be used. POP-11 has built in sparse 

table generator routines for this purpose.

3. The constructed table has a row showing the parent of any given procedure or 

function. Note that the main program has no parent and therefore table(main, 

parent) should return false.

4. Addition of data always occurs at the column that corresponds to the cur­
rent procedure. The table is horizontally indexed by procedure names and 

vertically by a variable name.

5. As soon as a procedure definition begins, table(procedurename, parent) is 

updated with the name of the last procedure (parent) which could be main. 

To illustrate consider a simple example;

program t e s t ;

var a ,b  : in te g e r ;

procedure Al;

var a : in te g e r ;

procedure Bl;
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var b : in te g e r ;  

begin

BODY OF PROCEDURE Bl; 

end;

begin

BODY OF PROCEDURE Al; 

end;

procedure Cl; 

begin

BODY OF PROCEDURE c l ;  

end;

beg in

MAIN BODY; 

end.

6. The corresponding entries in the symbol table are shown in figure 3.12. Start­
ing from main, the entry to parent’s row is f a l s e . The attributes to variables 

a and b are added under column main. When the definition of Al starts, the 

attributes of procedure identifier (pidentifier) Al are added to the table and 

immediately under column Al the parent row is updated to main (the parent 

of Al). The current procedure name is changed to A l and as a result addition 

of new variables occur under column Al as expected. When definition of Al 
is complete, current procedure name is changed to the name of the parent, 

main in this case. This is done to take care of variable scoping.

7. The search to access data always begins at the current procedure column. 

Absence of an entry for the variable in the present column leads to a search
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Figure 3.11: A typical symbol table structure
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A 1main

int

int

pident.

pident.

pident.

FALSE main mamA 1p a re n t

note: only table entries (11 in this case) use memory space

positions not pointed to

^  pident. = procedure identifier

Figure 3.12: Entries and the pointers in the dynamic symbol table
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in the parent’s column until the relevant information is found or all relevant 

columns have been searched. As there is no hashing scheme for indexing the 

table the possibility of collisions is eliminated during storage. The search 

of the table is fast since the whole structure is linked through pointers. If 

there is no entry for a particular variable anywhere in the chain then an error 

condition is declared.

8. To illustrate, assume that variable b in the last example is referenced in pro­

cedure Al. Table(Al, b) returns f a ls e  thus, if b is declared then it must be 

in the parent procedures or in the main, which renders it a global variable 

for procedure Al. The search in the main returns b as an integer type. The 

entries in the table are trees for each element which may hold a number of 

information about any variable. The exact information required must then 

be extracted from this tree, by a matching process in this case.

3.6 Variable Storage

Storing variables in a distributed memory system is difficult even for languages like 

Fortran that do not allow recursion. To allow recursive procedure calls and use of 

reentrant code many parallel computer systems either use a tagging scheme or have 
hardware support. In conventional computers, the stack frame method is used for 

the storage and referencing of variables to allow dynamic variable scoping.

For any programming language to be useful in practice, it must support data struc­

tures, e.g., arrays. A major problem in distributed memory parallel processing 

systems is the sharing of these data structures between different processing nodes. 

In the case of an array, for example, if one node alters one of the elements of the 

array then how is this change going to be reflected on the local copy of the array 

on another node? As the index to data structures could be decided upon during 

run time, the simple approach of broadcasting the new value would not work. The
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options open are either to broadcast the whole data structure every time that a 

change is made to one of its elements or communicating the pointer to the element 

as well as the new value.

The first approach is clearly not practical as the sheer size of data communication 

overhead could degrade the system performance to an unacceptable level. The other 

approach is not very attractive either. It means an extra pointer (between 2 to 4 

bytes) communication for every data structure update. Until there is more hardware 
support for solving this problem the only practical approach is the suggestion of 

using a different programming approach for distributed memory model.

To overcome the problems, a distributed stack frame method is implemented for 

storing and referencing variables. The proposed scheme is specified as follows:

1. Effectively, each node has its own stack frame mechanism for the variables it 

is going to use. This means that a node may have an old value of a variable 

in its local memory if it is not to use that variable again.

2. If a node is to reference a particular variable then a copy of its latest value 

is taken from the bus when its value is broadcast and the local stack holding 

the variable is updated.

3. There may be situations where a node has the old value of a variable but does 

not copy its new value although it is going to reference it later. This can only 

happen if the variable has another assignment to it before any reference is 

made. In other words, the node will only update a variable’s value when the 
right assignment to it occurs.

4. As there are no elegant universal solutions to the problem of shared data 

structures, the following approach was adopted. D ata structures are not 
shared between different nodes and as a result all the statements and rou­

tines referencing or updating a particular data structure are placed on the
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same processing node. This may result in a loss of parallelism detected ear­

lier by the compiler. With more hardware support in a future versions of 

MINNIE, a different approach by the compiler may be feasible.

If parallel programs were modeled on the principle of independent communicating 

processes or tasks then the problem, discussed above, would be greatly reduced. The 

programming language Occam is based on this philosophy and similar concepts are 

used in other programming languages like Fortran, C and Pascal with the aid of 

extensions and library routines too.

In addition, using suitable applications would reduce the problem even further. 

As an example, applications based on the master and slaves model where each 

slave process performs a different set of operations on a given data will run very 

efficiently on MINNIE. In this sort of applications some data is broadcast by the 

master process and all of the slave nodes will copy it. Each slave performs its own 

operations on the data and will inform the master that it has finished. The master 
will then broadcast the next piece of work packet.



116

C h a p ter  4 

Im p lem en ta tio n

This chapter outlines the major building blocks of the compiler, their design details 
and any implementation problems faced during coding. Each block of code is de­

tailed by giving its overall structure in terms of Petri nets, where appropriate, and 
the functionality of its important routines. This takes the form of a guided tour of 

the program.

A more formal description of the program and its structure is presented in ap­

pendix E. The formal design is based on Jackson’s Structured Programming or 

JSP [Storer 91].

4.1 T he D evelopm ent Environm ent

The compiler was written in the artificial intelligence language POP-11. The lan­

guage PO P-11 is supported in an operating environment called poplog. It offers 
an integrated development media which consists of an incremental compiler, pro­

viding interactive compilation, a powerful editor called ved and some debugging 

facilities. Within the same environment a version of common Lisp and Prolog are
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also available. Facilities for combining routines written in C, Pascal and Fortran 

with POP-11 programs are also provided.

4.2 N et C onstruction

The tree generated by the syntax analyser is passed to the procedure p a r a l le l iz e .  

The tree is transformed into a list whose elements are trees representing the suc­
cessive statements of the source program prior to the invocation of procedure 

p a r a l l e l iz e  . This is achieved by a call to procedure del_nested_loop. It flattens 
an input tree and removes any nested lists; for example, it transforms a list of the 

form [[ab]] to [ab]. Logically related statements are glued together as one item in the 

list, for example, a whole loop can be one item. The structure t r a n s i t io n _ l i s t  at 
this stage is in reverse order and contains a copy of the flattened list. The tail of 

this list which is the next statement of the source code is removed. A temporary list 
containing the original list which does not include the tail is also constructed. These 

two data structures are passed to the procedure analyser. A for loop construct 

repeats this processes for all the elements in the list. Variable index enables the 

procedure a l lb u t la s t  to identify the elements of the t r a n s i t io n _ l i s t  before the 

current element. All the output of the for loop are left in a list which would have 

the same number of elements as the original t r a n s i t i o n _ l i s t .

Procedure an a ly ser identifies the type of each construct (statement) under consid­

eration and in turn invokes the appropriate procedure. For example, if the statement 

under consideration is an assignment statement then procedure assignm ent-analyser 

is activated. This approach offers a modular scheme which can in turn speed up 

future additions.

Procedure assignm ent_analyser itself has a number of procedures that it uses to 
carry out its function. It starts by extracting the variables in the right hand side 

of the assignment statement, by calling procedure g e ta l is to f -v a r ia b le s  which
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returns a list. If this list is empty then there is no data dependence and as a result 

this node is connected to place one. If the list is not empty then all the variables in 

the list are compared with the output variables of the statements above to establish 

data dependence. Data anti dependence is not considered at this stage. The output 

of the assignm ent_analyser is a list containing a number of integers referring to 
the statements that create data dependence and an integer referring to the place 

number of the current statement.

Similar analysis is carried out by other procedures for the other programming con­

structs. For example, fo r_analyser is for analysing the parallelism in a fo r  loop 

and read ln_analyser is for analysing a call to readln routine.

4.3  N et E xecution  and Parallelism  D etection

Net execution for parallelism detection is carried out by the procedure net_executer 

This procedure calls itself recursively until all of the net is executed, ie. the variable 
e x e c u ta b le _ lis t is empty or none of its transitions are executable due to nodes 

with non empty place list. Each layer of the parallel code is detected in one in­

vocation of the procedure. Subsequent layers are identified by a new call to this 

procedure.

A for loop executes all the nodes that can be fired simultaneously, that is in parallel, 
and creats a list called res. This structure holds pointers to the statement that 

belong to a particular layer and can be executed in parallel. According to these 
pointers, a number of statements are grouped together, as a layer of paralelism and 
put on the stack, variable re s  later on will contain this layer.

The transfer of tokens to places is carried out to generate a new list of places 

with tokens. This is achieved by calling procedure getnew pattern  and assign­

ing its output to variable mypatern. Procedure getnew executab le_ list deletes 
the nodes just executed and returns the net in the new state assigned to variable
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m y ex ecu tab le_ lis t. A new call to the main procedure net_executer executes the 

next set of nodes in the net which are capable of being fired.

After the final call to net_executer all the values on the stack are collected together 

in a list. Each element of this structure is a list itself containing a particular layer 

of parallel paths. Since all of the outputs of this procedure are left on the stack 

therefore there is no formal output by the procedure. Input to net_executer are 

three lists, m y tra n s it io n _ lis t , m yexecu tab le_ list, and m ypattern . In the first 

invocation of the procedure, m ypattern only holds the integer 1 indicating a token 

in place one.

4.4 Scheduler

This is one of the most important parts of the compiler in its parallel mode. The 

main routine of this is phase is called a llo c a te . It calls a l lo c a te _ l,  a llocate_2  
for each element of the data structure a llo c a te c L lis t  which holds the parallel 

paths generated by the net executor. The call to a l lo c a te d  is for allocation of 

statements according to greedy method to different nodes of the system. As part 

of this send and rece iv e  primitives will be assigned processor numbers instead of 

statement numbers. It also allocates I/O  statements to processor number 1. As a 

result of allocation in this phase some of the send and receive primitive do not have 

the updated processor nodes for their communication.

Repeated calls to a llo ca te_ 2  ensures that all of the statements have a valid com­

munication address. It updates all of the receive primitives when it encounters a 

send primitive and vice versa. This process is performed for all of the processors 

in the system. Procedure a llo ca te_ 3  does the final shuffling of the processor loads 

and updating of the communication primitives. The actions taken are sequential 
and are fairly clear from the code. Detection and allocation of fine grain parallelism 

is performed by procedure a l l o c a t e  too.
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4 .4 .1  F ine G rain  P arallelism  D etec tio n

The implementation of fine grain parallelism detection turned out to be quite simple 

in POP-11. After the initial parallelisation of the source code the data structure 
sh ed u led _ fo r_ tran sla tio n  does not hold any allocation information. Fine grain 

parallelism is performed at this stage on any statement which has the potential for 

fine grain parallelism. It is carried out by a call to procedure f  ine^grain_detector. 
It in turn calls procedure analyse_set_of-independent codes for every layer of the 
list. This is the routine which identifies the suitability of a statement for fine grain 

parallelism and to the suitable ones applies the routine f  ine_grain_a-statem ent. 

This routine applies the algorithm presented in chapter 3 to all the statements 

and returns a list structure which contains the statements in the form seen in the 

examples shown in the previous chapter.

After the allocation of coarser grain parallelism is complete, procedure a llo c a te  

calls the routine f  in e_gra in_alloca to r for utilising the remaining processing nodes 

for fine grain parallelism. By mutually recursive calls between this routine and 

procedure a llo ca te -su b ex p ress io n  the task of allocation in each case is reduced 
to the simplest possible form.

4.5 Overall S tructure o f the Com piler

The compiler consists of several fairly independent but interactive components. 

Figure 4.1 shows these components and their interaction. The user interface is re­

sponsible for error-handling, issuing of advisory messages to the user and requesting 
input from the user. Lexical analyser is concerned with generation of tokens from 

the source files whenever a request is made by the syntax analyser. The syntax 
analyser either calls the parallelism detection phase if there are no detected errors 

or allows the user interface to halt processing after tidy up. Parallelism detection 

is carried out if the number of processors is greater than one. The translation
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phase is enabled by parallelism detection module n times where n is the number of 

processors specified by the user. In fact the number of elements in the data struc­
ture a llo c a te c L lis t  determines the number of times which the translator must be 

called.
-1?

change
ru le s

s t a r t
compilation

source

p a ra l le l ism  
detection

Figure 4.1: Overall structure of the compiler in terms of a Petri net

t ran s la t io n
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4.6 U ser Interface

The user activates the compiler by calling procedure p asca l and giving it a file 

name as an input parameter. This is the main procedure of the whole compiler. It 

checks if the user needs to change any of the lexical or syntactic rules. Rule changes 
are indicated by issuing new_rules instead of a file name as the input parameter to 

procedure pascal.

Procedure copy_new_rules is the main procedure which controls and directs a user 

in changing lexical and syntactic rules. A copy of the new rules are made, on the 

disk, in files d a ta . ru l, p s p r ta b . tx t  and p s ta b . tx t  which are used by the compiler. 

These files contain list of reserved words for the lexical analyser, production table 
and state table for LALR parser. This part is particularly user friendly and allows 

many changes before making a copy of the new rules on the disk.

The procedure p ascal also sets up all the tables used by the compiler and initialises 

all the global variables. It calls procedures in i t in p u t  and in i to u tp u t  for open­

ing the source files and the compiler produced listing file. The file o u tp u t . l i s t  

is produced by the compiler and holds the source code with line numbers and er­

ror marking where appropriate. Procedures shut .in p u t and shut .ou tpu t are for 
closing of the open files at the end of compilation or premature termination due to 
error conditions.

The user must indicate the number of nodes in the hardware so that allocation is 

carried out accordingly. If a system has only one node then the compiler omits the 

parallelism detection phase altogether and creates sequential object code. The end 

of compilation is shown by the message OK by the compiler.

Error handling is carried out by procedure e rro r  which marks the error positions 

and tidies things up before halting compilation.
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This module generates tokens for the syntax analyser. Figure 4.2 shows the internal

structure of the module.

Begin Jex
source  program 1

Define_rules

Readnrules

lexical
analysis

Select_token +,

Updated; able

tokens

Figure 4.2: Internal structure of the lexical analyser in terms of a Petri net

The main procedure here is lex. It calls procedure Xexitem which returns the next 

lexical item from the source code file according to current lexical rules. It sets up 
special flags if the item is a declaration header which is used in the construction of
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symbol table.

The produced lexical item is passed to procedure s e le c t  together with the current 

flagtype. The nature of item is determined by this procedure. It first establishes if 

the item is a number and if not then it tries to determine if it belongs to the set of 

reserved words and accordingly it returns a token.

A complication arises when a variable is encountered in the statement sections. The 

variable in question is firstly identified as an id e n t i f i e r  by the lexical analyser 

while the variable could have been declared as a constant identifier (c id e n tif  ie r ) , 

a variable identifier (v id e n tif  ie r) , or a procedure identifier (p id e n tif  ie r) . The 

problem is resolved by the use of the flag set earlier and a call to procedure 

lookup_syinbol_table. This procedure calls routine findsym which takes the cur­

rent procedure name and the symbol, as its arguments, and searches the symbol 

table to return a result of false or type. If false then the symbol is a simple identifier; 
else, depending on the type returned an appropriate token is returned to the calling 
procedure. A property table is used to extract the token to be returned according 

to the type of the item returned.

Before returning control lex notes lastitem nam e and c u rren t i t  emname which are 

global variables. This procedure never reports an error and always returns a token.

A major change made during development of this module was the omission of pro­

cedure typeofidentifier and instead making the symbol table search recursive if user 

defined type was used to determine its nature. This is accomplished by using pro­
cedure isu se rd e f  ined during symbol table search.

The original lexical analyser was very basic and changes were made to it as and 

when necessary. There was no major implementation problem here except in keeping 
track of what portion of a program is being processed, for example, type or variable 

declaration.
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4.8 Syntax A nalyser

This module consists of a large number of procedures, and not only carries out 

syntactic check on the source code, but also initiates additions to symbol table and 

building of a syntax tree. Figure 4.3 shows the overall structure of this module.

reduce

sh if t

c rea te
syn tax
t re e error recovery

Figure 4.3: Overall structure of the syntax analyser in terms of a Petri net

The main driving procedure of this module is d r iv e -p a rse  which is called by pro­

cedure p a s c a l . It firstly creates the necessary parsing tables and lexical rules by
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calling two procedures c r e a te - ta b le  and m ake-ru les. These two procedures use 

the files already mentioned to set up current rules. It then calls lex  to generate 

the first token which it assigns to the variable l a t  (look ahead token). The next 
step is to push a 0 onto the parser stack as a marker using procedure push (this 

only happens once at the begining of compilation). There are two procedures push 

and pop to put or remove tokens from the top of the stack. The final act of this 

procedure is to call procedure do-parse which recursively calls itself until parsing 

act is complete.

4.9 Parsing

According to the content of variable l a t  and top of the computation stack this 

procedure (do-parse) either calls procedures s h i f t  or reduce. The decision is 

made by calling the procedure lo o k -u p -tab le  which returns a pair. The head of 

this pair is either an s (shift), r  (reduce), a c ce p t, or e (error). The tail of this pair 

is either a number or nil. If head is an s then the tail indicates the new state and 
if head is r  then tail indicates the rule number by which to reduce.

The action of procedure s h if t  is exactly as described in the theory of LALR parsers. 

But for implementation purposes procedure reduce not only reduces a sub-tree ac­
cording to a preset rule but also initiates addition to symbol table, when appropri­

ate, and adding nodes to the syntax tree by calling procedure make_tree. Addition 

to the tree is initiated after any successful reduction but addition to symbol table 

only occurs when a complete description of a variable takes place, be it a c o n s t, 

type or var definition. These two procedures always call procedure do-parse again 
before returning control to the caller.

By the time the first invocation of do-parse regains control a complete parse tree is 

available in the variable t r e e  or tre e -o f-n a m e s. A number of routines are called 

at this stage to transform this parse tree into a syntax tree. Finally procedure
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display module.

The parser takes a source file and outputs a syntax tree of the source code. When 

an error is detected procedure e r ro r  is called to take the necessary actions. The 

main data structures used in this module are a table, indexed by variable l a t  and 
state number, for holding the parse table. Each element of this table is a pair. 

Also a sparse table is used to hold information about symbols, indexed by symbol 

name and procedure names. The other main data structure is a tree representing 

the source code and a list used for keeping partially reduced item(s) for matching 

purposes.

4 .9 .1  Tree G eneration

The input to this procedure is a tree (root only at the beginning), the number of 

nodes that has to be used from the tree (n), for matching against the reduction rule 

being used, and finally the sentences being reduced to (m).

During the construction of the tree, numbers representing state table index are 

also inserted in the tree. These numbers group a number of elements together. 

During tree construction a number of elements from the head of the tree is grouped 

together, according to the value of n. A local node is created by these elements and 

any state number with any of them is removed. This new node is then given the 

value of m as the state number and added to the tree as a new node. There is also 

provision to ignore brackets and any other information not represented in a syntax 

tree.

When a procedure is being defined, a tree representing its structure is created and 

when its definition is complete; this tree is analysed and coded before continuing. 

Procedure definitions are not included in the tree belonging to the main program’s 

body. Despite that, the procedure is represented by a node representing the pro­
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duction entity p roceduresec . This is necessary for reducing the remainder of the 

program.

This part was particularly difficult to implement and to gain a clearer picture it is 

best to study the actual code (see attached disk).

4 .9 .2  Tree D isp lay

During the course of this research it was felt that it would be helpful to both the 
research program and future program developers if an automatic syntax tree dis­

play and manipulation tool was available. As a result a tree display routine was 
developed and implemented. As computer aided “parallel processing program devel­

opment tools” are usually interactive and iterative, provisions for future additions 

and developments have been taken into account to facilitate this. There are a num­

ber of functions displayed in a menu on the right hand side of the display screen 

that a user can choose from for manipulating the tree. The menu is displayed by 

the procedure draw_menu and the function names are inserted by the procedure 

write_menu.

The tree display is controlled by the procedure screen_raanager. It starts by clear­

ing the screen, drawing the menu and then displaying the top four layer of the tree. 

It then starts an infinite loop which is controlled by the user choosing one of the 

functions on the menu. One of the options is “exit” which terminates the loop.

The main procedures of the tree display are for identifying the nodes and informa­

tion with regard to each node’s neighbour. Procedure showtree is the main proce­

dure which calls procedures shapetree  for establishing the tree shape and display­

ing the nodes. The relation between nodes is established by procedure n odefac ts. 
Procedure connect up connects these nodes by using procedures s tr a ig h t  jo in ,  
l e f t  jo in  and r ig h t  jo in  according to the position of the two nodes being joined 

together.
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4,10 Sym bol Table M anipulation

To create the symbol table, at the beginning of compilation procedure p asca l calls 
the routine se tu p sp arse . This procedure has no input or output parameters. In 

turn, it makes a call to the POP-11 routine newanysparse which sets up a sparse 

array returning false for all its empty elements. It also sets the variable procname 

to “main” and assigns the sparse table to the variable c u r re n t ta b le . A few rows 

containing specific information about each procedure are also created. For example, 

there is a row which stores the parent name of each procedure.

Central to the symbol table operation are the procedures newproc, endproc, setmum, 

getmum, findsym and addsym. Procedure newproc is invoked whenever the defini­

tion of a new procedure begins. It first makes a call to the procedure setmum to set 
the name of its parent in the appropriate row. The argument to setmum is the name 

of current procedure given by variable myname inside setmum and procname outside 

it. It also sets the values of the locations in the table, showing the procedure’s num­

ber of formal parameters and sets memory size to zero and the value of procedure’s 

nesting level to the variable levelnumber. This variable is incremented before this 

operation.

Procedure endproc is called whenever the definition of a procedure is complete. It 

calls getmum to set the variable procname to the name of current procedure’s parent. 

This operation ensures the correct lexical scoping when the table is being searched. 

Procedure getmum has one input argumnet which is the current procedure name; it 

does not return anything. It also decrements the variable levelnum ber.

To add any information to the table, a call is made to the procedure addsym. It has 

three input arguments, the value to be added, variable v a l ,  the table column, indi­
cated by variable procname and finally the table row indicated by the variable sym. 

The addition is achieved by assigning the value of variable v a l to c u rre n tta b le  at 

the location specified by the column and row indicators.
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Procedure findsym is more complex. It takes variable procname and the symbol 

for which information is required as input arguments and generates a result. The 

result is either false or an item which can be any structure. By using an until loop 

it starts the search in the current procedure’s column. If the information is not 

found it continues to search in the column of the parent by changing the pointer. 
This process is repeated for each parent until the information is found or if there is 

no more parents to be searched then the value false is returned.

4,11 C ode G eneration

Translation is into 6809 assembly code which needs to be assembled later using the 

system’s assembler, called Mace.

The main routine of this module is procedure code_main. For each of the specified 

nodes this routine sets up the stack and various pointers which are used for refer­

encing the stack base and top. It then calls routine p re.coding  which translates 

the trees into a form suitable for translation. Routine coding is then repeatedly 

called to translate the work load of each processing node. It takes a syntax tree as 

its argument which represents the work load of a particular node.

Procedure coding is the heart of the translator. It calls itself repeatedly untill there 

are no sub-trees left for translation. Depending on the type of the statement, proce­
dure coding calls one of the routines which have the prefix p la n t,.  For example, for 
a case statement it calls the routine plant_case and for a while statement it calls 

plant_w hile. Note that for built in functions and routines this compiler generates 
inline code rather than providing a library which would then require a linker.
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C h a p ter  5 

R e su lts  and D iscu ssio n s

5.1 Introduction

The most important test a compiler must satisfy is the correctness of the translated 

machine code, i.e., the translated version must functionally be an exact equivalent 
to the high level source code. Section 5.2 presents the test results that show the 
correctness of the generated code for a single node of this computer.

Achieving correctness and testing for it becomes more difficult when a parallel 

processing machine is being used. Here not only the translated code must be correct, 

the compiler generated communication codes must also be correct to ensure the 

integrity of the results generated by the execution of the program. In asynchronous 

parallel processing systems hardware and software must further ensure that the 
results are not only correct but are predictable and repeatable too. In the case of 

MINNIE, synchronization and repeatability are achieved through hardware support 

for communication primitives generated by the software. The synchronization model 
used is based on message passing rather than the use of semaphores.

The absence of real working hardware limits the option for actual proper testing of
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the compiler output; obviously this would have been the way to test the compiler. 

In order to be satisfied that the compiler output for a multi node system is both 
correct and efficient, the next alternative solution is to devise small purpose designed 

pieces of code and observe that the output code (at a higher level than assembly 

or machine code) is consistent with the specifications and schemes presented in 
chapter 3. One of the advantages of this method is to isolate the adverse effect that 

the communication system may have on the actual timing. Apart from some small 

examples, which are discussed in general later on in this chapter, a more realistic 

example is worked out in long-hand and its 6809 assembly code is presented in 

appendix G.

5.2 Single N od e C onfiguration

When a single node configuration is selected the compilation process speeds up 

and parallelizing modules are bypassed. The compiler is heavily instrumented for 
testing and debugging purposes and therefore its current slow speed is not a true 

indication of its eventual speed. However, because of the many extra information 
that a parallelizing compiler has to store, and the many more modules that it has, 

compared to an ordinary compiler it will always be slower.

A full Pascal-S language was implemented for a single node machine and the tests 

were carried out as the translator was being developed. Appendix F gives one of 

the test programs used in the verification of this compiler.

The compilation output of the test programs, shown in appendix F, demonstrate 

that full advantage was taken of f le x  operating system routines in particular for 

I/O .

An important area that needed extreme care was the proper operation and manage­

ment of the stack frame variable storage and thus the correct scoping of variables. 

As part of the test-set the following simple test program was run and the results
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showed that this part.of the compiler’s translator works correctly, 

program te s t ( in p u t ,  o u tp u t); 

v a r a , b : in te g e r ;

procedure sco p e -te s t ( a : in te g e r ;  var c: in te g e r ) ;  
begin

a := a + b; 

i f  a > 5 then

w rite ln  ( “lo c a l value of a = ", a) 

e lse

begin

w rite ln  ( “g lobal value of b = " , b ) ; 
c := a;

w rite ln  ( “lo c a l v a r ia b le  c = “ , c ); 
end;

end;

begin

re a d ln  ( a ,b ) ;  

s c o p e - te s t ( a , b ) ; 

w r i te ln  ( “g lobal a = ", a ); 

w r ite ln  ("g lobal b = “ ,b);  

end.

Table 5.1 shows some of the test results obtained by executing the above program.

Operation of for,  while and r e p e a t-u n t i l  loops were also demonstrated to be 

correct together with the operation of the conditional i f - th e n - e ls e  construct. 

Nested conditional statements were also used in the test programs and results were
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input output comments
1,2 global value of b — 2 

local variable c =  3 
global a =  1 
global b =  3

value of b inside the procedure 
variable c inside the procedure 
value of a in the main program 
value of c has been passed to b

2,4 local value of a =  6 
global a =  2 
global b — 4

value of a inside the procedure 
no change in the value of a 
no change in b

Table 5.1: Some test results for variable scoping.

as expected. All operators were used in the various test programs and gave the 

anticipated results. All the tests presented in this section were carried out on a 
physical machine, that is, the object codes generated by this compiler were executed 

on a Windrush 6809 based machine.

5.3 M u lti-N od e Configuration

The best test would have been to use a large off-the-shelf program in order to 

measure the usefulness of the compiler’s technique for detecting parallelism. There 

were several fundamental limitations that did not allow such tests to be carried out:

• The compiler is a prototype and does not have all the necessary library and 

run-time support which may be required for a large complex program. In the 

given time frame, it was not realistic for one person to develop a complete pro­

duction compiler and run-time environment, from scratch, quite apart from 

the extra sophisticated functionality of parallelism detection. It was under­
stood from the beginning that the aim was to prove certain ideas for paral­

lelism detection and not to come up with a complete Pascal compiler. There 

already exist powerful sequential compilers for Pascal.

• In the thesis much emphasis is put on the possibility of existing software 

benefiting from parallel processing. Even if the compiler were able to compile
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a large application program without any problem it is no measure of the 

effectiveness of the compiler if the end result of compilation of such a program 

is a program with little parallelism or even no parallelism. In short, the 
parallelism detection can only work if there is inherent parallelism in the 

application program. Also, due to the bus allocation technique used in the 
hardware, it could be the case that a parallel version of an application would 

run slower than the sequential form of the same program.

• The hardware platform for which the compiler was designed has never been 

completed. It is impossible to have a meaningful test without the hardware 

or a simulator.

• Even if the hardware were complete, because of its limitations, which are 
discussed in detail in the subsequent pages, it would not be possible to run 

any useful program on this hardware anyway.

• The compiler generated 6809 assembly code. It is not feasible to look at a 

large set of assembly code and discover the amount of parallelism detected. 

Even if this were possible, the only way to be sure that the generated code is 

correct would be to execute the program on the parallel processing platform. 

There are complex issues like timing and communications which can only be 

tested by using the real hardware and not by looking at the assembly code. 

Due to timing sensitivity even a simulator would be unsuitable to verify the 

correctness of the generated code.

In view of the above, a realistic example is discussed here, in detail. It includes 

a description of all the major steps that the compiler would take to arrive at the 
parallelised code.

Later on, some small test programs are also considerd. The small examples show 

that any large program containing those constracts would benefit from the paral- 
lelisation offered by this technique. Because the examples are small it is feasible to
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look at the generated code and gain some level of confidence in both the correctness 

and the effectiveness of the compiler.

5.3 .1  A  W orked E xam ple

Consider the following sequential Pascal-S program which approximates f£=a(x2 +  

x + S)dx,  where a and b are values supplied by the user, by evaluating £(($ +

i8)2 +  x +  i8 +  8), where 8 =  (b — a ) /10000.

program a r e a ( in p u t ,  o u tp u t) ;  

co n s t  s te p s  = 10000;

v a r  a , b ,  a re a ,  d e l t a ,  i ,  s t r i p ,  funcva l : i n t e g e r ;  

beg in

w r i t e ln  (" P lea se  in p u t th e  va lue  of upper and lower 

r e a d ln  ( a ,b ) ;

area := 0;

d e l t a  := (b -  a) /  s te p s ;  

w r i t e l n ( " i t e r a t io n  step  

f o r  i  := 1 to  s te p s  do 

begin

w r ite  ( i ) ;

fu n cv a l := (a ** 2) + a + 8; 

s t r ip  := fu n cva l * d e lta ;  

a := a + d e l ta ;  

area := area + s t r ip ;  

end;

w r ite ln ;

w r i t e ln  ("The approximate va lu e  of 

end.

bounds"); {1}  

{2} 

{3}  

{4 } 
{5} 

{6}

{ i>

{ i i >

{ i i i }

{ iv>

{ v>

{7}
area = ", a rea );  {8 }
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There are 5 steps to be taken by the compiler:

S tep  1:

The front-end of the compiler generates a syntax tree representation of the program 

and ensures that the source is correct syntactically.

The syntax tree is transformed so that all the logically related statements are 

grouped together in the form of a list-of-lists (shown below). This is passed to 
the paralleliser.

C
[w r ite ln  [P lea se  input upper and lower bounds]]

[read ln  [a , b]]

[area  := 0]

[ d e l t a  := [b -  a] /  10000]

[w r ite ln  [ i t e r a t i o n  s t e p s ] ]

[ f o r  i  := 1 to  10000 

[ [w r ite  i ]

[fu ncva l := [ [a  ** 2] + a + 8 ]]

[ s t r ip  := [funcval * d e l t a ] ]

[a := [a + d e l t a ] ]

[area := [area + s t r i p ] ] ] ]

[w r ite ln ]

[w r ite ln  [The approximate va lu e  o f  area = , area]]

]

S tep  2

Automatic generation of a Petri net model of the program begins by looking at each 

statement of the program in turn; starting with the first one which is independent of 

anyother statement. For each of the blocks in the list-of-lists the input and output 

variable sets are computed. For example, the input and output variable sets to
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blocks 4 and 6 are:

IN (4) = (b, a) IN (6) = (a , area , d e l ta )

OUT (4) = (d e l ta )  OUT (6) = (a ,  area , fu n c v a l ,  i ,

s t r ip )

In turn, for each of the blocks in the list-of-lists a transition is created and connected 

to the appropriate places. Now let’s consider each block of the above list and 

generate the net:

block 1

Empty input and output variable sets; independent of anyother statements and 

therefore its transition is connected to place 1:

block 2

Empty input but output set contains variables a and b; similarly this block is 

independent of anyother statements too:
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block 3

Empty input but output set contains variable area; independent of anyother state­
ments:

i
j

block 4

The input variable set contains variables b and a. Note that s tep s  has been re­

placed by its value which is 10000. The output set contains variable delta which is 

depependent on block 2:
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block 5

Empty input and output sets; independent of any other statements:

3

block 6
The whole of for loop is considered as one block at this stage. It is depependent 

on blocks 2, 3 and 4. Note that because block 4 itself is dependent on block 2, 

dependence of this loop on block 2 is ignored:

3

6



141

blocks 7 and 8
Similarly for the last two blocks:

S tep  3

At this point the constructed net is executed and a multi layered parallelised code is 

generated. The parallelised code does not contain any communication information 
at this point:

The execution begins with looking at all the transitions which are connected to 

place 1. Transitions 1,2,3 and 5 are removed from the network and are added to 

layer 1. A token is put in the places of all the removed transitions which have one. 

The token from place 1 is removed. At this point all transitions connected to place 

2 or place 3 or both are ready for firing. The list contains only one transition which 

can be fired, transition 4. So the next layer contains only one statement, i.e no 

parallelism. Similar to the previous stage the token (from place 2) is removed and 

a token to place 4 is added. The token list now contains 3 and 4 which means that
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only these two places.contain tokens. Transition 6 is the only one which can now 

be executed followed by transition 8. The result is that only the first layer contains 

parallel paths with the remaining part of the code being sequential. However, as 

will be seen later the loop itself can offer some parallelism which will be investigated 

at the allocation phase.

C
[

[w r i te ln  [P lea se  input the  va lu e  of upper and lower bounds]] 

[read ln  [a , b]]

[area  := 0]

[w r ite ln  [ i t e r a t i o n  s t e p s ] ]

[w r i t e ln ] ]

[
[ d e l t a  := [b -  a] /  10000]]

[
[ f o r  i  1 to  10000 

[ [w r i te  i ]

[ fu ncva l := [ [a  ** 2] + a + 8]]

[ s t r ip  := [funcva l * d e l t a ] ]

[a := [a + d e l t a ] ]

[area := [area + s t r i p ] ] ] ] ]

[
[w r ite ln  [The approximate va lu e  of area -  , a re a ]] ]

]

As can be seen from the output above there are 4 computational layers where the 

last 3 layers each contain one block of code.

S tep  4

Starting with the first layer, the elements of each layer is looked at in turn and is
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allocated to a particular processing node. The allocation is in 4 phases: 

phase 1:
Initial receive and send primitives are added to each block. The numbers merely 

represent the block numbers. This phase ensures that antidependence is resolved.

[
[

[ [ r e c e iv e ]  [w r ite ln  [P lease  input t h e . . . ]  [sen d ]]]

[ [ r e c e iv e ]  [readln  [a , b] [send 4 ,  6 ] ] ]

[ [ r e c e iv e ]  [area := 0] [send 6]]

[ [ r e c e iv e ]  [w r ite ln  [ i t e r a t i o n  s te p s ]  [sen d ]]]

[ [ r e c e iv e ]  [w r ite ln ]  [ sen d ]]]

[
[ [ r e c e iv e  2] [d e l ta  := [b -  a] /  10000] [send 6 ] ] ]

[
[ [ r e c e iv e  2 3 4] [ f o r  i  := 1 to  10000 

[ [w r i t e  i ]

[ fu ncva l := [ [a  ** 2] + a + 8 ]]

[ s t r i p  := [funcval * d e l t a ] ]

[a := [a + d e l t a ] ]

[area  : = [area + s t r i p ] ] ] ]  [send 8 ] ] ]

[
[ [ r e c e iv e  6] [w r ite ln  [The approximate va lue  o f  area = , area]]  

[ s e n d ] ] ]

phase 2:
This phase has 5 essentials steps:
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1. If the block contains I/O  then re-order the parallelised code to enforce flow 

dependence.

2. compute the combined effect of LF and CF for each procesor if the current 

block was to be assigned to it.

3. find the processor with the least combined load and mark it as current pro­

cessor.

4. assign the block to the current processor.

5. update the work load table.

For assigning the first block it always starts from processor 1. All I/O  statements 
are assigned to processor 1 in the order that they appear in the program irrespective 

of detected parallelism. The work-load of each processor is 0 at the begining.

For this example, firstly the parallelised code is re-ordered and block 7 is moved to 

layer 3.

The parallel paths are then allocated as shown below. Each list contains the work­
load of one processor.

C
[ [ r e c e iv e ]  [w r ite ln  [P lease  input t h e . . . ]  [ s e n d ]] ]

[ [ r e c e iv e ]  [read ln  [a , b] [send 4 ,  6 ] ] ]

[ [ r e c e iv e ]  [w r ite ln  [ i t e r a t io n  s te p s ]  [s e n d ]] ]

[ [ r e c e iv e  2 3 4] [ f o r  i  := 1 to  10000 

[ [w r i te  i ]

[ [ r e c e iv e  6-2] [ s t r ip  := [funcva l * d e l ta ]  [send ] ]

[area := [area + s t r i p ] ] ] ]  [send 8 ] ] ]

[ [ r e c e iv e ]  [w r ite ln ]  [ sen d ]]]

[ [ r e c e iv e  6] [w r ite ln  [The approximate va lu e  of area = , area]]  

[ s e n d ] ] ]
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]
[

C [receive] [area := 0] [send 6]]

[ [ r e c e iv e  2] [ d e l t a  := [b -  a] /  10000] [send 6 ] ] ]

[ [ r e c e iv e  2 3 4] [ f o r  i  := 1 to  10000

[ [ r e c e iv e  ] fu n cv a l := [ [a  ** 2] + a + 8] [send 6 -3 ] ]

[a := [a + d e l t a ] ]

]

Note that the for loop is analysed during its allocation, blocks (ii) and (iv) have 
forward dependence and are allocated to the same processor.

phase 3:
This phase re-orders the work-load of any procesor if due to the actions of previous 

phase a crossed-receive has been generated (not applicable to this example). For 

example, if in a particular processor load there is the following:

[
some code

[ [ r e c e iv e ]  a := 2 [send 8]]  

some other code 

[ [ r e c e iv e ]  a := 5 [send 12]]

[ [ r e c e iv e  8] b := a + 3 [send]]  

more code

]

Clearly, the second statement must be moved after the third one in order to create 

the correct flow dependence in the sequential code.

[
some code
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[ [ r e c e iv e ]  a :=-2 [send 8]]  

some more code

[ [ r e c e iv e  8] b := a + 3 [send]]

[ [ r e c e iv e ]  a := 5 [send 12]] 

more code

]

'phase 4-
The final phase of the allocator is to insert the variable names and type for each of 

the receive lists and also to change the block numbers to corresponding processor 

numbers. For this example the following will be generated:

[
[ [ r e c e iv e ]  [w r ite ln  [P lea se  input t h e . . . ]  [ sen d ]] ]

[ [ r e c e iv e ]  [read ln  [a , b] [send 2 var a in t e g e r ,  2 var b in t e g e r ] ] ]  

[ [ r e c e iv e ]  [w r ite ln  [ i t e r a t i o n  s te p s ]  [sen d ]] ]

[ [ r e c e iv e  2 area var in te g e r ,  2 d e l t a  var in te g e r ]  [ f o r  i  := 1 to

10000

[ [w r ite  i ]

[ [ r e c e iv e  2 var fu n cva l in te g e r ]  [ s t r i p  [fu ncva l * d e l ta ]  [send]]  

[ [ r e c e iv e ]  [area := [area + s t r i p ] ]  [send]]

[ [ r e c e iv e ]  [w r ite ln ]  [sen d ]]]

[ [ r e c e iv e  6] [w r ite ln  [The approximate va lue o f  area = , area]]  

[ s e n d ] ] ]

]
[

[ [ r e c e iv e ]  [area := 0] [send 1 var area in t e g e r ] ]

[ [ r e c e iv e  1 var a in t e g e r ,  1 var b in te g e r ]

[ d e l ta  := [b -  a] /  10000] [send 1 var d e l t a  in t e g e r ] ] ]  

[ [ r e c e iv e  ] [ f o r  i  := 1 to  10000
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[ [ r e c e i v e . ]  fun cva l := [ [a  ** 2] + a + 8] [send 1 var fu n cv a l

in t e g e r ] ]

[a := [a + d e l t a ] ]

]

Note that certain variables that are input to a loop body are only communicated 

once at the initiation of the loop. For example, variables area  and d e l ta  are only 

communicated once from processor 2 to 1 just before the loop body. Also note that 

variable a required by the loop body of processor 2 is not communicated. This is 

because an earlier statement has already received its latest value as part of its input 

variable set.

S tep  5:

This is the last step that the compiler takes. Here the translator translates each 

processor load in turn and writes each output to a separate file. Appendix G gives 

the output of the compiler for each of the processors.

5 .3 .2  P arallelism  D etec tio n  for A ssign m en t S ta tem en ts

The following assignment statement examples were given to the compiler:

E xam ple  1 :

Source code

a : = 2 + 3;

b := a + aconst;  

c := a * b -  b;

Comments:

No parallelism is detected. The translated 6809 assembly code is allo­
cated to node one only.
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R equired  processor, cycles  

203

E xam p le  2:

Source code

a := 2; 

b := 3; 

c := a + b;

Output:

processor 1 processor 2 
a := 2; b := 3;
receive b2 send b
c := a +  b;

Comments:

Tow parallel paths were detected in the first layer with the second layer 
only having one instruction. Maximum of two nodes could be used.

R eq uired  processor cycles

85

E xam ple 3:

Source code

a := 2 ; 

b eg in

b := 3; 

c := a + b; 

end;



149

Comments:

No parallel paths were detected due to the grouping. The translated 
code was allocated to node one.

R eq uired  processor cycles

94

E xam p le  4:

Source code

1 a := 2;

2 b := 3;

3 c : = a + b;

4 a : — 3;

5 b := 4;

6 d : = a -  b ;

Output:

processorl processor2 processor3 processor4
a := 2; b 3; a := 3; b := 4;
receive b2 send b receive b4 send b
c := a +  b; d := a - b;

Comments:

First layer of the parallel code includes statements 1,2 , 4, 5. The second 
layer has two parallel paths, including statements 3, 6. Having more 
than 4 nodes has no effect on the allocation and parallelism exploitation.

R eq u ired  processor cycles

95
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E xam p le  5:

Source code

a := 2; 

b := 3;

c := a * b + d;

Output:

WARNING: d is referenced before being assigned to.

Comments:

User is warned against the use of variable d, which is not initialized 
elsewhere before referencing.

Discussion:

•  S ingle sta tem en ts

In the above series of test examples the compiler was able to detect all the 
parallel paths at any given layer. Communications of variables were consistent 

with the criteria of allocation according to the number of nodes in the system. 

The maximum number of parallel paths were observed to be detected, while 

the number of available processors in the system was only effective in the 

allocation phase. During parallelism detection, one of the byproducts was the 

identification of statements that reference uninitialized variables. Appropriate 

warnings were given when such statements appeared in the program. These 

statements could not be allocated until corrective measures were taken by 

the user. Uninitialized variables in programs can give unpredictable results 
on sequential machines, while their effect in parallel systems can be more 

drastic.
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• B locks

An interesting observation of the results was the effect of grouping a number 

of assignment statements together by means of beg in-end primitives. This 

forced the group to be treated as a single block. It meant that even if one of the 

statements in the block was dependent on any statement outside, but before 

the block, then it would prohibit any parallel execution of other statements in 

the block which may be independent of a statement outside the block. This 
phenomenon would limit the number of maximum parallel paths which exist in 

the source code, however, it may help the programmer in certain situations to 

have some degree of control. In other words, the standard Pascal begin-end 

primitives work in the same way as the extended parallel Pascal’s par-beg in  

and par-end primitives as far as this compiler is concerned.

One of the most important tests performed was to see the effect of the number 
of processing nodes in the system on the scheduling of a test program. It was 

observed that if the number of nodes in the system is more than the number of 

maximum parallel paths in the program then those extra nodes will not be used 

unless they can be utilized for finer grain parallelism. Reduction of nodes in the 

system has the effect of reducing the overall communication overhead but increasing 

the workload of the remaining processing nodes in the system. The reduction in 

communication overheads due to the decrease of available processing nodes is not 

linear and in most cases it should be avoided by using the maximum number of 

nodes in the system. This is due to the fact that communication in MINNIE is 

based on associative addressing and therefore a single bus broadcast of a data item 

can reach many destinations at once. However, this is application dependent and 

fine tuning may be required to determine the optimum number of processors. The 

best and most accurate way to establish this optimum number is to use a simulator 

and execute the particular application program on the simulator using the output 

of this compiler for different node settings. By measuring the execution times and 

comparing them the optimum configuration could be deduced for any application 
program.
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5 .3 .3  F O R  L oops

Loops are by far the most important section in any program and can lead to a 

substantial amount of parallelism and reduction in execution time. The following 
tests were carried out to show that parallelism in For loop constructs would be 

automatically detected by the compiler.

E xam ple Is

Source code

read ln  (n ) ;

fo r  i  1 to  n do

a := ra n d (i)  + i  * 2;

Comments:

The upper bound of i, the loop control variable, is unknown at compile 
time therefore no parallelism was detected and ordinary sequential code 
generated for node 1.

R equired  processor cycles

31 +  83 per iteration.

E xam p le 2:

Source code

fo r  i  := 1 to  10 do do 

a := ra n d (i)  + i  * 2 ;

Comments:

The bounds of variable i  were known at compile time. A maximum of 
ten processors can participate in the parallel execution of loop iterations.
Table 5.2 gives the iteration space of each node according to the number 
of processors available.
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R equired  processor cycles

31 +  83 per iteration. For a 10 node system the total processor cycle would be 114.

number of processors iteration space allocated to each node
1 node one doing all 10 iterations
2 nodes 1 and 2 each doing 5 iterations
3 nodes 1 and 2 doing 3 and node 3 doing 4

10 each node doing one iteration of the loop.

Table 5.2: Allocation of iterations of a parallelised fo r  loop in a multi-node system

E xam ple  3:

Source code

fo r  i  := 1 to  n do 

begin

a a + i ;  
b : = b - i ;  

end;

Output:

processorl processor2
for i := 1 to n do for i := 1 to n do 

a := a -f i; b := b - i;

Comments:

The value of n is unknown at compile time, but there exists two parallel 
paths in the loop body and no forward dependence. The value of n is 
communicated to either of the processors 1 and 2 or one of them as the 
case may be.
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R eq u ired  processor cycles

31 4- 142 per iteration. In the parallel form, 31 -f 86 per iteration.

E xam p le  4:

Source code

f o r  i  := 1 to  n do

begin

c := c -  i ; 1

a := b + i ; 2

b : = a /c ; 3

end;

Output:

processorl processor2
for i := 1 to n do for i := 1 to n do
begin begin

a := b -f i; c := c - i;
receive c send c
b := a / c; 

end; end;

Comments:

Two parallel paths exist in the first layer of the loop body. Forward 
dependence exists between statement 2 and 3. Two processing nodes 
can be effectively used. Forward dependence forces the allocator to 
keep statement 2 and 3 on the same node.

R eq u ired  processor cycles

31 4- 195 per iteration. In the parallel form, 31 4- 158 per iteration.

E xam p le  5:

Source code
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fo r  i  := 1 to  n do 

begin

a := a + i ;

b := b -  i ;

i f  a + b > 8 then goto la b e l

end; 

la b e l :

Comments:

Loop body contains transfer of control statement therefore no paral­
lelism detection is carried out and sequential code was generated.

Discussion:
The above tests were designed to show that the compiler is capable of detecting 

parallelism inside loop bodies and utilizing them effectively. At a higher level the 

compiler detects conditions where a loop can be executed in parallel with other 

loops and blocks, see section 5.3.4. The tests showed the ease with which the 

Petri net modelling technique detected parallelism both inside and outside loop 

constructs. Two types of parallelism were exploited by the compiler and are shown 

by the sample tests (examples 2, 3). Another test (example 4) shows how forward 

dependencies are treated by the allocator part of the compiler and how it eliminated 

the extra communication overhead.

L im itation s o f  “For” Loop T ests

Limitations of the hardware and its time of completion prevented a full test of the 

actual codes generated by the compiler. These limitations are particularly evident 

when considering a piece of code containing loop constructs or any piece of re-entrant 
code.
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In the present form of.the machine, each node has four input (receive) registers and 

one output (send) register. The source address of the first four data items to be 

received by a node are loaded in their respective receive address registers at load 

time. There are two main limitations which hindered a proper test of “For” loop 

constructs:

• The first limitation is that if a node is to receive two or more data items 

from another node then when the first item is sent by the source, two or more 

copies of the data are taken by the receiving node’s interface. The receive 

action generates an interrupt which activates a service routine. The routine 

clears the flags of registers that have just received a data item to indicate the 

end of their functionality; that is, when the second data item is broadcast by 
the sender the receiving node will not copy it as it assumes that it has already 

been received. This would lead to loss of some data in these situations. The 

solution is either to change the function of the interrupt service routine or at 
run-time to re-write the source address in the receive address register after 

the first data has been received.

Wiht the first suggested solution, the interrupt service routine would avoid 

changing the flags and hence on both occasions two copies of the data will be 

taken by the interface of the receiving end. Using two registers for receiving 

two separate data items from the same node then becomes unnecessary pro­

vided there is a receive register for each node of the system and the interrupt 

service routine adds each received data to the end of a queue depending on 
the source address. This will eliminate the need for writing the source of data 

items to registers at run time. As a result, a node expecting data from another 

node will try to read the data from the head of the queue associated with the 

source node. An empty queue will indicate that the data has not arrived yet 

and leads to idling. The processing will resume when the data is in the queue, 

ready for consumption.

In the second suggested solution, the user program environment on each node
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must set the receive flags of all its registers receiving a copy of the same data 

item to f a ls e  (data not received) after being set to tru e  by the communica­

tion interface. In order for the user program to be aware of the actual received 

data the interrupt routine must copy the received data to a pre-defined lo­

cation prior to resetting the receive register flags to fa ls e .  This will ensure 
that arrival of the subsequent set of data will not corrupt the previous data 
before being used.

• The second limitation in the present form of the hardware manifests itself 

when a node needs to receive more than four pieces of data. By loading 

the receive address registers at run-time it is possible to receive more than 

four data items. Consider the case where a data item has to be received 

by a particular node after the execution of a loop body. Before the node is 

able to receive the data one of its receive address registers must be loaded 

with the data source address. The execution time of the loop body may be 

dependent on the runtime environment. Thus, the sending node may get to 

a position that it is able to send the data but the receiving end has not been 

able to load its receive address register with the correct data source address. 
The data will be lost in this case. There are methods that try to anticipate 

the execution time of various pieces of code and introduce delays in order 

to synchronize the exchange of data between sending and receiving nodes to 

avoid data loss. Although these methods reduce the possibility of such data 

losses, they are not hundred percent accurate as a lot depends on the run­

time environment and the exact input values. In order to guarantee repeatable 

and predictable results data communications must be made independent of 

the run-time environment. This necessitates modifications to the hardware. 

As seen above, the best solution is to have (n -1) receive registers per node 

and a data queue per receive register, where n is the number of nodes in the 
system.
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5 .3 .4  M ixed  A ssign m en t and “For” Loop S ta tem en ts

The following programs containing a mixture of assignment and For loop constructs 

were submitted to the compiler:

E xam p le  1:

Source code

a := 2 + a; 
b := b - 2 ; 

f o r  i  := 1 to  10 do 

c := c + i ;  

d := a + b + c; 
r  : = d * d / b * 2 ;

Output:

processorl processor2 processor3
a := 2 +  a; b := b -2; for i := 1 to 10 do
receive b send b c := c +  i;
receive c send c;
d := a +  b f  c; 
r := d * d /b  * 2;

Comments:

Parallelism detection generated three layers of parallelism. First layer 
had three parallel paths; the first layer including the fo r  loop. The loop 
itself did not offer any parallelism inside its body due to the dependence 
of iterations on each other. Layers two and three had one statement 
each, indicating sequentiality.

R eq u ired  processor cycles

1230 in the sequential mode. For the parallel code 1064.
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E xam ple 2:

Source code

a := a + 2;

b := b -  2;

f o r  i  := 1 to  n do

begin

c i  * b;

d := d /  i ;

e c + d + e;

end;

f  := e * 2 -  a;

Output:

processorl processor2
a :=  a +  2; b := b - 2 ;
receive b send b
for i := 1 to n do for i := 1 to n do
begin begin

c := i * b; d := d /  i;
receive d send d
e := c +  d -f e; 

end; end;
f := e * 2 - a;

Comments:

First layer has two parallel paths, statement one and two. Second layer 
holds the for loop. The loop body itself was parallelized as shown in 
the output below. Third layer has no parallel paths and contains only 
statement four.

R equired  processor cycles

244 +  240 per iteration. For the parallel code 208 +  210 per iteration.
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Discussion:
The main aim here was to show that the compiler could cope with a mixture of 
statements. It had to detect the parallelism in the overall main body, as well as 
within the loop bodies. The results of the experiment showed that it achieves this 

goal and works as expected. Individual constructs were tested in the previous sec­

tions and these tests confirmed that no side effect is created by using a combination 

of pascal language constructs.

5.4 Fine Grain Parallelism  D etectio n  Test

Specification for this part of the compiler was laid down in the previous chapter. 

Here the tests were simply to confirm that those specifications were met and the 
detection and allocation strategies were adhered to.

Below are some of the test programs which were used to demonstrate that fine grain 
parallelism was correctly utilized by the compiler:

E xam ple 1:

Source code

a := 2 + 3 + 4 + 5 + 6;

b := 7 * 8 /  9;
c := 7 * 8 -  9 /  3;

Output:

processorl processor2 processor3 processor4
a := 2 +  3 +4 +5 +  6; b := 7 * 8 /  9; 7 * 8  9"7"3

receive #  send #
c := #  - # ;

Comments:
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There are three.parallel paths at statement level. Sufficient number of 
processors exist for using fine grain parallelism. The first expression can 
offer low level parallelism only by user assistance and the second expres­
sion is simply unsuitable for this purpose. However, the third expression 
was marked as suitable for expression level parallelism and the correct 
communication code was generated by the compiler for communicating 
the result of sub-expressions between nodes.

E xam ple  2:

Source code

a : = 2 ;

b := 3 * 4 + 20 /  5 + 3;
c := a + b;

a * ~ 3; 
b := 4; 

d := a -  b;

Output:

processorl processor2 processor3 processor4
a := 2; b~:= 3 * 4  +  2 0 / 5  +  3; a := 3; b := 4;
receive b2 send b receive b4 send b
c := a +  b; d := a - b;

Comments:

As the number of processors specified (4) was not more than the num­
ber of parallel paths found at the statement level therefore fine grain
parallelism was not utilized by the compiler.

E xam ple  3:
Source code
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a := (2 + 3) +. (4 + 5) + 6 ;

b := 7 * 8 /  9;

Output:

processorl processor2 processor3
2 +  3 b := 7 * 8 /  9; 4 +  5
receive #  send #
#  + #  
a 7̂  +  6

Comments:

The first expression which was found unsuitable for fine grain parallelism 
previously offered fine grain parallelism after using some brackets to 
regroup sub-expressions together.

E xam ple  4:

Source code

fo r  i  := 1 to  10 do 

begin

a := a * i  + a ** i ;  

w r ite ln  ("a = " , a ); 
end;

Output:
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processorl processor2
for i 1 to 10 do 
begin 

send a 
a *  i
receive #  
a := #  + #; 
writeln(”a =  ”, a); 

end;

Comments:

Processor 2 is exclusively assigned in performing fine grain computation 
for node 1. Value of variable a is communicated before each iteration of 
the loop.

Discussions:
There were four critical areas that needed to be fully tested:

1. Statements that do not offer fine grain parallelism must be marked as un­

suitable for parallel execution and thus translated correctly for a single node 

computation. Conversely, suitable expressions must benefit from fine grain 

parallelism. If low level parallelism is used then the compiler generated com­

munication code must be correct (example 1).

2. Expression level parallelism must be ignored if there are insufficient num­
ber of processors to meet the number of parallel paths in the medium grain 
parallelism (example 2).

3. Re-arranging certain expressions must increase the potential for exploiting 

fine grain parallelism (example 3).

4. If possible, suitable expressions inside loop bodies must benefit from fine grain 
parallelism. The result of each sub-expression must be correctly communi­

cated for each iteration of the loop (example 4).

for i := 1 to 10 do 
begin

receive a 
a ** i 
send #

end;
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The concept of co-processors for fine grain parallelism exploitation was discussed 

earlier. The tests showed that only if there are more processors in the sytem than 
the maximum number of parallel paths in the source code the compiler tries to 
exploit finer grain parallelism.

The longest branch of any expression tree was allocated to one of the nodes that 

participated in the coarse grain parallel execution of the program. The rest of the 

tree (sub-expression) was further divided for allocation on the nodes assigned for 
fine grain parallelism according to the same longest branch criteria. This part of 
the fine grain parallelism detector and allocator was proved to be acting correctly 

and no problems were observed.

Experiments showed that by moving operators with higher priority to the front of 

the expression, more of the fine grain parallelism inherent in the expression could 

be detected and used. This is simply because of the way trees are constructed by 

the compiler. This calls for some re-arrangement of the large expressions by a user 

to maximize fine grain paralleism.

Careful study of the generated code showed that the communication between sub­

expressions were correct and consistent with the algorithm presented in chapter 3. 

Decomposition of expressions ensured minimum amount of communication overhead 

relative to the amount of parallelism gained.

Detection of fine grain paralleism for large expressions inside a loop body was also 

experimented by using the compiler. It duplicated the control structure of the loop 

for the evaluation of the subexpressions on the coprocessors. This ensures that 

every iteration of the loop receives the result of a subexpression evaluated for that 
iteration from a coprocessor participating in the evaluation of that expression. The 

generated communication codes corresponded with the theoretical expectations. A 

point to be born in mind is the effect of using fine grain parallelism in loop bodies. 

It can lead to delays in evaluating other subexpressions whose result is required by 

other nodes than those executing a loop construct due to the number of iterations
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in the loop. Unless a system has a very large number of processing nodes to allow 

a very thin distribution of fine grain parallelism it is advisable not to use fine grain 

parallelism inside a loop body.

5.5 Benchm ark

For benchmarking this compiler, in its sequential mode, a number of test programs 

were used. The same tests were carried out on another 8 bit machine (BBC) using 

its ISO Pascal compiler. The tests were designed to gauge the following additional 
criteria by which a compiler can be appraised. There was no access to a commer­
cially available compiler for Pascal for micros based on 6809 processor to conduct 

a more accurate comparison and basically to compare like with like.

• Automatic parallelism detection:

The ISO Pascal compiler does not offer any parallelism detection of the source 

program.

• Compactness of the generated code:
The benchmark results compared very closely in favour of the ISO pascal 

compiler. This could be due to different clock rates and processor types and 

the quality of the generated code although there is no way of proving this.

• Quality of error detection and messages:
All the errors detected by the ISO Pascal compiler were detected by this 

prototype compiler too. Of course the tests were not exhaustive and more 

comprehensive tests are required.

• Availability of optimisation facilities:
A  reachability study for elimination of dead code is carried out by this com­

piler. There was not enough data on any optimization that the ISO Pascal 
compiler may carry out.
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• Warning on uninitialized variables:

If a variable is not initialized by the user program before referencing it the 
parallel compiler then issues a warning message. That is, the compiler does 
not initialize the variables to zero at run-time.

• Run-time support:

The ISO Pascal compiler has a more comprehensive run-time support and 

a full implementation of the Pascal run-time library. There is a difficulty in 

providing run-time support in distributed parallel systems particularly if there 

is no underlying operating system available.

• Debugging facility:

A simulator for a four node system was written to help in the testing of the 
compiler and for using it as a base for a debugging tool in the future. The ISO 

Pascal compiler did not offer any debugging facility. The Parallel compiler had 

built in switches which would allow a user to examine the parallelism detection 

analysis and to see the grouping of parallel codes during compilation. This 

could be quite a valuable tool in verifying the compiler’s assessment of the 

source code. This tool was developed during compiler’s implementation for 

the compiler’s own debugging.

• Portability of source code:
As the implemented language is standard Pascal without any extensions at 

language or run-time library level therefore the code is portable.

• Compilation speed:

The ISO Pascal compiler was slower in compiling all test programs when 

the parallelizing compiler was used in its single node configuration. When 

the parallelizing mode was selected the ISO Pascal compiler was considerably 
faster.

The major aim of parallel processing is to gain execution speed at run time. Speed of 
execution in parallel processing systems not only depends on how well a parallelising
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compiler can detect the inherent parallelism in the source code, but also on the 

sequential program of the particular application and the speed of the communication 

system used for data transfer. Therefore, the best way to test the performance of 

the compiler is to compare the execution time using one node of the system and then 

using the maximum number of nodes that compiler and the application program can 
effectively use. The gain is not a true representation of the compiler performance as 

the efficiency of the hardware is very influential. The two measured times can give a 

ratio for speed up, which is application dependent. This ratio can then be compared 

with results from other parallel processing systems running the same application 

program.

Two problems were faced in carrying out these comparisons. Firstly, there is not 

any commercially available Pascal parallelizing compiler for comparison purposes. 
Secondly, due to limitations of the machine and the time by which it was developed 

it was not possible to carry out any realistic test using the actual hardware. These 
limitations are fully documented in section 5.3.3.

An application program is statically configured by the compiler to use a predefined 

set of processors. Therefore, to establish the effect of using extra processors on 

the execution time of an application it is essential to recompile the sources for 

any particular hardware configuration. It is anticipated that the execution time 
decreases almost linearly at first, by using more processors, and then to tail off 

upon reaching a maximum depending on the application. The implication is that 

in some cases this maximum might be 1. That is, no execution speed up can be 

achieved by having more than one available processor. The fine tuning only requires 
a simple recompilation and execution of the user program on different number of 

processors to determine the most cost effective hardware set up.
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C h a p ter  6 

C on clu sion s and  F uture W ork

6.1 C onclusions

A compiler with parallelism detection features was devised to accept sequential pro­

grams and generate object codes for parallel machines. A Petri net of the source 

code is constructed automatically and then executed to reveal all parallel paths. 
This results in a multi-layered internal representation which can be equally easily 

mapped onto a data flow or MIMD architectures. A scheduler generates inter-node 

communication instructions for executing the multiple object codes on a parallel 

machine. Other features devised during the design and implementation of the com­

piler included table-driven analysers easily adaptable to cope with different source 

languages, a new algorithm for manipulating symbol tables and the introduction of 
the co-processor concept for implementing fine grain parallelism.

1. The use of Petri net in modelling sequential programs and consequently de­

tecting parallelism in the sequential code proved to be a success. The Petri 

net model generated by the compiler is executed to detect parallelism in the 

software. The algorithm for executing the generated Petri net was easily im-
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plemented. As a by-product it enabled the compiler to detect any reference to 

uninitialised variables in the user program. Previously, Petri nets have exten­

sively been used for the design of parallel systems but not for the extraction of 

parallelism from existing sequential software. In addition to showing the flow 

of data in a program Petri nets also model the flow of control in a program 

quite easily. The resulting model can be mapped onto data flow or MIMD 

architectures.

2. The compiler creates a multi-layered parallel version of the original sequential 

code. Communications are only present between adjacent layers and all blocks 

within a layer are totally independent of each other and can therefore be 

executed in parallel. This internal representation of a program is completely 

independent of the allocation scheme used for MIMD architectures. All inter­

layer communications consist of pure data flow between the layers. This has 

the advantage that the representation mimics the data flow between the levels 

of an equivalent data flow graph. Thus, by using an interface the output of the 

compiler can be mapped to a particular data flow architecture; the interface 
providing the required cells and structures.

3. Fine grain parallelism detection was based on using the longest branch of 

an expression tree. The result of this method is a reduced communication 

overhead. The compiler only attempts to use fine grain parallelism if there 

are more processors in the system than parallel paths at the medium grain 

level.

In order to reduce the possibility of communication delays while using finer 

grain parallelism the concept of co-processors was introduced. Theoretical 

analysis showed that only systems with large numbers of processors are suit­

able for exploiting fine grain parallelism. However, a special mechanism is 

needed to overcome the large overheads of inter-node communications, which 

is available, in this case (MINNIE), through the associative addressing tech­

nique.
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4. Parallelizing and scheduling a user program results in the generation of several, 

one per node, high level intermediate codes. These codes are then translated 
to suitable assembly codes using relevant translators. This modular approach 
facilitates processor independent analysis of the source code and allows the 

mixing of different processors in a particular system configuration. One benefit 

is that more specialised processors can easily co-exist with other types of 

processors in a system.

The number of available processors is a user supplied parameter. An ap­

plication program is statically configured at compile time for the number of 
available processors in the system. Re-configuration for a different hardware 
set up involves a simple re-compilation only.

5. For scheduling, the allocator uses the internal representation of the applica­

tion program. It generates workfiles for each node to include the code and 

communication requirements of a particular node, both of which are inde­

pendent of processor type. These workfiles are suitable for mapping to any 

distributed memory MIMD machine. The problem of multiple assignment is 

normally dealt with by renaming the variables which has its own weakness as 

it prevents the full exploitation of the parallelism in source programs. In this 

thesis, the combination of algorithms for parallelism detection and scheduling 

eliminate the multiple assignment problem directly and hence the disadvan­

tages associated with variable renaming do not arise.

The allocator proved to be a complex piece of software to implement. It has to 

cope with alteration in the communication structure of a parallelized program. 

The ability to modify communication structures ensured that optimum results 

could be achieved while scheduling for MINNIE. Load balancing is achieved 
by keeping a ratio between computational and communication load of any 
given processor.

6 . Storage of variables was based on the commonly used stack frame method; 

each node has its own stack frame. A common problem in distributed memory
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parallel systems-is the difficulty of using recursion. With the distributed stack 

frame method used recursive constructs in a parallel mode are possible.

7. Although the compiler can detect the inherent parallelism in a piece of sequen­
tial code, suitable algorithmic changes in the program or fine tuning by the 

user can maximise parallelism utilization, i.e., the amount of parallelism dis­

covered by the compiler is application dependent. Clearly, programs designed 

with parallelism in mind have inherently more detectable parallelism.

8 . During the development process a new algorithm for storage and management 

of symbol tables was devised. The method is applicable to languages with 

dynamic variable scoping, like Pascal, and less sophisticated languages like 

Fortran. The technique is based on sparse dynamic tables which is more 
efficient in memory requirements compared to other methods. It is also very 

fast in storing or retrieving information relative to other techniques. The table 

is an abstract data type and the fact that it is a sparse table is transparent to 

the programmer. Special high level routines were provided for constructing 
and manipulating this table.

6.2 P ossib le Future Work

There are several areas in software and architecture which are amenable to further 
research and development.

Softw are E nhancem ents

Enhancements are seen to fall into two groups: those that extend the concepts 

explored in this thesis (1&: 2) and those (3-6) that are specifically applicable to the 
machine used to test these concepts (MINNIE).
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1. In tegrated  softw are developm ent sy stem

For parallelism detection the compiler creates a Petri net model of an exist­

ing program and then executes the net to extract the parallel paths. This is 

acceptable for recompilation of existing sequential software for parallel ma­
chines.

Development of new parallel programs can also be based on the use of Petri 

nets as a vehicle for software design. In a similar way to Yourdon and Jackson 

packages it should be possible to generate code automatically by suitable 

software development tools based on Petri nets. Such an integrated design 

tool would relieve the compiler from generating the Petri net model of the 
program where this is created by the user himself at the design stage.

2. G eneral P u rp ose  C om piler

The concept of general purpose compilers was put forward. The idea was 
appealing since it could drastically reduce the production cost and the devel­

opment time of compilers for different languages. Subsequently, the front-end 
of the compiler has been made table-driven to create the right framework for 

any future work in this direction.

The existing compiler will not be fully general purpose until all its functional 
units are table-driven. Further work is required to implement a table driven 

back-end and the right interface between the front and the back-end of the 
compiler.

For completeness, research is needed to devise a state automaton for the con­

struction and execution of Petri nets for sequential programs. This state 

machine must construct parallel paths of the input program in the same way 

as performed by the existing net constructor and executor. Having achieved 

these aims the compiler would be fully general purpose. Experiments are then 

needed to test the ease by which the general purpose compiler could be con­
verted for other input languages. The other improvement in this area can be 

the addition of an interface to YACC so that the table generated by YACC
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can be directly used. Alternatively, a parse table generator routine could be 

added to the compiler to increase its independence.

3. D istr ib u ted  op eratin g  sy stem

A vital line of work is the design and development of an operating system 

for MINNIE. W ithout a suitable operating system it is hard to imagine that 

MINNIE could ever become a general purpose parallel machine. The operating 
system could provide the basis for writing fault tolerant software systems, 

dynamic scheduling, load balancing and multiple user process environments.

4. D eb uggin g  too ls

Debugging of software running on even sequential machines is tedious and 

difficult. Debugging of software running on a distributed system is much more 
difficult. Work on the development of a debugger for applications intended to 

run on MINNIE is essential.

5. C om m u nication  library

The basic inter processor communication provided by the hardware is based 
on a single byte of data. Library routines are required which use this low 

level byte based communication to provide higher level communication prim­

itives. The communication library must provide routines for the transfer of 

words (4 bytes) and messages between nodes. The design of the communi­

cation protocols and the implementation of the library routines need careful 
consideration.

6. SIM D  app lications for M IN N IE

Due to the special nature of MINNIE’s communication system, SIMD appli­

cations seem to be very suitable. In particular, all the nodes could be loaded 

with a copy of the program at the same time. The master program could 

broadcast work packets over the bus for processing by any of the processors.
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H ardw are E n h an cem en ts

1. M ore inp ut registers

There is a major limitation in the present form of the hardware (see previous 

chapter for details). This limitation needs to be overcome in order to enable 

users to run meaningful programs. The recommendation is to increase the 

number of input registers of each node to 63 in a 64 node system. Additionally, 

the function of the present interrupt service routine needs to be modified and 
queues used to store the arriving data.

2. Su pport for p ip elined  app lications

Certain applications require pipelining of data between adjacent processors. 
Additional hardware support is required to allow neighbouring nodes to pass 

data to each other without using the data bus. This extension reduces the load 

of data bus for inter node communications. By using double ported RAMS 

neighbouring processors can have some shared memory for exchange of data 

blocks by using block move instructions. This facility would allow large data 
structures to be communicated between adjacent processors more efficiently 
than using the bus.

3. D istr ib u ted  loading

It is envisaged that systems based on MINNIE will have many hundreds if 

not thousands of processors. If all the nodes were to be loaded by using the 

data bus then this process might take an unacceptably long time. Research 

is needed to find ways of using concurrent loading of the image files in each 
node using special hardware support.
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A p p e n d ix  A  

In tr o d u c tio n  to  P e tr i N e ts

A Petri net is an abstract, fromal method of modelling systems. It allows a high 

degree of mathematical formalism to be used in the design of systems in general 

and those exhibiting parallelism in particular.

A .l  H istorical B ackground

The theory of Petri nets was developed by Carl Adam Petri in 1962. In his Ph. D. 

thesis, Petri derived a new way for modelling information flow. In addition to having 

a mathematical representation, the properties of a system could also be illustrated 

by graphical means when using Petri nets. Both the mathematical and the graphical 

models could show the relationships between the components of an asynchronous 

system.

The early works of Petri continued in many directions. Petri himself expanded 
his original theories on the concepts of information flow, resulting in a form of 

general systems theory. The original Petri net theory was concerned with the flow 

of information within a single net only, whereas the general net or system theory is
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concerned with the flow of information between nets.

Research in Petri nets has since branched in two directions, pure and applied net 

theory. The applied net theory is concerned with the applications of Petri nets 

in the modelling and simulation of systems. It considers ways of generating Petri 

nets and developing automatic translators for various net representations. Pure net 

theory, on the other hand, concentrates on the mathematical analysis of nets and 

aspects close to automata theory. The work here is mainly based on applied Petri 

net theory rather than on the more complex mathematical approaches to it.

A .2 P etri N et A u tom ata

Petri nets can be represented using two forms of notations: a formal notation and 

a graphical one. The formal notation describes a Petri net as a mathematical 

structure, mostly used in theoretical studies. The graphical representation is used 

for illustrating the basic concepts. Below is a simple Petri net graph:
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As seen from the diagram a Petri net graph is made of two types of nodes, p laces  

and t r a n s i t io n s .  Places are represented by circles and the transitions with bars. 
Places are connected to transitions with directed arcs and vice-versa.

The graph shows the static properties of the net. In addition, the dynamic prop­

erties of the net could be observed by executing the net model. The execution is 

determined by the black dots or tokens within places (circles). A Petri net with 

tokens is called a marked Petri net. Tokens move through the net by f i r i n g  of 

transitions. In order to fire a transition it must be first enabled. A transition is 

enabled by having a token corresponding to each of its inputs (places connected to 

a transition are its input places). A transition fires by removing the tokens from its 
inputs and depositing tokens into its output places. Notice that for multiple inputs 

from a place to a transition, or vice versa, there must be at least as many tokens as
arcs present in the place. This implies that multiple arcs can exist from a place to
a transition and from a transition to a place. The distribution of tokens in a Petri 
net defines the state of the net and is called its marking.

For the formal representation of Petri nets an extension of set theory called bag 

theory is used. Mathematically a Petri net is a four tuple (P, T, I , O) where P  is 

the finite set of places, T  is the finite set of transitions, I  is the input function and 
finally 0  is the output function. The above definitions can be shown mathematically 
as follows:

p  = {P1?P2, • * • ,Pn} where n > 0 

T  =  {ti,£2» ‘ * * ,tm} where m  > 0 
I  : T  P°° and
0  : T —> P°°

1 and O are mapping functions from transitions to bags of places. A Place pi is an 

input place of a transition t{ if p{ € I{tj)  and pi is an output place if pt- €
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A marking of a Petri net, an assignment of tokens to places, is given by the mapping 

p : P  —» N  and can be defined as an n.vector where n is the number of places:

p -  (pu p2i-- • ,p n)

Each fj,i £ N  is the number of tokens at place i, that is, p(pi) =  f. . This implies 
that a transition tj is enabled if:

p(pi) >

The change in state caused by firing a transition is defined by function 8 whixh 

when applied to a marking p, and a transition tj yields a new marking. Thus p' the 
new marking can be defined as:

p! =  8(p,tj)

The next marking p! is said to be reachable from p. By extending this concept, 

it is possible to define the set of reachable markings for a given Petri net. The 

reachability set of a Petri net C with marking p is defined as R (C ,p ) where R  is 

the set of all markings which are reachable from p, that is p' 6 R (C ,p).

The net shown above can be represented formally as:

-P =  {Pi»**-»Pr} 
T  — { t1, • • • , t 6}



I ( t  1) =  {p2}

I ( t  2) =  {pi} 
I(t3) = {p3,Ps} 
J(M) =  {p4} 

J(t5) =  {p3,p 7} 
I(t6) =  {p6}

And the marking is:

A* =  (1 ,0 ,0 ,0 ,1 ,0 ,0 )

O(tfl) =  {pi} 

0 (*2) =  {p2,p3} 

0(<3) =  {p4} 

0(f4) =  {pp5} 

0(*5) =  {p6}
0 (*6) =  {p7}

By executing the net it can be shown that t5 and t7 are not reachable while the rest 

of the net can be executed indefinitely.
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A p p e n d ix  B  

T h e  C om p iler

Earlier it was argued that it would be cost effective to utilise existing software on 

parallel processing platforms by means of parallelizing compilers. However, this 

would require writing compilers for all the major imperative sequential languages, 
which is in turn expensive and requires many man-years of work. The motivations 

for the design and realisation of a General Purpose Compiler (GPC) are therefore 
clear.

It was therefore a design objective to produce the compiler in such a way that in 

future it could be modified to compile other languages, if necessary. As a result, 

similar compilers for different sequential imperative languages may be developed 

quickly. To cater for any future requirements in this direction as many parts of the 
compiler as possible were made table-driven. The perceived modifications involve 

changing the tables used by the various components of the compiler to suit the 
new language. The concept here is different with that of compiler-compilers. In 

any case, a GPC unlike a compiler-compiler, does not emit code to generate a new 
compiler, see figure B .l (a) and (b).

During the course of this research 110 attem pt was made to measure the feasibil­

ity/simplicity of modifying the compiler for other languages.



language
specification

compiler compilers

(a)

code for the 
co m p ile r

source code
t d c

T
parallel object code

language rules

(b)

Figure B.l: The difference between a compiler-compiler and a TDC
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The lexical and syntax analysis of this compiler are table-driven. The parser pro­

duces a parse-tree as it goes through the reduction of syntax rules in the parse 
table. This tree is then stripped off to generate a syntax-tree (a tree which does 
not contain the reduction steps).

The semantic actions performed by the back-end could also be made table-driven 

though, in this case a conventional algorithm was used. If all parts of the compiler 

were table-driven then it may be possible to consider the compiler as a GPC.

In the case of this compiler, the interface between the front and the back-end may 

not be adequate if the back-end was also to be made table-driven. A more suitable 

interface would perhaps be translation to some abstract intermidiate form which 
could be used by a translator based on a table-driven algorithm [Graham 80].

B ..1  T h e C om piler S tru ctu re

Traditionally, the process of compilation consists of three main tasks:

• lexical analysis

• syntactic analysis

• translation phase

Compilers for parallel architectures need a new phase to detect and evaluate the 

inherent parallelism within the source code.

The overall structure of the compiler proposed in this thesis is shown in figure B.2 .

For clarity, optimisation, error handling and symbol table management modules 
have been excluded from the diagram.



194

source code

lexica! rules

syntactic
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syntax tree

syntax tree
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parallel object code
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translation

net executor
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fine grain 
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syntax analyser

tree display module

lexical analyser

petri net constructor

Figure B.2: Overall structure of the compiler
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A compilation directive can cause the bypass of the parallelizing phase and hence 

output sequential object code suitable for execution on one node of the system, 

marked by the alternative routes on the diagram.

All scheduling is to be carried out statically at compile time and fine grain paral­

lelism analysis takes place during scheduling of individual statements. This analysis 

leads to the decomposition of a computationally intensive expression into a number 

of communicating parallel sub-expressions to be evaluated on different nodes of the 
system in parallel using the concept of co-processors introduced later.

B ..2  A  T ab le-D riven  L exica l A nalyser (T D L A )

Any purpose-built lexical analyser has the lexical rules of the language it represents 

implicitly built into it, so it is difficult to separate the rules from the rest of the 
program. A specification for a table-drvien lexical analyser is developed as follows:

1. The lexical rules of the source language are stored in a file together with a list 

of reserved and key words. A reserved word can have a number of attributes 

that will be output by the TDLA when the reserved word is recognised. For 

example, a reserved word can produce the output of a numerical token defined 
by a user, e.g. “begin” can be equivalent to integer 1.

2. Whenever no rules are defined by the user, the built in rules of TDLA are
applied (see appendix C). Characters are assigned to one of the 12 built- 

in classes. Assignments can be altered or new classes created at any time. 

Once assignments and classes have been specified for a particular language 
the results will be stored and used until change is required.

3. The TDLA’s global rules itemise the input stream into the following possible 
items:

(a) word
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(b) string

(c) an integer

(d) a decimal

Where a word 1 is either;

(a) a sequence of alphabetic or numeric characters

(b) a sequence of sign characters

(c) a sequence of words produced by (3a) and (3b) joined by underscore

(d) a single separator eg “[”

(e) a sequence of characters in a new class

4. Classes 10 and 11, (see appendix C) specify the first and second characters of 

the beginning of a comment line. The global rules of TDLA requires that a 

comment to be terminated by the reverse of the two characters that started it, 
e.g. /*  t h i s  i s  a comment * / .  In very exceptional cases, the lexical rules 

of a particular language may need to be slightly modified to conform with the 
global rules of TDLA. Thus, the comment in an implementation of pascal can 
be; (* th i s  is  a comment *( rather than (* th i s  i s  a comment*).

5. Rule changes are accomplished by invoking the compiler, using the command 

line option “new_rules” instead of a source file name. When the routines for 

changing rules have been activated a user is guided throughout the changing 

process. Only the rules that need to be changed have to be modified.

B ..3  A  T ab le-D riven  P arser (T D P )

Features of the proposed table-driven parser are developed as follows:

1sign characters used in the context of comment descriptor would be automatically excluded from 
this rule
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1. The parser accepts tokens generated by the lexical analyser 

syntactic validity.

2. The TDP must be powerful enough to parse the majority 

language constructs by being given their syntactic rules.

3. Three different parsing methods form likely possibilities :

(a) template matching

(b) operator precedence

(c) look ahead left-right parsers (LALR)

Method 3a [Norman 83,Kluzmiak 86] is best suited for implementing lan­

guages like prolog and does not offer any notable advantage over other meth­
ods. Methods (3b) and (3c) are both table driven and met the objectives 

outlined above. However, method (3b) can only be applied to a small class 
of grammars and may not be effective in parsing all the principal languages 

that may be used.

4. LALR parsers are table driven, bottom up parsing techniques which scan the 
input stream from left to right one at a time. The tree is generated from 

the bottom (leaves) to the top (root). LALR parsers can recognise virtually 

all programming language constructs for which context free grammar can be 

written. Because of these characteristics this method is chosen for the new 

compiler.

5. To generate a parse table for a new language, its syntax rules are submitted 

to YACC in Backus Naur form with option -v selected [Johnson 86]. This 
parse table is then loaded into the parser. The front end for generating this 

table can be added to the compiler, with conflict detection and resolution 
capabilities, at a later date.

6. Errors are detected as soon as they occur and invoke the error handling rou­
tines to detect their type and issue an appropriate error message.

and checks their

of programming
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7. The output of the parser is a syntax tree, figure B.3. Procedure definitions 

are represented by separate trees and are analysed and translated as soon as 

they are complete, i.e., before the main program begins.

parse table

tokens syntax tree
T O P

language syntax rules

YACC

Figure B.3: The block diagram of a TDP

8. Symbol table updates are also invoked by the parser whenever a constant, 

type or variable declaration is detected to be complete.

9. The syntax analyser is fully table-driven. It generates a syntax tree and a 

symbol table for the next phases of the compiler. Figure B.4 shows a typical 

node of the tree generated.

B .l  Translation

Translation is fairly straightforward and is into 6S09 assembly code. The translator 
is specified as follows:

1. Translation is repeated for all nodes that have been allocated a workload.
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if a = 2 then write(”2") else w rite fnot 2");

if - then - else

^  write ”2 ” write "not 2"

a 2

Figure B.4: A typical syntax tree

2. The translation begins with the generation of input/output routines for node 

one only. These routines handle the I/O  operations. No other node has 

access to these routines since I/O  operations only occur at node one. These 

are low level I/O  routines supporting the higher level Pascal input/output 

requirements. There are a number of routines for arithmetic operations which 

are present in all the nodes.

3. The object files generated by the compiler are executable. The compilation 

resolves all the references and calls to the subroutines. In other words, in this 

experimental version the compiler acts as a linker too. As a result, it will not 

be possible to link separately compiled modules together. The solution is to 

combine all the source modules together in one file and then compile this one 

resulting module. This is not a major problem since programs that need to be 

run on MINNIE must be recompiled by this compiler in any case, therefore, 

sources must be made available.

4. As no linking facility is provided, the compiler includes the run-time library 

and the support code. Loading mechanisms and software were provided by 
the hardware designer.
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5. The translator first translates the procedures as they are defined. Prior to 

the procedure translation code is generated for an unconditional jump to the 

label which identifies the beginning of the main program. This is to say that 
the main entry point to the program is set up.

The translator consists of a number of procedures each of which is responsible for 
the translation of a particular construct. The tree representing the workload of each 

node is given in turn to the translator and all the elements of this list are translated 

one at a time. Each element is a construct and the procedure for the translation 

of the particular construct is invoked. The construct is then dealt with and nested 

constructs invoke the main translator procedure. This modular approach reduced 

the implementation and maintenance time of the translator quite considerably.



A p p e n d ix  C

L exica l R u les  o f  P ascal-S

The following tokens are generated by the lexical analyser:

IDENTIFIER PROGRAM CONST TYPE VAR PROCEDURE BEGIN END 

IF THEN ELSE CASE WHILE DO REPEAT UNTIL FOR TO INTEGER 

PIDENTIFIER CIDENTIFIER STRING TIDENTIFIER TRUE FALSE 

AIDENTIFIER RIDENTIFIER FUNCTION FUNCIDENTIFIER OF RECORD 

REAL VIDENTIFIER FIDENTIFIER ARRAY 
> • = >

} 4.) ) _ >

> * ’ > / >  >div’

UMINUS /*  UNARY MINUS * /

Jmod> 'and* ’or^ ’n o t ’
) — ) *<>> ><> > >= j > <=;

The TDLA uses the following default character assignment classes:
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Class Description .
1 Alphabetic; the letters a-z and A-Z.
2 Numeric; the number 0-9.
3 Sign characters; e.g., ’+ ’, ’$’. Characters in class 10 and 11 will 

default to this class if not used in the context of a comment.
4 Underscore;
5 Separators; e.g., V, ’[\ ’{’• Control characters are also

included in this class (except for those in class 6 and ASCII
128-255).

6 Spaces including white spaces.
7 String quotes ” ’ ” ,
8 Character quote
9 End-of-line comment character.
10 Bracketed comment or sign; first character.
11 Bracketed comment or sign; second character.
12 Alphabeticiser: This is a special class that forces the next character

in the input stream to be of class alphabetic, i.e., class 1.
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A p p e n d ix  D  

S y n ta c tic  R u les o f  P asca l-S

The following are the syntax rules of Pascal-S as presented to YACC for generating 
the parse table.

prog: PROGRAM IDENTIFIER ’ (> i d e l i s t  O ’ > b lock  J . '  ; 

block: c o n s t se c  ty p e se c  varsec proceduresec fu n csec  

BEGIN

statem entsequence

END

>
c o n s t s e c :

I CONST cbody 

)

cbody: IDENTIFIER '=> constant

I IDENTIFIER constant * cbody

t y p e s e c :

I TYPE tbody
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tb o d y : IDENTIFIER >=> typ ee  »;»

j IDENTIFIER >=' typ ee  tbody

v a r s e c :

I VAR vbody 

}
vbody: i d e l i s t  3: 3 typee

I i d e l i s t  ) : } typee 3; 3 vbody

p ro c e d u r e se c :

I PROCEDURE pbody } ; ; proceduresec  

>

f u n c s e c :

I FUNCTION funcbody ’ fu n csec  

>
funcbody: IDENTIFIER form alp aram eter list  TIDENTIFIER *;

pbody

typ ee

abody

rbody

IDENTIFIER form alp aram eter list  b lock  ;

TIDENTIFIER

ARRAY ’ [ , abody * ] 3 OF typee  

RECORD rbody END

con stant 3 . 3 3 . 3 constant  

con stant ’ . 3 3 . 3 constant 3 , 3 abody

i d e l i s t  * : 3 typee  

i d e l i s t  ’ : 3 typ ee  3 ; 3 rbody

fo r m a lp a r a m e te r l i s t : 

I 3( 3 fbody 3) 3

3 b lock;
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fb o d y : VAR i d e l i s t  TIDENTIFIER

I i d e l i s t  >:> TIDENTIFIER

I i d e l i s t  >:> TIDENTIFIER 1;» fbody

I VAR i d e l i s t  »:> TIDENTIFIER > ;J fbody

}

i d e l i s t :  IDENTIFIER

I IDENTIFIER i d e l i s t  

>

s t a t  em entsequence: statement

I statem ent * ; } statem entsequence  

)
s ta te m e n t :

I v a r ia b le  7 : = 7 exp ress ion  

I FUNCIDENTIFIER , :=J exp ress ion  

I PIDENTIFIER

I PIDENTIFIER a c tu a lp a r a m e te r l is t  

I BEGIN statem entsequence END 

I IF ex p ress io n  THEN statement  

I IF e x p ress io n  THEN statement ELSE statem ent  

i CASE e x p r e ss io n  OF END 

I CASE e x p r e ss io n  OF casebody END 

i WHILE ex p ress io n  DO statement  

I REPEAT statem entsequence UNTIL express ion  

1 FOR VIDENTIFIER ’ : =} exp ress ion  TO ex p ress io n  DO statem ent  

)

casebody: myconstant } : 1 statement  

I myconstant ; : > statem ent ’ ; } casebody

myconstant: constant

I co n stan t  } , 7 myconstant



ex p ress io n :  simple-expression

i s im p leexpress ion  

I s im p leexpress ion  

I s im p leexpress ion  

I s im p leexpress ion  

I s im p leexpress ion  

I s im p leexp ress ion

simpleterm: term

| 7 + > term ‘/.prec

I term */,prec

7 = 7 s im p leexpress ion  

»<>» s im pleexpress ion  

’ < ’ s im p leexpress ion  

7> 7 s im pleexpress ion  

7>=7 s im pleexpress ion  

><=> sim pleexpress ion

UMINUS

UMINUS

sim p leex p ress io n :  simpleterm subexpression

s u b e x p r e ss io n :

| > + * term subexpression  

! 7- } term subexpression  

I 'o r '  term subexpression

term: f a c t o r  su b factor ;

su b fac tor :

I f a c t o r  su bfactor

I 7J 7 f a c to r  su bfactor  

I ;d i v ; f a c to r  subfactor  

I ’mod* fa c t o r  su bfactor  

I , and> fa c t o r  su bfactor  

)
f a c t o r :  constant  

I v a r ia b le

I ex p ress io n  7) 7



i

207

I , n o t > f a c t o r  

1
a c t u a lp a r a m e t e r l i s t : 3( J aplbody ; 

aplbody: exp ress ion

I ex p ress io n  ’ , 3 aplbody 

>
v a r ia b le :  VIDENTIFIER 

I AIDENTIFIER index  

I RIDENTIFIER f i e l d s

J
in d e x :

I 3[ 3 aplbody *]* index  

>

f i e l d s :

I > . J FIDENTIFIER f i e l d s  

}

c o n s t a n t : number 

t CIDENTIFIER 

I boolean  

I STRING 

)

number: REAL

I INTEGER

boolean: FALSE 

I TRUE
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A p p e n d ix  E 

Form al D es ig n  o f  th e  C om piler  

U sin g  J S P

The first diagram and its subtrees show the structure of the data to be processed 

by the program. The subsequent diagrams show the JSP of functional units within 
the program.
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A p p e n d ix  F  

A  S am p le T est P rogram  for th e  

C od e G en erator

The sample test program is shown both in its high-level and machine code form.

The high-level form is reperesented by a list of list structure and is generated by 

the compiler.
m :  CCmain3 C ld u  # $  bOOOI! Cl da  03 C s ta  f a l s e  3 C l d a  #$  f  f  I! Ca t  a t r u e  3 3 
f t :  CCreadfc g3

C re a d  I n  Cg .« C c: , Cnew , b o o l n a m e 3 333 
[ w r i t e  [ g  , Cc , [ n e w  , b o o 1nam e3333 
[ w r  i  t e  1 n I!
C c : = C c + 1 3 3 
C g : ::::: C I", g ••••■ c 3 t  g 3 3
[ w r i t e I n  Cg new ™ ,, g ] 3
[  wr i  t e  1 n C new -  , c 3 3
[ w h i l e  b o o I n a m e  do

[ [ w h i l e  [ n o t  Cc < 1233 do  Cc : =  [  c: + 1 3 3 3 C b o o l  name : =  f a l s e ?  33 
[ w r i t e I n  [ g  , c3 3
[ r e p e a t  CC c: ° -- C c: 13 3 Cg " =:;: Cg 33 3 3 u n t i l  C > 123 3
[ w r i t e i n  Cg , »::3 3 
[  i  f  C n o t  b o o I n -Hi!, m e 3 

t h e n
C C c : -  E: c -  6 3 3 C g : [  g c 3 3 3
e I s e
[C c  : =  Cc + 133 Cc " =:> Cc -  23 3 3 3 

[ w r i t e I n  [ g  , c3 3 
[ f o r  c: s 8 t o  10 do  

C C g : = C g + 1 3 3 
[ [ f o r  g : *  1 t o  2 do  [ w r i t e I n  g3 3 [ w r i t e I n  Cg , c 33333 

C r e a d I n  c3 
Ccase new o f  

Cz :
[ c a s e  c o f  [ 1  : Cc : Cc + 13 3 C2 : Cc : «  Cc + 4 3 3 3 3 3
CCd , Ca , s 3 3 : Cg : =  Cg + 1 3 3 3 3 3 

[ w r i t e  I n  Cg c 3 3 
C g : « [  -  C C C -■ c 3 •■!- g 3 g 3 3 3 
[ w r i t e  I n  Cg , c: 3 3 3



“ 4c a t  o u t p u t  
:: s t a r  to?
** 0 . K .
■v.:& 11 n a rn t  e s i  p r  o g r a m 3 

Corg  4 4 0 0 0  'I 
C a d d r l  sq u  0 4000  3 
C a d d r2  e q y  4 40021! 
Caddr-3 e q y  0 40041  
■.’ f a l s e  e q y  % 40161  
C t  r  u e e q u $ 4 0 171 
[.' o u t  d e c e q u 0 c d 3 31 
C in d e c  e q y  $ cd 4 8  3 
C n x t c h  e q u  % c d 2 7 1 
C i  v ib u f f  e q y  $ c d 1 b 3 
C po 1 n t e  r  equ  0 c: c: 14 3. 
C p u t c h  e qu  d- c d i 8 3  
C p c: r  1 f  e qu  0 c: d 2 4 1 3

:t“t  Cl b r a  rnaivi 3 
L C in p u t.* !

C l d x  # p o i n t e r !
Candcc: #4  0 3 
C t s t h l  
C beq  nuffi I!.
Candcc #4 03 
Ccmpb # 4  f f  3 
Cheq s t r ]
C j s r  b o o l  
C r  t s  1
C s  t  r  j  s  r  si-1 r  i  n g 3 
C r  t s  3
C n u rn j  s  r  c. h s  i  g n 3 
C j s r  i n d e c l  
Cexg x  , ell 
Cbcc ok 3 
C b ra  e r r o r  3 
Cok p u l u  c cJ  
Cbhe p o s l  
C e o rb  #4  f f 3 ,
C i  n c: c b I!
Cpos p s h u  b3
1. t  rn a rn r  t  s i  n p u 1 3 3

Ok C C c h s i g n l
C1da  C , x  13 
Candcc #4 03 
Ccrnpa #4  2 d3 
Cpshu c c ]
Cbne f  i n i  t o 3
C j s r  n x t c h 3
C f  i  n i  i  o r  t  s  c h s  i  g n 3 3

4-: C C s  t  r  i  n g 3 C j  s  r  n x  t- c h 3 C 1 d b 4- c: c: 3.8 3 C p s  h u b 3 C r  t  s  s  t  r  j. n q 11



t t  C C b oo  I  3
Cjsr string!
Candcc #$ 0 3 
Ccmpb 74  3 
Cbne f a l s e 2  3 
L i  d b  m i f  f  3 
C p s h t i b  3 
Cb ra  i  n c: po  3 
C f a l s e 2  I d b  01 
CpshuhJ
C i n c p o  i d d  # 51 
C a d d d p o i  n t- e r  1 
C i!3t r  d p o i  n t  a r  1 
Cr- ts  b o o l  3 1

t t  C C o u t p u t 3
Candcc 01 
Cciupa 01 
Cbne s t r i n g 1 
Cstd a d r r l 1 
Candcc #$ 03 
Cldx # a d r r l 1 
Ctst 1 x3 
Cbpl outl 
C j sr m i n u s 1 
Coui 1dx # a d r r 13 
C j sr outdec 3 
C t is 3
C s  t  r  i  n g j  s  r  p u t  c h 3 
C f  i  n i  t o  r  i s  ou  t  3 3

a t  L Cminus3
Candcc 03 
CIda #0 2 d3 
Cjsr putchi 
C1db #$ ft 3 
Ceorb 1 . x3
C i n c b 3 
C 1da #7 0 3 
Cstd a d r r l 3 
C r ts m x Vi us 3 3
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88
38
33
88
83
38
38
33

88 
83 
83 
88 
88 
83 
3 :■•!=: 
88 
88 
88 
83 
88 
88 
83
33

C j s r  r e a d k l  
C j s r  i n b u f f  I! 
ii1db  #$ 01 
C j s r  inpu tI I  
CCpulu b l  C s tb  g l !  
c i d b  #$ o i  
C j s  r  i n p u 1 1 
C C pu I u b "J C s  i b  c 1:.]
C1db #$ f f  3 
C j s r  input!.!- 
C j s r  n x t c h  “J 
C C. pu 1 u b 1 C s t ■ b new 1 3 
Cldb  l i ' l  
C j s r  i n p u t  "J 
C j s r  n x t c h  !J 
CCpulu b l  Cs tb  
C j s r  p e r  I f  3 
C CIda 01 Cldb

# 321 C j s r  
8 s  o i  Cldb
# 321 C j s r  
new! C j s r

boo 1 name 3 II

C C I d a  
C C I d a  
II C 1 da  
C C 3. da  
C C I d a

g I! C j s  r  o u t  p u 11! I! 
o u t p u t ! !
c !  C j s r  o u t p u t !  I! 
o u t p u  1 2 1 

o u t p u t !  I!
# 3 21 C j s  r  o u t  p u t ! 3 

C Candcc: 03
C 1 da. boo  1 name 1 
C t s t a  I!
Cbne t r u e  X It 
CClda # 1021 C j s r o u t p u t !  II 

9 7!  II j s  r  o u t  p u 1 11
:i. o 8 II II j s  r o u t  p u 11! II
:!. 151 II j s  r o u t- P u 1 1 !i
X 0 1 II C j s  r  o u t  p u t  IIII

83
88
88
38
8 3
33
33
38
88
33
38
88
33
88
33
38
88
88
83
88
88

IIII I d a  
C C 1 da 
C £ X da  
II C 1 da  
C b ra  f a l s e ! 1
C C t  r  u e X 3. d a t-i: X X 6 1! C j  s  r  o u t  p u t !  1
fl I I1 d a  ft X141 C j  s  r  ou  i  pu  1 11
C C 1 d a # X 1 7 1! C j  s  r  o u t  p u 11! It
I I I I1 da  ii X 0 X 1 II j  s  r  ou  tpu . 1 11
C f  a 1 s e  X II I!

C I I1 d a # 32  3 II j  s  r  o u t  p u i  11 
ii j  s  r  pi c r  1 f  II 
C C 3. db  c ‘.3 II p s h u  b 1 !
II C ld b  # XII Cpshu b i l l  
Candcc  #8 0 !
C C P 1 .4 1 u a II C P u 3. u b IS LI s  t b  a d d r X I! C a d d a a d d r  X I! C p s  h u a 3 II
C C p u lu  b !  C s t b  »::3 3 
II C l d b  g !  C p sh u  b i l l  
C I I I  d b  c Ii C p s h u  b 2 1 
Candcc: #8  03
C C p u lu  b l  C p u lu  a 3 C s t b  a d d r i l l  Csuba a d d r l l  Cpshu a ! !
II C l d b  g l  Cpshu Lai!
Candcc: #$  Oil
C C p u lu  a !  C p u lu  b l  ii mu 11 Cpshu b l !
C C p u lu  b !  C s tb  g l !
I I I I3. d a  # X 031 C j  s  r  o u  tp u  1 3 3 
C l 1 d a # 3 2 II C j  s r  o u t  p u i  3 II 
II C 1 da  # X 10 !  II j  s  r ou  t p u  t !  1 
C C 1 da  # X 0 X II C j  s  r  ou  t p u t  IIII 
C C ld a  # XX9 !  C j s r  o u t p u t ! !
C C lda  # 32!  C j s r  o u t p u t ! !

1

1
J.
%

J

■I
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# 613 Cj s r  o u t p u t ]3  I
# 3 211 E .j S r o u t  p u t 1! 1! j

0 1  Cldb g'J Cjsr  o u t p u t  1 3 t
# 3 21! C j s  r o u t  p u 1 1111: f

1193 C j s r  o u t p u t ! - !
321! C j  s  r  ou  t p u t 11 1!

OU'tput-1? 1:
O Lit p u t  3 :

.. .db  c C j s r  o u tp u t ! ? ! !  
3211 !! j  s  r  ou  t  pu 1 1? 1

label 8 3 1!

il adds, add yd 11 Cpshu a 31!

•!! j  s r  o u t p u t ! !  3 

o u t p u t  1! 11!

C j s r  o u t p u t ! :  3 .$
C j s r  o u t  p u t  11 3 4

I

C 1 One 1 «;bs II. 2 3 3 t

K.t: C C ld a  
bb  CC lda  
bb  C C lda  
a t  c c i d a  
a t  C j s r  p e r i f  3 
bb  C C 1 da  # 99 3
b b  C C ld a  # 3213
f t  C C lda  :!:l- .1.103 C j s r  o u t p u t ! !  3
b b  CClda. #  101.1 Cjs-r  o u t p u t !  13
t t  . [■ li da  9
bb  C C ld a  b ..
:-t:t: C C ld a  # 613 i l j S r
bb  C C ld a  # 323 C j s r
ab  C C ld a  # 0  0 3 
bb  C C lda  
bb  C j s r  pc. r  I f  3 
bb  C l a b e l  111!
a b r C 1 di a b o  o  I n a a e 3 C P s h u a !! 3 
b b  Candcc  013 
bb  C 111 pu  1 u a 11! !! c op a f  * 3 
bb  C l a  be  1313 
h t  C C ldb  c 3 Cpshu b!!3 
b b  C C ldb  # 123 Cpshu bi l l ]  
bb  Candcc  #$  03 
b b  i! C p u lu a l j

C err.pa , u -Ki 
!! I b g t  l a b e l 4 3 
C ill I d a  #$  03 Cpshu a 33 
i! X b r a  l a b e l 53 
C [I j. a b e 14 1 d a # t> f  f  !! Ill p s h u a !! 3 
i! l a b e l 53 .1 

bb r pi,.; 11j  a  3
bb  C Ceora  Its f f l l  Cpshu a.33
b b  Candcc # $  03
bb  C C p u lu  al l  Ccooa b s  f f l l  C lo n e
bb  C C ldb  c:!! Cpshu b!! l i  
bb  C C ld b  if ill! Cpshu b3 3 
bb  Candcc #0 03
bb  C ill pu  1 u a !! !1 pu  1 u b !! !! s  t  b a d d  r  1!!
bb  C C p u lu  b3 C s t b  c 33
bb  L i b r a  l a b e l 33 C l a b e l 633 
bb  C C ldb  f a l s e " !  Cpshu hi] 3 
b b C C p u 1 u b !! ill s  t  b b o  o  1 n a rr e 3 3 
b b  C C b r  a 1 o.be .1.1 3 C 1. a b e  12 3 3 
bb C C lda  #0  03 C ld b  g!i 

b C C 1 d a # 3 2 3 C j  s  r  o u  I  p u 1 3 3 
bb  C C ld a  m  03 C ld b  c 3 C j s r  
b:: K C C 1 da  b 32  3 C j  r  o u  t  pu t 3 3 
bb  C j s r  p e r  I f  3 
bb  C1a b e 173 
bb  C c i d b  c 3 Cpshu b33 
bb  C C ldb  # 13 Cpshu bi l l ]  
bb  Candcc #0  0 3
bb  C C p u lu  a 3 C p u lu  b3 C s tb  a d d r l . 3
bb  C C p u lu  b l  C s t b  c 3 3
bb !] C I d b  C: 3 Cpshu b3 !t 
b b  C C ld b  li 3 3 Cpshu h i . !  
bb  Candcc #-£■ 03
bb CCd u I u a 3 C p u lu  h!i C s tb  a d d r l 3

p;
4

' 4

Cadda a d d " ] 3 Cpshu a 33

>
4

Cad da  a o J 3 fl o s h u  a 3 3



4 4  C C p u lu  b'J C s t b  g i n  
44  C C ldb  cl! Cpshu bl !J  
4 4  C C ldb  # 1.211 Cpshu bi l l !
44  Candcc: #f> 01!
4 4  C C p u lu  a 3

111 cm p a  , u -’-II
C i b l  t  l a b e l  Gil
C C 1 da  f  a 1 se  li C p s h u  a. 11 ?
C 1 tora l a b e l 911
CC l a b e l s  Id a  t rue"-  Cpshu ali i  
C l a b e l 91! 1)

:*:4' C L a n d e r  #0  Oil C p u lu  al! Ccmpa t r u e  j  ! b p s  i. s.t'-e3 ? 3 3 
• f t  C C ld a  4$- O'] C ld b  q 1! ’1 f s r  o u t p u t ' : 1
44  C C lda  # 323 C jsr  o u t p u t U 11
44  C C ld a  #$  03 C ld b  c 3 C j s r  o u t p u t : ] " 1
•hi-: C C ld a  # 323 C j s r  outer.,: 1-3 3
4 4  !l j  s  r  p c r  1 f  3

4 C C lda  b o o l  name 3 Cpshu a 111!
4 4  C p u l u  a. 3
44  C C e o ra  #$  f f l l  Cpshu a 111!
:f::!=: C C p u lu  al l  Candcc 44 03 Ccmpa. t r u e ' ]  C I b n e  l a b e l  1033
44  C C ldb  c: II Cpshu bl!3 
44  C C ld b  h S3 Cpshu b l ?
44  Candcc #0 Oil
44  C C p u lu  bl! C p u lu  al l  C s tb  a d d r i l l  Csuba a d o r  11 Cpshu a 31! 
44  C C p u lu  b l  C s t b  c l  3 
44  C C ldb  gl! Cpshu bi l l !
4 4  C C ld b  c l  Cpshu bin 
4 4  Candcc :if0 01!
44 C C pu  .1 u a 1! C pu  1 u b 1! C s  tb  a dd  r  1 3 C a d d  a a d d  r  11! [1 p s h u  a 1! II
4 4  !1 C pu  1 u la 3 IIs  t b  g "i 3
4 4  II I b r a  l a b e l  :l. i  1!
4 4  C Labe 1101!
44 C C ldb  c 11 Cpshu bi l l !
44  C C ld b  14 .13 Cpshu b i n  
44 Candcc #0  03
h 4' C C p u lu  a 3 C p u lu  bl! C s tb  a d d r l l !  Cad da a d d r l l !  Cpsnu a 3 3
4:4: C C p u lu  b 3 C s t b  c 3 3

C C ldb  cl! Cpshu b33 
4:4: C C ld b  # 23 Cpshu b i l l  
4:4: C a n d c c # s  o  11
:f: C C p u lu  bU C p u lu  a 3 C s tb  a d d r l l !  Csuba a d d r j .  j  Coshu a 3 3
44  C C p u lu  b l  C s tb  c II 3
at: C 3. a be  111 3
4:4: C C lda  01! C ld b  gl! C j s r  o u t p u t ? ?
4:4: C C lda  # 323 C j s r  o u t p u t  3 3
4:4: C C lda  # $  Oil C ld b  c 3 C j s r  o u t p u t ? ?
44: C C ld a  4 323 C j s r  o u t  p u t  3 3
4:4 C j s r  p e r  I f  3
44  C C ld b  i:l: 8 3 Cpshu h33 
4:4: C C p u lu  bIf C s tb  c 3 3 
4.4 C C ld a  # 103 Cpshu a 3 3
4:4: IIC l a b e l  12 I d a  c3 Candcc #0  03 Ccmpa , u? C l b g t  l a b e l !  
44  C C ld b  q3 Cpshu b'33 
44: C C ldb  # 11! Cpshu b?3 
4 4  Candcc  0 3
44 C C p u lu  all C p u lu  bl! C s tb  a d d r l l 1 Cadda a d d r : : " ! Cpshu a 33
4:4 C C p u lu  h.1 C s tb  glI3
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u  3 C I b n e  1 a b e  1 193 1

C C p u lu  b 3 C s t b  g i n  
C C ld a  # 2 Ii Cpshu a.I1 Ii
C C. I  abe  1 1 4 I d a  g li Candcc: #$  Oil Ccmpa . u l  C l o g i  l a b e l : 3  
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m

*::*:

**
m
to
4c:*:
*::*:
lot
t t
fc:*c
fc*
t:t
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C I db 
C j s  r 
r l db 
C j s r
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o u t p u t  1 1
■:: 1! C j s  r 
ou tpu  t  "J 1

‘U tp U t l  J

C [1 pu  i  u a 1! II pu I u b 1! C s  t b  a d d r i  j C a d d a  a d d r  i  1! C p s h u  a 
C C p u lu  b 3 C s tb  q 3 .1 
r I b r a  l a b e l  1611 
C1a b e 122 j  
l  1 abe  116 'J 
C p u lu  b l  
C C lda  2$  01 
C C ld a  # .223 
C C lda  # 0  oil 
C C lda  # 32  3 
C j s r  p e r  I f 3 
C C lda  a 3 Cpshu a l l  
C p u l u  a l
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CCldb gl Cpshu hi!
Candcc #0 01 
CCpulu a l  Cpulu b l  
CCldb gl Cpshu hi!
Candcc #0 03 
CCpulu a l  Cpulu b l  
C pu1u a 1
CCnega1 C pshu a 11 
CCpuiu bl Cstb gl!
CClda. #P 0 3 Cldb g!
CClda # 323 Cjsr  
CClda #$ 01 Cldb  
CClda # 323 Cjsr  
C j sr pcr1f 1 
C codi ng done3
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Cmu11 Coshu b 11

C j s r  o u t p u t  11 
o u t p u t 3 3 

1 C j s  r o ? j i  p y 1 11 
o u t p u t ! 3



A p p e n d ix  G

A  S am p le P ara lle lised  T est 

P rogram

The sample test program is shown both in its high-level and machine code form. 
Note that there are two files, each containing the workload of an individual proces­
sor.

program a r e a ( in p u t ,  ou tput);  

con st  s te p s  = 10000;

var a , b , a rea ,  d e l t a ,  i ,  s t r i p ,  fu n cva l : in t e g e r ;  

b eg in

w r i t e ln  (" P le a se  input the  va lue  of upper and lower bounds"); {1}

rea d ln  ( a , b ) ; {2}

area  := 0; {3}

d e l t a  := (b -  a) /  s te p s ;  {4}

w r i t e l n ( " i t t e r a t i o n  s tep  :"); {5}

f o r  i  := 1 to  s te p s  do {6}
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w r ite  ( i ) ; { i }

fu n cva l := (a ** 2) + a + 8; { i i }

s t r i p  := fu n cva l * d e lta ;  { i i i }

a := a + d e l ta ;  { iv }

area := area + s t r ip ;  { v}

end;

w r ite ln ;  {7}

w r it e ln  ("The approximate va lu e  o f  area -  ", a rea );  {8}

end .
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Below axe the workload of procesor 1 both in high-level and assembly format:

[
[ [ r e c e iv e ]  [w r ite ln  [P lea se  i n p u t . . J  [ sen d ]]]

[ [ r e c e iv e ]  [read ln  [a , b] [send 2 var a in t e g e r ,  2 var b i n t e g e r ] ] ]  

[ [ r e c e iv e ]  [w r ite ln  [ i t t e r a t i o n  s te p s ]  [ sen d ]]]

[ [ r e c e i v e  2 area var in t e g e r ,  2 d e l t a  var in te g e r ]  [ f o r  i  := 1 to  

10000

[ [w r it e  i ]

[ [ r e c e iv e  2 var fu n cva l in te g e r ]  [ s t r ip  := [fu n cva l * d e l ta ]  [send]]  

[ [ r e c e iv e ]  [area := [area + s t r i p ] ]  [send]]

[ [ r e c e iv e ]  [w r ite ln ]  [sen d ]] ]

[ [ r e c e iv e  6] [w r ite ln  [The approximate va lu e  o f  area = , area ]]  [sen d ]]]

]

[[nam t e s t  program] ; ; ;  setup

[org $4000]

[base rmb 2] ; ; ;  ho ld s  base  of array

[addrl rmb 2] ; ; ;  v a r ia b le s  used by t r a n s la t o r

[addr2 rmb 2]

[addr3 rmb 2]

[ f a l s e  rmb 1] ; ; ;  t h i s  lo c a tn .  holds  va lu e  o f  f a l s e

[tr u e  rmb 1] ; ; ;  s im i la r  to  above

[d is p la y  rmb 60] ; ; ;  array fo r  s tack  frame

[labelO ]

[ ld u  #$b000] ; ; ;  s e t t i n g  up u ser  s tack  p o in te r

[ Ida  #$00] ; ; ;  load  f a l s e  t o  a

[ s t a  f a l s e ]  ; ; ;  put f a l s e  in  f a l s e

[ Ida  # $ f f ]  ; ; ;  load  tru e  in  a

[ s t a  tru e]  ; ; ;  put tr u e  in  l o c a t i n  tru e
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; ; ;  s e t  up stack  frame base f o r  main program 

ld x  # d isp la y ]  ; j ; p o in t in g  to  d i s p l a y [1] 

s tu  ,x] ; ; ;  s to r e  frame base in  d i s p la y [ l ]

t f r  u ,y ]  ; ; ;  current frame base kept in  U reg  

outdec equ $cd39]

in d ec  equ $cd48] ; ; ;  in p u ts  number from l i n e  b u ffe r

;; ta k es  f i r s t  char from l i n e  b u f fe r  and advances 

nxtch  equ $cd27]

in b u ff  equ $cdlb] ; ; ;  reads in  a l i n e  of input

;; lo c a t io n  co n ta in in g  addr to  next char in  the b u ffe r  

p o in te r  equ $cc l4 ]

; ; ;  outputs char in  reg  a 

; outputs cr and l i n e  feed  

; branch to  main program 

; input r e tr n s  next v a l  on stack  

;; Id p o in te r  t o  buff in  x reg  

c l e a r  f l a g s

;; b= 0 s i g n i f i e s  in te g e r  input  

i f  i n t e .  input bra to  num 

c l e a r  f l a g s  

b = $FF means read next char 

i f  b = $ f f  bra to  s t r  

oth erw ise  read a bool value  

rturn from t h i s  rou tin e  

read a char va lue  

return

check s ig n  o f  in te g e r  

; ; ;  read th e  in te g e r  

; ; ;  put th e  in t e g e r  in  A reg .

; ; ;  i f  v a l i d  in t e g e r  then goto OK 

; ; ;  ++++ error  co n d it io n

putch equ $cdl8]  

p c r l f  equ $cd24] 

lb r a  main] 

l a b e l l ]  

ld x  #p o in ter]  

andcc #$00] 

t s t b ]

beq la b e l2 ]  

andcc #$00] 

cmpb # $ f f ]  ;

beq la b e l3 ]  

j s r  la b e l4 ]  

r t s  /*b ra  tmam*/] 

l a b e l3  j s r  la b e l5 ]  

r t s  /*b ra  tmam*/] 

la b e l2  j s r  l a b e l l l ]  

j s r  indec] ;;

exg x ,d ]  

bcc la b e l l2 ]  

bra l a b e l 13]
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[ l a b e l l 2  pulu cc] ; ; ;  r e s to r e  r e s u l t  of s ig n  checking

[ bne la b e l ! 4 ]  ; ; ;  i f  pos then goto  pos *

[ eorb # $ f f ]  ; ; ;  i f  neg. then  c a lc u la te  2 ’ s

[ in ccb] ; ; ;  complement of th e  number

[ l a b e l l 4  pshu b] ; ; ;  put r e s u l t  on the u ser  s tack  4
[tmam r t s  l a b e l 1]

; ; ;  checks s ig n  o f  in t  and puts f l a g  on the  s ta c k ,  i f  pos z b i t  i s  zero  

[ l a b e l l l ]

[ Ida * [ ' j X*] *]  ; ; ;  load A with lo c a t io n  ptd . by x reg  

[ andcc #$00] ; ; ;  c le a r  f l a g s  

[ cmpa #$2d] ; ; ;  comp, f i r s t  char of buff  with  

[ pshu cc] j ; j push r e s u l t  on th e  s tack  

[ bne l a b e l 15] ; ;; i f  pos branch to  return

[ j s r  nxtch] ; ; ;  advance buff  p o in te r ,  jump over"-"
A

[ l a b e l l 5  r t s  l a b e l l l ]  J

[ la b e l5 ]  ; ; ;  s t r in g  reads next char in  l i n e  b u ffe r

[ j s r  nxtch] ; ; ;  read char and put in  $ cc l8  i
?■

[ ldb $ cc l8 ]  ; ; ;  put char in  th e  b reg  |

[ pshub] ; ; ;  push char on th e  s tack

[ r t s  l a b e l s ]  ; ; ;  return  

[ la b e l4 ]

[ j s r  l a b e l 5] ; ; ;  read in  f i r s t  character  o f  boo l

[ andcc #$00] ; ; ;  c le a r  f l a g s  

[ cmpb #$74] ; ; ;  $74 i s  a s c i i  t  f o r  ( t )r u e

[ bne la b e l6  ] ;; ; input must be f a l s e  ,■?

[ ldb  # $ f f ]  ; ; ;  t r u e  i s  loaded in  th e  b reg  

[ pshub] ; ; ;  va lue  pushed on th e  u ser  stack  

[ bra la b e l7 ]  ; ; ;  branch to  increm. l i n e  .b u ff  p o in te r  |

[ la b e l6  ldb # $ 0 0 ] ; ; ;  f a l s e  loaded in  b reg.

[ pshub] ; ; ;  push va lue on stack  I

[ la b e l7  Idd #5] ; ; ;  skip  th e  next f i v e  chars



bne la b e l5 ]  

s td  adrrl]  

andcc #$00] 

ld x  #adrrl]  

t s t  l , x ]  

bpl la b e l9 ]  

j s r  lab e l lO ]

addd p o in ter ]  

s tr d  p o in ter ]  

r t s  la b e l4 ]  ; ; ;  return  

la b e l8 ]  ; ; ;  sub output; output reg  b 

andcc #$00] ; ; ;  c l e a r  f l a g s

cmpa #$00] ; ; ;  check reg  a fo r  s t r in g  code 

branch to  s t r in g  f o r  a /=  0 

;; s to r e  16 b i t  num in  adrrl  

c le a r  f l a g s

;; load addr of num in  x reg  

;; t e s t  i f  num p o in ted  by x i s  neg 

;; branch i f  p o s i t i v e  

;; deal with n e g a t iv e  nums 

la b e l9  ld x  # a d r r l ] ; ; ;  put high b yte  addr of num in  

j s r  outdec] ; ; ;  output number 

r t s  /*b ra  f i n i t o * / ]  

la b e l5  j s r  p u tc h ] ; ; ;  output character  

l a b e l l 5  r t s  la b e l9 ]  

la b e l lO ]

c le a r  f l a g s  

;; load a with char  

;; p r in t

change num to  i t s  proper va lue  

1 *s complement 

by tw o 's  complementing i t  

cre a te  16 b i t s  num from 8 b it s  

s to r e  16 b i t s  num, ms byte i s  O'

andcc #$00] ;

Ida #$2d] 

j s r  putch] 

ldb  # $ f f ]  ;

eorb l , x ]  

incb]

Ida #$00] 

s td  adrrl]  

r t s  la b e l lO ] ]  

main]

Ida # 112] [ j s r  output]  

Ida # 108] [ j s r  output]
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[Ida # 101] [j sr output]

[Ida # 97] [ j s r  c>utput]

[Ida # 115] [ j s r output]

[Ida # 101] [ j s r output]

[Ida # 32] [ j s r  c>utput]

[Ida # 105] [ j s r output]

[Ida # 110] [ j s r output]

[Ida # 112] [ j s r output]

[Ida # 117] [ j s r output]

[Ida # 116] [ j s r output]

[Ida # 32] [ j s r  c>utput]

[ j s r p c r l f ]

[ldb #$0] [ j s r  input]

[pulu b] [s tb  va]

[ldb  #$0] [ j s r  input]  

[pulu b] [ s tb  vb]

[ j s r  per I f ]

[ldb va] [ j s r  send] 

[ldb vb] [ j s r  send]

[Ida # 105] [ j s r output]

[Ida # 116] [ j s r output]

[Ida # 116] [ j s r output]

[Ida # 105] [ j s r output]

[Ida # 114] [ j s r output]

[Ida # 97] [ j s r  output]

[Ida # 116] [ j s r output]

[Ida # 105] [ j s r output]

[Ida # H I ] [ j s r output]

[Ida # 110] [j sr output]

[Ida # 32] [ j s r  output]

[Ida # 115] [ j s r output]

k
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[Ida # 116] [ j s r output]

[Ida # 101] [ j s r output]

[Ida # 112] [ j s r output]

[Ida # 115] [ j s r output]

[Ida # ] [j sr  output]

. i f

[ j s r  p c r l f ]

[ldb #1] [ j s r  r e c ] [p u lu  b]

[ s tb  area]

[ldb #2] [ j s r  rec]  [pulu b]

[s tb  d e lta ]  f

[ldb #1] [pshu b]

[pulu b] [s tb  v i ]

[Ida #10000] [pshu a]

[ la b e l6  Ida v i ]  [andcc #$0] [cmpa ,u] [ lb g t  17]

[Ida #$ 0] [ldb v i ]  [ j s r  output]

[ldb #3] [j sr  rec ]  [pulu b]

[ s tb  fu n cva l]

[ldb  fu n cva l]  [pshu b]

[ldb d e l ta ]  [pshu b]

[pulu a] [pulu b] [mul] [pshu b]

[pulu b] [s tb  s t r ip ]

[ldb area] [pshu b]

[ldb s t r ip ]  [pshu b]

[pulu a] [pulu b] [s tb  addrl] [adda addrl] [pshu a]

[pulu b] [s tb  area]

[ in c  v i ]  [bra la b e l l6 ]

[ l a b e l l 7  dec v i ]

[ j s r  p c r l f ]

[Ida # 84] [ j s r  output]

[Ida # 104] [ j s r  output]

[Ida # 101] [ j s r  output]
I

■a

J



[Ida # 32] [ j s r  output]

[Ida # 97] [ j s r  output]

[Ida # 112 [ j s r  output]

[Ida # 112 [ j s r  output]

[Ida # 114 [ j s r  output]

[Ida # 111 [ j s r  output]

[Ida # 120 [ j s r  output]

[Ida # 105 [ j s r  output]

[Ida # 109 [ j s r  output]

[Ida # 97] [ j s r  output]

[Ida # 116 [ j s r  output]

[Ida # 101 [ j s r  output]

[Ida # 32] [ j s r  output]

[Ida # 118 [ j s r  output]

[Ida # 97] [ j s r  output]

[Ida # 108 [ j s r  output]

[Ida # 117 [ j s r  output]

[Ida # 101 [ j s r  output]

[Ida # 32] [ j s r  output]

[Ida # 111 [ j s r  output]

[Ida # 102 [ j s r  output]

[Ida # 97] [ j s r  output]

[Ida # 114 [ j s r  output]

[Ida # 101 [ j s r  output]

[Ida # 97] [ j s r  output]

[Ida # 32] [ j s r  output]

[Ida # 61] [ j s r  output]

[Ida # 32] [ j s r  output]

[Ida

[ j s r

area]

p c r l f ]

[ j s r  output]
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The workload of procesor 2 both in high-level and assembly format:

[
[ [ r e c e iv e ]  [area  := 0] [send 1 var area in te g e r ] ]

[ [ r e c e iv e  1 var a in t e g e r ,  1 var b in teg er ]

[d e l ta  := [b -  a] /  10000] [send 1 var d e l t a  in t e g e r ] ] ]

[ [ r e c e iv e  ] [ f o r  i  := 1 to  10000

[ [ r e c e iv e  ] fu n cva l := [ [a  ** 2] + a + 8] [send 1 var fu n cv a l in te g e  

[a := [a + d e l t a ] ]

]

[nam t e s t  program] 

org $4000] 

base rmb 2] 

addrl rmb 2] 

addr2 rmb 2] 

addr3 rmb 2] 

f a l s e  rmb 1] 

t r u e  rmb 1] 

d is p la y  rmb 60] 

labelO ]  

ldu  #$b000]

Ida #$00] 

s t a  f a l s e ]

Ida # $ f f ]  

s t a  tru e]

; ; ;  setup

; ; ;  holds base o f  array  

; ; ;  v a r ia b le s  used by t r a n s la t o r

; ; ;  t h i s  lo c a tn .  ho ld s  value of f a l s e  

; ; ;  s im i la r  to  above

; ; ;  array fo r  s ta ck  frame

; ; ;  s e t t i n g  up user  s tack  p o in ter  

load  f a l s e  to  a 

; put f a l s e  in  f a l s e  

load  tru e  in  a 

put tru e  in  lo c a t i n  tru e  

;; s e t  up stack  frame base fo r  main program 

ld x  # d isp la y ]  ; ; ;  p o in t in g  to  d i s p l a y [1] 

s tu  ,x] ; ; ;  s to r e  frame base in  d i s p la y [ l ]

t f r  u ,y ]  ; ; ;  current frame base kept in  U reg  

Ibra  main] ; ; ;  branch to  main program
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[ l a b e l l ]  . ; ; ;  input r e tr n s  next v a l  on stack

; ; ;  checks s ig n  o f  in t  and puts f l a g  on the  s ta ck ,  i f  pos z  b i t  i s  zero  

la b e l2 ]

Ida » [ ’ , x>]»]  ; ; ;  load  A w ith  lo c a t io n  ptd . by x reg  

andcc #$00] ; ; ;  c l e a r  f l a g s

cmpa #$2d] ; ; ;  comp, f i r s t  char of  b u ff  with "-" 

pshu cc] ; ; ;  push r e s u l t  on th e  s tack  

bne la b e l3 ]  ; ; ;  i f  pos branch to  return  

j s r  nxtch] ; ; ;  advance buff  p o in te r ,  jump over"-"  

l a b e l3  r t s  la b e l2 ]  

la b e l4 ]

j s r  labe3] ; ; ;  read in  f i r s t  character  o f  bool  

andcc #$00] ; ; ;  c le a r  f l a g s  

cmpb #$74] ; ; ;  $74 i s  a s c i i  t  fo r  ( t ) r u e  

bne labe5 ] ; ; ;  input must be f a l s e  

ldb  # $ f f ] ; ; ;  t r u e  i s  loaded in  th e  b reg  

pshub] ; ; ;  va lu e  pushed on th e  user  stack  

bra lab e6] ; ; ;  branch to  increm. l i n e  .b u ff  p o in te r  

lab e5  ldb # $ 0 0 ] ; ; ;  f a l s e  loaded in  b reg . J

pshub] ; ; ;  push va lue on stack  

la b e6  ldd #5] ; ; ;  sk ip  the next f i v e  chars 

addd p o in te r ]  J

s t r d  p o in ter ]  

r t s  la b e l4 ]  ; ; ;  return  

l a b e l7 ]  

andcc #$00] ; ; ;  c le a r  f l a g s  

Ida #$2d] ; ; ; load  a with char

j s r  putch] ; ; ;  p r in t  |

ldb  # $ f f ]  ; ; ;  change num to  i t s  proper value

eorb l , x ]  ; ; ;  l ’ s complement

incb] ; ; ;  by tw o}s complementing i t



C Ida #$00] cre a te  16 b i t s  num from 8 b i t s

[ s td  ad rr l]  ; ; ;  s to r e  16 b i t s  num, ms byte  i s  O’ 

[ r t s  la b e lT ]]

[main]

[ldb  # 0 ] [pshu b]

[pulu b] [ s tb  area]

[ldb area] [ j s r  send]

[ldb #1] [ j s r  rec]  [pulu b]

[s tb  va]

[ldb #2] [j sr  r e c ] [p u lu  b]

[s tb  vb]

[ldb va] [pshu b]

[Ida vb] [pshu a]

[pulu b] [pulu a] [s tb  addrl] [suba addrl] [pshu a]

[pulu b] [s tb  d e lta ]

[ldb d e l ta ]  [ j s r  send]

; ; ;  f o r  loop  

[ldb #1] [pshu b]

[pulu b] [s tb  v i]

[Ida #10000] [pshu a]

[ la b e l8  Ida v i ]  [andcc #$0] [cmpa ,u] [ lb g t  19]

[Ida va] [pshu a] [pshu a]

[pulu a] [pulu b] [mul] [pshu b]

[ldb va] [pshu b]

[pulu a] [pulu b] [s tb  addrl] [adda addrl] [pshu a]

[ldb  #8] [pshu b]

[pulu a] [pulu b] [s tb  addrl] [adda addrl] [pshu a]

[pulu b] [ s tb  fu n cva l]

[ldb fu n cv a l]  [ j s r  send]

[ldb  va] [pshu b]

[ldb d e l ta ]  [pshu b]



[pulu a] [pulu b] -[stb addrl] [adda addrl] [pshu a] 

[ in c  v i ]  [bra la b e l l8 ]

[ l a b e l ! 9  dec v i ]
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A p p e n d ix  H  

P rogram m ers M od el o f  M IN N IE

M aster  P rocessor A ddress Space

Address Fuction Description
7000 STP step for enable
7001 SELECT NA to r/w  NA(Node Address) to node
7002 NAEN to switch RAM through
7003 RESg reset of interfaces globaly
7004 START starting of system
7005 NERES node enable reset
7006 CY cyclic
7007 NCY non-cyclic
7008 GBB global bus busy
7009 ENABLE for access of NAs
700A SA start allocator
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Program m ers M odel D iagram

The diagram below shows the functional units of MINNIE and the memory map of 

each node.
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S et-u p  sequence

1. set GBB to 1

2 . set RESg to 0

3. set NAs (see Step 3: Set-up NA)

4. write program/data to node (see Step 4: Program/Data to Node)

5. set SA to 1

6. select cyclic or non-cyclic

7. reset GBB

8 . monitor processor “Done” line

9. if cyclic start again, count cycle

10. when cycles are finished or non-cyclic then master is interrupted and reads 

local memory for data collection (see steps 4.1-4.7).

S tep  3: S et-u p  N A

step operation
3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9

GBB set 
set ENABLE 
set STP 
reset ENABLE
read/write NA as data (6-bit node address) 
move to next node (stp 3.3) 
do step 3.5
repeat 3.6 and 3.7 as necessary
when done reset ENABLE within system



S tep  4: P ro g r a m /D a ta  to  n ode

operation
GBB set
switch in memory map to global processor map (FF8C set to 1C) 
set NAEN

y

6 bit node address 
> . "1" Address valid

Access memory as usual
repeat from 4.3 for other nodes
reset NAEN to switch off all memory switches
switch memory map off (FF8C set to FC)
reset GBB




