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Christopher McCollin :
Analysis Methods for Software Reliability Data

This thesis reviews the statistical models commonly 
applied to software reliability data. A data set 
encompassing the typical fields to be found on a soft
ware defect record sheet is analysed in a systematic 
way to initially determine where data was corrupted or 
uncollected. The data when summarised into failure 
counts, proportions, waiting times to failure and cumu
lative failure times are analysed by a number of stat
istical analyses : Exploratory Data Analysis, Box and 
Jenkins time series, proportional hazards modelling, 
proportional intensity modelling and a number of multi
variate techniques. A comparison of the analyses is 
undertaken.
The time series analysis using a standard computer 
package was able to forecast when the software would 
become failure free, a useful metric to determine time 
to release the software to a customer. The results are 
verified by proportional hazards modelling.
The intensity functions of most of the non-homogeneous 
Poisson processes are shown to be equivalent to propor
tional hazards models with appropriate explanatory fac
tors and hazard functions. The technique may be used as 
a diagnostic tool for the selection of the most 
appropriate software reliability model for a given data 
set as nonsignificant proportional hazards formulations 
are rejected from the analyses. Covariates which 
describe the attributes of the software, e.g. source 
program type, may also be incorporated in a propor
tional hazards formulation.
The proportional intensity model is applied to the 
twelve least reliable program sources of Alvey data set 
number 3, the first analysis of this type for software 
data. This formulation can model all the software and 
hardware reliability growth models which can be 
expressed as Non-homogeneous Poisson processes. The 
findings are compared with those from exploratory data 
analysis and proportional hazards modelling. The pro
portional intensity model is also shown to be a limit
ing form of the proportional odds model.



The use of multivariate techniques such as principal 
components analysis, discriminant analysis and also 
generalised linear modelling to model software relia
bility data are described and the results are compared 
to the results of the analyses from exploratory data 
analysis and proportional intensity modelling.



Obj ectives

The main objectives of the research for this thesis:
(i) To review statistical techniques applied to soft
ware reliability data and to investigate a variety of 
methods for analysing the data which has been collected 
under a data collection scheme.
(ii) To propose a methodology for the analysis of a 
large software development failure data set as col
lected by a standard and/or standardised (e.g. BS5750) 
data collection method.
(iii) To analyse subsets of the collected data by 
exploratory methods using available and purpose written 
software and thus determine appropriate statistical 
models for the data.
(iv) To develop the proportional hazards technique as a 
diagnostic tool to subsume the well known software 
reliability models within it's framework and apply the 
methodology to part of the described data set.
(v) To investigate proportional intensity modelling for 
software reliability modelling and show it's relation
ship to generalised linear modelling.
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1 INTRODUCTION

In recent years, the scope and complexity of software has 
grown enormously and many problems relating to unreliable 
software have been highlighted in the media. Examples of 
some catastrophic software failures include the 1991 Boeing 
767 Lauda Air disaster in Thailand in which 223 people 
were killed (ref. Sunday Independent, 21 July 1991) in 
which the engine control system switched on the reverse 
thrust system while the engine was on maximum power; the 
Colorado river flooding in 1983 was due to faulty weather 
data and/or a faulty model in which too much water was 
kept dammed prior to spring thaws; a Japanese mechanic 
was killed by a malfunctioning Kawasaki robot (ref. 
Electronic Engineering Times, 21 December 1981) and a 
woman killed her daughter and tried to kill her son and 
herself after a computer error led to a false report of 
their all having an incurable disease (ref. IEEE AES 
Magazine, July 1985).

The problems of creating error free software has been 
addressed by a number of European and North American 
software research initiatives including STARTS (Software 
Tools for Application to Real Time Systems) , ESPRIT, EWICS 
TC7 and Alvey however there is no development method which 
can guarantee a completely reliable (software) system. 
The need to assess the reliability of a (hardware and 
software) system arises typically from a customer 
requirement, to understand the safety implications, to 
predict the optimal time to software release or for safety 
critical certification; the Health and Safety Executive 
are 'putting in systems whose specification states that 
they should not fail more often than once in 100 million 
reactor years' (New Scientist, 1 April 1989)).
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The assessment of reliability for a hardware system is 
well developed, however there has been very little work 
carried out creating a reliability assessment method for 
software similar to U.S. Mil-Handbook 217 for hardware 
systems.

The reliability goal of a hardware/software system is 
usually defined in a system specification which is tendered 
to a prospective supplier of the system. A customer may 
specify a reliability requirement such as a specified 
reliability of 0.9 or a Mean Time Between Failure (MTBF) 
of 1000 hours. This figure is typically complied with to 
the customer's satisfaction by either a MIL-HDBK-217 
reliability prediction or a reliability demonstration 
test.

The main reliability activities in a hardware development 
project (to achieve a reliability goal) are:

to determine the types of failure that may occur (by 
analysis) and ensure that the most critical are either 
eliminated by design or have adequate contingency on 
failure (e.g., by redundancy).

to identify failure by some form of development testing 
and then subsequently design out the failure mode.

to demonstrate that the reliability of the built system 
satisfies the customer requirement.

to predict the reliability of the system before it is 
built.



Within the hardware field, there are a number of established 
techniques for dealing with each of the above activities. 
These are Failure Modes and Effects Analysis (FMEA), 
Reliability Development Testing (RDT), Reliability Dem
onstration and Reliability Prediction. These techniques 
are described in O' Connor (1982) among others. Software 
testing, inspection and fault finding are covered in a 
number of texts (Myers (1976), Anderson and Randell (1979).

Reliability prediction is more relevant to software rather 
than hardware reliability. This is because software 
information (such as type of fault, input and output 
parameters, etc ) is collected during development which 
aids the systems programmers and analysts in the location 
and subsequent removal of software errors. Using this 
data, the system reliability may be estimated before 
delivery. Also, since faults in the software may only be 
revealed under certain input conditions, there may be a 
need to know approximately how many faults are left 
undiscovered in a piece of software code on delivery to 
a customer.

1.1 SOFTWARE RELIABILITY PREDICTION

Many software reliability prediction models have been 
developed to try to determine the remaining number of 
faults and these are discussed in a later section. Here, 
an approach to modelling similar to hardware reliability 
modelling is considered.

Reliability prediction in the hardware field such as by 
the use of MIL-HDBK-217 is well developed in areas such 
as the aerospace and the nuclear industry. Reliability 
prediction is used to compare alternative designs and



provide figures for life cycle costing and spares 
provisioning. It is not a technique for predicting 
service-use hazard rate.

Hardware component hazard-rates or failure-rates are 
usually assumed to be constant so that times to failure 
follow the exponential distribution and hazard-rates may 
be added together to provide a system hazard-rate figure. 
The best known database of failure rates is US MIL-HDBK-21 7 
which contains equations for failure-rates for most 
electrical and electronic devices.

The physical model employed in this Standard which relates 
part base-hazard-rate to temperature stress is the 
Aarhenius equation. A hazard-rate for most operating 
environments, quality factors and component stresses may 
be calculated by multiplying part base-hazard-rate by 
multipliers for each of these factors.

The document's main advantage is that it relates component 
hazard rate to explanatory factors. Hence by choosing 
components which have a low valued explanatory factor 
(e.g. voltage stress, current rating) , the predicted hazard 
rate is reduced.

There has been criticism of the MIL-HDBK-217 (O'Connor 
(1991 ) ) regarding among other things the inappropriateness 
of the exponential distribution for the statistical model. 
For instance, the hazard rate figures for lasers are based 
on the wearout mechanisms of the laser cavities so they 
would not be expected to fail randomly. Thus the exponential 
distribution is not applicable in this case. However, it 
has been shown by Landers and Kolarik (1986) that the 
hazard rates are a special case of a proportional hazards
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model. The assumption of the exponential distribution is 
more for mathematical convenience (the hazard rates may 
be added) than the exact physical representation of the 
component failure mechanism.

Software reliability is harder to model as a physical 
process. However, modelling software reliability is 
facilitated, as actual data is usually available from a 
specific project. Guidelines for software reliability 
prediction have been attempted previously by Sukert (1 980) , 
however, the methods outlined do not seem to have been 
pursued.

A prediction method should take into account external 
factors as well as the attributes of the software and the 
wide variety of software reliability models available. 
For software, the explanatory factors are more diverse 
and problems can arise in estimating these factors due to 
external influences such as data collection methodology, 
quality of data and inappropriate statistical models. It 
will be shown that proportional hazards and proportional 
intensity modelling are adequate structures for software 
reliability modelling.

This thesis provides a framework for analysing software 
reliability data It also provides an objective approach 
to the use, or rejection, of well known software reliability 
growth models for modelling reliability data sets. A number 
of software failure data sets were collected during the 
Alvey Software Reliability Modelling (SRM) project at 
Nottingham, the data collection exercise being described 
in chapter 2. One of these data sets is analysed in detail 
to show the approach to statistical analysis. The data to 
which this is applied is usually collected within a software
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failure data collection scheme. The analyses carried out 
have given some insight into the final system reliability, 
an optimal time to release as well as a description of 
the failure behaviour during development.

1.2 THE STATE OF THE ART OF SOFTWARE RELIABILITY

A problem in software reliability modelling is that, since 
the early seventies, a large number of models have been 
specified (see chapter 5) and the term 'Model Wars' has 
been coined where papers have been written to describe 
the relative merits of each model. One solution to this 
problem is to classify the models into a group, for example 
as exponential order statistic (EOS) models, etc. The 
classification of EOS models is discussed in Mellor (1987) .

Dale (1991) states that a natural approach to predict the 
reliability at various stages of development is to develop 
a model which incorporates explanatory variables which 
explain 'variation in terms of features of the software 
or its development'. Dale suggests generalised linear 
modelling as a possibility. Features of the software and 
it's environment such as source size and day of failure 
detection have been incorporated into a time series 
structure and generalised linear models within this thesis.

Wightman in Mellor and Bendell (1986) describe the use of 
proportional hazards modelling among others and this 
approach may be used as an exploratory tool to highlight 
data structure. They also state that Exploratory Data 
Analysis, (EDA) may be used as an aid in determining 
structure in the data. The proportional hazards formu
lations in chapter 5 provide a diagnostic tool to aid the 
selection of the most appropriate software reliability
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model for a given set of data and has the advantage over 
the previous groupings of models in being able to reject 
specific models which do not fit the data.

Dale (1991) states 'The problem of the choice of possible 
explanatory variables is very wide and there is very little 
science which can be drawn upon to aid an intelligent 
initial selection'. An added advantage of using propor
tional hazards modelling is that extra explanatory 
information may be included. If data is collected by a 
standard data collection mechanism, then explanatory 
variables which are relatively easy to collect such as 
source type or size may be used within a statistical 
analysis which may show at an early stage of development 
which sources are unreliable. Fagan (1976) suggests that 
these unreliable sources should be monitored and reviewed 
at an early stage for possible redevelopment. The 
application of these proportional hazards formulations to 
the least reliable sources of Alvey data set 3 is described 
in chapter 6.

1.3 THE DIFFERENCE BETWEEN SOFTWARE AND HARDWARE RELIA
BILITY

The following software terms are taken from Mellor (1986) 
and are used throughout the thesis.

In hardware, the lowest level of assembly is a part such 
as a transistor or a coil. A subassembly is made up of 
parts and is tested before it is installed into an assembly. 
A number of subassemblies may be connected together in a 
functional block called a system and this also undergoes 
a test to an acceptance procedure to satisfy a customer 
that the system will work.
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In software, the lowest level of assembly is a line or 
statement of the software code. These instructions are 
translated by a compiler into a binary code which a computer 
processor can execute, for example to transfer values 
within the code from one register to another. The code is 
written in lines to form a source which carries out a 
specific task (e.g. to calculate a sample mean for a set 
of data). A source may also be a data file. A number of 
sources connected together form a module. The collection 
of modules when executed together is called a system or 
a product.

In both hardware and software, the customer defines how 
the system should operate and where and how it interfaces 
with the external environment such as other systems and/or 
the operational and environmental conditions. These 
conditions are stated in the system specification.

A fault is an error in the code (or specification) which 
may cause the product to fail (a failure) or would have 
caused a failure if it had not been found before the 
software execution. A failure is defined as the fault 
which makes the software crash on software execution.

Reliability may be defined within a system specification 
as follows.

The reliability of a system is the probability that it 
will perform as required by the correct specification for 
a given period of time under the given operational and 
environmental conditions. This definition is similar to 
the one in Anderson and Randell (1 979) .



The contributory causes for how a hardware or software 
system fails may now be derived from the above definitions. 
The failure of a system may be due to:

1. a fault in writing, understanding and interpreting a 
specification.
2. a fault in the interface between modules or assemblies
3. a fault in testing the code or part incorrectly
4. a fault in the code or part.

For items 1 and 2 above, the time element of the reliability 
definition is difficult to quantify since no test time 
will have been accumulated. For item 3, defining the test 
correctly will certainly influence the system reliability 
for software and hardware. The effect of different tests 
on system reliability may be explored statistically by 
incorporating the information within a model (such as 
proportional hazards) but very little work has been carried 
out in this area (see Nagel and Skrivan (1981) as an 
example of controlled experimentation). A description of 
the software lifecycle incorporating planning and testing 
may be found in the references by Rook (1990), Myers (1976) 
or Conte, Dunsmore and Shen (1986).

A fault at the lowest level of assembly is dealt with in 
one of two different ways depending on whether the system 
is undergoing development or is in full production. During 
development, a fault can be designed out of a system, the 
reliability growing as successive design faults are 
removed. In service use, a hardware part which has failed 
is replaced by an equivalent unfailed part, however, for 
software if the fault is due to incorrect code, the code 
may be rewritten (repaired). Thus, assuming that envi
ronmental conditions remain as per system specification



and that repairs to faults do not increase the initial 
fault stock, the main difference between software and 
hardware reliability is that eventually all faults in the 
software may be found and removed whereas, in a hardware 
system, parts will continually degrade and wearout. Thus, 
to model software reliability requires the statistical 
model to take this initial number of faults into account. 
General reliability theory for hardware is developed below. 
Extensions to this theory to software are described in 
chapter 5.

1.4 RELIABILITY THEORY

We define the time to failure (TTF) as the random variable 
{Akx>0}. Assuming that TTF is continuous, F(x) is the 
distribution function of x, which is the probability of 
a value of the time to failure X being less than or equal 
to some value x (cumulative density function). The 
reliability R(x) is the probability that there is no 
failure before x so that

R ( x ) =  1 -  F  O).

X

Also, F ( x ) =  / f ( t ) d t  where f (x) is the probability density o

function (pdf) of x.

The hazard rate, force of mortality or instantaneous 
failure rate h(x) is defined as

h(x) dx = probability of failure in the interval (x, x+dx) 
given survival to time x.
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It may also be written as ^  x ̂ _ /<*).

The reliability may be derived from the three equations 
above as

- / h ( t ) d t

R ( x )  =  e  0 -(1).

Certain hazard functions have gained popularity in 
modelling hardware reliability over the last thirty years. 
In software reliability theory, various statistical models 
have been derived which may account for the failure process 
of the software but these models have not been directly 
related to these well-known hazard functions. The following 
distribution theory will be applicable in chapter 5 when 
deriving the well-known software reliability models in 
hazard terms.

Following Thompson (1988) , there are three interpretations 
which may be applied to interarrival times. These are the 
length of the gap between the arrivals which may be 
designated X it the separation of arrivals near a fixed 
time A'/v(/)+1 = Y n u ) +  \ ~  Y a/(o where N(t) is the number of arrivals 
in the interval 0 to t and the forward waiting time from 
t to the next arrival W t =  Y N{ l )+]  -  t .

Various results have been derived for the gap lengths 
however they are not simple. For example, Parzen (1962) 
derived the reliability function for the kth interval 
(i.e. the time from the (k-1)st event to the kth event) 
given by
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and the pdf of the kth gap length is

r  r  i \   a - M ( ! ) M « )  ’ /■ t ̂Jfc(0 - e (T-~M O -

The forward waiting time is the time to wait for an event 
to happen. The backward waiting time is B  t =  t - Y  N i t ) so that 
X  n  ( 0 +  i =  ^  i +  B  i'

On testing a source code, the source will run in a certain 
execution time given no external influences, since each 
item of code takes a precise time for the computer 
microprocessor to process. Assume that there are a number 
of faults in the code. The waiting time to failure for 
each fault may be designated x  j , x 2 > •••» x n . Then the waiting 
time to the first failure will be the shortest time to 
reach any fault. The distribution of the smallest time 
will have the form one of the three smallest extreme value 
distributions. The next waiting time to failure will also 
follow a smallest extreme value distribution but will be 
modulated in some way by it being the second waiting time. 
The hazard rates for each of the x 3,x4,...,xn may then be 
determined in a similar way. This is described in more 
detail in chapter 5.

By contrast, the Weibull distribution (a distribution of 
large extremes) is typically used to model the times to 
failure of hardware systems and components.

From Gumbel (1958), for smallest extremes, the three 
distribution functions are

the Frechet distribution given by



the Weibull distribution given by 
_ (  *22.

F  ( x  ) = 1 - e  ̂ ' Y<x<°°,a,13>0

and the Gumbel distribution given by
( • v - Y )

P  (X  <  x ) = F  (x ) = 1 - e"e -00 < x  <  00, a > 0.

As failure times are non-negative random variables, then 
by using the transformations

_ X  Y
e b T  ~  1 = e a, a = ea

in the standard form of the Gumbel distribution above, 
then

P ( T < t ) =  1 - e-a(Gbi-1}, 0 < t < c o ,

The hazard rate for this distribution is

h ( t )  =  a b e bl a , b > 0 .  (see the Cox-Lewis intensity in the 
proportional hazards formulation of chapter 5.4.2).

Alternatively, by using the transformations
X _ Y

1 - e ~ b T  = s°, a  = e “

in the standard form of the Gumbel distribution above,



P  ( T  <  t )  =  1 -  e " a(1-G' bl) , 0 < f < « v

The hazard rate for this distribution is 
h ( t )  -  a b e ~ bt a , b > 0 .  This hazard rate is used in chapter
5.3.4 on the Poisson type intensity models, chapter 5.3.5 
on the Musa basic model, chapter 5.3.6 on the Ohba model, 
chapter 5.3.7 on the Goel-Okumoto model and chapter 5.3.8 
on the S-shaped model.

The Gompertz hazard rate and Makeham's formula (Jordan 
(1975), Gross and Clark (1975)) are hazard rates used in 
actuarial science and take the form
h(t) = aexp(bt) a, b >  0  and h ( t )  = c + a  exp (60 a ,  b ,  c> 0 
or h(0 = c + a  exp ( b t )  c > a e x p ( b t )  respectively. These are 
both special cases of the Gumbel hazard rate.

The two parameter Weibull distribution takes the hazard 
rate h  (/.) = t b ~ 1 with cumulative hazard 77 (0 = ( ~) * When logs

are taken of both sides of this formula, then 
log ( H  (0) = b  log £ ~ ̂ a straight line relationship, so
that if the estimated cumulative hazard is plotted against 
time, the values of a and b may be calculated by linear 
regression modelling, (O'Connor (1982)). The Gumbel 
distribution may be derived by taking logs of a Weibull 
variate.

Gross and Clark (1975) describe a hazard rate of the form 
h(0 = a  + b t  and Gaver and Acar (1 979) describe the quadratic 
hazard rate h { t )  =  a  + b t  +  c t 2.

1 4



1.4.1 REPAIRABLE SYSTEMS RELIABILITY

Repairable systems data may be represented in the following 
figure.

FIGURE 1.1. PLOT OF REPAIRABLE SYSTEMS
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where
x i ,x2 are interarrival times of failures and 1,2....!
are the failure counts and are the cumulative times
to failure. Censoring times are times (in a software 
application) when there may be a fix to a source code even 
though the particular source code had not failed. The 
total time of observation may be a terminated by a failure 
(failure termination) or a time (time termination).

Analysis of this data may be carried out by considering 
the number of failures within fixed time intervals (a time



series), proportions of items failed over the total number 
of items against time (a logistic model), the cumulative 
time to failure for a number of failed sources (a pro
portional intensity model) or time since last failure for 
the failed sources (a proportional hazards model).

Consider the cumulative times to failure. It is usual to 
express a series of cumulative failure times as a point 
process (see the next section) . Some well documented point 
processes are the renewal process which is a sequence of 
random variables { Y  \, Y  2 ... •} of the form Y  n  =  X  x +  +  X  n where
the interfailure times {Ar1,Ar2,-..> are statistically 
independent with a common distribution F(X); the homo
geneous Poisson process which is a renewal process with 
the common distribution being the exponential distribution 
and the non-homogeneous Poisson process (NHPP) where the 
distribution of interfailure times vary over time.

A description of specific NHPP's and their equivalent 
proportional hazard formulations are derived in chapter 
5.

An alternative approach is to model the data as times 
since last failure within a proportional hazards framework 
using the supplementary information as explanatory 
variables. Since NHPP's are primarily used to model trend 
in the data, then the proportional hazards formulation 
should include covariate information to identify the types 
of trend which NHPP's highlight.

Another important factor to take into account when software 
reliability modelling is the usefulness of explanatory



information such as source size or type which may have an 
influence on the software reliability. The incorporation 
of this information is discussed at the end of this chapter.

1.4.2 NON-HOMOGENEOUS POISSON PROCESSES

The following derivations of point processes is taken from 
Parzen (1962) and more recently from McCollin (1980) and 
Thompson (1988).

A point process {N ( t ) , t > 0 }  is a collection of usually 
interrelated random variables. Suppose the points (usually 
called arrivals) represent times t i  , t 2 , at which
failures have occurred where 0 < £! < £2 < ... < £,*. Then the random 
variables j x 2 - t  2 ~ £ i x 3  =  t 3 - t 2 ... x n “ £„*-£„-!•
Let N(t) be the number of arrivals that have occurred in 
the interval [0,t]. Then N(t+h)-N(t) assumes only
non-negative integer values. For a point process, the 
expected number of failures in time t, E(N(t)), is written 
as M(t), which is also known as the mean value function.
If this function can be differentiated, then p(£) = M /(0
is called the arrival rate or the instantaneous rate of 
change of the expected number of arrivals with respect to 
time.

A point process has no simultaneous arrivals if each jump 
of N(t) is of unit magnitude. The intensity of a point 
process is the same as the arrival rate of the process if 
there are no simultaneous arrivals. The intensity may be

i , . » , . v. l i m i t (l-P(/V(f + /i)-N(f) = 0)) r  . , , , .written as X(£) = -— - ------------ . The form that the/i 0 h

intensity function X(f) takes is not unique and some forms 
are described in chapter 5.
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For a homogeneous point process, for any two points t>s>=0 
and h>0, the random variables N(t)-N(s) and N (t+h)-N(s+h) 
are identically distributed and hence the intensity and 
arrival rate are constant for all time.

A homogeneous Poisson process is homogeneous point process 
such that

Ml  U  - M (-V)
P(N(t,t + x) = k) = ̂ 1̂   /c = 0 ,  1 , 2 .......  0 < M(x) < °°
where M  (x ) = Xx  0 < X < .

A Non-homogeneous Poisson process may take various 
formulations for M(x) and these are described in chapter 
5.

1.4.3 RELATIONSHIP BETWEEN INTENSITY FUNCTION AND HAZARD 
RATE

The cumulative distribution function of the waiting time 
for a Poisson process is given in Thompson (1988) page 64 
as

F t ( w )  = P r o b ( W  t <  w ) = P r o b ( N  ( t , t +  w ) > l )  

which is the same as 

1 - P r o b ( N ( t , t  +  w )  =  0 ) =  1 -exp“(W(t*tt,)'M(0).

Now the hazard rate of forward waiting time is the dif
ferential of the -log of the reliability function in (1) 
of chapter 1.4 so that

where h(0 is the arrival rate of the process. Assuming



that there are no simultaneous arrivals, the arrival rate 
is the intensity function of a Poisson process and so

h t ( w )  =  \ ( t  +  w ) .

This result is stated by Parzen (1962) and Musa (1987), 
derived by Thompson (1988) and will be used when 
re-formulating some well-known software reliability models 
into a proportional hazards structure.

1.4.4 MULTIVARIATE TECHNIQUES

It is beneficial to software project managers to collect 
diverse information to aid him/her in the best use of the 
resources at his/her disposal. Diverse information was 
collected during the data collection exercise of the Alvey 
project, so it is possible to consider the effect of such 
additional variables on the hazard rate of the software 
and the associated development environment. The class of 
statistical models which will allow incorporation of point 
process models with explanatory information is commonly 
known as generalised linear modelling. In this thesis, 
the proportional hazards models and log-linear models are 
considered. These will be derived in the specific forms 
required for analyses of software failure data collected 
during the Alvey Software Reliability Modelling Project 
and are discussed in more detail in later chapters. The 
relationship of proportional intensity modelling to 
generalised linear modelling is also investigated.

Multivariate techniques are not just used for modelling 
but also for structural simplification as in principal 
components analysis (see chapter 7), cluster analysis
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(which classifies diverse data into groups), and dis
criminant analysis which may be used as an aid to determine 
missing data (also in chapter 7).

1.5 REQUIREMENTS AND METHOD OF ANALYSIS

The data collected from a data collection scheme may be 
analysed in a systematic way. The following analysis 
procedure is derived from similar data collection schemes 
within the process and nuclear industries described in 
Teichmann et al (1985), Samanta et al (1985) and Bendell 
(1 988) .

A number of data sets were collected during the Alvey SRM 
project to aid the selection of appropriate statistical 
models. Seven out of eight of the Nottingham collected 
data sets did not contain software execution times to 
failure which could provide the physical basis for certain 
software reliability models, (Jelinski-Moranda, Musa, 
etc) . Various data came from installations of the software 
on different sites (data set 1) or was not coded suffi
ciently to determine if the software or associated hardware 
had failed (data sets 7 and 8). Among the collected data 
sets came failures recorded at a personal computer, service 
reports, development projects for new operating systems, 
computer controlled safety plant, an operating system for 
local government records, etc.

The reasons for analysing just one of these data sets 
(number 3) of the seventeen collected during the Alvey 
Software Reliability Modelling (SRM) project were that



- the data came from a large software development project 
where feedback from the data supplier was available
- the data set was almost complete
- there were no specific requests from the customer to 
collect software-reliability-model-specific data such as 
execution time to failure or accurate estimates of source 
sizes and since the collection of this type of data 
increases the project cost, the data from this project is 
probably more representative of the data sets collected 
in industry.

Thus, the type of data available (see table 1.1) is the 
same as may be collected for any software development 
project. The collected data included the date of the 
software system failure, the number of faults found on 
failure, the size, type and language of each failed and 
unfailed source version and the product release dates. 
This information may be readily collected for any medium 
to large scale development project where there are a 
reasonably high number of system failures. For this data 
set, there were about six hundred software system failures.



TABLE 1.1. TABLE OF DELIVERED ALVEY DATA SET NUMBER 3
FILES

NAME OF FILE COLUMN NAMES IN FILE
FAILURE FAILURE, FAULT, PRODUCT, VERSION, 

PRODUCT REPAIR VERSION GROUP, 
INSTALLATION, WHEN FAILED, TYPE- 
__OF__USE.

FAULT FAULT.

FAULT.PV.PRVG FAULT, PRODUCT, VERSION, PRODUCT 
VERSION.

FAULT.SV.SRVG FAULT, SOURCE, SOURCE VERSION, 
SOURCE REPAIR VERSION GROUP.

INVESTIGATION FAILURE, REPAIR PROGRAMMER, WHEN 
REPAIRED.

PRODUCT.VER PRODUCT, VERSION, WHO CHANGED THE 
VERSION, START OF PRODUCT VERSION, 
END OF PRODUCT VERSION.

PRODU CT_RV G PRODUCT REPAIR VERSION GROUP.
PV.PRVG PRODUCT, VERSION, PRODUCT REPAIR 

VERSION GROUP.
PV.PRVG.INS PRODUCT, VERSION, PRODUCT REPAIR 

VERSION GROUP, INSTALLATION, START 
TIME OF PRODUCT VERSION, END TIME OF 
PRODUCT VERSION.

REPAIR REPAIR, FAULT.
REPAIR.VER REPAIR, REPAIR VERSION, REPAIR 

PROGRAMMER.

REPORT REPORT, FAILURE, DATE OF REPORT.
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TABLE 1.1. TABLE OF DELIVERED ALVEY DATA SET NUMBER 3
FILES (CONTINUED)

RV.SRVG REPAIR, REPAIR VERSION, SOURCE 
REPAIR VERSION GROUP.

SOURCE SOURCE, DESCRIPTION.
SOURCE.VER SOURCE, SOURCE VERSION, PROGRAMMER, 

WHEN COMPLETED, LANGUAGE, SIZE, 
MEASURE.

SOURCE_RVG SOURCE REPAIR VERSION GROUP.
SRVG.PRVG SOURCE REPAIR VERSION GROUP, PRODUCT 

REPAIR VERSION GROUP.
STAFF STAFF, STAFF RATE.

SV.PV SOURCE, SOURCE VERSION, PRODUCT 
VERSION.

SV.SRVG SOURCE, SOURCE VERSION, SOURCE 
REPAIR VERSION GROUP.

1.5.1 DESCRIPTION OF THE SOFTWARE SYSTEM

A detailed description of how the software system is 
supposed to work and the procedures to be carried out on 
failure, fault finding procedures and repair documentation 
should be available to the data analyst so that certain 
statistical assumptions may be checked. For instance, 
suppose two different repair procedures ( e.g. factory 
and customer ) were being followed. If the statistical 
analysis were to show that number of failures after repair 
by one procedure were significantly smaller than the number 
of failures after repair by the second procedure, then 
this improvement could be tracked down to one of the repair
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procedures being more user friendly than the other. A 
recommendation may then be to use the more helpful pro
cedure .

For the Alvey data set number 3 to be analysed, very little 
subsidiary information was available so that a number of 
possible conclusions to the analyses are listed. Therefore 
the recommendations of these analyses can be only tentative 
without further knowledge of the system.

1.5.2 CHECK FOR MISSING OR CORRUPT DATA

At each stage of the process of a collection, there may 
be missing or incorrectly written information and so the 
first objective of analysis of failure reports is to 
determine and complete the missing data. This may require 
a designer to work through the reports to check that what 
has been written is a true record of how the failure 
happened and whether the failure was actually due to the 
fault as described in the report. This procedure is not 
usually implemented as it is too costly with very little 
return of investment.

After the incident reports have been coded into a database, 
cross referencing files which contain the same data but 
in a different format may highlight incorrect data and 
this has been carried out on Alvey data set number 3 and 
is described in chapter 3.

1.5.3 DISCRIMINANT ANALYSIS

This analysis was carried out to determine if missing 
values may be predicted with a high probability based on
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the data which has already been collected. The results 
pertaining to the analysis of Alvey data set number 7 are 
presented in chapter 7.

1.5.4 MULTIVARIATE ANALYSES FOR DETERMINING STRUCTURE

A number of multivariate methods are available to determine 
whether there is structure in the data which may be utilised 
(e.g. correlation between different variables). Hill 
(1974) and Teichmann et al (1985) describe applications 
of these methods to data collection. Principal components 
analysis was attempted on Alvey data set number 3 (in 
chapter 7) but without much success and it was felt that 
more relevant information could be gleaned from working 
from the original data rather than artificially generated 
variables which may be difficult to interpret.

1.5.5 EXPLORATORY DATA ANALYSIS (EDA)

The EDA approach is to look at simple plots of the data 
to determine possible structure and which statistical 
methods may be applicable for further data analysis. This 
approach may aid multivariate analyses such as principal 
components or cluster analysis mentioned in section 1.5.4 
above. Three plots of the original data are shown in 
chapter 3 and for each, appropriate statistical modelling 
methods were applied based on the EDA results. The use of 
box and whisker plots, correlation and regression are also 
used as exploratory tools.



1.5.6 MODELLING

Statistical modelling of the data is useful in determining 
if there is any structure, to provide estimates of 
reliability and to determine the effect of the structure 
on the reliability. The statistical modelling methods 
which were applied after EDA were time series, log-linear 
modelling, generalised linear modelling, proportional 
intensity and proportional hazards modelling. These 
methods were recommended by the Alvey consortium as being 
useful in finding and modelling structure for the software 
reliability data which was collected during the Alvey SRM 
project. It is shown in this thesis that different methods 
may be applied to the same data to give similar conclusions.

1.5.7 CONCLUSIONS AND RECOMMENDATIONS

The conclusions of the analyses should ideally be discussed 
with the software project manager so that any recommen
dations may be determined as cost effective and/or 
applicable for implementation in some future similar 
project. Recommendations based on the analyses has been 
fed back to the data supplier for Alvey data set number 
3.

1.5.8 FEEDBACK, GUIDELINES AND IMPROVED PROCEDURES

Every analysis should provide feedback into the system to 
aid future decision making. A detailed statistical analysis 
of a project should provide guidelines for any future 
project and possibly improved methods of software 
development and/or data management.
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1.6 TABLE OF ANALYSIS METHODS

The following table lists the analysis methods; if they 
have been implemented on Alvey data set number 3, and in 
which chapter of this thesis they may be found.

TABLE 1.2. TABLE OF ANALYSIS METHODS

Procedure Implemented Chapter

1 . Describe physical and func
tional system

Yes, Brief 
Description 
of Project

3

2. Check for missing or corrupt 
data

Yes by file 
comparison

3

3. Discriminant analysis Yes 7

4. Multivariate Analyses for 
Determining Structure:- corre
spondence analysis, cluster 
analysis, correlation analysis, 
measures of distance, etc

No

4.1. Principal components 
analysis

Yes 7

5. EDA Yes 3, 4



TABLE 1.2. TABLE OF ANALYSIS METHODS (CONTINUED)

Procedure Implemented Chapter

6. Modelling Yes See
Below

6.1. Time series Yes 4

6.2. Proportional hazards 
modelling

Yes 5

6.3. Logistic regression Yes 6
6.4. Proportional intensity 
modelling

Yes 6

6.5. Log-linear modelling Yes 7

7. Conclusions and Recommenda
tions

Yes 8

8. Guidelines and Feedback No -



2 THE ALVEY SOFTWARE RELIABILITY MODELLING PROJECT

The Alvey software reliability modelling project was a 
multi-tasked project consisting of a collaborative team 
from UK industry and academia. Over the duration of the 
project 1 985-1990, the membership consisted of the National 
Centre of Systems Reliability (AEA Technology), British 
Aerospace, STC, Logica, Nottingham Polytechnic and City 
and Newcastle Universities. The objectives of the software 
reliability modelling project were to investigate a wide 
variety of methods, to judge the relative merits of each 
method, to effectively communicate the results of the 
research and to indicate the direction of future research. 
The project consisted of a number of tasks within which 
this thesis describes areas in which Nottingham Polytechnic 
were task leaders; these are task 3 (statistical models 
with explanatory variables), task 4 (statistical models 
with different underlying assumptions) and task 9 (data 
collection and initial analysis).

There has been growing concern in the software industry 
about unreliable software for many years and as a result 
there have been some initiatives aimed at reducing the 
impact of the problem. Customers have imposed codes of 
practice on suppliers, lists of "approved" software have 
been specified and work has been done on improved testing 
strategies. However, up until the instigation of the Alvey 
project, little co-ordinated research has been done 
nationally on modelling software reliability.

The majority of the work within this thesis was carried 
out during the Alvey Software Reliability Modelling (SRM) 
project. The Alvey programme was set up in 1983 to research 
software engineering, intelligent knowledge based systems



and VLSI. The software engineering part addressed formal 
methods, software reliability, associated metrics and use 
of knowledge based systems. The appearance in 1984 of the 
"Software reliability and metrics programme" document from 
the Alvey Directorate formed a natural focus for this 
work. A consortium was formed containing members from both 
academic and commercial backgrounds with the intention of 
conducting a research programme to improve the state of 
the art. The programme involved active meetings to promote 
awareness of techniques by an interchange of information 
and views.
In July 1985, the Alvey Directorate placed a contract for 
the detailed study of software reliability modelling (SRM) 
with the aim of producing a plan for a National SRM 
Programme. The suggested course for the research was 
instilled into a set of project tasks. These tasks were 
as follows:-

Task 1: Improving Current Statistical Models
Task 2: Methods of Evaluating Statistical Models
Task 3: Statistical Models with Explanatory Variables
Task 4: Alternative Statistical Models
Task 5: Functional Modelling
Task 6: Models for Special Systems
6.1: Models for VLSI Systems
6.2: Models for Distributed Systems
6.3: Concurrent/Real Time Systems
6.4: Models for Fault Tolerant Systems
6.5: Reusable Software Components
Task 7: Cost Based Models
Task 8: Testing and Reliability
Task 9: Data Collection and Analysis
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The project ended in June 1 990 and more than sixty documents 
have been written during the project and a number of these 
are available to the public. Nottingham Polytechnic was 
mainly involved in three project tasks. These tasks are 
listed below and details of some of the work carried out 
in each sub-task is given under each task listing. This 
thesis describes the work in task areas 9, 3.1-3.3, 4.1 
and 4.3-4.5.

2.1 WORK CARRIED OUT IN TASK AREA 3

Task 3
Participants: Nottingham, British Aerospace, City Uni
versity, NCSR

2.1.1 SUB-TASK 3.1. INVESTIGATION OF GROUNDS FOR POTENTIAL 
MODELS

A report, (Wightman (1987)), was written which reviewed 
the models and techniques which incorporate explanatory 
variables and can be adapted to software reliability 
modelling. Techniques and methodologies reviewed were 
Software Science, Information Theoretic approach, simple 
regression, multivariate analysis, proportional hazards 
modelling and generalized linear modelling.

2.1.2 SUB-TASK 3.2. IDENTIFICATION OF NATURE OF DEVEL
OPMENT, USE SCENARIO AND EXPLANATORY VARIABLES

A comprehensive list of potential explanatory variables 
is supplied in McCollin, Wightman and Bendell (1989). This 
contains the types of information which may be collected 
during each phase of a software project.



2.1.3 SUB-TASK 3.3. DEVELOPMENT/SPECIALISATION OF MODELS

This sub-task was split into a number of areas as follows 
extensions to parametric models, non-parametric and 
semi-parametric models, models for environment and 
severity and the information theoretic approach.

The City University has contributed a number of reports 
on extensions to existing software reliability models. 
These cover task areas 3, 4 and 1 (improvement of current 
models). There follows a description of three of these 
reports.

A Bayesian formulation of the Jelinski-Moranda software 
reliability model (Csenki (1989)) reports that the model 
performance seems to be at least as good as some other 
models. In Brocklehurst (1987), a simulation study is 
reported which investigates if a general but simple 
adaptive procedure which improves the accuracy of pre
dictions also increases the variability of the predictions. 
A City University report by Wright describes an extension 
to the "u-plot" (used for assessing predictive performance 
or for obtaining improved "adapted" or "re-calibrated" 
predictors) to allow for discrete or mixed predictive 
distributions. Two further modifications of the u-plot 
are documented which improve the performance of re-ca- 
librated predictors.

Previous applications of the semi-parametric proportional 
hazards model: Cox (1972a), Wightman (1987), Prentice,
Williams and Peterson (1981), Anderson and Gill (1982); 
has been based upon modulated renewal processes where the 
explanatory variables modulate the underlying renewal 
process. Recently, Lawless (1987) has introduced model
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formulations which allow explanatory variables to be 
considered within a Poisson process. These proportional 
intensity Poisson process models allow the traditional 
non homogeneous Poisson process software models to be 
combined with explanatory variables. Details of the 
approach are given in a chapter 7.

Work has been carried out at Nottingham in expressing 
binomial type models and Poisson type models of exponential 
class (as classified by Musa et al (1987)), within a PHM 
framework. Details are described in a chapter 5. The 
formulation of the well known software reliability models 
within a PHM framework is useful for a check of the 
appropriateness of these models to data in that if the 
explanatory variable (e.g. such as the number of software 
failures in the Musa model) is not significant in the 
PHM formulation then the models are not appropriate for 
the data analysis.

2.1.4 SUB-TASK 3.4. PROTOTYPE SOFTWARE DEVELOPMENT

A number of program sources were written during the project. 
These are described in Hufton (1989).

Software has been developed at Nottingham Polytechnic for 
Poisson Proportional Intensity models with covariates and 
an unspecified baseline intensity. This software was used 
in the analysis of Alvey data set 3.
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2.1.5 SUB-TASK 3.5. GUIDELINES FOR RELIABILITY AND SAFETY 
ASSESSMENT OF SOFTWARE (GRASS)

The work in this area was mainly carried out by the Safety 
and Reliability Directorate at A.E.A. Technology and the 
reference by Dale (1989) was one of a number of reports 
which were delivered to Alvey on the subject.

A internal report has been written by Wightman, McCollin 
and Bendell relating experience of applying a proportional 
hazards modelling formulation to Alvey data set 5.

2.2 WORK CARRIED OUT IN TASK AREA 4

Task 4
Participants: Nottingham, British Aerospace, City Uni
versity

2.2.1 SUB-TASK 4.1. OTHER STOCHASTIC POINT PROCESSES AND 
NON-PARAMETRIC PROCEDURES

The work of task 4.1 is covered in the section on task
3.3 above.

2.2.2 SUB-TASK 4.2. ENTROPY APPROACH

The work in this area was carried out by British Aerospace. 
A report (Anderson (1986)) was written on the potential 
usefulness of entropy and information theory and was 
delivered to Alvey in 1986.



2.2.3 SUB-TASK 4.3. TIME SERIES METHODS

Work has been carried out at Nottingham on the use of time 
series for reliability. Details are given in chapter 4 on 
modelling of the data collection process.

2.2.4 SUB-TASK 4.4. MULTIVARIATE TECHNIQUES

Multivariate techniques including proportional hazards 
modelling and proportional intensity modelling are amongst 
the most useful techniques available as they have been 
developed extensively in the biometry field. This is 
because patient (sic hardware/software system) reliability 
is analysed with respect to his/her life history.

Classical multivariate techniques were employed via the 
statistical computer package MINITAB in an attempt to 
reduce the mostly discrete, many dimensional multivariate 
data space down to a more workable 2 or 3 dimensional 
space and discriminate between, for example, programmers 
on the basis of discriminating explanatory variables which 
would enable further incidence of faults to be attributed 
to particular programmers on the basis of a profile of 
observations across the multivariate data space. These 
areas are discussed in chapter 7 with respect to the 
analysis of Alvey data set 3.

The discrete nature of the data suggest that specialised 
discrete multivariate techniques might be investigated 
and employed. Some effort by Mr Peter Dixon at Nottingham 
resulted in the setting up, testing and use of specialist 
FORTRAN software for discrete multivariate analysis and 
this was carried out at Nottingham during the Alvey project 
with a pleasing measure of success.
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It is possible to use MINITAB to obtain multiway tables 
depicting number of faults by programmer, language, size 
and type of source. Problems of sparseness were overcome 
by collapsing tables into one another, where reasonable 
to combine source sizes into 'large', 'medium' and 'small'. 
Log-linear modelling is recommended as the most powerful 
analytical tool for the examination of such software data.

Logistic modelling is carried out in chapter 7 and is 
shown to be a special case of proportional intensity 
modelling with a Weibull intensity function. Proportional 
intensity modelling is also used to analyse a subset of 
the Alvey data set number 3.

In task area 8, a report was written on some applications 
of generalised linear models to software reliability and 
this is described in chapter 7 and Hufton and Exley (1 989) .

A report was written by A.E.A Technology for Alvey (Hufton
(1989) ) on the possible use of polytomous regression models 
to estimate software reliability. The conclusions were 
that the method reveals more precisely than PHM, the 
effects of testing; there is no assumption of a baseline 
time metric which is-required for PHM and a wide variety 
of models are available to choose from to select the most 
appropriate to the data at hand. The disadvantages of the 
method are that it requires 'detective' work to determine 
some of the characteristics of the software faults and 
the models may be difficult to use computationally.



2.2.5 SUB-TASK 4.5. EXPLORATORY DATA ANALYSIS (EDA) 
APPROACH

A number of simple plots of the data in Alvey data set 
number 3 are given in chapters 3 and 4. These allow the 
structure in the data to be seen and to be further 
investigated by various modelling techniques.

The approach of Walls and Bendell (1985) of identifying 
trend and serial correlation before distribution fitting 
has been applied to the residuals from the Box-Jenkins 
time series analysis in chapter 4.

The use of PHM as a diagnostic tool has been described in 
Ansell and Phillips (1 989) and is also discussed in chapter 
6.

Simple correlation and regression is used on cumulative 
time to failure data to determine possible model structures 
within the Alvey 3 data set. This is also discussed in 
chapter 3.

2.3 SOFTWARE DATA COLLECTION

There have been a number of software data collection 
schemes prior to the Alvey SRM project task 9 activities. 
These have been reported by Walston and Felix (1977), 
Sukert (1980), Musa (1980), Basili and Selby (1984), Nagel 
and Skrivan (1981), Kitchenham (1984) and Martini et al
(1990) and (1991). A brief description of some of these 
is given below. The statistical techniques used to analyse 
the collected data as described in these references are
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detailed in table 2.1 below. These may be compared with 
the analyses presented in this thesis which are listed in 
table 9.1.

2.3.1 APPROACH OF WALSTON AND FELIX (1977)

The software measurement project started in 1972 to assess 
the effects of structured programming on the software 
development process. Data from sixty completed software 
development projects was contained in questionnaires 
submitted at prescribed reporting periods during the 
projects and were stored in a computer data base. Data 
such as number of lines of delivered source code; language; 
effort in man-months; duration of the project in months; 
use of structured programming, inspections, top-down 
development, etc and a measure of programming productivity 
(number of delivered source codes to total effort in 
man-months) . Statistical analysis comprised of calculating 
means, medians, modes and standard deviations of the 
specific variables and computing characteristics. Five 
major parameters were identified : productivity, schedule, 
cost, quality and size. They showed that total effort was 
nearly linearly related to product size. A set of twenty 
nine out of sixty eight variables were shown to be 
correlated highly with productivity and these variables 
were formed into a linear combination productivity index. 
This index was calculated for fifty one of the projects 
and plotted against actual productivity with a high degree 
of correlation.

2.3.2 APPROACH OF MUSA (1980)

The Data and Analysis Center for Software (DACS) developed 
and maintained a computer database containing software



data and documentation. John Musa of Bell Telephone 
Laboratories submitted a report on sixteen data sets 
containing failure interval data, execution time, size 
and application. Modes, confidence intervals, plots of 
hazard rates, estimates of MTTF were calculated and these 
data sets have been analysed in detail by time series 
methods and PHM; (see Davies et al (1987) among others).

2.3.3 APPROACH OF NAGEL AND SKRIVAN (1981)

Boeing Computer Services carried out designed and con
trolled experiments in which two programmers designed and 
coded three sources each from three problem specifications. 
These sources were then executed and their interfailure 
times were recorded. The conditional distribution of 
interfailure time given the number of errors corrected 
was shown to be exponentially distributed and it was 
observed that the log failure rate of interfailure time 
was nearly linear as a function of the number of errors 
corrected. PHM was applied to the data and strong programmer 
and problem effects were seen to affect the baseline hazard 
rate.

2.3.4 APPROACH OF KITCHENHAM (1984)

A data collection and analysis system was set up to be 
used by production staff to produce the ICL VME operating 
system. Information collected included date of change, 
programmer, type of change and failure severity. Plots of 
source program size against number of errors per source 
were shown; the plot being nearly linear. Tables of numbers 
of errors against types of errors and number of errors 
against method of screening were also given.
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2.3.5 APPROACH OF MARTINI ET AL (1990,1991)

Failure data collected over twenty seven months were 
recorded and 4 61 reports were raised on the software of 
the TROPICO-R Switching System. Data collected included 
test and field data. Analysis methods applied were the 
Laplace test for trend and the Goel-Okumoto model (1979) 
and S-shaped reliability growth model of Yamada et al 
(1983) were successfully fitted to the cumulative time to 
failure data.

TABLE 2.1
TABLE OF STATISTICAL METHODS USED IN STATED REFERENCES

Heading CLM Summary 
Stats.

PHM Laplace
test

NHPP

2.3.1 + + - - -

2.3.2 - + * - -

2.3.3 - - + - -
2.3.4 + - - - -

2.3.5 - - _ + +
CLM means correlation and linear modelling 
* means that PHM was reported in a 
subsequent reference.
+ means method used.
- means method not used.

2.4 ALVEY SRM PROJECT TASK 9 ACTIVITIES

Task 9
Participants: Nottingham, Logica, STC
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Sub-tasks

9.1 Data collection, organisation and management (database 
design)
9.2 Provision of data Logica, STC
9.3 Exploratory data analysis

On the Alvey SRM project, there have been a total of 
fifteen Task 9 consortium meetings from 2nd February 1987 
to 23rd May 1988 which covered the major developments in 
the task 9 activities over the duration of the project. 
An abridged version of the task 9 activities are described 
in a report compiled by McCollin (1990). The activities 
were

data management

progress of data sets: acquisition, collection, transfer 
to database and preliminary analysis

establishment of the computer network and creation of the 
software reliability relational database and associated 
documentation.

Problems encountered during the project and recommenda
tions for areas of research based on the types of data 
collected are described below.

2.4.1 DATA MANAGEMENT

A 4 point procedure for data acquisition and the rela
tionship between data providers and data users was put 
forward:
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i) data sources to be identified, documented and put 
forward for approval by an individual member of the 
consortium.

ii) quality and relevance of data to be agreed upon and 
approved by task group 9.

iii) data transfer to be arranged and data made available.

iv) data sets to be subject to initial analysis by Not
tingham team.

2.4.2 PROGRESS OF DATA SETS: ACQUISITION, COLLECTION,
TRANSFER TO DATABASE AND PRELIMINARY ANALYSIS

Two of the collaborators and a number of external 
organisations supplied data from on-going projects. Some 
of the organisations who were requested for data were 
Marconi Data Systems, Plessey Telecoms and CCTA. CCTA 
recorded all the hardware and software failures for more 
than four hundred Government establishments from the period 
1980-1986. A survey of fifty of these data sets did not 
produce many software failures. Alvey data set number 8 
is one of these which contained software and hardware 
field use failures. The first data set (number 1) was 
delivered to Nottingham for initial analysis in 1987.

At the end of the project in July 1989, out of the sixteen 
data sets collected by consortium members, four had been 
installed onto the database, six were not in the correct 
format for database installation and six were awaiting 
resources for collection. Four data sets have been ana
lysed, two by Nottingham (numbers 1 and 3), one (number 
14 by A.E.A Technology) and one (number 13 by The City



University). The software data library (SWDL) and the 
Request project have also allowed SRM data users data 
access. A description of the types of data collected are 
listed for eight of the data sets below. The other data 
sets (up to number 15 were kept at City University and 
A.E.A Technology).

TABLE 2.2
TABLE OF ALVEY DATA SETS (NOTTINGHAM POLYTECHNIC INPUT)

Data
set

Time metric Explanatory Variables

1 CPU time to failures, 
days to failure of 
sources

source failed, failure 
severity, inspect or 
not, source repaired, 
cause, test

3 Number of failures per 
day of system, Days to 
failure of sources

language, source size, 
source type, day of week 
failed, source version, 
first appearance, final 
appearance of fault, 
fault number, pro
grammer

5 Days to failure of 
sources, run time to 
failure of sources, days 
to failure of systems

source version, source 
size, failure type, 
severity

6 As data set 5 As data set 5



TABLE 2.2 (CONTINUED)
TABLE OF ALVEY DATA SET NUMBER AGAINST TIME METRIC AND 
EXPLANATORY VARIABLES (NOTTINGHAM POLYTECHNIC INPUT)

7 Days to failure of system repair description, 
repair time, severity, 
failure description, 
cause, fault descrip
tion

8 Number of failures per 
day of system, times to 
failure of sources, days 
to failure of system

installation at fault, 
fault description, 
repair programmer, 
repair description, 
repair date

1 1 Days to failure of 
sources

cause, repaired source 
numbers, repair date, 
severity, phase, size, 
source type, language

1 5 Days to
failure of sources

repair date, repair 
programmer, severity, 
fault
description, repair 
hours, test

2.4.3 ESTABLISHMENT OF THE COMPUTER NETWORK AND CREATION 
OF THE SOFTWARE RELIABILITY RELATIONAL DATABASE AND 
ASSOCIATED DOCUMENTATION

In Task area 9, considerable effort was invested in the 
creation of a software reliability database which was 
installed on a dedicated VAX mainframe computer at The 
Centre for Software Reliability, City University (TCU). 
Two Alvey documents which describe the database definition

44



and structure are Mellor (1986) and Mellor (1987). The 
database was completed in mid 1988 and Logica supplied a 
copy of the final version of the database technical guide 
(Potter (1988)) to TCU who have copied them to the other 
database users. The database design document and the 
database manual were made deliverable documents and sent 
to the DTI, (Simmonds and Potter (1989) ) . Private computer 
links were to be available to the database users at 
Nottingham, Logica and Newcastle University although only 
one network link between TCU and Nottingham Polytechnic 
was established.

2.4.4 PROBLEMS ENCOUNTERED DURING THE PROJECT

Nottingham, Logica and STC have written a paper which was 
presented at the Euredata conference in Siena, (Bendell 
et al (1988) ) which outlines the main problems of software 
failure data collection. These were:

-the late establishment of the network link, computer 
facility and database so that very little data had been 
inputted into the database and analysed before the end 
of task 9 activities.

-the lack of manpower available for data coding and input 
into the database.

-the lack of resources available to procure large, 
potentially useful data sets.

Exploratory data analysis of data set number 3 was carried 
out and the problems associated with this are given in 
the next chapter.
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2.4.5 CONCLUSIONS AND RECOMMENDATIONS FOR AREAS OF RESEARCH 
BASED ON THE TYPES OF DATA COLLECTED

The conclusions and recommendations from task 9 were:

There are organisational and technical difficulties in 
collecting software reliability data.

There are potential features of software data which make 
the reliability analysis extremely inconvenient.

It is essential that from the inception of a software 
reliability project, the collection and analysis of 
reliability data is under strong management control. For 
example, there must be good feedback to the data providers.

The main purpose of the data collection exercise was to 
determine suitable models for software reliability 
estimation and to establish models which would incorporate 
explanatory factors found during the data collection.

Only two of the data sets provided have some measure of 
execution time and most of them have days to failure as 
the time metric for reliability analysis. The main 
statistical software reliability models, e.g. Jelin- 
ski-Moranda (1972), Littlewood (1981), etc incorporate 
execution time but not calendar time. It was found during 
this exercise that organisations do not usually collect 
execution time to failure of sources because:

it is a costly exercise to collect execution time to 
failure.
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the customer only usually requires execution time if he 
wishes to estimate software reliability by using one of 
the available models.

the collection of execution time is not a requirement of 
general software guidelines or standards (e.g. Tick-It, 
DEF-STAN 00-55).

Data acquired so far points to the main directions of 
research in task areas 3 and 4 being time series, pro
portional hazards modelling and multivariate techniques. 
It is shown in the next chapter that an exploratory approach 
to a data set shows that these models are the most 
appropriate for analysis.
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3 EXPLORATORY ANALYSIS OF ALVEY DATA SET NUMBER 3

Due to the difficulties and time delays in establishing 
the central computer facility and to loading data cen
trally, a number of data sets were delivered directly to 
Nottingham for initial Task 9 analysis. The format of the 
data sets have ranged from summaries of failure counts on 
networked systems, completed failure and repair reports 
on field data, software test and inspection information 
and cpu times to failure for individual computer
installations. The methods of analysing one of the
delivered data sets are discussed in the rest of this
chapter. An exploratory approach is adopted to determine 
possible structure and which statistical models are the 
most appropriate for further data analysis.

3.1 SOFTWARE FOR DATA CHECKING

As the Alvey SRM database was not on-line when the data 
set number 3 was delivered, the twenty files containing 
more than one hundred thousand items of data was transferred 
to the Nottingham Polytechnic VAX mainframe computer. To 
analyse this data required a suite of sources to be written 
so that the data could be manipulated into a form where 
statistical analysis could take place. A standard database 
or spreadsheet was not used as there would have been
problems in inputting and manipulating alphanumeric data.

The EZ-source.BAS packages were written by Mr Graham Dawson 
and myself to simplify the task of manipulating data files. 
The purpose of these sources is listed below:

EZcount Counts the number of lines within a file.
EZdelete Deletes an item from all lines.
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EZmerge Merges a file into a reference file.
EZremove Removes all excess white space characters.
EZsort Sorts a file with reference to one column.
EZsort2 Sorts a file with reference to two columns.
EZswap Swaps two items in all lines of a file.
EZchron Converts a date to a number of days from a
start.
EZdatesort Sorts a file with dates by date order.

3.1.1 DESCRIPTION OF THE DATA

Alvey data set number 3 contains data collected from one 
software product running on a single installation. The 
data set was collected during the development phase of 
the project and the software was continually being operated 
and repaired after failure. The software comprises of 1198 
source versions of which 1096 are written in Cobol, 99 in 
an operating system language and 3 in a third language. 
There are 6 types of source : 87 command macros, 6 command 
macro data files in the operating system language, 608 
module main source codes, 78 control binding files, 126 
Cobol include files and 21 screen definition files. These 
were numbered types 1 to 6 respectively for convenience.

3.2 CHECKING FOR INCORRECT DATA

The first of the twenty files to be looked at was the file 
'Failure' because this would supply the information gleaned 
from the failure reports, notably, failure number, fault 
number and the failure date which would be immediately 
useful for statistical analysis. By sorting this file by 
date order, the majority of the failure numbers occurred 
in the correct numerical order apart from the first twenty 
two which were all dated 01 /01 /1 985 and the product version
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was 0. The failure numbers for these twenty two items were 
mainly in the 600's. These failures could be assumed to 
have occurred prior to the start of the project which was 
given as 16/07/1986 and were collected under a different 
numbering scheme. However by re-ordering the data by 
failure number, the 22 failure numbers did not tally with 
any other numbers. The tentative conclusion was that these 
22 failures were not date coded on the original failure 
reports and so the date 01/01/1985 and product version 0 
were default values. After discussion with the software 
supplier, it was confirmed that this was true.

The two files 'Failure' and 'Fault' were merged to find 
missing fault information. Merging was carried out using 
the common 'fault' field. Three fault numbers were missing 
out of a total of 607 fault numbers in the file 'Fault' 
and 119 faults were not recorded on failure reports. A 
similar exercise was carried out on the other files and 
a number of omissions and anomalies were noted. These are 
recorded on figure 3.1.

A number of files were merged to reduce the information 
which had only been collected to establish relationships 
in the data-base structure and the resulting data was 
surveyed for usable statistical data. Information per
taining to programmer, repair date and repair programmer 
could not be utilized as too much data was missing. As an 
example of missing data, there were 276 failure 
investigations with the default date 01/01/1985 out of a 
total of 670.
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3.3 OBSERVATIONS OF THE DATA SET

For the purposes of analysis, certain features of the data 
are quite sensitive to the data supplier. For example, an 
analysis of the 96 failure free days was carried out and 
only on two occasions were failures recorded on a weekend. 
Of these, there were 26 failure free days during the test 
phase and 70 during the live phase. Out of the 16 weekends 
of the test phase during which data was generated, there 
were no failures recorded on 1 2 Saturdays and 10 Sundays. 
On two occasions there were long sequences of failure free 
days during the live phase. One of these periods was 
identified as Christmas and New Year. This means that very 
little data was collected over the weekends, even though 
the staff were booking time to the project in these periods. 
There was no indication from the data supplier that the 
system was less busy at weekends. The number of failures 
at weekends during the live phase were also recorded as 
zero.
After using the EZ source program package, it was possible 
to highlight the number of failures, faults, repairs and 
sources for Alvey data set number 3 showing where data 
was missing.

Sorting, counting and merging files was carried out 
initially to find any missing or corrupted data. The 
following observations were made of the data set:

1. There were 125 days with failure and 96 days without 
failure.

2. After the software was delivered to the customer (during 
the "live" phase from product version 17) there was a 
large increase in the number of days per product version



(see table 3.1).

3. In totalr 570 "test" failures and 100 "live" failures 
were recorded.

4. There were four missing failures: numbers 455, 457, 
591 and 660.

5. There were 500 numbered faults (fault numbering taking 
place when the faults were reported and again when they 
were repaired) and 170 zero numbered faults, some of the 
reasons being as follows:

no fault found;
the failure record was superseded and cleared by another 
record;
the fault was unconfirmed;
a change in the functional specification caused the fault 
to be nonrelevant; minimal effort was required to effect 
the fault repair;
the fault was not important enough at the time to be 
repaired and was left until a later date.

6. The same fault occurred on separate failure reports 28 
times.

7. Two failures, numbers 118 and 279, did not correspond 
to any fault or repair information.

8. No fault and repair information was found for fault 
numbers 35, 547 and 553.

9. There were 677 unfailed source versions and 514 source 
versions which failed at least once.
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Figure 3.1 summarises the failure and repair information 
of the data set.

53



FIGURE 3. 1 ALVEY DATA SET NUMBER 3 FAILURE AND REPAIR
RECORD INFORMATION

674 Failure Records

670 Records exist 4 Records missing

500 Numbered Faults 170 Non-numbered Faults

472 Faults recorded 1 1 Faults recorded 2 Faultsrecorded
on 1 Failure on 2 Failure on 3 Failure
Report Reports Reports
1076 Repairs on 470 61 Repairs on 1 1 66 Repairs
Faults (2 missing) Faults on 2 Faults
434 sources 57 sources 66 sources
repaired repaired repaired
(491 source (61 source (66source
versions) versions) versions)

119 Faults not recorded 1203 Repairs
on Failure Reports 

(3 missing)
153 Repairs on 119 

Faults 
99 sources repaired 
(105 source versions)

437 Unfailed Sources 1356 Repairs on 602
(639 Unfailed source out of 607 Faults

versions) 489 sources repaired
(559 source versions)

926 Sources in Total (1198 source versions)
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As can be seen in figure 3.1, the data format could come 
from any data collection scheme.

Some of the data in Alvey data set number 3 is presented 
below in tabular and graphical form. Recommendations for 
further modelling of the presented data is supplied and 
the modelling is carried out in chapters 4, 6 and 7.

Tables 3.1, 3.2 and 3.3 show the number of times product 
versions failed and sources and source versions (whenever 
a source has accumulated a significant number of repairs, 
a new version is released) were repaired. Table 3.4 shows 
the number of faults against the number of repairs per 
fault.

TABLE 3.1. NUMBER OF PRODUCT VERSION FAILURES

Version
Number

0 1 2 3 4 5 6 7 8 9 10

No. of 
Failures

25 52 12 49 58 22 55 33 24 31 30

Failure 
Free Days

3 1 0 1 0 0 0 2 1 3 0

Failure
Days

4 5 1 4 3 2 5 5 5 5 7

Days per 
Version

7 6 1 5 3 2 5 7 6 8 7
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TABLE 3.1. (CONTINUED) NUMBER OF PRODUCT 
VERSION FAILURES

Version
Number

1 1 1 2 13 1 4 1 5 1 6 17 18 19 20 All

No. of 
Failures

53 10 21 40 27 19 35 25 47 2 670

Failure 
Free Days

3 3 2 2 2 2 3 22 45 1 96

Failure
Days

10 4 5 6 6 2 1 3 14 1 8 1 1 25

Days per 
Version

13 7 7 8 8 4 1 6 36 63 2 221

From the table, the following observations are noted :

All versions to 16 inclusive were in the test phase, all 
from 18 inclusive were in the live phase. For version 17, 
there were 9 failures on 5 failure days and 1 non failure 
day in the test phase; and 26 failures on 8 failure days 
and 2 non failure days in the live phase.

There were 570 test failures occurring over 84 failure 
days and 26 non failure days (110 days in total). There 
were 100 live failures occurring over 41 failure days and 
70 non failure days (111 days in total).

There is no relationship between number of failures and 
number of days per product version, the numbers of days 
being approximately constant.
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The cumulative number of failures per product version is 
reducing over time. This can be seen in figure 3.2 with 
each asterisk indicating a new product version. Therefore 
statistical modelling of reliability growth is applicable.

FIGURE 3.2. PLOT OF FAILURE COUNT AGAINST TIME IN DAYS

Failure Count
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The data was tabulated in different forms to investigate 
whether there was a Pareto effect.
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TABLE 3.2. NUMBER OF TIMES SOURCES REPAIRED

Repairs 0 1 2 3 4 5 6 7 8

Sources 437 232 100 44 30 28 20 4 10
Repairs 9 10 1 1 12 1 3 14 1 5 20 32 51
Sources 3 6 3 1 2 2 1 1 1 1

It can be seen that 769 sources (83%) out of the 926 
required two repairs or less which shows the Pareto 
principle. The twelve sources which failed the most number 
of times are analysed in detail within chapters 6 and 7 
on proportional hazards modelling and generalised linear 
modelling as this will provide information on the minimal 
reliability of the software.

TABLE 3.3. NUMBER OF TIMES SOURCE VERSIONS REPAIRED

Repairs 0 1 2 3 4 5 6 7 8
Source

Versions
639 289 1 1 1 50 32 27 1 6 8 8

Repairs 9 10 1 1 12 1 3 14 1 5 19 21

Source
Versions

5 5 0 1 2 2 1 1 1
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TABLE 3.4. NUMBER OF FAULTS AGAINST REPAIRS PER FAULT

Repairs 
per Fault

1 2 3 4 5 6 7 8 9 10

Number of 
Faults

397 89 32 29 22 1 1 2 2 3 3

Repairs 
per Fault

1 1 12 14 16 21 26 34 39 44 65

Number of 
Faults

1 3 1 1 1 1 1 1 1 1

From table 3.4, 518 out of a total of 602 faults (86%)
required less than 4 repairs per fault. However, there 
were 15 faults (2.49%) which required more than 10 repairs 
per fault (again, a Pareto principle).

The incidence of a large number of faults occurs when a 
new set of source codes have been run for the first time. 
The number of repairs per fault may be regarded as a 
measure of severity of the fault and could be used as a 
covariate in proportional hazards modelling to explain 
the difference in hazard rates of a set of sources. There 
was no indication from the data supplier why there were 
such a high number of repairs to individual faults. A 
possible reason is that the programmers required a large 
number of trial repairs as the fault could not be isolated 
easily.
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3.3.1 CONCLUSION

Analysis in this thesis has mainly centred on failures, 
however there is so much subsidiary information which has 
been and could have been collected on faults and repairs 
that there is no need to collect difficult or expensive 
to collect information for reliability analysis as there 
is a wealth of information available from a closed loop 
failure reporting scheme.

3.4 SIMPLE PLOTS OF THE DATA

Three plots from the Alvey data set 3 are shown below with 
suggested statistical techniques to model the structure.

Plotting the number of failures per day against day (figure
3.3) showed that there was a definite reduction in failures 
over time. On two occasions there were long sequences of 
failure free days during the live phase. One period of 13 
days was identified as Christmas and New Year and the 
other of 1 1 days occurred after a very large number of 
failures (15) in a day. Possible reasons for these are:

system utilization was high.

it was decided to raise reports against all minor failures 
which have been previously observed and ignored.

a new and enthusiastic repair programmer!

A time series approach was adopted in chapter 5 as the 
failure counts are fixed at one day intervals. Time series 
may be used to determine if reliability growth and/or 
seasonality have any effect on failure counts. The trend
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and seasonality may also be modelled as covariate 
information in a proportional hazards model. The results 
are summarised in chapter 6.

FIGURE 3.3. PLOT OF NUMBER OF FAILURES PER DAY AGAINST
DAYS
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The three sources, numbers 3, 6 and 10 which required most 
repairs were all Cobol include files. Of the remaining 9 
sources which were repaired more than 10 times, eight were 
module main source codes, the other being a Cobol include 
file. These twelve sources were repaired 217 times out of 
a total 926 sources with 1356 repairs. The twelve sources 
were all Cobol files of size greater than 9 4K blocks of 
code and text of which for 10 of these, only one particular 
source version was repaired. Possible reasons for these
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sources failing more often are that they are being used 
more heavily or are being tested more thoroughly. Figure
3.4 is a plot of the cumulative time to failure in days 
of the twelve sources. From the plot, it can be seen that 
the interfailure times are getting longer for all of the 
sources. The twelve least reliable sources provide a 
snapshot of the failure count in figure 3.3 above. Fagan 
(1976) suggests monitoring the least reliable sources (as 
they provide an indication of the software system 
reliability growth). The reliability growth of continuous 
time data (such as the days to failure) with explanatory 
information (such as source designation) may be modelled 
by a hazards or intensity formulation.

FIGURE 3.4. PLOT OF CUMULATIVE TTF AGAINST SOURCE
N U M B E R

OX)
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The twelve sources have been analysed using proportional 
hazards modelling, proportional intensity modelling and 
generalised linear modelling, the results of which are 
discussed in chapters 6 and 7 and McCollin, Wightman and 
Bendell (1989) and Wightman, McCollin and Dixon (1991). 
A number of explanatory factors could not be fitted together 
in PHM. This was due to the factors being collinear. The 
problem of multicollinearity of the covariates was 
investigated by applying regression to the number of 
failures and cumulative time to failure (the results being 
at the end of this chapter) and using multivariate 
techniques to search for relationships between failure 
count and source type and size. This is discussed in 
chapter 7.

It was known that the suite of source programs were run 
as a package and failures were recorded on a daily basis 
with the sources at fault. The total number of sources 
found at fault was 1356 for which 674 resulted in the 
package failing. The package was expanded throughout the 
development phase and on certain days the number of sources 
running increased without failures or faults occurring. 
This censoring information and the failure data with the 
type of source failed was collected over an eight month 
period and, for the six types of source, 269 failure and 
censoring points and 222 failure points were analysed.

The total number of sources running per day was recorded 
and the number of failures/faults per day to total number 
of sources running per day with number of failures/faults 
per day was calculated as a proportion. This adding of 
the top term (number of failures/faults per day) to the 
bottom of the expression made sure that the proportion 
always lay between zero and one. Figure 3.5 is a plot of
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the proportion of failures against time to failure for 
each source type. From the figure, there are no immediate 
observations of any note. Further analysis of this pro
portion failed data is described in chapter 7.

FIGURE 3.5. PLOT OF THE PROPORTION OF FAILURES AGAINST 
THE TTF FOR EACH SOURCE TYPE
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3.5 CORRELATION AND REGRESSION USED FOR EDA

An analysis of the twelve least reliable sources of Alvey 
data set number 3 was carried out. Plots of cumulative 
time to failure against failure number were graphed and 
if curvature was seen, then a logarithmic transformation 
was applied. The correlation coefficient was calculated 
for the original variables and for the transformed data. 
As can be seen from table 3.5, the correlation coefficients
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are very close to one for every case of the original data. 
However, most of the plots of the cumulative time to 
failure against failure number are not linear and show a 
tendency for the times to increase with failure number, 
i.e. there is an upward curvature to the plot which 
signifies reliability growth. In all cases, the intercept 
was found to be nonsignificant. The initial linear model 
fitted is

C T T F  = b* N

where CTTF is the Cumulative Time To Failure and N is the 
Failure Number.

When curvature was seen, initially cumulative time to 
failure was logged and if this transformed data was curved, 
then the failure number was also logged. The effect of 
the initial transformation is to create the model

C T T F  -  a*exp(5*/V)

where a is the intercept term.

which is the Logarithmic Non-homogeneous Poisson process 
(described in chapter 5).

The second transformation is the model

CTT F = a* N b.

This model is the Non-homogeneous Poisson Process with 
Weibull intensity also described in chapter 5.
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TABLE 3.5. CORRELATION AND REGRESSION INFORMATION OF
ALVEY DATA SET NUMBER 3

Source
No.

Corr. 
Coef f

Comments 1st Transform 2nd Transform

1 0.962 Upward
Curvature

Linear

2 0.936 Upward
Curvature

Linear

3 version 
1

0.880 Upward
Curvature

Linear

3 version 
2

0.944 Upward
Curvature

Linear, two 
outliers

4 0.987 Two Lines
5 version 

1
0.948 Too Few 

Failures
5 version 

2
0.899 Upward

Curvature
Two Lines?

6 0.967 Two Lines

7 version 
1

0.954 Linear, 
one 

outlier
7 version 

2
0.991 Linear

8 0.912 Two Lines



TABLE 3.5. (CONTINUED) CORRELATION AND REGRESSION
INFORMATION OF ALVEY DATA SET NUMBER 3

Source
No.

Corr. 
Coef f

Comments 1st Transform 2nd Transform

9 0.923 Two Lines Linear, one 
outlier

Does not pass 
through ori

gin
10 0.970 Two

Lines?
Two Lines Does not pass 

through ori
gin

1 1 0.908 Upward
Curvature

Linear Does not pass 
through ori- 

gin

12 0.987 Linear

Assuming that the upward curvature and the two lines are 
due to change in the level of work carried out on the 
software, then only sources 7 and 12 are unaffected. 
Sources 9, 10 and 11 are separate from the rest in that 
they correspond to a more complex regression model. Further 
analysis using proportional intensity modelling in chapter 
7.6.4 showed that this curvature may be modelled by the 
IBM model (Rosner (1961)). These results are confirmed by 
the proportional hazards modelling in chapter 6.3 and 
proportional intensity modelling in chapter 7.6.4.

3.6 RELATIONSHIPS BETWEEN FAULT COUNT AND SOFTWARE 
ATTRIBUTES

It was decided to incorporate as much information together 
from the twenty files as delivered by the data supplier 
into one file. The data on the software attributes such
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as source type, size, language, first occurrence and final 
occurrence in a product, programmer, times between faults, 
times between failures and the number of faults were 
incorporated together. A number of plots of these variables 
were carried out and two are shown below.

FIGURE 3.6. PLOT OF NUMBER OF FAULTS AGAINST 
SOURCE LANGUAGE AND SIZE
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In the above figure 3.6, it can be seen that most of the 
sources are in language 1 and that the number of faults 
(in 4K bytes of code) is not related to size. The reason
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for this is probably due to the product not being designed 
and written from scratch and so no substantial amount of 
new code was written.

FIGURE 3.7. PLOT OF NUMBER OF FAULTS AGAINST SOURCE
TYPE AND SIZE
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In this figure, there does not appear to be any significant 
relationship between source size and number of faults. In 
both plots, a zero count of faults against zero source 
size is not shown. The amalgamated file is analysed in
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more detail in chapter 7 using discriminant analysis, 
principal components analysis and log-linear modelling
using all the variables.

Further analysis of the software attributes is carried 
out in chapters 6 and 7.

3.7 SUMMARY
An exploratory approach has been applied to Alvey data 
set number 3 and relationships between failure count and 
cumulative time to failure were found. This means that 
naive application of reliability distribution theory is 
not immediately applicable. Modelling of a time metric 
where there is evidence of reliability growth may be 
carried out by time series or non-homogeneous Poisson 
processes. The explanatory information available (source 
type, designation, etc) may be analysed by models which 
can incorporate structure such as proportional hazards 
modelling, proportional intensity modelling and multi
variate techniques.
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4 TIME SERIES ANALYSIS

Time series methods in reliability have been implemented 
by many authors. The analysis of times to failure (TTF) 
of software and/or hardware has been documented by 
Singpurwalla and Soyer (1985), Horigome, Singpurwalla and 
Soyer (1984), Meinhold and Singpurwalla (1983), Crow and 
Singpurwalla (1 984) and Davies et al (1 987). Some ref
erences have included the application of traditional linear 
autoregressive integrated moving average (ARIMA) models 
of Box and Jenkins (1976) to TTFs. These include Bendell 
and Walls (1985) and Walls and Bendell (1987).

Time series has been applied to the failure count data of 
Alvey data set number 3 so that a forecast of when the 
software is failure free may be made and compared with 
when the software was actually delivered to the customer. 
The analyses of the logged data in chapter 4.3 are compared 
with a PHM specification for the same data in chapter 6.

4.1 STATE OF THE ART OF TIME SERIES

Although 'discoveries' of trend and cyclical features have 
been made using these time series techniques, the whole 
area was reviewed in the Alvey SRM project. Nottingham 
research concludes that invariably almost all the 
assumptions that are made in applying linear modelling 
techniques are violated by reliability data, and in 
particular software reliability data.

4.1.1 BAYESIAN ANALYSIS OF TIME SERIES

Violated assumptions are linearity, normality, constant 
parameters, change points and outliers, (Davies et al
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(1987)). According to Davies et al, alternative, and more 
flexible model formulations are provided by the Dynamic 
Linear models and implementable using the BATS package, 
developed at Warwick University (Harrison and Stevens 
(1976), (West, Harrison and Pole (1988)). Typically, time 
between failures or time to failures (TTF's) are described 
by an observation equation

TTF(i) = m(i) + r(i) + v(i)

where i is the failure number, m(i) a level parameter that 
evolves with the failures, r(i) is a set of possible 
covariates (failure dependent) and v(i) is white noise. 
The extra flexibility is provided by allowing the evolving 
nature of m(i) and r(i) to be stochastic. The Bayesian 
(Kalman filter) recursion allows outliers to be hand
led/detected automatically, missing values, and user 
intervention with the model. Nottingham researchers have 
used these techniques to model the MUSA data sets and 
Alvey data set 8. The approach also allows flexibility 
in traditional Weibull and hazard modelling. Some results 
of the above work have been presented in the 1989 SARSS 
proceedings by Davies, Naylor and McCollin.

4.1.2 TIME SERIES AND PROPORTIONAL HAZARDS MODELLING

Gamerman and West (1 989) explore time series methods within 
a proportional hazards framework. Following Gamerman and 
West, they have as a starting point the base-line hazard 
(from Breslow 1974)

l o y ( / i o ( 0 )  =  a t / t / ( =  ( / , . ,  , £ t )  -  co <  a  t <  oo

where each /, must be specified. Stating that it is not

72



realistic for a, to be unrestricted from interval to 
interval they introduce a model that relates consecutive 
values of a lt

a, = a t _ | + w  t

where w t (zero mean) determines stochastic movement in h 0  
(the movement in h 0 is controlled by the variance of w t 
which may be chosen to allow for a range of behaviours).

The next step in the development is to allow the |3. vector 
(covariate) to vary with time.

Defining 
0D =

Letting z .  be the values of the covariates in I u  the 
complete specification is

loy(/r(0) = (A = ̂  x a < 2 -x'

However, at present there are a number of questions 
regarding estimation procedures.

4.2 ANALYSIS OF FAILURE COUNTS

This section describes possible methods of analysing 
numbers of failures per day of the software product 
irrespective of the source codes which have failed.
A large portion of the literature on failure analysis in 
the past has dealt with times between failures, Thompson 
(1981), and Ascher and Feingold (1984). However, pro

73



portional hazards modelling has been carried out in the 
past with a number of failures as a metric and also as a 
covariate by Kalbfleisch and Prentice (1980) and Lawless 
(1987). This latter approach is discussed in chapter 7. 
Ansell and Phillips (1 989) have also analysed an event 
process with covariates.

A paper by Smith and Oren (1980) describes a Nonhomogeneous 
Poisson Process derived to analyse a large number of 
failures in a time interval which also may be applicable 
in this instance.

4.2.1 A THEORY OF SOFTWARE DEVELOPMENT

As a new large software system is developed, the number 
of failures found should reduce towards zero. Longbottom 
(1980) figures 5.6, 5.7 and 5.8 show that the reduction 
in failures over time is approximately exponential and 
this has been represented in figure 4.1 below.
The plot of number of failures per day of the Alvey data 
set number 3 is shown in figure 3.3 in this thesis and 
this compares favourably with figure 4.1.
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FIGURE 4.1. EXPONENTIAL PLOT OF DATA AS PER LONGBOTTOM
REFERENCE

T im e

Suppose we wish to derive a physical model of number of 
failures in a time interval.

The number of software failures in an interval x t would 
be expected to be a constant fraction of the number of 
failures found in a previous interval x t _ ] that have remained 
and not been removed by design change (repeat failures).

Thus cj)x£_! is the number of failures remaining and (l-(j))xi_1 
are those removed.

Now add a number of new failures per day C ' which is defined 
as a fixed value C plus a random element a t so that

C  ' = C  + CL t .

Thus
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X t = C + (j) X t _ l + CL j*

If the software design team were dealing with a large 
number of faults to repair after each failure (see table
3.4) then the number of failures model above may incorporate 
terms such as x,.2, 3; etc which would indicate a lower
failure removal rate. If a number of failures are being 
left unattended as they have an insignificant effect on 
the software performance and/or failures are caused by 
the occurrence of just one software fault, then the model 
may incorporate a very low level trend of failures. The 
parameter for this low level trend 0 and the <f) parameters 
for each of the x  1.1 , x t . 2 • • • • should reduce over time for a 
software development project so for reliability growth, 
the values of the parameters (j), 0 should lie between zero
and one.

Also, if failures were being recorded at regular intervals, 
then a seasonal effect would be expected depending on the 
rate of compiling and coding.

Based on the above model, a time series approach appears 
appropriate. Time series represents a set of discrete 
equidistant points denoted x t . Time series for counts is 
not very well developed but has been stated as an analysis 
method for software reliability data in Mellor and Bendell
(1986) page 390. Recent references are by Harvey and 
Fernandes (1988), McKenzie (1988), Zeger (1988), Holden
(1987), Phelps and MacCallum (1989) and Madiedo (1986) 
who uses the Box-Jenkins approach. The Box Jenkins (1976) 
approach was used for the analysis presented here as it 
is well developed, there is commercial software available 
(MINITAB, Statgraphics) and it is possible to forecast
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future counts of failures which is extremely beneficial 
for determining the optimal release time for the software 
to the customer.

4.2.2 DERIVATION OF THE BOX-JENKINS APPROACH

The approach to select a suitable time series model is to 
first identify the structure within the data and suggest 
one or two candidate models for parameter estimation. 
After estimation has been carried out, then diagnostic 
checking takes place to determine goodness of fit of the 
model to the data.

The Box-Jenkins time series models are known as Autore
gressive Integrated Moving Average Models denoted by 
ARIMA(p,d,q)(P,D,Q)s where

p is the order of the non-periodic autoregressive component 
d is the degree of differencing required to remove some 
types of non-stationarity in non-periodic data, 
q is the order of the non-periodic moving average component 
P is the order of the periodic autoregressive component 
D is the degree of differencing required to remove some 
types of trend in periodic data.
Q is the order of the periodic moving average component 
s is the number of periods before the series repeats 
itself.

The non-periodic autoregressive component of order p is 
given by x t =  <j)0 + $ , x t., + ... + <()px,.p + a, where the current value 
of the variable x t is linearly related to the p previous 
values of the variable in time and a random disturbance 
term which follows a normal distribution. The non-periodic 
moving average term of order q is given by

77



jct = e o- 0 1a t_1-...-0Qa t_g + a t which linearly relates the 
current value of the variable to the q random disturbance 
terms. Periodic terms of lag s of the form 
x t = <$>o + 4>sx t-s +  ,., +  <Ppsx l_Ps +  a, and
x t =  0O - © s a t _ s -  ... - B q s o . i . q s  +  a i  are the autoregressive and 
moving average equations respectively. The integrated 
terms, d and D, define the degree of differencing required 
to remove certain types of non-stationary trend within 
the data. Estimation of the parameters is by the method 
of non-linear least squares using a combination of the 
Gauss-Newton method and the steepest descent method which 
is known as Marquardt's compromise (Pankratz (1983)).

The autoregressive term accounts for the failure trend 
due to a high fault incidence and low removal rate of 
failures in the physical model and the moving average term 
can be thought of as the low level trend in the physical 
model which indicates those failures which have a low 
priority for repair. The Box-Jenkins model incorporates 
an additive error term a t which follows a normal dis
tribution with zero mean and constant variance.

4.2.3 ANALYSIS OF SOFTWARE FAILURE COUNTS PER DAY FOR 
ALVEY DATA SET NUMBER 3

Initially, a parsimonious model was fitted to the original 
data set shown in figure 3.3, i.e one with the smallest 
number of parameters which provides good forecasts. The 
objective here was to define a physical model for the 
process in as few parameters as possible and determine 
the effect of the test strategy on the parameter values. 
The advantage of using a parsimonious specification is
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that few parameter estimates need to be monitored and the 
model may be readily checked for any changes in the 
development cycle such as staff shortages, etc.

The values of (J), , 0,, 0 for an
ARIMA (1 0 1) (0 1 1)7 model were calculated to be 0.9208, 
0.652 and 0.8765 respectively written as

x / = C + (j)]X;_1 + 01a <_]+x ,_/-({)]©.x‘,_8-0a,_7 + a,
which shows that the number of failures per day is 
decreasing and is tending towards zero. In this case, the 
constant value, C, was removed as it was significantly 
close to zero. The value of C is important to monitor in 
software development as it should be close to zero for 
perfect debugging. In this case, the debugging strategy 
appears to be effective.

However, the test phase accounts for most of the exponential 
trend in the data as seen when the data is plotted in 
figure 3.3. The analysis of the test phase data (110 
values) produced three possible parsimonious models. The 
three candidates were 
ARIMA (0 1 1)(0 1 1)7,
ARIMA(1 0 1)(0 1 1)7 and 
ARIMA(2 0 0)(0 1 1)7 written as

x, = C + x,.1 + x(.7-x(.8- 0a(., “ 0a,.7 + 00a(.8 + a(

x t = C  + (J) j x t _ | + 0 | a,_ | + x,_7 - (J) | 0x,.8 ~ ©a,.7 + a, 
and

= C + <hxt_! + <hx*_2 + .x:t_7-<|>Ix f_8-0af_7 + a, •

It has been shown by Harvey (1 989) page 74 that these are
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the only candidates which model this exponential trend. 
Two conditions that should be satisfied for the parameter 
estimates are stationarity and invertability of the 
estimates where more weight should be placed on more recent 
observations.

As long as

mod $! < 1, mod 01 < 1, mod 0 1 <  1 
and

(|) 2 ± (j) 1 < 1 , 02:t0i<l, 0 2 ̂  0 j <- 1
are true, then the conditions hold. For all the model fits 
in this chapter, these conditions have been checked and 
validated.

The selection of the best model may be carried out by the 
Modified Box-Pierce statistic (see later) available with 
the Minitab software package or by changing the order of 
each of the p, q, P, Q terms by one and checking for a 
closer fit. Alternatively, a check on the normality of 
the residuals may be investigated. Each of these methods 
were implemented.

This is one possible approach to the analysis. It may be 
useful to assume that the testing was not finished at the 
end of the test phase so that possibly other structure 
may be highlighted.

4.2.4 EXPLORATORY APPROACH

The seasonal effect was seen to be smaller at the weekends 
and this was having the effect of forecasting smaller 
values of the number of failures per day on the weekends
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than the rest of the week. The possible reasons for this 
is that failures were left until Monday to record or the 
staff were not working at the weekend. To remove the effect 
of not working at the weekends, two approaches may be 
attempted. The first is to average out the Saturday, Sunday 
and Monday data and the second approach is to remove all 
data from the weekends from the data set. This is justified 
by the analysis of failure free days, most of which occurred 
on weekends. The second approach is documented below. This 
reduction in the data set did not remove the seasonality; 
it only changed it from a 7 day effect to a 5 day effect.

Before proceeding with further time series analysis, the 
data may be manipulated to show the structure that is 
being looked for. In the initial time series model, there 
was a 7 day seasonal effect. This will now be a 5 day 
effect since the weekends have been removed. Thus, if box 
and whisker plots are taken for each set of ten values, 
this will show the non-seasonal structure which the time 
series will model. The reason for showing the box and 
whisker plot is that outliers will be highlighted (* and 
0 on the figure). This justifies the taking of logs of 
the data to remove the outliers so that further time series 
analysis may be carried out as described in chapter 4.3 
with comparative PHM of the data in chapter 6.
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FIGURE 4.2. BOX AND WHISKER PLOT OF ALVEY 3 WEEKDAY
FAILURE COUNT DATA
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This plot shows that the spread of the data is approximately 
constant from the third ten day period until after the 
ninth ten day period when only zeros and ones were 
occurring. After the first two periods, the medians of 
the periods 2 to 6 are reducing linearly and after a jump 
in period 7, the median for periods 6, 8 and 9 is constant 
at three failures until period ten (or after one hundred 
weekdays) which is one hundred and forty days from the 
project start.

Delivery to the customer occurred on day 110 which would 
account for the higher spread of data in period eight and 
the high outlier in week seven when there would be a higher 
workrate to provide a failure free product by the delivery 
date. The zero in week seven is a bank holiday. Hence most 
of the structure in the data occurs before the 90th weekday. 
This is about 131 days into the collection.

The reasons for the software failures reducing to a constant 
level of one or zero after period nine may be caused by 
one or more of the following reasons:

the reduced severity of the customer environment compared 
to the test environment of the supplier

the reduced effort being applied to find and/or report 
failures

the effect of removing most of the faults which cause 
failures.

An implication of these is the loss of the autoregressive 
term in the Box-Jenkins model (the trend in the physical
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model).

4.2.5 FIVE DAY SEASONAL TIME SERIES

A time series analysis was applied to the amended data 
without Saturday's and Sunday's observations and two five 
day seasonal models were found. These were ARIMA(2 0 0)(0 
1 1)5 : X ( =  C + + <()2̂ i-2+ ̂'i-5- (j) i X (-6- 0a i-5 + Ct(
and ARIMA (1 0 1)(0 1 1)5 :
x t = C + (J), x,., + 0 , a,.! + x (_5 - (J) ,0x,_6 - 0a,_5 + a,.

In physical terms, model (1) is the number of failures 
per day is a constant multiplied by the number of failures 
on the previous day + a constant multiplied by the number 
of failures on the second day before + a 5 day seasonal 
effect i.e., consecutive Monday's number of failures are 
related,
consecutive Tuesday's number of failures are related, 
etc. The weekly seasonal effect is probably due to the 
method of failure report collection and the autoregressive 
effect is due to the effect of repairing failures on 
finding them. The estimates of each of the (j), 0, 0
parameters were each less than unity so that reliability 
growth was taking place.

Model (2) was similar to model (1) except that the second 
autoregressive component was replaced by a first order 
moving average. The moving average denotes a reduction in 
the average number of failures over time being present in 
the data, the failure count for the lower severity failures 
(in terms of fault count) within the physical model.
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The models were fitted to the data over a number of periods 
so that the parameter estimates could be monitored. These 
are listed in the following tables.

TABLE 4.1. TABLE OF THE ARIMA (2 0 0)(0 1 1)5 MODEL
V A L U E S

No. of 
values

<l>i 0 2 0 C Goodness 
of Fit

80 .3425
(2.99)

.3094
(2.7)

.8906
(11.81

)

-0.109 
(-1.76)

15.51 71 
fit bpg 
noc

90 .3197
(3.06)

.3149
(3.04)

.9458
(14.08

)

-0.153 
(-3.9)

13.05 81 
rss bpg 

P
100 .3325

(3.33)
.3026
(3.04)

.9642
(17.48

)

-0.169
(-5.74)

11.71 91
fit bpg 

P
110 .3223 

(3.41)
.2989
(3.18)

.9516
(17.6)

-0.1666
(-6.23)

10.66 
101 fit 
bpg p

1 20 . 3227 
(3.59)

.2990
(3.34)

.9591 
(20.5)

-0.158 
(-7.13)

9.76 111 
rss bpg 

P
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TABLE 4.2. TABLE OF THE ARIMA (1 0 1)(0 1 1)5 MODEL
VALUES

No. of 
values

<t>i 0 i 0 C Goodness 
of Fit

80 .821 1 
(6.6)

.4405
(2.33)

.8902
(11.21
)

-0.0514 
(-1.52)

16.02 71 
fit bpg 
noc

90 .8148
(6.73)

.4563 
(2.56)

.9245
(13.54
)

-0.0682
(-3.0)

13.93 81 
fit bpg p

100 .7900
(6.46)

.4261 
(2.41)

.9635
(18.01
)

-0.0857
(-5.54)

12.16 91 
fit bpg p

110 .8034
(7.19)

.4451
(2.73)

. 9553 
(17.56 
)

-0.0813 
(-5.89)

10.94 
101 fit 
bpg p

120 .81 12 
(7.95)

.4541
(3.00)

.9621 
(20.72 
)

-0.0761
(-6.84)

10.06 
11 1 fit 
bpg p

The meaning of the terms in the goodness of fit column 
are
First number - residual Mean Square 
Second number - degrees of freedom
fit - Relative change in each estimate less than 0.001 
rss - Unable to reduce sum of squares to meet convergence 
criterion
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bpg - Not significant Modified Box-Pierce statistic
p - t values for parameter estimates >2
noc - constant is not significant in the model.

Most of the models are reasonable fits to the data, (see 
fit against rss in column 6), the number in the brackets 
after each parameter estimate being the Student's t values 
which should lie beyond ±2 (see p in column 6) approximately 
95% of the time if the estimate is correct.

The parameter estimates remain reasonably constant over 
40 observations although the constant is not significant 
at 80 values for both models (the significance value is 
in the brackets in the tables). The criteria for rejecting 
a parameter from the model is to compare the modulus of 
the significance value with 2 and if the significance 
value is less than 2 , then reject the parameter from the 
model specification (Pankratz (1983)).

To forecast when no failures per day had been reached, 
the first occurrence of a negative number and when two 
consecutive negative numbers were noted. These forecasts 
become less accurate the further from the end of the data 
they are. Reasonable forecasts may be made up to two cycles 
away, i.e. ten weekdays. The seasonal effect of both models 
produced a first negative number with the rest of the week 
being positive counts. Looking for two consecutive negative 
numbers shows the other days coming into effect.

The forecasts x l + l  =  x t ( L )  are available within the Minitab 
software and may be calculated one step ahead at a time 
by replacing unknown values using the derived ARIMA
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specification and assuming forecasted errors are zero. A 
95% confidence interval is given by x,( I ) ± 1.96a(a,(0) 
assuming the forecasts are normally distributed.

TABLE 4.3. FORECASTS FOR THE ARIMA (2 0 0)(0 1 1)5
MODEL

No. of 
Values

First
Forecast

First
zero

Second consecu
tive zero

80 80 - -

90 90 98 1 1 3
100 90 98 1 03
110 100 103 108
120 90 112

TABLE 4.4. FORECASTS FOR THE ARIMA (1 0 1)(0 1 1)5
MODEL

No. of 
Values

First
Forecast

First
zero

Second consecu
tive zero

80 80 - -

90 90 108 128
100 90 108 118
110 100 108 1 1 3
120 90 108 123

For both models (1) and (2), the forecasts were nearly 
constant at six for 80 observations. Each successive



forecast for each model produced a consistent value for 
the occurrence of the first zero. Model (1) was more 
consistent for the forecasts of two consecutive failure 
free days with about 110 week days being the average 
forecast for model (1). The value of 110 weekdays equates 
to 1 54 days into the data collection which is 44 days 
after delivery to the customer.

4.3 TIME SERIES OF LOGGED DATA

As can be seen from the box and whisker plot of figure 
4.2, the data has a number of outliers and neither of the 
time series models discussed stand out as best. It was 
decided to take logs of the number of failures per weekday 
plus one to reduce the variation and to show that the 
resulting model is similar to a PHM formulation in chapter 
6 . The problem of zero failures is alleviated by the 
addition of one to each data point. Hence z t -  In(x,+ 1).

The best model fit for the logged data was the ARIMA(0 1 
1)(0 1 1)5 model 
which is

z t = C+ 2f.j + z , . t -(-)«<_, - 0 a ,.5 + 00a,.6 + a L .

After 100 days, the parameter values were estimated and 
a two week forecast was calculated. The Minitab software 
package was used to test the adequacy of the model fit.

The estimates of the parameters are as follows :
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TABLE 4.5. TABLE OF ARIMA (0 1 1)(0 1 1)5 MODEL ESTI
MATES FOR THE LOGGED DATA

Type Estimate St. Dev. t-ratio

0 0.6561 0.0805 8.15

© 0.9282 0.0604 15.37

C -0.00552 0.003129 -1 .76

where 0 is the MA (1) term and © is the seasonal MA (5) 
term. The constant term is within two standard deviations 
of zero but the model gives better forecasts when it is 
included.

The Residual Mean Square is an estimate of the variance
n

of the errors 62= I. d f / ( n - i n )/-j

where m is the number of coefficients being tested,
n is the number of observations
and
d t are the estimated errors between the observed and the 
expected values.

For this model, a 2 =0.4445 on 91 degrees of freedom. This 
value is the lowest for any of the models which were tried.

The Modified Box-Pierce (1970) chi-squared statistic is 
given as

m
Q m * *  n ( n  +  2) I r 2 / { n - k )

k  <* 1

where m is the number of coefficients being tested,
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n is the number of observations in the series
and r k 1 < k <  i n  are the sample autocorrelations given by

— ( where - = T. —.i-1 "

The null hypothesis of the test is that the population 
autocorrelations for the lags is equal to zero with the 
alternative that they are not equal to zero.

The Minitab printout gives values of the statistic at lags 
12, 24, 36 and 48. The expected value of the statistic is 
X 2 and a quick ad hoc test is that if values of the statistic 
are between zero and twice the degrees of freedom in the 
Minitab printout, the statistic is not significant and 
the model is a reasonable fit to the data. This is the 
case for this data.

TABLE 4.6. TABLE OF BOX-PIERCE STATISTICS

Lag 12 24 36 48

X 2
14.3(DF=10) 23.3(DF=22) 42.2(DF=34) 54.0(DF=46)
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4.3.1 RESIDUAL PLOTS

Various plots of the residuals are obtainable by 
manipulating simple Minitab commands and these are 
presented below. As can be seen, the model is a good fit 
to the data. It is also unique in it's parsimony.

FIGURE 4.3. PLOT OF THE NORMALISED RESIDUALS AGAINST
WEEKDAY

(FIRST 6 VALUES REMOVED DUE TO DIFFERENCING)
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This plot should show a random spread about a mean of zero 
with spread between ±2. This may be checked by plotting 
the autocorrelation function and the partial autocorre
lation function of the residuals and both of these plots 
(not shown) show no appreciable underlying structure.

FIGURE 4.4. TIME SERIES *PLOT OF THE RESIDUALS
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FIGURE 4.4. (CONTINUED) TIME SERIES PLOT OF THE
RESIDUALS
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This is a plot of the normal deviate value of the residuals 
against days with each data point numbered and the plot 
should show no structure. There does appear to be a seasonal 
trend over thirty days however this trend dies away quickly 
and cannot be resolved into a model.

94



FIGURE 4.5. PLOT OF THE ORIGINAL DATA AGAINST
THE RESIDUALS
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This plot should show no relationship between the two 
variables or else there is a serial correlation present. 
A correlation coefficient of the two variables was 
estimated and was close to zero. So we may conclude there 
is no significant serial correlation.
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FIGURE 4.6. NORMAL PROBABILITY PLOT OF THE RESIDUALS
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This should show a straight line if the normal distribution 
is appropriate for the residuals. This appears to be the 
case apart from the three lowest points.
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FIGURE 4.7. BAR CHART OF THE RESIDUALS
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This is a symmetrical plot about zero with most values 
lying between ±3 which confirms that the residuals are 
normally distributed.

4.3.2 FORECASTS FOR LOGGED DATA

The forecasts for the original data is performed by the
^  i i - , 2((O-0.So2a'((O „ ^transformation x t { l )  =  e  -  1 where x t ( L ) , are

the estimated values of the original data and the logged 
data each forecasted one step ahead and a2a ',(0 is the 
estimated forecast-error variance of the log forecast. 
The 95% confidence intervals for the original data may be 
calculated from w t ( l )  =  e 9 , { l )  -  1 where Y<( 0  are the
upper (or lower) confidence values for the original and 
the logged data respectively.
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TABLE 4.7. FORECASTS FROM PERIOD 100

Period Forecast Lower
95%

Value

Upper
95%

Value

Change 95%
Value

Actual
Value

101 1 .0218 -0.562 4.981 -61.7% 1 30% 1

102 0.8350 -0.641 4.700 -12.3% 138% 0

103 0.4900 -0.735 3.842 -23.5% 145% 2

104 1.0200 -0.674 5.843 27.8% 1 52% 0

105 1.3477 -0.654 7. 267 12.4% 1 58% 0

106 0.4815 -0.783 5.208 -37.7% 1 68% 1

107 0.5166 -0.822 4.841 -12.9% 1 74% 0

108 0.2295 -0.869 3.904 -24.0% 1 80% 0

109 0.6641 -0.838 5.859 3.2% 1 87% 0

1 1 0 0.9310 -0.829 7.209 12.2% 1 93% 1

1 1 1 0.3755 -0.892 5.090 -38.6% 201% 0

112 0.2883 -0.912 4.679 -13.4% 208% 2

1 1 3 0.00773 -0.935 3.729 -24.5% 214% 1

1 1 4 0.3622 -0.920 5. 563 26.7% 220% 1
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TABLE 4.8. FORECASTS FROM PERIOD 105

Period Forecast Lower
95%
Value

Upper
95%
Value

Actual
Value

106 0.3948 -0.699 3.135 1

107 0.2144 -0.762 2.769 0

108 0. 1238 -0.799 2.641 0

109 0.3600 -0.778 3. 584 0

1 10 0.5061 -0.774 4.268 1

1 1 1 0.2177 -0.839 3.479 0

112 0.0589 -0.872 3.038 2

1 1 3 -0.0212 -0.892 2.861 1

114 0.1832 -0.881 3.818 1

1 1 5 0.3087 -0.879 4.490 1
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TABLE 4.9. FORECASTS FROM PERIOD 110

Period Forecast Lower
95%
Value

Upper
95%
Value

Actual
Value

1 1 1 0.3727 -0.688 2.966 0

112 0.1118 -0.769 2.357 2

1 1 3 0.0389 -0.802 2.267 1

1 1 4 0.1646 -0.796 2.805 1

1 1 5 0.3862 -0.776 3.694 1

116 0.1014 -0.842 2.922 3
117 -0.1091 -0.883 2.287 0

1 1 8 -0.1687 -0.899 2.171 0

1 1 9 -0.0693 -0.897 2.662 0

120 0.1063 -0.887 3.484 0

Forecasts from a specific weekday for three periods from 
100 weekdays into the proj ect showed that the number of 
failures would be practically zero on day 113. Forecasts 
from the same weekday for two periods from 105 and 110 
days for two periods showed that day 1 1 3 using the criteria 
of first zero and day 118 using the criteria of two 
consecutive zeros are the days when zero failures are 
forecasted. These results confirm the previous analysis 
using the original data.

The forecasts are highly dependent on the model fit so a 
low value of the residual variance is imperative. The 
percent changes in the forecasts of the actual values with 
their confidence interval is given for the 100 day data
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and as can be seen the changes are drastic. The reasons 
for this are that the original data is discrete and the 
variance is large thus a change from zero to one failure 
in the original data is having a significant effect on 
the forecasted values. The theory on forecasting is taken 
from Pankratz (1983).

When explanatory information is available, the additional 
variation in the models may be reduced by incorporating 
it into a proportional hazards type time series model of 
Gamerman and West. Finally, it must be stressed that the 
forecast is dependent on there being no change in envi
ronmental conditions (which there probably were here) as 
the software had been delivered by the time zero failures 
was forecasted.

4.4 ANALYSIS OF THE LIVE PHASE

An analysis of the phase after delivery to the customer,
i.e. from 110 to 220 days, the best model fit for the 
untransformed data is ARIMA (0 1 1)(0 1 1)7 which is 

x t  = 0.0074 + X,., + x,.7-.x:,.8- 0a,.| - 0 a ,_7 + 0©a ,_8 + a t 
where 0 = 0.9267, («= 16.39) and 0 = 0.8995, (f= 11.88).

Therefore the number of failures per day should decrease 
to a constant value of mainly zeros and a few ones, to 
maintain the constant of 0.0074, if no new product versions 
are installed.

As has been seen, time series models the software 
development and data collection process. The values of 
the time series coefficients may be influenced by the 
levels and types of software development testing. The test 
levels of hardware reliability growth programmes influence
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the shape parameter of the Duane or Weibull intensity 
model as described in MIL-HDBK-189 (1989). The values of 
the shape parameter for a NHPP with Weibull intensity are 
given in Jaaskelainen (1982) and O'Connor (1981) for 
specific development strategies in hardware reliability 
growth testing. Values of the time series coefficients 
may be defined likewise for specific strategies of software 
development.

In conclusion, time series has been used to model the data 
collection process to highlight trend and serial corre
lation and may be used for forecasting of when the software 
is fault free. These forecasts were highly dependent on 
how well the data fitted the ARIMA model specification. 
In chapter 6 , further analysis of this data set of failure 
counts is carried out using PHM to determine the effect 
of the seasonal component and trend on the hazard rate.

102



5 SOFTWARE RELIABILITY THEORY

Since Jelinski and Moranda published their paper on 
software reliability modelling in 1972, there have been 
put forward many software reliability modelling formu
lations. Mellor (1987) classified these into either 
structural or black-box models where the first considers 
the internal structure of the system whereas the second 
considers the system failure process. The rest of this 
section will cover the black-box methods. Mellor further 
classifies black-box methods as either interfailure time 
models and those due to fault manifestation. The most 
well-known of the interfailure time models is the 
Littlewood-Verrall model (1973). Again, this class of 
models is not considered here. The fault manifestation 
class of models are order statistics processes such as 
the order statistics process described in chapter 1.4, 
Gray (1986), Miller (1986) and Keiller and Miller (1991).

General Order Statistic Models assume each time to 
manifestation of a fault follows a distribution, for 
example, the exponential distribution gives rise to the 
class of Exponential Order Statistics (EOS) models. The 
times to failure of the whole system are then order 
statistics from an independent distribution. The majority 
of software reliability models are EOS models and the 
following assumptions (taken from Mellor (1987)) apply.

The system contains a set of faults each of which cause 
a single failure independently. Each fault has it's own 
rate and on manifestation is immediately and perfectly 
removed from the system. The failures occur as a Poisson 
process.
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Miller (1986) and Thompson (1988) have shown that an EOS 
model, a NHPP with appropriate rate and the pdf of the 
nth interval are indistinguishable from one another. For 
example, the Jelinski-Moranda model defined with a total 
number of faults, a, each with an independent exponential 
pdf

r  /  \  u  b w i

and hazard rate b  is equivalent to a Poisson process with 
intensity
A,(̂ ) = a6s b t ‘ (the Goel-Okumoto model)

if the number of faults is Poisson distributed with mean 
a .

This was shown by Lewis and Schedler (1976).

The pdf /,-(£) = (a - i +  l)6e”(a_l+ l)fa(, l<i<a defines the same 
model.

Another instance is the Littlewood (1981) model where the 
fault distribution is a gamma random variable which may 
be viewed as a NHPP (see later) if the number of faults 
is Poisson distributed.

It is proposed to use the NHPP formulations for each of 
the well-known models so that they may be classified in 
a proportional hazards framework. The integration of models 
into classes has been carried out before by Gray and Miller 
(EOS models), Langberg and Singpurwalla (1985) (shock 
models) and Kremer (1983) (birth-death models). The 
advantage of the PHM approach is that extra covariate 
information may be included such as the effect of a design
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change (see Davies et al (1987)). The PHM formulations 
derived below model most of the NHPP's used in software 
and hardware reliability irrespective of whether the number 
of failures is finite or not as time tends to infinity. 
The main advantage of the PHM formulations over NHPP's is 
that a diagnostic approach to reliability data modelling 
may be used. If the covariates or hazard functions which 
go to make up the NHPP's are not significant in the PHM 
formulations, then those NHPP's are not appropriate to 
the data under consideration.

5.1 THE NON-HOMOGENEOUS POISSON PROCESS

The Non-homogeneous Poisson Process (NHPP) is used to 
model cumulative times to failure of repairable systems.

The expected number of failures in the period (0 ,£*) is 
given by E {  N  (h)) “ A4 (h) where M(^) is known as the mean 
value function where i is the actual number of failures.

A review of NHPP's is given below. They are classified as 
those where the expected number of failures in time t if 
E (A/ ( t £)), is bounded and used mainly for software relia
bility modelling and those which may be used for hardware 
and software reliability where E  {  N  (£t)) may increase without 
limit.
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TABLE 5.1. TABLE OF NON-HOMOGENEOUS POISSON PROCESSES

Model M  ( 0 ) M  ( CO ) MO) M 00)

Weibull
Model

0 a 00 , c < 1 
a  b  , c = I 
0 , c > 1

0

Littlewood
NHPP

0 a abc 0

Musa Basic 
Model

0 a/b a 0

Ohba 0 a a b /(c + 1 ) 0

Goel-Okumoto 0 a ab 0

S-Shaped 0 a 0 0

Duane 0 C O 0 b  >  1 
a ' 1, 6 = 1

0 , b  <  1

Cox-Lewis 0 C O e a oo

IBM Model 0 C O c+a C

Bounded
Intensity
Model

0 CO 0 b

Logarithmic
Model

0 CO a 0

Square Root 
Model

0 CO oo 0
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5.2 THE RELATIONSHIP BETWEEN NHPP'S TO PHM

A number of proportional hazards models (PHM) are 
formulated which incorporate some of these NHPP's notably 
the binomial and Poisson type exponential models. Ref
erences which describe the PHM approach are (Cox (1972) 
Kalbfleisch and Prentice (1980), Lawless (1982) and Cox 
and Oakes (1 984) ) . The application of PHM within a software 
context has been undertaken by Nagel and Skrivan (1981), 
Font (1985), Wightman and Bendell (1986), McCollin, Bendell 
and Wightman (1989) and Davies et al (1987). Also, under 
the Alvey Software Reliability Modelling Project, Not
tingham undertook the analysis of a number of software 
reliability data sets using PHM.

Note that other explanatory variables z 2 , . - . , z n can be used 
to model (in the same model) the effects of other factors 
thought to influence the performance of the software.

The incorporation of NHPP's into the PHM formulation has 
been shown from the expression h ( w l / t i . l ) = A,(hi-i + w t ) taken 
from Musa (1987), page 260 from which we may relate the 
intensity function to the Proportional Hazards Model (PHM) 
where w t and / t are the waiting time since last failure 
and cumulative time to the (i-1)th failure respectively. 
Provided the expression may be factorised to 

= X ( t £_ x s o  that there is a term with cumu
lative time to failure and a term with waiting time. By 
splitting the intensity function into these two separate 
terms, we may relate the cumulative time term to a covariate 
structure and the waiting time to failure term to the 
baseline hazard function in the PHM formulation given by

h ( w t \ z x,.... z n ) = h 0 { W i ) Q  ...(1).
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The procedure for parameter estimation is to first 
calculate the covariate values [ 3 [ 3  „ and then use these 
to estimate the other parameters within the baseline hazard 
function.

5.3 DESCRIPTION OF MODELS FOR SOFTWARE RELIABILITY GROWTH

5.3.1 BINOMIAL TYPE MODELS OF THE EXPONENTIAL CLASS

Wightman, McCollin and Dixon (1991) considered a PHM 
formulation which allows binomial type models of the 
exponential class (as classified by Musa et al (1987)) to 
be incorporated within a proportional hazards framework. 
The exponential part of the classification refers to the 
failure distribution of each fault (assumed to be common) 
with the binomial part referring to the distribution of 
the number of faults experienced by time 1 1. Examples of 
this type of software reliability model are Jelin
ski -Moranda (1972) and Shooman (1972).

The formulation of the proportional hazards model for the 
binomial type models of the exponential class is as follows. 
Following Musa et al (1 987), page 276, the source hazard 
rate for this class of model is

h ( W i / t i - i )  =  ( a  -  i +  1)6

where a is the total number of faults present at time 
zero,
6 is the constant value of the hazard for each fault, 
w t is the time from the (i-1 ) th failure, with t 0 =0 , i.e. , 
the waiting time
ft_j is the time of the (i-1) th failure.
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This may be rewritten as 

h(iu1/t(-1) = a b ( l - ^ ) .....(2 )

The proportional hazards formulation with the metric (W; 
in equation (1)) taken as time since last failure is

h ( w  i ' , z z n )  =  h 0 O i)e(Pl2l + '"+Pn2'l)...(1)

where (3;- , j=1,...,n are the parameters of the model, z j t  
j=1,...,n the values of the explanatory variables and 
h 0 ( w ,) is the baseline hazard.

Now if h o ( u \ )  = a b ,  a constant, i.e., the well known 
exponential distribution and

zi = Zogo( 1 -

(with an appropriately chosen value for a); then a value 
of |3 [ approximately equal to one obtained when PHM is 
applied indicates that a binomial type exponential model 
is appropriate for the data under investigation. The 
hypothesis that (3 i = 1 may be tested, as |3j is asymptotically 
normal, (Tsiatis (1981), Anderson and Gill (1982)).

An alternative formulation is to use the approximation 
for small f i z  in equation (1) so that

with h 0 ( w l )  =  a b . Thus z ^ i - l  with 1^“ “".

If the covariate value [3, is estimated first within the
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PHM formulation, then this provides the inverse of minus 
the estimate of the total number of faults at time zero.

5.3.2 THE WEIBULL MODEL

The intensity function of this model is given by
- b t cA,(fi) = aG ‘ b e t * ' 1 a , b t c >  0 with a mean value function of 

M(£,) =  a( i - It is discussed in Musa and Okumoto (1 984)
and Miller (1 986) among others. When c=1 , the model becomes 
the Goel-Okumoto model (see below). It cannot be trans
formed into a proportional hazards model due to the power 
term of the time metric.

5.3.3 THE LITTLEWOOD NHPP

This is discussed in Rook (1990) and Littlewood (1981) 
with an intensity function of the form 
k(£j) = a 6c(l + b  t t)~c~1 a  , b  > 0. The mean value function is 
M  (£j) = a( 1 - ( 1 + b  £,)~c). This model may also be viewed as an 
order statistics process in the reference of Littlewood 
(1984). When the b parameter is large, the intensity 
function for this model reduces to the Duane model discussed 
later. If a  ->00 , 6 0 and a b  = k , a constant, then this model
becomes the Goel-Okumoto/ Jelinski-Moranda NHPP model.

5.3.4 POISSON TYPE MODELS OF THE EXPONENTIAL CLASS

A proportional hazards model has been formulated which 
incorporates Poisson type models of the exponential class 
(Wightman, McCollin and Dixon 1991). In this formulation, 
the exponential distribution is again the assumed per 
fault distribution with the Poisson distribution
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referring to the number of faults experienced by time t. 
Examples of this type of model are Musa (1975) , Scneidewind 
(1975), Moranda (1975) and Goel-Okumoto (1979).

The formulation of the proportional hazards model for the 
Poisson type models of exponential type is as follows. 
From Musa et al (1987) page 276, the source hazard rate

j / /, \ u  ~ b t i-\ ~ b w ih ^ W i / t ^ x ) = a b G  e

Let Ib-i equal the time of the (i-1)th failure with a-i + 1 
faults left. From Musa et al (1987), for this model the 
number of faults left at is as so that

h ( x . u i / t i_ x )  =  ( a - i +  \ ) b e ~ b w ‘ 

which may be written as

h ( w i / t i„ 1 )  =  a b ( \ - ^ y b w '...(3)

In the PHM formulation (1), let

h 0 { w i )  =  a b Q  b w ‘, the Gumbel hazard of chapter 1.7.5 and 
z x = l o g a [  1

When applying PHM, if an estimate of (1, approximately equal
to one with a form of the baseline hazard shown above, 
then Poisson type exponential models are appropriate for 
the data under investigation.

This extreme value baseline hazard function in this 
formulation is considered by Lloyd and Lipow (1977). The 
hypothesis that (3] is approximately equal to one may be 
tested (in the same way as the binomial class of models)
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as the p's from PHM are asymptotically normal. The form 
of the baseline hazard for this software reliability model 
type may be investigated by plotting the logarithm of the 
cumulative baseline hazard against time t.

Alternatively, by using the approximation

e 1̂*1 = i + [3 j z j

within the PHM formulation and equating it to 1 - in 
equation (3) then z ] = i -  1 and -fŜ 1 provides an estimate of 
the initial number of faults in the source.

If we choose to fit the Musa basic execution time model 
(Musa 1975) and the model of Goel-Okumoto (1979) into a 
PHM formulation, then the covariate structure is somewhat 
easier to calculate for data analysis. This Musa formu
lation appears in McCollin et al (1990).

5.3.5 THE MUSA BASIC EXECUTION TIME MODEL

Font (1985) derived a proportional hazards model with the 
Musa model as the hazard function. The following 
formulation of the Musa model within a PHM framework is 
useful as a goodness of fit test for the Musa model in 
that if the number of software failures is not a significant 
explanatory variable in the PHM formulation then the Musa 
model is not appropriate for the data analysis.

The Musa basic execution time model (Musa (1975)) takes 
the form
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\(ti) = CLQ bl'

where £f is the total execution time, a is the initial 
failure intensity, M^t) is the failure intensity function 
and b denotes the "constant hazard which characterises 
any individual failure"

The expected number of failures in time t < is given by

M(^)= / X ( w ) d w  which is o

From Musa (1987), the cumulative hazard function is 

H ^ W i / t i )  = M  (Z£_! + W i ) -  A/i (if.j)

Letting i 2 = cumulative failure time up to time i-1 and 
hence w t = time since last failure.

, T _ . . _ ~  t)  I  f  \jj i ~ 6 / i i  _Thus, H ( W i / t i )  = -a(e -e )/£>.

If we differentiate H { w i / l i ) with respect to w t,

(d/A( w t / b)/d w ,-= ae bt'"‘ , “(4))

then c L H  ( w t / L i- i ) / d w i =  h ^ W i )

Now, the PHM formulation is

h { u i i , z )  = /z0(K/i)ePlZl , -(1)
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where w t is the time since last failure, 
z  i is an explanatory variable,
(3! is a parameter of the model and 
h 0 Q W i ) is the baseline hazard.

Now comparing (1) and (4),

i) If h 0 ^ W i )  from PHM = a e  b w > (a Gumbel hazard) and

i < \ ^1^*1 1 i ,n) e =e f3]=-b,
then the basic execution model is a sub model of PHM.

5.3.6 THE S-SHAPED INFLECTION MODEL (OR OHBA MODEL)

Ohba (1984) describes an inflection s-shaped software 
reliability growth model defined by

where M 0 ) = ~~, \(°°) = 0 .

The parameters a b and c are, respectively, the initial 
error content, a>0 , the error detection rate, 0<b<1, and 
the inflection parameter, c =

where r is the ratio of the number of detectable faults 
to the total number of faults in the software. When r=1, 
the model becomes the Goel-Okumoto model described later. 
Kapur and Garg (1991) supply an optimal release policy 
for this model.

(i _6'')The mean value function is M  (t () = a  t— — i—
(l+ce ')
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(c+ 1 )which may be written as A 4 (t<) = a  — —

We may rewrite the above equation as

c M ( t t )

a

We may use the actual cumulative number of failures by 
time 1 1 a s  a covariate in a PHM formulation which will 
result in an "Ohba" type proportional hazards model. We 
may write the intensity function as

so that 1 =  and z 2  =  i so that (32 = 2̂ . Thus the "Ohba" 
type model is a submodel of PHM. As both of these covariates 
are increasing, there may be problems of monotonicity and 
collinearity if these two covariates are fitted together 
in the same PHM formulation. If fitting is possible, the 
estimate of |3's may be determined first and then by plugging 
in this estimate, appropriate values of a and c may be 
found.

Now choose

h o ( . w i )  =  ^ e  b W ‘f (a Gumbel hazard) and
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5.3.7 THE GOEL-OKUMOTO MODEL

As has been mentioned, the Jelinski-Moranda model (1972) 
has a similar physical interpretation to the Goel-Okumoto
(1979) model. The Jelinski-Moranda (J-M) model has been 
discussed prior to this software application by Bazovsky 
(1961), Cozzolino (1968) and is similar to the Cox-Lewis 
model (1966) described later. Bayesian formulations of 
J-M have been carried out by Raftery (1988) , Meinhold and 
Singpurwalla (1983) and Littlewood and Sofer (1987).

The intensity function of the Goel-Okumoto model is

k(h) =  c l  b e  b l ' a  , b  > 0

which is similar in form to the Cox-Lewis model.

The expected number of failures is M(£t) = a(l-e bt‘).

By writing the intensity function as A,(h) = cibe b w ‘e  b l , ' x then 
we may choose l i 0 ( i u l ) =  a b e  b w ‘ (a Gumbel hazard) and z t = 
and thus the Goel-Okumoto model is a sub model of PHM.

5.3.8 THE S-SHAPED MODEL

This model is described by Yamada, Ohba and Osaki (1983) 
and has a S-shaped mean value function given by

M ( t , )  = a( ] - ( ] + b t t ) e ~ b l ‘ ) with an intensity function of the 
form

=  a b z t i Q  bl> a , b > 0 .

The maximum value of the intensity function may be
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calculated by equating it's differential to zero which is 
a b e ~ l when time t =  p

The intensity function may be written as

. , . , ■) In/, - b l , , -  b w ,= a b ^ e  ' e ' 1 
which becomes

, o  -  b w , In (, -  b t , ,
\ ( t i )  =  a b  e  e e

This cannot be written as a PHM formulation as the two 
covariates Z i  =  \ n t i  and z 2  =  t i _ x are monotonic and collinear.

5.4 DESCRIPTION OF MODELS FOR HARDWARE AND SOFTWARE 
RELIABILITY GROWTH

5.4.1 THE DUANE MODEL

In 1962, J.T. Duane of General Electric published a report 
(Duane (1964)) in which he presented a plot on log-log 
paper of the observed cumulative failure rate against 
cumulative time for a number of complex systems. These 
plots all closely followed a straight line. Many papers 
have been written since on this model notably Crow (1974), 
who showed that the Duane model is a NHPP. The model has 
also been called the AMSAA model (MIL-HDBK-189) and more 
recently the Weibull Process and the Power Law Model and 
the theory is now the most developed of all NHPP's.

The expected number of failures in the period (0,£j) is 
given by E ( N  (^)) = M(£<) =
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The intensity function is given by
A'hU

\  / 1) = b — —  = b 11 a a ,b> 0 .

When the parameter b<1 , then the system is undergoing 
reliability growth and when b=1 the Homogeneous Poisson 
Process is formed where each interfailure time is expo
nentially distributed. Only the time to first failure is 
Weibull distributed when b is not equal to one. When b>1 , 
the system under analysis is undergoing a period of 
reliability decay where the interfailure times are becoming 
shorter as cumulative time increases.

For the Duane model, by using M(£t) = (̂ j then £i = aM(£l)b 

and on substitution into the intensity function,
I n ( M ( t , ) )  - I n t ,  . { b \  ( l - j ) l n ( A # ( t , ) )

X ( t t ) =  b  q  q  which becomes ’

Now, by using the log of the actual cumulative number of 
failures up to time t ( instead of ln(M(Zf)) as a covariate 

and h 0 then a similar model to the Duane model 
is formulated and this "Duane" type model is a sub model 
of PHM.

Smith and Oren (1980) have described a modified version 
of the Duane model for large counts of failures.

5.4.2 THE COX-LEWIS MODEL

The Cox-Lewis Model or log-linear model was first derived 
in Cox-Lewis (1966) and subsequently derived from a number 
of assumptions in Cozzolino (1968).

1 1 8



The mean value function of this NHPP is A//(t4*) = (e ‘ ~ 1)

and the intensity function is X ( t i )  =  e a  b t ‘ a , b > 0  where t ( 
is the cumulative time to fault i in a source.

Using Musa (1987) , the model may be derived as a sub model 
of PHM as follows.

The intensity function for the cumulative time to failure 
may be written as X ( t i_ l ^  w i )  ^  q

ci'*' bw ■By letting = h-1 an<3 h 0 ( w i )  =  & a Gumbel hazard rate
within the PHM formulation of (1), then the Cox-Lewis 
model is a sub model of PHM.

5.4.3 THE IBM MODEL

The IBM model was first derived by Rosner (1961) and 
subsequently has been formulated by Ascher (1 968) and also 
called the Smith's Industries Model (1977) . The mean value 
function is

=  1)

where 0<b<1, a<0 for increasing hazard rate and c+a>=0
and a>0 for decreasing hazard rate. Unlike the Power Law 
model and the log-linear model, the intensity function 
tends to a constant over time and not infinity. The 
intensity function is X ( t i )  =  c  + a b 1 '.

There are problems with estimating the parameters of this 
model. The techniques used for parameter estimation 
estimation are by non-linear least squares or maximum 
likelihood. By choosing the incorrect initial estimates
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for the parameters in the iterative estimation procedure, 
the parameter estimates will not tend towards the required 
values as the likelihood function has inflexion points as 
well as the optimal solution. The solution should be 
checked by ensuring that all the second differentials of 
the log likelihood for the three parameter estimates 
satisfy the conditions for a maximum.

5.4.4 THE BOUNDED INTENSITY MODEL

The bounded intensity function (Hartler (1989)) is given 
by

+ b >  0

which has the mean value function 
=  b t i ~  1 n (1 + b 11).

This is similar to the IBM model above in that the intensity 
function tends towards a finite value. It is not possible 
to incorporate the IBM model or the bounded intensity 
model into a PHM formulation, however in chapter 7, the 
IBM model is used as a baseline intensity in a data set 
analysis.

5.4.5 THE LOGARITHMIC MODEL

This model was first put forward by Musa and Okumoto (1984) 
as part of the Logarithmic Poisson execution model. The 
intensity function is 
\ ( t t )  =  a ( l  +  c i b t i ) ~ ] a ,  b >  0
and it's mean value function is M(ft) = }In( 1 + a b t ^ .  

Substituting M(h) into the intensity function gives
-  b M ( t  )k(h) =  a e
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By choosing h 0 ( w t )  =  a  and z . =  i ~  }, then a "logarithmic" type 
model is a sub model of PHM.

5.4.6 THE SQUARE ROOT MODEL

This model is discussed by Kremer (1983). The intensity 
function is K , { t i ) =  j =  and the mean value function is

V  l t

M ( t t )  =  2 c L \ [ 7 i . The model is also the Duane model with shape 
parameter equal to one half.

By applying the formula for the mean value function into 
the intensity, and using the Musa relationship between 
hazard and intensity, the hazard function for a "square 
root" type model may be written as the proportional hazards 
formulation using the actual number of failures up to time 
t j not the expected number M (q ) :

o  „  2
M

On choosing i = l o g e ( i ), the corresponding (3 should be tested 
for a value of -1 . The baseline hazard is h 0 { w t ) = 2a 2 which 
is an exponential hazard.

5.5 APPLICATION OF PHM FORMULATIONS TO SOFTWARE RELIABILITY 
DATA

Most of the reliability growth models described above are 
given in the list below and may be formulated as a pro
portional hazards models with a baseline hazard which is 
either extreme value or exponentially distributed. All 
except one model have one covariate in their respective 
PHM formulations. For the "Ohba" type model, the effect
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of the model S shape may be due to external influences 
such as reduced severity of testing or change in staff 
levels. If such information is available, it may be more 
useful to apply as a covariate since the covariate would 
then have a physical meaning and the complex S model may 
reduce to a simpler form. The PHM formulation for this 
S-shaped model is very susceptible to model fitting as 
both the covariates are monotonic in the model and so they 
are likely to be linearly related to one another which 
will affect convergence of the parameter estimation.

Five models which do not fit into the framework are the 
Littlewood, Weibull, IBM, S-shaped and bounded intensity 
models. Apart from the bounded intensity model and the 
S-shaped model, these are all three parameter models. It 
may be shown that the maximum likelihood estimate of a 
(the number of failures parameter) is a linear combination 
of the other two parameters and due to this additivity, 
PHM formulations are not possible. Also, in all four of 
these models, the intensity function is a sum of terms 
rather than a product and therefore the model structure 
cannot be reduced to a hazard term multiplied by a 
covariate. The S-shaped model cannot be formulated as a 
proportional hazards model as it requires two covariates 
which are collinear.

The other four models which could not be formulated into 
a PHM framework were the Duane, Ohba, square root and 
logarithmic models however similar models to these have 
been formulated as proportional hazards models.

The baseline hazard for each of these formulations is 
either the exponential or the Gumbel and the covariate 
term is either a function of the accrued failure time or
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number of failures.

The PHM approach has the advantage over the physical 
structure approach in that it may be used as a diagnostic 
tool to determine which is the most appropriate NHPP to 
model reliability growth. The approach is described in 
chapter 6 and is applied to part of Alvey data set number 
3.



TABLE 5.2. TABLE OF PHM FORMULATIONS

Model Covariate Coeff. j3 Hazard

Binomial 
type (1)

l o g e (  1 - (£ - 1 )/a) 1 a b

Binomial 
type (2)

i -  1 -  1 / cl a b

Poisson 
type (1)

/oge( 1 - (i- 1 )/a) 1 i - bw t
a b  q

Poisson 
type (2)

i- 1 -  1 / a u  ~ b w ta b e

Musa Basic - b
- b w .

a e

"Ohba" type •Z ! = <£_ 1 z2 = i - 1 fli =  - b  

(3 2 = 2 c / a

a b  e “e bw‘/(c + 1 )

Goel- Oku- 
moto

^ i -  1 - b a b e ~ b w ‘

Cox-Lewis t l - 1 b
a + bw,

e

"Duane"
type

L o g e ( i ) 1-1 / b b / a

"Square 
Root" type

L o g e ( i ) -  1 2 a 2

"Log" type i -  1 ~ b a e ~ b

124



6 P R O P O R T IO N A L  H AZAR D S M O D E L L IN G

Cox (1972) presented proportional hazards modelling in a 
seminal paper and suggested it would be useful in 
reliability studies as well as other activities such as 
medicine and actuarial studies. The formulation takes the 
form

/i(i;z,,z2...= ■ ! > 0 , - * < P „  z , < ~  -(1)

where the z/s are the values of the covariates and the 
(3/s are the unknown parameters of the model representing 
the effect on the overall hazard of each of the values of 
the covariates. A list of covariates or explanatory factors 
applicable to software reliability are given in McCollin, 
Bendell and Wightman (1989) . Software metrics may also be 
used as covariates. The values of the (3/s are unknown and 
they represent the effect of the z/s on the hazard. The 
h 0 ( . t) term is a baseline hazard function. The only assumption 
of the model is that the hazards are common, stable and 
proportional which may be checked by plotting the 
respective hazard functions for different covariate values 
with each other against time.

The following approach is used to analyse waiting times 
to failure using PHM and provides an objective selection 
criteria for the application of the appropriate software 
reliability growth models to a given data set. This 
contrasts with the previous approaches where arbitrary 
fitting of a number of models were compared.

1. Initially, choose covariates. The covariates selected 
for the waiting times to failure will be cumulative time 
since last failure, number of failures up to last failure
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and log number of failures. These are the covariates which 
were shown to be part of the formulation of the well known 
NHPP's presented in chapter 5.

2. Calculate the|3/s and test them being zero. The available 
software (see chapter 6.1) attempts to fit all the 
covariates and successively removes each non-significant 
covariate by using the assumed normality of the parameter 
estimates. The p - values of individual covariate values 
(the probability of observing a value more extreme than 
the test statistic value) determined by assuming a uni
variate normal distribution are an approximation to the 
actual multivariate normal p - values of the covariate 
values.

PHM software may encounter two problems with data. These 
are multicollinearity or partial collinearity where the 
covariates are a linear combination of each other. 
Collinearity between covariates is discussed in chapter
3.5 in which there is reported a very strong linear 
relationship between number of failures and cumulative 
time since last failure for the twelve least reliable 
sources in Alvey data set number 3.
The second problem with data is that the values of the 
time metric have the same rank as the corresponding 
covariate values (monotonicity) . PHM may be used as a 
diagnostic tool to determine if either of these problems 
exist however correlation and regression are well 
documented tools for this. Covariates found to be monotonic 
or collinear by proportional hazards modelling were 
analysed in more detail by multivariate techniques and 
this is presented in chapter 7.
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Once the (3/s have been calculated, the software calculates 
an estimate of the baseline cumulative hazard (equation 
7 in chapter 6.2).

3. For the particular covariate, fit the appropriate 
cumulative hazard formulations to determine which of the 
NHPP's in table 5.2 are applicable to the data set.

4. Apply diagnostic checks for goodness of fit of the data 
to the models.

This 4 step procedure has been carried out by myself for 
the twelve least reliable sources of Alvey data set number 
3 and the results are presented in chapters 6.3 and 6.4.

A proportional hazards model has been derived in chapter
6.1 for comparison with the time series analysis presented 
in chapter 4. The covariates chosen are those which 
correspond to trend, moving average and seasonality in a 
time series context.

6.1 ANALYSIS OF FAILURE COUNTS

An analysis using PHM was applied to the number of failures 
per day data of Alvey data set number 3 to determine the 
effect of the seasonality and trend and to compare with 
the results of the Box-Jenkins time series analysis.

As this data is a counting process, the appropriate model 
is the multiplicative intensity model of Fleming and 
Harrington (1991). This may be expressed as the propor
tional hazards model of Cox (1972) however the function
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h(t;z) inherits none of the usual properties of the 
traditional hazard function and so cannot be estimated 
from the data.

An alternative approach is to use the discrete model of 
Kalbfleisch and Prentice (1980). The model is

where h d ( t ) d t  =  Z h,-6(f - x ( ) d t  and 5(x)=l, x = 0 ; otherwise.

There are problems with the estimation procedure for 
discrete PHM so Kalbfleisch and Prentice (1980) page 101 
suggest using the continuous model as an alternative since 
the relative risk parameter exp(jlz) is exactly the same 
as in the continuous model.

An alternative formulation is as follows. If the data was 
assumed to be continuous with each time to failure less 
than a day (which for software execution times to failure 
is nearly always true) then Kalbfleisch and Prentice (1 980) 
show that by grouping continuous data into disjoint
intervals [0 = a 0 , a  x), [a i , a 2).. [a*_ i, a k  -  «>), the hazard of
failure in the i'th interval for an individual with 
covariate z is

f i ( l ; z ) d t  =  1 - (1 - h . d ( t ) d l )
exp((J )

n

F { 7 e [ a i_1a £) / T > a l_1} =  1 -  ( 1  - / i £) expU(J)
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In the case of Alvey data set 3, each time to failure is 
unity with different frequencies so it is not possible to 
estimate the model parameters.

The approach using the continuous model is adopted and 
the analysis will be compared with the previous time series 
analysis of counts.

Software has been written by Dr. D. Wightman at Nottingham 
adapted from the routines in Kalbfleisch and Prentice 
(1980) and described in his Ph.D thesis (1987) to estimate 
the |3('s. The method is described in chapter 6.2. The 
covariates used in the PHM analysis of the failure count 
data were chosen to be similar to those in a time series 
context. These were day of the week, previous counts per 
day over the previous six days and the cumulative number 
of failures. The results are as follows.

TABLE 6.1. PHM RESULTS FOR FAILURE COUNTS

Covariate Value Normal
Deviate

p value 
(1-sided)

Failure 
Count z1

0.002619 4.8268 0.0000

Previous 
Day No. 
of Fail
ures z2

-0.046036 -2.2649 0.0118

Sunday z3 0.919899 4.262 0.0000

Saturday
z4

0.740664 3.6110 0.0002
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The analysis shows that the count hazard rate is increasing 
on weekends compared to the rest of the week. Also, the 
hazard rate is increasing as failures accumulate and 
decreasing with the number of failures on the previous 
day.
These covariates produce in the proportional hazards model 
a similar structural model to the
ARIMA(1 0 1)(0 1 1)7 model where the time series moving
average term corresponds with the PHM covariate cumulative 
time to failure (age) and the time series trend corresponds 
with the PHM covariate previous count. These similarities 
are shown below.

The PH model formulation 

h ( t ; 2 ) - / i 0 (

may be integrated with respect to t to give
H  ( L ; z )  = H  O(0efi| '* P > z '2 Pj“3 where H is the cumulative hazard
function.

On taking logs, the formulation becomes
log H  ( t ; z )  = log /-/ 0(t) + (3 i z l + \ i 2 z z  +  p3~3 + P4z 4 which is similar 
to the formulation for the logged time series data in 
chapter 4 :
z t = C+ - 0 a ,.7 + 0 0a (.8 + a t

An exact statistical relationship between the two 
formulations does not exist however Whitehead (1980) 
develops a Poisson model using GLIM which is equivalent 
to the PHM formulation and a time series proportional 
hazards structure has been discussed in chapter 4.
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6.2 ANALYSIS OF FAILURE TIMES USING PHM

Proportional hazards modelling has been carried out on 
the twelve sources which were repaired the greatest number 
of times given in tables 3.2 and 3.3. These twelve least 
reliable sources were analysed together and then indi
vidually. The plot of this data is in figure 3.4.

The continuous model is given by
k

i Pf zt 
h ( t \ z )  =  h Q ( t ) e ' "

Prentice, Williams and Peterson (1981) considered the 
following formulations of PHM :

/i((//V(f).z(0)“ f i o s ( t ) e R s - U >  -(1)

= -(2)

ft((//V(0.2(0) = ftos('-'iv„,)®'isS(') -(3)
ft((/A/C!).2(0 ) = ftos(!-^(o)eB5(0 -C)

where N(t) is the number of failures on an item prior to 
time t,

s is a stratification variable which varies over a number 
of strata,

t is the time from the start of the study period and

t - t N U )  is the time since the last observed failure of the 
item.

The likelihood function for the Cox continuous proportional 
hazards model is
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n

/-((3:/?.o(/t))= n R 0 ( L t )
t= i c e D ( t t )

which may be rewritten as

feO(t) Z e ~ S '  i e D ( t ' )i e D ( t t ) z  J e G ( t i ) (=1

where D ( t t ) is the set of items which have failed at t if

G ( t t ) is the set of items still at risk of failure just 
before time t u

R o i t i )  is the items associated baseline survivor function,

n is the total sample size

[3 is a row vector of k parameters

Z i  is a column vector of k measured covariate values.

Cox (1 972 and 1 975) showed that the baseline hazard function 
may be left distribution free within the above likelihood 
construction and developed a term

c-5'< n
i e J

known as a 'conditional likelihood' or Cox's partial 
likelihood. Cox showed that the (3 parameter estimates may 
be determined by maximum likelihood estimation of this 
partial likelihood as it contains all the information of 
the risk set for estimating the covariate values. A method 
of estimation employs the Newton-Raphson iterative pro
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cedure on the first differentials of the log likelihood. 
The problem of ties (equal life lengths) is dealt with in 
Breslow (1974).

The Kalbfleisch and Prentice (1980) software routines 
estimate the baseline hazard by expressing the likelihood

n ( n  ( 1 exp(|32,n n  exp(|3z;i)̂as Z.(a, |3) = n ( n [l-oq ' )  n af \ -(5 )

where (l-a;) is the hazard contribution at t (. Since the 
covariate values have already been estimated from the 
partial likelihood, then (5) may be maximised to estimate 
the a/s.

The baseline survivor function is estimated by 

R o ( t )  =  n dj where

exp(z(()|3) exp(- 

fc* c ( M

which provides an estimate of the baseline cumulative 
hazard of

=  -  I 1 n d( -(6 ).

Lawless (1982) derives the first order approximation of 
(6) as
# 0(O= I (1-d,) -(7)

and this is used in the routines of Kalbfleisch and Prentice
(1980) and Wightman (1987). The computer routines for 
fitting PHM written by Dr Wightman successively removes
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each insignificant covariate one at a time in the model 
until all the remaining covariates are significant. A 
number of diagnostic plots are available in the literature 
to determine goodness of fit and outliers (Schoenfeld 
(1982), Cox and Snell (1 968), Cain and Lange (1 984), Reid 
and Crepeau (1985)).

Cain and Lange (1 984) and Reid and Crepeau (1985) show 
that the influence of an event at time t y upon the estimate 
of the (8 value may be calculated by taking the first order 
approximation based on a Taylor series expansion of the 
difference between the estimate of the [8 value with all 
the observations included and the estimate of the |3 value 
with the observation at t j omitted. This is then transformed 
into a normal deviate and compared with ± 1.96 to determine 
if the event alters the significance of the covariate if 
it is omitted.

Cox and Snell (1968) obtained residual quantities which 
should be roughly exponentially distributed if the pro
portional hazards model is a good fit. Plotting a product 
limit survivor function estimated from the set of residuals 
against the residual estimates produces a graphical 
goodness of fit test for the model since the plot should 
result in a straight line with gradient 1.

Examples of these plots and others are presented in Wightman 
and Bendell (1986) and McCollin, Wightman and Bendell 
(1989) among others. The latter reference shows some of 
the diagnostic plots of the analyses presented in chapter 
6.4. Diagnostic plots are not presented in this thesis as 
only one or two of a number of covariates have been applied 
in the PHM specifications to show how the specific software 
reliability growth models fit in. Any diagnostic plots
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would therefore be misleading as, for example, they may 
show covariates are missing when, in fact, they have been 
deliberately left out.

Problems with monotonicity and multicollinearity high
lighted by PHM are dealt with by applying multivariate 
techniques in chapter 7.

6.3 ANALYSIS OF THE TWELVE LEAST RELIABLE SOURCES AS A 
GROUP

If all the twelve least reliable source failure times in 
Alvey data set number 3 are used with a covariate which 
designates each source number, then a comparison may be 
made of the reliability of these sources. This is model 
(3) in chapter 6.2 above. Steps 1 and 2 of the 4 step 
procedure is to select appropriate covariates and find 
the f3 values. The between sources variation was analysed 
by combining all the data of the individual sources and 
using covariates: source size or type and source desig
nation (a binary covariate), age, number of failures, log 
number of failures and type of use. Information pertaining 
to 'source language' could not be incorporated as a 
covariate in the proportional hazards analysis as the 
twelve sources analysed were all in Cobol. The time metric 
used was time since last failure. Four formulations were 
found to be significant and they are listed in the table 
below.

1 35



TABLE 6.2. PHM RESULTS FOR TIMES SINCE LAST FAILURE

Model Covariates [3 Value Significance, 
(Likelihood 
Ratio)

Baseline
Intensity-

1 Cumulative 
number of 
failures

-0.02658 0.0006
(12.563)

Binomial 
and Poisson 
models, 
"Log"

2 Cumulative 
time to 
failure

-0.0110 0.0000
(40.977)

Goel, Musa 
models

3 Log number 
of failures

-0.3412 0.00016 
(12.798)

"Square 
root", 
"Duane"

4 Source 
no. 1 0

-0.5403 0.0367 (6.784)

Source 
no. 11

-0.5919 0.0383 (6.784)

where the baseline intensities denote which of the NHPP's 
in table 5.2 are the most appropriate to the data based 
on the covariates fitted. On fitting the hazard function 
detailed in table 5.2, the appropriate NHPP's in table
5.2 will be identified.
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The analyses showed that the hazard rate of all the sources 
decreased as age increased or as number of failures (or 
it's log) increased. The hazard rate of the sources denoted 
10 and 11 were significantly less than the other sources. 
This is confirmed in the proportional intensity analysis 
of this data in chapter 7.6.4.

For a specific covariate structure, e.g. cumulative time 
to last failure and the appropriate cumulative hazard 
rate, e.g. the Gumbel hazard, will result in a listed NHPP 
in table 5.2, e.g. the Cox-Lewis model. Step 3 of the 4 
step procedure is to model the appropriate hazards. Hazard 
analyses for these four proportional hazards structures 
were undertaken within the MINITAB package after the 
baseline cumulative hazard given in equation (7) in chapter
6.2 was estimated.

6.3.1 HAZARD ANALYSIS OF FORMULATION (1)

For formulation (1), possible NHPP's which may fit the 
data are the binomial and Poisson type exponential models 
and the "logarithmic" type model. The appropriate hazard 
functions to fit to the baseline in these cases are the 
Gumbel distribution for the Poisson and the exponential 
distribution for the binomial and "logarithmic" type 
models.

The cumulative hazard functions for these models are 
H ( w i )  =  a ( i ~ 6  b w , ) t H ^ w ^ - a b W i  and H  (w ,■) = a e ~ b w  t respect
ively. A plot of the cumulative baseline hazard against 
time for this formulation is shown below.
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FIGURE 6.1. PLOT OF ESTIMATED CUMULATIVE HAZARD AGAINST
TIME SINCE LAST FAILURE
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The binomial and Poisson models may be appropriate for 
this data as the -{I"1 value calculated from the PHM 
formulation represents the initial number of failures in 
the software for this particular model and is 37.62 which 
is extremely pessimistic. By plotting time since last
failure w t against l o g e [  1--— the slope parameter of 

the Gumbel model may be estimated as long as the intercept
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is zero. However this is not the case. If the best least 
squares model is fitted without the intercept, then 
6=0.00246

For the "logarithmic" type and binomial type models, the 
appropriate plotted relationship of cumulative hazard 
against time for an exponential distribution is a straight 
line through the origin. The coefficient of determination 
is 0.942 for this data so the data is almost linear. By 
regressing cumulative hazard on time since last failure, 
the model is H { w i ') =  0.52059 + 0.070485Wf. The estimates of 
the parameters follow a normal distribution so given that 
the standard deviations of the estimates are 0.0862 and 
0.003241 respectively, the estimate of the intercept is 
more than three standard deviations away from zero. This 
means that the exponential distribution is not appropriate.

There are four unusual observations, numbers 28R, 29RX, 
30X and 31X where R denotes an observation with a large 
standardised residual and X denotes an observation whose 
X value gives it a large influence. Each of these 
observations occur in the live phase and cannot be resolved 
into a proportional hazards structure with the covariate 
'type of use' as the observations are collinear with the 
covariate cumulative number of failures.

As the proposed hazard rate distributions do not fit the 
data, then either the three unusual observations may be 
removed from the linear plot and the models refitted or 
alternatively, hazard models such as the linear model 
(Gross and Clark (1975), the quadratic model of Gaver and 
Acar (1979) or the Weibull distribution may be fitted to
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the data. By taking logs of the estimated cumulative hazard 
and the time since last failure, the plot shows that the 
Weibull distribution is appropriate.

FIGURE 6.2. PLOT OF ESTIMATED LOG CUMULATIVE HAZARD 
AGAINST LOG TIME SINCE LAST FAILURE
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The coefficient of determination is 0.989 which denotes 
a strong linear relationship. The slope of the regression 
line is 0.7783 with a standard deviation of 0.01543 so 
that the parameter estimate is not within three standard
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deviations of unity, i.e. the exponential distribution. 
The intercept of the regression line is -1.6047 with a 
standard deviation of 0.04328 with three unusual obser
vations; 2X, 4R and 29R. Thus the Weibull cumulative hazard 
function is given by H  (wj - 0.2009io°'7783.
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6.3.2 HAZARD ANALYSIS OF FORMULATION (2)

The possible NHPP's which may fit the data for formulation 
(2) are the Goel-Okumoto and Musa models. The estimate of 
-b within the cumulative hazard I i { w i ') =  a (  1 - e 6tu‘) produces 
the following plot of H ( u u t) against y(= 1-e b w > .

FIGURE 6.3. PLOT OF CUMULATIVE HAZARD AGAINST Yi FOR
FORMULATION (2)
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On regressing cumulative hazard on y,-, the intercept should 
be zero for the Goel-Okumoto and Musa NHPP's to fit the
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data and it equals 0.1 37±0.1 58 assuming normality of errors 
so these two models are applicable.
The regression equation is H ( w i ) = l 4 . 6 y i with the five 
unusual observations, 27R, 28R, 29RX, 30X and 31X and a
coefficient of determination of 0.983. On taking logs of 
the original values, the Weibull distribution may be 
applicable. The logged data is shown in figure 6.4. 
FIGURE 6.4. PLOT OF LOG CUMULATIVE HAZARD AGAINST LOG

TIME FOR FORMULATION (2)
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The regression equation is log( / - / =  - 1.488 + 0.8471og
(not an exponential distribution); the coefficient of 
determination is 0.988 and there is one missing zero time 
value and one unusual observation, 2RX.
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6.3.3 HAZARD ANALYSIS OF FORMULATION (3)

Formulation (3) suggests that the "square root" type model 
or the "Duane" type model may be valid for the data. The 
covariate value is -0.3412 and should be unity for the 
"square root" type model. This indicates the "Duane" type 
model as the only possible PHM formulation as long as the 
distribution of the hazard is exponential. A plot of the 
baseline cumulative hazard against the waiting time 
indicates a linear plot apart from the three outliers, 
see figure 6.5.
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FIGURE 6.5. PLOT OF CUMULATIVE HAZARD AGAINST TIME FOR
FORMULATION (3)
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On taking logs, the Weibull distribution was fitted.
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FIGURE 6.6. PLOT OF LOG CUMULATIVE HAZARD AGAINST LOG
TIME FOR FORMULATION (3)
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The regression equation (one missing value) is 
(// ( W t ) )  = - 1.19 + 0.7851og (uj{) with a coefficient of 

determination of 0.988 and two unusual observations, 2X 
and 29R so that the cumulative hazard is H  (t//£) = 0.3042w ° ' 7 8 5  
so the Duane model is not applicable. The removal of the 
three outliers in the linear plot may change the formulation 
to the "Duane" type model.
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6.3.4 HAZARD ANALYSIS OF FORMULATION (4)

A number of different distributions may be attempted to 
fit the hazard of formulation (4). In this instance, the 
plot of the hazard against time is almost linear except 
for the three last points as described previously, (figure 
6.7). By taking logs of both axes, the plot produced is 
in figure 6 .8 .

FIGURE 6.7. PLOT OF CUMULATIVE HAZARD AGAINST TIME FOR
FORMULATION (4)
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FIGURE 6.8. PLOT OF LOG CUMULATIVE HAZARD AGAINST LOG
TIME FOR FORMULATION (4)
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The estimates of the slope and intercept parameters when 
the log cumulative hazard is regressed against time are 
the parameter estimates for the Weibull distribution. The 
slope estimate of 0.77744 with a standard deviation of 
0.01474 (not an exponential distribution) describes a 
wear-in phenomenon (i.e. when there are a number of long 
and very short waiting times). The regression equation is
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Iog(//0<)) = - 1.80649 + 0.77744 log (>£) with one missing zero 
time value and three unusual observations, 2RX, 4R and 
29R. The coefficient of determination is 0.99.

Step 4 of the 4 step procedure is to carry out diagnostic 
plots. This has not been done for the reasons outlined at 
the end of chapter 6 .2 .

It has been shown by the above analyses that the most 
appropriate well known NHPP which applies to this data 
set is the Goel-Okumoto model and that various PHM 
formulations also fit the data well. Also, sources 10 and 
11 were found to be more reliable than the other sources.
6.4 STRATIFICATION OF WAITING TIMES TO FAILURE OF SOURCES

Proportional hazards modelling (PHM) was applied to the 
individual sources using time since last failure in days 
as the metric, i.e. the waiting time to next failure for 
each of the sources individually. This corresponds to 
model (4) in the Prentice, Williams and Peterson (1981) 
paper.

Step 1 of the 4 step diagnostic procedure is to determine 
appropriate covariates. Analysis was carried out using 
the covariates; age t.i. l as in the Goel-Okumoto and Musa 
models (GO and MU in table 6.3), number of failures £-1 
as in the Binomial and Poisson Exponential Order Statistic 
and "logarithmic" type models (BE, PE, LOG in table 6.3) , 
log of the number of failures Zoge(i) as in the "square 
root" type model and the "Duane" type model (SQ and DU in 
table 6.3) , source version change and type of use for this 
within-sources variation. Information pertaining to 
programmer, repair date and repair programmer could not
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be utilized as too much data was missing. The covariate, 
"source language", could not be incorporated as the twelve 
sources analysed were all in Cobol.

As has been shown previously in the EDA section, there 
was a high correlation between age and previous number of 
failures. Further analysis of this and other collinearity 
was carried out by multivariate techniques shown later in 
chapter 7. Multicollinearity usually occurs because of 
the data collection method, constraints on the model or 
in the population and/or model misspecification.

The covariates associated with the NHPP's discussed earlier 
were attempted to be modelled separately into a propor
tional hazards structure for each of the twelve sources 
analysed and in every case, even though some of the 
covariates were nonsignificant at the 5% level, the hazard 
decreased with increasing cumulative time to failure and 
also decreased with the increasing previous number of 
failures. The significant covariates are listed below. 
For three of the sources 274, 422 and 546 (labelled as
number 3, 5 and 7) there were two versions of the software 
being tested at once, one on the test facility and one on 
the customer site. There was no significant difference 
between the hazard rates of versions one and two of each 
of the sources. The covariate "type of use" was also not 
significant. The reason for nonsignificance of the 
covariates for the sources is most probably attributable 
to the low sample sizes involved. This completes step 2 
of the procedure.
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TABLE 6.3. COVARIATE INFORMATION OF WITHIN SOURCES
VARIATION

Source Number No. of 
failures, 
faults, 
censors, 
source ver
sions

Covariate Value p - value

489 (no. 6) 29,20,23,23 L ~  1 (BE,
PE, LOG)

-0.036 0.00429

(GO, MU) -0.012 0.00426

l o g e ( i )  (SQ) -0.383 0.0109

606 (no. 9) 11,0,3,3 i -  1 (BE, 
PE, LOG)

-0.292 0.0068

Q_, (GO, MU) -0.013 0.0319

l o g e ( i )  (SQ) -0.874 0.0166

737 (no. 12) 11,0,3,4 i -  1 (BE, 
PE, LOG)

-0.484 0.0033

t i - 1 (GO, MU) -0.024 0.010

i o g e ( i )  (SQ) -1 .222 0.0166

After determining the covariate structure, the baseline 
cumulative hazard was calculated using equation (7) in 
chapter 6.2 (step 3 of the procedure). The baseline 
cumulative hazard was then analysed in MINITAB to determine
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whether the appropriate hazard to model a known NHPP in 
table 5.2 fitted the data and whether other hazard functions 
fitted the data well.

The following tables contain the coefficients of 
determination for each of the models which were fitted to 
the three source data sets in table 6.3 above. The models 
were

log (//0(u/i)) = b  log w t -  b  log (a): (the Weibull distribution);

H  o ( W i ' )  -  a + b W i i  (the exponential distribution when a=0) ;

H o ( w |) p— -—  =  a  +  b w i +  c w i : (the quadratic hazard function) and

H  0 ( w  =  c  + a ( l  -  e  bw‘): (the Gumbel distribution when c=0)

where H  0 ( W i )  is the cumulative baseline hazard.

The goodness of fit of the models to the data was determined 
by the closeness of the coefficient of determination (the 
square of the correlation coefficient) to unity. This is 
shown below.
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TABLE 6.4. TABLE OF COEFFICIENTS OF DETERMINATION FOR 
THE FOUR HAZARD MODELS FOR SOURCE NUMBER 6

Model i- 1 log(Q

Exponential 0. 944 0.941 0.958
Weibull 0.967 0.966 0.972
Quadratic 0.643 0.649 0.741
Gumbel 0.925 0.936 -

TABLE 6.5. TABLE OF COEFFICIENTS OF DETERMINATION FOR 
THE FOUR HAZARD MODELS FOR SOURCE NUMBER 9

Model I - 1  ̂i- 1 log (O
Exponential 0.968 0.938 0.962
Weibull 0.972 0.965 0.972
Quadratic 0.276 0.192 0. 1 51
Gumbel 0. 529 0.917 -

TABLE 6 .6 . TABLE OF COEFFICIENTS OF DETERMINATION FOR 
THE FOUR HAZARD MODELS FOR SOURCE NUMBER 12

Model I -  1 h -l log (O

Exponential 0.899 0.934 0.905

Weibull 0.937 0.939 0.936

Quadratic 0.407 0.343 0.410

Gumbel 0.472 0.967 -

In every case, the Weibull provided a better fit than the 
exponential which is to be expected as the Weibull is a
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more flexible model. Where the Gumbel distribution was 
fitted (for the covariate Zt-_] to see if the data fitted 
the Goel-Okumoto model) , only source number 12 had a better 
Gumbel fit. The quadratic hazard function provided the 
worst fits in every case.

On developing the full proportional hazards model, the 
"log" type model for the failure count covariate, the 
Goel-Okumoto model for the total time covariate and the 
"Duane" type model for the log failure number covariate 
were the appropriate formulations to fit the data 
structure.

6.4.1 HAZARD ANALYSIS FOR THE COVARIATE i ~  1 PHM FORMULATION

As the estimate of the (3 value for the covariate failure 
count was negative, the appropriate models in table 5.2 
are the "logarithmic" type model and the binomial type 
models where the baseline hazard is exponential and the 
Poisson type models where the baseline hazard is Gumbel. 
By plotting cumulative hazard against time and seeing 
whether the plot is linear and goes through the origin, 
the exponential distribution is shown to be appropriate. 
This was carried out for the three sources and then the 
cumulative hazard was regressed against time to see if 
the constant in the regression was significantly close to 
zero assuming normal errors. In each case this was true, 
so regression was undertaken with the constant removed to 
provide an estimate of the constant hazard rate of 0.233, 
0.175 and 0.195 failures per day for each of the sources 
6 , 9 and 12 respectively. A plot of cumulative hazard
against time for source 6 is shown in figure 6.9.
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FIGURE 6.9. PLOT OF CUMULATIVE HAZARD AGAINST TIME FOR
SOURCE NUMBER 6 AND COVARIATE i ~ 1
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6.4.2 HAZARD ANALYSIS FOR THE COVARIATE PHM FORMULATION

For the time covariate model, the appropriate NHPP's are 
the Cox-Lewis model, the Musa model and the Goel-Okumoto 
model. The Goel-Okumoto model and Musa model provide 
estimates of the initial number of failures in the sources 
by the values calculated for parameter, a and a/b, and so 
further analysis is restricted to these models.
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The a and b parameters for both models 
E ( N ( t i ) )  =  a y t = a {  and E ( N  (£,)) = ( j)y, = j( 1 - e'6"') for
the three sources are :

TABLE 6.7. TABLE OF ESTIMATES FOR THE GOEL-OKUMOTO
MODEL

Parameters /
Source
Number

a for GO b a for MU

6 21.034 0.01177 0.2475
9 9.9082 0.01281 0.1269
12 8.4179 0.02401 0.2021

It can be seen that in both models, the initial number of 
failures is very optimistic as each data set have already 
experienced more than these initial number of failures 
and indicates that this is a bad model for the data.

A plot of cumulative hazard against y t for source number 
12 is shown in figure 6 .10.
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FIGURE 6.10. PLOT OF CUMULATIVE HAZARD AGAINST Yi FOR
SOURCE NUMBER 12
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6.4.3 HAZARD ANALYSIS FOR THE COVARIATE log(z) PHM FORMU-
LATION

In table 5.2, the appropriate PHM formulations for the 
log covariate are the "Duane" type model and the "square 
root" type model which is a special case of the "Duane" 
type model. The covariate value for the log covariate 
takes the form 1 - £ and equals -0.3832, -0.874 and -1.223
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for the sources 6 , 9, 12 respectively. As the [3 values are 
asymptotically normal, then confidence intervals may be 
calculated and in the latter two cases, the "square root" 
type model was an appropriate PHM formulation to model 
the data. On regressing cumulative hazard against time, 
the constant was found to be not significantly different 
from zero assuming normal errors and the estimate of the 
hazard rate was calculated as 0.265, 0.157 and 0.186 for 
the three sources 6 , 9, 12 respectively. The "Duane" growth 
rates, b, for the three models were calculated to be 
0.7230, 0.5336 and 0.4499 which indicated reliability
growth and the estimates of the scale parameter in the 
"Duane" type model are 2.7 33, 3.469 and 2.418 for the
respective three sources. A plot of the cumulative hazard 
against time for source number 9 is shown in figure 6.11. 
Step 4 of the 4 step procedure has not been carried out 
for the previous reasons given.
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FIGURE 6.11. PLOT OF CUMULATIVE HAZARD AGAINST TIME FOR
SOURCE NUMBER 9
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6.4.4 WEIBULL HAZARD PLOTTING

Two parameter Weibull hazard plots were carried out on 
each of the formulations. The estimates of the Weibull 
parameters for each of the formulations is given in table 
6 .8 . As can be seen, the Weibull parameters of the same 
sources do not vary much with covariate. A Weibull plot 
for each source covariate for one of the sources appears 
in figures 6 .12, 6.13 and 6.14.

TABLE 6 .8 . TABLE OF TWO PARAMETER WEIBULL PARAMETER 
ESTIMATES FOR THE NINE MODELS

Covariate 
/ Model

i —  1 t i-1 log(Q

6 a 0.3272 0.3187 0.4415
6 b 0.8449 0.8484 0.7848
9 a 0.0972 0.0665 0.1038
9 b 1 .1836 1.1414 1.1267
12 a 0.3543 0.2428 0.3413
12 b 0.8258 0.8489 0.8217
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FIGURE 6.12. PLOT OF LOG CUMULATIVE HAZARD AGAINST LOG
TIME FOR SOURCE 6 AND COVARIATE ti.l
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FIGURE 6.13. PLOT OF LOG CUMULATIVE HAZARD AGAINST LOG
TIME FOR SOURCE 12 AND COVARIATE i - 1
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FIGURE 6.14. PLOT OF LOG CUMULATIVE HAZARD AGAINST LOG
TIME FOR SOURCE 9 AND COVARIATE log(i)
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6.4.5 QUADRATIC HAZARD FITTING

The quadratic hazard model provided one reasonable fit to 
the data for source 6 , covariate log (i)- The plot of 
cumulative hazard over time is plotted against time and 
shows a reasonably quadratic shape to the data. The
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regression equation is
H (iut) =  0.4717 w t -  0.041 O w f  + 0.00181 w f  which results in a 
hazard formula h ( iuf) = 0.47 17 - 0 . 0 8 2 0 +  0.00543w f .

FIGURE 6.15. QUADRATIC HAZARD PLOT FOR SOURCE NUMBER 6
AND COVARIATE log(i)
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6.5 PHM ANALYSES USING SOFTWARE ATTRIBUTES

In an analysis discussed in McCollin, Wightman and Bendell 
(1989), the hazard rate was found to be not significantly 
different for different source sizes. A reason for this 
may be that the time metric (i.e. days to failure) is 
inappropriate for this covariate. Different source sizes 
affect the cpu time directly and the calendar time only 
indirectly by the cpu time. It was stated by the data 
supplier that the software was continuously operating for 
the duration of the project so that the calendar time 
between failures was the same as the cpu time between 
failures accumulated for the complete software package. 
However, it is not possible to relate the hazard function 
based on cpu times to source failure to size unless certain 
conditions hold true for the usage of the individual 
sources (i.e. all the sources are being run for similar 
lengths of time which is not very likely).

As PHM uses the ranking of the failure times and not the 
failure times themselves, it can be shown that as long as 
the ranking of the days between failures remains the same 
for cpu time, execution time or operating time between 
failures, then the conclusions concerning the hazard for 
the metric days to failure are valid for the other time 
metrics. For example, if execution time can be controlled 
so that it is always the same function of calendar time, 
e.g calendar time equals a constant multiplied by execution 
time, then conclusions about the calendar time hazard 
function will apply to the execution time hazard function.

In this analysis, the covariate size was not significant 
possibly because the assumption of continuous operation 
of the whole software package was not a function of the
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twelve sources time to failures.

PHM was applied to the twelve sources with the six different 
types of source as a covariates. These covariates were 
found to be significant in the formulation and the hazard 
rate for source type 3 was found to be less than the other 
five types. Further modelling of the software attributes 
is given in chapter 7.

6.6 SUMMARY

A 4 point diagnostic procedure has been described and 
applied to Alvey data set number 3. The procedure aids 
the statistical analyst in determining the most appropriate 
NHPP to model a data set.

In conclusion, proportional hazards modelling has been 
used to model the software collection process, the software 
attributes and the software product and has provided 
valuable insight of the structure of diverse data sets in 
terms of the comparative reliability of sources and the 
ability to model the data sets taking into account age, 
previous number of failures and different hazard rates.
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7 MULTIVARIATE TECHNIQUES

The analysis of failure counts using Proportional Hazards 
Modelling (PHM) showed that a number of explanatory factors 
were collinear.

The problem of multicollinearity of the covariates was 
investigated by applying multivariate techniques to the 
data set and the results of this are described under the 
task 4 work heading of the Alvey SRM project and in McCollin 
et al (1990).

The purpose of this section is to describe attempts to 
analyse Alvey software data set number 3 by multivariate 
methods. The data for the analyses was expressed in the 
form for suitable multivariate analysis however the work 
in chapters 7.1, 7.2 and 7.3 was carried out by Peter
Dixon and the work in chapters 7.6.1 to 7.6.4 was mainly 
carried out by Dr. David Wightman.

The following variables were considered (how this set of 
data was created is described in chapter 3.6) :
X { =  source X 6 ~  type of source
X 2 -  source version X 7= first appearance
X 3  =  programmer X 8= final appearance
^ 4= language X 9 -  number of faults

size of source X 10 = time
Data screening and editing were necessary to overcome 
idiosyncrasies and to render the data meaningful and 
suitable for analysis. The screening and editing were 
undertaken using MINITAB. Subsequent analysis was 
undertaken using MINITAB and GLIM.
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7.1 DISCRIMINANT ANALYSIS

Multivariate discriminant analysis is a technique which 
allows the multivariate response for

X l - { X X , X 2  x j , x f.2t. ..tx py
to be attributed to known groups according to X  j + l provided 
X J + i is a group indicator, via discriminating functions. 
The discriminating functions then may be used to assign 
further observations on X \  , not so far identified on a 
X  j + l /  to a X  j + \ .

A feature of the software data is that, in a number of 
cases, the multivariate response has not been identified 
by programmer (X 3) . It is of interest to use the data on 
cases where the programmer is known as a "learning set" 
for discriminating between programmers, thereby making it 
possible for cases in the "prediction set", with programmer 
unknown, to be identified with a programmer.

The procedure is to calculate

w i - L] X_* ~ 0 . 5 Z  J X_*j+ In  ( J i j  ; i = 1, 2   j, j + 2  m

where m is the number of distinct groups (programmers) 
indicated by A/y+i, is the mean vector for group i, *S» 
is the pooled within groups estimate of I*, the varian- 
ce-covariance matrix of X t and .̂ = 5 ; ' rij is the prior 
probability that a case belongs to group i, and to allocate 
the individual to that group for which the uut is the 
greatest, (Chatfield and Collins (1980)).

Unfortunately, the success rate for correctly identifying 
the multivariate response on A'* by known programmer in



the training set was found to be low, with only 25.5% of 
cases correctly identified for the 30 programmers working 
on the project.

However, the success rate varied from programmer to 
programmer, ranging from no cases correctly identified to 
88.9% of cases correctly identified. With a low overall 
success rate it is inappropriate to attempt to identify 
programmers for cases in the prediction set.

It is possible that the failure of the technique to achieve 
a reasonable success rate may be attributed to a violation 
of the theoretical assumptions of discriminant analysis, 
that the discriminating variables have a multivariate 
normal distribution and have equal variance - covariance 
matrices within groups, (programmers); (Chatfield and 
Collins (1980)). The data under study, consisting mainly 
of variables having a discrete or categorical nature, do 
not conform to these requirements. Goldstein and Dillon 
(1978) give a discussion on techniques of discrete dis
criminant analysis applied to data not conforming to the 
multivariate normal, homoscedastic (equal variances) 
groups pattern. Bishop, Fienberg and Holland (1975) give 
a similar treatment.

7.2 PRINCIPAL COMPONENTS ANALYSIS (PCA)

A commonly used multivariate technique is that of Principal 
Components Analysis, where p correlated variables are 
combined to obtain a new set of uncorrelated variables, 
called Principal Components (PC's). This method is well 
documented and appears as a standard technique within the 
MINITAB statistical package. It is regarded as a sub-model 
of correspondence analysis (by Hill (1973)) and this
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reference shows that contingency tables, canonical 
correlation analysis and principal components analysis 
are a special case.

The new variables are linear combinations of the original 
variables and are derived in decreasing order of importance 
so that PC(1) accounts for as much as possible of the 
variation in the original data. If the first few components 
account for most of the variation in the original data, 
the effective dimensionality of the problem is less than
p.

Let X _ T  =  { X  j, X 2 »• • •. X p } be a p-dimensional random variable 
with variance-covariance matrix I and let

Y J =  a l j X l +  a 2 j X 2  +  +  c i P J X  p  =  a T  X  , (7= 1.2...p)
p

where a 7 = {au ,a2/ a p/} such that oj a y = I a ^ =  1 and

—  1 —  y = ̂   ̂ > J )

Y i  is found by choosing a  l so that Y  \ has the largest
possible variance, Y 2 is found by choosing a 2 so that Y 2  
has the next largest variance and is uncorrelated with 
Y  i; Y 3 is found by choosing a 3 so that Y 3 has the next
largest variance and is uncorrelated with Y  x and Y 2  , ....
and so on.

Thus obtained, Y  x , Y 2 . •••. Y p are the Principal Components
(PC) of x having variance equal to the eigenvalues of 
the sample variance - covariance matrix S (= I) ; (Chatfield 
and Collins (1980)).
In the case of the software data it is wise to base PCA
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on the sample correlation matrix P rather than S, thus 
rendering the variables, which are heteroscedastic 
(different variance), equally important.

The MINITAB results were:

(i) Examination of the correlation matrix P showed a 
sufficiency of non-zero elements to warrant the PCA 
worthwhile.

(ii) Eigenanalysis of P.

TABLE 7.1. TABLE OF EIGENANALYSIS RESULTS FOR PCA

i 1 2 3 4 5 6

Eigenvalue K 2.25 1 . 52 1.12 0.98 0.64 0.42*

Proportion x y z k , 0.32 0.22 0.16 0.14 0.09 0.06

Cumulative
tions

Propor- 0.32 0.54 0.70 0.84 0.93 0.99

(* denotes that subsequent eigenvalues exist but account 
for only 1% of the variation).

Note that as many as five PC's are required before more 
than 90% of the variation in the data is explained. Ideally, 
it is desirable that the majority of the variation in the 
data should be explained by two or three components at 
the most. Unfortunately no such reduction of the effective 
dimensionality was obtained. Reduction to two or three 
components is useful in that 2D or 3D plots of component 
score might be examined for patterns or clusters and that 
attempts at reification (a physical relationship between
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number of faults and source size, type, etc) might be 
made. However, it is of some interest that the effective 
dimension of the data reduces to about five, with this 
technique.

MINITAB also supplies the coefficients aj from the 
eigenvectors corresponding to each eigenvalue.

7.3 LOG-LINEAR MODELS

It is possible to obtain from the software data multi-way 
tables containing number of faults as response corre
sponding to variables such as X 4 = source language, X 5 
= source size and X 6 = source type. With such categorical 
data it is appropriate to fit log-linear models, beginning 
with the no-association model.

“ N i t w i t . (1)

where F ljk = number of faults in the cell of the multi-way 
table corresponding to the i'th language, j'th source 
size, k'th source type;

N = grand total of faults in the multi-way table;

it,-. = marginal probability in the i'th category of X 4

(language) irrespective of A'5 and X 6 (size and type of 
source), it, = marginal probability in the j'th category
of X 5 (size) irrespective of X 4 and X 6 (language and
type) ; = marginal probability in the k'th category
of X 6 (type) irrespective of X 4 and X 5 (language and
size).

Taking logarithms in (1)
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In E ( F i j k )  -  In N  + In3Xt + lnit y- + Inn k (2)
With a little manipulation it is possible to write (2) in 
the form
In E ( F — u + u !(j) + n2(/) + n3(fc) , (3)

where the u's are functions of the theoretical marginal 
fault counts.

Now, (3) is reminiscent of a three-way ANOVA model, with 
no interaction. It is possible to fit (3) using GLIM, 
employing the deviance statistic equal to -21og(Zc/Zy) as 
the goodness-of-fit criterion, where Zc = likelihood of
the data under the current model and I f = likelihood of
the data under the fullest possible model, following the 
notation of Baker and Nelder (1978).

Failure of the no-association model to fit the data 
encourages the inclusion of further model terms, firstly 
the two-way associations

^ 1 2 ( i / ) >  ^  2 3  ( jk )

corresponding to first-order interaction in ANOVA, and 
then, if necessary, the three-way association u  123(0*)/ 
corresponding to second-order interaction in ANOVA, (see 
Everitt (1977)).

1 73



TABLE 7.2. TABLE OF LOG-LINEAR MODELLING RESULTS

Model Scaled
deviance

change residual
df

change 
in df

A (3) 89. 75
B A+Size.Type 77.78 1 1 .97 11 5
C B+Size.Lan
guage

26.94 50.84 10 1

D C+Type.Lan
guage

0.44 26.50 5 5

7.3.1 CONCLUSIONS OF LOG-LINEAR MODELLING

The scaled deviance (or change in scaled deviance) is 
approximately X 2 - distributed with the residual degrees 
of freedom (or change in degrees of freedom) from which 
it can be concluded that

(a) there is a significant association between size and 
type of source,

(b) there is a significant association between size of 
source and language,

(c) there is a significant association between type of 
source and language,

(d) there is no significant three-way association, 
suggesting that

(i) the association between size of source and type of
source is the same for all languages,

1 74



(ii) the association between size of source and language 
is the same for all source types,

(iii) the association between type of source and language 
is the same for all source sizes.

Resulting from (b), close examination of the model 
parameters suggests that a negative association between 
Size (2) and Type (5) variables is indicative of a tendency 
for a lower fault count with medium to large sources than 
with small sources of the type "Include file".

Also, resulting from (c), a negative association between 
Type (4) and Language (2) variables suggests a tendency 
for a lower fault count with system operating language 
sources than with COBOL source programs of the type "Find 
control file".

The results (a) to (d) are to be expected since some of 
the types of source in a given language are used for 
specific common activities, e.g. calling routines to 
another source and so these will be the same sources (and 
hence the same size) because they have been written to be 
re-useable.

The multivariate procedures described earlier in this 
section revealed relatively little. However this should 
not malign the power and usefulness of techniques such as 
PCA and discriminant analysis, and they should be used if 
appropriate on other examples of software data in attempts 
to reveal data structure.

Log-linear modelling, a useful example of which is dis
cussed above, has a very positive usefulness in
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investigating data of the type considered and is 
recommended as an important tool in future work.

7.4 GENERALISED LINEAR MODELLING

Generalised linear modelling is a commonly applied approach 
within the area of medical statistics when determining 
the proportion of subjects affected by different amounts 
of a drug. A standard textbook for generalised linear 
modelling is by McCullagh and Nelder (1983). A paper in 
the area of exposure to a disease using the models described 
here is by Kleinbaum, Kupper and Chambless (1982). Also, 
a report was written for the REQUEST project on the 
application of generalised linear modelling to one of 
their collected data sets (Hufton, Quinn and Mclnnes
(1989)). However, generalised linear modelling has not 
been utilised to any great extent previously in the analysis 
of software reliability. The methods are used here to 
analyse the proportion of a package of sources of a certain 
type which have failed by a given time. The background to 
this analysis is in chapter 3.4 with the plot of the 
proportion in figure 3.5.
A generalised logistic regression model is formulated as 
follows. The proportion of sources of a certain type 
failing at a particular instant in time is calculated and 
a transformation is taken so that when plotted against a 
linear combination of continuous variables (e.g; time 
since last failure, cumulative time to failure), a straight 
line results. The analyses carried out with the data under 
the model assumption are then tested for goodness of fit.
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7.4.1 DESCRIPTION OF MODELS

Three model formulations which have been applied to the 
described data are illustrated in figures 7.1, 7.2 and 
7.3. Each figure shows a function of the proportion of 
failures/faults per day, g(p) , (where p is the proportion) , 
plotted on the vertical axis with the explanatory variable 
of interest, x, on the horizontal axis. The function g(p) 
is chosen so that the plot should be linear. In figure 
7.1, model (1) is

g(P)==(30 + |3j* + e

irrespective of the type of source, which can be tested 
for goodness of fit. The term e is an error term which 
explains any variation not already described by the 
parameters of the model. Model (2) is

g ( p ) = (30 + (3, x + a ,  + e i= 1 , 2  k .

If the model is not significant on the factor, a t = type, 
for the 6 types of source, then the plot is similar to 
figure 7.1. However if the proportion of failures/faults 
is affected by the type of source, then figure 7.2 is more 
appropriate. Model (3) is given by

g(P) = ( P0)j + (Pi)fx + ai + e

and, in this case, if the interaction between the type of 
source and the explanatory variable is not significant 
then figure 7.2 applies and if there is an interaction 
between the type of source and the explanatory variable, 
the plot will be similar to figure 7.3.

1 77



FIGURE 7.1. ILLUSTRATIVE PLOT OF g(p) AGAINST x WITH
MODEL (1) FITTED

g(p)
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FIGURE 7.2. ILLUSTRATIVE PLOT OF g(p) AGAINST x WITH
MODEL (2) FITTED

g(p)
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FIGURE 7.3. ILLUSTRATIVE PLOT OF g(p) AGAINST x WITH
MODEL (3) FITTED

7.4.2 DATA PLOTS AND ANALYSIS

A number of plots of the data were drawn and subsequent 
analysis was carried out using the generalised linear 
modelling computer package GLIM, (Baker and Nelder (1 978) ) . 
The models (1), (2), (3) were applied to proportion of
failures per day, proportion of faults per day, proportion 
of faults and censorings per day and proportion of failures 
and censorings per day against cumulative time to failure 
and time to failure for three different types of function 
of the proportion. In each case there was still a lot of 
unexplained variation after the models were fitted. One 
way of reducing variation is to take a transformation of
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the explanatory variables such as the logarithm or the 
square root. A recent reliability paper which incorporated 
plots of transformed data is by Follman (1990).
Further analysis was carried out, with the proportion of 
failures per day only, as this analysis showed this data 
to have the least variation after the initial model fits. 
Figure 7.4 is one such plot of the function of the proportion 
of failures per day

g ( p )  = l o g ( p / ( l - p ) )

(known as the logit function) against the logarithm of 
the cumulative time to failure in days for the data in 
figure 3.5.
FIGURE 7.4. PLOT OF THE LOGIT PROPORTION OF FAILURES

AGAINST LOG CUMULATIVE TIME TO FAILURE
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From the figure, it can be seen that:

- there is a difference within types of source which is 
mainly due to the same proportion failing per day for the 
duration of the project. As there was very little change 
in the total number of sources running per day, this 
difference is mainly due to the number of failures of a 
given type failing per day.

- there is a difference between types of source, which 
can be accounted for by the number of failures for each 
type.

- the number of failures per day is reducing over time 
for each type. This suggests that there is reliability 
growth in the data which may be expected for a software 
development proj ect.

This growth can be seen more clearly if instead of the 
proportion of failures per day, the cumulative number of 
failures up to a point in time is divided by the cumulative 
number of sources failed with the cumulative number of 
failures. The logit of the cumulative proportion of 
failures is shown plotted against the logarithm of 
cumulative time in figure 7.5. From figure 7.5, it can be 
seen that either model (2) or (3) is applicable to the 
data and this can be tested with GLIM.
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FIGURE 7.5. PLOT OF LOGIT CUMULATIVE PROPORTION OF 
FAILURES AGAINST LOG CUMULATIVE TIME FOR EACH SOURCE

TYPE

a

0 2
L o g a rith m  of C u m u la tiv e  T im e

3 54 6
C u m u la tiv e T im e

This model (2) is known as a proportional odds model 
(Pettit (1984), Aitken et al (1989), Crowder et al (1991)) 
and figure 7.5 shows a plot similar to a multiple Duane 
plot, (Duane (1 964)). It is shown in chapter 7.5 that 
model (2 ) tends to the proportional intensity formulation 
with Weibull intensity (a multiple Duane plot). The plot 
in figure 7.5 is levelling off as failures are detected 
and removed. A more appropriate intensity to model this 
curvature is the IBM model (Rosner (1961)) and also 
discussed by Ascher (1968). In the Ascher formulation, 
the intensity is given by

k ( t )  = c + a b l
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where 0 < b < 1 and c > 0. The cumulative intensity or 
expected number of failures in time t is given by

E (N (£) ) = ct + a ( 6' - 1) / 1 og ( 6).

A plot of the Ascher model for another subset of this data 
is shown in the later section on proportional intensity 
modelling.
Tables 7.3 and 7.4 present the results of the GLIM analysis. 
To test the goodness of fit of one model over another, 
the difference in deviances, (explained in the reference 
by Baker and Nelder (1978)), of each model is compared 
with the x 2 distribution with degrees of freedom being 
equal to the lost degrees of freedom when fitting a more 
complex model. As an example of this test, for model (1) 
compared to model (2), the change in deviance is 4 80.6 on 
2 degrees of freedom which is saying that the model in
figure 7.2 is a much better fit as the tabulated value of
X 2 on 2 degrees of freedom at the 5% level is only 5.991. 
The comparisons of the models are given in table 7.3. 
Assuming asymptotic normality of the parameter estimates, 
a simple test of whether the parameters should be included 
in the model is to see if the parameter estimates are 
within two standard errors of zero. If they are, then they 
do not contribute to the overall model. These nonsig
nificant parameters are then removed from the model and 
the new model parameters are estimated and tested until 
all nonsignificant parameters are removed. This method is 
known as backward stepwise regression.
For model (2) , the type 3 sources were used as the baseline 
of comparison as the type 3 data sample size is greater 
than each of the other types and also the type 3 data is 
more central in figure 7.5 than the other types. The 
parameter estimates of type 2, type 5 and type 6 sources
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were not significant within model (2) . A reason for this 
may be the lack of observations for these types. A com
parison of the parameter estimates of the types of source 
irrespective of whether they were significant or not was 
carried out and this determined that types 3, 5 and 6
parameter estimates were similar, types 4 and 1 were 
similar but different to the other types and type 2 was 
on it's own. Figure 7.5 shows these findings.
On fitting the interaction term (between type of source 
and log cumulative time to failure) with model (3), the 
deviance is 5.17 compared to the xl tabulated value of 
5.991 which indicates that the interaction term is not 
significant. This is confirmed by the parameter estimates 
for the interaction terms in model (3) being nonsig
nificant. The parameter estimates for each model are given 
in table 7.4. The results support the PHM analysis in 
chapter 6.5.

TABLE 7.3.
GOODNESS OF FIT ESTIMATES FOR THE GLIM ANALYSIS MODELS

Fitted
Model

Deviance 
(degrees of 
freedom:df)

Difference 
in Deviance 

(df)

p -values

Model [ 1 ] 1086.3(220)
Model [2] 605.73(218)

Model 
[1] , [2]

480.6(2) 0.00

Model [3] 600.56(216)
Model 
[2] , [3]

5.17(2) 0.08
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TABLE 7.4.
ESTIMATES OF MODEL PARAMETERS FOR THE GLIM ANALYSIS

Fitted
Model

Parameter Estimate Standard
Error

P " 
values

Model [ 1 ] Po -3.394 0.04046 0.00

/ / Pi 0.6363 0.00916 0.00

Model [2] Po -3.31 0.04045 0.00

/ / P. 0.6224 0.009147 0.00

t  t Type (1) -1.126 0.0749 0.00

t / Type (2) n. s.

/ / Type (4) -0.9258 0.07253 0.00

/ / Type (5) n. s.

/ / Type (6) n. s.
Model [3] Po -3.299 0.04071 0.00

f / P. 0.62 0.009207 0.00

/ / Type (1) -2.113 0.5369 0.00005

/ / Type (2) n. s.
/ / Type (4) -1.416 0.4063 0.00026

/ / Type (5) n. s.
/ / Type (6) n. s.
f / [3, .Type(l) 0.2387 0.1276 0.0307
J / P. - Type(2) n. s.

t  f Pi ■ Type(4) 0 . 1196 0.09715 0.1093
/ / Pi • Type(5) n . s .
t  t p, .Type(6) n. s.
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7.5 RELATIONSHIP BETWEEN RESPONSE MODELS AND PROPORTIONAL 
INTENSITY MODELS

As shown above, a model may be formulated as 
g(p) = f30 + (3j log(0 + e —  (1) where the proportion p is the 
cumulative number of failures x up to time t divided by 
the total number of failures n, t is the cumulative time 
to failure and e is a binomial error term. If g(p) is the 
logit function c/(p) = log (p/( 1 - p)) then (1) can be rewritten 
as

log (x) - log (ft - x) = (30 + |3 L log (f) + €.

If n tends to a large constant such that n~x is very much 
greater than x, say k, and p is very small, the Poisson 
approximation may be used for the binomial response and 
instead of the logit function, the log of the number of 
failures is obtained. On taking exponentials of each side 
of the equation,

E  ( X  ) = G t

is obtained, where E(x) is the expected number of failures. 
This is the formulation of the nonhomogeneous Poisson 
process with Weibull intensity, (Crow (1975)).
Using the Poisson approximation for the logit function of 
the proportions resulting in the log of the number of 
failures, (known as the log link function; McCullagh and 
Nelder (1983)), then model (2) has been shown to be the 
proportional intensity formulation with Weibull intensity 
of Lawless (1987).
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7.6 PROPORTIONAL INTENSITY MODELLING

In 1980, Lee considered comparing the intensities of 
independent Duane NHPP's as a hypothesis test however 
Lawless (1987) considers the situation where a number of 
individuals experience repeated events, with the time of 
each event recorded along with covariate information within 
a single model. Although the individual experiences a 
sequence of events, the covariate information for the 
individual is fixed. In a software reliability modelling 
context we can consider the individuals to be sys
tems/packages/modules/languages etc; that is, a level of 
application in which a common baseline is reasonably 
thought to exist, or more commonly an application level 
at which data is available.
The methods discussed by Lawless are based on the pro
portional intensity Poisson process model. The model can 
be specified as

A-x(0 “ \ 0(Oexp(*p) ....(1)
where t is the time from the start of observation, k 0(O
the baseline intensity function, x a vector of covariate 
values and |3 a vector of parameters. The formulation in 
Lawless (1987) means that the covariates have a propor
tional effect on the baseline intensity function.

7.6.1 RELATIONSHIP TO PROPORTIONAL HAZARDS MODELLING

Lawless shows in section 4 of his 1 987 paper the equivalence 
of proportional hazards modelling based on the partial 
likelihood construction of Cox, (1972), and the Poisson 
process with unspecified baseline. However, given the 
different approach to the construction of the partial 
likelihood and the likelihood for the semiparametric



Poisson process, it is not possible to use standard 
proportional hazards modelling software for the estimation 
of parameters in the Poisson case.
To carry out the analysis using proportional intensity 
models with covariates and unspecified intensity function, 
specific software has been written, details of which are 
given below.

7.6.2 MODEL FORMULATION

The model formulation and details of the likelihood 
equation are given in Lawless (1987). In particular, to 
obtain the (3 coefficients for the covariates the following 
set of equations have to be solved (the first partial 
differential of the log-likelihood),

*,P
/ <C l„UBlog £((5) lrG

= E n <z ‘r -    , r = l , 2... k (2)
r i• 1 1 = 1 f  z i&Z_ei=i

where zgr is the r/^h covariate value for the system s 
(s=1 ,2 ,3,. . . . ,m) , n the number of failures for the system 
s, n (Tj_) -n (Tj__'] ) the number of failures between the end 
of observation on system (i — 1) and end of observation on 
system i (such that t-)<t2 <....<tm).
To solve the equations in (2), a Taylor series expansion 
(F(x)=^~-) is used and then a Newton-Raphson iteration 
procedure; the method of scoring is applied. A source 
program has been written in Microsoft Fortran which runs 
on an IBM PC to estimate the parameters of the model.
In order to run the source program, a data file is created 
from the observed information:- the total number of 
failures, the total number of systems and the number of
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covariates, whether covariates are included in the 
analysis, the final observation time for each system, the 
covariate values and the time to failure of each system. 
After re-ordering the data, the source proceeds with the 
estimation of the coefficients. Starting with initial 
values of zero for the coefficients, the Newton-Raphson 
equations are solved to provide a 5[3 value, where at the 
n^h iteration (3n = (3„_1 -̂6(3. The iteration procedure is 
continued until the incremental 6 [3 for all the covariates 
is less that one thousandth of the existing (3 value or the 
number of iterations has reached 25 (indicating problems 
with convergence).
Upon convergence for [3 each coefficient is tested (using 
the asymptotic normality of the coefficient) to see if it 
is significantly different from zero. At this stage of 
the estimation procedure, the most non-significant 
covariate is dropped from the model (backwards stepwise 
regression) and the remaining [3 coefficients re-estimated. 
This procedure is continued until a set of significant 
(on a 5% two tailed test) [3's are obtained. At this point 
desired information such as the f3 values, z-scores and 
p-values are reported in a computer output.
Having obtained a set of (3 coefficients, the source then 
calculates the base-line intensity function (using the 
formulation reported in 4.4 of Lawless (1987)) which is 
then available for comparison with well known intensity 
models. If only two systems exist and one binary covariate 
then it is possible to solve (2) directly, so that a 
partial check on the source may be performed. Carrying 
out this procedure, the same (3 value was obtained.
Musa et al (1987) and this thesis classify many of the 
well known software reliability models as non-homogeneous 
Poisson processes. It is therefore possible when applying
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proportional intensity function models to compare the 
baseline intensity function against the intensity function 
for individual software reliability models.

7.6.3 COVARIATES

The covariates that can be included in the model, as with 
proportional hazards modelling, are obviously dependent 
on the context in which the data arises. However, from 
(our) observation on the model formulation it is noted 
that each system in proportional intensity modelling 
"plays" the same role as one failure in proportional 
hazards modelling. Thus there is a severe restriction on 
the number of covariates that may be included in any 
analysis if data is available only on a small number of 
systems. To carry out any meaningful analysis, data may 
have to be available on a large number of systems (Lawless 
in a medical example had 4 8 subjects) . A recent paper 
which showed proportional intensities for software systems 
but did not carry out any intensity modelling is by Selby,
(1990). The proportional intensity formulation software 
described above is applied to part of Alvey data set number 
3.

7.6.4 ANALYSIS OF THE TWELVE LEAST RELIABLE SOURCES

Figure 7.5 indicates that the logit cumulative proportions 
against cumulative time for each source type are pro
portional to one another (i.e. vertical separation between 
types) and so an analysis of the reliability growth/decay 
for each of the twelve sources in figure 3.4 using pro
portional intensity modelling with cumulative time to
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failure in days as the time metric appeared to be reasonable 
based on the plot and the approximate relationship between 
proportional odds and proportional intensity models.

The binary covariate, source designation, was used in this 
proportional intensity formulation. The baseline sources 
chosen were numbers 5 and 6 in figure 3.4. Source numbers 
1 , 3, 4, 7, 8 and 12 were shown to be not significantly 
different from the baseline intensity and were included 
into it. Sources 2, 9, 10 and 11 were significantly more 
reliable sources than the baseline sources although it 
must be stressed that censoring information was not 
included for sources which did not fail after the sources 
went into service use after 110 hours. This conclusion is 
the same as for the PHM analysis of chapter 6.3.

Figures 7.6 and 7.7 are an alternative representation of 
figure 3.4 and show that the more reliable sources are 
number 2 in plot 7.6 and numbers 3, 4 and 5 in figure 7.7 
which represent the sources 9, 10 and 11. The vertical
separation of the sources in the two plots are showing 
that the assumption of proportional intensities (and hence 
proportional hazards) is reasonable.
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FIGURE 7.6 PLOT OF THE FIRST SIX SOURCES: FAILURE
NUMBER AGAINST TIME IN DAYS
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FIGURE 7.7 PLOT OF THE LAST SIX SOURCES: FAILURE NUMBER
AGAINST TIME IN DAYS
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7.6.5 ANALYSIS OF THE BASELINE INTENSITY

The two aspects of a software reliability model which 
provide useful information; the reliability in a future 
period and the final system reliability are discussed 
here. The IBM model is such that the reliability tends 
towards zero as time increases indefinitely, the expected 
number of failures will tend to infinity and the intensity 
will tend to a constant, not necessarily zero. Therefore, 
the analysis of the intensity and the mean value function 
are analysed in a time frame close to the end of the 
project where the IBM model assumptions are probably still
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valid. A plot of the cumulative intensity against time 
with a superimposed plot of the IBM model (Rosner (1961)) 
is shown in figure 7.8.

FIGURE 7.8. PLOT OF OBSERVED AND EXPECTED CUMULATIVE 
INTENSITY AGAINST TIME
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In the Ascher formulation, the intensity is given by

M 0  = 0 . 0 3 4 2 8  + 0 , 2 4 1 2 * 0 . 9 8 7 8 6 f

It can be seen that the intensity will eventually tend 
towards 0.034 and at the end of the project of 220 days, 
it had reduced from 0.27 55 to 0.0507. This constant value 
of the final intensity shows that not all failures have

195



or will be removed according to the model. The baseline 
cumulative intensity or baseline expected number of 
failures in time t is given by

£’ ( / V ( 0 )  = 0 . 0 3 4 2 8 £ -  1 9 . 7 5 4 7 * ( 0 . 9 8 7 8 6 ' -  1 ) .

The expected number of failures for the four significantly 
more reliable sources is determined by multiplying the 
baseline cumulative intensity by each exponential 
covariate term e(|3x).

The constant term and the decaying term for the IBM model 
are listed separately in the table of mean values below.

TABLE 7.5. TABLE OF MEAN VALUES F(A/(0)

Time
Period

Cum.
Number of 
Failures 
(Constant 
term -Ct)

Diff. from 
Next 
Period 
Value (Ct)

Cumulative 
Number of 
Failures 
(Exponential 
term -Et)

Difference 
from Next 
Period 
Value (Et)

1 10 3. 770 1 .029 14.598 1 . 581
140 4.799 1 .028 16.179 1 .097
170 5.827 1 .028 17.276 0.760
200 6.855 0.686 18.036 0.373
220 7. 541 18.409

Assuming the IBM baseline intensity is valid beyond 220 
days and that the variation of the data about the model
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remains constant, the number of failures per source will 
tend towards approximately one every thirty days as the 
exponential term of the IBM model will eventually die out.

Prediction intervals for the non-homogeneous Poisson 
process have been discussed in Engelhardt and Bain (1978) 
and Calabria, Guida and Pulcini (1990) but only for the 
Duane model. Assuming the IBM model is valid beyond the 
data with constant variation and expressing the baseline 
intensity as ~  0.03428 = 0,2412*0.98786', tolerances may 
be selected for the K . ( l )- 0.03428 difference term and the 
time to reach a specific intensity may be estimated as

( ( M O - 0 03428) >
V 0 2412 J* = — in o 98786— * T^e results are presented in table 7.6 below. 

TABLE 7.6. TABLE OF TIMES TO REACH A GIVEN INTENSITY

Tolerance : 
Difference 
from 0.03428

Time to reach 
intensity in 
days

10”1 72.084

10"2 260.599

10'3 449.115

The results above show that the IBM model fits the data 
graphically quite well (see figure 7.5) and provides 
estimates for the final intensity (reliability) and the 
time to reach a specific intensity assuming that the IBM 
model is valid for prediction.
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7.6.6 FURTHER PROPORTIONAL INTENSITY MODELLING OF THE 
TWELVE SOURCES
The data on the twelve sources above also included 
explanatory information regarding the type of source and 
type of use (test or test/live). Both of these covariates 
were found to be significant indicating that the intensity 
is different for different types of source and that those 
sources which failed in the test and live phase were 
significantly less reliable than those sources which only 
failed in the test phase. The results on the source types 
support the conclusions of the generalised linear modelling 
of chapter 7.4. The baseline intensity was plotted against 
time and was found to have a good IBM model fit.

In conclusion, the proportional intensity framework models 
the cumulative time to failure with covariates and can 
take complex structure (such as curvature) into account 
with an appropriate intensity specification.

A number of multivariate techniques have been applied to 
Alvey data set number 3 with varying degrees of success 
and these methods may be viewed as useful tools for 
highlighting and reducing structure within complex data 
sets.



8 OTHER WORK

During the period of registration, related work periph
erally with software reliability data analysis was carried 
out. The approaches to the analysis of hardware reliability 
data in chapter 8.1 are similar to those described in 
chapter 1 of this thesis. Chapter 8.2 details my comments 
on a recent reliability paper by Ansell and Phillips.

8.1 COMMENTS ON THE EUREDATA BENCHMARK EXERCISE

Five groups of members of Euredata (a European association 
of industrial and academic data bank operators and ana
lysts) undertook an analysis of one databank of valve 
data. The reasons for this were to compare the methods 
available and highlight areas of research into data bank 
analysis.

Each analysis undertaken by the participants created by 
various means a homogeneous data set of valves. This 
homogeneity classified components according to their 
physical characteristics. It is usually assumed that 
physical homogeneity is the same as statistical homogeneity 
however an analysis of the SRS databank (including pump 
and valve data) (Walls and Bendell (1985)) showed that 34 
per cent of the data sets exhibited trend and/or serial 
correlation. By adopting the approach of Walls and Bendell 
supplemented by the approach of Ansell and Phillips (1 989) , 
each analysis and assumptions of each analysis may be 
listed for each participant, (See tables 8.1 and 8.2).

The analysis of Interatom showed that there was trend in 
the data (between the first and second failure times) 
however NUKEM determined that there was no trend based on
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the results of a failure intensity analysis and an ad hoc 
rule for rejection of the trend. JRC-ISPRA showed there 
was no trend under the assumption of the binomial-beta 
model.

Confirmation of trend under other assumptions may be 
considered. The Laplace test (Cox and Lewis (1966)) may 
be used to see if other types of trend exist. The use of 
proportional hazards modelling with a covariate to describe 
the difference between the first and subsequent failure 
times would also allow reliability to be estimated, (Walker
(1989)). The Bayesian time series approach of Davies, 
Naylor and McCollin (1989) may also be adopted.

JRC-ISPRA showed that certain components did not come from 
the same population whereas all the other participants 
assumed statistical identicality was the same as physical 
identicality (although VTT required this assumption for 
their availability analysis).

The application of time series to search for serial 
correlation and cyclic trend and the application of 
branching processes (where a series of primary events 
generates subsidiary series of events), (Cox and Lewis 
(1966), Ascher and Feingold (1984)), are frequently 
overlooked in reliability analysis. Further work and 
application is required in both these areas for the 
techniques to become widespread.

The problems of outliers, multiple events and censoring 
is discussed in Walls and Bendell (1985). A solution to 
the problems of multiple events and censoring is to perform 
the analysis under various assumptions. For multiple 
failures, we may assume extra failures are secondary or
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a quirk of the repair procedures (e.g; block preventive 
maintenance after a single component failure) and ignore 
them from the analysis. Alternatively we may include them 
as separate events. The results of each analysis may then 
be compared to determine the effect of the assumptions on 
the analysis.

Determination of outliers for various statistical tests 
is also described in Walls and Bendell but this area still 
requires further work.

TABLE 8.1 COMPARISON OF ANALYSES FOR THE EUREDATA
BENCHMARK EXERCISE 

DEFINITIONS OF POPULATION AND FAILURE

COMPANY NUKEM VTT JRC-
ISPRA

INTER
ATOM

ENEA-VEL

Grouping 
of parts

Physical Physical Physical
SF

Physical
SA

Physical
CA

Failures
analysed
(with
classes)

AO AS AF AO AS AI 
repairs

AO AS AD AS Wear 
Fatigue 
Erosion 
Design 
OE CO

Time
metric

OT OT OT OT OT
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TABLE 8.2 COMPARISON OF ANALYSES FOR THE EUREDATA
BENCHMARK EXERCISE 

QUANTITATIVE ANALYSIS

COMPANY NUKEM VTT JRC-
ISPRA

INTER- 
ATOM

ENEA-
VEL

EDA M graph TT
Kaplan
Meier
plot

TT

Trend test No trend 
found

NT No trend 
found GF

Trend
found
CF

TD

Serial
Correlation

NT NT Log rank 
WR LR

NT NT

Distribution EX WE GF EX WE GF See EDA 
above OS 
GF

EX WE EX WE

Assumptions : OU CE OU CE 
Trend SC

OU CE OU CE OU

Other
Analysis

AV
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Symbology for tables above
SF - Similarity of function
SA - Similarity of application
CA - Correspondence analysis
AO - All operational
AS - All sudden
AF - All sudden with function loss
AI - All incipient
AD - All complete on demand, All on demand
OT - Operating time
CO - Corrosion
OE - Operator error
GF - Goodness of fit test
TD - Trend test discussed
EX - Exponential
TT - Total time on test plot
WR - Wilcoxon rank test
LR - Likelihood ratio test
NT - No test carried out
WE - Weibull
OS - Outliers
OU - Operational use
CE - Censorings
SC - Serial Correlation
AV - Availability
CF - Comparison of first and second failure times

In conclusion, the approach to data analysis by tl
groups of Euredata members were similar and incorporated 
searching for trend, serial correlation and structure 
within the data as described within this thesis. Each 
approach to analysis are subsets of the generalised 
approach to data analysis outlined in chapter 1.
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8.2 COMMENTS ON THE ANSELL AND PHILLIPS 1989 PAPER

Ansell and Phillips presented a paper on the 'Practical 
problems in the statistical analysis of reliability data 
(with discussion)' to the Royal Statistical Society in 
1 989 and I was asked to comment on the paper which 
subsequently appeared in the Journal of the RSS, series 
C.

My comments were as follows:

"I will comment on two points mentioned in page 2 of the 
paper. It was quoted that "There are many disincentives 
to presenting data sets in this field often because of 
commercial considerations."

Two examples of databased reliability information are 
mentioned below with reasons why data has been unavailable 
for statistical analysis.

NASA performed a prediction using data based information 
in the 1960's to estimate the probability of returning 
from the moon. The calculated probability was so small 
that three recommendations were suggested:

(a) to improve the database figures by increased component 
testing;
(b) not to go to the moon;
(c) to scrap predictions altogether.

The last alternative was taken.

In the gas and oil industries, it may cost up to one 
million pounds to install and maintain a database for
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certification purposes and so companies are very wary of 
requests for data in case it is used by other companies 
either for their own certification purposes or to discredit 
the data collector.

The second point concerns the quote "As the objective of 
any reliability study is reliability assessment, esti
mation and prediction....". One main objective of a 
reliability study not mentioned above is how to improve 
reliability by reducing design faults. An example of how 
to reduce reliability problems by using statistics is 
given below.

Companies which manufacture large electronic/electrical 
systems, e.g., radar, use the U.S. military standard 
MIL-HDBK-217 to predict in service failure rates. Point 
estimates calculated by this method are then compared with 
specification requirements. Reliability in practice is 
achieved by test, fail and redesign. The prediction method 
does not really show future reliability, however the 
statistics (the Aarhenius model) and the quality factors 
incorporated in the failure rate equations in the military 
handbook show relationships between reliability and the 
component factors which affect reliability. The relia
bility engineer chooses components so that these factors 
are minimised and thus increases reliability at the design 
stage by good practices.

Proportional hazards modelling may be used as a diagnostic 
tool for determining the factors which affect component 
reliability and thus reliability engineers will create 
new design methodologies based on the results."
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The first point describes why data is not readily obtainable 
from companies. The use of the techniques outlined in this 
thesis may supply an incentive to companies to supply more 
data as the analyses presented here highlight the problems 
of data analysis which are likely to occur within any data 
collection.

The second point outlines the use of statistical relia
bility models incorporating a structural term as an 
important tool to aid the improvement of reliability at 
the design stage of a product.
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9 CONCLUSIONS

9.1 CONTRIBUTIONS TO KNOWLEDGE AND REVIEW OF THESIS

In chapter 1, an approach to the analysis of software and 
hardware failure data sets is described. This thesis covers 
the use of the approach to one specific data set.

The use of time series to model a data collection has been 
carried out by the Box-Jenkins models. This is the first 
reported approach of forecasting in a software context to 
determine when the software should be fault-free.

Comparative analysis of this technique has been undertaken 
in chapter 6 using proportional hazards modelling. PHM 
supplemented the time series approach by confirming the 
time series structure and allowed more detail to the 
structure to be modelled, i.e. day of failure.

It was shown in chapter 5 that most of the well-known 
software reliability models are special cases of pro
portional hazard models with either an extreme value 
(Gumbel) or an exponential hazard rate.

A coherent approach to software and hardware reliability 
growth modelling is described in chapter 6 . This procedure 
using PHM highlights which are the appropriate NHPP's to 
model a specific data set. The advantage of this 
investigative PHM approach of software reliability 
modelling over other statistical approaches is that models 
cannot be mis-specified. The procedure has been applied 
to a software failure data set.
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In chapter 7, various multivariate methods were applied 
for the first reported time to software failure data to 
determine possible structure and determining possible 
missing information.

The relationship between generalised linear modelling and 
proportional intensity modelling has been explored. The 
proportional intensity modelling of the software data is 
the first application of PIM to software failure data.

9.2 TYPES OF ANALYSES UNDERTAKEN

Table 9.1 below shows the analyses which have been 
undertaken in this thesis and the analyses these may be 
compared with. All of the analyses apart from proportional 
intensity modelling were carried out by using the com
mercial software packages of MINITAB or GLIM with some of 
the plots drawn with the Statgraphics statistical package. 
The proportional hazards modelling was carried out with 
an updated version of the software available in Kalbfleisch 
and Prentice (1980). The hazard plots were plotted using 
MINITAB.

MINITAB was the easiest package to use for plotting however 
the graphics were difficult to fit into the format of the 
wordprocessing package. The Statgraphics package required 
additional data editing via the Freelance package for a 
reasonable graphics output.

Each of the comparable analyses give similar conclusions, 
the easiest to use and understand being EDA. EDA should 
be carried out as a prerequisite for any further statistical 
modelling.
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The analysis of the twelve least reliable sources in Alvey 
data set number 3 by EDA shows that an IBM model may be 
appropriate for the baseline intensity. This may be 
verified by proportional intensity modelling but not 
proportional hazards modelling. The covariate 'type of 
use' may have modelled the curvilinearity which the IBM 
model shows however it was found that this covariate was 
collinear with the time metric. The problems of multi- 
collinearity and monotonicity found in PHM analyses is 
useful in determining if relationships between covariate 
values exist and multivariate techniques such as PIM, 
GLIM, etc may then be used to model the highlighted 
structure.

Analysis of waiting times to failure of the twelve least 
reliable sources in Alvey data set number 3 with PHM showed 
which of the well known reliability models fitted the 
data. It was found that the less complex the model 
specification, the more likely it was to fit the data.

Modelling a time metric against the software attributes 
was carried out by EDA, PHM and multivariate techniques. 
These were attempted to show some relationship between 
time metric and the software attributes without much 
success. However the conclusions were to be expected given 
the knowledge of the software product. The techniques are 
still very powerful and may provide useful insight into 
the structure of future data analyses.
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TABLE 9.1 TABLE OF COMPARISON OF METHODS

Analysis
Method

Dependent
Variable

Independent
Variable

Comparison 
with :

Chapter

1 . EDA Number of 
failures 
per day

Days 6 , 7, 8 , 9 3

2. EDA Cumulative 
Time to 
Failure

Source 
number for 
the twelve 
least reli
able 
sources

11, 17 3

3 . EDA Proportion 
of Failures 
per source 
type

Time to 
Failure

1 5 3

4 . EDA Cumulative 
Time to 
Failure

Failure 
number, Log 
of CTTF, Log 
of Failure 
number for 
the twelve 
least reli
able 
sources

10 3

5. EDA Number of 
Faults

Source 
Size, Type, 
Language

12, 13, 14 3
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TABLE 9.1 (CONTINUED) TABLE OF COMPARISON OF METHODS

6 . EDA (Box and 
whisker plot)

Number of 
Failures

Ten day 
periods

7 4

7. Box - Jenkins 
Time Series

Failure
Count

Trend, Moving 
Average, 
Seasonality

6 4

8 . Box - Jenkins 
Time Series

Log Fail
ure Count

Trend, Moving 
Average, 
Seasonality

9 4

9. Continuous 
PHM

Failure
Count

Cumulative 
Failure 
Count, Day of 
Week, Previ
ous Day number 
of Failures

8 6

10. Continuous 
PHM

Time Since
Last
Failure

Failure 
number, CTTF, 
Log failure 
number for the 
twelve least 
reliable 
sources

4 6
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TABLE 9.1 (CONTINUED) TABLE OF COMPARISON OF METHODS

11 . Continuous 
PHM

Time Since
Last
Failure

Source number 
for the twelve 
least reliable 
sources

2,17 6

1 2. Discrimin
ant Analysis

Number of 
Faults

Source number, 
type, lan
guage, size, 
programmer, 
version, first 
and final 
appearance, 
time

5 7

13. Principal
Components
Analysis

as above as above 5 7

14. Log linear 
modelling

Number of 
Faults

Source type, 
language, size

5 7

15. GLIM Logit, 
Probit and 
Complementary 
Log-Log Links

Proportion 
of Fail
ures

Log Cumulative 
Time to Fail
ure

3 7
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TABLE 9.1 (CONTINUED) TABLE OF COMPARISON OF METHODS

16. GLIM Logit 
Link

Cumulative 
Proportion 
of Fail
ures

Log CTTF, 
Source type

Tends to 
Log Link 
model as
n e- co p
small

7

1 7. Propor
tional Inten
sity Modelling

Cumulative 
Time to 
Failure

Source
Designation

Like 
GLIM Log 
Link, 2, 
11

7

9.3 FURTHER WORK

The following are some analyses which may be applied to 
the data available from a software data collection scheme.

Modelling with PIM with an IBM intensity has been carried 
out in this thesis. Other suitable intensities for the 
baseline within PIM may be the Littlewood or the Weibull 
NHPP.

In the time series analysis of the number of failures per 
day, a reduction in the error variance may be possible by 
fitting covariates (such as staff available, type of use, 
etc ) within the model. The software package BATS produced 
by and available from Warwick University allows this.

Analysis of the types of source which fail in the factory 
and those which fail with the customer may be modelled 
with a multivariate model.
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An analysis of the repairs and times to repair would show 
the number of amendments outstanding, the workload per 
programmer and the range of times it takes to repair a 
source. Also, the repair time gives a measure of severity 
of the failure which may be used as explanatory information 
in multivariate analyses. The number of repairs per fault 
may also be regarded as a measure of the severity of a 
fault and hence may be useful as a covariate in proportional 
hazards modelling.

Stratification of data for time to first failure, time to 
second failure, etc as applied by Walker (1989) may be 
useful in determining the effect of the repair of the 
first failures of sources. Analysis of only the first 
instance of failures of sources may highlight the rate at 
which unfailed sources may fail.

In conclusion, the data obtainable from a software data 
collection scheme provides a wealth of information which 
may be analysed in a systematic way to provide insight 
into final system reliability and data structures.
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SUMMARY

The paper identifies lessons learned from software 
reliability data collection in the Alvey Software Relia
bility Modelling Project. The lessons are both technical 
and organisational in nature.

1 BACKGROUND

The paper is concerned with documenting the lessons learned 
for software reliability data collection from the collection 
exercise undertaken as part of the Alvey Software Relia
bility Modelling (SRM) Project. This is a multi-task project 
consisting of a collaborative team of initially some 10 UK 
organisations. The membership of the team has fluctuated 
with time, but currently consists of the National Centre 
for Systems Reliability (UKAEA), British Aerospace, STC, 
Logica, Trent Polytechnic and City and Newcastle Univer
sities. The project's aims are somewhat diverse covering, 
for example, improvement to current models, investigation 
of models with different underlying assumptions, incor
poration of auxiliary information concerning the product, 
development and use into models, modelling of special 
systems and the conflict between testing for debugging and 
for reliability prediction.



All these areas share a requirement for data for parame
trising and testing the various model formulations against 
the real world. Accordingly, from early in its conception, 
the project incorporated a data collection exercise as an 
integral part. It was anticipated that data would be made 
available primarily internally from members of the con
sortium, but also from external sources including other 
Alvey projects and possibly Esprit projects. The most 
relevant Alvey project was perhaps the Software Data Library 
and fortuitously its membership overlapped with that of the 
Alvey Software Reliability Modelling project.

2 EVOLUTION OF DEMAND FOR DATA

The first set of problems that the project experienced in 
relation to the requirement for data collection was 
associated with its delayed and staggered start. Procedural, 
participant and documentation problems implied that when 
the project did eventually receive funding to commence, 
participating organisations were only able to assign or 
recruit staff on very differing timescales. This conse
quential scheduling problem for the very integrated work 
of tasks and subtasks has remained a problem of the project. 
In particular, organisations that did not have staff in 
place early were unable or unwilling to assist in the early 
discussions to define the detail of the data requirement.

The task area with a work package including data collection 
was Task 9 led by Trent Polytechnic and including STC and 
Logica. Early meetings took place between the then Project 
Manager, the leader of Task 9 and the then data-provider 
members of the consortium. These were intended to establish 
likely data availability against the somewhat vague data 
requirement specifications of the data-users. In parallel, 
requests for more detailed data requirement specifications 
were made to data users in the various tasks and meetings 
took place with the potential users. On the basis of this 
a requirements/availability matrix was drawn-up to identify



likely areas of deficiency and this was used as the basis 
of litigation by the data-providers in looking for further 
(and typically more expensive to process) sources. It is, 
perhaps, of interest to note that even at this stage a 
potential mismatch between data providers and users became 
apparent. The more theoretical data-users requiring 'high 
quality' data based on execution or a 'proxy' that was 
typically not available but at the same time not requiring 
some of the richness of auxiliary information that was on 
offer from the data sources.

The task 9 group met regularly throughout this formation 
stage and has continued to do so, typically monthly. At an 
early stage it decided that it would be beneficial to have 
representatives of the data-user organisations present. 
These were accordingly invited in; some have attended 
regularly, some occasionally, some never.

The group established a procedure to agree the benefits and 
cost effectiveness of data-sets both internal and external 
to the project members.

3 DEVELOPMENT OF SRM DATA STRUCTURE

The purpose of the data-base was to hold the data collected 
by Task 9. The data-base would facilitate initial analysis 
within Task 9 and subsequent access and statistical analysis 
by the other tasks.

From the beginning it was recognised that all data would 
be in a computable form. Textual documents would not be 
included. Of the numeric data, failure and repair data would 
be common to all data-sets but the availability of product, 
management and other project data would vary from data-set 
to data-set.



A second major problem lay in the nature of the demand for 
data and the way it was to be used. Informed discussions 
with task leaders uncovered two very broad areas of interest: 
relating reliability data to the structures of the software 
and relating reliability data to the project and process 
of development. Later an interest in testing regions also 
emerged. Project and process information was perceived as 
being mainly in documentary form and not suitable for 
inclusion directly in the data-base structures.

The most obvious outcome of the discussions was that the 
data-base logical design needed to be flexible in order to 
take account of different data-sets. It also needed to take 
account of the changing demands from researchers as their 
ideas matured. To deal with this a number of relations in 
the data-base were intended to act as "nodes" or growth 
points to which further relations could be linked as 
required. For example "staff" could be developed to include 
information on project organisation.

The third major problem overlay in the different methods 
and units used to capture the data in different data-sets. 
This was inevitable since the data-sets were collected by 
different organisations for different purposes. Specifi
cally in some data-sets execution time had been recorded 
whereas in others calendar time had been used. The unit 
relation was included in my attempt to control this 
variability and make the data-sets comparable.

Design of the data-base was developed in Mellor (1 ) . However, 
the design of the SRM data-base was intended not to be a 
standard structure for all projects but to provide a 
framework within which existing data-sets could be stored 
and accessed. It was also intended that the framework could 
be extended to future projects in response to research 
needs. The data-base structure actually achieved can be 
considered as a meta-model of software project reliability 
data.



The gap between the data-base structure and each specific 
data-set was to be bridged by tailoring the meta-model to 
model the actual structure of information in the data-set. 
The model was then instantiated by creating a new version 
of the data-base management system. A spin off benefit of 
this approach allowed the greater than hoped variability 
between data-sets at the field level to be taken into 
account.

The main entities included in the data-base structure can 
be grouped into the following 4

Project related
Life cycle, staff, manager, user.
User document, project documents
Configuration management (versions, repair groups).

Product related
Product, program type.
Modules, source fits control path, data path, interface. 
Installation.

Software failures
Failures, unit, fault.

Repair
Repair
Fault
Investigation

The entities, and their relationships, and the invariants 
used to validate the data are described in detail in the 
Technical Manual (2).

It is interesting to note that the data-base structure 
includes a class of specified one to many relations, the 
one to two and only two relations, symbolised in the 
structure diagram as a double bodied arrow. This occurs in



the relations describing interfaces, (path, control path, 
datapath, and interface). For example as defined in the 
data-base a control path always links precisely two modules, 
although in the case of recursion the source and target of
control are the same module.

4 IDENTIFICATION OF SUITABLE DATA-SETS

The process of finding and clearing for release reliability 
data-sets, for use in collaborative projects is one which 
demands the skills of both detective and diplomat.

The detective skills come into play as data-sets which are 
suitable for reliability research are few and far between, 
as has been shown constantly by the investigations of this 
project as well as the Alvey funded Software Data Library
project and the ESPRIT funded REQUEST project.

The problems are twofold, first the data-sets are at a 
minimum required to contain an ordered sequence of events 
with associated time metric. It is usually the latter that 
is unavailable or in unacceptable form. The second problem 
is that for use in comparison to other data-sets, to 
establish more broadly applicable results, one must also 
have a large amount of other explanatory and comparability 
data.

A company will only have a consistent and well supported 
policy on the collection of such data, if the organisation 
itself has perceived use for the data. The data collector 
is then dependent on finding individual groups within the 
organisation having an interest in or use for that data.

Typically one knows of such data from either personal 
contact, due to shared interest, or because such groups as 
do collect the data required access to some support group, 
or centre of excellence.



Assuming that one can track down the data-sets having the 
desired basic measures of failures and associated times, 
then the real detective work begins in the acquisition of 
the other data which is required. Such data must be assembled 
from a large number of individual sources, often stored on 
a variety of electronic and other media.

A typical list of problems to be overcome for a data-set 
to be useful are given in the list below;

In collecting data, especially reliability data, one often 
has to extract and join data from a large number of sources 
if it is to be more than a simple set of failures against 
time. Also to obtain valid data it is necessary to deal 
with a number of problems.

TYPOGRAPHICAL ERRORS
The data will invariably have some typographical errors, 
some proportion of which will have an impact on the analysis 
to be done. A knowledge of the area for which the data is 
being collected is usually necessary to correct these.

INCOMPLETENESS
In many cases the data collected may be incomplete. The 
impact of this will be dependent on the activities to be 
undertaken with the data. The solutions used will also be 
dependent on this. In some cases the analysis might continue 
if the amount of data lost is limited to some missing metric 
values.

NUMBERING PROBLEMS
In many cases, unless the system for collection is automated, 
one can finish up with various problems associated with the 
allocation of numbers to incidents, for example links to 
other problems which lead nowhere. * In order to recover 
this the organisation must be searched to find the people 
who can provide the missing links. *See section 7.



DUPLICATION OF REPORTS
It is quite often possible to get multiple reports of the 
same problem occurring either displaced in site or displaced 
in time. This might be due to multi-site working in one 
case or simply more than one person or group of people doing 
the testing. The key is to establish precedence, but also 
possibly to combine reports to a better description.

MISMATCHED REPORTS, MULTIPLE PROBLEMS ON ONE REPORT 
Often, especially in the testing phase more than one problem 
will be raised on the same problem report. This may be 
because it appears as a single problem, but in fact has 
multiple causes. Alternatively it may summarise faults found 
in a given testing session. It will be necessary to 
manipulate this data.

EXECUTION TIME CAPTURE
If the data is for reliability purposes then it is necessary 
to establish execution time for each of the failures. However 
there are a number of ways in which this may be done. For 
example, one might know the running time on a daily basis 
and use this to convert the calendar date; or this might 
be only available by summing operation time over a number 
of operating machines in the field population. Depending 
on the options chosen this will require an effort in 
modifying the data. At most a major additional data col
lection exercise may be necessary and not be possible 
retrospectively.

QUALITY OF RECORDING
In some cases the data will be badly recorded. This may be 
due to time pressure, or laziness on the part of the recorder, 
for example by choosing the same value on a scale 1-5 scale 
of complexity.

This is often compounded by the fact that the people 
collecting data may not be under the control of the data 
collector.



OTHER PROBLEMS
Problems also exist with regard to the definition of 
measurement units and the difficulty of extracting certain 
metrics.

5 CLEARANCE

The problems of obtaining clearance for data to be released 
to researchers who are not members of the same organisation 
can be immense.

The experience of the authors has been that it only takes 
one incident of data getting into the wrong hands, or used 
for the wrong purposes for the chances of releasing data, 
even in a sanitised form, to drop drastically. The following 
sub-sections discuss some of the issues which relate to the 
different areas.

SECURITY
Should data be available related to certain systems, it 
might be used in planning a strategy to attack the system, 
for example via overload. To date, the authors are not aware 
of any published cases of computer systems attacked in this 
way, but examples are known of the equivalent attacks on 
radar systems in earlier days and also unpublished examples 
of frauds involving people taking advantage of the unre
liability of the system.

ABUSE OF COMMERCIAL CONFIDENCE
Another area where suspicion might exist relates to the 
availability of the data to a competitor of the data supplier 
or the client from whoms' system the data was acquired.

An example of the problems in this area relates to a company, 
some of whose development failure information was published 
in a study. A competitor of that company then used these 
figures in a sales presentation. However they did not compare 
like with like, they quoted field failure information



against the design information that was published. The 
original company was the favourite for a contract prior to 
this presentation; they did not get the contract!

TRUST OF ACADEMICS, OPENNESS OF ACADEMIC INSTITUTIONS 
Having dealt with the problems of the commercial worries 
of companies who might give data, we must now consider the 
worries of the possible data providers related to the 
academics who will have access to the data. A bad experience 
regarding a particular researcher, may destroy future trust 
in unrelated projects. A second area of worry relates to 
the security of the data once on an academic site. Uni
versities' are renowned and rightly so for the openness and 
freedom of access to the facilities. However a commercial 
company worries who might get access to the data and what 
might they do with it.

CLIENT TRUST
One of the other problems is that the people who may have 
data do not know, and hence do not trust, the researchers. 
In the case of a software house asking for a client data 
this can be particularly so. It then takes a period of time 
to gain trust of the data provider. Invariably this must 
be on a personal basis and effectively the provider is 
basing his trust of the overall group on the contact with 
the individual.

BUREAUCRATIC PROBLEMS
In large companies multiple levels of clearance are often 
required. This is especially so when the company is 
sensitive, due to past experience of being misrepresented. 
It does not usually matter if the problems are in the same 
area as the data whose clearance is being requested. However, 
quite often these do relate to failure information and hence 
to the reliability data area since system failures can be 
sensational.



A CLASSIC EXAMPLE
A classic example is the case of a data-set which relates 
to failed repairs which had been previously cleared for 
release to the researchers. The owner of this data-set was 
reprimanded by a senior manager who did not appreciate the 
reasons for the release of the data. Subsequently the owner 
would not let other people within the same organisation 
have access.

6 DELIVERY

After all the possible problems and pitfalls discussed in 
the previous sections have been overcome, one might be 
forgiven for thinking that the process of actually giving 
the data to the researchers and the process of their 
accessing it would be the easy part of the operation. However 
the problems still abound in this area.

The problems fall into two basic categories

1) The physical transfer of the data.

2) The layout and structure of the files, both in supplied 
and final form.

The problems of physical transfer are limited to the problems 
of finding a suitable route from the point at which the 
data is held, to the point of creating the physical media 
and file type.

A typical chain associated with this problem might start 
with the main body of the data stored on a Mainframe system. 
The data might then have to be transferred to another machine 
which has links to a workstation. In turn this might have 
a link to a machine which is capable of writing the floppy 
disc that is the required input medium.



The above chain would be impossible without the support of 
a suitable data network. Of course, if one had captured the 
data on a suitable machine in the first place then the 
problem would not occur. However, since the data is not 
usually collected for the purposes of the research this is 
not under the control of the people involved in the delivery 
of the data-set.

The second category of problems is associated with the 
mismatch between the form of the data and the predefined 
structure of the data-base. The onus on mapping such data 
across must lie with the data-base holder, consultation 
with the provider.

Three problems must be overcome:-

1) How is the structure of the information to be conveyed?

2) What does one do if the data does not have fields that 
are in the database?

3) What does one do if the missing attribute is a key to 
the researchers database?

Consider a file of records, each of which has some structure, 
which may be given in a record header; this file can be 
dumped in a binary form so as to preserve the data. A small 
program must be written for transferring the data using the 
provided structure information into the data-base format. 
However a problem will occur because the binary data will 
cause the utilities in the receiving environment to fall 
over.

The second problem must be overcome by a person with a good 
knowledge of the structure of the receiving data-base. They 
must decide which links or entities to remove in order to 
load the data. This takes time and effort to overcome.



The third type of problem implies immense difficulties if 
comparisons and analyses are to be made across the data-sets 
as effectively it implies a restructuring of the data-base 
in order for the new data to be accommodated with retro
spective changes to the other data-sets.

7 PROBLEMS OF ANALYSIS

Due to the difficulties and time delays in establishing the 
central computer facility and to loading data centrally, 
a number of data-sets were delivered directly for initial 
Task 9 analysis, and subjects to other researchers. The 
format of the data-sets have ranged from summaries of failure 
counts on networked systems, completed failure and repair 
reports on field data, software test and inspection 
information and cpu times to failure for individual computer 
installations. The problems and methods of analysing one 
of the delivered data-sets are discussed in the rest of 
this section.

In the absence of a relational data-base at Trent and as 
the data-set was very large; more than one hundred thousand 
data items; a suite of programs had to be written so that 
the data could be easily manipulated. Examples of the type 
of program written for data analysis were one to sort the 
records by any column numerically, one to sort by 
chronological order, one to merge files by one or two 
relations and one to count the number of records in a file.

Two files 'Fault' and 'Failure' were looked at. The first 
file to be looked at was the file 'Failure' because this 
would supply the information gleaned from the failure 
reports, notably, failure number and the failure date which 
would be immediately useful for statistical analysis. By 
sorting this file by date order, the majority of the failure 
numbers occurred in the correct numerical order apart from 
the first twenty two which were all dated 01/01/1985 and 
the product version was 0. The failure numbers for these



were mainly in the 600's. These failures could be assumed 
to have occurred prior to the start of the project which 
was given as 1 6/07/1 986 and were collected under a different 
numbering scheme. However by re-ordering the data failure 
number, the 22 failure numbers did not tally with any other 
numbers. The tentative conclusion was that these 22 failures 
were not date coded on the original failure reports and so 
the date 01/01/1985 and product version 0 were default 
values.

The number of failures in the file 'Failure' were counted 
and compared with the highest failure number. This showed 
that there were four failure numbers missing. This same 
technique was carried out for fault number and this showed 
that there were 500 numbered faults and 170 'O' numbered 
faults out of a total numbering sequence of 607. Some of 
the reasons given for '0' numbered faults were as follows: 
no fault found; the failure record was superseded and cleared 
by another record; the fault was unconfirmed; a change in 
the functional specification caused the fault to be 
non-relevant; minimal effort was required to effect the 
fault repair; the fault was not important enough at the 
time to be repaired and was left until a later date.

The two files 'Failure' and 'Fault were merged to find other 
missing fault information. Merging was carried out using 
the common 'fault' field. Three fault numbers were missing 
out of a total of 607 fault numbers in the file 'Fault' 
and 119 faults were not recorded on failure reports. A 
similar exercise was carried out on the other files and a 
number of omissions and anomalies were noted.

A number of files were merged to reduce the information 
which had only been collected to establish relationships 
in the data-base structure and the resulting data was 
surveyed for usable statistical data. Information per
taining to programmer, repair date and repair programmer



could not be utilized as too much data was missing. As an 
example, there were 276 failure investigations with the 
default date 01/01/1985 out of a total of 670.

Information pertaining to 'source language' could not be 
incorporated in a proportional hazards analysis as the 
twelve sources analysed were all in Cobol.

For the purposes of analysis, certain features of the data 
are extremely inconvenient. For example, an analysis of the 
96 failure free days was carried out and only on two occasions 
were failures recorded on a weekend. Out of the 16 weekends 
of the test phase during which data was collected, there 
were no failures recorded on 12 Saturdays and 10 Sundays. 
On two occasions there were long sequences of failure free 
days during the field phase. One of these periods was 
identified as Christmas and New Year.

An analysis of the number of failures per day was carried 
out using time series analysis and proportional hazards 
modelling, the results of which will be presented at the 
1989 Reliability Symposium.

8 CONCLUSIONS

There are organisational and technical difficulties in 
collecting software reliability data.

These are potential features of software data which make 
the reliability analysis extremely inconvenient.

It is essential that from the inception of a software 
reliability project, the collection and analysis of 
reliability data is under strong management control. For 
example, there must be good feedback to the data providers.
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EFFECTS OF EXPLANATORY FACTORS ON SOFTWARE RELIABILITY

C. McCollin, A, Bendell and D.W, Wightman 
Trent Polytechnic Nottingham

As well as considering the general discussion of 
explanatory factors within software reliability, 
this paper is primarily concerned with the 
statistical analysis of a software reliability 
failure data set containing explanatory factors. 
The data set analysis is that designated number 
three under the Alvey Software Reliability 
Modelling (SRM) Project. This is a multi-task 
project consisting of a collaborative team of 
initially 10 UK organisations. The membership 
currently consists of the National Centre for 
Systems Reliability (URAEA), British Aerospace, 
STC, Logica, Trent Polytechnic and City and 
Newcastle Universities. The project is split into 
a number of tasks of which this paper describes 
work in task area 9 (data collection and analysis) 
and task area 3 (statistical models with 
explanatory variables).

1 BACKGROUND

In the hardware reliability field, MIL-HDBK-217 has been used 
in military applications for nearly twenty years, and contains 
failure rate data for electrical and electronic components.
The statistical model employed in this standard is the Aarhe- 
nius equation, a model which relates part base failure rate to 
temperature stress. A failure rate for most environments, 
quality factors and component stresses may be calculated by 
multiplying part base failure rate by each of these factors. 
The document is mainly used for compiling lists of failure 
rates of parts within a system to be compared with some con
tractual reliability statement. Its main advantage is that it 
relates component failure rate to explanatory factors and 
hence by choosing components which have a low valued explana
tory factor e.g. Voltage stress, current rating; the failure 
rate (by analysis) is reduced.



For software, the explanatory factors are more diverse and 
problems can arise in analysis of estimating these factors due 
to external influences such as data collection methodology, 
quality of data and inappropriate statistical models.

In Table 1, we show the software life cycle and the potential 
explanatory factors that may be appropriate to describe the 
subsequent failure pattern. A number of previous papers on 
statistical models incorporating explanatory factors for soft
ware are referenced as appropriate in Table 1.

As can be seen in the table 1, the main statistical models 
which have been used in the literature on the subject of 
explanatory factors in software reliability have been time 
series and various forms of the Cox proportional hazards 
model.

The work in this paper uses standard Box and Jenkins time 
series and the distribution free base-line hazard Cox model 
with the metrics, time between failures and number of failures 
per day. In section 4, the explanatory factors used in these 
analyses allow the data collection strategy to be scrutinised. 
In section 5, the proportional hazards model is used to com
pare within source variation and between sources variation by 
using suitable explanatory factors,

2 DATA SET DESCRIPTION

The data set was delivered to Trent Polytechnic in twenty 
files containing more than 100,000 records. This is now 
installed in a relational database on the Alvey computer Main
frame at City University. The following system description 
uses the database definitions as described in the SRM database 
document.

The system under analysis is one software product running 
on a single installation. The software comprises of 1198 
source version codes of which 1096 are written in Cobol, 99 in 
VOS and 3 in PL1. 1117 of these are greater than zero 4K 
blocks long of program code and text. There are 87 command 
macros, 6 command macro data files all in VOS, 608 module main 
source codes, 78 bind control files, 126 Cobol include files 
and 21 screen form definition files.

Explanatory data analysis on the Alvey number three data set 
was carried out including use of time series analysis and pro
portional hazards modelling.

3 PRELIMINARY ANALYSIS



Sorting, counting and merging files was carried out initially 
to find any missing or corrupted data. The following observa
tions were made of the data set:
1 There were 125 days with failure and 96 days without
failure.
2 After the software was delivered to the customer (during
the "live" phase) there was a large increase in the number of
days per product version.
3 In total, 570 "test" failures and 100 "live" failures were 
recorded.
4 There were four missing failures:numbers 455, 457, 591 and 
660.
5 There were 170 zero numbered faults, some of the reasons 
being as follows: no fault found; the failure record was 
superceded and cleared by another record; the fault was uncon
firmed; a change in the functional specification caused the 
fault to be nonrelevant; minimal effort was required to 
effect the fault repair; the fault was not important enough at 
the time to be repaired and was left until a later date.
6 The same fault occurred on separate failure reports 28 
times.
7 Two failures, numbers 118 and 279, did not correspond to 
any fault or repair information.
8 No fault and repair information was found for fault numbers 
35, 547 and 553. 9 Out of 670 failure investigations, there 
were 276 with the default date 01/01/1985.
10 There were 677 unfailed source versions and 514 source ver
sions which failed at least once.

Figure 1 summarises the failure and repair information of the 
data set. As can be seen, the data format could come from any 
data collection scheme.

A count of the number of source failures per day was carried 
out and a time series approach was adopted to determine if 
trend, lags and/or seasonality had any effect on this count. 
The fitted time series structure was then used as covariate 
information in a proportional hazards model. The results are 
summarised in section 4.

Table 2 and table 3 show the number of times sources and 
source versions were repaired. The three sources, numbers 4 89, 
274 and 655, which required most repairs were all Cobol 
include files. Of the remaining 9 sources which were repaired 
more than 10 times, eight were module main source codes, the 
other being a Cobol include file. These twelve sources were 
repaired 217 times out of a total 926 sources with 1356 
repairs. The twelve sources were all Cobol files of size 
greater than 9 4K blocks of code and text of which for 10 of 
these, only one particular source version was repaired. The 
twelve sources have been analysed using proportional hazards 
modelling, the results being discussed in chapter 5.

4 ANALYSIS OF FAILURE COUNTS



A large portion of the literature on failure analysis in the 
past has dealt with times between failures, Thompson(1981) and 
Ascher and Feingold (1984).

This section describes possible methods of analysing numbers 
of failures per day of the software product irrespective of 
the source codes which have failed.
A paper by Smith and Oren (1980) describes a Nonhomogeneous 
Poisson Process derived from number of failures in a time 
interval which may be more applicable in this instance.

Proportional hazards modelling has been carried out in the 
past with a number of failures as a metric and also as a 
covariate: Kalbfleisch and Prentice (1980), and Lawless (1987) 
and hence may also be relevant.

Observing the plot of number of failures per day of the data 
set illustrated in figure 4, a time series model approach 
appeared appropriate. The Box Jenkins (1976) approach was 
used and the following parsimonious model was derived. Walls 
and Bendell (1986) applied the same method but tried to 
explain all the variation in their data with complex time 
series models.

The number of failures on a certain day =

a constant C1 x The number of failures on the previous day 

+ a constant C2 x A moving average number of failures per day 

+ a constant C3 x A weekly seasonal component.

The values of C1, C2, C3 were 0.92, 0.65 and 0.87 respectively 
which shows that the number of failures per day is decreasing 
and is tending towards zero. Hence the debugging strategy 
appears to be effective.

However, the test phase accounted for most of the structure in 
the data as found when the data was split into the test and 
live phases. If there is any structure during the live phase, 
it cannot be resolved into a simple model.

An analysis of the 96 failure free days was carried out and 
the following observations were made:
1. There were 26 failure free days during the test phase and
70 during the live phase.
2. Only on two occasions were failures recorded on a weekend.
These two occasions occurred near the start of the data col
lection .
3. Out of the 16 weekends of the test phase during which data 
was collected, there were no failures recorded on 12 Satur
days and 10 Sundays. The system was running continuously for



the duration of the project however the data collection does 
not seem to be effective at weekends.
4. There were only 4 other failure free days during the test 
phase.These probably occurred on personnel holidays.
5. On two occasions there were long sequences of failure free 
days during the live phase. One period of 13 days was identi
fied as Christmas and New Year and the other of 11 days 
occurred after a very large number of failures (15) in a day.
Possible reasons for these are:
System utilization was high.
It was decided to raise reports against all minor failures 
which have been previously reported and ignored.
A new and enthusiastic repair programmer!

5 ANALYSIS OF TIMES BETWEEN FAILURES

Proportional hazards modelling (PHM) was applied to the data 
using time between failures in days as the metric. Analysis 
was carried out using the covariates; age, previous number of 
faults, source version change and type of use for within- 
sources variation and age, previous number of faults, type of 
use, source size and source type for between sources 
variation. Information pertaining to programmer, repair date 
and repair programmer could not be utilized as too much data 
was missing. The covariate, "source language", could not be 
incorporated as the twelve sources analysed were all in Cobol. 
The results of the analysis of the twelve sources which were 
repaired the greatest number of times is given in table 4.

The computer routines for fitting PHM written by Dr Wightman 
successively removes each insignificant covariate one at a 
time in the model until all the remaining covariates are sig
nificant. A number of diagnostic plots are available to deter
mine goodness of fit, outliers and distribution fit and some 
examples are supplied with a summary of the analysis below.

The covariates, age and previous number of faults were fitted 
into the model for each of the twelve sources analysed and in 
every case, even though some of the covariates were nonsig
nificant at the 0.05% level, the hazard decreased as the 
sources aged and the hazard increased with the increasing 
previous number of faults.

The influence of an event at time 1 1 upon the estimate of the 
covariate is calculated by taking the first order approxima
tion based on a Taylor series expansion of the difference 
between the estimate of the covariate value with all the 
observations included and the estimate of the covariate value 
with the observation at I , omitted. This is then transformed 
into a normal deviate and compared with ± 1.96 to determine if 
the event alters the significance of the covariate if it is 
omitted.



Figure 3 shows the influence plot of the covariate no. Of 
faults for source number 102. Removing any of these influen
tial points from the analysis makes the covariate nonsignific
ant .

Cox and Snell (1968) obtained residual quantities which should 
be roughly exponentially distributed if the proportional haz
ards model is a good fit. Plotting a product limit survivor 
function estimated from the set of residuals against the 
residual estimates produces a graphical goodness of fit test 
for the model since the plot should result in a straight line 
with gradient 1. Source numbers 175, 606 and 737 do not pro
duce good fits possibly due to lack of data. Source number 489 
Cox and Snell stabilized fit (figure 4) is showing a marked 
deviance from the 45° line and this may be due to missing 
covariate information. For the sources 274, 422 and 546 there 
were two versions of the software being tested at once, one on 
the test facility and one on the customer site. There was no 
significant difference between the hazard rates of versions 
one and two of each of the sources.

Between sources variation was analysed by combining all the 
data of the individual sources and using covariates such as 
source size or type and source designation ( a binary covari- 
ate) ,
A summary of the analyses follows:
The hazard rate of all the sources decreased as age increased. 
The hazard rate of all the sources increased as number of 
failures increased. Figure 5 shows the baseline hazard rate 
for all the sources times between failures to be Weibull.
The hazard rate of all the sources decreased as the software 
went from a test to the live phase.

The hazard rate was not significantly different for different 
types of source, different source sizes and different designa
tions. A reason for this may be the sample size of each of the 
source times between failures being too small.

6 CONCLUSIONS AND FURTHER WORK ENVISAGED

Time series analysis and Proportional hazards modelling have 
been applied to a large Alvey data set. By using explanatory 
factors the number of faults raised per day was found to be 
dependent on the day of the week. The test phase accounted for 
most of the structure within the data and the number of faults 
per day during the live phase appear randomly.

The analysis showed that poor quality or insufficient data 
gave rise to explanatory factors either being nonsignificant 
in the model such as source size or unable to be combined in 
the model at all, e.g. Programmer.



Previous data analyses in the literature had to use artificial 
explanatory factors such as fault count or days to failure 
which can only partially explain the true nature of the fault 
process. It was shown in the Table 1 that types of test, fail
ure criticality and source attributes have not yet been ana
lysed anywhere in the literature. This will be possible with 
some of the Alvey SRM project future data sets analyses.

Statistical analysis has not, so far as the author knows, been 
carried out in the requirements phase of a software life 
cycle. The use of sequential probability ratio tests within a 
proportional hazards framework (Sellke and Siegmund 1983) may 
be useful in closing the gap.

The object of this paper was to identify the explanatory fac
tors which may affect software reliability and show that the 
proportional hazards model is useful for analysing data 
collection schemes, within and between sources variation and 
different environments.
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Table 1
List of potential explanatory factors for the software lifecycle 

PHase Explanatory Factor Reference Code

Cc

Requirements, 
Specification

de/Test

In :egration

in^tallat ion/Use

count of faults per page 
hours to check 
length of document 
type of fault found 
experience of checker 
method of checking

number of faults per source WBC,MC,FC
time between failures:days WBC,MC

, ,  , ,  , ,  :operating hours
,, , ,  , ,  :execution WBC,FC

total time since start of test WBC,NC,MC
time to first failure
length of source:lines of code/text MC(NS),NC

, , , ,  ,, :obj ect code
, ,  , ,  , ,  :executable code

language
type of source MC(NS),NC
computational complexity
type of test/test comparison NC
test regime 
intensity of test
type of fault/fault comparison NC
criticality of fault 
skill/experience of programmers 
comparison of programmers NC
type of input FC
type of output FC
user interface FC
usage:day FC
, , might FC
,, :continuous over a period FC

loading
number of calls to external modules 
nesting complexity 
status of the compiler
effect of design change DC
functions of explanatory factors DC
effect of maintenance 
mathematical complexity 
fault reports open/closed
hardware/software fault 
type of source 
level of integration 
type of test 
intensity of test 
skill/experience of tester 
comparison of testers
type of installation 
comparison of installations 
usage/loading 
effect of maintenance 
effect of design change

■fi
4

—



Table 1 (continued)
List of potential explanatory factors for the software lifecycle

; .
; Phase 
Others

Re

Explanatory Factor
comparison of phases 
comparison of software products 
comparison of source versions 
data collection methodologies

inumber of faults per day 
:day of the week 
:previous number of faults/day 
:cumulative number of faults 

time series components:autocorrelation
:moving average 
:seasonality 
:nonnormality 
:nonlinearity 
:outliers 

change in management structure 
costs
staffing levels

Reference Codes

Reference Code 
MC
MC(NS)
MTS,MC 
MC
MC,MTS
MC -
WTS,MTS
WTS,MTS
WTS,MTS
DTS
DTS
DTS

ference
Davies et al
,h;e' f  f  f t  f tP’o nt
McCollin et al

f t  r r r rNagel and Skrivan 
'Wa 11s and Bendell 
'jWi ghtman and Bendell

Data Set Statistical Model Code
Musa Cox/distribution free hazard DC

t  f Bayesian time series DTS
Font Cox/Littlewood,Musa hazard FC
Alvey Cox/distribution free hazard MC
/ t Box and Jenkins time series MTS

Nagel Cox/exponential hazard NCMusa Box and Jenkins time series WTS
Musa Cox/distribution free hazard WBC

(NS) after code MC means that the explanatory factor was 
nonsignificant in the cox proportional hazard model.

TABLE 2-Number of Times Sources Repaired

Repairs 0 1 2 3 I 4 1 5 I 6 I ? I 8 9 I
Sources 437 CM 

CO  
i  

CM 
I

100 44 I 30 | 28 | 20 I 4 110 3 I
Repairs 10 11 12 13 114 |15 | 20 | 32 | 51
Sources 6 3 1 2 1 2 I 1 I 1 I 1 I 1

TABLE 3-Number of Times Source Versions Repaired

Repairs 0 r 2 3 I 4 1 5 1 6 I 3 I 8 |
Source Versions 639 289 1 1 1 | 50 | 32 | 27 11 6 I 8 I 8 |
Repairs 9 10 1 1 112 113 M 4 11 5 11 9 121 |
Source Versions 5 5 o 1 1 2 1 2 I 1 I 1 I 1 I



Figure 1-Failure and Amendment Record Information

674 Failure Records

670 Records exist 4 Records missing

500 Numbered Faults 170 Non-numbered Faults

472 Faults recorded 
on Failure Report

11 Faults recorded 
on 2 Failure Reports

1076 Repairs on 470 61 Repairs on 11
Faults (2 missing) Faults
434 sources repaired 57 sources repaired 
(491 source versions)(61 source versions)

2 Faultsrecorded 
on 3 Failure 
Reports
66 Repairs on 2 
Faults 

66 sourcesrepaired 
(66 sourceversions)

119 Faults not recorded 1203 Repairs
on Failure Reports 

(3 missing)
153 Repairs on 119 

Faults 
99 sources repaired 
(105 source versions)

437 Unfailed Sources 1356 Repairs on 602
(639 Unfailed source out of 607 Faults

versions) 489 sources repaired
(559 source versions)

926 Sources in Total (1198 source versions)
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TABLE 4~Covariato information of within sourcss variation

SOURCE NO.QF 
NUMBER FAILURES 

/FAULTS/ 
CENSORS

102 11/ 0/2

NO. OF 
SOURCE 
VERSIONS

175 10/2/2

175
TEST
PHASE

9/1/1

274 9/4/1
VERSION 

ONE

274 14/5/1
VERSION 

TWO

274 23/9/2
TWO 

INDEPENDENT 
VERSIONS

307 12/1/1

422
VERSION

ONE

4/0/0

422 10/0/1
VERSION 

TWO

COVARIATE VALUE

AGE

NO-OF
FAULTS

AGE

NO-OF
FAULTS

AGE

NO-OF
FAULTS

AGE

NO-OF
FAULTS

AGE

NO-OF
FAULTS

TYPE OF
USE

VERSION
CHANGE

AGE

NO-OF
FAULTS

AGE

NQ-O.F
FAULTS

AGE

NO. DF 
FAULTS

-0-164

0.967

SIGNIF
ICANCE

0.0123

0-018-7

N.S.

N.S.

N.S.

N-S.

N. S. 

N.S.

LIKELI- COMMENTS
HOOD
RATIO

9.332

-0.0361 0.0153 11.066

N.S.

N.S.

N.S.

-0.4721 0.0158 13.815

1.5212 0.0138

N.S.

N.S.

N.S.

N.S.

4 infl.pts 
Not a good 
Cox fit

Not a goad 
Cox fit

5 infl.pts 
Vary little 

data 
5 infl.pts 
Vary little 

data
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TABLE 4-Covariate information of within sources variation

SOURCE NO.QF NO. OF
NUMBER FAILURES SOURCE

/FAULTS/ VERSIONS 
CENSORS

422 
TWO 

INDEPENDENT 
VERSIONS

14/0/2

COVARIATE VALUE

VERSION
CHANGE

SIGNIF
ICANCE

N.S.

LIKELI- COMMENTS
HQ 00
RATIO

439 29/20/23 23 AGE

NO.QF
FAULTS

VERSION.
CHANGE

•0.0129 0.0019

N.S.

N.S.

10.853 Missing
Cov ariate ?

546 
VERSION 
. ONE

546
VERSION

TWO

9/0/1

4/0/1

546 
TWO 

INDEPENDENT 
VERSIONS

13/0/2

1-

AGE

NO.OF 
FAULTS

AGE

NO.QF
FAULTS

VERSION
CHANGE

N.S.

N.S.

N.S.

N.S.

N.S.

560 10/5/1 AGE

NQ.OF
FAULTS

N.S.

N.S.

606 11/0/3 AGE

NO.QF
FAULTS

N.S

•0.2915 0. 0068 7.276 Not a good 
Cox fit

6SS 9/10/5 AGE

NO.OF 
FAULTS

N.S.

N.S.

737 11/0/3 AGE

/ NO.QF 
FAULTS

— 0.0271 0.0065 12.114 Not a good
Cox fit

NO CONVERGENCE

807 13/1/1 AGE N.S.
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SOME RESULTS OF THE ALVEY SOFTWARE RELIABILITY
MODELLING PROJECT

C. McCOLLIN, D.W. WIGHTMAN, P. DIXON and N. DAVIES 
Department of Mathematics, Statistics & 

Operational Research,
Nottingham Polytechnic 

Burton Street, Nottingham NG1 4BU

ABSTRACT

The Alvey software reliability modelling project is a multi
tasked project consisting of a collaborative team from UK 
industry and academia. Over the duration of the project, the 
membership has consisted of the National Centre of Systems 
Reliability (AEA Technology), British Aerospace, STC, Logica, 
Nottingham Polytechnic and City and Newcastle Universities.
The objectives of the software reliability modelling project 
were to investigate a wide variety of methods, to judge the 
relative merits of each method, to effectively communicate the 
results of the research and to indicate the direction of 
future research. The project consisted of a number of tasks of 
which this paper describes areas in which Nottingham Poly
technic were task leaders; these are task 3 (statistical 
models with explanatory variables), task 4 (statistical models 
with different underlying assumptions) and task 9 (data col
lection and initial analysis).

INTRODUCTION 

History
There has been growing concern in the software industry about 
unreliable software for many years and as a result there have 
been some initiatives aimed at reducing the impact of the 
problem. Customers have imposed codes of practice on 
suppliers, lists of "approved” software have been specified 
and work has been done on better testing strategies. Up until 
now little co-ordinated research has been done nationally on 
modelling software reliability. The appearance in 1984 of the 
"Software reliability and metrics programme" document from the 
Alvey Directorate formed a natural focus for this work. A con
sortium was formed containing members from both academic and 
commercial backgrounds with the intention of conducting a 
research programme to improve the state of the art.



In July 1985, the Alvey Directorate placed a contract 
for the detailed study of software reliability modelling (SRM) 
with the aim of producing a plan for a National SRM Programme. 
The suggested course for the research was instilled into a set 
of project tasks. These tasks were as follows:-

Task 1: Improving Current Statistical Models
Task 2: Methods of Evaluating Statistical Models
Task 3: Statistical Models with Explanatory Variables
Task 4: Alternative Statistical Models
Task 5: Functional Modelling
Task 6 : Models for Special Systems
6.1: Models for VLSI Systems
6.2: Models for Distributed Systems
6.3: Concurrent/Real Time Systems
6.4: Models for Fault Tolerant Systems
6.5: Reusable Software Components
Task 7: Cost Based Models
Task 8 : Testing and Reliability
Task 9: Data Collection and Analysis

The project finished in June 1990 and more than sixty
documents have been written during the project and a number of
these are available to the public. The address for further
details is given in the summary.

This paper describes some work carried out in each of the 
tasks 3, 4 and 9. The process of analysis of one of the data 
sets collected for the Alvey project is described with the 
problems of assessing software reliability for this data set 
using the classical software reliability models e.g [1], [2],
[3] .

A description of other work carried out in task area 3 
includes models which incorporate explanatory variables and 
extensions to published models. In task 4, the application of 
time series and multivariate techniques to software reliabil
ity is described.

WORK CARRIED OUT IN TASK AREA 9

In task area 9, considerable effort was invested in the 
creation of a software reliability database which is installed 
on a dedicated Vax computer at City University. Private com
puter links to the database are available to the other aca
demic partners. It is envisaged that the usefulness of the 
database will continue beyond the duration of the project. The 
format of the data sets collected ranged from summaries of 
failure counts on networked systems, completed failure and 
repair reports on field data, software test and inspection 
information and cpu times to failure for individual computer 
installations.



The problems of collecting software failure data are 
highlighted in reference [4] and a description of a statisti
cal analysis of one of the data sets appears in [5]. The main 
purposes of the data analysis exercise were to determine 
suitable models for software reliability estimation and to 
establish models which would incorporate explanatory factors 
found in analysis. The data set was collected during the 
development phase of the project and the software was contin
ually being operated and repaired after failure.

The analysis of Alvey data set 3 and conclusions which led 
to further analysis were carried out in the following order:

Sorting, counting and merging file data to find any 
corrupt or missing data.

Plotting the number of failures per day against day.

Applying a parsimonious Box-Jenkins time series model to 
the data. This revealed a decreasing trend and a seasonal com
ponent .

An analysis using Proportional Hazards Modelling (PHM) 
was applied to the data set to determine the effect of the 
seasonality. The analysis showed that the hazard rate was 
increasing on specific days of the week. Two observations were 
made during the analysis. The first was that a number of 
explanatory factors could not be fitted together in PHM. This 
was due to the factors being collinear.

The problem of multicollinearity of the covariates was 
investigated by applying multivariate techniques to the data 
set and the results of this are described under the task 4 
work heading. The second observation was that for this data 
set and a number of others execution time to failure was not 
available. The main software reliability models [1], [2], [3],
use execution time as their time metric. It was found during 
the data collection exercise that companies do not usually 
collect execution time to failure of programs because:

It is a costly exercise to collect execution time to
failure.

The customer only usually requires execution time if 
he wishes to estimate software reliability by using one of the 
available models.

The collection of execution time is not usually a 
requirement of general software guidelines or standards.

Based on these observations, further work on explanatory 
factors was carried out and this is described in the Task 3 
section.



WORK CARRIED OUT IN TASK AREA 3

Review of models
A report [6] was written which reviewed the models and tech
niques which incorporate explanatory variables and can be 
adapted to software reliability modelling. Techniques and 
methodologies reviewed were Software Science, Information The
oretic approach, simple regression, multivariate analysis, 
proportional hazards modelling and generalized linear 
modelling.
Explanatory Variables highlighted in task 9:
Development of a modelling framework which incorporates these.
The following is a list of explanatory variables and their 
associated time metric. Each variable should be taken into 
account when deciding on a suitable software reliability model 
and its modelling assumptions.

Time metrics associated with the explanatory factors

CPU time 
Execution time 
Operating time 
Calender time

Explanatory factors associated with CPU time

A1-Language
A2-Type of program
A3-Computational volume

-Length of machine code/text 
A4-Computational complexity 

-Nesting complexity
-Number of calls to external modules 
-Number of conditional statements 
-Type of input/output 

A5-Mathematical complexity 
A6-Loading
A7-Programmer skill/experience

Explanatory factors associated with execution time 

A1 -A7
B1-CPU time 
B2~Compiler status 
B3-Parallel/serial processing 
B4-Queueing 
B5-Priority 
B6-Available storage 
B7~Systems availability 

-Peripherals

Explanatory factors associated with operating time



A1 -A7 
B1 -B7
C1-Execution time 
C2-Usage 

-Idle time 
C3-Type of installation

Explanatory factors associated with calendar time

A1 -A7 
B1 -B7 
C1 -C3
D1-Operating time 
D2-Stoppages 

-Holidays 
-Strikes 
-Shutdown 

D3-Seasonal variation 
D4-Number of staff 
D5~Project deadlines 
D6-Data collection method 
D7-Job priority

The analysis of the times between failures of the Alvey 
data set 3 presented in [53 described a PHM formulation with 
days to failure of programs as the time metric and program 
type and program size as two of the explanatory variables.

Different program types and program sizes affect the cpu 
time directly and the calendar time only indirectly by the cpu 
time. For the results of [5] concerning the two explanatory 
variables and time metric, days between failure, it was known 
that the software was continually operating all the time for 
the duration of the project so that the calendar time between 
failures was the same as the cpu time between failures accumu
lated for the complete software package. However, it is not 
possible to relate the hazard function based on cpu times to 
program failure to the two explanatory variables unless cer
tain assumptions are made about other explanatory variables, 
e.g. the usage of the individual programs.

As PHM uses the ranking of the failure times and not the 
failure times themselves, it can be shown that as long as the 
ranking of the days between failures remains the same for cpu 
time, execution time or operating time between failures, then 
the conclusions concerning the hazard for days between fail
ures are valid for the other time metrics. For example, if 
execution time can be controlled so that it is always the same 
function of calendar time, e.g calendar time = a constant 
multiplied by execution time, then conclusions about the cal
endar time hazard function will apply to the execution time 
hazard function.



Extensions to models
The City University has contributed three reports on exten
sions to existing software reliability models. These cover 
task areas 3, 4 and 1 (improvement of current models). A 
Bayesian formulation of the Jelinski-Moranda software relia
bility model [7] reports that the model performance seems to 
be at least as good as some other models. In reference [8], a 
simulation study is reported which investigates if a general 
but simple adaptive procedure which improves the accuracy of 
predictions also increases the variability of the predictions. 
Reference [9] describes an extension to the "u-plot" (used for 
assessing predictive performance or for obtaining improved 
"adapted" or "re-calibrated" predictors) to allow for discrete 
or mixed predictive distributions. Two further modifications 
of the u-plot are documented which improve the performance of 
re-calibrated predictors.

A paper relating experience of applying a proportional 
hazards modelling formulation to data set 5 (data set number 
as defined in Task 9) has been written. The paper has still 
to be presented to and cleared by the data providers, [10]. 
Previous application of proportional hazards modelling has 
been based upon modulated renewal processes; where the 
explanatory variables modulate the underlying renewal process,
[11], [12], [13] [14]. Recently, Lawless [15] has introduced
model formulations which allow explanatory variables to be 
considered within a Poisson process. These proportional 
intensity Poisson process models allow the traditional non 
homogeneous Poisson process software models to be combined 
with explanatory variables. A particular model formulation 
investigated at Nottingham Polytechnic is one which depending 
upon parameter values leads to either a modulated renewal pro
cess or a proportional intensity model.

Software has been developed at Nottingham Polytechnic for 
Poisson Proportional Intensity models with covariates and an 
unspecified baseline intensity. No data has been applied to 
this software as yet, however details of the approach are 
available from the authors.

Work has been carried out at Nottingham in expressing 
binomial type models and Poisson type models of exponential 
class (as classified by Musa et al [1], within a PHM frame
work. Details are available from the authors.

Font [16] derived a proportional hazards model with the 
Musa model as the hazard function. The following formulation 
of the Musa model within a PHM framework is useful as a good
ness of fit test for the Musa model in that if the number of 
software failures is not a significant explanatory variable in 
the PHM formulation then the Musa model is not appropriate for 
the data analysis.

The Musa basic execution time model [1] takes the form



where
t = total execution time

X  -  initial failure intensity

X ( t )  = failure intensity function

(j) = ’’Constant hazard which characterises any individ
ual failure"
The expected number of failures in time t is given by

t
[i(0 = / X ( w ) d w  0

ti(f) = X(l - ex p (- (j) 0 ) / <f)

From [1], the cumulative hazard function is

/-/ ( v  /  o = [x ( t +  r ) - p (o

Letting t - last failure time and hence t '  —  time since last 
failure.

Thus, H  ( V  /  0 = - X  (exp (- (j> ( t +  t ')) - ex p ( - (j) Q ) / 0

If we differentiate /-/(////) with respect to i ' ,

=  A,exp(-<j>r)exp(-cl)0 . (1))
d H ( t ' / t ) / d t '  =  h ( t ' )

Our PHM formulation is h ( t ' , z )  = ft0(r)exp((3z) , (2)

Where L ' time since last failure, z is an explanatory vari
able, (3 is a parameter of the model and /i0(£') is the baseline 
hazard.

Now comparing (1) and (2),

i) If h0(T) from PHM = X.exp(-<j>£') and

ii) expd3z) = exp(-<M) w i t h  (3 = -(j) and z=t
then the basic execution model is a sub model of PHM.

WORK CARRIED OUT IN TASK AREA 4



Time series
Time series methods in reliability have been implemented by 
many authors [17], [18], [19]. The techniques have included
the application of traditional linear ARMA models of Box and 
Jenkins [20]. Although 'discoveries' of trend and cyclical 
features have been made using these techniques, the whole area 
is rather unsatisfactory. Nottingham Polytechnic research 
concludes that invariably almost all the assumptions that are 
made in applying linear modelling techniques are violated by 
reliability, and in particular software reliability data. 
Violated assumptions are linearity, normality, constant para
meters, change points and outliers.

Alternative, and more flexible model formulations are 
provided by the Dynamic Linear models and implementable using 
the BATS package, developed at Warwick University [21], [22] .
Typically, time between failures or time to failures (TTF's) 
are described by an observation equation

TTF (i) = m(i) + r(i) + v(i)

where i is the failure number, m(i) a level parameter that 
evolves with the failures, r(i) is a set of possible covari- 
ates (failure dependent) and v(i) is white noise. The extra 
flexibility is provided by allowing the evolving nature of 
m(i) and r(i) to be stochastic. The Bayesian (Kalman filter) 
recursion allows outliers to be handled/detected automati
cally, missing values, and user intervention with the model. 
Nottingham Polytechnic has used these techniques to model the 
MUSA data sets and Alvey data set 8 . The approach also allows 
flexibility in traditional Weibull and hazard modelling. Some 
results of the above work have been presented to the Highlands 
local group of the RSS in March 1989.

Multivariate Techniques
The purpose of this section is to describe briefly attempts 
made to analyse software data by multivariate methods.

The data was designated Alvey data set number 3 and 
contained 1198 observations on the following variables:
X  j = program A'6 = type of program 
X 2 =  program version ,V7= first appearance 
A'3= programmer A'8 = final appearance 
A'4 = language X 9  -  number of faults 
A's= size of program AAo= time

Data screening and editing were necessary to overcome 
idiosyncrasies and to render the data meaningful and suitable 
for analysis. The screening and editing were undertaken using 
MINITAB. Subsequent analysis was undertaken using MINITAB and 
GLIM.



Principal Components Analysis. (PCA)
A commonly used multivariate technique is that of Principal 
Components Analysis, where p correlated variables are combined 
to obtain a new set of uncorrelated variables, called Princi
pal Components.

The new variables are linear combinations of the original 
variables and are derived in decreasing order of importance so 
that PC(1) accounts for as much as possible of the variation 
in the original data. If the first few components account for 
most of the variation in the original data, the effective 
dimensionality of the problem is less than p.

Let X j  = { X  !, X 2  A' p } be a p-dimensional random variable
with variance-covariance matrix I and let

Y , = a X J X  , + a 2 j X 2  +  + CL P 1 X  p = a 7'* , (y = 1 ,2 p)
t r p 2where a = { a  Xj, a 2j,..., a p j } such that a y a y -= I a k j =  1 and 

= (i<> y)

>'i is found by choosing a, so that Y x has the largest 
possible variance, Y z is found by choosing a 2 so that Y 2 has 
the next largest variance and is uncorrelated with Y u  Y 3 is 
found by choosing a 3 so that V 3 has the next largest variance 
and is uncorrelated with >' { and Y 2  <   and so on.

Thus obtained, )' \ , Y    Y p are the Principal Components
(PC) of x having variance equal to the eigenvalues of the 
sample variance - covariance matrix S (= I); [23] .
In the case of the software data it is wise to base PCA on the 
sample correlation matrix P rather than S, thus rendering the 
variables, which are heteroscedastic, equally important.

The Minitab results were:

(i) Examination of the correlation matrix P showed a 
sufficiency of non-zero elements to warrant the PCA worth
while .

(ii) Eigenanalysis of P.

i 1 2 3 4 5 6

Eigenvalue A., 2.25 1 . 52 1.12 0.98 0.64 0.42*
Proportion K i / Y . \ i 0.32 0.22 0.16 0.14 0.09 0.06
Cumulative Proportions 0.32 0. 54 0.70 0.84 0.93 0.99



(^denotes that subsequent eigenvalues exist but account for 
only 1% of the variation).

Note that as many as five PC's are required before more 
than 90% of the variation in the data is explained. Ideally, 
it is desirable that the majority of the variation in the data 
should be explained by two or three components at the most. 
Unfortunately no such reduction of the effective dimensional
ity was obtained. Reduction to two or three components is 
useful in that 2D or 3D plots of component score might be 
examined for patterns or clusters and that attempts at reifi
cation might be made. However, it is of some interest that 
the effective dimension of the data reduces to about five, 
with this technique.

MINITAB also supplies the coefficients a J . from the eigen
vectors corresponding to each eigenvalue.

Discriminant Analysis.
Multivariate discriminant analysis is a technique which allows 
the multivariate response for X _  \ = {/V ,, X 2 > - • •» A ; > X  j + 2 , ,  X  p }  to
be attributed to known groups according to X  J + x provided X j + 1 is 
a group indicator, via discriminating functions. The dis
criminating functions then may be used to assign further
observations on X ^ i , not so far identified on a X  j + u  to a

A feature of the software data is that, in a number of 
cases, the multivariate response has not been identified by 
programmer ( X 3 ) . It is of interest to use the data on cases 
where the programmer is known as a "learning set" for dis
criminating between programmers, thereby making it possible 
for cases in the "prediction set", with programmer unknown, to 
be identified with a programmer.

The procedure is to calculate

Wi = L* X*~0.5L]X*j+ln(n i) : i = 1 , 2 ...........j j  + 2 ...........m

where m is the number of distinct groups (programmers) indi
cated by A'/+1, is the mean vector for group i, S *  is the 
pooled within groups estimate of X*, the variance-covariance 
matrix of X* and n i is the prior probability that a
case belongs to group i, and to allocate the individual to 
that group for which the is the greatest, [23].

Minitab Results.
Unfortunately, the success rate for correctly identifying the



multivariate response on AT* by known programmer in the train
ing set was found to be low, with only 25.5% of cases cor
rectly identified.

However, the success rate varied from programmer to pro
grammer, ranging from no cases correctly identified to 88.9% 
of cases correctly identified. With a low overall success 
rate it is inappropriate to attempt to identify programmers 
for cases in the prediction set.

It is possible that the failure of the technique to 
achieve a reasonable success rate may be attributed to a viol
ation of the theoretical assumptions of discriminant analysis, 
that the discriminating variables have a multivariate normal 
distribution and have equal variance - covariance matrices 
within groups, (programmers); [23]. The data under study,
consisting mainly of variables having a discrete or categori
cal nature, do not conform to these requirements. Reference 
[24] gives a discussion on techniques of discrete discriminant 
analysis applied to data not conforming to the multivariate 
normal, homoscedastic groups pattern. Reference [25] gives a 
similar treatment.

Log - linear models.
It is possible to obtain from the software data multi-way 
tables containing number of faults as response corresponding 
to variables such as X 4 = program language, ATS = program size 
and yV6 = program type. With such categorical data it is 
appropriate to fit log-linear models, beginning with the 
no-association model.

E(FlJk)^ N K L njK_tk ( 1 )

where F iJk = number of faults in the cell of the multi-way table 
corresponding to the i'th language, j'th program size, k'th 
program type;

N - grand total of faults in the multi-way table;

it.j = marginal probability in the i'th category of Af4 
(language) irrespective of X B and A'6 (size and type of pro
gram) , n -  marginal probability in the j'th category of AT5
(size) irrespective of A'4 and X 6 (language and type) ; =
marginal probability in the k'th category of X 6 (type) irre
spective of X 4 and A's (language and size) .

Taking logarithms in (1)

In E(Fijk) = I nN + In .rt, . + I n n , + In n..* ( 2 )

With a little manipulation it is possible to write (2) in 
the form



I n  E (b ijk) = u + it j (q + u-2 ( / ) + ^3( /o < ( 3 )
where the u's are functions of the theoretical marginal fault 
counts.

Now, (3) is reminiscent of a two-way ANOVA model, with no 
interaction. It is possible to fit (3) using GLIM, employing 
the deviance statistic equal to -2 log (Yc/Zy) as the 
goodness-of-fit criterion, where l c -  likelihood of the
data under the current model and l f  -  likelihood of the data 
under the fullest possible model, following the notation of 
[26] .

Failure of the no-association model to fit the data 
encourages the inclusion of further model terms, firstly the 
two-way associations

^  12(1:/)* U 13(tfc)» Li 23{ jk)

corresponding to first-order interaction in ANOVA, and then, 
if necessary, the three-way association u 123(ijk), corresponding 
to second-order interaction in ANOVA, (see [27] ) .
GLIM Results:
Model Scaled

deviance
change residual

df
change 
in df

A (3) 89.75
B A+SIZE.TYPE 77.78 1 1 .97 11 5
C B+SIZE.LANG 26.94 50.84 10 1
D C+TYPE.LANG 0.44 26. 50 5 5

Now, the scaled deviance (or change in scaled deviance) 
is approximately X2 - distributed with the residual degrees 
of freedom (or change in degrees of freedom).

It can be concluded that
(a) there is a significant association between size and 

type of program,
(b) there is a significant association between size of 

program and language,
(c) there is a significant association between type of 

program and language,
(d) there is no significant three-way association, 

suggesting that



(i) the association between size of program
and type of program is the same for all languages,

(ii) the association between size of program 
and language is the same for all program types,

(iii) the association between type of program
and language is the same for all program sizes.

Resulting from (b), close examination of the model para
meters suggests that a negative association between SIZE (2) 
and TYPE (5) is indicative of a tendency for a lower fault 
count with medium to large programs than with small programs 
of the type "INCLUDE FILE".

Also, resulting from (c), a negative association between
TYPE (4) and LANG (2) suggests a tendency for a lower fault
count with system operating language programs than with COBOL 
programs of the type "FIND CONTROL FILE".

Comments: The multivariate procedures described earlier
in this section revealed relatively little. However this 
should not malign the power and usefulness of techniques such 
as PCA and discriminant analysis, and they should be used if 
appropriate on other examples of software data in attempts to 
reveal data structure.

Log-linear modelling, a useful example of which is dis
cussed above, has a very positive usefulness in investigating 
data of the type considered and is recommended as an important 
tool in future work.

SUMMARY

Some results of the Alvey Software Reliability Modelling (SRM) 
project have been presented. A number of models have been 
generalised or extended to incorporate explanatory variables. 
Problems of software reliability have been highlighted and 
further work is required in this area. Multivariate tech
niques and time series analysis are shown to be applicable to 
software reliability data and a number of results have been 
presented. A number of documents have been written for the 
whole project including tasks 3, 4, and 9 and some of these 
are available to the public. The authors may be contacted 
initially for further details of their work in task areas 3, 4 
and 9. For further details of other Alvey SRM work, the con
tact address is DTI/IED, Alvey SRM project, Kings Gate House, 
66-74 Victoria Street, London SW1E 65W.

REFERENCES

1. Musa, J.D. and Okumoto, K., Application of Basic and Log
arithmic Poisson Execution Time Models in Software Reliability 
Measurement. Software System Design Methods. Springer-Verlag 
Berlin Heidelberg 1986, Nato ASI series, Volume F22 pp275-298.



2. Littlewood, B. and Verrall, J.L., A Bayesian reliability 
growth model for computer software., Journal of the Roval 
Statistical Society., C (Applied Statistics), 22, 1973 pp 
332-346.
3. Jelinski, Z. and Moranda, P.B., Software Reliability 
Research, in Statistical Computer Performance Evaluation. W. 
Freiberger New York Academic Press, 1972, pp 465-484.
4. Bendell, A., McCollin. C., Wightman, D.W., Linkman, S. 
and Carn, R. Software Reliability Data Collection - Problems 
and Possibilities , Proceedings of the Sixth EureData Confer
ence , Siena, 1989.
5. McCollin, C., Bendell, A. and Wightman. D.W., Effects of 
Explanatory Factors on Software Reliability, Reliability 1989, 
Vol 2.
6 . Wightman, D.W., Review of models/techniques which incor
porate explanatory variables and may be applied to software 
failure data. Nottingham Polytechnic report (for Alvey SRM 
project).
7. Csenki, A., Bayesian Formulations of the Jelinski-Moranda 
Software Reliability Model. Unpublished City University 
report (For Alvey SRM project).
8 . Brocklehurst, S., On the Effectiveness of Adaptive Soft
ware Reliability Modelling. Unpublished City University report 
(for Alvey SRM project) .
9. Wright, D.R., A Modified U-Plot applied to Failure Count 
Prediction., Unpublished City University report (for Alvey 
SRM project).
10. Wightman, D.W., McCollin. C. and Bendell. A., Propor
tional Hazards Modelling of an Alvey Software Reliability Data 
Set. Awaiting publication.
11. Cox, D.R., The Statistical Analysis of Dependencies in 
Point Processes. Stochastic Point Processes ed P.A.W. Lewis, 
Wiley, New York pp55-66.
12. Wightman, D.W., 1987. The Application of Proportional 
Hazards Modelling to Reliability Problems. Unpublished Ph.D 
thesis Trent Polytechnic.
13. Prentice, R.L, Williams, B.J and Peterson, A.V., On 
Regression Analysis of Multivariate failure time data. Biome- 
trika Vol 68 No. 2, 1981 pp 373-379.
14. Anderson, P.K. and Gill, R.D., (1982) Cox's Regression 
model for counting processes a large sample study. Annals of 
Statistics, 10 pp 1100-1120.
15. Lawless, J.F. (1987) Regression Methods for Poisson Pro
cess Data. Journal of the American Statistical Associ
ation . Vol. 82, No. 399.



16. Font, V. , Une approache de la fiabilite des logiciels: 
modeles classiques et modele lineaire generalise. Thesis L'U- 
niverite Paul Sabatier de Toulouse, France 1985.
17. Singpurwalla, N.D., (1978). Time series analysis of
failure data. Proceedings Annual Reliability and Maintain
ability Symposium. , pp 107-112.
18. Singpurwalla, N.D. and Soyer, R. Assessing (software) 
reliability growth using a random coefficient autoregressive 
process and its ramifications., IEEE Transactions on Software 
Engineering 1985.
19. Walls, L .A . and Bendell, A., The structure and explora
tion of reliability field data; What to look for and how to 
analyse it. Proceedings of 5th National Reliability 
Conference 1985 pp5B/5/1-17.
20. Box, G.E.P and Jenkins, G.M., Time Series Analysis: Fore
casting and Control Holden-Day, London, 1976.
21. Harrison, P.J. and Stevens, C.F., Bayesian Forecasting 
(with discussion). J.R. Statistic Soc., 1976, B38, pp205-247.
22. West, M. Harrison, J. and Pole, A., BATS: A User Guide. 
University of Warwick, 1988.
23. Chatfield, C. and Collins, A.V., (1980), Introduction to
Multivariate Analysis, Chapman Hall.
24. Goldstein, M. and Dillon, W.R., Discrete Discriminant 
Analysis. Wiley, 1978.
25. Bishop, Y.M, Fienberg, S.E. and Holland. P.E., (1975) 
Discrete Multivariate Analysis, MIT Press.
26. Baker, R.J. and Nelder, J.A., (1978), GLIM System, 
Released by the Royal Statistical Society.
27. Everitt, B.S., (1977), The Analysis of Contingency
Tables, Chapman Hall.



APPENDIX 4
Wightman, D.W., McCollin, C. and Dixon, P. (1991). 

Recent Applications of Some Statistical Techniques to 
Software Reliability Data.

Proceedings of the 1991 Reliability Conference.
Reliability 91.

Elsevier Science Publishers.



RECENT APPLICATIONS OF SOME STATISTICAL TECHNIQUES TO SOFTWARE
RELIABILITY DATA

D.W. Wightman, C. McCollin and P. Dixon
Department of Mathematics, Statistics and Operational Research 
Nottingham Polytechnic

ABSTRACT

A number of statistical models are discussed. Three logistic 
regression models and a proportional intensity model are applied 
to software reliability data.
A large software reliability dataset was collected which included 
failure and fault information as well as attributes of the programs 
such as size, type of program, etc. Execution time had not been 
collected and so the well known software reliability models were 
not applicable in this instance. However, the statistical models 
presented here equate some function of failure count (or time to 
failure) to the explanatory information available and the results 
are very encouraging for further research.
The final section shows how the exponential type software 
reliability models may be incorporated into a proportional hazards 
framework.



DESCRIPTION OF THE DATASET

The system under analysis is one software product running on a 
single installation. The software comprises of 1198 program 
versions of which 1096 are written in Cobol, 99 in an operating 
system language and 3 in a third language. There are 6 types of 
program: 87 command macros, 6 command macro data files in the 
operating system language, 608 module main source codes, 78 
control binding files, 126 binding Cobol files and 21 screen 
definition files. These were numbered types 1 to 6 respectively 
for convenience.
The suite of programs were run as a package and failures were 
recorded on a daily basis with the programs at fault. Repair 
information was minimal so that this information could not be 
included in the analysis. The total number of programs found at 
fault was 1 356 for which 674 resulted in the package failing. 
The package was expanded throughout the development phase and on 
certain days the number of programs running increased without 
failures or faults occurring. This censoring information and the 
failure data with the type of program failed was collected over 
an eight month period and, for the six types of program, 269 
failure and censoring points and 222 failure points were analysed. 
The total number of programs running per day was recorded and 
the number of failures/faults per day to total number of programs 
running per day with number of failures/faults per day was 
calculated as a proportion. This adding of the top term (number 
of failures/faults per day) to the bottom of the expression made 
sure that the proportion always lay between zero and one. Figure 
1 is a plot of the proportion of failures against time to failure 
for each program type. From the figure, there are no immediate 
observations of any note.
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Figure 1. Plot of the Proportion of Failures against the Time 
to Failure for each Program Type.

GENERALISED LINEAR MODELLING

Generalised linear modelling is a commonly applied approach within 
the area of medical statistics when determining the proportion 
of subjects affected by different amounts of a drug. A standard 
textbook for generalised linear modelling is by McCullagh and 
Nelder [13. A paper in the area of exposure to a disease using 
the models described here is [2] . However, generalised linear 
modelling has not been utilised to any great extent previously 
in the analysis of software reliability. The methods are used 
here to determine the proportion of a package of programs of a 
certain type which have failed by a given time.
In this paper, a generalised logistic regression model is 
formulated as follows. The proportion of programs of a certain 
type failing at a particular instant in time is calculated and 
a transformation is taken so that when plotted against a linear



combination of continuous variables (e.g ; time since last failure, 
cumulative time to failure), a straight line results. The analyses 
carried out with the data under the model assumption are then 
tested for goodness of fit.

Description of Models

Three model formulations which have been applied to the described 
data are illustrated in figures 2, 3 and 4. Each figure shows a 
function of the proportion of failures/faults per day, g(p), 
(where p is the proportion), plotted on the vertical axis with 
the explanatory variable of interest, x, on the horizontal axis. 
The function g(p) is chosen so that the plot should be linear. 
In figure 2, model (1) is

g(p) = f30 + |3iX + e

irrespective of the type of program, which can be tested for 
goodness of fit. The term c- is an error term which explains any 
variation not already described by the fit of the model. Model 
(2) is

g(p) = |30 + (31.x- + ai + e i = 1 , 2  k  .

If the model is not significant on the factor, a t- = type, for the 
6 types of program, then the plot is similar to figure 2. However 
if the proportion of failures/faults is affected by the type of 
program, then figure 3 is more appropriate. Model (3) is given 
by

g(P) = (|30)l.+ (Pi)t.x + ai+e

and, in this case, if the interaction between the type of program 
and the explanatory variable is not significant then figure 3 
applies and if there is an interaction between the type of program 
and the explanatory variable, the plot will be similar to figure
4.
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Figure 2. Plot of g(p) against x with Model (1) fitted.

Figure 3. Plot of g(p) against x with Model (2) fitted.



Figure 4. Plot of g(p) against x with Model (3) fitted.

Data Plots and Analysis

A number of plots of the data were drawn and subsequent analysis 
was carried out using the generalised linear modelling computer 
package GLIM, [3]. The models (1), (2), (3) were applied to
proportion of failures per day, proportion of faults per day, 
proportion of faults and censorings per day and proportion of 
failures and censorings per day against cumulative time to failure 
and time to failure for three different types of function of the 
proportion. In each case there was still a lot of unexplained 
variation after the models were fitted. One way of reducing 
variation is to take a transformation of the explanatory variables 
such as the logarithm or the square root. A recent reliability 
paper which incorporated transformed data is by Follman [4]. 
Further analysis was carried out, with the failures only, as this 
analysis showed this data to have the least variation after the 
initial model fits. Figure 5 is one such plot of the function of 
the proportion of failures per day



g ( p )  = l o g ( p / ( l - p ) )

(known as the logit function) against the logarithm of the 
cumulative time to failure in days.
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Figure 5. Plot of the Logit Proportion of Failures against 
Log Cumulative Time to Failure.

From the figure, it can be seen that:

- there is a difference within types of program which is mainly 
due to the same proportion failing per day for the duration of 
the project. As there was very little change in the total number 
of programs running per day, this difference is mainly due to 
the number of failures of a given type failing per day.



- there is a difference between types of program, which can be 
accounted for by the number of failures for each type.

- the number of failures per day is reducing over time for each 
type. This suggests that there is reliability growth in the data 
which may be expected for a software development project.

This growth can be seen more clearly if instead of the proportion 
of failures per day, the cumulative number of failures up to a 
point in time is divided by the cumulative number of programs 
failed with the cumulative number of failures. This cumulative 
proportion of failures is shown plotted against the logarithm of 
cumulative time in figure 6 . From figure 6 , it can be seen that 
either model (2) or (3) is applicable to the data and this can 
be tested with GLIM.
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Figure 6 . Plot of Logit Cumulative Proportion of Failures
against Log 

Cumulative Time for each Program Type.



Figure 6 is showing a plot similar to a multiple Duane plot, [5]. 
It has been shown by Lawless [6] that model (2) is the same as 
the proportional intensity formulation with Weibull intensity. 
The plot in figure 6 is levelling off as failures are detected 
and removed. A more appropriate intensity for this software 
dataset is the IBM model [7], also discussed by Ascher [8]. In 
the Ascher formulation, the intensity is given by

v ( t )  =  c  +  a b l

where 0 < b < 1 and c > 0. The cumulative intensity or expected 
number of failures in time t is given by

E ( N ( 0 )  = c t  + a ( b l -  1 ) / l o g  ( 5 ) .

A plot of the Ascher model against a set of software data is 
shown in the later section on proportional intensity modelling. 
Tables 1 and 2 present the results of the GLIM analysis. To test 
the goodness of fit of one model over another, the difference in 
deviances, (explained in reference [3]), of each model is compared 
with the x 2 distribution with degrees of freedom being equal to 
the lost degrees of freedom when fitting a more complex model. 
As an example of this test, for model (1) compared to model (2), 
the change in deviance is 480.6 on 2 degrees of freedom which is 
saying that the model in figure 2 is a much better fit as the 
tabulated value of x.2 on 2 degrees of freedom at the 5% level 
is only 5.991. The comparisons of the models are given in table 
1 .
Assuming asymptotic normality of the parameter estimates, a simple 
test of whether the parameters should be included in the model 
is to see if the parameter estimates are within two standard 
errors of zero. If they are, then they do not contribute to the 
overall model. These nonsignificant parameters are then removed 
from the model and the new model parameters are estimated and 
tested until all nonsignificant parameters are removed. This 
method is known as backward stepwise regression.



For model (2) , the type 3 programs were used as the baseline of 
comparison as the type 3 data sample size is greater than each 
of the other types and also the type 3 data is more central in 
figure 6 than the other types. The parameter estimates of type 
2, type 5 and type 6 programs were not significant within model
(2). A reason for this may be the lack of observations for these 
types. A comparison of the parameter estimates of the types of 
program irrespective of whether they were significant or not was 
carried out and this determined that types 3, 5 and 6 parameter 
estimates were similar, types 4 and 1 were similar but different 
to the other types and type 2 was on it's own. Figure 6 shows 
these findings.
On fitting the interaction term (between type of program and log 
cumulative time to failure) with model (3), the deviance is 5.17 
compared to the xi tabulated value of 5.991 which indicates that 
the interaction term is not significant. This is confirmed by 
the parameter estimates for the interaction terms in model (3) 
being nonsignificant. The parameter estimates for each model are 
given in table 2 .

TABLE 1.
Goodness of Fit Estimates for Models

Fitted Model Deviance 
(degrees of 
freedom:df)

Difference 
in Deviance 

(df)

Signif. 
level

Model [1] 1086.3(220)
Model [2] 605.73(218)

Model 
[1 ] , [2]

480.6(2) 0.00

Model [3] 600.56(216)
Model 
[2] , [3]

5.17(2) 0.08



TABLE 2.
Estimates of Model Parameters

Fitted
Model

Parameter Estimate Standard
Error

Signif. 
level

Model [1] -3.394 0.04046 0.00

f  t (3, 0.6363 0.00916 0.00

Model [2] (3 o -3.31 0.04045 0.00

t  t f3, 0.6224 0.009147 0.00

/  t Type (1 ) -1.126 0.0749 0.00

f / Type (2) n. s.

/ / Type {4) -0.9258 0.07253 0.00

/ / Type (5) n. s.

/ t Type (6) n. s.
Model [3] |3 o -3.299 0.04071 0.00

t / (3, 0.62 0.009207 0.00

/ t Type (1) -2.113 0.5369 0.00005

/ / Type (2) n. s.

t  t Type (4) -1.416 0.4063 0.00026

t  t Type (5) n . s.

f t Type (6 ) n. s.

f / [3, ,T y p o (  1) 0.2387 0.1276 0.0307

/ / |3j .Type(2 ) n. s.

/ / (3i .Type(4) 0.1196 0.09715 0.1093

/ / (31 .Type(5) n. s.

/ / (3j .Type(6 ) n. s.



Relationship between Response Models and Proportional Intensity
Models

As shown above, a model may be formulated as 
Q ( . P )  = Po + P 11°9(0 + G —  ( 1) where the proportion p is the cumulative 
number of failures x up to time t divided by the total number of 
failures n, t is the cumulative time to failure and e is a binomial 
error term. If g(p) is the logit function g(p) = log (p/( 1 ~ p)) then
(1) can be rewritten as

log ( x )  -  log (ft -  x )  = |30 + J3 j log ( 0  +

If n tends to a large constant such that n-x is very much greater 
than x, say k, and p is very small, the Poisson approximation 
may be used for the binomial response, and instead of the logit 
function, the log of the number of failures is obtained. On taking 
exponentials of each side of the equation,

is obtained, where E(x) is the expected number of failures. This 
is the formulation of the nonhomogeneous Poisson process with 
Weibull intensity, [9].
Using the Poisson approximation for the logit function of the 
proportions resulting in the log of the number of failures, (known 
as the log link function, [1]) , then model (2) has been shown to 
be the proportional intensity formulation with Weibull intensity 
of Lawless [6].

PROPORTIONAL INTENSITY MODELLING

Lawless [6] considers the situation where a number of individuals 
experience repeated events, with the time of each event recorded 
along with covariate information. Although the individual 
experiences a sequence of events, the covariate information for 
the individual is fixed. In a software reliability modelling



context we can consider the individuals to be systems/packa
ges/modules/languages etc; that is, a level of application in 
which a common baseline is reasonably thought to exist, or more 
commonly an application level at which data is available.
The methods discussed by Lawless are based on the proportional 
intensity Poisson process model. The model can be specified as

k Y(0 = X 0 ( t ) e x  p(x(3) ....(1)
where t is the time from the start of observation, X 0 ( t )  the
baseline intensity function, x a vector of covariate values and 
J3 a vector of parameters. The formulation in [6] means that the 
covariates have a proportional effect on the baseline intensity 
function.

Relationship to Proportional Hazards Modelling

Lawless shows in section 4 of his paper the equivalence of 
proportional hazards modelling based on the partial likelihood 
of Cox, [10], and the Poisson process with unspecified baseline. 
However, given the different approach to the construction of the 
partial likelihood and the likelihood for the semiparametric 
Poisson process it is not possible to use standard proportional 
hazards modelling software for the analysis in the Poisson case. 
To carry out the analysis using proportional intensity models 
with covariates and unspecified intensity function, specific 
software has been written, details of which are given below.

Model Formulation

The model formulation and details of the likelihood equation are 
given in Lawless [6] . In particular, to obtain the [3 coefficients 
for the covariates the following set of equations have to be 
solved (the first partial differential of the log-likelihood),



\
'}

where zgr is the rt*1 covariate value for the system s 
(s=1 , 2 , 3, . . . . , m) , n the number of failures for the system s, 
n(Tj_) -n{Tj__'i ) the number of failures between the end of observation 
on system (i— 1 ) and end of observation on system i (such that
1 1 < t 2 <  * • • • < t m )  ♦

To solve the equations in (2) , a Taylor series expansion (F(x)=— p)

is used and then a Newton-Raphson iteration procedure; the method 
of scoring is applied. A program has been written in Microsoft 
Fortran which runs on an IBM PC to estimate the parameters of 
the model.
In order to run the program, a data file is created from the 
observed information:- the total number of failures, the total 
number of systems and the number of covariates, whether covariates 
are included in the analysis, the final observation time for each 
system, the covariate values and the time to failure of each 
system.
After reordering the data, the program proceeds with the estimation 
of the coefficients. Starting with initial values of zero for 
the coefficients, the Newton-Raphson equations are solved to 
provide a 5[3 value, where at the n^h iteration (3„ = (3n_j + 6(3. The 
iteration procedure is continued until the incremental 6f3 for all 
the covariates is less that one thousandth of the existing (3 value 
or the number of iterations has reached 25 (indicating problems 
with convergence).
Upon convergence for [3 each coefficient is tested (using the 
asymptotic normality of the coefficient) to see if it is sig
nificantly different from zero. At this stage of the estimation 
procedure, the most non-significant covariate is dropped from 
the model (backwards stepwise regression) and the remaining (3 
coefficients re-estimated. This procedure is continued until a 
set of significant (on a 5% two tailed test) [3's are obtained.
At this point desired information such as the (3 values, z-scores 
and p-values are reported in a computer output.
Having obtained a set of [3 coefficients, the program then 
calculates the base-line intensity function (using the formulation 
reported in 4.4 of Lawless [6]) which is then available for 
comparison with well known intensity models. If only two systems
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exist and one binary covariate then it is possible to solve (2) 
directly, so that a partial check on the program may be performed. 
Carrying out this procedure, the same (3 value was obtained.
Musa et al [11] classifies many of the well known software 
reliability models within the framework of non-homogeneous Poisson 
processes. It is therefore possible when applying proportional 
intensity function models to compare the baseline intensity 
function against the intensity function for individual software 
reliability models.

Covariates

The covariates that can be included in the model, as with pro
portional hazards modelling, are obviously dependent on the 
context in which the data arises. However, from (our) observation 
on the model formulation it is noted that each system in pro
portional intensity modelling "plays" the same role as one failure 
in proportional hazards modelling. Thus there is a severe 
restriction on the number of covariates that may be included in 
any analysis if data is available only on a small number of 
systems. To carry out any meaningful analysis, data may have to 
be available on a large number of systems (Lawless in a medical 
example had 48 subjects) . A recent paper which showed proportional 
intensities for software systems but did not carry out any 
intensity modelling is by Selby, [12] . The proportional intensity 
formulation software described above is applied to part of the 
dataset described at the beginning of the paper.

Analysis of a Software Reliability Dataset

The number of times programs and program versions were repaired 
was tabulated for the dataset described above. The three programs, 
which required most repairs were all binding Cobol files. Of the 
remaining 9 programs which were repaired more than 10 times, 
eight were module main source codes, the other being a binding 
Cobol file. These twelve programs out of a total of 926 were 
repaired 217 times out of a total of 1 356 repairs. The twelve 
programs were all Cobol files of size greater than 9 4K blocks



of code and text of which for 10 of these, only one particular 
program version was repaired. The twelve programs have been 
analysed using Proportional Hazards Modelling (PHM), the results 
of which are discussed in references [13] and [14]. The plot of 
the cumulative time to failure for each program is shown in figure
7.
In the aforementioned analysis, the covariates; program version 
change, age, previous number of faults, type of use, program size 
and program type were tested for significance with the time metric 
taken as days between failures. The covariates age and previous 
number of faults were the most significant covariates and for 
each of the twelve programs analysed, the hazard decreased as 
the programs aged and the hazard increased with the increasing 
previous number of faults.
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Figure 7. Plot of Cumulative Time to Failure against Program
Number



An analysis of this reliability growth/decay was carried out 
using proportional intensity modelling with cumulative time to 
failure in days as the time metric for each of the twelve programs. 
A number of analyses were carried out and these are discussed in 
more detail in reference [14] . The results of one of these analyses 
follow.
The binary covariate, program, was used in one proportional 
intensity formulation. The baseline programs chosen were numbers 
5 and 6 in figure 7. Program numbers 1, 3, 4, 7, 8 and 12 were 
shown to be not significantly different from the baseline intensity 
and were included into it.Programs 2, 9, -10 and 11 were sig
nificantly more reliable programs than the baseline programs 
although it must be stressed that censoring information was not 
included for programs which did not fail after the programs went 
into service use after 110 hours. A plot of the cumulative 
intensity against time with a superimposed plot of the IBM model 
[7] is shown in figure 8 .
A problem of parameter estimation for this model is that if 
incorrect initial estimates of parameters are chosen then, because 
of the flatness of the likelihood function, a program to find 
the estimates will give the inflexion estimates as the .solution 
and not the maximum likelihood estimates. The solution should be 
checked by making sure all the second differentials of the 
likelihood for the three parameters are negative.
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against Time

PROPORTIONAL HAZARDS FORMULATION OF SOFTWARE RELIABILITY
MODELS

Two proportional hazards models (PHM) are formulated which 
incorporate a number of the well known software reliability 
models. References which describe the PHM approach are Kalbfleisch 
and Prentice [15], Lawless [16] and Cox and Oakes [17].
The application of PHM within a software context has been 
undertaken by Nagel and Skrivan [18], Font [19], Wightman and 
Bendell [20] and McCollin [13]. Also, under the Alvey Software 
Reliability Project, Nottingham Polytechnic undertook the 
analysis of a number of software reliability datasets using PHM.



The analyses of these datasets together with the PHM formulations 
presented in this paper, plus the other techniques discussed here 
will be more fully reported in McCollin [14].
The first formulation considered allows binomial type models of 
the exponential class (as classified by Musa et al [11]) to be 
incorporated within a proportional hazards framework. The 
exponential part of the classification refers to the failure 
distribution of each fault ( assumed to be common ) with the 
binomial part referring to the distribution of the number of 
faults experienced by time t. Examples of this type of software 
reliability model are Jelinski-Moranda [21] and Shooman [22] . 
The second formulation incorporates Poisson type models of the 
exponential class. In this formulation, the exponential dis
tribution is again the assumed per fault distribution with the 
Poisson distribution referring to the number of faults 
experienced by time t. Examples of this type of model are Musa 
[23], Scneidewind [24], Moranda [25] and Goel-Okumoto [26]).

Binomial Type Models of the Exponential Class

The formulation of the proportional hazards model for the binomial 
type models of the exponential class is as follows. Following
Musa et al [11] , page 276, the program hazard rate for this class
of model is

=  1)0

where N is the total number of faults present at time zero,
0 is the constant value of the hazard for each fault,
1 1 is the time from the (i-1) th failure, with t 0 =0 ,
C-i is the time of the (i-1) th failure.

This may be rewritten as

h ( t ' / l u_n ) = N Q ( l - U -  1 ) / N ) ...........(1)



The proportional hazards formulation with the metric (t in equation
(2)) taken as time since last failure is

h ( l \ z    z n )  =  hoCOexpCfSjZ'! + , . .  + & n z n )  ( 2 )

where [3* , i=1 , . . . ,n are the parameters of the model , z u  i=1 , . . . , n 
the values of the explanatory variables and h(t) is the baseline 
hazard.
Now if f i 0 ( t )  =  N Q ,  a constant, i.e., the well known exponential
distribution and z i = Zoge( 1 - (i - 1)/A/) (with an appropriately chosen 
value for N) ; then a value of [3j approximately equal to one 
obtained when PHM is applied indicates that a binomial type 
exponential model is appropriate for the data under investigation. 
The hypothesis that (3, = 1 may be tested, as [3, is asymptotically 
normal, see Tsiatis [27], Anderson and Gill [28]. Note that the 
explanatory variables z2,...,z„ can be used to model (in the same 
model) the effects of other factors thought to influence the 
performance of the software. A classification of explanatory 
variables that may be applicable in software reliability modelling 
is given in McCollin [13],

Poisson Type Models of the Exponential Class

The formulation of the proportional hazards model for the Poisson 
type models of exponential type is as follows. From Musa et al 
page 276, the program hazard rate

= A^0exp(-0tci.1))exp(-0£f)

Let £(i-i) equal the time of the (i-l)th failure with N-i+1 faults 
left. From [11] , for this model the number of faults left at Z({-_l} 
is N  exp (- 0/,])) so that

/'(.-I)) =(N-i*l)0exp(-6if)

which may be written as



In the PHM formulation (2), let

h 0 ( t / )  =  N  Q e x \ d ( - Q t / ) and z  t = L o g e (  1 - (i - 1 )//V ).

When applying PHM, if an estimate of (3) approximately equal to
one with a form of the baseline hazard shown above, then Poisson 
type exponential models are appropriate for the data under 
investigation.
The baseline hazard function in this formulation was first 
considered by Gompertz [29] in the context of actuarial studies. 
The hypothesis that (3, is approximately equal to one may be tested 
as for the binomial class of models as the |3's from PHM are 
asymptotically normal. The form of the baseline hazard for this 
software reliability model type may be investigated by plotting 
the logarithm of the cumulative baseline hazard against time t.

CONCLUSIONS

Two formulations of proportional hazards models have been proposed 
which incorporate some of the well known software reliability 
models. A semi-parametric proportional intensity model has been 
formulated and applied to a software reliability dataset. A number 
of generalised linear models have been formulated and applied to 
the software reliability dataset and it has been shown that the 
models can be used to show different rates of failure of programs 
and whether interaction exists. An appropriate intensity model 
for the analyses was the IBM model, [7],
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