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Abstract

Computer numerical controlled machine tools have been used in a wide range of applications. 
Machine drives have used both stepper motors and servomotors to control the motion. Stepper 
motors are a less costly alternative and are suitable for low-cost machining. Leadscrews convert 
the stepper motor’s rotary motion to linear motion. This project has concentrated on stepper 
motors but it is expected that the algorithms could be extended for use with servomotors. Most 
stepper motor driven machine tools are used in an open-loop system. Since there is no feedback 
from the actual motion of the machine, extreme care has to be taken when designing the 
controller.

Investigations into multi-axis stepper motor continuous path machining systems have revealed 
problems affecting machining performance, such as vibrations. Earlier work within the research 
group has demonstrated how these vibrations arise from the excitation of machine dynamics, 
which are sometimes due to sudden variations in pulse rates. For high speed machining, the 
machine must be accelerated and the problem with vibrations becomes more severe. Such rough 
motion can then result in unsatisfactory path following, if it increases any positional error 
(deviation of the machined path from the desired path). Besides vibrations, another cause of 
positional errors may be the approximations made by the interpolation algorithms used. Many 
motion control systems also suffer from the disadvantage that they are not able to maintain a 
constant speed round a curve.

Previous researchers in the group have addressed the above problems with some success. Their 
work includes smoothing of unevenly spaced pulse timings after they have been generated. 
However, such smoothing may increase the positional errors. The work described in this thesis 
addresses the problems from a more fundamental viewpoint, by generating pulse timings that 
are smooth initially.

New line and arc interpolation algorithms have been developed for stepper motors, which 
calculate the timing for every individual pulse. These algorithms exploit recent advances in 
microprocessor technology which allow the use of a high-speed digital signal processor. A new, 
more general approach to interpolation has been applied, which avoids the need for the path to 
pass through particular intermediate points. A novel approach is to use the distance along the 
path as a parameter, which ensures synchronisation of the axes. With these algorithms sudden 
changes in speed can be avoided. Four partial simulation techniques have been developed in 
order to evaluate the algorithms. Simulation results show that we can expect not only significant 
reduction in positional errors but also greatly diminished fluctuations in speed. Therefore 
vibrations are also likely to be reduced.

New acceleration algorithms have been developed, so that the new interpolation algorithms can 
be used for high-speed machining. The algorithms are based on linear and parabolic 
acceleration algorithms described by previous authors. Simulation results show that the new 
acceleration algorithms are expected to allow the machine to follow the required curve closely 
while changing speed as required. Thus vibrations are again expected to be reduced.

An initial evaluation of the practical implementation of the new algorithms has been undertaken 
on a CNC machine. The results are promising and broadly in agreement with the simulation 
results.
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Abbreviations

APT: Automatically Programmed Tools

CAD: Computer Aided Design

CAM: Computer Aided Manufacturing

CNC: Computer Numerical Control

DDA: Digital Differential Analyser
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MCU: Machine Control Unit
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Glossary of Terms

Acceleration: The rate of change in speed as a function of time.

Acceleration usually refers to increasing in speed.

Computer Aided Design: Making use of the computer to design models of an

object, normally using a graphical interface.

Computer Aided Manufacturing: Making use of the computer to generate control of

manufacturing machines in an organised and 

efficient way.

Computer Numerical Control: Making use of the computer to control machine

tools. The input consists of numerical data.

Critical Damping: The value of damping that provides most rapid

response to a step function without overshoot.

Damping: Dissipation of vibratory energy with time.

Damping Factor: A ratio of the actual damping of a system relative to

its critically damped value.

Deceleration: Rate of change in speed where the speed decreases

in time.

Digital Signal Processor: Fast processor for mathematical applications.

Feedrate: The speed at which the machining is required to be

performed whilst following the desired shape.

Interpolation: Providing a machine with control signals (in terms



of position or speed at given times) so that it moves 

in such a manner as to follow a desired path.

Position Error: 

Pull-in Speed:

Pull-out Speed: 

Pull-out Torque:

Resolution:

Shaft Encoder:

Speed:

Spline:

Stepper motor: 

Step size:

The difference between the desired shape and 

interpolated position.

Maximum demanded speed to which a motor can 

respond without loss of steps when starting from 

rest.

Maximum operating speed for a given load.

Maximum torque which the motor can develop at 

each operating speed.

The smallest positioning increment that can be 

achieved.

Digital transducer that is used for measuring 

angular displacements and angular velocities.

Magnitude of the velocity.

Composite curve comprising of various (usually) 

polynomial segments. Successive segments are 

connected with a predefined continuity.

A type of motor that can move in increments (steps) 

in response to command signals. One pulse 

normally results in movement by one step angle.

The linear motion of the cutter corresponding to the 

movement of one step angle of a stepper motor.
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Torque: The moment of a system of forces tending to cause

rotation.

Velocity: Rate of change in distance (with known direction).



Chapter 1: Introduction

1 Introduction

In ancient times people started to carve on wood or stone (Figure 1-1), either as a means 

of communication or for decoration. In those days, all of their home equipment was 

made by hand. When humans invented machinery, they started to use machines to 

replace the jobs done by hand. Manpower was still essential until recently, because 

without numerical control, conventional machines are controlled by a skilled operator. 

The cutting tool is moved along the workpiece by the operator turning a hand wheel. 

With the introduction of Numerical Controlled (NC) machines, the programmer was 

only required to program the required path while most of the cutting operations were 

performed automatically by the machine tools.

Figure 1-1: Example of Ancient Egyptian Carvings on Stones [1].

NC technology has been one of manufacturing’s major developments in the past 50 

years. The applications of NC technology range from traditional milling, turning and 

drilling to today’s laser cutting and water jet cutting. NC products are used in many 

industries, such as aerospace, engraving and sign making [2]. Since the 1970’s, NC has 

been logically extended to Computer Numerical Control (CNC) by housing the

-  1 -



Chapter 1: Introduction

microprocessor on the machine tool itself. The machine drives used in today’s 

machinery include servomotors and stepper motors. Many systems use stepper motors 

as their main drives because of the ease of implementation and low cost [3]. 

Investigations into stepper motor controlled continuous path motion control system 

have revealed several problems [4][5]. The Author’s work includes the development of 

a solution to these problems. This thesis documents these ideas, experiments performed 

and the conclusions drawn.

This chapter provides an introduction to NC and CNC machine tools and how they are 

applied in the industrial environment. Section 1.1 discusses briefly how machining 

technology has progressed from ancient times to today’s CNC. In addition, this section 

will also explain the importance of CNC machines and how they help in the industrial 

production today. The research reported in this thesis is motivated by the problems that 

have arisen in some existing stepper motor controlled systems. Therefore, these 

problems are presented in Section 1.2. The following Section, 1.3, discusses the aims 

and objectives of the Author’s work to achieve the goal of improving the accuracy and 

smoothness of the path following. Section 1.4 completes this introduction chapter with 

an outline of the complete thesis.
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1.1 Historical Development of Manufacturing System s

Figure 1-2 illustrates another example of the hand-carving work done by ancient man. 

Most of such carvings required a high level of skill and were used for communication or 

for decoration. In those days, all the tools were also made by hand.

Figure 1-2: Example of Ancient Egyptian Carvings [1].

With the introduction of machines, cutting, carving and milling work have become 

easier. Without numerical control, conventional machining is performed by an operator, 

who moves the cutting tool along the workpiece by turning the hand wheel as shown in 

Figure 1-3. The operator counted the number of revolutions made on the hand wheel to 

achieve accurate positioning.

Numerically controlled systems are vital in modem manufacturing systems. Computers 

are one of the main resources for automation. This type of numerically controlled 

system has its origin in the Industrial Revolution. Since 1808, weaving machines began 

to use metal cards with holes punched on them to control the pattern of the cloth being 

produced [6]. Each needle on the machine was controlled by the presence or absence of 

a hole on the punched card. Another example of numerical control is the player-piano

- 3  -
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Spindle

Handwheel Cutting Tool Table

Leadscrew

Figure 1-3: Conventional Hand-Controlled Machine.

(better known as pianola). No pianist is needed and the pianola uses a roll of paper with 

holes punched on it. This time the presence or absence of a hole determines whether a 

particular note is played.

The Numerically Controlled (NC) machine tool was invented by John Parsons in 

Traverse City, Michigan, and was subcontracted to the Massachusetts Institute of 

Technology (MIT) Servomechanism Laboratory in the early 1950’s [2], The motivation 

was that the U.S. Air Force needed to manufacture complex aircraft parts accurately. 

Such complex parts were difficult to produce using conventional machine tools. The 

first machine produced by Parsons and MIT was called a Cincinnati Hydrotel, a three- 

axis vertical spindle milling machine [7].

The part program used to control the machine tool is kept in a storage device. 

Traditionally, it was stored on punched tapes. The data on the punched tapes could be 

generated manually or using a computer with the help of a computer-assisted 

programming system. The commonly used programming language was the 

Automatically Programmed Tools (APT), which was developed in the late 1950’s by 

MIT [7]. APT uses English-like words to describe the geometry and the tool motions in 

a part program.

- 4 -



Chapter 1: Introduction

A typical NC process is illustrated in Figure 1-4 and can be decomposed into:

• Stage 1: Part design.

• Stage 2: Translation into machine command language with additional 

information about cutters, etc.

• Stage 3: Translation from machine command language into machine code and 

storing the information on paper tape.

• Stage 4: Machine Control Unit (MCU) reads processing information and 

controls manufacturing process on machine tool.

In 1976, Computer Numerical Control (CNC) machines were introduced to replace the 

conventional NC machines. This was stimulated by the invention of microprocessors in 

1974 [2]. Computers have replaced most of the digital hardware control boards of the 

NC machine. In contrast to the NC machine, which performs most of the data handling 

and control processes within the hardware circuitry, the CNC machine makes use of an 

on-board computer system. CNC machines allow much greater storage capacity 

compared to NC machines [5]. In an NC system, the controller will only accept one 

block of instructions and execute it before taking in any further instruction blocks. A 

CNC machine can store a whole program. Furthermore, program editing can be done on 

the machine itself.

CNC machines allow movement to be actuated by stepper motors or servomotors under 

signals from the controller [8][9][10][11], and guided by the part program as illustrated 

in Figure 1-5. The part program is normally arranged in the form of blocks of 

information [2], where each block contains the numerical data required to produce one 

segment of the workpiece. The machine takes the command from the CNC program. 

The drive motor is then rotated through a corresponding angle, which in turn drives the 

leadscrew, causing motion along the axis.
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Engineering Drawing

Stage 1

Manuscript 
(Part Program)

Stage 2

Control Medium

Computer

Stage 3

o o o

Stage 4

Machine Control Unit Machine Tool

Figure 1-4: Structure of Early CNC Machining (Adapted from [4]).
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Spindle

Motor Cutting Tool Table

Leadscrew

Motion Encoder 
(Only for Closed 
Loop Control)

CNC Machine Control Unit

Feedback Signal (Only for 
Closed Loop Control)

Drive Motor 
Signal

Figure 1-5: CNC Machine.

One of the CNC machines used by Pacer Systems Ltd. [12] is shown in Figure 1-6. This 

machine uses stepper motors in an open loop manner as the main drives. This particular 

machine offers an active work area of one square metre.

The advantage of using CNC machine tools is greater automation [2]. During the 

machining process, the machine can run unattended, enabling the operator to do other 

tasks. The skill level requirement for a CNC operator is also less than for a conventional 

machining operator, who is required to operate the hand wheel throughout the 

machining process. Furthermore, the machined workpieces are more uniform and 

accurate. In other words, much greater repeatability is possible. After verification of the 

part program, many identical objects can be produced with a high degree of accuracy. 

Thus, CNC machines are able to increase productivity.
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Figure 1-6: Pacer Cadet CNC Machining [12].

Another important advantage with the CNC system is flexibility [2][6]. Machining is 

performed by running a part program. Therefore, a different object can be produced by 

loading the appropriate part program. With CNC machines, the machining process can 

now accommodate parts with both simple and complex geometry. Moreover, the 

production costs are decreased once the machine is set up.

CNC applications range from milling, turning and electric discharge machining (EDM) 

to laser, flame and plasma cutting, punching and nibbling, forming, bending, grinding, 

as well as inspection and robotics [2]. Continuing advances in computers have reduced 

the cost of CNC tremendously. Not only are aerospace industries able to afford such 

technology, but also small machine shops. CNC machines are found in automotive, 

electronics, engraving and sign making. An example of a complex path engraving is 

illustrated in Figure 1-7.

Figure 1-8 shows an example of the outline of a horse and the encircled part illustrates 

how part of the complex shape can be approximated by simple components, consisting 

of straight lines and circular arcs. The joints between segments, which are added for
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Figure 1-7: Engraving Example [5].
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Figure 1-8: Plotting Example [13]. 
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Chapter 1: Introduction

clarity in this example, are shown as square boxes. It can be seen that a smooth curve 

may be made by joining several arcs together.

One of the more advanced examples of CNC machining is the CNC laser cutting 

machine [6] [14]. Laser cutting machines use the coherent laser light as a cutting tool 

and can cut plate stock into intricate shapes. Laser cutting is particularly suitable for 

materials such as ceramics, which are difficult to cut with normal cutters. The advantage 

of using laser cutting is the absence of mechanically-induced material damage, tool 

wear and machine vibration. Nevertheless, it can still cause damage to the material 

being cut.

The CNC machining centre is a machine tool capable of performing multiple operations 

and processes in a single set up [7]. It is typically fitted with an automatic tool changer. 

There are machining centres with automatic tool changers in vertical and horizontal 

configurations. Different machining operations can be accomplished in a single machine 

set up and the machine may have multiple spindles.

To maintain constant cutting width and to reduce the surface damage introduced by the 

machining method, the machine tool should be able to maintain smooth continuous path 

motion throughout the machining process [4] [5]. The research described in this thesis 

has investigated the problems with existing continuous path motion control systems. 

With this knowledge, new interpolation algorithms have been developed to achieve 

smooth continuous path motion whilst improving the cutting accuracy. New 

acceleration algorithms enable smooth continuous path motion at high speed. All these 

are aimed at higher path quality.
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1.2 Problems with Existing Systems

Most CNC machines in the industry can follow paths defined by combinations of 

straight lines and circular arcs [15]. If a complex path is required, it can be first 

approximated by straight line and circular arc segments. Then linear or circular arc 

interpolation is performed in the CNC controller by breaking the line or arc segment 

into smaller facets [15]. To maintain a higher path following accuracy, smaller facets 

are used [16]. However, this can result in longer machining time because the stepper 

motor may have to slow down at the end of each facet, if the angle between facets is too 

large [5]. On the other hand, if it does not slow down, this may cause vibrations. The 

following example, Figure 1-9, shows how a simple curve is approximated by three 

facets. The problem has been exaggerated here by using shorter facets for greater 

clarity. In these examples, the maximum change in x is 2 steps. In practice, the 

maximum change in* is typically about 10 steps or higher.

0 1 2 3 4 5  6

X-axis (steps)

Figure 1-9: Approximation o f Curve (Dashed Line) with Straight Lines (Changes in

Direction: 45° and 26.6°).

- 1 2 -
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The previous example involves a particularly bad case with changes of direction of 45° 

(changes from AB to BC) and 26.6° (changes from BC to CD). However, the changes of 

direction may not always be so large. Smaller changes in direction are less likely to 

cause vibrations on the motor. Figure 1-10 shows a less bad example, where the 

changes of direction are 18.4° and 0° respectively.

a

0 1 2 3 4 5 6

X-axis (steps)

Figure 1-10: Approximation o f Curve with Lines (Changes in Direction: 18.4° and 0°).

Figure 1-11 and Figure 1-12 illustrate how the interpolation can be achieved by 

approximating with short straight lines for a more realistic case where 10 steps in the X- 

axis are used for approximation. The linear interpolation example, shown as a dashed 

line in Figure 1-11, is for a straight line from the origin to (30,20). This straight line is 

approximated by three shorter straight line segments. The direction changes by 4.0° 

each time.

On the other hand, Figure 1-12 illustrates how the required circular arc, shown as 

dashed, is approximated by three straight line segments. This circular arc is from (0,20) 

to (20,0), centred at the origin. The changes in direction are 33.7° each time. Generally, 

if the straight line segments are longer, there will be a greater difference between the
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20

18

Desired Path16

14

12
Planned Path

10

8

6

4

2

0
50 10 15 20 3025

X-axis (steps)

Figure 1-11: Linear Interpolation for Straight Line (0,0) to (30,20) via Points (10,7) and

(20,13).

Desired Path

15  -

Planned Path

10 -

0 5 10 15 20

X-axis (steps)

Figure 1-12: Circular Interpolation for Circular Arc from (0,20) to (20,0) with Centre

(0,0) via Points (10,18) and (18,10).
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desired path (arc) and the planned path (straight lines). Also, larger angles between 

segments could cause vibrations unless the machine slows down.

Investigations of multi-axis stepper motor motion control systems have identified three 

major problems:

1. Vibrations: The end effector can be subjected to vibrations [17]. Some of these are 

due to large variations in the rate of command pulses, as illustrated in Figure 1-13, 

caused by the interpolation algorithms. Others are due to the dynamic behaviour of 

the machine, caused for example by the friction or resonant frequencies of the 

machine.

2. Position errors: Significant separation between the interpolated path and the desired 

path can be caused by the interpolation algorithms [4]. The dynamic behaviour of 

the machine can sometimes increase these errors.

3. Varying resultant speed: The desired shape is required to be machined at a 

predefined speed (also called feedrate). However, existing systems are not always 

able to maintain a constant speed throughout the machining process [18].

The problems discussed above will result in unsatisfactory resultant path following. 

Vibrations and position errors cause small errors in the shape. Vaiying speed and 

vibrations affect the quality of cut.

The Intelligent Machines group in The Nottingham Trent University has investigated 

the stepper motor motion control system. Previous researchers in the group have 

managed to identify the source of errors generated during machining [19] [20] (an 

example of rough motor motion during acceleration is shown in Figure 1-13) and have 

developed techniques to reduce the errors, such as the Variable Pulse Control algorithm 

with look back and look ahead feature [19] and algorithms for a DSP (Digital Signal 

Processor) filter [20]. These previous methods have aimed to reduce variations in pulse 

rates after they have been generated.
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The research described in this thesis aims to generate pulses without the large variations 

in pulse rate. It concentrates, on the development of new smooth interpolation and 

acceleration algorithms to generate the appropriate pulse timings for multi-axis CNC 

machining in a different way. These timings are generated according to the geometry of 

the path. Thus, smooth streams of command pulses are maintained as much as possible 

in order to minimise the chance of vibrations caused by large variations in the rate of 

command pulses. At the same time, errors in position are kept low.

Speed (m/s)

Rate of Input Pulse;

Measured Response

Time (s)

Figure 1-13: Example of Vibrations during Acceleration (Adapted from [5]). Command 

pulses are sent in blocks, each block at a higher rate than the previous one.

To illustrate how machine vibrations can affect the resultant path, Figure 1-14(a) shows 

an example of engraved shape from the Pacer Ltd CNC machine. At certain segments of 

the shape, Figure 1- 14(b), it can be seen that machine vibrations have occurred, 

resulting in a rather rough finish.
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Rough Finish caused by 
M achine Vibrations

(b)

Figure 1-14: Example of Machined Shape from Pacer Ltd CNC Machine, (a) Full shape; 

(b) Detailed view of the shape showing rough finish.
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1.3 Aims and Objectives

The work described in this thesis has investigated how to improve the motion of a 

multi-axis stepper motor controlled system. The aim of this research programme has 

been to improve the smoothness and accuracy of continuous path motion in a discrete 

domain.

Specifically, the aims are:

• to reduce sudden variations in pulse rate, which are a serious cause of vibrations;

• to improve the accuracy of the path following by avoiding the need for splitting 

the path into facets;

• to achieve smoother control of the resultant speed of the end effector.

Different components of an open-loop stepper motor controlled system have been 

analysed. These include the controller and the mechanical parts of the system, such as 

the stepper motors, etc. The research has concentrated on the controller, particularly the 

interpolation and the acceleration algorithms. Therefore, previous interpolation 

algorithms have been investigated to determine the smoothness of the resultant path 

following and the effect they have on the axis motion. The algorithms used by a 

commercial motion control system are also analysed.

Specifically, the objectives are:

• to develop understanding of the components of a stepper motor control system;

• to investigate parametrisation of curve description for smooth motion control;

• to develop algorithms to generate pulse timings for interpolation of such 

parameterised curves for stepper motors;

• to evaluate the interpolation algorithms at constant speed under simulation;

• to develop further algorithms for smooth acceleration and deceleration 

appropriate for use with the interpolation algorithms;

• to evaluate the acceleration and deceleration algorithms under simulation.

• to perform initial testing of the practical implementation of the algorithms.

- 1 8 -
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The parametrisation of various curves has been investigated to assist in the development 

of new interpolation algorithms, which follow the path geometry closely. The pulse 

timings are generated according to this parametrisation technique. This is important to 

ensure smoothness of the train of command pulses.

Further work includes investigation of acceleration algorithms. Acceleration algorithms 

are important to ensure smooth motion without vibrations at the beginning or the end of 

the machining. Therefore, smooth acceleration and deceleration appropriate for use with 

the interpolation algorithms have been developed and implemented.
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1.4 Thesis Outline

This thesis is structured into seven chapters. Chapter 1 provides the framework of the 

thesis. It gives a brief overview of Computer Numerical Control (CNC), which is used 

in many manufacturing systems. It discusses the historical development of 

manufacturing and presents some of the machining tools used in manufacturing 

factories today. The different components of CNC machine tools are also described. 

Later in the chapter, the aims of this thesis are introduced, based on the problems 

identified.

Chapter 2 outlines the principles of interpolation algorithms used in a machine control 

unit of a CNC machine. Existing algorithms are also presented in this chapter. Since the 

research described in this thesis concentrates on the interpolation algorithms, much 

emphasis is put on the advantages and disadvantages of these interpolation algorithms 

and how they affect the smoothness of the resultant path following. In addition, the 

principles of acceleration algorithms for use with high speed machining are discussed, 

together with the possible system architecture of such a motion control system.

Based on the results of the literature survey on the various components of the motion 

control system, the new interpolation algorithms for use with stepper motor controlled 

systems are described in Chapter 3. The algorithms developed include interpolation for 

straight lines and circular arcs. The principle of operation of these algorithms is 

presented here.

To accommodate high speed machining with the new interpolation algorithms, new 

linear and parabolic acceleration algorithms have been developed and implemented. The 

principles of these acceleration algorithms are discussed in Chapter 4. The new 

algorithms are compared and evaluated.

Chapter 5 outlines the simulation methods used to assist evaluation of the algorithms 

developed. There are four simulation methods, each with different features. These allow 

the demonstration of both the simulated path when using the new algorithms and a plot 

of the resultant position errors. One method is used to provide a plot of the axis speed.

- 2 0 -
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Chapter 6 presents the results of the new algorithms from the different simulation 

methods developed for the evaluation platform. The results can be categorised into three 

categories: the interpolated path, the position errors and the variations in speed. The 

experiments performed include both interpolation at constant speed and interpolation 

including acceleration. Initial results from the practical implementation are also 

presented.

Chapter 7 concludes the thesis with discussion of the work conducted and the 

achievements of this research. Ideas for future work are also highlighted.

- 2 1  -
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2 Survey of CNC Systems

This chapter presents the literature survey, which supports the Author’s proposal for an 

improved system. The literature survey covers six distinct areas. The first, Section 2.1, 

includes a brief description of the machine drives and how the CNC machines can be 

classified. The different machine drives used are compared to justify the reason for the 

stepper motor being chosen as the main drive for the system.

Section 2.2 outlines the design considerations for a modern motion control system. This 

includes discussion of the different components contributing to the success of a 

machining process and a description of the most commonly used machine tools.

The interpolation algorithms already used are explained in Section 2.3. Since 

interpolation plays a vital role in smooth continuous path generation, special attention is 

given on the advantages and disadvantages of the different types of interpolation 

algorithm. Small errors in the interpolation algorithms can greatly affect the cut quality.

In Section 2.4, the acceleration algorithms are discussed. Because of the dynamic 

behaviour of the motor, it can only be given an initial start-up speed demand, which 

does not exceed the maximum pull-in speed. For higher speeds, the motor can be 

accelerated without losing synchronisation, provided that the pull-out torque limit for 

that particular speed is not exceeded. The pull-out torque limit depends on speed and is 

a characteristic of each motor or drive system.

Section 2.5 investigates the system architecture. This includes a description of the 

different possible system architectures employed by the industiy today. This section 

also explains how multi-processing can be used on the machine control unit to enable a 

higher processing capability, and thus increase productivity.

An example of a practical stepper motor control system for smooth continuous path is 

also included at the end of the chapter, Section 2.6. This practical system is based on the 

system employed by the collaborator of this research, Axiomatic Technology [13].



Chapter 2: Survey of CNC Systems

2.1 CNC System s

Computer Numerical Control (CNC) is the process of manufacturing machined parts 

using numerical data [21]. Production is controlled by a computerised controller, called 

the motion controller. The motor controller uses a motor to drive each axis of a machine 

tool. A program, consisting of numerical point data and motion control commands, is 

then loaded into the machine’s computer [22].

The most common drives for machining system are the stepper motor and the 

servomotor. The stepper motor has the benefits of rigidity, high reliability and 

simplicity in construction, low cost and direct digital control [5][23]. A stepper motor 

controller can be implemented in open loop controlled architecture, thus reducing the 

cost of designing the system [24]. This type of motor is digital in nature, so, the 

interface is much simpler to design. They provide excellent torque at low speeds, up to 

5 times the continuous torque of a brush motor of the same frame size or double the 

torque of the equivalent brushless motor [3]. Therefore, there has been increasing use of 

stepper motors in recent continuous path CNC applications. The main disadvantage is 

that the maximum speed depends on the pull-out torque [21].

The servomotor, on the other hand, can only be used in a closed-loop architecture [21]. 

Therefore, encoders have to be used to provide feedback [5] for the controller, which 

increases the cost. With feedback information, any errors in the machining process can 

be corrected in the following command. However, the servomotor can perform at higher 

speed than stepper motors have been able to achieve [21].

Today, the improvements in stepper motor drive design have pushed the speed 

limitation to a higher limit enabling it to be used for continuous path motion control 

system [ 17][25] [26] [27] [28].



Chapter 2: Survey of CNC Systems

2.1.1 Open-Loop and Closed-Loop System

Closed-loop control refers to system with feedback, whereas open-loop control means 

that there is no feedback. In an open loop system, the controller has no information on 

the effect of the command pulses that it has just generated. As explained earlier, an 

open-loop system can only be used with a stepper motor. A stepper motor is a device 

that normally produces rotation through a fixed angle in response to an input pulse [29]. 

This causes the CNC machine to move one linear step with the help of a leadscrew. The 

electromagnetic effect of the combination of the stator and rotor of the stepper motor 

will hold the motor at the required position [29]. If a number of pulses are sent, the 

corresponding number of linear steps will normally be moved. The digital nature of the 

stepper motor makes the implementation of the drive process easier. The open-loop 

control system is indeed a less expensive approach when compared to its closed-loop 

counterpart.

An open-loop system is less costly and is easier to implement. However, the control has 

to be based on the assumption that the required change in position is achieved for every 

command pulse sent out [23][29]. Therefore, any errors are not compensated. These 

errors can be caused by the excitation of machine dynamics [5]. For instance, if the 

acceleration of the command pulses exceeds the pull-out torque limit, the result may be 

in loss of synchronisation (missed steps) or the motor may stall [29]. Typically, an 

open-loop system is only suitable for a lower torque motor, such as a stepper motor. A 

closed loop control system is equipped with encoders to provide the position and speed 

data for each axis. These data are then used as a reference to compare with the input 

value [21] [30]. By taking the difference between the input value and the measured 

value, the error can be found. In the feedback process, the control program tries to 

reduce this error in the next command. The actuator used for a closed-loop system can 

be a stepper motor [31] but it is more commonly used with servomotors. In fact, a 

servomotor must be in a closed-loop system.

One example of a feedback device that can be used is the incremental encoder. The 

incremental encoder is mounted on the other end of the leadscrew and consists of a 

rotating disc with slots, through which light can be shone [5][21]. Light shines through
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these slots and is detected with a sensor on the other side. As the disc rotates, the sensor 

can detect the presence or absence of the light beam. The change from absence to 

presence of the light beam generates a pulse. A series of pulses are generated when the 

disc is rotated. The angular displacement and speed can be measured by counting these 

pulses over time.

The main advantage of a closed-loop system is the ability to compensate for any errors 

by adjusting the next command. Furthermore, servomotors used in a closed-loop system 

have higher torque ranges when compared to stepper motors [3]. The main disadvantage 

that the closed-loop set-up is much more expensive than the open-loop system. Another 

disadvantage is that it is more complex.

2.1.2 Pomt-to-Point and Continuous Path Systems

With a point-to-point system, the path from the starting point to the final point is not 

controlled. Instead, only the numerical value of the starting and final points coordinates 

are provided in the part program. One example of a point-to-point system is a drilling 

machine. In a drilling machine, the machined object is moved until the centre of the 

hole to be drilled is directly beneath the drilling tool [21]. Then, the drilling tool will be 

moved vertically and the object is drilled to the correct depth. The exact path taken 

between holes does not matter.

On the other hand, with a continuous path system, the tool is usually cutting while it is 

moving. If the different axes are moved simultaneously, then the relative speeds 

determine the actual path followed [21]. If both motors move at constant speed, a 

straight line will be cut. For a non-linear motion, the speed for the axes will need to 

change during the machining process. Figure 2-1 illustrates the individual axis speed 

and the generated path for an anticlockwise circular-arc interpolated at constant speed.

Part (a) of Figure 2-1 illustrates the magnitude of the X-axis speed while (b) shows the 

magnitude of the Y-axis speed. The relative speeds for X and Y generates an
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time

time

Y

Figure 2-1: Example of Ideal Continuous Path Motion for A Circular Arc: (a) Magnitude 

of X speed; (b) Magnitude o f Y speed; (c) Plot o f Path (The direction is negative for X and

positive for Y).
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anticlockwise first quadrant of a circle as in (c), because they are sine and cosine waves 

respectively.

The programmed feedrate is the required speed for the cutting tool along the continuous 

path. This is used by the controller to provide appropriate command signals for each of 

the axes [15]. The interpolator program in the controller achieves motion appropriately 

between the points that are known. One example of a continuous path system is a 

milling machine [3].

2.1.3 Incremental and Absolute Systems

An absolute system is a system in which all motion commands are relative to one 

reference point [21]. This is known as the origin, or sometimes the zero point. 

Programmed commands refer to the position relative to this zero point.

In the incremental system, the end points for movements are specified relative to the 

tool’s current position, rather than the zero point. Each new instruction in the part 

program refers to the distance from the current point to the next one.

The benefit of using an absolute system is the ease in determining the current position 

for any command [21]. In case of emergency, when the machine has to be stopped and 

the cutting tool is reset to the initial position, the current position of the cutting tool can 

be restored by just moving its coordinate to the required position with respect to the 

zero point. However, this is not possible with the incremental system, where the whole 

process will have to be restarted when an interruption has occurred.

In addition, the absolute system allows insertion of additional dimensional data within 

the part program. Any addition or modification of dimensional data does not affect the 

part program. Figure 2-2 illustrates a simple example of modification done to the initial 

machining path, where part of the inner closed curve has been removed and replaced 

with straight lines. The programming commands for the rest of the part program remain 

the same for an absolute system, including the unmodified segments of the inner curve.

- 2 7 -
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(b)(a)

Figure 2-2: Example o f M achining Path for an Absolute System: (a) Before Modification;

(b) After Modification.

On the other hand, in an incremental system the part program will have to be 

reprogrammed from the point of the modification [21]. For the example shown above, 

the incremental system will require the programming commands for both the closed 

curves to be reprogrammed (assuming that the inner curve is machined first).

An example where it is easier to modify an incremental system is mirror image path 

following, where one part of the object is in symmetrical geometry to another part of the 

object. Only the sign of some of the corresponding commands needs to be changed. 

Calculation of new motion commands is not required. An example of a mirror image 

machining is illustrated in Figure 2-3. In an incremental system, the part program to 

machine Figure 2-3 (b) can be similar to the part program used for machining Figure 

2-3(a). The only changes will be to invert the sign for the Y-axis movements.

In practice, the tool path is offset from the desired path by the tool radius to allow for 

material removed during cutting. Koren [21] describes how this is performed for both 

the line and circular arc while Chai et al. [32] developed a tool-radius compensated 

parabolic path.

- 2 8 -
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(a)

(b)

Figure 2-3: Example of M irror Image M achining for an Incremental System. The path in 

(a) can be converted easily to the path in (b) by changing the sign o f the movements in

the Y-Axis.

- 2 9 -
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2.2 Design Considerations for a Modern CNC System

After looking at the different types of CNC system and the applications involved, this 

section describes the different components of a CNC system.

Three critical units of a CNC system are as follows:

• Computer Aided Design / Computer Aided Manufacturing (CAD/CAM)

• Motion Controller

• Machine Tool

2.2.1 Computer Aided Design / Computer Aided Manufacturing 
(CAD/CAM)

Programmers use this powerful tool to simplify the task of writing and testing part 

programs [33]. The CAD/CAM is a technique of using a computer-aided programming 

language to prepare part programs.

Computer Aided Design (CAD) is a geometric modelling system used to produce 

engineering drawings of parts [2]. One of the important features of a CAD packages is 

the interactive graphics, which allows the programmer to manipulate the design directly 

through graphical representation of the product.

Computer Aided Manufacturing (CAM) is a way of using the computer to assist in the 

manufacture of a part [2]. Previously CAM systems have been designed to generate a 

complete word address program for machining a part on a particular CNC machine. The 

operations performed by the CAM system includes accepting data from CAD packages, 

selection of tools to be used for a particular job, specifying the feeds and speeds, and 

generation of the final CNC program.

Since both CAD and CAM make use of computers, their functions can be performed by 

the same system. CAD and CAM together create a direct link between product design

- 3 0 -
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and manufacturing [6] [34]. The coupling of CAD and CAM considerably shortens the 

time needed to bring a new product to market.

In the early years of NC programming, the part programmer extracted the appropriate 

dimensional data of the product to generate a sequence of program instructions 

combining both data and motion parameters. Today, with the advent of CAM, the part 

program can now be produced by computer software using the product design as input 

[7][35]. This permits the computer to take over most of the tedious work from the part 

programmer.

The system can be used for off-line checking of the program, where the resultant tool 

paths are graphically displayed on the computer screen. Furthermore, the system can 

determine the optimum tools and speeds for the material selected.

Many machines, such as Pacer machines [12], are controlled by an internal language, 

which will be generated by the CAD/CAM package. Thus, the commands (part 

program) are needed to communicate with the system motion controller. This 

CAD/CAM package will accept design drawing inputs that are in HPGL format and 

other formats.

2.2.2 Motion Controller

In the past, the part program was maintained in a storage device, normally punched 

tape. The information punched on the tape was inserted into the NC system by means of 

a tape reader. In an NC system, the tape reader reads one block of data and the 

instructions are then executed for that block. The same process happens for each block 

of data. One block of instructions corresponds to one segment of the required path. By 

contrast, CNC systems allow the punched tape to be read only once and then stored in 

the computer memory. This removed pauses between blocks of instructions. Today, the 

motion controller communicates with the CAD/CAM package via a parallel or serial 

data line, reducing the likelihood of data loss (also known as direct numerical control, 

DNC) [36]. The motion controller used by Pacer consists of a PC extension card [12].

-31 -
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The motion controller is responsible for performing the following tasks:

• Data Decoding

• Interpolation

• Acceleration and Deceleration Planning

The data received from the CAD/CAM is first decoded by the motion controller. The 

information extracted includes the direction of motion, the end point position and any 

auxiliary control signals. From the vector information, the interpolation process is 

executed by providing the appropriate command signals (pulses) between two 

successive points from the dimensional data [37]. In order words, it coordinates the 

motion of machine axes to generate the required machining.

The acceleration and deceleration planning process is important, in order to ensure 

smooth motion without too much vibration at the beginning and the end of the 

machining [38]. One controller may operate in conjunction with several drives and 

motors in a multi-axis system.

2.2.3 Machine Tool

A few of the more commonly used machine tools are described here:

Milling: Material is removed from a workpiece using a rotating cutter. Single or 

multiple-axis control moves can generate either simple two-dimensional patterns or 

more complex three-dimensional shapes [2].

Turning: Objects with rotational symmetry are produced using a cutter that moves 

perpendicularly through the centre plane of a rotating workpiece [2].

Wire EDM: Electrical Discharge Machining, or EDM, uses an electrical discharge from 

a thin wire to achieve fine cuts through hard metal parts [2]. Most EDM machines use 

two parallel planes in which each cutting point can move independently of the other.
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This is useful in producing tapered pieces used in the production of punch dies for 

stamping.

Laser, Flame, and Plasma cutting: This type of machining uses a powerful light 

beam, a concentrated flame, or a plasma arc, to remove material [2].

Punching and nibbling: These machines are used to cut patterns in sheets of metal by 

the use of punch dies [2]. Repeated punches along a path achieves a nibbling effect that 

allows cutting of complex patterns.
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2.3 Previous Interpolation Algorithms

As described in Chapter 1, the motion controller of a CNC system receives end point 

position information from the part program. In addition, further information about the 

type of continuous path to be followed is also provided. Most commonly used types are 

made up of linear and circular-arc segments, though higher order curve types are often 

available. To perform the machining, interpolation is required. Interpolation involves 

defining the path and rate of travel of a cutting tool when provided with a coded 

mathematical description of the path [39]. The motion between programmed end points 

of segments must be defined in order to result in smooth curves or straight lines. In 

other words, it must generate coordinated movement of the separate drive axes in order 

to achieve the desired path of the tool relative to the workpiece.

Interpolation is defined as the process of synthesising a prescribed curve from a large 

number of incremental steps [40]. NC systems contain hardware interpolators (which 

consist of digital circuits), while in CNC systems, the interpolator is mostly 

implemented in software. Software interpolators can be categorised into reference pulse 

and reference word interpolators, as explained below.

Reference pulse interpolators will output a stream of command pulses [41]. They are 

based upon an iterative technique controlled by an interrupt clock. A single iteration of 

the interpolation routine will be executed for every interrupt signal. At each stage, it is 

possible that an output pulse is generated. This pulse advances the corresponding 

machine axis by one motor step. Therefore, the maximum attainable feedrate, or the 

axis speed, is inversely proportional to the execution time of a single iteration. The 

drawback of such interpolators is that the maximum speed is limited by speed at which 

the computer can process the data [41].

A reference word interpolator repeatedly sends out a reference word indicating the 

commanded position for a certain time frame [42]. Each word normally corresponds to 

more than one step. Therefore, the maximum speed is not limited by the computer 

speed. With such interpolators, a circle is approximated with straight line segments. In

- 3 4 -
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Sections 2.3.1 to 2.3.3, examples of reference pulse interpolators are described, while 

examples of reference word interpolators are discussed in Sections 2.3.4 and 2.3.5.

2.3.1 Digital Differential Analyser (DDA)

Digital Differential Analyser (DDA) interpolation builds upon the idea of integrating 

the speed to obtain the required distance [40] [43][44] [45]. Hardware DDA is a 

computer or logic circuit that uses numbers to represent analogue quantities when 

solving differential equations [39]. It has been found that such technique can also be 

employed to perform the required interpolation. In the early days of DDA interpolators, 

a hardware-type interpolator was normally used. It consists of a network of integrators. 

A schematic diagram of a DDA integrator is illustrated in Figure 2-4 and Figure 2-5 

[40] the symbolic representation of a DDA integrator.

Command pulse

Adder

Register (v)

Accumulator (Acc)

Figure 2-4: DDA Integrator.

At

Command
pulses

Figure 2-5: Symbol for DDA Integrator (Adapted from [40]).
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The principle of operation of DDA is to perform digital integration on the speed by 

employing successive rectangular approximation methods [21], as illustrated in Figure 

2-6 for one axis.

v

Av

Figure 2-6: Digital Approximation o f a Continuous Function (Adapted from [21]).

Let x(t) be the stepper motor axis position at time t and v(/) its speed. Then x(t) is equal 

to the area under the curve v(t) [21].

x(t) = J Q vdt (2-1)

If Xk is the value of x when t -  kAt (after k intervals of At), x/c is approximated as:

= 2>.-A / (2-2)k
i=l

The value of x/f in equation (2-2) can be related to the previous Xk-\ value as follows:

A-i
xk -  y 'v jA t  + vkAt (2-3)

(=i

Therefore,

At* (2-4)

- 3 6 -
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where Axk = vkAt (2-5)

The hardware-type integrator operates in an iterative mode at a frequency/ provided by 

an external clock, where:

The required speed, vk, at each external interrupt clock is computed by adding the 

increment Av/C to the preceding v*_i, as in (2-7). The vk value is stored in an /7-bit 

register, limiting its range of allowable values to 2" [40]. The variable v* is added to the 

previous contents of the accumulator, Acc, as in (2-8).

If the value of Acck is higher than (2n -  1), an overflow is generated, which causes an 

axis motion command pulse.

For linear interpolation the motion can be expressed in terms of the constant velocity 

components, u and v, as follows:

To design a hardware-based linear DDA interpolator, two of the DDA integrators 

discussed above can be used, as shown in Figure 2-7.

(2-7)

Acck = Acck_, +vt (2-8)

X =  ut
(2-9)

y — vt

An example of DDA interpolated straight line is discussed below. This line is from (0,0) 

to (3,2) with the n value chosen to be 3, giving 2 '-8  samples. The table below lists the 

eight steps of the integration process.
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Ax

Figure 2-7: Linear DDA Interpolator.

Table 2-1: List o f Interpolation Steps (Hardware DDA Interpolator).

Timing Pulse X Step in x y Step in y

Preset 0 0

1 3
8

2
8

2 6
8 OO 

I 4̂

3
i i

8 +1
6
8

4

OO 
I 1 +1

5

►—*
 

OO 
I

8

6
2 —

8 +1 8

7 5
2 -

8 8

8 3 +1 2 +1
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Figure 2-8 is a plot of the resulting cutter path when simulated using the Zero Order 

simulation (which will be discussed in Chapter 5) where the machine is assumed to 

move the whole step instantaneously when each pulse is received. The overall speed is 

controlled by changing the clock frequency of the integrators.

2

0
0 1

X-axis (steps)

Figure 2-8: Planned DDA Linear Cutter Path (Full Line) for the Straight Line from (0,0) 

to (3,2) (Dashed Line). This corresponds to the steps illustrated in Table 2-1 for the DDA

Hardware Interpolator.

For DDA circular arc interpolation, the speed components of the individual axis must 

always be generated tangentially to the arc. This circular interpolation is limited to one 

quadrant. For arcs that pass through more than one quadrant, this arc will be divided 

into successive circular arcs each within one quadrant. The discussion below is for anti­

clockwise first quadrant circular arc interpolation. The circular arc centre (0,0), radius, 

R, can be represented as follows [21]:

where

X 2 + Y2 = R 2 

X  -  Rcoscot 

Y -  R sin cot

(2-10)

(2 - 11 )
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Thus, the speed commands can be calculated using differentiation:

dX  _ .V = -----= ~o)R sin cot
x dt

r, dYVv = —  = coR cos cot 
y dt

Thus,

AX -  -coR sin cot At -  + A (R cos cot)

AY = coR cos cotAt = -A(-Rs\ncot)

The registers are initially loaded with the following:

Vj = -R  sin fu(0) 

v2 = R cos ©(0)

The structure of the circular DDA interpolator is illustrated in Figure 2-9.

(2-12)

(2-13)

(2-14)

+Av
Vi = -i?sin<3# -► Ax

-Av

+Av

-Av

Figure 2-9: Circular DDA Interpolator (Adapted from [21]).

The software DDA interpolation [21] is also designed with a similar principle. In the 

hardware-based interpolator, a fixed length register («-bit) is used. On the other hand, a

- 4 0 -
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variable length register (i.e. floating point) is used in the software DDA integrator. 

When using a n-bit register, the ratio between the machine tool feedrate v and the 

frequency of the interpolator is shown below:

— = —  (2-15)
/  2"

where L is the length of the line and /is  the interrupt frequency.

For the software DDA interpolation, floating point values are used and the 2" in

equation (2-15) can be replaced by the actual length, L. Therefore,

v  =  f  (2-16)

The interrupt frequency is the required feedrate. The software implementations provide 

a higher degree of flexibility. Therefore, the progressive increase in microprocessor 

performance favours the software implementation of the algorithm. For the DDA 

interpolation used for comparison later in this thesis, the software implementation is 

used. The main advantage of the circular DDA interpolator is the constant resultant 

speed along a circular path. The disadvantage of such an interpolator is the cumulative 

position error, which results in the circular path not reaching its end point exactly. The

cumulative position error is caused by the approximation used as follows:

X.,,  =  X; +  VyAt  ,+1 , (2-17)
y M = y , + v ,  At

For a straight line vx and vy are constant, so there is no error, but for a circular arc they 

change over time.
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2.3.2 Search-Step

The Search-Step interpolation algorithm is mainly used for open-loop continuous path 

motion control system [4]. The Search-Step algorithm is based upon the implicit 

representation of a curve. The curve is defined by a non-parametric equation of the form 

J{x,y)=0. In other words, all points lying on the required curve satisfy the equation 

fix,y)=0, while points not lying on the curve will have a non-zero value. The sign of the 

non-zero value normally depends on which side of the curve the point is lying and this 

value is normally a good enough measure of closeness to the curve at that particular 

point [40] [46].

Interpolation proceeds by moving the cutting tool along a single coordinate axis at a 

time. There are four possible direction of interpolation for the next interpolated point, 

X+, X-, Y+ and Y- [47]. As described earlier, points not lying on the line or curve will 

have a non-zero value fo r/x ,/) . Therefore, the next interpolation step is chosen to be 

the step movement that will try to switch the sign of the value of 'flx,y). For instance, if 

the current interpolated point has a positive value for j{x,y), the next interpolated point 

will be chosen to be the one with a negative value. The direction will also be 

considered.

Linear interpolation with the Search-Step algorithm is based on the straight line 

function:

where (x6., is the start point and (xe, ye) is the end point. AX  and AT are constant for 

any particular line. First quadrant linear interpolation is considered in the following 

discussion. Taking a step forward in the X-axis,

/ (x , y) = (xe -  xs )y -  (ye -  y s )x 

= AXy -  xAY
(2-18)

f ( x  + \ ,y )~  AXy -  (x + 1)AT 

= A X y -x A Y -A Y  

~ f ( x ,y )  — AY (2-19)

- 4 2 -
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Similarly, taking a step backward in the X-axis,

f i x  -1 , y) = f i x ,  y)  + A Y (2-20)

When a motor step is moved in the positive direction of the Y-axis,

f ( x , y  + l) = AX(y + l ) - x A Y  

= AXy + AY -  xAY

- f (x>y)  + AX (2-21)

Similarly, when a motor step is moved in the negative direction of the Y-axis,

f ( x ,  y  -1) = f i x ,  y) -  AX  (2-22)

As an example, a cutting tool is moved from the initial position (0,0) along a straight

line until position (3,2). For this example, j[x,y) = 3y  -  2x and AY = 3 and AT = 2. 

Results of the computed steps are listed in Table 2-2. The resulting cutter path (Zero 

Order simulation) is illustrated in Figure 2-10.

Table 2-2: List o f Interpolation Steps (Search-Step).

Step ./(Wf) X step Y step

0 0 0 0

1 -2 +1 0

2 +1 0 +1

3 -1 +1 0

4 +2 0 1

5 0 +1 0

Circular interpolation using the Search-Step algorithm is based on the implicit 

representation of the circle. For the example of a circle with centre (0,0) and radius r,
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0 ............. 4--------------------------- r—------------------------- 1
0 1 2  3

X-axis (steps)

Figure 2-10: Planned Search-Step Linear Cutter Path (Full Line) for Straight Line from  

(0,0) to (3,2) (Dashed Line). This corresponds to the steps illustrated in Table 2-2.

2 2 2f[xy) = x + y  -  r = 0 . The following discussion is for anticlockwise first quadrant 

circular interpolation. After one positive step in the x direction,

/ ( x  + \ ,y)  = (x + 1)2 + y 2 - r 2 

= x 2 +2x + l + y 2 - r 2

— f ( x , y )  + 2x + l  (2-23)

Similarly, after one negative step in the x direction results in

f ( x - l , y )  = f ( x , y ) - 2 x  + l (2-24)

On the other hand, when moving one step in the positive y  direction,

f ( x , y  +1) = x2 + (y +1)2 -  r 2 

= x 2 + y 2 +2y + l - r 2

= f ( x , y )  + 2y + l (2-25)

_ 4 4  _
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When moving one motor step in the negative y  direction,

f ( x ,  y  - 1) = f ( x ,  y) — 2y + l (2-26)

With the Search-Step algorithm, the position errors are kept within one stepper motor 

step. It has a higher accuracy when following a circular path compared to the DDA 

algorithm. Unlike the DDA, Search-Step does not allow for constant speed during 

interpolation. In fact, for circular-arc Search-Step interpolation, there is a speed

variation up to a factor of V2 around the curve [40]. Furthermore, each movement is 

constrained to one of four possible directions (parallel to one of the 2 axes). Pak et ah 

[48] suggest a special pulse filtering algorithm to solve the speed problems. Their work 

is mostly concerned with the approximation of the resultant speed rather than the 

precise speed value.

2.3.3 Direct-Search Interpolation

For Search-Step Interpolation described in the previous section, there are only four 

possible directions of interpolation (parallel to one of the axes). In other words, only 

one axis is allowed to move at any instant. The interpolated path will follow the 

required path more closely if it allows for diagonal interpolation to the next interpolated 

point. This means that the interpolation will involve movement in both axes.

The principle of operation of the Direct-Search algorithm (an improvement to the 

Search-Step algorithm) is similar to the Search-Step interpolation [49] [50]. It allows 

eight different directions of motion, because diagonal movement is also allowed. Like 

Search-Step algorithm, it still suffer a variation of speed up to a factor of V2 . The fix,t) 

function in the Search-Step algorithm is used as an indication of the distance of the 

interpolated points from the required line or curve. When /(x,y) is zero, the interpolated 

point falls on the line or curve. The first step is to determine the direction of 

interpolation. With this information, the number of possible interpolated points has been 

reduced to three, movement in X, Y or both axes together. For each possible new point 

(x, y) the path error is calculated. The one yielding the least path error will be applied.
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The value for/(x,y) is used as an indication of the error. The three possible interpolated 

step results in the following changes in the errors:

Step in X-axis, f ( x  +1, y) = f ( x ,  y) + Afx (2-27)

Step in Y-axis, f ( x ,  y  +1) = /(* , y) + Afy (2-28)

Biaxial step, f ( x  +1, y  +1) = f ( x ,  y)  + Afx + Afy (2-29)

where

A/v = ~(ye ~ y s), and (2-30)

Af y = X ' - x ,  (2-31)

for linear interpolation. On the other hand, for circular arc interpolation,

Af x = 2x +1, and (2-32)

A/,, = 2 ^  + 1 (2-33)

An example of path (with Zero Order simulation) is illustrated in Figure 2-11.

2

C/3
f t ,£4S 1

0
0 1 2  3

X-axis (steps)

Figure 2-11: Planned Direct-Search Linear Cutter Path (Full Line) for Straight Line from

(0,0) to (3,2) (Dashed Line).

- 4 6 -
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2.3.4 Bresenham Interpolation

Bresenham interpolation is often used in computer control of digital plotters. The 

working area is divided into small squares. The side length of the square is normally 

selected to be the shortest possible incremental movement. A typical mesh size is 

l/100th of an inch [51]. The plotter can move linearly from a point on a mesh to any 

adjacent point on the mesh. This allows eight possible directions of motion like Direct 

Search interpolation. The data to be plotted are expressed in an (x,y) rectangular 

coordinate system which has been scaled with respect to the mesh.

To perform Bresenham interpolation, the octant of the required path has to be first 

determined. By doing this, the number of possible motions is reduced to two. The 

example in Figure 2-12 shows the interpolation of a line in the first octant starting from 

(0,0) to (3,2) (Zero Order simulation). The two possible directions of interpolation are 

labelled Ml and M2. The selection of either Ml or M2 direction depends on the 

perpendicular distances of the two possible mesh cross points to the actual path [51]. 

The path with the shorter distance will be selected. For example for the first step, pi is 

chosen as the first step movement instead of p2 because of its shorter perpendicular 

distance. For straight lines, the same result is obtained as with the Direct Search 

algorithm. The two algorithms work on the same principle (finding points with smallest 

position error) but using a slightly different approach for calculating the error. For 

higher order curves, the curve has to be broken up into short straight lines before 

performing the Bresenham interpolation.

Figure 2-13 illustrates how the two possible directions of interpolation are determined 

when the octant of interpolation is known. As in the case of Search-Step interpolation, 

the Bresenham algorithm suffers from variation of resultant speed. When travelling

along a circular arc, the speed variation can be up to a factor of yfl [4], Liu et al. [52] 

have extended the Bresenham’s algorithm to spatial straight lines.
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2

M 2

M l
1

M 2

0
0 1 2 3

X-axis (steps)

Figure 2-12: Planned Bresenham Linear Cutter Path (Full Line) for Straight Line from

(0,0) to (3,2) (Dashed Line).

M ^ M 2

M l 4 \
2

/  1

M 2^
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Figure 2-13: Orientation of Possible Movements Relative to the Axes.
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2.3.5 Parametric Interpolation

With increasing demand for cutting of complex paths, parametric interpolation has been 

developed in recent years [53][54]. Complex paths can be divided into fewer segments. 

Compared to the conventional interpolators (where one parametric polynomial segment 

may become 10 linear segments), each segment can be expressed as a parametric 

polynomial [55]. Thus, the size of the memory required to store the segments 

information is reduced.

When interpolating a complex path with linear segments, there might be sudden 

changes in actual path direction at the junctions. This can cause vibrations and work has 

been done to reduce this. On the other hand, a parametric interpolator distributes the 

change of direction more evenly along every segment. The drawbacks are high 

computation power and failure to follow the entire path with constant feedrate [56],

For a cutter path P(u) in two-dimensional space which can be represented as 

P(u) = (x(u),y(u) ) , where u is the parameter. A set of two parametric equations define 

x(u) andy(u). For example, for a parametric cubic curve, x(u) and y(u) are of cubic form 

and are given by:

x(u) = axu3 + bxu 2 + cxu + dx 

y{u) = ayu 3 + byu 2 + cvii + d
(2-34)

where ax, bx, cx, dx, ay, by, cy and dy are constant coefficients.a"? u X i u ,xj  u y> u y-> c y

The velocity along this curve, V(u), is expressed as:

(2-35)

where i and j are the x  andy  components.

The function du/dt in the above equation defines the relationship between the static 

information represented in CAD model and the dynamic information needed to control

- 4 9 -
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the CNC machine tool. Taking the magnitude of the velocity and rearranging the 

equation (2-19), an equation for du/dt is obtained as follows [57]:

|V(u)|
dx
du

+
d y \  du 
d u ) dt

du
dt dx^\ 

du )

2

I + dy_
du

(2-36)

(2-37)

Therefore, from the desired cutting speed |V(w)| and the path, the value of du/dt can be 

found. The interpolation is performed by generating intermediate parameter values at 

each time sample, which is then used to determine the position of the next interpolated 

point. The rate of change of the parameter, du/dt, is used in a first order approximation 

to obtain the subsequent parameter value [57][58].

uM = u ,+ ^ - & t  (2-38)
dt

The coordinates of the interpolated point are calculated by substituting ui+\ from 

equation (2-38) into equation (2-34). Equation (2-38) is executed recursively until the 

desired path is fully interpolated. The first-order approximation of Taylor series used 

here has introduced errors resulting in not being able to follow the path veiy close to the 

desired speed. The introduction of second-order approximation [18] can be a remedy to 

the problem but it suffers from high demand for processing power. Another alternative 

is to use a feedback interpolator developed by Lo [59].

2.3.6 Parametric B-Spline Interpolation

When approximating a high degree curve with straight lines and circular arcs, one of the 

problems introduced is the certain jump of curvature at the junction between segments 

[60]. With cubic spline interpolation (or higher degree), the curvature at the junction is 

kept continuous [60][61], Cubic spline interpolation is made up of cubic segments. Two 

conditions are also set at the beginning and end whilst generating the spline [62]. For
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the spline, the number of data points increases heavily in regions with large curvature. 

In such cases, for interpolation with lines and arcs a large number of segments is usually 

also required. This is particularly true if it is required to machine this section using 

linear interpolation. A spline curve represents the path with a smaller number of points. 

However, spline interpolation algorithms usually require a postprocessing unit and 

powerful microcomputer architecture for the machine controller. Therefore, spline 

interpolation is most often used in surface machining, where the sheer amount of data 

justifies a complex calculation algorithm. Many machine tool controllers which claim to 

support spline interpolation, employ a two stage interpolator. The first stage involves a 

coarse grain interpolator, which performs the spline interpolation. The output data (line 

segments) are then fed into a fine grain interpolator which usually employs the linear 

interpolation algorithms.

A B-Spline curve is a type of spline where the shape of the curve is controlled by a 

series of data points called control points or control vertices [62] [61] [63]. One particular 

property of the B-Spline curve is local control [64], by which altering a single vertex 

will only change the shape of a small part of the curve. An example of B-Spline 

interpolation is discussed below for the uniform cubic B-Spline. A cubic B-Spline is 

generated by a weighted sum of basis functions as follows [65]:

0 ,0 0 =  I  %
r - - 3

For the uniform B-Spline curve, Uj+1 = ufr 1, so the equations to define Bj.3(u), Bi.2{u), B{. 

i(u) and Bi.o{u), can be replaced by b.o(i), b.j(i), b.2{i) and b.3(i) which are the 4 

polynomials used to define all uniform cubic B-Splines. Each segment is re- 

parameterised with i where 0 < i < 1 [62],

(0  = 7*3 o

(a) = £>_,(i) = - (1 + 3i + 3(2 -  3,3)
(2-40)

B,-2(a) = M 0  = 7 (4 -6 * 2+3*3)
6

^j-3 (a) = b-i (0 = 4  (1_ 3* + 3/2 -» 3)
6

-51 -
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To perform the interpolation, the B-Spline is treated by considering each of the cubic 

polynomial segments in turn. The coefficients of the /c-th cubic polynomial segment are 

calculated using the value of the control points/vertices [66].

Qk (u) = ak + hku + cku2+ dy  (2-41)

where

« * = - V w +4Kt + r w ).6

ck = \ ( v M - 2

dk =-6 (VM --iVM +3Vk -Vt_,)

S. Bedi [66] has used the forward difference algorithm to implement his B-Spline 

interpolation in software. This algorithm is used to interpolate the cubic polynomial 

segments into straight lines. The requirement is often to interpolate the given points [60] 

and normally a B-Spline curve with the given points as control points is unlikely to have 

the curve passing through those points. New control points for a B-Spline curve passing 

through the given points can be found by using the given points as B-Spline control 

points and then repeatedly modifying them until the curve passes through the original 

given points within the required tolerance.
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2.4 Acceleration Algorithms

Continuous path motion involves simultaneous motion of multiple axes to machine the 

desired curve. Each axis is controlled by an individual stepper motor. Due to the 

dynamic behaviour of the motor, it can only be given an initial start-up speed demand, 

provided that speed does not exceed a maximum value, known as pull-in speed. For 

higher speeds, the motor can be accelerated without losing step (i.e. losing 

synchronisation), provided that the pull-out torque limit for that particular speed is not 

exceeded [29]. The pull-out torque limit is dependant on speed and is a characteristic of 

each motor/drive system. An example of a pull-out torque characteristic of stepper 

motor system is illustrated in Figure 2-14.

200

150

Availabl j torque 
(Pull-out Torque)

100

0 2000 4000 6000 100008000

Speed (steps/s)

Figure 2-14: Pull-Out Torque Characteristics of a Typical Stepper M otor (Adapted from

[72]).

The raw data for acceleration and desired feedrate is pre-processed by the CAD/CAM 

unit. The information contained in the command language for the motion control system 

only provides the overall requirement for the system. The motion control unit in turn 

has to calculate the acceleration and deceleration values in fixed time or distance

- 5 3 -
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SpeedSpeed

Full
Speed

Full
Speed

Time Time(a)
Figure 2-15: (a) Linear Acceleration; (b) Parabolic Acceleration.

intervals. Two of the most commonly used acceleration algorithms are linear 

acceleration (also sometimes referred as the trapezoidal profile) and parabolic 

acceleration [72] [67] [68]. For these algorithms, the speed varies with time either 

linearly or quadratically, respectively, as shown in Figure 2-15.

The speed and distance value are then calculated for the whole design or for a defined 

block [4]. The latter requires a look-ahead system, which ensures that the system can 

stop at the end of eveiy block. As stated earlier, the linear and parabolic acceleration 

algorithms are most commonly used, so they will be discussed in more detail in the 

following sections.

The cutting speed, maximum fast feedrate and rate of acceleration are provided to the 

motion control unit. This information is precalculated by the CAM software tool using a 

knowledge based database system [5]. The controller will then calculate the number of 

steps required along a path segment for the master axis (axis with the highest speed) 

using an interpolation algorithm. Based on this information, the number of steps for 

acceleration, constant and deceleration can be determined.

2.4.1 Linear Acceleration

Linear acceleration is the most commonly used acceleration algorithm where the 

acceleration and deceleration phases of the speed profile are taken to be linear. Thus,

- 5 4 -



Chapter 2: Survey of CNC Systems

the speed changes linearly in these phases, so the acceleration or deceleration rate 

remains constant, as shown in Figure 2-15(a).

The linear acceleration (or trapezoidal profiling) is normally based on a master-slave 

axes relationship when used in a continuous path stepper motor controlled motion 

control system [13]. The master (or primary) axis is the axis with the highest speed 

during a particular segment of interpolation. This speed will be used as a reference to 

calculate the speed for other slave (or secondary) axes. This can cause reduced surface 

quality.

Speed

Master Axis

Slave Axis

Time
Figure 2-16: Linear Acceleration (Trapezoidal Profile).

As explained in the previous section, each stepper motor has a maximum starting and 

stopping speed (pull-in speed), which is dependent on the rotor inertia and the load 

inertia. The motor cannot be started or stopped above the pull-in speed without losing 

steps. In practical applications, this speed is not sufficiently fast to use for the whole 

shape. Therefore, there is a need for the acceleration algorithms (motion profiling). 

From the starting speed to the required speed is where the linear acceleration occurs. 

One way of implementing the linear acceleration is by linear ramping, where a block of 

pulses is maintained at a constant speed before the next higher constant speed block of 

pulses are generated. The acceleration algorithm generates the required speed profile 

from a set of four motion parameters. They are the base speed, maximum speed, 

acceleration rate and deceleration rate [69][70][71]. These motion parameters are 

determined in advance in a CAM software tool. These parameters are calculated taking 

into account the material using a knowledge-based database system [4]. This
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information is included in the command language used (G-code, APT, etc) and then 

transferred to the machine tool controller unit.

The number of steps required for the primary axis for the required path segment is first 

calculated. An acceleration (look-up) table is then generated from the motion 

parameters information and the number of steps in the master axis [4]. A programmable 

timer is then used to perform the linear ramping. It is used to generate a pulse train 

whose frequency depends on a timer preload register. The value to be preloaded into the 

register is obtained from the acceleration table. The layout of the programmer timer is 

illustrated in Figure 2-17,

Acceleration Table

Speed 1 No. of Steps 1

Speed 2 No. of Steps 2

Speed n No. of Steps n

Speed Counter

Pointer

Distance Counter

Pulse Out

Figure 2-17: Layout of a Programmable Timer (Adapted from [70]).

The equation to calculate the number of motor steps in each time slot during 

acceleration or deceleration is shown in (2-42) [70],

VliS.. =
n2A

(2-42)

where i — 1,2,...,«

A — Acceleration or Deceleration rate

Vm = Maximum speed

n = number of speed steps during acceleration or deceleration
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These motor steps are controlled by the microprocessor. The number of discrete speed 

steps, n, should be large enough so that the step change in speed is not too large. The 

number of motor steps during the constant phase (at speed n) is given by (2-43) [70].

S',, = ST -  2(Sj + S2 +... + S„_,) (2-43)

where St is the total number of motor steps.

Since a certain number of motor steps will be made at a particular speed before 

incrementing or decrementing the speed, the velocity profile for the master axis will 

resemble the graph in Figure 2-18. In these applications, the graph is not actually linear 

but a series of steps.

Speed

Required 
Speed

Starting
Speed

Time

Figure 2-18: A Simplified Speed Profile for M aster Axis for a Typical Commercial CNC

System (see Section 2.6).

Linear acceleration results in slow acceleration and much of the available torque is not 

utilised. Linear acceleration in steps is the most basic, but generally results in a longer 

than desirable acceleration time [72] and causes vibrations [5]. Figure 2-19 illustrates an 

example of how vibration is caused by linear ramping.
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Speed (m/s)

Time (s)

Figure 2-19: Example of Vibrations Caused by Linear Ramping (Adapted from [5]) (also

shown in Figure 1-13).

2.4.2 Parabolic Acceleration

Parabolic acceleration is a technique used in a high performance stepper motor 

controller that allows better utilisation of available torque. The parabolic shaped 

acceleration graph can be seen in Figure 2-20. The ‘speed profile’ starts off at the 

standard set starting speed and then, as the motor begins to move, the speed increases 

following a parabolic shape. This also means that the acceleration is decreasing linearly 

throughout the acceleration phase, unlike the case of linear acceleration where the 

acceleration is constant.

A parabolic acceleration algorithm allows a higher acceleration at low motor speed and 

a lower rate at high speed. With this method, much more of the available motor torque 

can be utilised and the stepper motors can be used at higher speeds, Figure 2-21.

- 5 8 -
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Figure 2-20: Parabolic ‘Speed Profile’.
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Figure 2-21: Comparison o f Available Torque & Torque Utilised (Adapted from [72]) for

Linear and Parabolic Acceleration.

Moreover, Dong-11 Kim, et ah [73] has shown that machining accuracy is improved 

with parabolic acceleration in comparison with linear acceleration. This is likely to be 

because linear acceleration involves a sharp discontinuity in the acceleration (the 

transition stage between the acceleration phase and the constant phase), which tend to
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cause increased vibration and overshoot. Figure 2-21 illustrates the comparison of the 

torque utilised when using either the linear and parabolic acceleration from Palmin [72].

Palmin [72] highlighted three main benefits derived from parabolic acceleration:

• Servo performance with stepper motor -  Controller systems, which integrates 

the powerful parabolic ramping tool, can bridge the gap between servo and 

stepper motors. This will reduce the development cost, as stepper motors are 

much cheaper than servomotors.

• Size and Weight Reduction -  Maximising torque utilisation permits the 

application of smaller stepper motors.

• Complete Stepper Motor Utilisation -  Using parabolic acceleration increases the 

practical speed limit for the stepper motor by using high torque available at low 

speed to shorten acceleration time.

- 6 0 -
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2.5 System  Architecture

The motion controller board has to read the geometric data and speed, and from this 

information it generates a command signal (pulse), which is fed to the motor driver 

circuit and eventually causes a motor movement of one step. This has to be done in real­

time. Distributed microprocessor architectures and embedded systems are common 

solutions for the needs for high performance real-time control.

In the early motion control system architectures, a single microprocessor was used for 

the pulse generation process. With the decreasing price of microprocessors, it is 

common to allocate a single processor to the pulse generation task for each axis. This 

distributed multi-processor system can be classified into two categories based on the 

amount of coupling among the processors. They are:

• Tightly-Coupled

• Loosely-Coupled

Master/slave is one solution in tiying to provide motion control. A master/slave 

relationship is seen in the distributed multi-processor environment. The master 

processor is responsible of controlling the communication with the slave processors 

(which are allocated for each of the other axes) and to distribute the pulse generation 

task. In the tightly-coupled system, there is no communication between the slave 

processors. On the contrary, the loosely-coupled system allows an independent bus 

connection between the slave processors.

Sherkat, et al. [74] have designed a loosely-coupled system architecture. Sherkat and 

Thomas [75] showed that the gain in independence from the master-processor is 

neutralised by an increase in inter-axis communication. This communication overhead 

is mainly due to the required periodic synchronisation process between the different 

axes. The synchronisation signals are used to compensate for varying execution times 

between the processors on the different axes. The layout of this architecture is 

illustrated in Figure 2-22.
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VME Bus

Local Interrupt Bus

Synchronisation Bus

Slave Processor

Master Processor

Slave Processor

Figure 2-22: Loosely-Coupled Motion Control System Architecture.

Advances in DSP design, i.e. low-level parallel architecture (i.e. Harvard) allows 

performance that could previously only be gained by a multi-processor system to be 

gained on a single cost-effective DSP without the communication overhead [5][76][77].
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2.6 Review of A Commercial Motion Control System

A typical commercial interpolation technique has been investigated in this research 

(Axiomatic Technology Ltd) [13]. The path is split into a number of short straight line 

segments and for each such segment a predefined block of pulses is sent out in the 

master axis. The master axis is the axis closest in direction to the desired path. The size 

of the blocks can vaiy and in practice, each block size is about 25 pulses or more. 

Figure 2-23 illustrates a simple example taken from Figure 1-9, which has X-axis as the 

master axis and a block size of 2 pulses for clarity. In this example, the block size is 

kept constant.

On the other hand, when each block is sent, a number of pulses are sent out in the 

secondary axis as a block during the same time interval at a constant rate. Usually the 

number of pulses is smaller, so they are sent at a lower rate, but it can be the same. The 

number of pulses on the secondary axis must be chosen so that the direction followed is 

as required. This is illustrated in Figure 2-23 for a simple example (from Figure 1-9). 

There are three pulse generation intervals in this example (from point A to B, from

XSla<D

0 1 2 3 4 5 6

X-axis (steps)

Figure 2-23: Example of Commercial Circular-Arc Interpolation (Full Line) for a Small 

Segment o f an Arc (Dashed Line) (as shown in Figure 1-9) (a Block Size of 2 is used for

Clarity).

-63 -



Chapter 2: Survey of CNC Systems

point B to C and from point C to D). During each of the intervals, 2 pulses in the master 

axis (X-axis) are sent out. On the other hand, in the secondary axis (Y-axis), the number 

of pulses are 2, 0 and 1 respectively so the number is the same as for X from A to B and 

then smaller for B to C and C to D. The maximum number of pulses in a block depends 

on the curvature of the desired path at that particular segment (high curvature requires a 

shorter block size to prevent positional errors).

When motion at constant speed is required for the curve in Figure 2-23, the time 

interval for each block is the same (Figure 2-24 and Figure 2-25) and the 2 axes are 

synchronised because they use the same block timing. When acceleration is required, 

ideally the rate at which pulses are sent would be gradually increased. However, in 

practice, this has not been done due to the lack of computing power. Instead, one block 

of pulses in the master axis is sent at a constant rate. Then another block is sent at a 

higher rate, and so on (as discussed in Section 2.4.1). When these data for constant 

speed are analysed using a speed-time diagram, Figure 2-24, the primary axis can be 

seen to have constant speed, but for the secondary axis the speed is highest during the 

first time interval (2 motor steps movement) and drops to zero in the second interval (no 

motor movement). A movement of one motor step during the third time interval results 

in a speed of half the speed for the first time interval because the time interval is the 

same.

During acceleration, the time interval for any subsequent block is shorter than the time 

interval for the previous block (Figure 2-26 and Figure 2-27). Again the two axes are 

synchronised by using the same block timing intervals for both. From Figure 2-26, the 

X-axis speed increases gradually as expected while the Y-axis speed drops in the second 

block before increasing suddenly at the third block of pulses.

A large number of pulses per block will result in a finer achievable angle between end 

points during one time interval. For instance, a block size of 2 pulses makes it possible 

to resolve only to an angle of 26.57° (tan'1 0.5). If the block size is 10, it would be 

5.71° (tan'1 0.1). However, when the number of pulses in a block is increased, the time 

interval for sending out those pulses will also increase. During motion planning for
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X Speed

Time

Y Speed di

Time
(b)

Figure 2-24: Speed-Time Analysis o f Constant Speed for the Curve in Figure 2-23: (a) X-

axis speed; (b) Y-axis speed.

X Signal 1st block 2nd block 3rd block

(a)
Time

Y Signal 1st block 2nd block 3rd block

(b)
Time

Figure 2-25: Pulses for Motion at Constant Speed for the Curve in Figure 2-23: (a) X-axis

Pulses; (b) Y-axis Pulses.
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X Speed

(a)
Time

YSpeed

(b)
Time

Figure 2-26: Speed-Time Analysis o f Accelerating Speed for the Curve in Figure 2-23:

(a) X-axis speed; (b) Y-axis speed.

X Signal 1st block 2nd block 3rd block

(a)
Time

Y Signal Is* block 2nd block 3rd block

(b)
Time

Figure 2-27: Pulses for Motion when Accelerating for the Curve in Figure 2-23: (a) X-axis

Pulses; (b) Y-axis Pulses.
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Speed

Time
(b)

Speed

Time
(a)

Figure 2-28: Illustration of Motion Planning with Acceleration for Block Size o f

(a) 2 steps; (b) 4 steps.

acceleration, each block of pulses will be sent out at a constant rate. Therefore, during 

the acceleration/deceleration phase of the motion planning, the stepper motor will stay 

at each designated speed for a longer time resulting in a higher jump of speed between 

the blocks of pulses, as illustrated in Figure 2-28. This will be more likely to cause 

machine vibrations resulting in unsatisfactory cut quality and position errors.

For circular arcs, many of the stepper motor motion control systems today compromise 

between large block size to avoid large angles and position errors (see Section 1.2) and 

smaller block size to avoid vibrations. Figure 2-29 illustrates how a straight line is 

approximated by short straight line segments. The X-axis speed is constant as can be 

seen in Figure 2-30(a) but not the Y-axis speed, Figure 2-30(b). A similar example for 

the circular arc is illustrated in Figure 2-31 and Figure 2-32. This time the speed 

changes in steps for both axes. An alternative, which has been investigated by the 

Author of this report, is to incorporate the motion planning for acceleration in the 

interpolation process by generating a separate timing for every single pulse. In other 

words, greater control over the speed profile is possible. Sometimes loss of 

synchronisation can occur, which will affect the remaining part of the path. For a 

commercial system, it is essential to set acceleration and planned speed values so that 

loss of synchronisation does not occur.
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Desired Path

16
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0
0 105 15 20 25 30

X-axis (steps)

Figure 2-29: Linear Interpolation for Straight Line (0,0) to (30,20) via Points (10,7) and

(20,13) (also shown in Figure 1-11).

X Speed

Y Speed Time

Time

Figure 2-30: Speeds for Straight Line in Figure 2-29: (a) X-axis; (b) Y-axis.
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Planned Path

Desired Path
15 -

<e 10

0 5 10 15 20

X-axis (steps)

Figure 2-31: Circular Interpolation for Anticlockwise Circular Arc from (0,20) to (20,0) 

with Centre (0,0) via Points (10,18) and (18,10) (also shown in Figure 1-12).

X Speed

Y Speed Time

Time

Figure 2-32: Speeds for Circular Arc in Figure 2-31: (a) X-axis; (b) Y-axis.



Chapter 2: Survey of CNC Systems

2.7 Summary

The literature survey conducted and presented in this chapter demonstrates the wide 

range of different approaches when designing a CNC machining system. Each of the 

approaches has their advantages and disadvantages. The choice of approach depends on 

the requirements of the machining process.

The different types of CNC systems were reviewed highlighting the possible motors for 

the machining. The chosen system to be investigated in the research described in this 

report is a stepper motor driven continuous path motion control system, which has the 

benefits of simplicity in construction, lower cost and direct digital control. The major 

components of a typical CNC machining system, namely the CAD, machine control 

unit and machine tools, have also been presented. Each of these components contributes 

to the end result of the machined path. This thesis concentrates only on the machine 

control unit, which is the core of the machining system. The main tasks of a machine 

control unit include interpolation of the required path while implementing acceleration 

and deceleration.

Through investigations, a large number of interpolation algorithms have been found. 

Some of the most commonly used algorithms have been presented and described in 

detail in this chapter. Only the circular DDA algorithm maintains constant resultant 

speed along a circular path. However, this advantage is neutralised by the deviation 

from the original path. The Direct Search interpolation algorithm is more appropriate 

when used in an open-loop stepper motor driven machinery because deviation from the 

required path cannot be compensated.

Two common acceleration algorithms are the linear and parabolic acceleration. Linear 

acceleration is a better choice when simplicity is the machining criterion. On the other 

hand, when performance is of major importance, parabolic acceleration is more 

appropriate because it is able to utilise more of the available torque. A typical 

commercial CNC motion control system has been investigated. The pulse generation 

process is analysed in detail. The results show that problems arise in certain aspects of 

the process and need to be solved.

- 7 0 -
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3 Timing-Based Interpolation for Stepper Motors

Chapter 2 described the properties of various components involved in the continuous 

path motion generation process in respect of smoothness of motor motion. In-depth 

investigations into these components reveal several shortcomings, particularly in the 

interpolation and acceleration algorithms used. In Section 2.6, the problems with 

existing stepper motor driven multi-axis motion control system are discussed. These 

problems manifest themselves as unsatisfactoiy path following.

In order to overcome or at least minimise the problems with stepper motor driven 

motion control system, new interpolation algorithms have been developed. Many of the 

interpolation algorithms that are available in the industry today can be thought of as 

position-based interpolation algorithms. The coordinates of the end points of the vector 

are first determined. For circular arc interpolation, additional information is needed (e.g. 

circle centre). From this information, new interpolated points are calculated by breaking 

the vector to a number of short line segments, as illustrated in Figure 2-29 and Figure

2-31. Then each line segment is interpolated by generating pulses, at a different constant 

rate on each axis. This line is the same direction as earlier examples (Figure 2-8, Figure

2-10, Figure 2-11 and Figure 2-12) but the line has double the length to give more idea 

of what happens with a longer line.

Another very different approach to interpolation has been proposed by the Author, 

timing-based interpolation. The idea is partly based on the Axiomatic approach but has 

been extended to whole vectors and extended to curves as well as straight lines. The 

idea is to derive an equation for the timing of every command pulse on an individual 

axis according to the path geometry. Ultimate control is gained of every individual 

pulse. For lines, the pulses are each needed to be sent at a different constant rate. When 

interpolating arcs, the rate of the pulses can be increased or decreased gradually on an 

individual axis. This reduces the chances of vibrations caused by sudden changes in 

pulse rates from the interpolation algorithm. The feedrate information is also used when 

generating the timing so that the resultant path will be machined at the required speed.
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The motion on different axes is synchronised by calculating the time when each step 

should be achieved.

Examples of paths generated when interpolating using the new algorithms are described 

in Section 3.4. A more detailed evaluation of the new algorithms will be discussed in 

Chapter 6 .

The algorithms developed require heavy floating-point calculations. Therefore, these 

algorithms are only possible with the current advances in microprocessor technology. 

The core processor used to run the new algorithms is a Digital Signal Processor (DSP), 

which is capable of intensive floating-point operations.

End point
4

3

2

S3ii*
Desired Path

1

Start point

0 1 2 3 4 5 6

X-axis (steps)

Figure 3-1: Position-Based Direct-Search Interpolation for Line from (0,0) to (6,4).
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3.1 Position-Based Interpolation versus Timing-Based 

Interpolation

Most of the interpolation algorithms that are available in industry today are position- 

based interpolation algorithms. The coordinates of the end points are first determined, 

which are obtained from the part program. From this information, new interpolated 

points are calculated. The example in Figure 3-1 illustrates how position-based 

interpolation is generated for a straight line from (0,0) to (6,4) using Direct-Search 

interpolation algorithm.

With position-based interpolation, one interpolated point (shown as a black circle in 

Figure 3-1) is generated at each fixed time sample. The next interpolated point is 

usually taken as the point closest to the required path. By doing this, the generated path 

can follow the required one closely but the speed on the different axes will vary as 

shown in Figure 3-3. In this example, the speed varies in the middle part of the line. The 

X-axis speed stays constant while the Y-axis speed jumps to a higher value in the 

middle of the path before decreasing to the initial speed. For a longer line, the speed 

will continually jump up and then down again. This variation of speed may cause 

vibrations.

The generated command pulses are shown in Figure 3-2 while the speeds are illustrated 

in Figure 3-3. The speed at each pulse is calculated using the time interval after the 

previous pulse, as explained in Section 6.1.2. Therefore, there will not be any speed data 

for the first command pulse.

On the other hand, the timing-based interpolation algorithms are able to reduce or 

sometimes eliminate the sudden changes of speed. For the line from Figure 3-1, the 

pulses are distributed evenly in the time domain, as shown in Figure 3-4. The speeds on 

both axes are now constant throughout the interpolation of the line, Figure 3-5.
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X-axis
Pulse

Y-axis
Pulse

Time

Time
Sample Time

Figure 3-2: Command Pulses for Position-Based Interpolation for the Line in Figure 3-1.

Time
Sample

X-axis
Speed

Time

Y-axis
Speed

Time

Figure 3-3: Illustration of Axis Speed for Position-Based Interpolation for the Line in

Figure 3-1.
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X-axis
Pulse

Time

Y-axis
Pulse

Time

Figure 3-4: Command Pulses for Timing-Based Interpolation for the Line in Figure 3-1.

X-axis
Speed

Time

Y-axis
Speed

Time
Figure 3-5: Illustration o f Axis Speed for Timing-Based Interpolation for the Line in

Figure 3-1.

For curves of second order or higher, the changes of speed are necessary but they are 

done gradually, without abrupt changes.
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Pulse

-------------------------U-J-------------------------------L— --------------- 1— 1------ — I— — I----------------------►
Time

Figure 3-6: Example o f Timings for Non-Linear Interpolation.

Speed

Time

Figure 3-7: Illustration o f Speed vs Time for the Timings in Figure 3-6.

Distance

Time

Figure 3-8: Illustration o f Distance Travelled in Individual Axis for the example in

Figure 3-6.

Figure 3-6 above illustrates an example of timings generated for an individual axis 

when following a curve. The speed of the pulses is increasing gradually, as shown in 

Figure 3-7. Therefore, there will not be any abrupt changes of speed, which could cause 

vibrations. The resultant distance travelled (single axis) for this example is illustrated in 

Figure 3-8.
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X-axis

Time

(a)

Y-axis

Time

(b)

Figure 3-9: Illustrations o f Required Axis Motion for Circle Interpolation: (a) X-axis

Position; (b) Y-axis Position.

In the case of a circular arc, the speed plots will need to resemble the shape of sine or 

cosine waves, so they will also have gradual changes of speed. For constant motion for 

a circle, the x and y-axis position variations in time are illustrated in Figure 3-9. Figure 

3-10 shows the required axis speed to generate this circle.

The research described in this report is based on the generation of interpolation using 

individual pulse timings (timing-based interpolation). The avoidance of vibrations is
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Time

(a)

Time

(b)

Figure 3-10: Illustration of Speed for Circle Interpolation shown in Figure 3-9: (a) X-axis

Speed; (b) Y-axis Speed.

very important when using the stepper motor driven open loop control system, because 

there is no feedback to correct any errors made.

Axiomatic Technology Ltd use a master/slave position-based technique for their motion 

control system. Each block of pulses is sent at a fixed rate in the master axis. During the 

same time interval, a block of pulses is sent in the slave axis. The number of pulses in 

the slave axis block is calculated to achieve the required direction. It can be considered 

that the interpolation within each block is timing-based, although actual individual

- 7 8 -
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timing calculations are not involved but a pulse rate is calculated for the whole block. A 

pulse generator is used to generate the pulses at the calculated rate. The speed is 

constant within a block but there can still be a sudden change between blocks, 

especially for curves, as illustrated earlier in Figure 2-31 and Figure 2-32. The speed 

changes between blocks are still high, so are likely to cause vibrations. Even for straight 

lines, the blocks are needed so that the acceleration algorithm can change the rate to 

increase the speed.

The following sections explain how the new timing-based interpolation is achieved. 

Section 3.2 describes the new timing-based linear interpolation and Section 3.3 

discussed the new circular arc interpolation.
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3.2 The New Timing-Based Linear Interpolation

Interpolation within the motion controller is responsible for the generation of a stream 

of command pulses for the machine tool. Instead of using conventional position 

interpolation, a new timing interpolation algorithm is used to generate the timing for 

every individual command pulse. A method is needed to synchronise the different axes. 

In existing algorithms, the generation of pulses is synchronised at predetermined 

positions. This requires points to be used where both x and y  are exactly a whole 

number of steps. Very often such points do not lie on the line or arc, as can be seen in 

Figure 3-1.

Both the linear and circular arc interpolation algorithms described in this chapter make 

use of the parametric representation of the line or arc. The parameter chosen for the new 

linear interpolation is distance travelled along the path because distance and time are 

closely related. When the speed is constant then they are proportional, with distance 

equal to speed multiplied by time. For constant speed interpolation, time could equally 

well be used. However distance has been chosen, because it will enable the 

development of the acceleration algorithms in Chapter 4. Therefore, path distance is 

used to synchronise the motion of the different axes throughout the machining process.

End
yeitd)(in steps)

Y  pulse

X  pulse

(in steps)

1 step

Figure 3-11: Straight Line Representation for a Line in the 1st Quadrant in the case

starting from (0,0).
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3.2.1 Algorithm for First Quadrant

The algorithm will be described initially for the first quadrant with speed assumed to be 

constant. Then the extension to other quadrants will be explained. The straight line in 

Figure 3-11 can be expressed in a parametric form as follows:

x(s) = scos9  ^  ^

y(s) = s sin 9

where

s = distance travelled from the starting point

9 = (constant) angle between the straight line and X-axis

x(s) = distance travelled in x direction = |jc-jcJtelv|

y(s) = distance travelled in y  direction = \y-ystart\

Xstart = X-axis position for starting point

y s ta r t  = Y-axis position for starting point

Xend = X-axis position for destination point

yend = Y-axis position for destination point

Equation (3-1) shows how the distance in the X or Y-axis can be related to the linear 

distance followed thus far. The inputs for linear interpolation are the starting and 

destination positions. From these data, the angle, 9, is derived as in (3-2).

9 = tan"
f >

y  e n d y  s ta r t

V X e n d ~  X s ta r t J

(3-2)

For straight lines, the angle, 9, in Figure 3-11 is constant throughout the interpolation. 

Therefore, cos 9 and sin 9 are also constant. On the other hand, s varies throughout the 

interpolation.

The distance travelled along the desired line can be expressed in terms of the distance 

travelled in the X or Y-axis, by rearranging (3-1), as shown in the following equation:

-81 -
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\X - X s t a r t \  

s *  = -------
C0S9 (3-3)

I y - y m rstart
Sy = * A sin 0

The distance travelled along the required line for every individual pulse can be 

determined by putting the x or y  value in equation (3-3). Every command pulse 

corresponds to the movement of one stepper motor step. In other words, one command 

pulse causes movement equal to the step size of the stepper motor. Therefore, the 

relation between the X-axis position after nx steps and the stepper motor step size, D, is 

shown in (3-4) and similarly for the Y-axis.

p-xsu„
(3-4)

\ y - y ,u J '= f‘rD

for nx = 1,2,3,..., destination X step & ny= 1,2,3,..., destination Y step

To determine the distance travelled in the X-axis after the n-th pulse, the n value is 

substituted into equation (3-4).

Substituting (3-4) into (3-3) yields:

nxD
cos 0

nvD
s ,(ny) = ~—  

sm 0

(3-5)

With the feedrate information, V, assumed to be constant, this distance travelled along 

the desired path can be related to the time elapsed since the start of interpolation, t, as in 

equation (3-6).

s{t) = Vt (3-fi)
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Substituting equations (3-6) into (3-5), the relation between the X and Y-axis position 

and the elapsed time becomes clearer.

n D
Vt =

cos 6

n D 
Vt, = -*—  

sin 0

(3-7)

Rearranging (3-7),

n..D
t,(nx) =

V cos 0

nvD 
V sin 0

(3-8)

Both equations in (3-8) can be used to find the exact timing for each pulse. For instance, 

the timing for the 8 th pulse in x to be generated is calculated by replacing the nx in the 

first equation of (3-8) with the value 8 .

As discussed earlier, sin 6 and cos 6 are constant. Therefore, part of (3-8) can be 

calculated once at the beginning of the interpolation process, as in (3-9), and storing the 

result in memory.

A,. =

D
V cos 6

D
V sin 6

(3-9)

At all other iterations of the interpolation steps, only one addition operation is required, 

as in (3-10).

tx(nx) = tx(nx - ! )  + Ax
(3-10)

ty(ny) = ty(ny -1  ) + Ay

with tx(0 ) = 0  and ty(0) — 0 .

- 8 3 -
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3.2.2 Algorithm for All Quadrants

Figure 3-11 illustrates a quadrant 1 linear interpolation. However, the equations 

presented in this section apply to any quadrants of interpolation. The angle, 6, 

calculated in equation (3-2) for different quadrants are illustrated in Figure 3-12. 

Therefore, the interpolation for quadrants 2, 3 and 4 can be treated in a similar way as 

the interpolation in the first quadrant. To determine which quadrant the required 

interpolation belongs to, the signs of xenci -  x start and yenci - y s ta r t  can be used. To allow for 

different quadrants the direction in x is set according to the sign of x emi  -  x start- Similarly 

the direction in y depends on the sign of y end -  y start- This is summarised in Table 3-1.

Table 3-1: Table of Line Directions.

X-axis Y-axis

X en d  ~ Xstavt x  direction y e n d  ~ y s ta r t y  direction

+ve + 1 +ve + 1

-ve - 1 -ve - 1

Liadrant

Figure 3-12: Linear Interpolation in Different Quadrants.
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3.3 The New Timing-Based Circular Interpolation

The curve that is most commonly used for interpolation is the circular interpolation. As 

in the case for linear interpolation, a parameter is used to synchronise the different axes, 

in contrast to conventional synchronisation at predetermined positions. For linear 

interpolation, the parameter used to define the line is distance travelled. The advantage 

is because of the close relationship between the distance travelled and the elapsed time. 

This parameter can also be applied easily to circular arc interpolation. Hence, the 

distance has also been used as the parameter for the new circular arc interpolation.

3.3.1 Algorithm for First Quadrant Anti-Clockwise

Interpolation of an anti-clockwise first quadrant circular arc is explained in detail 

throughout this section. The equations for circular interpolation in other quadrants or in 

other directions are summarised in Table 3-2 in Section 3.3.2. Again the speed is 

assumed to be constant.

m o v e

Start
v _________________ ______________

x(s) Xmove

Figure 3-13: Circular Arc Representation for Anti-Clockwise Arc with Radius R in 1st

Quadrant.
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For a circular arc of length, s , and radius, R, the angle turned through is s/R radians, as 

shown in Figure 3-13. A 90° anti-clockwise circular arc starting on the positive X-axis 

in a two-dimensional space can be expressed as follows:

where

s
x(s) = R cos—

R (3-11)

y(s) = R sin ~
K

R -  radius of circle

s ~ distance along the arc from the X-axis base

x(s)= position in x  with respect to the circle centre = x  -  x centre

y{s)- position in y  with respect to the circle centre = y  -ycentre

It should be noted that x(s) is not the distance travelled on the X-axis but it is the X- 

coordinate position (relative to the centre of the circle) after a distance s along the arc 

has been travelled. On the other, y(s) coincides with the distance travelled on the Y-axis 

for this case, because ystart -  0. The distance travelled on the X-axis in this case can be 

expressed as follows:

X m a n  =  * 0 )  -  X  * 0 )

y„«™ = y{s)

The distance travelled along the desired circular arc can be expressed in terms of the 

position along the X or Y-axis by rearranging (3-11).

R

sy - R  sin -i
(3-13)

r y-yc„,rc''
v R

From equation (3-12), the relationship between the X and Y-axis position and the 

stepper motor step size is as follows:

- 8 6 -
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x — x . — x + Rcentre move

= (nx(-D)) + R 

y — y  , —n Ds ✓ centre }’

for nx = 1,2,3,..., destinationX step and ny = 1 ,2 ,3 , . .destination Y step 

where D = motor step size

(3-14)

Substituting v andy  from (3-14) into (3-13) yields

f  -  n,D + Rsx (nx) -  R cos'
R

-lR cos

sy(ny) = R sin

nxD
R

f n y X  
R

+ 1 (3-15)

With the feedrate information, V (assumed constant), the path distance travelled can be 

related to the time elapsed since the start of interpolation, t, as in (3-16).

s(t) = Vt (3-16)

Substituting s in (3-16) into equation (3-15) yields

Vtx = R cos-1 f — ^

• i f  nvD  ̂V t = R  sin"11 ^
R y

(3-17)

Rearranging equation (3-17), the time elapsed, t, can be expressed in terms of the X or 

Y- axis position:
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To determine the appropriate timing for every individual pulse, the command pulse 

number, denoted by nx and ny, are substituted into equation (3-18). For example, to 

calculate the timing of the 8 th pulse on each of the two axes, 4 (8 ) and 4 (8 ), equation (3- 

18) is used with nx and ny each assigned the value 8 .

To minimise the processing required for every command pulse, two parts of the division 

operation in equation (3-18) can be precalculated at the start of a circular interpolation 

and storing them in memory because they are constant throughout the interpolation.

The equation above assumes that the feedrate is constant throughout the interpolation 

process. Equations (3-18) with A and B in (3-19) now become

The new circular-arc interpolation algorithm described earlier in this section is for 

interpolation of the anticlockwise first quadrant circular arc. Interpolation for other 

quadrants and directions will be discussed in the next section.

3.3.2 Algorithm for All Quadrants in Both Directions

For the other quadrants and directions, the appropriate equations are summarised in 

Table 3-2. The circular arc explained thus far starts interpolating from the X-axis base 

line. It is also possible for the interpolation to start at a particular angle from the X-axis 

base line, astm. A circular arc of radius, R, centre, {x centre, yCentre) and start angle, astart 

(angle from the X-axis base line), in the first quadrant is expressed in a parametric form 

(with the plus sign is for anticlockwise and the minus sign for clockwise) as:

(3-19)

B = — 
R

tx = y4cos ’(-  nxB + l)
(3-20)

- 8 8 -
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x(s) = xcentre+Rc  os

T(^) = y centre + R Sill

a  s ta r t  ± ~K
(3-21)

OL +^  start ~ R

Table 3-2: Equations for New Circular Arc Interpolation.

Direction Quadrant X-Axis Y-Axis

Pulse Timings Direction Pulse Timings Direction

Clockwise 1st t = ^sin" 1̂ # ) +1 t  =  A  cos '1 ( ~ n yB + l) -1

2nd t -  ^4cos_1(-7?v5  + l) +1 t  =  A  sin"1 (nyB) +1

3rd t -  ^(sin_l(«r5 ) -1 t =  4̂ cos"1 (- nyB  +  l) +1

4th t = A cos"1 (-77^  + 1) -1 t =  ^  sin"1 (77̂ ,5 ) -1

Anti-

Clockwise
1st t = A  cos-1 (— nxB  + 1) -1 £ = 4̂ sin"1 (77 ,̂7?) +1

2nd t =  ^sin"1̂ # ) -1 t = 4̂ cos"1 ( - 77̂  + 1) -1

3rd t = .<4 cos-1 (-77*5 + 1) +1 t = A s in '1 -1

4th t = 4̂ s in '1 (77^#) +1 £ = A cos"1 ( - n yB  +  l) +1
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3.4 Simulation Examples

As described in earlier chapters, one generated command pulse will result in the linear 

motion of one stepper motor step on that particular axis. For motion planning, it can 

sometimes be useful to imagine that the motor moves instantaneously when a command 

pulse is received, resulting in a movement of one motor step. However, this is not 

physically possible. Various more realistic simulation techniques have been used to 

simulate the possible motion. These simulation techniques will be discussed in more 

detail in Chapter 5. The simulation methods used for simulation of position are:

• Zero Order (Instantaneous case);

• Varying Rate First Order;

• Constant Rate First Order; and

• Second Order simulation.

For the Zero Order simulation, the stepper motor is assumed to move to the desired 

position instantaneously when a command pulse is received.

There are two different First Order simulation methods used. The Varying Rate First 

Order simulation assumes that the motor has always completed the movement for the 

pulse exactly when the next pulse is sent. The Constant Rate First Order simulation 

assumes not only that the motor has completed one motor step movement before the 

next command pulse is received but also that the motion varies linearly with time at a 

fixed constant rate until that step is completed (and then waits for the next pulse). 

Therefore the time for the movement (response time) is always the same.

The Second Order simulation is based on a mass-spring model of the stepper motor 

system where damping factor and the natural frequency of the system are used. All 

these simulation methods will be discussed in detail in Chapter 5 but they are used here 

to give an idea of the results of the interpolation algorithms.

In addition to the position simulation described above, a speed simulation method has 

also been used to simulate the speed variations throughout the interpolation process.
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Examples of the speed simulation have been illustrated previously in Figure 3-3, Figure

3-5 and Figure 3-7. As explained earlier, Section 3.1, the speed data is calculated by 

assuming that the distance travelled for one motor step takes place during the time 

interval between the pulses. This means that there will not be any speed data for the first 

command pulse. The speed is therefore calculated in effect by assuming that the motor 

moves as in the Varying Rate First Order simulation. In all the simulation results, the 

number of steps is used instead of the actual distance for clarity. The motor step size 

used in a typical system is 0 . 0 1  mm.

3.4.1 Simulation of Linear Interpolation

Figure 3-14 shows the path generated by the new linear interpolation algorithm using 

the Zero Order simulation method for a line from (0,0) to (30,20). The speed used in 

this linear interpolation example is 500 steps/s (0.3 m/min). On the other hand, Figure 

3-15 shows the same interpolation using the Second Order simulation method, which 

will be discussed in Section 5.2.4. The dashed line is the required path while the 

generated path is shown in full line. The simulated path can be seen to be able to follow 

the required path closely.
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Figure 3-14: Plot o f New Linear Interpolation (Zero Order Simulation). Full Line is 

simulated path. Dashed Line is the path required.
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Q.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

X-axis (steps)

Figure 3-15: Plot o f New Linear Interpolation (Second Order Simulation). The damping 

factor is 0.7, typical values for a stepper motor control system. Full Line is simulated path.

Dashed Line is the path required.

The position error for the two simulations is plotted in Figure 3-16 and Figure 3-17. The 

error is plotted as positive if it is above the required line and negative if otherwise. This 

gives greater information about the motion. From Figure 3-14 (Zero Order simulation), 

we can see that in this example the simulated path repeats itself after every three steps 

in the X-axis. Therefore, position error too follows a similar pattern. After three steps in 

the X-axis, the position error is zero because the third X steps touches the required line.

Figure 3-17 illustrates the position error when simulated using the Second Order 

simulation. The position error is smaller than that for Zero Order simulation in Figure

3-16. This is because the dynamics of the stepper motor smooth out the motion, thus 

bringing the generated path closer to the required one. In practice, the Second Order 

simulation is likely to be closer to the actual generated path.

The largest position error for the Zero Order simulation is 0.55 of a step while the 

Second Order simulation produces largest position error of 0.19 of a step. Therefore, the 

generated path is likely to follow the required line at an accuracy within half the stepper 

motor step according to these two simulation methods. The average error value
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Figure 3-16: Position Error o f New Linear Interpolation (Zero Order Simulation) shown 

in Figure 3-14. The largest position error here is 0.55. The error is positive if it is above the

required line and negative below.
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Figure 3-17: Position Error of New Linear Interpolation (Second Order Simulation) 

shown in Figure 3-15. The largest position error here is 0.19. The error is positive if it is 

above the required line and negative below.
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is -0.14 step. This average error is reduced when employing the Half-Step Technique, 

which will be discussed in Section 3.5.

The Zero Order simulation assumes that the motor step happens at the instant of the 

arrival of the command pulse. In reality, the response of the motor is smoother but it can 

be oscillatory. The frequency of this oscillation depends on the natural frequency of the 

stepper motor. This can be seen when one motor step is moved, which will be discussed 

in more detail in Section 5.1.

The motor will take some time before it settles at the next step position. When more 

than one step is moved, the next step comes before the motor has settled at the previous 

step. This, in fact can smooth out the motion with the rotor lagging the stator. This is 

fine as long as the lagging is not more than two steps away [29], Otherwise, the motor 

steps will lose synchronisation, causing missed steps.

Figure 3-18 illustrates the behaviour of the motor in each axis separately in the example 

from Figure 3-15. The “steps” in the diagrams show the motion in Zero Order case, 

while the curves show the position from the Second Order simulation. To illustrate the 

changes in motor position in more detail, the axis position changes in Figure 3-18 have 

been enlarged for the first 20 ms of the motion and are shown in Figure 3-19. A single 

command pulse will result in oscillation before it settles at the next motor step. It can be 

seen from Figure 3-19 that the next command pulse comes and reinforces the motion 

from the first, resulting in a smoothing effect. It can be noted that the motion in X-axis 

is smoother than in the Y-axis. This is because of the higher pulse rate in the X-axis, 

resulting in a smaller time interval between command pulses. However, the lag is 

greater with the higher pulse rate.



Y
-a

xi
s 

(s
te

ps
) 

X
-a

xi
s 

(s
te

ps
)

Chapter 3: Timing-Based Interpolation for Stepper Motors

30

25

20

15

10

5

0

0 10 2 0 30 40 50

Time (ms) 

(a)

30 n

25 -

2 0  *

1 0  -

0 1 0 20 30 40

Time (ms)

Figure 3-18: Plot of Motion along the 2 Axes o f the New Linear Interpolation (Second 

Order Simulation) shown in Figure 3-15. The Zero Order simulation is also shown to

indicate the times of pulses.
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Figure 3-19: Detail o f Plot of Motion along the 2 Axes o f the New Linear Interpolation 

(Second Order Simulation) from Figure 3-18 for 20 ms.
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3.4.2 Simulation of Circular Arc Interpolation

Figure 3-20 and Figure 3-21 show an example of the path generated using the new 

circular interpolation. The parameters used for a quarter of a circle are as follows:

start

end

direction

centre

= (20 ,0)

= (0 ,20)

= anticlockwise 

= (0,0)

The speed used is 500 steps/s (0.3 m/min). Figure 3-20 shows the path generated by the 

new circular interpolation algorithm when using the Zero Order simulation. From this 

figure, we can tell that the new interpolation still able to follow the required circle fairly 

closely. In fact, the largest position error in this case is 0.97 of a step.
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Figure 3-20: Plot o f New Circular Arc Interpolation (Zero Order Simulation). Full Line is 

simulated path. Dashed Line is the required path.
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Figure 3-21: Plot o f New Circular Arc Interpolation (Second Order Simulation). The 

damping factor is 0.7, which are typical for a stepper motor control system. Full Line is 

simulated path. Dashed Line is the required path.

Figure 3-21 shows the path for the interpolated circular arc when using the Second 

Order simulation. When one step in one axis is followed quickly by one step in the 

other, it looks like a comer when using the Zero Order simulation. In the actual 

machining, this is smoothed out by the dynamics of the machine. This can be seen from 

Figure 3-21, when Second Order simulation takes into consideration the dynamics of 

the stepper motor.

As explained earlier, the largest position error is within the resolution of the stepper 

motor. This means that the new circular interpolation can still follow the required 

circular arc closely. Figure 3-22 shows the position error throughout the whole 

interpolation process for the Zero Order case. Although the size of the position error is 

close to one motor step at the beginning and end of the motion, it is below 0 . 6  of a step 

in the middle of the motion. The error is plotted as positive if it is outside the circle and 

negative if inside.
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Figure 3-22: Position Error o f New Circular Arc Interpolation shown in Figure 3-20 (Zero 

Order Simulation). The largest position error here is 0.97. The error is positive if it is 

outside the required circle and negative inside.
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Figure 3-23: Position Error of New Circular Arc Interpolation shown in Figure 3-21 

(Second Order Simulation). The largest position error here is 0.93. The error is positive if 

it is outside the required circle and negative inside.
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Figure 3-24: Plot of Motion along the 2 Axes o f the New Circular Interpolation shown in 

Figure 3-21 (Second Order Simulation). The zero order simulation is also shown to

indicate the times of pulses.
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From Figure 3-23, it can be seen that the largest position error for Second Order 

simulation is 0.93 of a step. Most of the time throughout the interpolation the position 

error is within half of a stepper motor step. The largest position error occurs at the end 

of the interpolation (near x=0) and it is also 0.6 of a step at the beginning. An 

improvement to the algorithm, the Half Step technique, is able to reduce the largest 

position error considerably, and is explained in detail in the next section.

As in the straight line example, the relation between the Zero Order case and Second 

Order simulation can be seen clearly with a diagram of the X and Y-axis movement 

with respect to time. Figure 3-24 shows the X and Y-axis movements when interpolated 

using the new circular interpolation algorithm. The “steps” in the diagrams show the 

motion in a Zero Order case, while the curves show the position simulated using the 

Second Order simulation.
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3.5 The New Half Step Technique

It has been noted from the simulation diagrams of the new algorithms, particularly the 

position error diagrams, that the algorithms generate a smooth path but the accuracy of 

the circular arc is not very good at the beginning and end of the arc. The problems are 

highlighted in Section 3.5.1 while the developed solution, the Half-Step Technique, will 

be discussed in detail in Section 3.5.2 and Section 3.5.3.

3.5.1 Problems with the New Circular Arc Interpolation Algorithm

In Figure 3-25 and Figure 3-26, the simulated output of the path generated using the 

new interpolation algorithms show two sections of the path that have been analysed in 

more detail, because the errors are greatest there. The sections are encircled with dotted 

lines. Section A shows that at the start of motion the Y-axis motor has moved several 

steps before the X-axis motor starts to move, whereas in fact it would be better for the 

X-axis to start to move a little earlier. From Section B, it can be seen that the end 

position is reached only at the last pulse interval for both axes, even though the actual 

value on the Y-axis for the required path is very close to the final value during the last 

few steps on the X-axis. The last pulses for each axis are simultaneous, giving the 

diagonal line at 135° in the path when Zero Order simulation is used. Even with the 

Second Order simulation the last part of the path is close to the same diagonal line.
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Figure 3-25: Plot of New Circular Arc Interpolation (Zero Order Simulation) (as shown in

Figure 3-20).
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Figure 3-26: Plot o f New Circular Arc Interpolation (Second Order Simulation) (as shown

in F igure 3-21).
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3.5.2 The Half-Step Technique for Circular Arc Interpolation

Investigations into the new interpolation algorithms have revealed that a possible 

solution to reduce the problems at Sections A and B is to adjust the pulse timings. The 

new interpolation algorithm relies on the geometry of the path. At every increment of 

one step in any particular axis, a command pulse is generated. A modification of the 

algorithm is to adjust the generation of pulse timings so that each pulse occurs half way 

between the two steps instead of at the end of each whole step, as illustrated in Figure 

3-27.

Y-axis
Pulse generated using new algorithm

*0.5

Pulse generated using modified algorithm (Half Step)

X-axis
1/2 step

1 step

Figure 3-27: Illustration of Half-Step vs Full-Step.

With the new interpolation algorithm, the first command pulse timing is generated when 

the value of S (distance along the curve) reaches Si, as in equation (3.15). Instead of 

using Si to calculate the first X-axis pulse timing, the half-step technique makes use of 

S0.5, which is the distance along the arc when the X-axis position has been changed by a 

total of half a step. The next command pulse uses the distance at one and a half step in
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X-axis, S1.5 . The equation for the half-step technique is obtained by replacing nx in 

equations 3-15 by nx - 0.5, as follows:

for% = 1,2,3,...,destination X step and ny = 1,2,3,...,destination Y step

Figure 3-28 and Figure 3-30 show the simulation results of the New Half Step technique 

after Zero Order simulation and Second Order simulation respectively. The same 

parameters have been used as in Figure 3-25 and Figure 3-26.

From Figure 3-28, the X motor moves earlier in Section A while the last Y step comes 

earlier in Section B, resulting in the simulated path being closer to the required one in 

both sections. This confirms that the errors are smaller in Sections A and B using this 

simulation. The position errors throughout the interpolation are plotted in Figure 3-29. 

The largest position error is 0.62 step, comparing with the new algorithm without the 

half step technique which has largest position error of 0.97 step. Because there is no 

motion in both axes at the same time using the Zero Order simulation, the New Half 

Step algorithm has a larger average error, 0.06, comparing to the Full Step new 

algorithm which has a value of 0.03 step. This will not be the case for other simulation 

results, which will be discussed in Chapter 6 .

(3-22)

Thus, to replace equation (3-18), the pulse timings are calculated as:

(3-23)
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Figure 3-28: Plot of New Circular Arc Interpolation (with Half-Step Technique) (Zero 

Order Simulation). Full Line is simulated path. Dashed Line is required path. Position 

errors in Sections A and B can be seen to be smaller than in Figure 3-25.
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Figure 3-29: Position Error of New Circular Arc Interpolation with Half-Step Technique 

(Zero Order Simulation). The largest position error here is 0.62, which is smaller than the 

largest error in Figure 3-22 (0.97). The error is positive if it is outside the required circle

and negative inside.
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In Figure 3-30 (the Half Step technique using Second Order simulation), it again 

appears that the generated path follows the required arc more closely than for the Full 

Step case in Figure 3-21. The largest position error with the Full Step interpolation is 

0.93 step while this error is reduced to 0.28 step with the Half Step interpolation, 

showing an improvement of 0.65 step. The position error throughout the circular arc 

interpolation is shown in Figure 3-31. The average error for the Half Step algorithm is 

indeed smaller (0.02 step) than with the Full Step algorithm (-0.07 step). With the Half 

Step algorithm, the error fluctuates around zero more closely than for Full Step. Chapter 

6  will include a full evaluation of the improvement of this Half Step technique when 

compared with the Full Step interpolation algorithms.
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Figure 3-30: Plot o f New Circular Arc Interpolation with Half-Step Technique (Second 

Order Simulation). The damping factor is 0.7, which are typical for a stepper motor 

control system. Full Line is simulated path. Dashed Line is path required. It can be seen 

that at both the beginning and end of the path the simulated path is much closer to the 

desired path than with the full-step algorithm (compare with Figure 3-21).
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Figure 3-31: Position Error for New Circular Arc Interpolation with Half-Step Technique 

(2nd Order Simulation). The largest position error here is 0.28 step. The error is positive if 

it is outside the required circle and negative otherwise. It shows a big improvement when 

compared to its full-step counterpart (largest position error = 0.93 step) in Figure 3-23.

Table 3-3 summarises the largest position errors for both the New Full and Half Step 

circular arc interpolation algorithms. The average errors are also included. The Second 

Order Simulation is expected to be closer to the actual value. Therefore, it can be 

concluded that the New Half Step circular arc interpolation algorithm is able to follow 

the arc more closely than its Full Step counterpart.

Table 3-3: Position Error Comparison for Full and H alf Step Circular Arc Algorithm.

Z ero O rd er S im ulation S econ d  O rd er S im ulation

Largest Error Average Error Largest Error Average Error

F ull Step 0.97 -0.03 0.93 -0.07

H a lf Step 0.62 0.06 0.28 0 . 0 2

The speed variations for both Full and Half Step are similar because the times between 

pulses are very similar (the Full Step speed plots are shown in Chapter 6 ). The speed 

simulation assumes that one motor step is completed exactly when the next command 

pulse is received. It should be noted that one motor step is of 0.01 mm for a typical
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stepper motor system. The speed used here is steps/s rather than m/s. The top speed for 

Figure 3-32 is 500 steps/s which is equivalent to 5 mm/s for the typical motor. Figure

3-32 and Figure 3-33 show a smooth speed variation for each axis. The speed changes 

happen gradually, reducing the likelihood of vibrations caused by abrupt changes in 

speed.
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Figure 3-32: X-axis Speed for Anti-Clockwise Circular Arc in I s* Quadrant (H alf Step).
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Figure 3-33: Y-Axis Speed for Anti-Clockwise Circular Arc in 1st Quadrant (H alf Step).
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3.5.3 The Half Step Technique for Linear Interpolation

The Half Step technique for the new interpolation algorithm can equally well be 

implemented with the linear interpolation. The Half Step technique was first developed 

for the circular arc to reduce the position error at the beginning and the end of the 

interpolation motion, as discussed in Section 3.5.2. A further investigation has been 

made to check the effect of this technique on the linear interpolation. It is found that the 

Half Step technique helps to reduce the position errors and the average position error is 

found to be closer to zero.

The equation for the Half Step linear interpolation is obtained again by replacing nx in 

equations 3-5 by nx - 0.5:

cos 6
(3-24)

(ny -0.5)D  
'yK"yJ sin 0
sv(nv) =

Thus, to replace equations (3-8), the pulse timings are calculated as:

- 0-5*V cos 0

(n -0 .5  )D
V sm 0

for nx = 1,2,3,...,destination X step and ny = 1,2,3,...,destination Y step

Figure 3-34 and Figure 3-35 shows the simulated path from the Zero Order and Second 

Order simulation for the New Half Step linear interpolation. From Figure 3-34, there is 

no simultaneous motion at any instant. This does not cause problem for the position 

error because the timing for both axes can be very close together but they do not 

coincide. The Second Order simulation shows that the path is expected to follow the 

required one very closely.
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Figure 3-34: Plot of New Half-Step Linear Interpolation (Zero Order Simulation). Full 

Line is simulated path. Dashed Line is required path (compare with Figure 3-14).
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Figure 3-35: Plot o f New Half-Step Linear Interpolation (2nd Order Simulation). The 

damping factor is 0.7, which are typical for a stepper motor control system. Full Line is 

simulated path. Dashed Line is required path. The two lines are very close together.

From Figure 3-36, the largest position error for the Zero Order simulation is 0.55 of a 

step. With the Zero Order simulation, there is no difference in the largest position error
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between the Full and Half Step interpolation (compare Figure 3-16). However, the 

average position error is smaller for the Half Step (0.00 step) when compared to its Full 

Step counterpart (-0.14 step). From Figure 3-37, a lower value for the largest position 

error can be seen with the Half Step interpolation when simulated using the Second 

Order simulation, giving 0.06 step. The largest position error for the Full Step linear 

interpolation using the Second Order simulation is 0.19 step from Figure 3-17.
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Figure 3-36: Position Error o f New H alf Step Linear Interpolation (Zero Order 

Simulation). The largest position error here is 0.55 (same as the error for full-step 

interpolation in Figure 3-16). The error is positive if it is above the required line and

negative below.

Figure 3-37 shows the position error when using the Second Order simulation. The 

position error is smaller than that for Zero Order simulation in Figure 3-36. This is 

because the simulated dynamics of the stepper motor smooth out the motion, thus 

bringing the generated path closer to the required one. In practice, the Second Order 

simulation is likely to be closer to the actual path generated. It is noted that the Half 

Step technique not only benefits the circular arc interpolation but also the linear 

interpolation, by reducing the position error. Table 3-4 summarises the largest position 

errors and average errors for both the New Full and Half Step linear interpolation 

algorithms. The largest position error for the Half Step linear interpolation is 0.06
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compared to 0.19 for the Full Step interpolation in Figure 3-17. The average error is 

again 0.00 (compare with the average error in Figure 3-17, -0.13 step). It can be 

concluded from the table that the New Half Step linear interpolation algorithm is able to 

follow the line more closely than its Full Step counterpart. The X and Y axis speed 

variations are shown in Figure 3-38 and Figure 3-39. The speeds for both axes are 

constant, reducing the likelihood of any vibrations.
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Figure 3-37: Position Error o f New Half Step Linear Interpolation (Second Order 

Simulation). The largest position error here is 0.06 (compared with the full-step 

interpolation which has a largest error of 0.19 in Figure 3-17). The error is positive if it is 

above the required line and negative below.

Table 3-4: Position Error Comparison for Full and H alf Step Linear Algorithm.

Z ero O rd er S im ulation Second  O rd er S im ulation

Largest Error Average Error Largest Error Average Error

Full Step 0.55 -0.14 0.19 -0.13

H a lf Step 0.55 0 . 0 0 0.06 0 . 0 0
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Figure 3-38: X-axis Speed for Straight Line (H alf Step).
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Figure 3-39: Y-axis Speed for Straight Line (H alf Step).
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3.6 Summary

The three main problems with the existing interpolation and the machining process in 

general have been described in Chapters 1 and 2, namely the vibrations, position errors 

and varying resultant speed. Based on these findings, the Author has proposed and 

developed new interpolation algorithms to reduce these problems for lines and arcs. 

This chapter has described the new algorithms in detail.

Most existing interpolation algorithms use position interpolation, where the coordinates 

of the end points are first obtained, and from this information, new interpolated points 

are calculated. The new algorithms can be categorised as timing interpolation. The idea 

is to derive an equation for the timing of every individual command pulse on each axis 

according to the path geometry, thus gaining ultimate control over the smoothness of 

the stream of command pulses. From equations (3-8) and (3-18), it is clear that the 

feedrate is included in the pulse timing generation formulae. These formulae have been 

chosen so that the resultant speed is able to keep close to the desired feedrate while 

allowing smooth motion on each individual axis. Axiomatic Technology Ltd uses part 

of these ideas by generating short straight line segments in this way. Since each shape is 

made of a number of short line segments, the resultant shape will not be smooth when 

they are joined, particularly for shapes with high curvature.

To simulate the path generated, four simulation methods have been used. Two of these 

methods have been presented briefly in this chapter together with examples (they are the 

Zero Order simulation and a Second Order simulation). Chapter 5 explains all these 

simulation methods in detail. A further analysis of the new interpolation algorithms 

using simulation has revealed that a further improvement is possible. Therefore, a New 

Half Step approach has been developed. In the Half Step technique, the pulse timing is 

adjusted so that the pulse occurs half way between two steps instead of the end of each 

step. With the New Half Step technique, based on simulation results, the position errors 

are reduced further. From the simulation of speed on each axis, it can be seen that the 

pulses are generated smoothly and the pulse rate either stays constant or changes 

gradually, as required for the shape.
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4 The New Acceleration Algorithms

The new interpolation algorithms presented in Chapter 3 are appropriate for low speed 

machining, where the speed for each individual axis is still within the pull-in speed of 

the stepper motor. However, in order to perform high-speed machining, an acceleration 

algorithm is needed. The motor can be accelerated without losing step, provided that the 

pull-out torque limit at any particular speed is not exceeded. The pull-out torque limit 

depends on speed and is a characteristic of each motor/drive system, as explained in 

Section 4.1. The acceleration and deceleration planning process is important to ensure 

smooth motion at the beginning and the end of the machining with low chance of 

vibrations.

This chapter describes the two new acceleration algorithms developed by the Author. 

These two acceleration algorithms, together with the new interpolation algorithms, form 

a major part of the motion controller. As explained in Section 3.1, the new interpolation 

algorithms make use of a novel approach of calculating the pulse timing for every 

individual pulse. Thus, the new acceleration algorithms involve modifications of the 

pulse timings to accommodate the need for acceleration and deceleration.

Two common types of acceleration algorithm used for high-speed machining are linear 

and parabolic acceleration, where the speed changes, respectively, linearly or 

parabolically with time. The minimum speed of the motor depends on the rotor and load 

inertia [72] and this will also be the speed at which the motor can be planned to start 

moving from rest.
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4.1 Linear Vs Parabolic Acceleration

An acceleration/deceleration process must be included in the interpolation routine for a 

machine tool in order to avoid shock and vibration, which would otherwise occur at the 

beginning and end of the machining of the given shape [73]. In addition, the 

acceleration/deceleration time is also an important criterion, because it affects the entire 

machining time.

First of all, the acceleration time can be compared for the linear and parabolic 

acceleration for the same path. Figure 4-1 shows examples of the speed profiles for the 

machining process comparing the linear and parabolic acceleration for different values 

of linear acceleration. The areas below the two curves in each case represent the 

distance travelled, so they will be the same for both. Figure 4-1(a) illustrates the case 

where linear acceleration is equal to the initial acceleration for parabolic. Figure 4-1(b) 

shows the case when linear acceleration is slightly lower than the initial acceleration for 

parabolic. For both of these, the machining time for the linear acceleration is shorter 

than parabolic acceleration. In Figure 4-1(c) where linear acceleration is much less than 

initial parabolic acceleration, it can be seen that the parabolic acceleration has reached 

the required maximum speed long before the linear acceleration is able to achieve that 

speed. This depends on being able to start with a much higher acceleration. In addition, 

the deceleration procedure can be started earlier than for its linear counterpart, resulting 

in shorter overall machining time. As the linear acceleration rate decreases from (a) to 

(b) and then to (c), it will reach a situation somewhere between (b) and (c) for which the 

two machining times are equal.

The dynamic performance of a motor can be described by the torque-speed curve as 

shown in Figure 4-2. It shows the maximum possible torque at each speed. From this 

figure, it is clear that as the operating speed (maximum speed) increases, the pull-out 

torque becomes lower. Acceleration is proportional to torque. Therefore, as the 

operating speed increases, there is a decrease in the acceleration achievable for the 

stepper motor at that speed. Above that acceleration, the motor loses synchronisation. 

With linear acceleration the acceleration has a constant value, whereas for parabolic
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Speed

Maximum
Speed

AcC|;ncar = AcC,)arao
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Figure 4-1: Illustration o f Comparison of the 2 Speed Profiles: Linear (Dashed Line) and 

Parabolic (Full Line) for the same maximum speed and same distance but different values 

o f linear acceleration (AcC|inear) and maximum parabolic acceleration (Accpara0).

(a) AcCpa,ao Accijneai-5 (b) Accparao > AcC[jncar5 (c) AcCparao »  AcC|jIIcar. At point A the 

parabolic acceleration has the same value as the linear acceleration. In cases (a) and (b), 

the linear acceleration is quicker whereas in case (c) the parabolic acceleration is quicker.
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Torque

Parabolic
Acceleration

Motor Pull-Out 
Torque

Linear Acceleration

SpeedMax. Speed 
(Parabolic)

Max. Speed 
(Linear)

Figure 4-2: Typical Pull-out Torque/Speed Characteristic Curve (Full Line) together with 

Graphs of Torque used by Linear and Parabolic Acceleration. In the linear case, less of

the available torque is used.

acceleration the graph of acceleration against speed is a parabola on its side [78]. 

Therefore from Figure 4-2, it is expected that, because it occurs at low speeds, the 

maximum possible acceleration for parabolic acceleration is higher than the maximum 

possible acceleration for linear acceleration.

As discussed earlier in this section, higher acceleration is achieved at lower speeds 

because the torque-speed characteristic in Figure 4-2 indicates that this can be achieved. 

In other words, the parabolic acceleration is able to make greater use of the motor 

torque capability. It is illustrated in Figure 4-2 that the torque achievable with parabolic 

acceleration is closer to the motor characteristic.
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4.2 The New Linear Acceleration Algorithm

Linear acceleration is the simplest acceleration algorithm where the acceleration and 

deceleration phase of the speed profile is taken to be linear with respect to time. That is 

the speed changes linearly with time in these phases while the acceleration or 

deceleration rate is constant, as shown in Figure 4-3 and Figure 4-4. In practice, the 

deceleration rate, A '  is not always the same as the acceleration rate, A. Linear 

acceleration is the simplest, but it generally results in a longer acceleration time. The 

minimum speed of a motor depends on the rotor inertia and load inertia, and is the

Speed
▲

v

u

 I .----------- ►
Time

Figure 4-3: Illustration o f Linear Acceleration (Speed against Time).

Acceleration

A

* ̂  Acceleration 
Phase

Constant Speed 
Phase

Time

Deceleration
Phase

Figure 4-4: Illustration of Linear Acceleration (Acceleration against Time).
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speed at which the motor can be run without needing acceleration or deceleration time. 

From that to the desired speed is where linear acceleration occurs.

As discussed in Section 2.4.1, many existing systems generate the linear ramping of the 

speed in block of pulses, where one block of pulses is dealt with each time. For 

example, during the acceleration phase, the first block of pulses will have a constant 

low speed while the following block of pulses are of slightly higher constant speed, and 

so on. The sudden transition in speed between these two blocks of pulses is likely to 

contribute to vibrations. Therefore, vibrations are expected to be reduced by using the 

new linear acceleration algorithm discussed here, which allows every individual pulse 

to be dealt with separately.

4.2.1 Calculation of Pulse Timings for Linear Acceleration

The first step for the derivation of the pulse timing formula whilst accelerating is to 

relate the time and distance travelled, when the acceleration is constant. This is done by 

the following equation:

1
s — ut + — at2 (4-1)

2

where

u = initial speed (pull-in speed) 

a -  acceleration (constant) 

s = distance travelled

Solving equation (4-1) gives:

( = 2as
a

where the positive root has been chosen. (If the negative root is used, the time will be 

negative which is not the required time, as illustrated in Figure 4-5.) The distance
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Distance

Positive Root (Required)Negative Root

Time

Figure 4-5: Illustration o f Linear Acceleration (Distance against Time).

travelled is checked to determine whether the next command pulse should be 

accelerating or maintaining constant speed. To do this, the distance travelled throughout 

acceleration is equal to the area (only the acceleration phase) under the curve in Figure

4-3.

On the other hand, the deceleration phase is similar to the acceleration phase, just that 

the initial and final speed is switched and the addition process is changed to subtraction 

operation. (s and t are zero at beginning of deceleration).

Solving equation (4-3) gives:

t v ± A/v 2 - a ( 2 s )  (4_4)

Equation (4-4) will generate a smaller time, t, when subtraction is performed rather than 

addition. The two times are both positive. The smaller one is the time when the position 

is first reached. (If the motion continued with negative acceleration, then it would 

eventually move backwards till the same position was reached again but this is not what 

is required. This is illustrated in Figure 4-6.)

_ v -  -\lv2 — 2as (4-5)
a
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---- ►
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Figure 4-6: Illustration of Linear Deceleration (Distance against Time).

However, the time, t, in equation (4-5) is relative to the start of the deceleration phase. 

Thus, the pulse timing at the end of the constant motion phase (tiast_cons) has to be added 

to the pulse time in equation (4-5) to obtain the actual required pulse time. The time, 

tiast_cons, can be calculated using the total distance of the entire path and then finding the 

position, Siastjcons, at which the deceleration should start (by subtracting the deceleration 

distance).

The distance travelled, s, in equation (4-2) is to be obtained from the developed 

interpolation algorithm, equation (3-24) for half-step linear interpolation and (3-22) for 

half-step circular arc interpolation, which will be:

Ia s i  c o n s

Ia s i  c o n s
(4-6)

a

(4-7)

for nx = 1,2,3,...,destination X step and ny = 1,2,3,...,destination Y step (Half-Step 

Linear Interpolation); and
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sx(nx)~  R cos 

■>(»,)=R

K - Q -5)D 
R

+ 1

. f(n  -0.5)D
sm — -----------

R

(4-8)

for nx = 1,2,3,...,destination X step and ny = 1,2,3,...,destination Y step (Half-Step 

Circular Arc Interpolation)

As explained in Sections 2.4 and 4.1, with linear acceleration it may take a longer time 

to reach the required speed, although it is the simplest acceleration. When using linear 

acceleration, much of the available torque is not utilised. Linear acceleration was the 

Author’s first approach of generating acceleration algorithm for the new interpolation 

algorithms. Due to the disadvantages highlighted above, a parabolic acceleration 

algorithm has been developed. Parabolic acceleration is more desirable in terms of the 

acceleration time and the use of available motor torque.

4.2.2 Simulation of Speed with Linear Acceleration

A speed diagram illustrating an example of the new linear acceleration when 

implemented with the new linear interpolation algorithm is shown in Figure 4-7, while 

Figure 4-8 for linear acceleration on the new circular arc interpolation algorithm. The 

acceleration rate is 35,000 steps/s2 (0.35 m/s2).

The X-axis speed for circular arc is composed of the X-axis speed without acceleration 

(follows part of a sine wave curve, as shown in Figure 3-32) and the linearly 

accelerating speed. The result is a rather gentle increase in speed at the beginning while 

the drop in speed during deceleration is steeper due to the linearly decreasing speed. 

The reverse is true for the Y-axis speed because without acceleration it follows part of a 

cosine wave, as in Figure 3-33.
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Figure 4-7: Simulation of Speed with Linear Acceleration and Deceleration for the New 

H alf Step Linear Interpolation for (a) X-axis; (b) Y-axis. (X-axis = 3000 steps, Y-axis = 

2,000 steps. Acceleration = 35,000 pulses/s2. Maximum Resultant Speed = 8,000 steps/s. 

Acceleration ends at 220 ms. Deceleration starts at approximately 445 ms).
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Figure 4-8: Simulation of Speed with Linear Acceleration and Deceleration for the New 

H alf Step Circular Arc Interpolation for (a) X-axis; (b) Y-axis. (Arc = Anticlockwise 1st 

Quadrant with radius of 2,000 steps. Acceleration = 35,000 pulses/s2. Maximum Resultant 

Speed = 8,000 steps/s. Acceleration ends at 220 ms. Deceleration starts at approximately

390 ms).
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4.3 The New Parabolic Acceleration Algorithm

Investigations into the linear acceleration algorithm have revealed problems with the 

acceleration/deceleration time and torque utilisation. Therefore, a new parabolic 

acceleration algorithm has been developed for use with the new interpolation 

algorithms. The output is again pulse timings which allow the stepper motors to 

accelerate or decelerate smoothly.

Basically, the rate of acceleration is changed continuously with each and every step 

pulse by adjusting the timing between pulses. In fact, the acceleration rate decreases 

linearly to zero during the acceleration phase. One of the reasons to justify this selection 

is because stepper motor provides excellent torque at low speeds, which is up to 5 times 

the continuous torque of a brush motor of the same frame size or double the torque of 

the equivalent brushless motor. Palmin [72] found that acceleration time can be reduced 

by up to 90 percent of that of the conventional linear ramping technique.

Figure 4-9 illustrates how the speed changes over time when employing the parabolic 

acceleration. The shape of the curve during the acceleration and deceleration phases is 

each part of a parabola. Figure 4-10 shows the plot of the acceleration values for the 

situation in Figure 4-9.

4.3.1 Calculation of Pulse Timings for Parabolic Acceleration

The equation for speed during the acceleration and deceleration phases were developed 

by Palmin [72] as follows:

v = p t2 + qt -f- v0 (4-9)

where p = —— ■ ■ ;  (4-10)
T

q = -2 p T  (4“n )

Vo is the minimum speed, vm is the maximum speed and T is the time taken for

acceleration or deceleration.
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Figure 4-9: Parabolic Acceleration (Speed vs Time).

Acceleration
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Constant
Speed

Time
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Figure 4-10: Parabolic Acceleration (Acceleration vs Time).

Palmin uses an approximation technique to find the pulse timings for acceleration.

v„ = v iM+A vt (4-12)

However, this approximation gives pulse timings which may have varying resultant 

speed. Building upon equation (4-9), the Author has related the pulse timings to 

distance travelled in order to simplify the task of finding the pulse timings. Distance 

travelled, s, can be obtained by integrating equation (4-9) to give equation (4-13),

s(t) = Jvdt = + v0t (4-13)
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The plot of distance against time is illustrated in Figure 4-11 for the case where there is 

no constant phase. Now that the relationship between the distance travelled and time has 

been obtained, the next step is to find the time in terms of the distance travelled. To do 

this, the cubic equation (4-14) has to be solved to find a solution to s(t) -  s(n) = 0. The 

value s(n) is obtained from the New Half Step interpolation (for line or circular arc) for 

the nth pulse.

f i t )  = s(t) -  s(n) = f y -  + ^ -  + v0t-s(ri)  = 0 (4"14)

The root required must be greater than 0 and before the end of the motion. Therefore it 

must be the smaller of the two positive roots. To solve the cubic equation in (4-14), the 

Author has used the Newton-Raphson iteration. A description of this application of the 

Newton-Raphson method is given in Appendix A.

The Newton-Raphson method is a way of finding a root of a complicated function 

which is difficult to solve algebraically. It uses an iterative process to approach one root 

of equation [79][80].

Distance End of Motion

Point of inflection .where 
acceleration f  0

Deceleration

Acceleration Time

Figure 4-11: Illustration of Distance Travelled in Time. Constant phase has time length of 
0. The starting speed, V0, used in this graph is 0.
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4.3.2 Simulation of Speed with Parabolic Acceleration

A speed simulation of the new parabolic acceleration when implemented with the new 

linear interpolation algorithm is shown in Figure 4-12. From this figure, it can be noted 

that the acceleration and deceleration follow a parabolic shape.

Similarly the speed simulation when parabolic acceleration is employed with the new 

circular arc interpolation is illustrated in Figure 4-13. Without the acceleration, between 

150 ms and 340 ms, the X-axis speed follows part of a sine wave, as shown in Figure 

3-32. Together with the parabolic acceleration profile, a rather gentle increase in speed 

is noticed at the beginning while the drop in speed during deceleration is steeper. The 

reverse is true for the Y-axis speed because without acceleration it follows part of a 

cosine wave, as shown in Figure 3-33.
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Figure 4-12: Simulation o f Speed with Parabolic Acceleration and Deceleration for New 

H alf Step Linear Interpolation for (a) X-axis; and (b) Y-axis. (X-axis = 3000 steps, Y-axis 

= 2000 steps. Maximum Resultant Speed = 8000 steps/s. Acceleration ends at 150 ms. 

Deceleration starts at approximately 395 ms).

- 131 -



Chapter 4: The New Acceleration Algorithms

8000 -I 

7000 - 

6000 - 

5000 - 

4000 - 

3000 - 

2000  -  

1000 -

0 - -  

0 200 300

T im e  (m s)

(a)

8000

7000

^  6000 
cL
g  5000

1  4000 
a.

C /3  </>'Ha
>  2000

3000

1000

100 2000 300 400 500

T im e  (m s)

(b )

Figure 4-13: Simulation o f Speed with Parabolic Acceleration and Deceleration for New  

H alf Step Circular Interpolation for (a) X-axis; and (b) Y-axis (Arc = Anticlockwise 1st 

Quadrant with radius of 2000 steps. Maximum Resultant Speed = 8000 steps/s. 

Acceleration ends at 150 ms. Deceleration starts at approximately 340 ms).
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4.3.3 Explanation of the Shape of the Speed Curves

In some cases the curves obtained under acceleration may be difficult to understand. 

The speeds for interpolation of a line with the linear and parabolic acceleration are 

shown in Figure 4-7 and Figure 4-12, respectively. It can be seen that the acceleration 

changes linearly or parabolically. This is because the speed without acceleration is 

constant on each axis. On the other hand, the speeds during acceleration in Figure 4-8 

and Figure 4-13 do not look linear or parabolic, because the speed on each axis changes 

even without acceleration. In fact, without acceleration, each would follow part of either 

a sine or cosine wave. To explain Figure 4-13, it has been deduced that increasing in 

speed in X-axis for the circular arc without the acceleration algorithm together with 

increasing in overall speed used for the acceleration algorithm will result in a very 

gently increasing in speed in the X-axis (Figure 4-14(a)(c)(e)). When the speed in the 

Y-axis is almost constant without the acceleration algorithm and the speed is increasing 

for the acceleration algorithm, the result is increasing in the resultant speed in the Y- 

axis (Figure 4-14(b)(d)(f)). A similar explanation can be given for Figure 4-8,

Speed in X- 
axis without 
acceleration

Overall Speed 
for 1 

-  " Acceleration

Speed in X- 
axis for J 

Acceleration

TimeTime Time

Speed in Y- 
axis for A 

Acceleration

Speed in Y- 
axis without 
acceleration

Overall Speed 
for

Acceleration

Time TimeTime

Figure 4-14: Combining Speeds: (a) Increasing in speed in X-axis without acceleration 

algorithm; (b) Initial speed in Y-axis without acceleration algorithm; (c)(d) Increasing in 

speed used for acceleration algorithm; (e)(f) Resulting speeds.
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4.4 Comparison of Acceleration Algorithms

Section 4.1 explained the advantages of the parabolic acceleration over the linear 

acceleration. This section makes use of the new acceleration algorithms and an example 

to check the validity of the statements presented in Section 4.1. This resulting line has 

been plotted in Figure 4-15 and Figure 4-16. The parameters used for the example are as 

follows:

Xstart ~~ 0

Ystart =  0
X end = 3000 steps (0.03m)

Yend = 2000 steps (0.02m)

Feedrate = 8000 steps/s (4.8m/min or 0.08 m/s)

Starting speed = 200 steps/s (2 mm/s)

Acceleration Rate (Linear) = 0.35 m/s2 

Maximum Acceleration Rate (Parabolic) = 1.04 m/s2

The characteristic to be analysed is the machining time. To do this, the X and Y axis 

positions in time have been calculated and are shown in Figure 4-17 and Figure 4-18. 

The total machining time with the linear acceleration is 665 ms. On the other hand, 

performing a parabolic acceleration on the same line will require only 545 ms. These 

results demonstrate that for this example parabolic acceleration will indeed require a 

shorter machining time than linear acceleration.

However, this advantage depends on the values of the constant acceleration (linear 

acceleration) and the maximum acceleration (parabolic acceleration). For example, if 

the two values are the same, then parabolic will take a longer time. However, this does 

not have to happen in practice, because the acceleration used for the linear acceleration 

must be within the pull-out torque limit of the motor throughout the acceleration and the 

pull-out torque decreases with speed, as illustrated in Figure 4-2. In practice, the 

machining time relationship between both accelerations is likely to be similar to the one 

shown in Figure 4-1(c).



Chapter 4: The New Acceleration Algorithms

2000

1800

1600

1400

1200

7  1000 
aI>h

600

800

400

200

0 500 1000 1500 2000 2500 3000

X-axis (steps)

Figure 4-15: Position Plot for Linear Acceleration with Linear Interpolation for Line (X- 

axis = 3000 steps, Y-axis = 2000 steps, Feedrate = 8000 steps/s).
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Figure 4-16: Position Plot for Parabolic Acceleration with Linear Interpolation for Line 

(X-axis = 3000 steps, Y-axis = 2000 steps, Feedrate = 8000 steps/s).
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Figure 4-17: Position Plot for (a) X-axis; and (b) Y-axis, using Linear Acceleration with 

the Linear Interpolation for Line (X-axis = 3000 steps, Y-axis = 2000 steps, Feedrate =

8000 steps/s).
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Figure 4-18: Position Plot for (a) X-axis; and (b) Y-axis, using Parabolic Acceleration for 

the Linear Interpolation for Line (X-axis = 3000 steps, Y-axis = 2000 steps, Feedrate =

8000 steps/s).
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4.5 Summary

The new interpolation algorithms require acceleration algorithms to enable them to 

perform high-speed machining. In fact, it would not be very useful for a controller to 

have just the interpolation algorithm and 110 acceleration algorithm. Without 

acceleration, the speed during the whole machining has to be kept below the pull-in 

speed of the motor. Otherwise, the motor will lose step or stall. A typical pull-in speed 

is 0.13 m/min. Therefore, to machine a length of lm 011 a single axis will take 

approximately 8 mins. When acceleration is used, the acceleration at each motor speed 

has to be kept below a certain limit which is constrained by the pull-out torque limit at 

that particular speed.

Both linear and parabolic acceleration have been explained in this chapter. Since the 

new interpolation algorithms deal with every individual pulse, the existing acceleration 

algorithms cannot be used. Instead, new linear and new parabolic acceleration 

algorithms have been developed for use with the new interpolation algorithms. Linear 

acceleration is more commonly used due to its simplicity of implementation but it has a 

drawback. The linear acceleration algorithm has a constant acceleration making the 

acceleration time longer than for the parabolic acceleration, provided that the starting 

acceleration (parabolic) can be made high enough. This is likely to be possible because 

the allowable acceleration at lower speed is high, can be seen in Figure 4-2.

Another advantage of the parabolic acceleration is that it makes more use of the 

available motor torque. The motor torque capability decreases with respect to speed. 

Therefore, higher acceleration can be used at lower speed but must be reduced for 

higher speeds. Parabolic acceleration has been developed to have high acceleration at 

lower speeds and lower acceleration at higher speeds.

Chapter 6 will include a more detailed evaluation of the acceleration algorithms. It 

should also be noted that both the acceleration algorithms can be used with any 

interpolation algorithms which produce pulse timings for constant speed interpolation.
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5 Evaluation Platform Using Simulation

This chapter presents the four simulation methods that have been used to simulate the 

possible position of the generated path. They are the Zero Order simulation, Varying 

Rate First Order simulation, Constant Rate First Order simulation and Second Order 

simulation. Each of these simulation methods has its own advantage in simulating the 

resultant generated path. They all help to give an idea of the possible motion. The 

simulation algorithms have been discussed briefly in Section 3.4 but are now presented 

in detail.

5.1 Behaviour of a S tepper Motor

When a stepper motor performs a single step, the nature of the response is oscillatory, as 

illustrated in Figure 5-1. The overshoot is exaggerated here to make clear the oscillating 

nature of the resulting motion. This system can be likened to a mass which is located by 

a “magnetic spring”, so the behaviour resembles the classic mass-spring characteristic 

[81]. Therefore, the Second Order simulation builds upon such mass-spring system.

2

l

o
Time

Figure 5-1: Typical Single Step Response for an Underdamped System

(Damping factor = 0.15). I
|
J■4
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a.

Time

Figure 5-2: Multi-Step Operation of Stepper Motor for the System from Figure 5-1.

The multiple steps operation of the system in Figure 5-1 is illustrated in Figure 5-2. 

Damping is an indication of the rate of decay of a signal to its steady state value, related 

to settling time [3]. The possible situations for damped systems are underdamped, 

critically damped and overdamped system. The example system illustrated in Figure 5-1 

is for an underdamped system. An underdamped system will overshoot its destination, 

then oscillate back and forth about its desired state. This can cause large inaccuracies 

and vibrations, which should be avoided. The degree of damping or underdamping is 

expressed as a damping factor which has value 1 for critically damped, greater than 1 

for overdamped and between 0 and 1 for underdamped.

A system is critically damped when the response to a step change in desired position is 

achieved in the minimum possible time with no overshoot [3], as illustrated in Figure 

5-3. On the other hand, an overdamped system, shown in Figure 5-4, will take a very 

long time to reach the desired position, asymptotically reaching the desired state without 

position overshoot. This will tend to put a higher burden on the driving motors.

In practice, there has to be a compromise between vibrations and settling time. 

Therefore, the practical damped process is normally close to the critical damped process 

value. An example of a practical damped stepper motor system is illustrated in Figure 

5-5, which carries a damping factor of 0.7.
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2

a. 1

0
Time

Figure 5-3: Typical Single Step Response for Critically Damped System

(Damping Factor = 1).

2

1

0
Ti me

Figure 5-4: Typical Single Step Response for Overdamped System  

(Damping Factor = 2.5).
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2

1

0
Time

Figure 5-5: Practical Damped Stepper Motor System (Damping Factor = 0.7).
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5.2 Simulation of Position

The simplest simulation is the Zero Order simulation where the motor is assumed to 

respond instantaneously to each command pulse. This simulation is impractical but it is 

useful to show the order in which the command pulses are sent. It also gives an idea of 

the path but without the detail.

There are two types of First Order simulation methods used, both of which have useful 

properties. The first type is the Varying Rate First Order simulation. With this 

simulation, the motion of every motor step varies linearly in time until the next step 

command pulse arrives. This simulation is suitable for simulating high speed motion 

because time between command pulses will be short for high speed interpolation. The 

motion appears smoother than with the Constant Rate First Order simulation.

For lower speed interpolation, the Constant Rate First Order simulation will be more 

appropriate. This simulation still assumes that motor step motion varies linearly with 

time until the step is completed. However, with this simulation, the time for this linear 

motion is constant for eveiy motor step. The motion appears less smooth but it allows a 

step to be completed before the next one begins, as in the case for very slow speeds.

The behaviour of a stepper motor control system is similar to that of a mass which is 

located by a “magnetic spring” and can be modelled using a Second Order simulation. 

The Second Order simulation is closer to the real system than the previous are. To 

model this system more closely, higher order simulation might be needed.
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5.2.1 Zero Order Simulation

The Zero Order simulation is the simplest simulation where the dynamic characteristic 

of the stepper motor is ignored. This simulation does not take into consideration the 

response time of the stepper motor. In other words, the stepper motor is assumed to 

move to the desired position instantaneously when a command pulse is received. The 

only possible directions of motion are parallel to one axis or diagonal (the diagonal 

move occurs when both axes have a pulse at the same time).

X Pulse

Y Pulse
(a) Time

(b) Time

X Position

(c) Time
Y Position

(d) Time

Figure 5-6: Example of Zero Order simulation: (a) X pulses; (b) Y Pulses; (c) Distance In 

X; (d) Distance in Y. This example is for the new linear interpolation for the line from

(0,0) to (6,4).
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4

3

1

0
0 1 2 3 4 5 6

X-axis (steps)

Figure 5-7: Example of Zero Order simulation -  of the Path for the Example in Figure 5-6.

Figure 5-6 demonstrates how the Zero Order simulation simulates the motor motion for 

an individual axis when command pulses are received. It can be seen from the figure 

that the motor step is moved at the same instant the command pulse is received. The 

path generated from the previous example is illustrated in Figure 5-7.

5.2.2 Varying Rate First Order Simulation

The Varying Rate First Order simulation is a more realistic simulation compared to the 

Zero Order simulation. There will always be a response time before the stepper motor 

settles. In this simulation it is assumed that the motion is linear and the response time is 

equal to the time between the current command pulse and the next one. In other words, 

this simulation technique assumes that the stepper motor will only complete moving one 

stepper motor step when the next command pulse is received and that the motion 

between pulses varies linearly with time. The response time for the last command pulse 

is taken to be the same as the penultimate response time.

As in the case of the Zero Order simulation, the same example is shown in Figure 5-8 to 

illustrate the command pulses sent to the two axes and how these pulses will affect the
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X Pulse

Time

Y Pulse

Time

X Position

Time
Y Position

Time

Figure 5-8: Example of Varying Rate First Order simulation: (a) X pulses; (b) Y Pulses; 

(c) Distance In X; (d) Distance in Y. This example is the same as for Figure 5-6.

axis positions. The X-axis motor motion varies linearly with time throughout the six 

command pulses because the time between pulses is constant for the X-axis in this 

example. The same happens to the Y-axis which consists of only four command pulses.

The plots in part (c) and (d) of Figure 5-8, position against time, are used to plot the 

simulated path. How this is done will be explained in detail in Section 5.2.5. The 

resultant path from this example is illustrated in Figure 5-9. From this figure, it can be 

clearly noticed that the path follows a smoother line in most parts of the interpolation.
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4

3
</>
CL4»

1

0
0 1 2 3 4 5 6

X-axis (steps)

Figure 5-9: Example of Varying Rate First Order simulation -  o f the Path for the Example

in Figure 5-8.

However, this simulation is likely to be less accurate for slow speeds. On the other 

hand, for higher speed, the Varying Rate First Order simulation may be able to show 

more closely the actual stepper motion, assuming it is smooth.

5.2.3 Constant Rate First Order Simulation

As discussed in the previous section, Varying Rate First Order simulation is more 

suitable for high speed interpolation. Therefore, a different simulation, more suitable for 

low speed interpolation, has been developed. The Constant Rate First Order Simulation 

assumes that the stepper motor has completed the movement before the next pulse is 

sent and that the time for the movement is always the same. Therefore an additional 

parameter is needed, which is the stepper motor response time. (During the response 

time the motion is assumed to be linear.)

Figure 5-10 has the plot of the motor motion for each individual axis using the Constant 

Rate First Order simulation. It should be noticed that at the instant of receiving a 

command pulse, the motor position changes linearly with time. The rate of this linear
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X Pulse

Y Pulse
(a)

Time

(b) Time

X Position

Time
Y Position

Time

Figure 5-10: Example o f Constant Rate First Order simulation: (a) X pulses; (b) Y Pulses; 

(c) Distance In X; (d) Distance in Y. This example is the same as for Figure 5-6.

motion is constant, in contrast to the Varying Rate First Order simulation where the rate 

of the linear motion depends on the time between pulses. In other words, the time it 

takes to settle in the next motor step position is the same for every motor step. This 

simulation is suitable for low speed interpolation when the motor will normally settle at 

the next motor step before the next command pulse is received. The plot of the 

simulated path for the same example is shown in Figure 5-11.
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4

3

fiu

1

0
2 40 1 3 5 6

X-axis (steps)

Figure 5-11: Example o f Constant Rate First Order simulation -  o f the Path for the

Example in Figure 5-10.

5.2.4 Second Order Simulation

When loss of synchronisation does not occur, the behaviour of a stepper motor control 

system is similar to that of a mass which is located by a “magnetic spring” as illustrated 

in Figure 5-12. Therefore, it is useful to use the Second Order simulation, because it is 

intended to model an ideal mass-spring system. An approximation is used to derive the 

algorithm used, so it may not model the mass-spring system exactly. In addition the 

stepper motor may not behave exactly like an ideal mass-spring system even when there

Spring Constant, K

x(t)

M ass, M

Friction, F

Figure 5-12: M ass-Spring Characteristics (adapted from [81]).
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is no loss of synchronisation. Therefore careful testing would be needed before detailed 

conclusion could be drawn from this simulation alone.

The Second Order simulation is in some ways closer to a real system than the previous 

ones. The development of this simulation system has been done by Nicolaos [81]. From 

Figure 5-12, x(t) is the input displacement while y(t) is the output displacement. 

Analogously, x(t) is the expected step position after every command pulse is received 

and y(t) is the actual position moved by the stepper motor as a result of the input

command pulses. This system can be represented by the following differential equation:

y ^ = M ^ y + F i t + K x ^  5̂4)

Following the work by Nicolaos [81] the stepper motor system can be represented by 

the following difference equation:

v =a x +a .x , +a .,x +b ,v , +b nv 9 ^X n  n  n  n - i  n - 1  n - 2  n - 2  ^ n - l X  n - l  n - 2 X  n - 2  y j - A )

where xn is the input series and yn is the output series, and:

cd2T 2
U° ~ 4 + 4 <;a>T + c 

ax = 2a0

a 2 ~  a o (5-3)

b, = -2 a 0 (l -  4) 

b2 = - a 0(4 q)-2T-  + l)

cd is the natural frequency of the stepper motor while g is the damping factor and T is 

the sample period. The recursive difference equation in (5-2) is used to simulate the 

output of the system for any input series. For all the simulations used in this work, q has 

been set to 0.7 and co is 628 rads/sec, equivalent to 100 Hz, because these represent 

typical values for a stepper motor. The value of T is chosen to be 0.1 ms so that enough 

points are available to plot the curve.
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X Pulse

(a)
Time

Y Pulse

(b) Time

X Position

(c) Time

Y Position

Time(d)

Figure 5-13: Example o f Second Order simulation: (a) X  pulses; (b) Y Pulses; (c) Distance 

in X; (d) Distance in Y. This example is the same as for Figure 5-6. (Damping Factor = 0.7;

Speed =  500 steps/s).

Figure 5-13 demonstrates the Second Order simulation of the same example as before. 

This example uses a high-speed interpolation. In this example, the motor motion 

variations are very close to the Varying Linear First Order simulation (Figure 5-8). The 

simulated path is plotted in Figure 5-14. This plot demonstrates a smoother line 

compared to the Zero Order or the Constant Rate First Order simulations. The plot looks 

similar to the plot for Varying Linear First Order simulation in Figure 5-9.
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X-axis (steps)

Figure 5-14: Example o f Second Order simulation -  o f the Path for the Example in

Figure 5-13

X Position

Time(a)

Y Position

Time
(b)

Figure 5-15: Example of Second Order Simulation (Low Speed): (a) Distance In X; (b) 

Distance In Y. This example is the same as for Figure 5-6, apart from the speed. (Damping

Factor = 0.7; Speed = 167 steps/s).

Figure 5-15 uses the same parameters as in the example shown in Figure 5-13 but with 

low speed. The speed for this example is a third of the speed in the high-speed example. 

The motor motion variations from this low-speed Second Order simulation are very
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similar to the plots in Figure 5-10. The plot of the simulated path is shown in Figure 

5-16. It is quite similar to Figure 5-11 (Constant Rate First Order simulation) or even 

Figure 5-7 (Zero Order simulation).

4

3

ex
V)

1

0
0 1 2 3 4 5 6

X-axis (steps)

Figure 5-16: Example o f Second Order simulation (Low Speed) -  o f the Path for the 

Example in Figure 5-15. It looks very similar to Constant Rate First Order simulation in

Figure 5-11.

5.2.5 Calculation of the Simulated Path

For each method, the simulation results for both the X and Y-axis are combined to 

generate the simulated cutting path. Figure 5-17 to Figure 5-19 illustrate the results of 

the three Zero and First Order simulations (for the same inputs) for both axes and how 

an interpolated path is calculated from this information. The purpose of developing 

different simulation technique is to model more closely the expected result when used in 

a multi-axis stepper motor control system where the motor does not respond instantly to 

command pulses. The black circle in the individual axis motion indicates the point 

where one or both of the two axes changes speed according to the simulation. For each 

of these points (A,B,C etc), a point will be plotted on the simulated path plot. For 

instance, point A on the X-Y plane has the X-axis position at Ax and the Y-axis position
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Distance 
Travelled 
in X-axis

Y-axis

time
Distance 
Travelled 
in Y-axis

(0,0)
Simulated Path

time

Figure 5-17: Zero Order Simulation,

Distance 
Travelled 
in X-axis

Y-axis

time
Distance 
Travelled 
in Y-axis

X-axis

Simulated Path

time

Figure 5-18: Varying Rate First Order Simulation for same input as in Figure 5-17

Distance 
Travelled 
in X-axis

Y-axis

time
Distance 
Travelled 
in Y-axis

E,F

(0,0)
Simulated Path

time

Figure 5-19: Constant Rate First Order Simulation for same input as in Figure 5-17.
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at Ay. Since both axes change linearly between each pair of spots, the simulated path 

will be linear between them.

Another possible method to plot the simulated path is to have the position data 

calculated at very small time intervals. This will indeed generate much more data and 

can be avoided for Zero and First Order simulations. However, the Second Order 

simulation needs to use this approach because the motion is not linear. It uses the 

position data at small fixed time intervals to plot the simulated path.

5.2.6 Comparison of Path Generated by Different Simulation 
Algorithms

In general, the Varying Rate First Order simulation gives the smoothest simulation but 

is not realistic when pulse rate is low. On the other hand, the Zero Order and the 

Constant Rate First Order simulation are both jerky. The Second Order simulation looks 

more realistic compared to the rest. It exhibits the good characteristics of both the 

Varying Rate and Constant Rate First Order simulations. Figure 5-20 below illustrates 

how the Zero and First Order simulation discussed here will simulate the position of the 

stepper motor after three command pulses.

Response Time
M otor

Position

Time

Zero Order

Varying Rate 
First Order

  Constant
Rate First 
Order

Figure 5-20: Step Response Using Zero and First Order Simulation.
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Y  Position

Time

Figure 5-21: Step Response Using Second Order Simulation (Low Speed).

Y  Position

Time

Figure 5-22: Step Response Using Second Order Simulation (High Speed).

The Second Order simulation is illustrated in Figure 5-21 and is seen to be veiy close to 

the Constant Rate First Order simulation for low speed. On the other hand, it is close to 

the Varying Rate First Order simulation for high speed as shown in Figure 5-22. All 

these simulations are useful to get an idea of how the motor will actually respond to the 

command pulses. Both the First and Second Order simulations are estimates of the real 

motion with the Second Order simulation may be a closer match to the actual response 

of a real motor.
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5.3 Simulation of Speed

Speed simulation is used to simulate the speed of the individual axis. The technique 

employed here is to get the average speed between adjacent pulses. In other words, this 

technique assumes the response of the stepper motor to command pulses matches the 

response suggested using the Varying Rate First Order simulation. In reality, there may 

be some smoothing of the speed or it could be worse with vibrations. The following 

equation is used to calculate the speed between adjacent generated command pulses:

speed — — step _ size
timeOfPulse(n) -  timeOfPulse{n -1)

(5-4)

Using the path shown in Figure 5-18, a speed simulation can be plotted as shown in 

Figure 5-23.

X Speed

(a) Time

Y Speed

(b) Time

Figure 5-23: Example o f Speed Simulation for the Example in Figure 5-18. (a) X-axis 

Speed; (b) Y-axis Speed, assuming that the pulse following continues at the same rate for 

each axis (when it reaches F on X-axis, E on Y-axis).
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The speed simulation could make use of the Second Order simulated positions. 

However, this will present a rather oscillatory speed simulation in all cases, even when 

the pulses are at constant rate. In Figure 5-24, for high speed machining, the oscillation 

is not as bad as the low speed machining in Figure 5-25. From these Second Order 

simulations, it can be expected that, even when the pulse frequency is constant, there 

will be some variations in speed. These are unavoidable. What is more useful for this 

work is to identify variations in pulse frequency. Therefore, only the Varying Rate 

simulation has been considered for speed simulation for the evaluation.

600

500

CLQJ 400

-100
0 10 15 20 25 30

Time (ms)

(a)

500 -i

^  400 -

!  300 -

1  200  -  OuV)
•a ioo -
CgI

-100 J
0 5 10 15 20 25 30

Time (ms)

(b)

F ig u re  5-24: S econ d  O rd er  S p eed  fo r  E x a m p le  in F igu re  5-13  (H ig h  S p eed ): (a) X  S peed;

(b) Y  S p eed .
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300 n

a  200

-50 J
0 10 20 30 40 50

Time (ms)

(a)

60

300 n

Time (ms)

(b)

Figure 5-25: Second Order Speed for Example in Figure 5-15 (Low Speed): (a) X Speed;

(b) Y Speed.
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6 Evaluation of The New Algorithms

Chapters 3 and 4 have introduced the new interpolation and acceleration algorithms and 

have included some simulation examples. It is important to compare the results from the 

new algorithms with previous algorithms. This chapter presents simulation results and 

an evaluation of the effectiveness of the algorithms developed. The two new 

interpolation algorithms are the Full Step and Half Step. The latter has been developed 

as an improvement of the former. In Section 6.2 both will be evaluated against previous 

interpolation algorithms, the Search-Step, Direct-Search and DDA algorithms. These 

algorithms have been explained in Section 2.3 and the software version of DDA has 

been used here.

The new acceleration algorithms have also been evaluated for their performance when 

used with the new interpolation algorithms. In fact, some of these simulations have been 

discussed in Section 4.4. Section 6.3 includes more simulation results for the new linear 

and parabolic acceleration algorithms. It is not possible to compare directly with earlier 

acceleration algorithms, because the acceleration algorithms have been designed for use 

with new interpolation algorithms. A protocol controller has been developed and simple 

tests have been performed using the same line and arc used for the simulation tests for 

acceleration. The results are presented in Section 6.4.

For the simulation results, two main criteria are chosen for evaluation:

• Position errors, and

• Speed variations (X and Y axis speed fluctuations)

The largest position error is calculated to give an idea of how accurate the required path 

is followed. On the other hand, the average error value is taken of the signed error to 

investigate how much the simulated path deviates on average from the required path. 

Since the effect of each command pulse is difficult to predict and depends on the motor 

used, four simulation methods have been used (as explained in Chapter 5).
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A short line and small radius arc have been used for evaluation of interpolation. It is 

done at a relatively low speed because acceleration is not used. For acceleration 

algorithms, a longer line and larger radius arc are used so that there is time to accelerate 

up to the same speed.

Section 6.1 of this chapter explains the method for the calculation of position errors for 

both lines and arcs. The calculation for the speed simulation is also included in this 

section. The following section, Section 6.2, presents simulation results from the five 

different interpolation algorithms. The path is simulated using four different simulation 

methods, namely the Zero Order, Varying Rate First Order, Constant Rate First Order 

and Second Order simulation presented in Section 5.2. Section 6.3 concentrates on the 

simulation results for the linear and parabolic acceleration algorithms. The initial results 

from the practical implementation are presented in Section 6.4.
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6.1 Methods Used for Evaluation

Section 6.1.1 describes how the position errors have been calculated for both lines and 

circular arcs. Section 6.1.2 explains how the axis speeds have been calculated from the 

list of pulse timings.

6.1.1 Calculation of Position Errors

Evaluation of position errors involves measuring how accurately the interpolated path 

can follow the desired path. For both linear and circular arc interpolation, the deviation 

of the simulated path is taken to be the shortest distance of each point on the simulated 

path from the desired line or arc. The method used in each case allows the shortest 

distance to be given a sign to indicate on which side of the line or arc it lies. This is 

useful for the error plots, because it gives greater information about the errors.

The shortest distance from a straight line is the perpendicular distance of the point from 

the line. Figure 6-1 illustrates how this distance is calculated. If the interpolated point is 

above the required path, the position error is assigned a positive value, while it is 

assigned a negative value if the interpolated point is below the required path. Thus the 

sign of the error value indicates which side of the line the point lies.

Point on simulated path (x y )

Desired straight 
line

Figure 6-1: Calculation o f Position Error for Line.
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It can be shown that (f)i = fa and fa can be calculated from the end point information as 

follows:

tan -1 y  _ end -  y _  start 
y x _ end — x_start

(6-1)

Now, distance b is calculated as in (6-2).

b= y - y  end -  y  start')/ \—=---------- =  \x -  x _ start) -  y _ star
K x _ end ~ x _  start

(6-2)

Using fa and b from equations (6-1) and (6-2) the positional error is expressed as:

a — b cos ( fa ) (

This gives positive and negative values, as required. In the case when x_end = x_start 

(the line is parallel to the Y-axis), the error is calculated using the X-axis coordinate of 

the point and the line. The error is taken as positive to the right of the line and negative 

to the left.

For a circular arc, to find the shortest distance of a point from the arc, the closest point 

on the arc needs to be found. The closest point lies on the line from the point to the 

circle centre. Therefore the error can be calculated as the difference between the 

distance from the centre and the radius of the circle. The position error is calculated as 

in equation (6-4). A simulated point lying outside the circle will result in a positive error 

while for a point lying inside it will be negative.

position error = fax  - (6-4)
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Circi
Centre

Point

Radius,
Distance 

from centre

Point on simulated 
path (x,y)

Figure 6-2: Calculation of Position Error for Circular Arc.

6.1.2 Calculation of Speed

Speed simulation is used to estimate the speed along the individual axis. The technique 

employed here is to find the time between adjacent pulses and use it to calculate the 

speed between the two pulses. Then this value is assigned to the second of the two 

pulses although it could equally well have been assigned to the first. In other words, this 

technique assumes the response of the stepper motor to command pulses matches the 

response using the Varying Rate First Order simulation. In reality, there may be some 

smoothing of the speed or the situation could be worse with large vibrations caused by 

sudden changes in speed. The following equation is used to calculate the speed between 

adjacent steps:

Because the speed is assigned to the second of the two pulses, there will be no speed 

value for the initial pulse.

speed (n) =
step _ size (6-5)

timeOfPulse{n) -  timeOfPulse(n - 1)
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6.2 Evaluation of the Interpolation Algorithms by Simulation

The evaluation of interpolation presented in this section does not consider acceleration 

and deceleration. The evaluation of the acceleration and deceleration algorithms is 

presented in Section 6.3. Therefore, only low speeds are used here. Five interpolation 

algorithms are discussed here. They are the three previous ones, Search-Step, Direct- 

Search, Digital Differential Analyser (DDA), and then the New Full Step algorithm and 

the New Half Step algorithm. To determine how closely the simulated path actually 

follows the required line or arc, the position error graphs have been plotted and are 

included in Appendix B. The position errors and speed variations are compared for the 

different interpolation algorithms. The results are summarised in Table 6-1 to Table 6-3 

in Section 6.2.3.

For evaluation purposes, an example line having the following parameters have been 

used:

Start coordinates (steps): (0,0)

End coordinates (steps) : (30,20)

On the other hand, the circular arc example uses the following parameters:

Start coordinates (steps) : (20,0)

End coordinates (steps) : (0,20)

Centre coordinates (steps): (0,0)

Direction: Anticlockwise

A feedrate of 167 steps/s is used for the Constant Rate First Order simulation while the 

feedrates used for Second Order simulation are 167 and 500 steps/s. Two speeds are 

used to show the difference between very slow speed and a slightly higher speed. Only 

the plots for 500 steps/s are presented in this section for the Second Order Simulation. 

The largest errors and average errors for 167 steps/s are summarised in Table 6-2. The 

average errors use the signed error values, so that it can be seen whether the simulated 

path is centre on the required path. Typically with step size 0.01 mm, that means the 

required speed is 1.67 mni/s and 5 mm/s (0.1 m/min and 0.3 m/min).
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6.2.1 Simulation Results for Linear Interpolation

Figure 6-3 to Figure 6-19 show the plots of the paths for the five interpolation 

algorithms using each of the simulation methods in turn. The corresponding position 

error plots are in Appendix B. The Zero Order simulated paths are shown in Figure 6-3 

to Figure 6-7. For this example, the New Half Step algorithm coincides with the Search- 

Step algorithm. It can be seen that all the algorithms are able to follow the required line 

fairly closely. The Direct-Search interpolation appears to be closer to the required line 

than any of the other algorithms. This is because it allows diagonal both movements on 

both axes, whereas, in particular, the Search-Step allows a movement on only one axis 

at a time. The Search-Step interpolation works by looking at the position errors. If it has 

a positive error, it will try to move towards the negative error in the following command 

step.

With the Zero Order simulation, the largest position error is 0.55 for all interpolations, 

except the Direct-Search algorithm, which has 0.28. Because the path from the Direct- 

Search algorithm has many diagonal segments, it appears to represent the line more 

closely.
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Figure 6-3: Plot of Search-Step Linear Interpolation (Zero and Constant Rate First Order

Simulation). Largest Error = 0.55.
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Figure 6-4: Plot of Direct-Search Linear Interpolation (Zero and Constant Rate First 

Order Simulation). Largest Error = 0.28.
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Figure 6-5: Plot of DDA Linear Interpolation (Zero and Constant Rate First Order

Simulation). Largest Error = 0.55.

For the New Half Step algorithm, in this particular case, there are also no diagonal line 

segments. A diagonal line segment is caused when pulses in both the X and Y axes 

arrive at the same instant. However, the lack of diagonal lines does not necessary mean 

that the New Half Step algorithm will give larger errors in practice. The reason is 

because the time gap between the X and Y pulses can be very short but it will still 

produce a “step” and not a diagonal line with the Zero Order simulation. This is true
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Figure 6-6: Plot of New Full Step Linear Interpolation (Zero Order Simulation). Largest

Error = 0.55.
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Figure 6-7: Plot of New H alf Step Linear Interpolation (Zero Order Simulation). Largest

Error = 0.55.

especially for the timing-based interpolation, because the pulses are not generated at 

fixed time intervals. Zero Order simulation is still useful because it gives a rough idea 

of the path and it shows the order in which the pulses are sent. However, it is the 

furthest from actual motion because it assumes each pulse produces instantaneous 

movement of one step. Therefore the detail of the path cannot be relied on.
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Figure 6-8: Plot of Search-Step Linear Interpolation (Varying Rate First Order 

Simulation). Largest Error = 0.28.
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Figure 6-9: Plot of Direct-Search Linear Interpolation (Varying Rate First Order

Simulation). Largest Error = 0.42.

The average error for the Search-Step, Direct-Search and New Half Step interpolation is 

zero, while for the DDA and New Full Step it has a negative value. This means that at 

most of the interpolation time, the generated path appears to be mostly below the 

required line for both DDA and the New Full Step interpolations. For the Zero Order 

simulation, the detail cannot be relied on, so the largest position error values are not 

very useful in practice.
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Figure 6-10: Plot o f DDA Linear Interpolation (Varying Rate First Order Simulation).

Largest Error = 0.55.
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Figure 6-11: Plot of New Full Step Linear Interpolation (Varying Rate First Order

Simulation). Largest Error = 0.28.

The higher order simulations produce more useful largest position error estimates. 

Figure 6-8 to Figure 6-12 show the same linear interpolation simulated using the 

Varying Rate First Order simulation. This simulation generates a smoother path than the 

Zero Order, and the New Half Step Interpolation is found to be closest to the required 

line. This simulation is expected to be closer to the real motion for higher speeds. The 

New Half Step interpolation has largest position error of 0.14, which is smaller than all 

the others.
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Figure 6-12: Plot o f New H alf Step Linear Interpolation (Varying Rate First Order

Simulation). Largest Error = 0.14.
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Figure 6-13: Plot of New Full Step Linear Interpolation (Constant Rate First Order 

Simulation). Response Time = 6ms. Largest Error = 0.33.

The Constant Rate First Order simulated path for both the new linear interpolation is 

shown in Figure 6-13 and Figure 6-14. The simulated paths using this simulation 

method for each of the other three interpolation algorithms is identical to the ones for 

the Zero Order simulation and are shown in Figure 6-3 to Figure 6-5. This simulation is
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Figure 6-14: Plot o f New H alf Step Linear Interpolation (Constant Rate First Order 

Simulation). Response Time = 6ms. Largest Error = 0.22.

expected to be more realistic for lower speeds. If the response time coincides with the 

time interval between two command pulses, the simulated path will be same as for the 

Varying Rate First Order simulation. Again the new half step has largest position of 

0.22, which is smaller than the others.

The Second Order simulation is expected to produce results that may be closer to the 

actual machining for a particular machine. Figure 6-15 to Figure 6-19 show the 

simulated path for the different interpolation algorithms. It can be noticed that the New 

Half Step Interpolation algorithm produce a path that is very close to the desired line. 

The Second Order simulation tends to produce a path that is closer to the Varying Rate 

First Order simulation for higher speeds but the simulated path tends to resemble the 

Constant Rate First Order at lower speeds, as explained in detail in Section 5.2.4. Lower 

speeds result in higher fluctuations in speed and whereas higher speeds cause smaller 

fluctuations in speed.

- 172 -



Chapter 6 : Evaluation of The New Algorithms

20 n

16 - 
— 14 -t/>
£  12 -
t/i

r  io -
? 8 -
>■ ,

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

X-axis (steps)

Figure 6-15: Plot o f Search-Step Linear Interpolation (Second Order Simulation). The 

damping factor is 0.7. Largest Error = 0.28.
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Figure 6-16: Plot of Direct-Search Linear Interpolation (Second Order Simulation). The 

damping factor is 0.7. Largest Error = 0.13.
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Figure 6-17: Plot of DDA Linear Interpolation (Second Order Simulation). The damping

factor is 0.7. Largest Error = 0.38.
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Figure 6-18: Plot o f New Full Step Linear Interpolation (Second Order Simulation). The 

damping factor is 0.7. Largest Error = 0.19.
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Figure 6-19: Plot of New H alf Step Linear Interpolation (Second Order Simulation). The 

damping factor is 0.7. Largest Error = 0.06.

With Second Order simulation, the New Half-Step Linear interpolation can be seen to 

produce very small position errors, with the largest at only 0.06 of a step. It has been 

found that the largest position error for the New Half Step linear interpolation is smaller 

than for the other algorithms (apart from one case with Zero Order simulation). 

Therefore, from all the position errors simulation, it can be concluded that the New Half 

Step Linear interpolation produces the most desirable path, because it is expected to 

follow the required path very closely.

The speed variation for X and Y axes is shown in Figure 6-20 to Figure 6-24 for the 

different interpolation algorithms. Maintaining a constant speed is important to reduce 

the chance of vibrations, which is the main reason for developing the new algorithms. 

From the speed simulation results, only the two new linear interpolation algorithms are 

seen to produce a good constant speed for each individual axis. For the other 

algorithms, at least one of the individual axis speeds fluctuates between two speed 

levels. This is undesirable and increases the likelihood of machine vibrations. Although 

the X-axis speed in the Direct-Search algorithm is constant, fluctuation in speed is still 

exhibited in the Y-axis. Taken together with the results for position errors, these results 

show that the New Half Step algorithm produces the best behaviour compared to all the 

other algorithms.
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Figure 6-20: Speeds for Search-Step L inear Interpolation: (a) X -axis; (b) Y-axis.
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Figure 6-21: Speeds for D irect-Search L inear Interpolation: (a) X -axis; (b) Y -axis.
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Figure 6-22: Speeds for DDA Linear Interpolation: (a) X -axis; (b) Y -axis.
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Figure 6-23: Speeds for New  Full Step L inear Interpolation: (a) X-axis; (b) Y-axis.
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Figure 6-24: Speeds for N ew  H alf Step L inear Interpolation: (a) X -axis; (b) Y-axis.
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6.2.2 Simulation Results for Circular Arc Interpolation

As in the case of the linear example, the five interpolation algorithms have been 

compared. Firstly, the Zero Order simulated paths are shown in Figure 6-25 to Figure 

6-29. As in the linear case, all error plots are shown in Appendix B. It can be seen that 

all the algorithms are able to follow the required arc closely. Again, the Search-Step 

interpolation works by looking at the position errors. If it has a positive error, it will try 

to move towards the negative error in the following command step. Negative errors 

correspond to inside of the circle while positive errors correspond to outside of the 

circle. This can cause a high position error, as can be seen at the beginning and end of 

the interpolation. As in the linear case, the Direct-Search algorithm appears to have 

smaller errors than the others.

20

18

16

14

IE 12a>

6 

4 

2 

0
0 2 4 6 8 10 12 14 16 18 20

X-axis (steps)

Figure 6-25: Plot o f Search-Step Circular Arc Interpolation (Zero and Constant Rate First

Order Simulation). Largest Error = 1.00.

- 181 -



Chapter 6 : Evaluation of The New Algorithms

18 -

16 -

14 -

6 8 10 12 14 16 18 200 2 4

X-axis (steps)

Figure 6-26: Plot o f Direct-Search Circular Arc Interpolation (Zero and Constant Rate 

First Order Simulation). Largest Error = 0.40.
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Figure 6-27: Plot o f DDA Circular Arc Interpolation (Zero and Constant Rate First Order

Simulation). Largest Error = 0.81.
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Figure 6-28: Plot o f New Full Step Circular Arc Interpolation (Zero Order Simulation).

Largest Error = 0.97.
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Figure 6-29: Plot o f N ew  H a lf Step C ircular Arc Interpolation  (Zero O rder Sim ulation).

Largest Error = 0.62.
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Figure 6-30: Plot o f Search-Step Circular Arc Interpolation (Varying Rate First Order

Simulation). Largest Error = 0.40.
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Figure 6-31: Plot o f D irect-Search C ircular Arc Interpolation (V arying Rate First O rder

Simulation). Largest Error = 0.40.
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Figure 6-32: Plot of DDA Circular Arc Interpolation (Varying Rate First Order 

Simulation). Largest Error = 0.67.
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Figure 6-33: Plot of New Full Step Circular Arc Interpolation (Varying Rate First Order

Simulation). Largest Error = 1.08.
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Figure 6-34: Plot o f New H alf Step Circular Arc Interpolation (Varying Rate First Order

Simulation). Largest Error = 0.39.

The Varying Rate First Order simulation is shown in Figure 6-30 to Figure 6-34. 

Unfortunately, the largest position error for the New Full Step interpolation is the 

highest, caused by the end of the interpolation which has the final Y-axis step coming 

too late. However, with the used of the Half Step technique, this problem has been 

solved. In fact, the New Half-Step Circular Arc interpolation produces the smallest 

value for largest position error (0.39 step).

The Constant Rate First Order simulated paths for Search-Step, Direct-Search and DDA 

interpolation are same as the ones for the Zero Order simulated path and are shown in 

Figure 6-25 to Figure 6-27. Therefore, only the New Full and Half step interpolated 

path are presented here, Figure 6-35 and Figure 6-36. The largest position error for the 

New Half Step algorithm is 0.39 step, less than half a motor step and none of the other 

algorithms has a smaller value.

The Second Order simulated path for the circular arc is shown in Figure 6-37 to Figure 

6-41. As in the case for the linear interpolation, the New Half Step interpolation has the
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Figure 6-35: Plot of New Full Step Circular Arc Interpolation (Constant Rate First Order 

Simulation). The response time is 6ms. Largest Error = 0.97.
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Figure 6-36: Plot of New H alf Step Circular Arc Interpolation (Constant Rate First Order 

Simulation). The response time is 6ms. Largest Error = 0.39.
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Figure 6-37: Plot of Search-Step Circular Arc Interpolation (Second Order Simulation). 

The damping factor is 0.7. Largest Error = 0.99.

X-axis (steps)

Figure 6-38: Plot of Direct-Search Circular Arc Interpolation (Second Order Simulation). 

The damping factor is 0.7. Largest Error = 0.29.
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Figure 6-39: Plot of DDA Circular Arc Interpolation (Second Order Simulation). The 

damping factor is 0.7. Largest Error = 0.63.
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Figure 6-40: Plot of New Full Step Circular Arc Interpolation (Second Order Simulation). 

The damping factor is 0.7. Largest Error = 0.93.
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X-axis (steps)

Figure 6-41: Plot of New H alf Step Circular Arc Interpolation (Second Order Simulation). 

The damping factor is 0.7. Largest Error = 0.28.

smallest value for the largest position error for Second Order simulation, 0.28 step, 

which is less than half a motor step. Again it can be concluded that it produces the most 

desirable path.

The evaluation of the speed is performed by looking at the speed variation for each 

individual axis. The feedrate is 500 steps/s. Ideally, the X-axis speed should follow part 

of a sine wave while the Y-axis speed should follow part of a cosine wave. From the 

speed simulations, Figure 6-42 to Figure 6-46, it can be seen that only the new 

algorithms are able to produce a good smooth plot similar to the ideal shape of sine 

wave for X-axis or cosine wave for Y-axis. The speeds for the other algorithms 

fluctuate considerably around the ideal shape of the speed. The speeds for the Direct- 

Search algorithm are able to maintain a constant speed for part of the time. However, 

the sudden changes in speed between 500 to 250 steps/s is very undesirable, increasing 

the likelihood of machine vibrations. Thus, together with the results of the position 

errors, it can be seen that the New Half Step algorithm produces the best behaviour 

compared to all the other algorithms. Figure 6-46(c) shows the overall speed from the 

New Half Step algorithm. The highest variation is approximately 31 steps/s (6.2%).
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Figure 6-42: Speeds for Search-Step C ircular Arc Interpolation: (a) X-axis; (b) Y-axis.
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Figure 6-43: Speeds for D SM  C ircular Arc Interpolation: (a) X -axis; (b) Y -axis.
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F igure 6-44: Speeds for D D A  C ircular Arc Interpolation: (a) X -axis; (b) Y-axis.
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Figure 6-45: Speeds for N ew  Full Step C ircular Arc Interpolation: (a) X-axis; (b) Y -axis.
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Figure 6-46: Speeds for New H alf Step Circular Arc Interpolation: (a) X-axis; (b) Y-axis;

(c) Overall Speed.
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6.2.3 Discussion

The existence of speed fluctuations or abrupt changes in speed with all the previous 

algorithms is a big disadvantage because they are likely to result in more errors during 

actual machining by causing machine vibrations. The new algorithms are greatly 

superior when dealing with speed, because there are no sudden changes in speed. When 

there are changes in speed, in the case of the arc, the speed always changes gradually. 

This is important to minimise the likelihood of any machine vibrations.

Table 6-1 to Table 6-3 summarise the values obtained for the largest position errors and 

the average of the signed errors for the different interpolation algorithms under 

simulation. Two different speeds have been chosen: 0.1 m/min is very low speed and 

0.3 m/min is a higher speed. Higher speeds cannot be simulated with Second Order 

simulation unless acceleration is used. The average error is taken over the signed error 

values (where positive in one side of the curve and negative the other). The Zero and 

Varying Rate First Order simulation produce the same result regardless of the speed, 

while Constant Rate First Order simulation is more appropriate for lower speed (0.1 

m/min) because it assumes that the motor step is completed before the next command 

pulse.

It has been explained in Section 6.2.1 that Zero Order simulation is not reliable for 

detailed values because it is only useful to give a rough idea of the path and not the 

actual motion of the motors. Therefore the Zero Order results have not been used for 

detailed evaluation.

From these tables, it can be seen that the New Half Step interpolation algorithm is able 

to follow the desired path veiy closely. In a few cases, the Search-Step or the Direct 

Search interpolation algorithm is slightly closer on average to the desired path. 

However, the New Half Step algorithm always has the smallest value for the largest 

error.

For the Second Order simulation from both the largest and average position errors, the 

New Half Step linear interpolation performs the best. For circular arc interpolation at
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Table 6-1: Position Errors for Different Interpolation Algorithms (regardless o f the

speed).

Simulation
Type

Interpolation
Algorithm

Line Circular Arc
Largest
Error

Average
Error

Largest
Error

Average
Error

Zero Order Search-Step 0.55 0.00 1.00 -0.09
Direct-Search 0.28 0.00 0.40 0.01

DDA 0.55 -0.14 0.81 0.24
New Full Step 0.55 -0.14 0.97 -0.03
New Half Step 0.55 0.00 0.62 0.06

Varying 
Rate First 

Order

Search-Step 0.28 -0.12 0.40 -0.02
Direct-Search 0.42 -0.14 0.40 -0.01

DDA 0.55 -0.27 0.67 0.20
New Full Step 0.28 -0.28 1.08 -0.14
New Half Step 0.14 -0.14 0.39 0.00

Table 6-2: Position Errors for Different Interpolation Algorithms (at 0.1 m/min).

Simulation
Type

Interpolation
Algorithm

Line Circular Arc
Largest
Error

Average
Error

Largest
Error

Average
Error

Constant 
Rate First 

Order

Search-Step 0.55 0.00 1.00 -0.09
Direct-Search 0.28 0.00 0.40 0.01

DDA 0.55 -0.14 0.81 0.24
New Full Step 0.33 -0.14 0.97 -0.06
New Half Step 0.22 0.00 0.39 0.03

Second
Order

Search-Step 0.58 0.00 1.05 -0.08
Direct-Search 0.30 0.00 0.43 0.00

DDA 0.57 -0.13 0.83 0.22
New Full Step 0.46 -0.14 0.98 -0.07
New Half Step 0.28 0.00 0.42 0.02

Table 6-3: Position Errors for Different Interpolation Algorithms (at 0.3 m/min).

Simulation
Type

Interpolation
Algorithm

Line Circular Arc
Largest
Error

Average
Error

Largest
Error

Average
Error

Second
Order

Search-Step 0.28 0.00 0.99 -0.08
Direct-Search 0.13 0.00 0.29 0.00

DDA 0.38 -0.13 0.63 0.19
New Full Step 0.19 -0.13 0.93 -0.07
New Half Step 0.06 0.00 0.28 0.02
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0.3 m/min, the New Half Step is also the best in terms of largest position error. At 0.1 

m/min, the New Half Step interpolation is also best when the largest position error is 

considered. However, the average position error is slightly larger (by 0.02) than for the 

Direct-Search interpolation. The plots of position error throughout the two 

interpolations can be seen in Appendix B, Figure B-31 and Figure B-34. From there, it 

can be seen that the position error for the New Half Step algorithm is very close to zero 

most of the time. On the other hand, for the Direct-Search algorithm, higher fluctuations 

are identified over more of the path. Because of the equal fluctuations above and below 

the required path, the average error has turned out to be zero. Even in the case of First 

Order simulation, the largest position error is always smallest for the New Half Step 

interpolation and the average error is worse in just 2 cases by at most 0.02 step. 

Therefore, it is expected that the path generated by New Half Step linear interpolation 

will be closest to the desired path when performing the actual machining.

Based on the speed simulation, the new algorithms have by far the best performance in 

terms of smoothness of motion. From the First and Second Order simulation results, the 

Half Step algorithms can be seen to improve on the Full Step one because of the 

reduction in the position errors. Therefore, the Half Step algorithm is expected to give 

smoother motion than all the previous interpolation algorithms and there is no 

significant loss of accuracy.

All the simulations where speed was involved have been at low speeds, because 

otherwise acceleration is needed. Therefore, one acceleration algorithm has been used to 

investigate the effect of motion at constant high speed. Figure 6-47 shows the Second 

Order simulation of New Half Step interpolation of a line at high speed (4.8 m/min). 

The line shown in this figure is a small segment of a longer line from the part where it is 

travelling at constant speed. The linear acceleration algorithm has been used to 

accelerate up to this speed. The largest error when the motion along this line is at 

constant speed is approximately 0.007 step. For a circular arc of radius 2000 steps, 

travelling at the constant speed of 4.8 m/min (with preceding acceleration algorithm), it 

is found that the largest error is also 0.009 step. This error has been calculated only for 

the part of the arc from angle 31.79° to 60° because it was inside the region of constant 

speed. These results suggest that the errors are lower at high speeds.



Chapter 6 : Evaluation of The New Algorithms

1020 
1018 
1016 

0  1014 

§ 1012 
J  1010 
« 1008 
^  1006 

1004 
1002 
1000

1500 1505 1510 1515 1520 1525 1530

X-axis (steps)

Figure 6-47: Plot of a High Speed Interpolation of a Line (New H alf Step) at the Constant 

Phase o f the Motion (Second Order simulation). Acceleration was completed well before

this stage was reached.

Table 6-4: Table o f Position Errors for Line at Speed 0.3 m/min.

L ine A ngle 0° 0.57° 33 .69° 45°

L argest E rror  
for F ull Step

0 0.98 0.19 0

L argest E rror  
for H a lf  Step

0 0.52 0.06 0

The effect of direction of the motion has also been investigated. From the error plots for 

the circular arc, which are included in Appendix B. it has been found that higher errors 

are at the beginning and end of interpolation. This could be because the speed in one 

axis is much higher than the other, and not because of the acceleration. Therefore, a test 

has been performed on the interpolation of a line almost parallel to the X-axis, from 

(0,0) to (100,1) at 0.3 m/min (at an angle of 0.57°). It is found that the largest error for 

Second Order simulated path is 0.98 step for New Full Step interpolation and it is 0.52 

step for New Half Step interpolation. These values can be seen to be considerably 

higher than the errors for the line (0,0) to (30,20) in Table 6-3. Table 6-4 summarises 

the errors that occur at different speeds. In simulation the errors for 0° are 0 because all 

the motion is always along the X-axis. For 45°, the two axes will behave identically so
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again the error is 0. When the angle gets close to 0° but is greater than 0°, the error is 

thought to be largest because of the low speed on the Y-axis. In the last example, the Y- 

axis speed is very low at 0.003 m/min, much slower than the Y-axis speed in the 

example in Figure 5-15.



Chapter 6 : Evaluation of The New Algorithms

6.3 Evaluation of The New Acceleration Algorithms by 

Simulation

To enable the new interpolation algorithms to be used for high speed machining, new 

acceleration algorithms have been developed. The details of these algorithms are 

outlined in Sections 4.2 and 4.3. They are the linear and parabolic acceleration, with the 

parabolic acceleration appearing to have much advantage. A brief evaluation of these 

algorithms is included in Section 4.4. This section presents further simulation results to 

evaluate the two acceleration algorithms. From Section 6.2, it has been found that the 

New Half Step interpolation algorithms produce an improved interpolation when 

compared to the other interpolations. Therefore, it has been used for the evaluation of 

the new acceleration algorithms.

As in the case of the interpolation algorithms, the position errors help to determine 

whether the generated path is able to follow the required path closely, while the speed 

variations highlight the possible increased chance of vibrations. The position error plots 

are in Appendix C.

As for interpolation, one line and one arc have been used as examples to evaluate the

acceleration algorithms. This time the line and arc are both much longer (compared to

the examples used for the evaluation on the interpolation in Section 6.1) to allow time 

for acceleration and deceleration. This line is in the same direction as before and the arc 

is again anticlockwise in the first quadrant but with a much longer radius. The 

parameters used for line is as follows:

Xstart ~ 0 

Y s t a r t  ~  0

Xe,ui = 3000 steps (0.03m)

Yenci — 2000 steps (0.02m)

Feedrate = 8000 steps/s (4.8 m/min or 80 mm/s)

Starting speed = 200 steps/s (2 mm/s)
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On the other hand, the parameters for circular arc example is as follows: 

Xstart — 2000 steps (0.02m)

Y s t a r t  ~  0  

Xend ~ 0

Yend = 2000 steps (0.02m)

Centre coordinates = (0,0)

Feedrate = 8000 steps/s (4.8 m/min or 80 mm/s) 

Starting speed = 200 steps/s (2 mm/s)

Typically with step size 0.01 mm, that means required speed is 4.8 m/min.

6.3.1 Simulation Results for Linear Acceleration

The first evaluation is a comparison of the position errors presented by the new linear 

acceleration algorithms for the line. The plots are shown in this section but detailed 

eiTor plots are in Appendix C. This will in fact determine how closely the desired path is 

followed. The acceleration used is 35,000 steps/s2 (0.35 m/s2), which is a reasonable 

value without causing problems to the machining. The Zero Order simulation is shown 

in Figure 6-48(a) and Figure 6-48(b) shows a small segment of the former graph. Figure 

6-48b is exactly the same as the one shown in Figure 6-7 for linear interpolation without 

acceleration. This demonstrates that the ratio between the X and Y movements are still 

be maintained in this section and the same is true throughout the interpolation. An 

identical path is simulated when using the same interpolation without acceleration.

The same linear example using the Varying Rate First Order simulation is shown in 

Figure 6-49. Figure 6-50 is the Constant Rate First Order simulated path for the linear 

interpolation with linear acceleration. Figure 6-5 0(b) is the starting segment of the 

interpolation where the speed is very low, so the simulated path is similar to the Zero 

Order simulation in Figure 6-48.
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Figure 6-48: Plot o f New H alf Step Linear Interpolation with Linear Acceleration (Zero 

Order Simulation). Largest Error = 0.55 (a) Full graph; (b) Detail of path for 30 steps in

X-axis.

The Second Order simulated path is shown in Figure 6-51. The slower speed at the start 

of the interpolation can be seen to have small position errors. The simulated path 

becomes much smoother after the second X-axis step. This is because the path is 

smoother at higher speeds.
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Figure 6-49: Plot o f N ew  H a lf Step L inear Interpolation w ith  L inear A cceleration

(V arying Rate F irst O rder S im ulation). L argest Error = 0.18 (a) Full graph; (b) Detail o f

path for 30 steps in X-axis.
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Figure 6-50: Plot o f  New  H alf Step L inear Interpolation w ith L inear A cceleration

(C onstant R ate F irst O rder Sim ulation; R esponse tim e = 0.1 m s). Largest Error = 0.55

(a) Full graph; (b) D etail o f path for 30 steps in X -axis.
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Figure 6-51: Plot o f New H alf Step Linear Interpolation with Linear Acceleration (Second 

Order Simulation). Largest Error = 0.11 (a) Full graph; (b) Detail o f path for 30 steps in

X-axis.

The speed plots for the line are shown in Figure 6-52. The new half step linear 

interpolation will produce a constant speed on both axes. With the inclusion of the 

linear acceleration, the speed increases linearly from the starting speed until it reaches
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Figure 6-52: Simulation of Speed with Linear Acceleration/Deceleration for Linear 

Interpolation for (a) X-axis; (b) Y-axis. (X-axis = 3000 steps, Y-axis = 2000 steps. 

Acceleration = 35000 pulses/s2. M aximum Resultant Speed = 8000 steps/s. Acceleration 

stops at 220 ms and deceleration starts at 445 ms)

the required speed (at 220 ms). At a particular instant (445 ms), the speed starts to 

decrease linearly to the stopping speed (which is taken to be same as the starting speed).

The new linear acceleration can also be employed with the circular arc interpolation. 

This is explained in Section 4.2.1. The following figures (Figure 6-53 to Figure 6-56)
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Figure 6-53: Plot o f New H alf Step Circular Arc Interpolation with Linear Acceleration  

(Zero Order Simulation). Largest Error = 0.71 (a) Full graph; (b) Detail o f path for 300 

steps in Y-axis. (Note: X-axis scale is 100 times the Y-axis scale).

show the simulated paths produced when employing the linear acceleration for the arc. 

In each case the detail has an X-axis scale 100 times the Y-axis scale. Again the Second 

Order plot becomes smoother as the speed increases. A smooth path is followed after 

approximately nine X-axis steps.
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Figure 6-54: Plot o f N ew  H alf Step C ircular Arc Interpolation  w ith  L inear A cceleration

(V arying R ate F irst O rder S im ulation). L argest Error =  0.59 (a) Full graph; (b) Detail o f

path for 300 steps in Y -axis. (Note: X -axis scale is 100 tim es the Y -axis scale).
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F igure 6-55: Plot o f N ew  H a lf Step C ircular Arc Interpolation  w ith  L inear A cceleration

(C onstant Rate First O rder S im ulation). L argest Error = 0.51 (a) Full graph; (b) Detail o f

path for 300 steps in Y -axis. (Note: X -axis scale is 100 tim es the Y -axis scale).
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Figure 6-56: P lot o f  N ew  H a lf Step C ircular Arc Interpolation  w ith  L inear A cceleration

(Second O rder Sim ulation). L argest E rror = 0.42 (a) Full graph; (b) D etail o f path for 300

steps in Y -axis. (Note: X -axis scale is 100 tim es the Y -axis scale).
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Figure 6-57: Simulation o f Speed with Linear Acceleration and Deceleration for Circular 

Arc Interpolation for (a) X-axis; (b) Y-axis. (Arc = Anticlockwise 1st Quadrant with radius 

of 2000 steps. Acceleration = 35000 pulses/s2. Maximum Resultant Speed = 8000 steps/s. 

Acceleration stops at 220 ms and deceleration starts at 390 ms).
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The speed simulation for the circular arc interpolation with linear acceleration is shown 

in Figure 6-57. The acceleration and deceleration of the overall curve is linear. 

However, when the speed for each individual axis is examined, it does not seem to be 

linear because it follows a cosine/sine curve even without acceleration. The middle part 

of each axis speed is still part of either a sine or cosine wave (between approximately 

220 and 390 ms). Since it is not obvious from the individual axis speed whether the 

overall speed is maintained, an overall speed graph is plotted in Figure 6-58. The 

highest speed variation in the constant phase is 2 steps/s or 0.025%.
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Figure 6-58: Overall Speed o f Linear Acceleration on Circular Arc Interpolation.

6.3.2 Simulation Results for Parabolic Acceleration

This section covers the evaluation of the new parabolic acceleration algorithm. Again 

the error plots are shown in Appendix C. The highest acceleration rate is 104,000 

steps/s2 (1.04 m/s2 or 0.15 ms acceleration time). Firstly, the simulated path is presented 

for Zero Order simulation in Figure 6-59. The simulated path is identical to the one 

generated by the linear acceleration. In fact, when simulated using the Zero Order 

simulation, the same path should be produced regardless of the type of acceleration or 

even without acceleration. The same path simulated with the Varying Rate First Order 

simulation is shown in Figure 6-60. Figure 6-61 demonstrates the Constant Rate First 

Order simulated path. Figure 6-62 shows the Second Order simulation. The different
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Figure 6-59: Plot o f New H alf Step Linear Interpolation with Parabolic Acceleration (Zero 

Order Simulation). Largest Error = 0.55 (a) Full graph; (b) Detail o f path for 30 steps in

X-axis.

simulated paths for the parabolic acceleration are fairly similar to the ones for the linear 

acceleration and the largest errors and the average errors are almost the same.

For first or second order simulation, although not identical, the simulated path is very 

similar when employing either the linear or parabolic acceleration. As in the linear case,
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Figure 6-60: Plot of New H alf Step Linear Interpolation with Parabolic Acceleration 

(Varying Rate First Order Simulation). Largest Error = 0.19 (a) Full graph; (b) Detail of

path for 30 steps in X-axis.

the start segment of the Constant Rate First Order simulated path, Figure 6-61(b), is 

identical to the start segment of the Zero Order simulated path, Figure 6-59(b). This is 

because the speed in this segment is very low. For the Second Order simulated path 

(Figure 6-62), the smoothing effect is greater than for linear acceleration because the 

acceleration rate is higher. The error reduces to a very small value after one step.
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Figure 6-61: Plot of New H alf Step Linear Interpolation with Parabolic Acceleration 

(Constant Rate First Order Simulation). Largest Error = 0.55 (a) Full graph; (b) Detail of

path for 30 steps in X-axis.

The speed simulation for the linear interpolation with parabolic acceleration is shown in 

Figure 6-63. As expected, the acceleration and deceleration phases of the graph 

resembles the shape of a parabola. Therefore the overall speed will also have the same 

shape but scaled up.

X -axis (step s)
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Figure 6-62: Plot o f  New  H alf Step L inear Interpolation w ith  Parabolic A cceleration

(Second O rder Sim ulation). Largest Error = 0.07 (a) Full graph; (b) D etail o f path for 30

steps in X -axis.
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Figure 6-63: Simulation of Speed with Parabolic Acceleration/Deceleration for Linear 

Interpolation for (a) X-axis; and (b) Y-axis. (X-axis = 3000 steps, Y-axis = 2000 steps. 

M aximum Resultant Speed = 8000 steps/s. M aximum acceleration = 104,000 steps/s2. 

Acceleration ends at 150 ms, Deceleration starts at approxim ately 395 ms).

The parabolic acceleration has also been implemented with the circular arc 

interpolation. Again, the New Half Step Circular Arc interpolation is used for 

evaluation. The Zero Order simulated path is shown in Figure 6-64 and is identical to 

the arc for linear acceleration. On the other hand, Figure 6-65 shows the Varying Rate 

First Order simulated path, which looks very similar to the linear case.
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Figure 6-64: Plot o f  N ew  H a lf Step C ircular A rc Interpolation  w ith  P arabolic A cceleration

(Zero O rder Sim ulation). L argest E rror = 0.71 (a) Full graph; (b) D etail o f path for 300

steps in Y -axis. (Note: X -axis scale is 100 tim es the Y -axis scale).
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Figure 6-65: Plot o f New  H alf Step C ircular A rc Interpolation w ith  Parabolic A cceleration

(V arying Rate First O rder Sim ulation). L argest Error = 0.58 (a) Full graph; (b) Detail o f

path for 300 steps in Y -axis. (Note: X -axis scale is 100 tim es the Y -axis scale).
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Figure 6-66: Plot o f New H alf Step Circular Arc Interpolation with Parabolic Acceleration 

(Constant Rate First Order Simulation). Largest Error = 0.50 (a) Full graph; (b) Detail of 

path for 300 steps in Y-axis. (Note: X-axis scale is 100 times the Y-axis scale).

Figure 6-66 shows the simulated path for Constant Rate First Order simulation and the 

Second Order simulated path is shown in Figure 6-67. Again, it can be seen that the
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Figure 6-67: Plot of New H alf Step Circular Arc Interpolation with Parabolic Acceleration 

(Second Order Simulation). Largest Error = 0.37 (a) Full graph; (b) Detail of path for 300 

steps in Y-axis. (Note: X-axis scale is 100 times the Y-axis scale).

simulated paths for the parabolic acceleration for circular arc are similar to the paths for 

linear acceleration. Again, the plot becomes smoother more rapidly than in the case of 

linear acceleration. It takes about six X-axis steps to maintain at a smooth path.
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Figure 6-68: Simulation of Speed with Parabolic Acceleration and Deceleration for 

Circular Interpolation for (a) X-axis; and (b) Y-axis ((Arc = Anticlockwise F ‘ Quadrant 

with radius o f 2000 steps. M aximum Resultant Speed = 8000 steps/s. Maximum  

acceleration = 104,000 steps/s2. Acceleration ends at 150 ms, Deceleration starts at

approximately 340 ms).
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Figure 6-68 demonstrates the changes of speed throughout the interpolation process 

when employing parabolic acceleration. Without the acceleration, the X-axis speed 

follows part of a sine wave and the Y-axis part of a cosine wave. The middle part of 

each plot, when the resultant speed is constant, is still part of the sine or cosine wave 

between approximately (150 and 340 ms). For the X-axis, a rather gentle increase in 

speed is noticed at the beginning while the drop in speed during deceleration is steeper. 

The reverse is true for the Y-axis speed. The overall speed is illustrated in Figure 6-69 

and shows the required behaviour of parabolic acceleration, constant speed and then 

parabolic deceleration. The highest speed variation in the constant phase is 2 steps/s or 

0.025%.
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Figure 6-69: Overall Speed o f Parabolic Acceleration for Circular Arc Interpolation. The

speed is constant from 150 ms to 340 ms.

6.3.3 Discussion

Table 6-5 summarises the largest and average position errors for linear and parabolic 

acceleration with new half step interpolation. The average error is taken over the signed 

error where positive in one side of the curve and negative the other.

From this table, it can be seen that the largest position errors and average position errors 

for the linear and parabolic acceleration are very similar. The position errors throughout
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the machining are plotted and shown in Appendix C. They do look similar for both 

linear and parabolic acceleration. Errors are largest at beginning and end of machining, 

except with the Zero Order simulation when no difference is expected. The large errors 

occur when the motion is at low speed and when it is under acceleration. For the 

circular arc, the errors are high for a longer time at the beginning and end of the motion, 

because when the motion is almost parallel to one axis, the speed 011 the other axis is 

extremely low.

Table 6-5: Largest and Average Position Errors for linear and parabolic acceleration on

new half step interpolation.

Simulation
Type

Acceleration
Algorithm

Line Circular Arc
Largest
Error

Average
Error

Largest
Error

Average
Error

Zero Order Linear 0.55 0.00 0.71 0.00
Parabolic 0.55 0.00 0.71 0.00

VR First 
Order

Linear 0.18 -0.14 0.59 0.00
Parabolic 0.19 -0.14 0.58 0.00

CR First 
Order

Linear 0.55 0.00 0.51 0.00
Parabolic 0.55 0.00 0.50 0.00

Second
Order

Linear 0.11 0.00 0.42 0.01
Parabolic 0.07 0.00 0.37 0.01

The main noticeable difference between these two acceleration algorithms is the 

machining time. The machining time for linear acceleration for line is 665 ms and 610 

ms for circular arc, whereas for parabolic acceleration, they are 545 ms and 490 ms, 

respectively. Thus the times are reduced by 120 ms for the line and arc. The saving in 

time depends mainly on the relative values of two values, firstly the constant 

acceleration rate for linear acceleration and secondly the maximum acceleration used at 

the beginning (and end) of the motion with parabolic acceleration. This depends 011 the 

machine used. If the two values are equal, then parabolic acceleration takes longer but 

normally it is possible to achieve considerably higher acceleration at low speeds (see 

Section 4.1), whereas the constant acceleration is limited by the maximum acceleration 

at the required speed, hi practice a combination of the two methods could be used to 

achieve the best time.
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Table 6-6 and Table 6-7 summarise the acceleration rate, acceleration time and total 

machining time when employing different interpolation algorithms on a line and 

circular arc, respectively. In both cases, the total time for the parabolic acceleration is 

120 ms shorter than for the linear acceleration.

Table 6-6: Interpolation for the Line from (0,0) to (3000,2000) at 4.8 m/min using the two

different acceleration algorithms.

A cceleration A cceleration  rate  
(m /s2)

A cceleration  T im e  
(m s)

T ota l T im e  
(m s)

L in ear 0.35 220 665

P arab olic 1.04 150 545

Table 6-7: Interpolation for the Circular Arc from (2000,0) to (0,2000) at 4.8 m/min using

the two different acceleration algorithms.

A cceleration A cceleration  rate  
(m /s2)

A cceleration  T im e  
(m s)

T ota l T im e  
(m s)

L in ear 0.35 220 610

P arab olic 1.04 150 490

hi Section 6.4, the results from the practical implementation of the algorithms show that 

considerably higher accelerations could be achieved with the motors used.
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6.4 Initial Tests of the Practical Implementation

A protocol controller has been developed and simple tests of the practical 

implementation of the new algorithms have been performed on a prototype CNC 

machine using the same line but an arc of double the radius, 4000 steps, as in Section 

6.3. The controller consists of the ‘C6711 Digital Signal Processor (DSP), which runs at 

a maximum speed of 150 MHz. The command pulses are sent out via the onboard 

timers. The linear and parabolic accelerations have been tested for four different values 

of maximum speed. The initial testing has not included detailed monitoring using shaft 

encoders. Instead, the testing has involved determining the highest acceleration rate that 

the machine is able to achieve for each planned speed without appearing to lose 

synchronisation. Since no encoders are used, this is only judged by examining the path 

followed and by repeating it several times. The results for interpolation of a line using 

linear and parabolic acceleration are summarised in Table 6-8 and Table 6-9 

respectively.

For both acceleration algorithms, it can be seen that the achievable acceleration 

decreases as the planned speed increases. Generally, the total time decreases as the 

planned speed goes up. However, for the linear case, when the planned speed is 7.5 

m/min, the acceleration needs to be so low that the total time is actually longer. If the 

line was longer, then this would not be the case, because it would spend longer at the 

planned speed, hi all cases, the parabolic acceleration achieves a shorter time than the 

linear acceleration for the same planned speed.

Table 6-8: Linear Acceleration for Interpolation o f the Line from  (0,0) to (3000,2000) 

showing highest acceleration rate achieved for each planned speed.

Planned Speed 
(m/min)

Highest 
Acceleration rate 

(m/s2)

Acceleration Time 
(ms)

Total Time 
(ms)

4.5 2.5 29 509

5.5 2.0 45 435

6.5 1.5 71 400

7.5 0.8 154 437
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Table 6-9: Parabolic Acceleration for Interpolation o f the Line from (0,0) to (3000,2000) 

showing highest initial acceleration rate achieved for each planned speed.

P lanned  Speed  
(m /m in)

H igh est In itia l 
A cceleration  (m /s2)

A cceleration  T im e  
(m s)

T otal T im e  
(ms)

4.5 7.3 20 493

5.5 5.1 35 415

6.5 3.9 55 368

7.5 2.6 95 350

From Table 6-8, the highest acceleration achieved for a given speed for the X-axis can 

be determined. It is assumed that the X-axis is the limiting factor because it has to move 

faster. To demonstrate a rough idea of the relationship between the individual axis 

speed and the achievable acceleration for that speed, a plot of X-axis acceleration 

against speed is plotted in Figure 6-70. In each case, the limiting factor must be the 

acceleration at the highest speed used, because a higher acceleration can be achieved for 

the lower speed values. The shape of this plot resembles somewhat the shape of the 

curve for torque against speed for a stepper motor (see Figure 2-21). Since acceleration 

is proportional to torque, the general shape for the two curves would be expected to be 

similar.

Acceleration (m /s2)

2.5 i

0 2 4 6 8

Speed (m/min)

Figure 6-70: Plot o f Achievable Acceleration against Speed for the X-axis motor (based on

the Results from Table 6-8).
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The results for a circular arc with the two methods of acceleration are summarised in 

Table 6-10 and Table 6-11. A longer arc is used (when compared to the simulation 

examples) to allow enough time for acceleration up to speed of 6.5 m/min. As with the 

line, acceleration has to be reduced for higher speeds and the time for machining will 

decrease, provided the arc is long enough. Even to machine an arc at constant speed 

requires the motor on an individual axis to accelerate and decelerate to achieve a sine 

wave (see Figure 2-1). Therefore the acceleration for an individual axis cannot be 

deduced from the tables and could sometimes be higher than the resultant acceleration. 

This would explain why the resultant acceleration has to be lower than for the line.

Table 6-10: Linear Acceleration with Interpolation of the Circular Arc from (4000,0) to

(0,4000).

Speed Acceleration Acceleration Time Total Time
(m/min) (m/s2) (ms) (ms)

4.5 2.0 37 872

5.5 0.5 179 858

6.5 0.3 354 925

Table 6-11: Parabolic Acceleration with Interpolation o f the Circular Arc from (4000,0) to

(0,4000).

Speed
(m/min)

Highest (Initial) 
Acceleration (m/s2)

Acceleration Time 
(ms)

Total Time 
(ms)

4.5 4.9 30 856

5.5 1.4 130 768

6.5 0.7 300 774

Although the circular arc appears to be able to be machined at the speeds shown in these 

tables, it has been found that the shape deviates noticeably from the required one for the 

higher speeds. This was found when a complete shape was used for the tests. It consists 

of two 90° arcs and two lines, shown in Figure 6-71. Each arc and line is machined by 

accelerating from rest and then decelerating back to rest. Examples of the path produced 

by the prototype CNC machine are shown for linear acceleration in Figure 6-71 and for 

parabolic acceleration in Figure 6-72. Part (a) of each of these figures are running at a 

lower speed for the circular arc, which seems to be able to follow the arc correctly.

- 2 2 9 -
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However, for higher speed in part (b), the middle of each arc seems slightly flattened 

although it appears to be still able to maintain the correct number of steps in X and Y 

axes. Rough measurements, with a ruler, of the distance in X and Y axes show correct 

overall dimensions but the radial position of the middle of each arc from its centre has 

been found to be about 39 mm instead of 40 mm. This would explain the visual effect 

and requires further, more detailed, investigation.
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(a)

(b)
Figure 6-71: Scanned Image of the Plotted Path Using Linear Acceleration running at 7.5 

m/min for the two lines (acceleration = 0.5 m/s2) and the rate for the two arcs are:

(a) 1.5 m/min (acceleration = 5.0 m/s2; (b) 6.5 m/min (acceleration = 0.4 m/s2). The shape 

was plotted four times for the plot in part (b).
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(a)

(b)
Figure 6-72: Scanned Image of the Plotted Path Using Parabolic Acceleration running at 

7.5 m/min for the two lines (acceleration time = 95 ms) and the rate for the two arcs are: 

(a) 1.5 m/min (acceleration time = 4 ms); (b) 6.5 m/min (acceleration time = 300 ms).
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6.5 Summary

The main aim of this chapter has been to evaluate the new interpolation and acceleration 

algorithms by demonstrating the simulated path, position errors and speed variation 

when employing different techniques. Initial results from the practical implementation 

of the algorithms have also been included.

For evaluation of interpolation, five interpolation algorithms have been used. Three of 

them are the existing interpolation algorithms. The other two algorithms are the New 

Full Step and Half Step interpolation algorithms, where the latter is an improvement to 

the former. Both algorithms have been developed by the Author to produce very smooth 

motion to maintain a constant speed or changing gradually as required, without any 

abrupt changes in speed. This is important to minimise the likelihood of any vibrations.

Based on the simulations, the New Half Step interpolation algorithms are a significant 

improvement on previous algorithms. For smoothness of motion, both the Full and Half 

Step interpolation algorithms have been shown to be greatly superior to the previous 

algorithms. When position errors are considered, the New Half Step algorithms are a 

considerable improvement over the Full Step ones. Generally, based on the simulations, 

the New Half Step algorithms are expected to have errors no worse and often much 

smaller than for the previous algorithms. The results from interpolation of a line almost 

parallel to the X-axis show larger errors. This confirms the practical experience that 

problems can occur when motion is at an angle very close to one axis, so that one axis is 

much slower than the other.

Again, based on the simulations, the new acceleration algorithms are able to achieve 

veiy smooth motion. The constant phase of the overall speed profile will be similar to 

the one without acceleration. The speed variations in the acceleration and deceleration 

phases follow smoothly the required linear or parabolic acceleration. The position errors 

are somewhat larger than for the interpolation algorithms at the beginning and end of 

the motion, mainly because of the very low speeds, especially when combined with 

acceleration and deceleration.
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Parabolic acceleration can reduce overall time compared to linear acceleration by 

exploiting the motor’s ability to accelerate faster at slow speeds. The new linear and 

parabolic acceleration algorithms have been developed for use with the New Half Step 

interpolation algorithms. However, they can also be used with any interpolation 

algorithm, provided that it produces pulse timings at constant speed interpolation, which 

can then be passed to the acceleration algorithm.

An initial evaluation of the practical implementation of the new algorithms has been 

undertaken on a CNC machine. The results are promising and broadly in agreement 

with the simulation results.
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7 Conclusions and Future Work

7.1 Conclusions

This research has investigated problems with a stepper motor control system caused by 

interpolation and acceleration algorithms. During multi-axis machining (when 

interpolation and acceleration planning algorithms are interfaced to the stepper motors), 

there are three main identified problems. They are vibrations on an individual axis, 

positional errors and varying resultant speed. These errors are mostly caused by the 

interpolation and acceleration planning algorithms used and machine vibrations, some 

of which may result from the algorithms. The work has focused on the development of 

interpolation algorithms which minimise errors, reduce unnecessary fluctuations in 

speed on an individual axis and maintain constant overall speed whenever possible.

New interpolation algorithms have been developed which provide a novel approach of 

calculating the timing for every individual pulse generated. Thus, there will be ultimate 

control of the pulses so that a smooth stream of pulses can be sent out, reducing the 

likelihood of machine vibrations. Such calculation-intensive algorithms are made 

possible with the use of the Digital Signal Processor (DSP). A parameter has been used 

to synchronise the motion of the different stepper motors and the most appropriate 

parameter has been found to be distance along the curve. Both linear and circular arc 

interpolation algorithms have been successfully developed and evaluated against three 

of the most common previous interpolation algorithms. The simulation results for the 

Search-Step, DSM and DDA algorithms were compared with the results for the new 

algorithms. There are two different types of interpolation algorithms, the Full Step 

algorithm and the Half Step algorithm, where the latter are an improvement on the 

former. Both these algorithms are able to produce much smoother sequences of pulses 

than the previous algorithms under simulation. The New Half Step interpolation 

algorithms have errors mainly better than the previous algorithms and they show 

significant reduction in positional errors over the Full Step algorithm. In addition, the 

likelihood of X-axis and Y-axis speed fluctuations has been greatly diminished, thus
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reducing the chance of vibrations. The overall speed is close to constant during 

interpolation.

In practice, the stepper motors are unable to meet the high speed demands instantly. 

Instead, the motor needs to start instantly at the (low) pull-in speed and then accelerate 

to the required speed. To achieve acceleration with the newly developed interpolation 

algorithms, new acceleration algorithms have been developed. Both linear and parabolic 

acceleration algorithms have been developed, based on previous acceleration 

algorithms. Using an appropriately chosen parameter for the parabolic acceleration, it is 

possible for the machining time to be shorter than for the linear counterpart. This is 

done by exploiting the fact that stepper motors are capable of high acceleration at low 

speeds but lower acceleration as the speed increases.

The evaluation of the new interpolation and acceleration algorithms has included 

simulation of the motion generated using four different partial simulation methods. Two 

main criteria have been chosen for evaluation, position errors and speed variation. The 

Zero Order simulation was useful for the general path but not reliable for detail. The 

First Order and Second Order simulations all had useful aspects and broadly agree that 

the Half Step algorithm is the best.

Simulation examples for the new acceleration algorithms with the new interpolation 

algorithms have been evaluated. The two new acceleration algorithms, linear and 

parabolic acceleration, have been shown to be expected to allow the desired path to be 

followed very closely. The speed simulations show that the speed on an individual axis 

is able to maintain gradual changes in speed as required for both geometry and 

acceleration. Overall speed is close to constant except during acceleration and 

deceleration when it increases or decreases gradually.

Based on the simulation results, all the objectives have been achieved in the case of 

lines and circular arcs. The practical implementation has undergone initial simple 

testing and the results are promising. It is expected that the new approach can be 

extended to more complex curves, such as splines. From the experiments with different 

speeds, it is very likely that the new algorithms will allow improved high speed
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interpolation. However, further investigations are required using instrumentation with 

encoders to measure the errors more accurately.

7.2 Future Work

The new interpolation and acceleration algorithms have been developed and 

successfully evaluated on a simulation platform. The new algorithms are able to 

improve on the Search-Step, DSM and DDA algorithms for linear and circular-arc 

interpolation.

The testing of the practical implementation should be extended to include more precise 

measurements. The actual response of the motors can then be evaluated more 

thoroughly using motion encoders mounted on the motor shafts. From the readings of 

these motion encoders, the actual motion of the motor can be deduced to calculate the 

position errors. The massive calculation capability of the DSP enables it to perform the 

required calculation for both new linear and circular arc interpolation as well as 

acceleration. A comparison of the two new acceleration algorithms should be carried 

out, including whether vibrations are caused by the sudden change at the end of the 

linear acceleration.

As described in previous chapters, one of the challenges in the field of motion control is 

to be able to machine complex paths. Different interpolation methods for stepper motors 

are available to machine such curves. However, most of these methods still suffer from 

failure to maintain constant speed along the desired cutting path, hi addition, most of 

them involve approximating of the complex path initially with short straight lines and 

circular arcs and ultimately with short facets. Therefore, the new approach to 

interpolation should be extended to interpolation of more complex curves, such as 

splines. One problem in designing such interpolation is to deal with parametrisation. 

The new line and arc interpolation algorithms use distance as the parameter. However, 

Farin [61] has shown that this is not possible with a polynomial spline unless the degree 

is 1 (ie. a straight line). The closest match to distance parametrisation for splines is the 

chord length parametrisation and distance along the curve can be calculated
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numerically. Again it must be ensured that there are no abrupt changes of speed in any 

individual axis. In other words, the axis speed must only change gradually. This will 

require further investigation, in order to generate a smooth stream of pulses.

Previously, for both stepper motors and servomotors, the interpolation has taken place 

at predefined distance or time intervals. The end of such an interval might not coincide 

with a whole X or Y-axis step. The new interpolation algorithms consider the different 

axes separately, and not bound by the distance or time intervals. Because of the open 

loop architecture of the investigated system, it is feasible to make sure that the pulses 

are generated individually. In other words, each pulse is sent at a separate time. To 

extend this idea to a closed loop servomotor system, it is worth investigating the 

possibility of sending a block of X or Y pulses at a time. However, the new idea is that, 

the block of X and Y pulses are not synchronised at the same distance or time intervals 

but they should be dealt with individually.

The deceleration used throughout this research is symmetrical to the acceleration. 

However, practical experience shows that a motor can be made to decelerate faster 

when compared to the acceleration. This is because friction slows down acceleration but 

helps with deceleration. Therefore, further investigation on the deceleration should be 

performed, by either having an inverse parabolic acceleration or having a shorter 

deceleration time. It may also be possible to improve acceleration by using a different 

acceleration algorithm designed for each motor.
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Appendix A: Newton-Raphson

This appendix explains how the Newton-Raphson method has been used to calculate the 

times required for the parabolic acceleration algorithm. The aim is to find a solution for 

f(t) = 0. Given the value of t = tk at the end of the kth iteration, tk+i is defined as

[79][80]:

,  ( A - l )

“  k ~ n * k)

J(tic) represents the value of the function tk, and is the derivative (slope) at tk,

which represents df{t)/dt.

The iteration represented by equation (A-l) is repeated until a close enough 

approximation is reached. This is determined by a parameter, s, which is a value veiy 

close to zero. The following checking is made to determine if a close enough root is 

found.

(A“2)

y

Figure A -l: Example o f Newton-Raphson Iteration.
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A graphical representation of the Newton-Raphson method will be helpful. An example 

of Newton-Raphson method is illustrated in Figure A-l. An initial guess of the root is 

assumed to be to. A tangent to the curve at (to, f(to)) is constructed. It is extrapolated 

until it intersects the t axis to get t\. This point of intersection is taken as the new 

approximation to the root.

The equation of the tangent at to is

y - f ( t 0) = m ( t - t Q) (A-3)

where

m = f ' { t  o) (A-4)

Substituting equation (A-4) into (A-3) yields:

y  ~ f « o ) = / '  (*o X* ~ ) (A-5)

Since the tangent intersects the t axis at y=0 and this value gives the next approximation 

of the root. Thus,

t = t  I M .  (A-6)
/V o )

The tangent at (t\,f(t\)) cuts the t axis at ti which is a better approximation of the root 

than t\ or to. The same process is repeated to generate a sequence of iterations (I3, U, ..., 

t/c) until the convergence is obtained whenever possible.

tk -» r as k -» cx> (A-7)

Based on the teclmique of Newton-Raphson iteration, the root of equation (4-14) can be 

found. At each pulse, the distance to be travelled is calculated and included in equation
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(4-14) using Newton-Raphson with a new function each time. Each new function is 

defined as follows:

n o =■*«-■*,(»,) <A-8)

and tn can be found by solving:

f ( t )  = 0; (A-9)

sx{nx) is the expected distance travelled (when the nth x pulse is to be sent and it is 

reached) at time t(n). The new function, fit), represents the difference between the 

distance required and the distance travelled at time t. Therefore, at 4(n), we have/(^(n)) 

is close to zero. The explanation above is clearer with a graphical representation of a 

particular example, hi these graphs, the following parameters are employed:

T =0.15 s 

vo = 2 ms 

vm = 80 mm/s

Figure A-2 illustrates the speed graph generated from equation (4-9). Therefore the 

constant phase of the speed profile has the value 0 seconds in this diagram. Normally, 

there would be a constant phase between acceleration and deceleration. In this example, 

the parabolic speed reaches the required speed at the predefined time, which is 0.15s 

and then decreases again parabolically.

Integration of equation (4-9) will result in the distance travelled relative to the pulse 

timing and is defined as in equation (4-15). The graphical representation of the function 

sit) is shown in Figure A-3. This graph can be analysed in two segments. The first 

segment is the graph before 0.15s, which is the acceleration phase, and the second 

segment is the one after 0.15s, which is the deceleration phase.
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Figure A-2: Example o f Parabolic Acceleration/Deceleration where there is No Constant

Speed Phase.
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Figure A-3: Distance Travelled During Acceleration/Deceleration from  Figure 4-10.
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Figure A-4: Example of Function Used in Newton-Raphson for Acceleration in the Case

when s(n) =  2 mm.

The acceleration phase is considered first. To find the pulse timing when a certain 

distance has been travelled, the graph of fit) is the graph of s(t) shifted down by that 

distance so that the graph cuts the t axis at the required pulse timing. As an example, to 

find the pulse timing when the machining has passed through a distance of 2 mm, the 

graph offit) is the graph of s{t) shifted down by 2 mm, as illustrated in Figure A-4. The 

new function,/(0, is defined as in equation (A-8).

To start the Newton-Raphson iteration, an approximation to the root has to be 

determined. The total time (T) for the acceleration phase has been chosen as the initial 

estimate of the root for all pulse timings. In this example, it is 0.15s. It is found that the
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Figure A-5: Example o f how the Newton-Raphson Iteration with Two Different Initial 

Estimates o f the Root can give different results.

root converges quickly and the error is very small after a few iterations, hi this example, 

the pulse timing for the acceleration has to be between 0 to 0.15s. Similarly, the pulse 

timing for the deceleration phase has to be between 0.15 to 0.3s. From the curve in 

Figure A-5, we can tell that the highest curvature occurs at the start of the acceleration 

and the end of the deceleration phase. The least curvature happens at the end of the 

acceleration phase, which is 0.15s in this example. Therefore, if this is chosen to be the 

initial estimate of the root, it will always ensure that the intermediate timings will not be 

out of the 0 to 0.15s range.
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During the acceleration phase, the gradient of the curve (between the root and the 

inflection point, I), f ' ( t ) , is increasing, so tangent will be below curve and will hit axis 

to the right of the root, r.

The example in Figure A-5 demonstrates two chosen initial estimate for the root, to and 

to*. Using to (inflection point = 0.15s) as the estimate enables the required root to be 

found after two iterations. On the other hand, with the to* as the initial estimate, the next 

estimate obtained from the Newton-Raphson iteration will result in a root estimate that 

is beyond 0.3s. Thus, the root found is not the root that is required. This example has 

been exaggerated to demonstrate the problems that may occur if an improper initial 

estimate is used for the root.

The deceleration phase can be performed in a similar way. However, to determine the 

pulse timing in the deceleration phase, a little more work has to be done because the 

timing generated from the Newton-Raphson iteration uses a time of zero for the 

constant phase.

Speed, v

New Deceleration
v Required

Deceleration

Section BSection A Section C

u

Time, t
Lconsta«t

Figure A-6: Parabolic Deceleration Adjustment.

To find the pulse timing at the deceleration phase, the first step is to assume that the 

constant phase is of length zero, t constan t = 0. In other words, the required acceleration 

curve is shifted to the left in the time domain so that the start of the deceleration 

coincides with the end of the acceleration phase. Since the pulse timing is calculated
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using distance as the parameter, the shifting of the required deceleration curve will 

involve altering the distance. To do this, the distance moved in the constant phase has to 

be subtracted from the actual distance, which effectively removes the area in Section B 

from Figure A-6. After shifting the deceleration phase, the pulse timing can be 

calculated as in the acceleration phase using the Newton-Raphson iterations. However, 

this timing value will have to have t constan t added to it to obtain the required pulse timing, 

due to the shifting performed earlier.

As in the case of the acceleration phase, the deceleration phase is illustrated with a 

simple example. Assuming that the required distance is 15mm after shifting, the 

deceleration graph, Figure A-7, will have to be shifted down by 15mm to assure that the 

pulse timing for distance of 15mm crosses the t axis. It should be noted that this is not 

the actual distance travelled.
2

0

A

•2

■3

•4

•5

-6

•7
0.18 0.22 0.26 0.30.15

t(sec)

Figure A-7: Function Used In Newton-Raphson for Deceleration in the Case when  

s(n)=15 mm with Time Starting at 0.15s.



Appendix B: Position Error Plots for Interpolation

Appendix B includes figures showing the position error plots for the five interpolation 

algorithms, using different simulation methods, under evaluation. Section B.l shows the 

position error plots for the line while Section B.2 is for error plots of the circular arc 

interpolation. The plots in this appendix correspond to the line and circular arc example 

in Section 6.2.

For the line, Figures B-l to B-17 correspond to Figures 6-3 to 6-19. For the circular arc, 

Figures B -l8 to B-34 correspond to Figures 6-25 to 6-41.
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B.1 Straight Line
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Figure B -l: Error Plots o f Search-Step Linear Interpolation (Zero and Constant Rate 

First Order Simulation) shown in Figure 6.3. The largest position error here is 0.55.
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Figure B-2: Error Plots of Direct-Search Linear Interpolation (Zero and Constant Rate 

First Order Simulation) shown in Figure 6.4. The largest position error here is 0.28.
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Figure B-3: Error Plots o f DDA Linear Interpolation (Zero and Constant Rate First 

Order Simulation) shown in Figure 6.5. The largest position error here is 0.55.
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Figure B-4: E rror Plots o f  New  Full Step L inear Interpolation (Zero O rder Sim ulation)

show n in F igure 6.6. T he largest position error here is 0.55.
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Figure B-5: Error Plots o f New H alf Step Linear Interpolation (Zero Order Simulation) 

shown in Figure 6.7. The largest position error here is 0.55.
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F igure B-6: Error Plots o f  Search-Step L inear Interpolation  (V arying R ate F irst O rder

Sim ulation) show n in F igure 6.8. The largest position error here is 0.28.
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Figure B-7: Error Plots of Direct-Search Linear Interpolation (Varying Rate First Order 

Simulation) shown in Figure 6.9. The largest position error here is 0.42.
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Figure B-8: Error Plots of DDA Linear Interpolation (Varying Rate First Order 

Simulation) shown in Figure 6.10. The largest position error here is 0.55.
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Figure B-9: Error Plots o f New Full Step Linear Interpolation (Varying Rate First Order 

Simulation) shown in Figure 6.11. The largest position error here is 0.28.
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Figure B-10: Error Plots o f New H alf Step Linear Interpolation (Varying Rate First Order 

Simulation) shown in Figure 6.12. The largest position error here is 0.14.
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Figure B - l l :  Error Plots o f New Full Step Linear Interpolation (Constant Rate First 

Order Simulation) shown in Figure 6.13. The largest position error here is 0.33.
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Figure B-12: Error Plots of New H alf Step Linear Interpolation (Constant Rate First 

Order Simulation) shown in Figure 6.14. The largest position error here is 0.22.
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Figure B-13: Error Plots o f Search-Step Linear Interpolation (Second Order Simulation) 

shown in Figure 6.15. The largest position error here is 0.28.
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Figure B-14: Error Plots o f Direct-Search Linear Interpolation (Second Order 

Simulation) shown in Figure 6.16. The largest position error here is 0.13.
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Figure B-15: Error Plots of DDA Linear Interpolation (Second Order Simulation) shown 

in Figure 6.17. The largest position error here is 0.38.
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Figure B-16: E rror Plots o f  N ew  Full Step L inear Interpolation  (Second O rder

Sim ulation) show n in F igure 6.18. The largest position error here is 0.19.
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Figure B-17: Error Plots o f New H alf Step Linear Interpolation (Second Order 

Simulation) shown in Figure 6.19. The largest position error here is 0.06.
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B.2 Circular Arc
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Figure B-18: Error Plots o f Search-Step Circular Arc Interpolation (Zero Order 

Simulation) shown in Figure 6.25. The largest position error here is 1.00.
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Figure B-19: Error Plots o f Direct-Search Circular Arc Interpolation (Zero Order 

Simulation) shown in Figure 6.26. The largest position error here is 0.40.
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Figure B-20: Error Plots o f DDA Circular Arc Interpolation (Zero Order Simulation) 

shown in Figure 6.27. The largest position error here is 0.81.
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Figure B-21: Error Plots o f New Full Step Circular Arc Interpolation (Zero Order 

Simulation) shown in Figure 6.28. The largest position error here is 0.97.
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Figure B-22: Error Plots o f New H alf Step Circular Arc Interpolation (Zero Order 

Simulation) shown in Figure 6.29. The largest position error here is 0.62.
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Figure B-23: Error Plots o f Search-Step Circular Arc Interpolation (Varying Rate First 

Order Simulation) shown in Figure 6.30. The largest position error here is 0.40.
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Figure B-24: Error Plots o f Direct-Search Circular Arc Interpolation (Varying Rate First 

Order Simulation) shown in Figure 6.31. The largest position error here is 0.40.
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Figure B-25: Error Plots o f DDA Circular Arc Interpolation (Varying Rate First Order 

Simulation) shown in Figure 6.32. The largest position error here is 0.67.
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Figure B-26: Error Plots o f New Full Step Circular Arc Interpolation (Varying Rate First 

Order Simulation) shown in Figure 6.33. The largest position error here is 1.08.
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Figure B-27: Error Plots o f New H alf Step Circular Arc Interpolation (Varying Rate First 

Order Simulation) shown in Figure 6.34. The largest position error here is 0.39.
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Figure B-28: Error Plots of New Full Step Circular Arc Interpolation (Constant Rate First 

Order Simulation) shown in Figure 6.35. The largest position error here is 0.97.
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Figure B-29: Error Plots o f New H alf Step Circular Arc Interpolation (Constant Rate 

First Order Simulation) shown in Figure 6.36. The largest position error here is 0.39.
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Figure B-30: Error Plots o f Search-Step Circular Arc Interpolation (Second Order 

Simulation) shown in Figure 6.37. The largest position error here is 0.99.
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Figure B-31: Error Plots o f Direct-Search Circular Arc Interpolation (Second Order 

Simulation) shown in Figure 6.38. The largest position error here is 0.29.
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Figure B-32: Error Plots o f DDA Circular Arc Interpolation (Second Order Simulation) 

shown in Figure 6.39. The largest position error here is 0.63.
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Figure B-33: Error Plots o f New Full Step Circular Arc Interpolation (Second Order 

Simulation) shown in Figure 6.40. The largest position error here is 0.93.
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Figure B-34: Error Plots o f New H alf Step Circular Arc Interpolation (Second Order 

Simulation) shown in Figure 6.41. The largest position error here is 0.28.
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Appendix C: Position Error Plots for Acceleration

Section Cl shows the position errors plot for the line under acceleration and Section C2 

shows the plots for the circular arc. The figures are shown in pairs, the first using linear 

acceleration and the second using parabolic acceleration for comparison.

Acceleration stops at x=761 steps and deceleration starts at x=2241 steps for linear 

acceleration 011 line. For parabolic acceleration, acceleration stops at x=676 steps and 

deceleration starts at x=2326 steps.

For linear acceleration on the circular arc, acceleration stops at x=1794 steps and 

deceleration starts at x=881 steps while for parabolic acceleration, acceleration stops at 

x=1837 steps and deceleration starts at x=788 steps.

For the line, Figures C-l, C-3, C-5 and C-7 correspond to Figures 6-48 to 6-51 while 

Figures C-2, C-4, C-6 and C-8 correspond to Figures 6-59 to 6-62. For the arc, Figure 

C-9, C -ll, C-13 and C-15 correspond to Figures 6-53 to 6-56 while Figures C-10, C-12, 

C -l4 and C -l6 correspond to Figures 6-64 to 6-67.



C.1 Straight Line
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Figure C -l: Error Plots o f New H alf Step Linear Interpolation with Linear Acceleration  

(Zero Order Simulation) shown in Figure 6.48. The largest position error here is 0.55.
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Figure C-2: Error Plots o f  New  H a lf Step L inear Interpolation  w ith  Parabolic

A cceleration (Zero O rder S im ulation) show n in F igure 6.59. T he largest position error

here is 0.55.
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Figure C-3: Error Plots of New H alf Step Linear Interpolation with Linear Acceleration 

(Varying Rate First Order Simulation) shown in Figure 6.49. The largest position error

here is 0.18.
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Figure C-4: E rror P lots o f N ew  H a lf Step L inear Interpolation  w ith  Parabolic

A cceleration  (V arying R ate F irst O rder Sim ulation) show n in F igure 6.60. The largest

position error here is 0.19.
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Figure C-5: Error Plots o f New H alf Step Linear Interpolation with Linear Acceleration 

(Constant Rate First Order Simulation) shown in Figure 6.50. The largest position error

here is 0.55.
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Figure C-6: E rror Plots o f  N ew  H alf Step L inear Interpolation  w ith  Parabolic

A cceleration  (C onstant R ate F irst O rder S im ulation) show n in F igure 6.61. The largest

position error here is 0.55.
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Figure C-7: Error Plots o f New H alf Step Linear Interpolation with Linear Acceleration  

(Second Order Simulation) shown in Figure 6.51. The largest position error here is 0.11.
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Figure C-8: Error Plots o f New H alf Step Linear Interpolation with Parabolic 

Acceleration (Second Order Simulation) shown in Figure 6.62. The largest position error

here is 0.07.
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C.2 Circular Arc
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Figure C-9: Error Plots o f New H alf Step Circular Arc Interpolation with Linear 

Acceleration (Zero Order Simulation) shown in Figure 6.53. The largest position error

here is 0.71.
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Figure C-10: Error Plots o f  New  H a lf Step C ircular Arc Interpolation  w ith Parabolic

A cceleration (Zero O rder Sim ulation) show n in Figure 6.64. T he largest position error

here is 0.71.
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Figure C - l l :  Error Plots o f New H alf Step Circular Arc Interpolation with Linear 

Acceleration (Varying Rate First Order Simulation) shown in Figure 6.54. The largest

position error here is 0.59.
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Figure C-12: E rror Plots o f  N ew  H a lf Step C ircular A rc Interpolation  w ith Parabolic

A cceleration  (V arying R ate First O rder S im ulation) show n in F igure 6.65. The largest

position  error here is 0.58.
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Figure C-13: Error Plots of New H alf Step Circular Arc Interpolation with Linear 

Acceleration (Constant Rate First Order Simulation) shown in Figure 6.55. The largest

position error here is 0.51.
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F igure C-14: E rror Plots o f N ew  H a lf Step C ircular Arc Interpolation  w ith  Parabolic

A cceleration  (C onstant R ate F irst O rder Sim ulation) show n in F igure 6.66. The largest

position error here is 0.50.
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Figure C-15: Error Plots of New H alf Step Circular Arc Interpolation with Linear 

Acceleration (Second Order Simulation) shown in Figure 6.56. The largest position error

here is 0.42.

ou
i -weo
oCm

1
0.8
0.6
0.4
0.2

0
-0.2
-0.4
-0.6
-0.8

-1
0 500 1000 1500 2000

X-axis (steps)

Figure C-16: E rror Plots o f  New  H alf Step C ircular Arc Interpolation  w ith  Parabolic

A cceleration  (Second O rder S im ulation) show n in F igure 6.67. T he largest position error

here is 0.37.
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Motors”,
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• “Interpolation and Acceleration Algorithms for Stepper Motors -  A 

Parametric Approach”,

Yuan K. Chow, Janet F. Poliakoff, Peter D. Thomas,

8th IEEE International Conference on Methods and Models in 

Automation and Robotics,

2-5 September 2002,
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P A R A M E T E R -B A SE D  A L G O R IT H M S FO R  IN T E R P O L A T IO N  W IT H  ST E P P E R  M O TO R S

Yuan K. Chow, Janet F. Poliakoff, Peter D. Thomas
Department o f  Computing and Mathematics, The Nottingham Trent University, Nottingham

Key words to describe the work: Computer Numerical Control (CNC), Interpolation, Stepper motor, Parametric curve, 
Smooth motion

Key Results: Algorithms for smooth path following have been developed for stepper motor controlled machining. These 
algorithms maintain the desired speed while avoiding possible jerks on individual axes, thus reducing both vibrations and 
deviation from the required path.

How does the work advance the state-of-the-art?: Parameter-based synchronisation enables individual axes to be 
synchronised without interpolating particular intermediate points. The high-speed calculations needed are available with 
recent developments in digital signal processors.

Motivation (problems addressed): M ost existing stepper motor control systems suffer from jerky motion because o f the 
interpolation and acceleration algorithms used. Jerky motion on individual axes can often cause machine vibrations. Another 
problem of these control systems is with the positional errors in the path, which are a result o f the interpolation algorithms 
used. These positional errors can then be exacerbated by any machine vibrations. A path is normally required to be machined 
at a predefined constant speed. However, this is not easily achievable because the resultant speed o f the machine tends to 
vary with the path direction.

Introduction
Smooth continuous path motion has always been of 
major importance in machine tool control for 
continuous motion of the machine tool (e.g. cutter) 
around a particular shape. Not only the actual path 
but also the speed of the machine tool needs to be 
controlled [1]. Unfortunately, smooth motion along 
the path is not easily achievable because of the 
interpolation and acceleration algorithms used. 
Interpolation is used to generate the path between 
two defined points by sending pulses to the stepper 
motors. Acceleration algorithms enable the motion 
to begin and end smoothly without stalling [2].

Existing interpolation algorithms
hi many machining systems for complex paths, the 
path is first approximated by a lower degree curve 
(e.g. line and circular arc) and interpolation is 
performed on the latter. The interpolation algorithms 
normally used are the Digital Differential Analyser 
(DDA) and Search-Step. The DDA algorithm is able 
to follow the curve with, on average, the desired 
speed but the generated path deviates from the 
required path [3]. The Search-Step algorithm 
generates interpolation steps according to the 
direction and the geometry of the required path, 
resulting in higher accuracy path following [4]. 
However, the resultant speed varies considerably 
depending on the direction of the path. Furthermore,

the speed in individual axes with both methods is 
likely to be jerky.

New interpolation algorithms
New line and arc interpolation algorithms have been 
developed to take all the above problems into 
consideration. The new algorithms generate pulses 
on each axis, allowing the machine to follow the 
required path according to the geometry of the path, 
while keeping the motion at the required speed. This 
is achieved by using a parameter to synchronise 
individual axes without interpolating particular 
intermediate points. For both lines and arcs, distance 
along the curve has been chosen as the parameter, hi 
addition, a novel approach of calculating the timing 
for eveiy individual pulse is employed. These 
timings are generated with respect to the geometry 
of the desired path.

Evaluation o f algorithms
A simulation platform has been developed with two 
types of simulation of the positional errors of the 
machine in 2D, which we have named the Varying 
Linear and Constant Linear. Axis speed is simulated 
using the time intervals between pulses. These 
simulations give an indication of the results from a 
real machine.



Results
The DDA and Search-Step algorithms have been 
used as a comparison to evaluate the performance of 
the new algorithms. As an example of the 
evaluation, one line and one arc were chosen to 
interpolate at speed 0.08m/s and step size 0.01mm. 
The maximum positional errors obtained were 
calculated in each case. The line was from (0,0) to 
(0.3mm,0.2mm). The circular arc was interpolated 
from (0.2mm,0) to (0,0.2mm) with the arc centre at 
(0,0).

Table 1. Maximum positional errors
Simulation

type
Interpolation

algorithm
Maximum positional 

errors (pm)
Linear Arc

Varying
Linear

DDA 2.80 8.81
Search-Step 2.77 3.96

New 1.39 3.89
Constant
Linear

DDA 5.55 12.13
Search-Step 5.55 10.00

New 2.77 3.96

hr both cases, the new algorithms have reduced the 
'maximum positional errors, as can be seen in Table 
1. In theory, the speed on the X-axis for a line or arc 
would be constant or part of a sine wave, 
respectively. For both linear and circular arc 
interpolation, the motion of each axis were found to 
be jerky when the DDA and Search-Step methods 
are employed, as shown in Figs 1 and 2 for the case 
of circular arc. On the other hand, for the new linear 
interpolation, the speed on each axis is constant. For 
the new circular arc interpolation (Fig 3), the speed 
on the X-axis increases smoothly. Therefore, in both 
cases, it is less likely that any undesirable vibrations 
of the machine will be caused.

Fig 1. Speed on X-axis for DDA arc

tirno (ms)

Fig 2. Speed on X-axis for Search-Step arc

- f i-

Fig 3. Speed on X-axis for new arc 

Conclusions
New interpolation algorithms have been developed 
which employ a novel approach of calculating the 
timing for every individual pulse using a parameter 
to synchronise the different axes. These timings are 
generated with respect to the geometry of the desired 
path, thus reducing the likelihood of sudden jumps 
in motor speed. In addition, the new algorithms are 
able to follow the desired shape more closely. 
Further work involves the development of 
acceleration algorithms to make possible high-speed 
machining.
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INTERPOLATION AND ACCELERATION 
ALGORITHMS FOR STEPPER MOTORS -  
A PARAMETRIC APPROACH
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A bstract. In many applications o f CNC machining, precise path following is an important 
requirement. Moreover, this machining has to be done smoothly and at a constant surface 
speed. Most machining systems use closed servomotor architecture but stepper motors are 
an inexpensive alternative. This paper presents our improved interpolation and acceleration 
algorithms for use with such an open-loop stepper motor system. The new interpolation 
algorithms are based on the use o f a parameter derived from the path geometry and generate 
pulses with appropriate timings for the stepper motors. The new algorithms have been 
evaluated against existing linear and circular arc interpolation algorithms. A new parabolic 
acceleration technique has also been developed for use with the new interpolation 
algorithms.

Key W ords. Computer Numerical Control (CNC), interpolation, stepper motor, smooth 
motion, parabolic acceleration.

1. INTRODUCTION

Precise path following and smooth continuous path 
motion are o f major importance in machine tool 
control for CNC machines. Not only the actual path 
but also the surface speed of the machine tool needs 
to be controlled as it moves round a given shape [1], 
The movement o f the machine head along the 
different axes can be controlled by stepper motors or 
servomotors. In both cases the motion is controlled 
by sending appropriate control pulses to the motors 
but in servomotors systems feedback allows the 
control signals to be adjusted according to the current 
position of the end effector. Stepper motors, 
however, normally operate without feedback and this 
paper describes algorithms aimed at improving the 
motion of such stepper motor-driven machines. The 
machining o f the required shape is achieved by 
adjusting the speed o f the stepper motors on the 
different axes. Interpolation involves generating the 
path by sending pulses to the motors. Acceleration 
algorithms enable the motion to begin and end 
smoothly without stalling, which is needed for high­
speed machining.

Stepper motors are popular because of the simplicity 
of their interface requirements and low costs. 
However, they are less suitable for very high-speed 
machining because o f their dynamic behaviour using 
existing algorithms. When used within multi-axis 
continuous path control systems, stepper motors have 
three disadvantages: jerky motion, errors in position 
and varying surface speed. Previous work at 
Nottingham Trent University has addressed the 
problems by introducing a variable pulse algorithm 
with a look back / look ahead feature [2]. This helps 
to smooth and overcome the deficiencies o f the 
motion generated by the existing interpolation 
algorithms. Further study o f machine performance 
has led to the introduction o f a filter process, which 
improves path smoothness at the expense o f some 
degradation o f interpolator accuracy [3]. Thus, both 
techniques involve smoothing the trains o f pulses 
after they have been generated. This paper addresses 
the problem from a more fundamental viewpoint, 
because it involves generating pulse timings which 
are smooth initially.
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2. PREVIOUS INTERPOLATION  
ALGORITMS

In many machining systems for complex paths, the 
path is first approximated by a lower degree curve, 
such as line and circular arc, and interpolation is 
performed on this curve. Previous interpolation 
algorithms include the Digital Differential Analyser 
(DDA) and the Search-Step algorithm. The principle 
operation o f the DDA interpolator is the performing 
o f digital integration on velocity to obtain the 
position reached at fixed intervals o f time (A/) [4]. 
This is expressed by:

= x ,  +  v t A* (1)

where x, is the position at the start of the ith interval 
and V,- is the corresponding velocity at the start o f that 
interval. Thus, over the interval At motion is 
generated in the direction of the tangent to the curve 
at the start o f the interval. This results in some 
deviation from the required path. Since the velocity 
is involved in the interpolation algorithm, the path 
can be machined at the required speed.

The Search-Step method relies on the local geometry 
of the curve to generate each step. This method uses 
curves defined in implicit form, where each point on 
the curve satisfies an equation o f the form 
/ (jc, y)  = 0 . Points lying off the curve have 
f { x , y ) *  0 and the value of f ( x , y )  is proportional 
to the error in position [5]. The Search-Step 
algorithm finds the next interpolated point by 
choosing the one closest to the desired curve, i.e. the 
one for which f ( x , y ) is closest to 0. Unlike the 
DDA, Search-Step does not control the surface speed 
fully during interpolation, because the resultant speed 
can vary, depending whether the motion is on just 
one axis or more than one. Therefore, for 
interpolation o f a 2D circular arc Search-Step, there

can be a speed variation up to a factor o f V2 .

4. THE NEW INTERPOLATION  
ALGORITHMS FOR STEPPER MOTORS

New linear and circular arc interpolation algorithms 
have been developed which reduce the above 
problems. On a particular axis the pulses are 
generated with timings which allow the machine to 
follow the required path according to the geometry of 
the path, while moving at the required speed. Unlike 
the previous methods, we have used a parameter- 
based method to synchronise the individual axes. For 
both lines and arcs, distance along the curve has been 
found to be the most appropriate parameter, because 
distance can easily be related to the required speed. 
These pulse timings are calculated using the path 
geometry and the required surface speed. The idea is 
to imagine a point travelling along the curve at the 
required speed and send a pulse to the motor for a 
given axis every time a step in that direction is 
completed. For 2D linear interpolation, a straight 
linear can be expressed in a parametric form as

x(s) -  x stw, + -s cosG , 

y(S) = ystart + 5 SinQ , (2)

where s is the distance along the line, {xsUirh yslari) is 
the start point and 0 the (constant) angle between the 
line and the x-axis. I f  L  is the length of one motor 
step, then the distance along the curve of the 77th step 
011 each of the axes is given by:

sx(n) -  ---- -  and sy (n) = ^
cos0 sinO

(3)

From these equations the corresponding timings of 
the n h pulses on each o f the axes for machining at 
constant surface speed V  are given by:

‘. W - ’- f -

y'-' 1/

nL
V cos0 

nL
V sin0

and

(4)

3. INVESTIGATED PROBLEMS

As explained above, there are three main problems 
with the previous interpolation algorithms: jerky 
motion, error in position and varying surface speed. 
Jerky motion is caused by vibrations, which often 
occur when the time between pulses to a stepper 
motor varies erratically and such small effects may 
then be exacerbated by the resonant frequencies of 
the system. Errors in position (measured by the 
distance between the actual path and the desired 
path) can be caused by jerky motion but can also 
result from approximation o f curves by facets. 
Variations in actual surface speed from the required 
speed (or feed rate) can result from interpolation 
algorithms and are likely to be exacerbated when 
vibrations occur.

A circular arc in the first quadrant of radius R , centre 
(Xcmtn, ycentre) and start angle OW, is expressed in a 
parametric form as:

*0) = X centre + R COS^d,  ̂±

y(s) = y centre+ R sin  ± (5)

(with the plus sign for anticlockwise and the minus 
sign for clockwise). This time we have for the wth 
steps on each of the axes:

s x (n) = ±R A
_  nL

cos ^ c o sa c   +■
R
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s ( n )  = ±R
, nL± T ,-a. (6)

As in the case for linear interpolation, the pulse 
timings can then be calculated for motion at constant 
surface speed. The expressions used above for 
circular arc interpolation are only suitable for first 
quadrant circular arc interpolation; for the other three 
quadrants, the expression is similar.

During the simulation (see next section) o f the new 
circular arc interpolation for a quarter o f a circle, it 
was found that the error in position can be close to 
one complete step. This error can be reduced, 
however, if  the pulse timing is adjusted so that the 
pulse is sent once the half way point between two 
steps has been reached, rather than when a whole 
step is completed. This “half step” technique can be 
seen to improve on the circular interpolation as 
shown in Fig. 1. In addition, if  the end position is not 
a complete step, the maximum error at the end will 
be within +0.5 of a step.
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Fig. 1. Instantaneous Step Simulation of (a) the new 
arc interpolation and (b) the new arc interpolation 
incorporating the H alf Step technique

5. SIMULATION OF INTERPOLATION  
ALGORITHMS

The new interpolation algorithms have been 
compared with the DDA and Search-Step algorithms 
using simple simulation. Two main areas have been 
chosen for evaluation, (1) errors in position, (2) 
speed on the x and y-axes, and three simulation 
methods have been used. None o f these is very 
realistic but, between them, they allow us to compare 
the different algorithms.

The first method, Instantaneous Step Simulation, 
does not take into consideration the response time of 
the stepper motor; the stepper motor is assumed to 
move to the desired position instantaneously as soon 
as a command pulse is received. Thus, this 
simulation is very far from the motion of a real 
machine but it does allow the order of pulse timings 
on the two axes to be seen, as shown in Fig. 1.

Smoother motion is obtained by using the second 
method, Varying Linear Simulation, which assumes 
that the motion between pulses varies linearly with 
time and that the stepper motor will have completed 
moving one step only when the next command pulse 
is received. This is also not entirely realistic but 
simulates to some extent the smoothing effect o f the 
motor and drive circuits.

The third method, Constant Linear Simulation, 
assumes that: (i) the motion after each pulse is at 
fixed (constant) speed until the step has been 
completed before remaining stationary until the next 
pulse; (ii) the stepper motor has completed the 
movement before the next pulse. Therefore, an 
additional parameter is needed for this fixed constant 
speed, which simulates the stepper motor response.

For simulation of axis speed we have used the 
Varying Linear method, i.e. the speed between two 
pulses is assumed to be inversely proportional to the 
time between the two pulses. A real motor, on the 
one hand, will allow some smoothing but, on the 
other hand, will often suffer from vibrations, making 
the situation worse.

As an example o f the simulation one line and one arc 
were interpolated at surface speed 0.08m/s with step 
size 0.01 mm. The line was from (0,0) to (0.3,0.2) and 
the arc was from (0.2,0) to (0,0.2) with the arc centre 
at (0,0) (all in mm.). For all four interpolation 
methods, in all three simulations, the new half-step 
algorithms have the smallest value for the maximum 
error in position, as can be seen from Table 1.

Ideally, the speeds on both axes for a line would be 
constant, while for an arc they would each be part of 
a sine wave. For both linear and circular arc 
interpolation, we have found that the motion of each 
axis is jerky when the DDA and Search-Step 
methods are employed. On the other hand, for the
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new interpolation algorithms, the speeds on the two 
axes were close to the ideal, i.e. constant or changing 
smoothly, respectively. Fig. 2 shows the results o f 
the x-axis speed simulation for a circular arc for three 
of the circular arc interpolation algorithms. For the 
new half step circular arc interpolation (Fig. 2(c)), 
the speed 011 the x-axis increases smoothly. 
Therefore with the new algorithms it is less likely 
that there will be any undesirable vibrations of the 
machine.

Table 1. Maximum error in position for the four

Simulation
type

Interpolation
Algorithm

Maximum error 
in position (pm)
Line Arc

Instantaneous
Step

Search-Step 5.55 10.00
DDA 5.55 8.09
New 5.55 9.74

New (Half) 5.55 6.16
Varying
Linear

Search-Step 2.77 3.96
DDA 5.55 6.70
New 2.77 10.76

New (Half) 1.39 3.89
Constant

Linear
Search-Step 5.55 10.00

DDA 5.55 8.09
New 4.17 9.74

New (Half) 2.77 3.96

6. PREVIOUS STEPPER MOTOR  
ACCELERATION ALGORITHMS

Two common types o f acceleration technique used 
for high-speed machining are linear and parabolic 
acceleration, in which the speed changes either 
linearly 01* parabolically with time. The minimum 
speed of the motor depends on the rotor and load 
inertia [6] and this will also be the speed at which the 
motor can start moving from rest.

Linear acceleration results in slow acceleration and 
much o f the available torque is not utilised [6]. A 
parabolic acceleration algorithm allows a higher 
acceleration at low motor speed combined with a 
lower rate at high speed. With this method, much 
more o f the available motor torque can be utilised 
and the stepper motors can therefore be used at 
higher speeds. Moreover, Dong-11 Kim, et al. [7] 
have shown that machining accuracy is improved 
with parabolic acceleration in comparison with linear 
acceleration. This is likely to be because any linear 
acceleration algorithm involves sharp discontinuities 
in the acceleration, which tend to cause increased 
vibration and overshoot.
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Fig. 2. Speed on the x-axis for interpolation of an arc 
with (a) DDA, (b) Search-Step and (c) the new half 
step algorithm.
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7. THE NEW PARABOLIC ACCELERATION  
ALGORITHM FOR STEPPER MOTORS

A new parabolic acceleration algorithm has been 
developed for use with the new interpolation 
algorithms. The output is pulse timings which allow 
the stepper motors to accelerate or decelerate 
smoothly. The equations for speed during the 
acceleration and deceleration phases were developed 
by Palmin et al. [6] as follows:

V = p t2 + qt + V0 (7)

where p  = and q = - 2 p T

V0 is the minimum speed, Vm is the maximum speed 
and T  is the time taken during acceleration or 
deceleration. Palmin et al. tried to calculate the 
timing t„ for eveiy command pulse but used an 
approximation by assuming that

r , , = C . (8)

where V„ is the speed at time t„ and a„ is the 
acceleration at time t„.

In order to maintain the desired shape during path 
following, the new parabolic acceleration and 
deceleration needs to be applied to the surface speed 
and not the speed for an individual axis. From 
equation 7, the distance travelled, s, can be calculated 
as follows:

l v a  = ^ -  + ^ -  + V„t (9)

The distance, s, for eveiy axis step movement is 
obtained by interpolation from equations 3 and 6. To 
determine each pulse timing, the cubic equation 9 
needs to be solved, which we have implemented 
using the Newton-Raphson iteration.

8. SIMULATION OF ACCELERATION AND 
DECELERATION

For the simulation o f acceleration and deceleration 
for a straight line and an arc we have chosen desired 
surface speed 0.08 m/sec, with step size 0.01 mm, as 
before, and both acceleration time and deceleration 
time set to 0.15 sec. Longer paths were chosen this 
time to allow for acceleration up to the M l speed 
followed by deceleration.

Fig. 3 shows the speeds on the two axes for the 
straight line from (0,0) to (30,20) (in nun), which are 
the same apart from a constant factor. The arc was 
from (20,0) to (0,20) with centre (0,0) (in mm) and 
Fig. 4 shows the speeds on two axes in this case.
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Fig. 3. Parabolic Acceleration and Deceleration for 
linear interpolation for (a) x-axis and (b) y-axis.

With the parabolic acceleration algorithm, the 
machine is still able to follow the required path. The 
maximum errors in position resulting from the new 
parabolic and interpolation algorithms are shown in 
Table 2 below. It can be seen that new linear and 
circular interpolation with half-step technique are 
able to generate a path that matches the required one 
within an error o f less than one motor step.

Table 2. Maximum errors in position for the new 
interpolation and acceleration algorithms. (Step size 
-0 .01m m .) _____________ __________________

Simulation
type

Full/Half
Step

Interpolation

Maximum error 
in position (pm)
Line Arc

Instantaneous
Step

Full 8.63 10.00
Half 5.86 7.31

Varying
Linear

Full 2.90 13.00
Half 1.48 5.75

Constant
Linear

Full 5.55 10.4
Half 5.55 5.33
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Fig. 4. Parabolic Acceleration and Deceleration for 
circular arc interpolation for (a) x-axis and (b) y-axis.

In these examples the simulations shown have 
assumed that the time for deceleration is the same as 
the time for acceleration. However, there is no need 
for them to be the same and in practice deceleration 
time can ahnost certainly be shorter.

9. DISCUSSION

The parabolic acceleration algorithm is able to utilise 
much more of the available torque from the stepper 
motor than the linear acceleration algorithm. 
However, further investigation is needed into how 
well this algorithm utilises the torque. Measurement 
o f the system can identify the maximum acceleration 
that is possible at different speeds. This may lead to 
the development o f improved acceleration 
algorithms.

10. CONCLUSIONS

New interpolation algorithms have been developed 
which employ a novel approach o f calculating the 
timing for every individual pulse using the distance 
along the curve as a parameter to synchronise the 
different axes. The pulse timings are generated with 
respect to the geometry o f the desired path, thus 
reducing the likelihood of vibrations and sudden 
jumps in motor speed. In addition, the new 
algorithms are expected to follow the desired shape 
more closely. To enable the developed interpolation 
algorithms to be used for high-speed machining, a 
parabolic acceleration algorithm has also been 
developed. The simulation results show that the new 
interpolation and acceleration algorithms are able to 
follow the required path closely. Further 
investigation is needed to evaluate the improvements 
achieved in practice.
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