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Huarvcin Lai Abstract

SIMULATION OF TWO-PHASE BUBBLY FLOWS- AN INERT BUBBLE 
INTRODUCED INTO A HOT LIQUID

By
Huanxin Lai

ABSTRACT

This thesis numerically studies the behaviour and heat and mass transfer relevant to an 
inert bubble introduced into a hot liquid. This study is a starting point of investigating 
the mechanism of transfer phenomena in two-phase bubbly flow based chemical 
reactors whose production capacity depends on the surface area of the bubbles and on 
the concentration gradients of species in each phase coupled with the local rate of 
reaction.

This entirely numerical and theoretical research starts with physical and mathematical 
modelling. The physical problem is modelled as unsteady conjugate heat and fluid flows 
around and inside a single rising inert bubble while full Navier-Stokes equations with 
well-posed boundary conditions are employed as the mathematical description of the 
problem.

Numerical algorithm for solving the mathematical model has been proposed and 
developed into Fortran codes. Firstly, a procedure for heat and flows in complex 
geometries with time-dependent moving boundaries is proposed. This procedure 
incorporates a multi-block iteration strategy with a moving mesh arrangement and is 
designed to calculate the heat and flows inside and around a single inert bubble; high 
order discretisation schemes are introduced and employed to obtain high resolution of 
the numerical results. Secondly, interfacial treatments are introduced and the algorithm 
is further developed to calculate gas-liquid interfacial flows in bubbles. Validations are 
widely carried out by available experiments and benchmark numerical data, robustness 
and potentials of the numerical algorithm and the codes are well shown.

Steady heat and fluid flows inside and around inert bubbles are carefully studied. 
Considering the importance of spherical bubble model, interfacial characteristics and 
flow structures of spherical bubbles are carried out. As the main work, detailed 
numerical studies are applied to moderately deformed bubbles in the ranges of 
(Re^,JTe)=[o, 200]x[0, 6]. Bubble shape, interfacial characteristics, flow structure, 
drag coefficient, and heat and mass transfer are carefully analysed to study the 
mechanism of interfacial transfer phenomena. The effects of bubble wake on the 
recovery of heat and mass transfer are identified and physically explained.

Based on some supplementations of the numerical procedure, time-accurate simulations 
on the rising-up of single inert bubbles are carried out to observe the unsteady heat and 
mass transfer and the relevant mechanisms. Full story of the bubble rising, evolution of 
bubble shape, development and propagation of temperature and concentration fields are 
numerically obseived and analysed.



Huanxin Lai Acknowledgmen ts

ACKNOWLEDGMENTS

At first, the author would like to thank the Nottingham Trent University for having 

offered me the three-year research studentship supported by EPSRC Grant under 

GR/M90207.

I am grateful to Dr Yuying Yan and professor Richard Gentle for great support and 

advice to me. Especially, Dr Yuying Yan had initiated the project and obtained EPSRC 

research grant; this should be specially appreciated.

I would like to thank professor John Smith at Surrey University for worthwhile advices.

I would like to extend a special thank-you to Mrs Doreen Corlett for maintaining to 

supply me with new relevant research information and materials.

My greatest thanks go to my family, and in particular my wife Hongbo Zhang who has 

been persistently supporting my research work.



Huanxin Lai List o f Publications

PBLICATIONS ARISING FROM THIS WORK

1. Lai, H and Yan, Y., 2001, “The effect of choosing dependent variables and cell-face 
velocities on convergence of the SIMPLE algorithm using non-orthogonal grids”, 
International Journal o f Numerical Methods for Heat & Fluid Flow, Vol.l 1, No.5, 
PP.524-546.

2. Lai, H., Yan, Y. and Smith, J., 2002, “A Calculation Procedure with Multi-Block 
Iteration and Moving Mesh for Heat and Fluid Flows in Complex Time-Dependent 
Geometries,” International Journal o f Numerical Methods for Heat & Fluid Flow, 
Vol.12, No.2, PP.106-125.

3. Yan, Y., Lai, H., Gentle, C. R. and Smith J. M., 2002, “Numerical Analysis of Fluid 
Flows inside and around A Liquid Drop Using An Incorporation of Multi-Block 
Iteration and Moving Mesh”, Transactions o f The Institution o f Chemical 
Engineers, Part A, Vol.80, No.A3, PP. 325-331.

4. Lai, H., Yan, Y. and Gentle, C. R., 2003, “Calculation Procedure for Conjugate 
Viscous Flows About and Inside Single Bubbles”, Numerical Heat Transfer, Part B, 
Vol.43,No.3, PP. 241-265.

5. Yan, Y., Lai, H., Gentle, C.R., and Smith, J.M., 2001, “Numerical Analysis of Fluid 
Flow and Heat Transfer in Complex Time-Dependent Geometries”, 7th UK National 
Conference on Heat Transfer, Sept. 2001, Nottingham.

6. Lai, H., Yan, Y., Gentle, C. R. and Smith, J. M., 2002, “Numerical Study of 
Conjugate Steady Viscous Flow About and Inside a Spherical Bubble”, 12th 
International Heat Transfer Conference, Aug. 18-23, Grenoble, France.



Table of Contents Contents

TABLE OF CONTENTS

Page
Abstract i

Acknowledgments ii

Publications arising from this work iii

Table of contents iv

Lists of Tables ix

Lists of Figures x

Nomenclature xiv

Chapter 1: Introduction 1

1.1 Background 1

1.2 Aims and Objectives 2

1.3 Outline of the Work 3

Chapter 2: Literature Review 6

2.1 Introduction 6

2.2 Experimental Study on Single Rising Bubbles 7

2.2.1 Bubble Shape 7

2.2.2 Trajectory of Rising Bubble 9

2.2.3 Rising Velocity and Drag 9

2.2.4 Pressure Field and Wake 11

2.3 Analysing and Numerical Research on Single Rising Bubbles 14

2.3.1 Flow Models 15

2.3.2 CFD Algorithms for Studying Bubbles Using Full Navier-Stokes 19



Table of Contents Contents

2.3.3 Numerical Studies of Single Rising Bubbles 29

2.4 Summary 30

2.4.1 Investigations on physical phenomenon 30

2.4.2 Comparisons of numerical methods 31

Chapter 3: Physical and Mathematical Descriptions of the Problem 33

3.1 Introduction 33

3.2 Physical Model 33

3.3 Basic Governing Equations 34

3.4 Initial and Boundaiy Conditions 35

3.4.1 Initial Conditions 36

3.4.2 Boundary Conditions 36

3.5 Non-Inertial Coordinates and Normalisation of Equations 3 8

3.5.1 Non-Inertial Coordinate System 38

3.5.2 Transform of Equations 39

3.5.3 Normalisation of Basic Equations 41

3.6 Summary of the Chapter 44

Chapter 4: CFD Strategies for Moving Boundary Problems 45

4.1 Introduction 45

4.2 Eulerian-Lagrangian Transformation 45

4.3 FVM Discretisation on Moving Mesh 47

4.3.1 Finite Volume Integration 47



Table o f Contents Contents

4.3.2 Space Conservation Law 51

4.3.3 High Order Schemes and Deferred Correction 53

4.3.4 Non-Staggered SIMPLE Method 63
1

4.3.5 Numerical Grid Generation 69 1

4.4 Multi-Block Computation 72

4.4.1 Uniqueness of Zonal Boundary 74

4.4.2 Zonal Boundary Variable Interpolation 75

4.5 Validations of the Numerical Methods 77

4.5.1 Lid-Driven Flow in a Squeezed Cavity 78

4.5.2 Laminar Flow Through Tubes with Constrictions 81

4.5.3 Separated Flow Over Backward-Facing Step 83

4.5.4 Natural Convection in Horizontal Annulus 86

4.5.5 Time-Dependent Moving Indentation Channel Flow 90

4.6 Summary 94

Chapter 5: Numerical Study of Gas-Liquid Interfacial Flows in Bubbles 95

5.1 Introduction 95

5.2 Gas-Liquid Interface Treatments 96

5.2.1 Expansion of Interfacial Boundary Conditions 96

5.2.2 Continuous Stress Method 98

5.2.3 Interface Deformation 101

5.3 Solution Approach 106

5.4 Results and Analysis 108

VI



Table o f Contents Contents

5.4.1 Spherical Drops 108

5.4.2 Deformable Liquid Drops 116

5.4.3 Deformable Bubbles: Validation by Experimental Data 118

5.5 Summary of Chapter 121

Chapter 6: Steady Heat and Fluid Flows Inside and Around Inert Bubbles 122

6.1 Introduction 122

6.2 Spherical Bubbles 123

6.2.1 Flow Structure of a Single Spherical Bubble 123

6.2.2 Interfacial Characteristics 124

6.3 Moderately Deformed Bubbles 127

6.3.1 Bubble Shape 127

6.3.2 Flow Structure 130

6.3.3 Drag Coefficient 134

6.3.4 Interfacial Characteristics 140

6.3.5 Heat and Mass Transfer 141

6.4 Summary of the Chapter 149

Chapter 7: Time-Accurate Simulations of an Inert Bubble Introduced into a Hot 

Liquid 150

7.1 Introduction 150

7.2 Rising Velocity and Acceleration 151

7.2.1 A Model Equation for Spherical Bubbles 151

7.2.2 A Full Analytical Model 153



Table o f Contents Contents

13  Solution Approach for Time-Accurate Simulation 155

7.4 Results 156

7.4.1 Rising Velocity 157

7.4.2 Evolution of Bubble Shape and Flow Structure 159

7.4.3 Heat and Mass Transfer 178

7.5 Summary of Chapter 182

Chapter 8: Conclusions and Recommendations for Further Work 183

8.1 Physical and Mathematical Modelling 184

8.2 Development of Numerical Algorithm and CFD Codes 184

8.2.1 Finite Volume Method (FVM) with High Order Schemes 184

8.2.2 Multi-Block Iteration and Moving Mesh Arrangement 185

8.2.3 Gas-Liquid Interfacial Treatments 185

8.2.4 Supplementation for Time-Accurate Simulation 186

8.3 Numerical Simulation and Results 186

8.3.1 Dynamics of Single Spherical Bubbles 186

8.3.2 Dynamics of Single Deformable Bubbles 187

8.3.3 Unsteady Behaviour of Inert Bubble Introduced into Hot Liquid 188

8.4 Recommendation for Further Work 188

References 190

Appendix: Development of FORTRAN Codes for Solving the Inert Bubble

Problem 206



Lists of Tables List o f Tables

LISTS OF TABLES
Tables

4.1 Model Geometries

4.2 Comparison of the present results with experiments

4.3 Reattachment points predicted by three meshes

5.1 Comparison of wake vortex length

5.2 Comparison between computed and measured aspect ratios



Lists o f Figures List o f Figures

LISTS OF FIGURES
Figures

2.1 Shape regimes for bubbles and drops in unhindered gravitational motion through 

liquids

3.1 Noil-inertial coordinates

4.1 Control volume for integration

4.2 Space conservation law

4.3 One-dimensional finite volume and associates nodal stencil

4.4 Range of boundness-preserving limiters for monotonic blend of Lax-Wendroff and 

Warming-Beam schemes

4.5 </>f  ~ 0C diagram (NVD)

4.6 Multi-block and zonal boundary

4.7 Notations used in two-block interface

4.8 Geometry and boundary conditions for squeezed lid-driven cavity flow 

4.9a Centre line velocity profiles in the squeezed cavity, u component 

4.9b Centre line velocity profiles in the squeezed cavity, v component

4.10 Convergent paths of different convection schemes

4.11 Geometric configuration of the pipe with a constriction

4.12 Flow pattern for Model M-3 at Re=40

4.13 Illustration of grids distribution for calculation of backward facing step

4.14 Positions of reattachment points in a step flow

4.15 Computational domain and grids for the natural convection in annulus

4.16 Convergent path for natural convection in annulus

4.17 Local equivalent conductivities at inner and outer walls

4.18 Temperature profiles

4.19 Distribution of angular velocity

4.20 Contour of non-dimensional temperature

4.21 Computational domain for moving indentation problem

4.22 Streamlines at various instants in a cycle

x



Lists of Figures List o f Figures

4.23 Positions of the crests and troughs of the eddies

5.1 Zoned computational domain

5.2 Zonal boundary and gas-liquid interface

5.3 Determination of the new interface position

5.4 Definition of curvature radii

5.5 Flow structure inside and around a spherical droplet

5.6 Topology of two wake-vortex types

5.7a Tangential velocity at interface of a spherical droplet 

5.7b Pressure coefficient at interface of a spherical droplet 

5.7c Exterior Vorticity i2 ^ a t interface of a spherical droplet 

5.7d Interior Vorticity at interface of a spherical droplet

5.8 Wake flow structure and its change with R e^

5.9 Wake zone length and its change with R e^

5.10 Shapes of deformable drops 0 p =0.909, =0.909

5.11 Convergent path of calculating deformable bubbles

5.12 Comparison of bubble shapes

6.1 Flow structure inside and around a spherical air bubble 

6.2a Interfacial tangential velocity of a spherical bubble 

6.2b Interfacial pressure of a spherical bubble 

6.2c Exterior Vorticity /2 ^ o f  a spherical bubble 

6.2d Exterior Vorticity £2® of a spherical bubble

6.3 Shapes of moderately deformed bubbles

6.4 Influence of the Weber number on aspect ratio

6.5 Influence of the Weber number on exchange surface coefficient

6.6 Flow structures of moderately deformed bubbles

6.7 Topology of vortex structure

6.8 Comparison of flow structures with results of Ryskin and Leal (1984b)

6.9 Drag force coefficients of moderately deformed bubbles 

6.10a Tangential velocity for “rear-flattening” bubbles (Re(2)=10)



Lists o f Figures List o f Figures

6.10b Interfacial pressure for “rear-flattening” bubbles (Re(2)=10)

6.10c Exterior vorticity for “rear-flattening” bubbles (Re(2)=10)

6.1 la  Tangential velocity for “fore-aft symmetric” bubbles (Re(2)=50)

6.1 lb Interfacial pressure for “fore-aft symmetric” bubbles (Re(2)=50)

6.1 lc Exterior vorticity for “fore-aft symmetric” bubbles (Re(2)=50)

6.12a Tangential velocity for “front-flattening” bubbles (Re(2)=200)

6.12b Interfacial pressure for “front-flattening” bubbles (Re(2)=200)

6.12c Exterior vorticity for “front-flattening” bubbles (Re(2)=200)

6.13 Contour of temperature field

6.14 Contour of concentration field

6.15a Distribution of local Nusselt number for bubbles at Re(2)=10 

6.15b Distribution of local Sherwood number for bubbles at Re(2)=l 0 

6.16a Distribution of local Nusselt number for bubbles at Re(2)=50 

6.16b Distribution of local Sherwood number for bubbles at Re(2)=50 

6.17a Distribution of local Nusselt number for bubbles at Re(2)=200 

6.17b Distribution of local Sherwood number for bubbles at Re(2)=200

6.18 Wake vortex structure and its effects on heat and mass transfer 

7.1a Time history of bubble rising velocity at R e^  =10 

7.1b Time history of bubble rising velocity at R e^  = 50 

7.1c Time history of bubble rising velocity at R e^  = 200 

7.2a Evolution of bubble shape and flow structure at R e^  = 10, W e-  3 

7.2b Evolution of bubble shape and flow structure at R e^  = 10, We = 5 

7.2c Evolution of bubble shape and flow structure at R e^  = 50, We = 3 

126. Evolution of bubble shape and flow structure at R e^  = 50, We = 5 

7.2e Evolution of bubble shape and flow structure at R e^  = 200, We = 3 

7.2f Evolution of bubble shape and flow structure at R e^  = 200 , We- 5  

7.3a Development of temperature field, R e^  = 10, We = 3 

7.3b Development of temperature field, R e^  = 10, We - 5  

7.3c Development of temperature field, R e^  = 50, We = 3



Lists o f Figures List of Figures

7.3d Development of temperature field, R e^  = 50, We = 5 

7.3e Development of temperature field, R e^  = 200, We = 3 

7.3f  Development of temperature field, R e^  = 200, We -  5 

7.4a Development of concentration field, R e^  = 10, W e-  3 

7.4b Development of concentration field, R e^  = 10, We- 5  

7.4c Development of concentration field, R e^  = 50, We = 3 

7.4d Development of concentration field, R e^  = 50, We- 5  

7.4e Development of concentration field, R e^  = 200 , We = 3 

7.4f Development of concentration field, R e^  = 200, We = 5 

7.5a Time history of averaged Nusselt number a tR e^ =10 

7.5b Time history of averaged Nusselt number at R e^  = 50 

7.5c Time history of averaged Nusselt number at R e^  = 200 

7.6a Time history of averaged Sherwood number at R e^  =10 

7.6b Time history of averaged Sheiwood number at R e^  = 50 

7.6c Time history of averaged Sheiwood number at R e^  = 200



Nomenclature Nomenclature

NOMENCLATURE

Symbol Meaning SI UK

a acceleration ms'2

thermal diffusivity m V 1

coefficient in discretisation equation for variable (j) -

ak Fourier coefficient -

ai grid controlling coefficient -

K Fourier coefficient -

£>i grid controlling coefficient -

ci grid controlling coefficient -

c concentration kgnf

C coefficient of pressure correction equation -

CD drag coefficient -

d bubble diameter m

D mass diffusivity m2 s'

diffusive conductivity m V 1

&i ) 1̂ > 2̂ covariant coordinate base vector -

e 29 e t n , e r z , e v t

relative errors of calculation -

Eo Eotvos number -

fr>  fc wake contribution factors -

F flow rate m V 1

f d drag force N

Fs gravity N

Fr Froude number

xiv



Nomenclature Nomenclature

g  acceleration due to gravity ms'2

G contravariant related velocity component

Gr Grashof number

h height of bubble m

J  Jacobian transformation number —

J  convection-diffusion flux mV1

zhc convection flux mV1

■PD diffusion flux m3s_1

k  coefficient of convective mass transfer ms"1

L length of wake vortex m

cavity boundary length m

mp imbalance of mass source mV1

mb mass of bubble kg

Mo Morton number

n magnitude of normal vector m

p  pressure Pa

Pe Peclet number

Pr Prandtl number

Ps pressure coefficient

Pl , P2 grid control functions

r radius in axisymmetric coordinates system m

R position - m

Ra curvature radial in azimuthal surface m

Rm curvature radial in meridional surface m

s arc length m

bubble surface area m2

S f S r, S \ S l9S 2, S DC

source terms in general governing equations

xv



Nomenclature Nomenclature

Sc Schmidt number

Sh Sheiwood number

T temperature [K]

t time s

magnitude of tangential vector m

u velocity component in x -  (r  - )  direction m s'1

v velocity component in y  -  direction m s'1

V absolute velocity m s'1

V- volume m3

w width of bubble shape m

W relative velocity in non-inertial coordinates system m s'1

We Weber number

x horizontal coordinate m

y  vertical coordinate m

Greek symbols

a  metric parameter

a  coefficient of convective heat transfer Wm"2[K]_I

relaxation factors 

(5 metric parameter

inclination angle

-ft coefficient of cubic expansion [K]'1

S n 5 £ p r o  > S re f  S t \  > S t 2

criteria of error 

(j) general variable

level set function 

volume fraction of fluid 

y  metric parameter



Nomenclature Nomenclature

77 curvilinear coordinate -

M dynamic viscosity kg m '1 s'1

V kinetic viscosity m2 s"1

A coefficient of heat conductivity W rn^K ]'1

n ratio of the circumference of a circl to its diameter —

e circumferential angle (measured from front stagnant point) -

p density kg m'3

a surface tension coefficient N m '1

X tensor of stress N m'2

n dimensionless vorticity -

? curvilinear coordinate -

X ratio of variation -

<p(z) flux limiter -

K numerical parameter -

s surface tension Nm'2

ratio of density (dispersed phase to continuous phase) -

ratio of viscosity (dispersed phase to continuous phase) -

r diffusion coefficient -

position of gas-liquid interface -

A finite difference operator -

V gradient (Hamilton) operator -

volume scaling factor -

Subscripts

av averaged value of a variable

e, w, n, s four facets of control volume

E, W, N, S nodes adjacent to P

eff effective value

eq equivalent values



Nomenclature Nomenclature

g pertaining to moving grids

n pertaining to normal direction of bubble profile

O pertaining to origin of non-inertial coordinates system

P nodal point to be solved in difference equation

r relative to moving mesh

ref referential value

sys state of the system environment

t pertaining to tangential direction of bubble profile

Z values at zonal boundary

Z-l values on the first inner grid near zonal boundary

5  7 partial derivative with respect to £  rj

Superscripts

1,2 components in £and rj directions respectively

(1), (2) domain indexes for multi-block system

0 values at an old time level
* initial value
( correction

n values at last time level

n+ 1 values at new time level

K values at last iteration

K+1 values at new iteration

0 values at old time level

Top Scripts

-  normalised variables (omitted after chapter 3)

-> vector

a  tensor

~ intermediate value

Leonard normalised variable

xviii



Nomenclature Nomenclature

Dimensionless Parameters

C,

Eo

8 F r 4 g d r•ef

3

4 Eo2

3 ( R . « ) W

gdnfP{2)

= 4
' ~ 3 Fr

r r  Vl;  (Re<2>)2Mo
g d  ref

I
Eo2

Gr

Mo

Nu

g M j 1 ~ f e f ) d ref

(p I p )1

p (2)o-3

asir e / a r
a aR £(r)

p  «) = V p L  = jRe(0& W 
Z>(*)

Pr(.‘)-PUPL
n  ~ Jo

Re(0 _
jlt'

D

dckdvpr
Sh  = — — -------------_

D r{ r)

Drag coefficient

Eotvos number

Froude number

Grashof number

Morton number

Nusselt number

Peclet number

Prandtl number

Reynolds number

Schmidt number

Sherwood number

xix

I
&

I

4Sf

&



Nomenclature Nomenclature

0 {2)V Z d.
We =  — — , Weber number

cr

0 O = P /  ratio of density

0 M = ̂ ^ / ( 2) ratio of viscosity

xx



Chapter 1 Introduction

Chapter 1 

Introduction

This chapter gives an introduction to the research work in this thesis. Based on an 
explanation of the background of the project, concise descriptions of the aims and the 
objectives of the research are presented.

1.1 Background

In chemical reactors based on gas-liquid reactions (oxidation, chlorination, 
hydrogenation, fluoridation etc.), heat and mass transfer occur between the gas and 
liquid phases. The rate of transfer, and hence the production capacity of the reactor, 

depends on the surface area of the bubbles and the concentration gradients in each phase 
coupled with the local rate of reaction. To analyse such a complex situation, we must 
firstly understand how the concentration field becomes established. The most important 
stage in the establishing of concentration field is the development of the flow fields 

within and around the bubbles, coupled with the accompanying increase of surface area 
and the evolution of bubble shape, immediately after the bubbles entered the vessel 
through the sparger. Although the attempt to numerically model two-phase bubbly 

flows has been made in a number of research papers, the mechanism of heat and mass 
transfer at gas-liquid interface is still unclear.

The nature of bubbly flows in chemical reactors is extremely complex. The behaviour 
of bubbles, which includes the interface trajectory, the evolution of bubble shape and 
bubble coalescence and etc., are three dimensional, heterogeneous and transient 
phenomena and reflect significant effects of the non-linear interactions of two phases. A 
recent EPSRC supported work at the University of Surrey (Smith, 1998) experimentally

1



Chapter 1 Introduction

studied the behaviour of a single bubble saturating in a hot volatile liquid. This study 
revealed that a large volume of vapour could pass into the gas phase as the bubbles were 

sparged into a hot liquid; the vapour dilutes the driving force for mass transfer and 
increases the bubble size greatly. The experimental also showed that a large bubble 
usually rises faster than small bubbles, so the contact time for mass transfer is shorter 
for large bubbles. In order to optimise sparger design and performance, a detailed 
understanding of the initial saturation dynamics is required: this provides the primary 
objective for the present research. In order to obtain such an understanding, it is 

beneficial to start with numerical simulation of an inert bubble introduced into a hot 
liquid and analysing the heat and mass transfer at the gas-liquid interface.

This EPSRC supported research (Yan and Smith, 1999), which will be entirely 
numerical and theoretical, will try to study the dynamics of an isolated inert bubble 

introduced into a hot liquid. The behaviours of the inert bubble, especially the heat and 
mass transfer at the gas-liquid interface, will be carefully studied. The research is of 
significant industrial benefit, as it will provide starting points for large-scale simulations 

of two-phase bubble related processes in reactors and for the improvement of related 
industrial processes. In particular, this study provides proofs for evaluating the 
importance of introducing of fresh gas and of maintaining small bubble sizes.

1.2 Aims and Objectives 

Aims:
(1). To contribute to the understanding of unsteady heat and mass transfer between 

bubble and liquid phases.

(2). To improve the understanding of the development of the fields within and around 
the bubble, and the evolution of the bubble’s surface area and shape.

(3). To improve and develop the capabilities of CFD methods to simulate the bubble 
behaviour.

2



Chapter 1 Introduction

Objectives:
(1). To establish the physical and mathematical models to describe a single inert bubble 

introduced into a hot liquid;

(2). To develop numerical methods for moving boundary problems on the basis of the 
finite volume discretisation on general non-orthogonal moving mesh system. The 
moving boundary is designed to track a moving gas-liquid interface explicitly and 
accurately;

(3). To further improve the numerical algorithm to be second-order accurate so that it 
can be used for studying the mechanism of mass transfer at the interface;

(4). To develop Fortran codes using the proposed numerical algorithm;
(5). To treat a gas-liquid interface and develop the codes to be capable of simulating 

gas-liquid interfacial flows;
(6). To carry out simulations of conjugate flows inside a spherical bubble and its 

surrounding unbounded quiescent liquid;

(7). To numerically study the momentum, heat and mass transfer and their relevant 
basic mechanisms for deformable bubbles at the terminal steady state;

(8). To carry out time-accurate simulations for heat and mass transfer between a single 

inert bubble and a hot liquid, study the dynamic behaviour of the bubble and 
analyse the related transfer mechanism.

1.3 Outline of the Work

As stated earlier, this research is entirely theoretical and numerical. The main works are
organised and presented in the following seven chapters.

Chapter 2 is a review of literatures. In this chapter, both the theoretical and experimental
studies on the dynamics of single bubbles introduced into unbounded liquids are

summarised. Considering the tasks of current work, special attentions have been given

3



Chapter 1 Introduction

to the analysis models and numerical methods for studying single bubbles.

Full physical model and mathematical description for the single inert bubble problem 
are presented in chapter 3. The complex unsteady heat and fluid flows inside and around 
the bubble are physically modelled and the gas-liquid interface is highlighted. Based on 
the physical model, full Navier-Stokes equations for incompressible heat and fluid 
flows and relevant well-posed initial and boundary conditions are presented.

Viewing from the computational fluid dynamics (CFD), the tracking of a gas-liquid 
interface is a moving boundary problem. Chapter 4 presents a complete numerical 
procedure for a general moving boundary problem. The procedure incorporates a 
moving non-orthogonal mesh arrangement with a multi-block iteration strategy to assist 
future simulations of heat and mass transfer in the inert bubble problem. The total 
variation diminishing (TVD) schemes are introduced to obtain high-order accuracy. The 
algorithm is developed into a Fortran code and is validated.

Chapter 5 deals with two challenging tasks in calculating the deformable gas-liquid 
interface. To decide the velocity components at the interface, a continuous stress 

method is proposed; In the meanwhile, a modified Ryskin-Leal method is introduced to 
decide the position of the interface. A complete solution approach for conjugate heat 
and fluid flows in the inert bubble problem is presented and employed to study gas- 
liquid interfacial flow problems in bubbles.

Steady heat and mass transfer in an inert bubble introduced into a hot liquid are 
carefully studied in chapter 6. Considering the importance of spherical bubble model, 

the conjugate flows inside and around spherical bubbles are simulated to study the flow 
structure and interfacial characteristics. As the main work, detailed numerical studies on 
the bubble shape, flow structure, drag coefficient and heat and mass transfer are carried 

out for moderately deformed bubbles. The effects of the wake vortex on heat and mass 
transfer are obseived and analysed; a physical explanation for the recovery of Nusselt
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and Sherwood numbers in the flow separation zone is proposed.

In order to study the time-dependent deformation and evolution of the inert bubble, 
chapter 7 carries out time-accurate simulations for the rear flattened, front flattened and 
fore-aft symmetric bubbles, based on the supplement of numerical methods and 
controlling equations for the rising velocity and acceleration derived from analysis of 
the forces acted on the bubble. Analysis on the evolution and propagation of 
temperature and concentration fields are presented.

The conclusions of the research and recommendations for further work are given in 
chapter 8.
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Chapter 2 

Literature Review

2.1 Introduction

A single bubble, which is recognised as the basic element of bubbly flows, can be 

employed as a starting point to study the mechanism of heat and mass transfer in bubbly 
flow based chemical reactors because rising bubbles play a decisive role in heat and 
mass transfer. The study of a single bubble embedded in liquid provides understanding 

the basic mechanism of heat and mass transfer between gaseous and liquid phases.

It can be traced back to 500 years ago when the behaviour of a rising bubble was 

observed and recorded (see the description of Krishna and Baten, 1999). Clift, Grace 
and Weber (1978) summarised a listing of 1200 contributions to the subject of the 
motion of bubbles, drops and particles. However, detailed studies on the dynamics 

behaviours such as the time-dependent characteristics of heat and mass transfer and 
relevant mechanisms are still relatively limited.

This chapter presents a brief review for the available research works on the study of the 
dynamics of single rising bubbles. Related to our study, the review will be only 
restricted to works of a general purpose on a single rising bubble embedded in an 

unbounded liquid. The researches about oscillatory motions (the fluctuation of the 
volume or shape of the bubble around some equilibrium value); formation, growth and 
departure from superheated walls; rising in electric or magnetic fields; effects of 

interfacial surfactant on heat and mass transfer; and any other special techniques which 
have special mechanisms on heat mass transfer enhancement, will not be included in 
this review because they are not the topics of current study; Good reviews in these
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topics have been made by other researchers (Son, Dhir and Ramanujapu, 1999; Ueno, 
Nishita and Kamiyama, 1999; Takata, Shirakawa, Tanaka, Kuroki and Ito, 1996; Ponoth 
and McLaughlin, 2000).

The review is organised according to investigating methods applied such as 
experimental and nmnerical studies. As our research is entirely numerical and 
theoretical, attention will be mainly paid to numerical simulations.

2.2 Experimental Study on Single Rising Bubbles

Experimental verification is the most effective approach to provide the first hand results 
in real situations for bubble dynamics study. Especially with the advent of laser based 
velocity anemometers in 1970s, experimentalists have optical tools which now permits 
a more accurate measurement of refractive index effects and can provide them with a 
quantitative improvement in the quality of resolution of bubble dynamics.

Experimental studies of translational bubble motion are concerned almost completely 
with the kinematics aspects of motion. These studies have revealed that kinematics 

aspects of bubble motion, such as bubble shape, trajectoiy, rising velocity, drag and 
wake of a bubble, are dependent upon its size and upon the physical properties of the 
liquid.

2.2.1 Bubble Shape

The shape of rising bubbles can be observed by means of flow visualisation technique 
and have been studied by Haberman and Morton (1953, 1954), Saffman (1956), 
Hartunian and Sears (1957), Hnat and Buckmaster (1976), Hacker and Hussein (1978), 
Bhaga and Weber (1981), Vassallo, Symolon, Moore and Trabold (1995), Duineveld

(1995), Maxworthy, Gnann, Kurten and Durst (1996) and Raymond and Rosant (2000).

7
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According to Clift, Grace and Weber’s (1978) summary, different shapes of bubbles are 
determined based on the balance of inertia, lift, viscous and surface tension force. For 

air bubbles in water, as bubble size increases, bubble shape changes sequentially from 

spherical (for dref <0.1 cm), where the surface tension forces dominate, through

ellipsoidal, to spherical cap (for dref > 2.0 cm). In low viscosity liquids, such as water, 

there is also a transition region between ellipsoidal and

LOG M
-14

-1 3

- 1 2

SPH ERICA L-CA P!-11

-1Q .WOBBLING
CP ^

- 9 .

-8.
- 7,

- 6 ,

SKIRTEDl

ILLIPSOIDAI O -!/

/  DIMPLED /  
'ELLIPSOIDAL-CAP. 

, « /  /
SPHERICAL

47

EOTVOS NUMBER, Eo

Figure 2.1 Shape regimes for bubbles and drops in unhindered 
gravitational motion through liquids



Chapter 2 Literature Review

spherical cap shape regions (1.0 cm < dref <2.0 cm), where bubble-shape is very

irregular and unsteady. A complete map for bubble shape regimes in terms of Reynolds 

number, Morton number and Eotvos number was initially provided by Grace (1973) and 
is shown in figure 2.1. This map was further extended by Bhaga and Weber (1981) and 
by Maxworthy, Gnann, Kurten and Durst (1996). Shape regimes and terminal rise 
velocities have been correlated.

It should be mentioned that Duineveld (1995) studied the rise of slightly deformed 
bubbles in water. Based on the fact that in a liquid with a low Morton number, bubbles 
rising at large Reynolds number will have reasonably small deformation, “hyper clean” 
water was used as testing liquid to measure rise velocities and shapes of rising bubbles 
whose equivalent radius were varied between 0.33 and 1.00 mm. This experiment fills a 
gap concerning bubbles with high Reynolds and low Weber numbers.

2.2.2 Trajectory of Rising Bubble

Bubble trajectory was paid attention by Saffman (1956) and Hartunian and Sears (1957) 
both reported on experiments and theory dealing with path instability of a rising bubble. 

As summarised by Plesko and Leutheusser (1982), the bubble trajectoiy is generally 
rectilinear. However, ellipsoidal bubbles rising in clean liquids of low viscosity (such as 
filtered water) tend to follow a zigzagging or spiralling path. This phenomenon has been 
attributed to the periodic shedding of vortices behind the bubble, as vortex shedding has 

been observed experimentally to occur for rigid spheres at corresponding orders of 
magnitude of Reynolds number.

2.2.3 Rising Velocity and Drag

Terminal rising velocity is also an important parameter of bubble dynamics. In fact, 

almost nowadays’ available experiments on bubble shape also provide results of bubble 
rising velocity, as bubble rising velocity is closely related to drag force, therefore,
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bubble steady shape and terminal velocity are regarded as two main points of practical 
interests in engineering applications.

Haberman and Morton (1954) carried out extensive experiments, measuring rising 
velocities as a function of bubble size for various liquids. The results show that rising 

velocity is a steadily increasing function of the bubble size except for ellipsoidal 
bubbles in clean liquids of low viscosity. For these the velocity attains a maximum 
value at the upper limit of the ellipsoidal shape region, and then falls to a minimum as 

bubble size increases, before starting to rise again. Spherical cap rises at a velocity, 
which is independent of liquid properties and also confirmed by Komasawa, Otake and 
Kamojima (1980). Soo (1967) also reveals that the rise velocity of small bubbles is 
influenced by viscosity and surface tension of the fluid whereas that of large bubbles 
appears to depend on bubble size and its deformation.

Hacker and Hussein (1978) earned out the first application of a Laser-Schlieren 
technique to study of a single rising bubble dynamics. Two Newtonian fluids of widely 

differing properties were used as surrounding liquid. The results show that large volume 

(> 3 cm3) bubble takes a shape of stable spherical cap and move with a rectilinear 

path, surface tension is not an important parameter in influencing drag and rising 
velocity of these bubbles.

Miyahara and Takahashi (1985) studied previous data for the drag coefficient of a single 

bubble rising in a quiescent liquid are correlated with the Reynolds number on the basis 
of the major axis of the bubble. It was found that the drag coefficient is a function of 

Reynolds number only for Morton numbers above 10“7, and also for Morton numbers 

below 10“7 provided the Reynolds number is below 10. Otherwise, the drag coefficient 

dependents on Morton number. The drag coefficient is constant at high Reynolds 
numbers.

10
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Vassallo, Symolon, Moore and Trabold (1995) measured freon bubble rising in a 
vertical rectangular duct, their results are used to obtain drag model for higher void 
fraction bubbly flow.

Raymond and Rosant (2000) presented some results for moderate deformed bubbles 
concerning the drag coefficient and deformation in the range of 

(Re , We) = [l, 100]x[0, 5]. The experiments were made in tap water/glycerol 

mixtures. The experiment was made to compensate relations concerning the bubble 

aspect ratio in a large Morton number range (9 x 10~7 < Mo <l).

The above measurements are mainly limited to time-averaged properties such as bubble 
shape and rising velocity. The temporal fluctuations in such properties have not been 

studies extensively to the date. Luewisutthichat, Tsutsmi and Yoshida (1997) carried out 
an attempt to characterise the time evolution of a single rising bubble motion in 
stationary liquids. In their study, time dependent dynamic changes in rising velocity, 

shape and orientation of bubbles were simultaneously measured using a flow 
visualisation method. Both deterministic chaos and stochastic analyses were used to 
diagnose bubble dynamics in gas-liquid two-phase systems. The bubbles were found to 
have chaotic fluctuations in shape and rising velocity. The Kolmogorov entropy and 
correlation dimension of the attractor reconstructed from time-series data of bubble- 
shape indices and velocity components by the embedding method were found to be 
positive and very high, indicating the chaotic-time evolution of bubble motion. On the 
other hand, the bubble inclined angle exhibited a periodic variation in bubble motion, 

reflecting the zigzag motion of rising bubbles. The fluctuation in bubble-rise velocity is 
considered to take place in streamwise direction due to the oscillation of drag force 
associated with the bubble-shape fluctuation.

2.2.4 Pressure Field and Wake

Pressure field measurements offer information of pressure fluctuations related to bubble
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motion. Jezdinsky and Naudascher (1972) found through their experiments that, the 
magnitude of pressure fluctuations increases with air flow rate and bubble size, that the 
bubble shape is unsteady in the zone of separation, and that, no matter what size is 
originally, the bubble size beyond the zone of separation is similar to the size of 
turbulent eddies in the zone of separation. The investigators postulated that the 
pronounced increase in the magnitude of the pressure fluctuations (up to an order of 
magnitude greater than in flows containing no air) is due to the oscillatory behaviour of 
the bubbles which results from the defonnation and break up of the bubbles.

Lazarek and Littman (1974) presented their results of pressure field due to a large 

circular capped air bubble rising in water. The result shows that pressure field extends 
axially as far as ten times of bubble half-widths below the bubble floor. Immediately 
below the floor the pressure is constant for about two-thirds of a bubble height. The 

wake is closed and contains symmetric pressure minima. Based on the pressure field, 
their further analysis also reveals that momentum and energy distributions in wake are 
controlled by turbulence and vorticity diffusion.

Plesko and Leutheusser (1982) focused their attention on the pressure associated with 
the motion of large, isolated spherical cap air bubbles rising either freely, or through a 
local constriction in a vertical cylindrical pipe filled with quiescent water. The pressure, 
measured at the pipe wall, was found to be as high as the dynamic bubble pressure for 
translational bubble motion.

During the free-rise of a single bubble through a liquid, an amount of the liquid is 

inevitably carried up behind the bubble, and this is known as the wake. It has been 
noticed that liquid carries dissolved gas from bubble and preferentially transfers it into 
the wake and an enhanced dissolved gas concentration can be observed in the wake 
(Schmidt, Nassar and Lubbert, 1992). Therefore, bubble wake can be regarded as 

having close relation with mass transfer, and this has been paid close attention by 
researchers.

12
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Komasawa, Otake and Kamojima (1980) studied the wake dynamical behaviour of a 
single spherical-cap bubble by holding the bubble stationary using a downward liquid 
flow in a vertical channel. Through their study, three types of bubble wake were found. 

These are laminar wake (lO < ite < 90), transitional wake (90 <Re< 500), and 

turbulent wake (Re > 500). And it was found that laminar wakes are of a decisive effect 

on the rising velocity of the trailing bubbles, in which an additional velocity component 
caused by the wakes of the preceding bubbles was correlated well with wake velocities. 
The turbulent wakes have a limited effect on the acceleration of trailing bubbles and 
often cause bubble break.

Bessler and Littman (1987) experimentally investigated the wake behind a circularly 
capped bubble rising in fluids of different viscosity by using aspirin powder for flow 
visualisation and high-speed photography synchronised with pressure-time 
measurements to measure the pressure field. The bubble plus its primary wake with a 
cusped tail is observed to contain symmetric pressure minima within the primary wake. 
The details of wake structure such as a free shear layer contains large scale vortexes 

generated near bubble rim in the boundary wake, and the document for wake geometry 
change and transition to an ellipsoidal as fluid viscosity increases, were provided. Based 
on these, a wake model of circularly capped bubble and its primary wake was built.

Tsuchiya and Fan (1988) examined the fluid mechanic behaviour of the wake of a single 
bubble in a two-dimensional liquid-solid fluidised bed visually via a camera moving at 

the same speed as the bubble. The bubble wake was observed to consist of two regions: 
primary wake (near wake) and secondary wake. Wake formation-shedding mechanisms 
were illustrated for both symmetric and asymmetric shedding modes. In their study, the 
shedding frequency, expressed in terms of the Strouhal number, was shown to be a 
function of the bubble Reynolds number but independent of particle properties. It was 
also observed in their experiments that the primary wake size periodically varies in the 
form of a saw-tooth wave function, while the liquid wake exhibits no appreciable cyclic
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variation in size. Based on their extensive study and research, Fan and Tsuchiya (1990) 
presented an excellent summary and review on bubble wake dynamics.

Schmidt, Nassar and Lubbert (1992) studied local dispersion in the liquid phase of gas- 
liquid reactors. Experiments on single bubbles was performed in order to demonstrate 
the key aspects and to estimate characteristic parameters of their physical model 
presented to describe the local mixing in liquid phase of gas-liquid flows agitated by 
rising bubbles. Local mixing mechanism and the high concentration of dissolved gas in 
the wake were explained.

Chen and Chou (1998) and Chen, Wang and Lin (1999) studied bubble wake dynamics 
of a single bubble rising in a two-dimensional column and a two-dimensional fluidised 
bed, respectively, using particle image analyser (PIA) system (based on the particle 
tracking technique). In these studies, fluid mechanic behaviour of wake is recorded by a 
high-frame-rate camera moving at the same speed as the bubble, PIA system and a 
interpolation are exerted to quantify the local microscopic flow properties. Through the 
topological characteristics of integrated streamline pattern, the formation-shedding 
mechanism of turbulent wake induced by a single rising bubble is illustrated. It is 
revealed that formation/shedding of a Strouhal vortex is dependent on the stability of 
free shear layer located on the side boundaiy of wake.

A study on the bubble wake dynamics behind a single bubble rising in stagnant water in 
a circular pipe is conducted by Hassan, Ortiz-Villafuerte and Schmidll (1999) using a 
whole volume three-dimensional particle image velocimetry flow measurement system. 

Transient investigations on the wake size and the wake decaying time were performed.

2.3 Analysing and Numerical Research on Single Rising Bubbles
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Synchronal to experimental observations, analyses on the behaviours of single rising 
bubbles have also attracted attentions of researchers and been put in an amount of 
works. With the development and advances in computing technology and computational 
fluid dynamics (CFD), numerical studies on single rising bubbles are becoming more 

and more popular; and the effectiveness and excellent efficiency of numerical 
investigating methods have been shown.

2.3.1 Flow Models

The development of analysing models for flows in single bubbles is a procedure of from 
simplicity to completion. This can be explained by the facts that the shape of bubble 

was treated as spherical but now is deformable; the flow was regarded invicid but now 
is viscous; the transfer phenomena was analysed using external model but now using 
conjugate model; and the state of flow for analysing was only steady but now can be 
unsteady. Here we focus on reviewing researches on spherical bubbles and on 
development of conjugate flow models.

Analysis oil spherical bubbles
The sphere (one-dimensional) model has always played an important role in the study of 
single bubble dynamics since Hadamard (1911) and Rybzynski (1911) obtained the 

analytical solution for creeping flow (Re < 1) inside and outside a fluid sphere. Indeed, 
this one-dimensional model is sometimes still used nowadays in qualitative analysis 
(Magnaudet, Rivero and Fabre, 1995).

The sphere model is mainly used to study bubble growth on a heated wall, which is a 
main topic of nucleate boiling. Rayleigh (1917), Plesset and Zwick (1954), Tong 

(1966), and Mikic, Rohsenow and Griffith (1970) all worked on obtaining a time- 
dependent formula for the radius of a sphere bubble. All these works are foundations for 
the study of nucleate boiling.
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The first attempt to analyse the growth of a bubble in motion was made by Ruckenstein 
(1964). Later, Tokuda, Yang and Clark (1968), Ruckenstein and Davis (1971), Pinto 
and Davis (1971), Buyevich (1975), Shah and Sha (1978), Ida and Sugiya (1980) 
carried out analytical studies on the growth coupled with motion of a single spherical 
bubble.

The one-dimensional (spherical) bubble model has provided a simple and quick 
analysing method and some understanding of the bubble dynamics. However, for a real 

inert bubble embedded in an infinite liquid, it is impossible to keep the spherical shape 
and therefore its bubble dynamics, such as local heat and mass transfer, cannot be 

revealed by using this model and therefore, the determination of the shape of 
deformable bubbles has become an important topic in numerical study of interfacial 
flows which will be reviewed later.

External and conjugate flows
The phenomena of momentum, heat and mass transfer between a translating bubble or 
drop and its surrounding fluid is classified as “external” (if the transfer resistance is 

assumed negligible inside the dispersed phase as compared to that of continuous phase), 
“internal” (if the transfer resistance in the continuous phase is assumed negligible as 
compared to that inside the dispersed phase), and “conjugate” (if the transfer resistance 
in both phases is comparable to each other). For a single bubble rising in an unbounded 

liquid, its density and viscosity in gas side are generally smaller in magnitude order than 
those of liquid side, so the heat and fluid flows in the single rising bubble are often 
treated as an “external flow” problem, which means the flow and temperature fields 

inside the bubble are often regarded as uniform and constant (at the saturation points); 
and the gas-liquid interfacial flow can be treated as a “free boundary problem”, which 
indicates zero tangential stress at the interface. The external flow models of bubbles 
have been widely employed by researchers (Ryskin and Leal, 1984a, 1984b; Cao and 
Christensen, 2000; Raymond and Rosant, 2000; Yoon, Koshizuka and Oka, 2001; Li 
and Yan, 2002a, 2002b; Yan and Li, 2002).
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Physically, the momentum, heat and mass transfer procedures through a gas-liquid 

interface are decisive to the production capacity of a device and are closely related to 
the conjugate flows inside and around the bubbles. In order to understand the 

mechanisms of these transfer phenomena, the conjugate heat and fluid flows at both 

sides of the interface should be carefully studied.

Bubble internal phenomena are also important facets of bubble dynamics. When an inert 
bubble is introduced into a hot liquid, heat and mass transfer take place at the interface 
and therefore the bubble is consisted of vapour and inert gas. With changing of 

suiTounding pressure, the internal phenomena, such as thermal diffusion, diffusion 
between gases, possible formation of die mist due to bubble expanding and 
condensation, and heat and mass transfer through bubble wall, have a significant 

influence on bubble motion (Takemura and Matsumoto, 1994).

Chao (1962) made a first analysis, for the transient response behaviour of the thermal or 

concentrate boundary layers for a liquid droplet moving at a constant velocity, which 
has taken the effects of internal circulation included. Although this study was mainly on 
the relation between bubble growth and bubble moving, the importance of internal 
phenomena had come to be paid attention.

There were some studies where the internal phenomena inside the bubble were 

considered in the past two decades. Migmatulin, Khabeev and Nagiev (1981) and 
Kamath and Prospered (1989) analysed the bubble motion numerically taking thermal 
diffusion into account. Matsumoto and Takemura (1992) simulated the bubble motion 

by integrating directly the full equations for mass, momentum and energy conservation 
inside and outside the bubble, and analysed the effects of internal phenomena on bubble 
motion. The results reveal that the bubble motion is affected by heat mass transfer 

inside and outside the bubble; and dimensionless heat conductivity influences the 
damping of bubble oscillation. They also show that the boundary layer of vapour
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concentration is formed inside the bubble and diffusion affects the bubble motion. The 

distribution of concentration of vapour and the mass of vapour inside the bubble are 
correlated by the dimensionless diffusion coefficient.

An investigation of effects of internal phenomena on bubble motion when the 
surrounding pressure decreases stepwise was reported by Matsumoto (1986). Single 
bubble expanding process is studied, where a model of internal conditions during 
bubble motion on the assumption that temperature distribution is uniform except near 

bubble wall is proposed. The result reveals that gas mixture inside the bubble expands 
adiabatically and the temperature becomes low at the beginning of the expanding. Then 
mist appears inside the bubble due to homogeneous condensation and the temperature is 
restored to that of liquid. It is concluded that the gas mixture inside a bubble behaves 
almost isothemially.

The effects of internal transport phenomena on the motion of the single bubble, 
suffering from stepwise decreasing surrounding pressure, was numerically simulated by 
Takemura and Matsumoto (1994). In this simulation, the conservation equations for 

mass, momentum and energy are solved directly in order to estimate the effect of 
internal phenomena on bubble motion. At the same time, the mist formation in the gas 
phase and the diffusions of heat and non-condensable gas in the liquid phase are taken 
into account. The numerical results for several cases reveal that non-dimensional 
transport coefficients have large effects on the distributions of temperature, 
concentration of vapour and the mist formation. As the initial radius becomes smaller or 
depressurisation ratio becomes larger, bubble motion is less influenced by mist 
formation due to the heat penetration through the bubble wall by heat conduction.

Numerical study of solving full Navier-Stokes equations for conjugate heat and fluid 
flows in bubbles has been firstly carried out by Welch (1995, 1998). A conjugate heat 

and fluid flow model incorporated with an unstructured mesh were used in his 

calculation. However, the continuity of tangential stress at the interface was



Chapter 2 Literature Review

unreasonably discarded in this work. Other conjugate numerical models can be found 
for a single drop falling at the terminal velocity in air, such as the works by LeClair, 
Hamielec, Pruppacher and Hall (1972); Rivkind and Ryskin (1976); Dandy and Leal 
(1989) and Juncu (1999).

2.3.2 CFD Algorithms for Studying Bubbles Using Full Navier-Stokes

In view point of CFD, a gas-liquid interface is a moving boundary problem, which is 
one of the most challenging problems to researchers (Shyy, Udaykumar, Rao and Smith, 
1996). In order to study bubble behaviours, accurately modelling the interface and 
highlighting the fields in its vicinities are necessary. However, because of the 
discontinuity of physical-chemical properties across the interface, special technique is 

needed as the basic formula for fluid flows are based on the theory of continuous 
functions. Nowadays, three possible basic mathematical models for fluid flows are 
available; these are the well-established Navier-Stokes equations, the lattice-Boltzmann 
method (LBM) and molecular dynamics simulation (MDS) method. For the latter two 
models, they are newly developed and still in the developing stage although great 
potentials have been shown in developing them to simulate moving boundary flows 
(Yang, Dinli, Nourgaliev and Sehgal, 2000; Sankaranarayanan, Shan, Kevrekidis and 
Sundaresan, 1999; Kinjo, Ohguchi, Yasuoka and Matsumoto, 1999; Guo, Wang and 
Chen, 2000). For the time being, available robust algorithms for simulating gas-liquid 

bubble interface are still under the framework of Navier-Stokes equations, and a review 
will be made only for them in this paper; people have interest in LBM or MDS (Bird, 
1995) can refer to the related literatures for details.

The Navier-Stokes equations based algorithms for the gas-liquid interfacial simulations 
can be classified in different categories. If according to the grid system employed, they 
can be put into Lagrangian methods and Eulerian methods. If according to the method 
of tracking a interface, they can be divided into the front tracking methods and the 
volume tracking methods. These algorithms can also be classified according to their
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discretisation methods. Considering the key to solve a moving boundary problem being 
to track the moving boundary or interface that changes with time, this review catalogues 
the numerical techniques as:
(a), surface tracking or predominantly Lagrangian methods (Harlow and Welch 1965; 
Vicelli, 1969; Chen, Garimella, Reizes and Leonardi, 1995);
(b). volume tracking or Eulerian methods (Hirt and Nichols 1981).

Regardless the method employed, the following three essentials are needed to properly 
model an interfacial problem:
(a), a scheme to describe the shape and location of a gas-liquid interface;
(b). an algorithm to evolve the shape and location with time, and
(c). interfacial boundary conditions applied at the surface.

In the following discussions we briefly review the types of numerical approaches and 
indicate the advantages and disadvantages of each method.

Arbitrary Lagrangian-Eulerian (ALE) method
Hirt, Amsden and Cook (1974) proposed an algorithm for solving invicid time- 
dependent flows. Ramaswamy (1990) developed this method for modelling unsteady 
viscous flows with free surfaces. According to Ramaswamy (1990), a physical time 

marching cycle, from the (rc)th instant to the («+l)th instant with a time increase At , 
can be divided into four sub-steps. These are Lagrangian calculation, rezoning, 
convective flux calculation, and scalars (temperature for example) calculation. In the 
Lagrangian calculation, the computational grid vertices are advected by a divergence- 
free flow velocity. This velocity is used to update the coordinates of the vertices 

(especially, to update the position of interface). For the rezoning, the interior grids (and 
therefore the whole mapping meshes) are regenerated using Thompson, Warsi and 
Mastin (1985)’s method, to conform the new boundary and eliminate the highly 

contorted deformation of internal grid lines by the Lagrangian advect, and the moving 
velocity of meshes are obtained. Thirdly, convective flux through the cells of updated
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meshes (not Lagrangian meshes any more) are calculated and the velocity field is 

redistributed to the new meshes. Finally, the scalars such as temperature are obtained by 
solving their controlling equations on the moving meshes.

Fujita and Bai (1998) employed the ALE method to study the growth of an isolated 
bubble in nucleate boiling, quantitative description of the fluid and thermal fields 
surrounding the bubble was achieved. In order to improve the numerical accuracy of 
ALE, Li and Petzold (1997) tried to combine the moving mesh with high-order upwind 

schemes for the convection term, and good results were achieved in their simulation of 
discontinuous interface. Although the rearrangement of grid at eveiy time step is 
needed, and the calculations maybe experience difficulties when the interface becomes 
multiple-valued (this corresponds to the topological changes of interface), the ALE 
moving mesh methods are still attractive because of their capability of highlighting the 
fields near interface, and the result of physical zero thickness of interface, which are 
always necessary to study the interface-related mechanism.

When the terminal steady state is calculate, the ALE moving mesh method becomes the 
body-fitted coordinates transformation method, proposed by Ryskin and Leal (1984a, 

1984b). The moving mesh methods employed to track bubble surface and study bubble 
behaviour by Takagi and Matsumoto (1993, 1995) and Lee and Nydahl (1989) was the 
time-dependent form of Ryskin and Leal’s (1984a, 1984b) method; it also belong to 
ALE in fact though implicit time-marching scheme was employed to replace the sub
step explicit time-marching.

The principal limitation of Lagrangian methods is that they cannot be used to track an 
interface which is changeable in topology. Even large amplitude surface motions are 
difficult to track without introducing regridding techniques.

Unstructured moving mesh method
The unstructured mesh finite volume method for gas-liquid two-phase flow by Welch
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(1995, 1998) belonged to Lagrangian category because the mesh system was moving. In 
this method, the interface was embedded within control volumes defined on a moving 
triangular mesh and was tracked with nodes affixed on the liquid and vapour sides at the 
same spatial location. Using the moving mesh, a high grid resolution was kept near the 

interface to accurately represent the steep gradient attendant with the mass transfer 
problem. On finite volumes, mass, momentum and energy equations were solved using 
a semi-implicit procedure, in which thermodynamic equilibrium was assumed at the 
interface, and the state equations were extended smoothly into the saturation region 

allowing for the existence of metastable state. The interfacial motion was found from 
physics while the mesh motion in bulk regions was calculated by simple interpolation 
with neighbouring nodes.

Welch (1998) used this method to study heterogeneous vapour bubble growth and 

generally acceptable results were obtained in his investigation. The advantages of 
unstructured mesh are obvious; these include its excellent adaptability in grids 
generation and mapping complex geometries such as bubble shape. However, as 
compared with the algorithms using structured mesh, the unstructured mesh based 
algorithms are not easy to be vectorised and their accuracy, efficiency are worse 
although larger storage has been occupied because of the disorderliness of grid cells 
(Jameson and Mavriplis, 1985; Mavriplis and Jameson, 1987).

Front tracking method
Unverdi and Tryggvason(1992) put forward the front-tracking method, in which the 
interface itself is described by an additional Lagrangian computational element while 
the bulk flow (include the two phases) are computed with Eulerian meshes. In the front 
tracking method, an interface is explicitly tracked by an unstructured grid system. As 
the fluid properties, such as density and viscosity, are discontinuous across the interface, 
either excessive numerical diffusion or problems with oscillations around the jump are 

expected if no special treatment is used at the front. These problems are just 
unavoidable in the VOF methods. To solve these problems, the additional unstructured
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Lagrangian meshes are introduced. However, these meshes are reduced in dimensions 
by 1 as compared with the bulk Eulerian meshes. That is, if the bubble is three- 
dimensional, the interface will be two-dimesional and the Lagrangian meshes are 
therefore in two dimensions. To avoid introducing disturbances of length scale equal to 
the mesh by having the properties jump abruptly from one grid point to the next, the 
interface is not kept sharp but given a small thickness of the order of mesh size. In this 
transition zone, the fluid properties change smoothly from value one side of the 
interface to the value on the other side. This artificial interface thickness is a function of 
mesh size used and does not change during the calculation.

The front tracking method is accurate because, firstly, no numerical diffusion or 
oscillation exists in the front tracking method; and secondly, the unphysical thickness of 
interface can be reduced as the unstructured mesh size is easy to be assigned. However, 
the weaknesses of front tracking method are also obvious, those are the complexities in 
both mathematics and programming; and in the physical, the surface-tension effects on 
the interface are simply distributed onto the fixed grid, the interface location still is not 
exactly specified.

Ervin and Tryggvason (1997) employed the front tracking method to simulate the rising 
bubble in a shear flow; Bunner and Tryggvason (1998) even developed this method into 
a parallel algorithm and used for the simulation of large three-dimensional bubble 
systems. Viewing from this, the front tracking method is still potential for bubble 
interface simulation if the local information about the bubble interface is not important.

Level-set methods
Level-Set Hamilton-Jacobi formulation (Osher and Sethian, 1988) was originally a 

notable new approach to solve the interfacial evolution problems such as morphological 
instability, Sussman, Smereka and Osher (1994) developed the algorithm to simulate 
incompressible flows with gas-liquid interfaces.
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In the level-set method, a level set function (j) , which is the distance from the interface 

in physical meaning, is used to track the interface. Assuming the interface is r , then 
the values for (j) change in the following range:

and the evolution of <j> is controlled by the Halmilton-Jacobi equation as follows

The surface tension is expressed as a body force concentrated at the interface in the 
momentum equations, just like that of in the front tracking method by Unverdi and 

Tryggvason (1992). As (j) is treated in a continuum approach, explicit reconstruction of 

the free surface (like that of VOF and front tracking method) from the level set function 
is then never needed, which also enable to calculate the surface tension and topological 
change of interface accurately. These are good virtues of level-set methods, and they are 
attractive in the simulation of gas-liquid interface. Sussman, Almgren, Bell, Colella, 
Howell and Welcome (1999) even tried to incoiporate the single-grid method with 
adaptive mesh procedure to achieve higher resolution of free surface, results of fully 
three-dimensional air bubble and water drop can be found in their paper. However, 
although the interface can be remained sharp, it is still an artificially assigned finite 
thickness (Sussman, Almgren, Bell, Colella, Howell and Welcome 1999).

Although the level-set method is catalogued into the surface tracking (having good 
resolution at the interface), it uses a Eulerian mesh and therefore can be employed to 
cope with the difficulties associated with topological changes in the interface. However, 

the defect of mass conservation during the whole calculation (Son, 2001) still needs to 
be sorted out for the level-set method.

> 0, R e liquid zone 
= 0, i e T  
<0, R e gas zone

(2 .1)

(2 .2)
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Marker-and-cell (MAC) method
Marker and cell (MAC) methods and volume of fluids (VOF) methods are the best- 
known volume tracking methods. The earliest numerical method devised for time- 
dependent, free-surface, flow problems was the Marker-and-Cell (MAC) method 

(Harlow and Welch 1965). This scheme is based on a fixed, Eulerian grid of control 
volumes. The location of fluid within the grid is determined by a set of marker particles 
that move with the fluid, but otheiwise have no volume, mass or other properties.

Grid cells containing markers are considered occupied by fluid, while those without 
markers are empty (or void). An interface is defined to exist in any grid cell that 

contains particles and that also has at least one neighbouring grid cell that is void. The 
location and orientation of the surface within the cell was not part of the original MAC 
method.

Evolution of surfaces was computed by moving the markers with locally interpolated 
fluid velocities. Some special treatments were required to define the fluid properties in 
newly filled grid cells and to cancel values in cells that are emptied.

The application of free-surface boundary conditions consists of assigning the gas 
pressure to all surface cells. Also, velocity components were assigned to all locations 
on or immediately outside the surface in such a way as to approximate conditions of 
incompressibility and zero surface shear stress.

The extraordinary success of the MAC method in solving a wide range of complicated 
free-surface flow problems is well documented in numerous publications. One reason 
for this success is that the markers do not track surfaces directly, but instead track fluid 
volumes. Surfaces are simply the boundaries of the volumes, and in this sense surfaces 
may appear, merge or disappear as volumes break apart or coalesce.
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A variety of improvements have contributed to an increase in the accuracy and 
applicability of the original MAC method. For example, applying gas pressures at 

interpolated surface locations within cells improves the accuracy in problems driven by

wider class of problems (Daly, 1969; Nichols and Hirt 1975).

In spite of its successes, the MAC method has been used primarily for two-dimensional 
simulations because it requires considerable memory and CPU time to accommodate the 
necessary number of marker particles. Typically, an average of about 16 markers in 
each grid cell is needed to insure an accurate tracking of surfaces undergoing large 
deformations.

Another limitation of marker particles is that they don’t do a very good job of following 
flow processes in regions involving converging/diverging flows. Markers are usually 

interpreted as tracking the centroids of small fluid elements. However, when those fluid 
elements get pulled into long convoluted strands, the markers may no longer be good 
indicators of the fluid configuration. This can be seen, for example, at flow stagnation 
points where markers pile up in one direction, but are drawn apart in a perpendicular 
direction. If they are pulled apart enough (i.e., further than one grid cell width) 
unphysical voids may develop in the flow.

Volume of fluid (VOF) method
VOF (Volume of Fluid) method was initially proposed by Hirt and Nichols (1981). In 
VOF, a volume of fluid function with assigned values of 1 for cells contain one phase 
and 0 for those contain the other, is used to identify the location of interface as it is 
obvious that the interface lies in those cells take a function value in between. The VOF 

function 0, is a Lagrangian invariant of fluid, and its controlling equation (Hirt and 

Nichols, 1981) is an advection equation as follows

hydrostatic forces, while the inclusion of surface tension forces extends the method to

(2.3)
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where

R e liquid zone
m = (2.4) 

R e gas

is the void fraction. It is noticeable that equations (2.3) and (2.2) are completely the 

same in looking. However, equation (2.2) is as a Hamilton-Jacobi equation as (j) is a 

continuous function which varies smoothly across the interface while equation (2.3) is 

an advection equation since the volume fraction 0 is discontinuous there.

According to equation (2.3), which is based on concepts of continuous functions, the 

VOF function should varies continuously in spatial dimensions. In reality however, (j) 

changes discretely from 1 to 0 over the interface whose physical thickness in space is 
zero, and therefore in computation, we expect the calculated thickness of interface is as 
infinitesimal as possible to get valid information of fields in the vicinity of interface. 
Consequently, special methods must be used to solve equation (2.3), which are the right 
tasks for CFD researchers.

Over the past years, more accurate schemes have been developed for equation (2.3) in 
VOF methods. For those calculations with direct difference of equation (2.3), Rudman 

(1997) employed a so-called flux-corrected transport (FCT) algorithm and put forward 
the FCT-VOF in which equation (2.3) is differenced using a combination of first-order 
upwind and downwind scheme, a comparison of this new scheme against other well- 
known schemes was undertaken in his work. Garrioch and Baliga (1998) developed a 
skewed subadvection scheme for multidimensional problems. However, the majority of 
VOF methods do not directly difference equation (2.3) but use a two-stage process, 
namely, free surface reconstruction and boundary flux integration. To recover the 

interface shape, piecewise constant schemes (SUFFER by Lafaurie, Nardone, 
Scardovelli, Zaleski and Zanetti, 1994) and piecewise linear schemes (Ashgriz and Poo
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(FLAIR), 1991; Puckett, Almgren, Bell, Marcus and Rider, 1997; Rider and Kothe, 
1998) of high resolutions, have been developed. Sou, Tomiyama, Zun and Yabushita 
(1997) compared the FLAIR with traditional “donor-acceptor” scheme (Hirt and 
Nichols, 1981) and found better accuracy for interface calculation can be achieved by 
the FLAIR. While to calculate the boundary cell flux accurately, Harvie and Fletcher 
(2000) developed a “Stream Scheme”, and a good review of VOF algorithms is 
available in their paper.

VOF methods have been widely employed in the simulations of gas-liquid bubble 
interface. Tomiyama, Sou, Minagawa and Sakaguchi (1993) analyse a bubble rising in 
stagnant liquid; Takata, Shirakawa, Tanaka, Kuroki and Ito (1996) simulated bubble 

growth under electric field; Krishna and Baten (1999) studied the rise characteristics of 
gas bubbles in a two-dimensional column; Bugg, Mack, and Rezkallah (1998) simulated 
the Taylor bubbles rising in vertical tubes. All of these investigations have employed 
the VOF methods and generally good results have been obtained.

However, the weaknesses of VOF methods are also obvious. Firstly, the stability of 
computation always arises from the varying of bubble volume when VOF is employed 
to simulate the bubble growth (Barkhudarov and Chin, 1994). In the second, a smeared 
interface is inevitable because of the numerical diffusion resulted from the “donor- 
acceptor” (Hirt and Nichols, 1981) or other schemes (for example, the FCT-VOF by 
Rudman, 1997), which are only first-ordered in accuracy. For higher ordered schemes, 

smearing can come from unphysical oscillations in the vicinity of interface. The 
thickness of interface is in a magnitude of 1.5 times of the mesh size. The uncertainties 
about interface shape and location have decided that VOF camiot be used for analysing 
the mechanisms of interface related phenomena. VOF is really not a method designed 
with intention to capture local physics near phase interfaces (Welch, 1998).

There are also some other methods available in the Eulerian algorithm family. We 
mentioned previously, in such methods, equation (2.3) also appears in their controlling
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equations; these include the conserved-scalar method by Liu and Spalding (1988) and 
the method by Maronnier, Picasso and Rappaz (1999), both are volume tracking 
methods in which equation (2.3) is an advection equation.

2.3.3 Numerical Studies of Single Rising Bubbles

In earlier years, numerical studies of single bubble dynamics were carried out with 
Stokes equations. The inertial and viscous terms were neglected in the Navier-Stokes 

equations to reduce computational work (Youngren and Acrivos, 1976). With the fast 
development of computer sciences, the full Navier-Stokes equations have come to be 
widely used in numerical study of the behaviour of a single bubble, and many valuable 
studies have been carried out.

One of the most famous studies on a rising bubble by solving Navier-Stokes equations 
was presented by Ryskin and Leal (1984a, 1984b, 1984c). In their work, a gas-liquid 

interface was treated as a free boundary problem (tangential stress free for the 
interface). Navier-Stokes equations in terms of stream function and vorticity were 
solved to determine the flow field at the liquid side. Although the flow field was treated 
as steady, their strategies such as fitting the interface by grid line and determining the 
bubble shape by the normal stress balance, pioneered numerical simulations of a single 
bubble. Their results of wake vortexes, buoyancy-driven motion of a gas bubble through 
a quiescent liquid, and bubble deformation in an axisymmetric straining flow, showed 
quantitatively good agreement with experiments. This method was also used by 
McLaughlin (1996) to study bubbles in both pure water and contaminated water. Takagi 

and Matsumoto (1995) and Takagi, Matsumoto and Huang (1997) further developed 
Ryskin and Leal (1984a, 1984b, 1984c)’s method by using a moving mesh to study 

unsteady axisymmetric motion of a rising deformed bubble. Their results suggested that 
the growth of an axisymmetric shape oscillation causes three-dimensional motion of a 
rising bubble. In fact, this moving mesh method was just the arbitrary Lagrangian- 
Eulerian (ALE) calculating procedure that Yoon, Koshizuka and Oka (2001) employed
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to simulate a gas bubble rising in viscous liquid. The shortcomings of these methods are 
the employment of an orthogonal BFC (Body Fitted Coordinate), which is difficult to 

construct for complex geometries, and the stream function-vorticity equations, which 
can not be used for a three-dimensional problem.

The employments of Eulerian type algorithms to study the dynamics of a single bubble 
are also largely presented. Tomiyama, Sou, Yoshikawa and Sakaguchi (1993, 1994) 
calculated bubble shapes and terminal velocities, using the VOF method, under wide 

ranges of Eotvos number and Morton numbers. Chen, Garimella, Reizes and Leonardi
(1996) used a non-staggered SIMPLE method solving VOF controlling equations to 
study a bubble rising in a stationary liquid contained in a closed right vertical cylinder. 
Loth, Taeibi-Rahni and Tryggvason (1997) simulated a few cases of large deformable 
bubbles embedded in a non-linear free shear layer using a front tracking algorithm. 
Using a front tracking algorithm, Ervin and Tryggvason (1997) also studied the rise of a 
single bubble in a vertical shear flow. Krishna and Baten (1999) used commercial 
software, CFX4.1c, and employed VOF controlling equations, to study trajectories of 
bubbles of different diameters rising in a two-dimensional rectangular column filled 
with water. Li, Zhang and Fan (2000) studied the rising behaviour of a single bubble at 
elevated pressure in a bubble column using VOF method.

Numerical simulation has provided an economic and effective method to study bubble 
dynamics. Indeed, for fast transient dynamic behaviour such as bubble saturation where 

experimental methods seem completely impossible, numerical simulation is the only 
possibility.

2.4 Summary

2.4.1 Investigations on physical phenomenon
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Based on the literature review in this chapter, it is found that little information is known 
in following aspects:

(a). Transport characteristics and flow structure for spherical bubbles
Clift, Grace and Weber (1978) stated that “for drops and bubbles rising or falling 
freely in systems of practical importance, significant deformations from spherical 

occur for all Re^ > 600 ” and “the shape of the drop or bubble remains spherical if 
the Weber number is small enough”. Recently, Juncu (1999) studied the structure of 

flow fields and interfacial characteristics of a drop for Re^ < 500. However, for a 

spherical bubble, the exterior Reynolds number Re^ = 200 appears to be the upper 
limit for which complete steady-state flow fields have been reliably determined so 
far.

(b). Effects of bubble internal heat and flows
Physically, the momentum, heat and mass transfer is a conjugate procedure 
between a gas bubble and a surrounding liquid; In order to study these mechanisms, 
both sides of the interface must be treated as real fluids although the fluid 

properties, such as density and viscosity, are different in magnitude order for gas 
and liquid.

(c). Heat and mass transfer in deformable inert bubbles
The mechanism of heat and mass transfer in an inert bubble introduced into a hot 
liquid is exactly the object of the current study.

2.4.2 Comparisons of numerical methods

In the Lagrangian methods, the grid is configured to conform the shape of the interface, 

and thus it adapts continually to it. The Eulerian methods usually employ a fixed grid 
formulation, and the interface between two phases is not explicitly tracked but is 
reconstructed from the properties of appropriate field variables, such as fluid fractions.
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Based on these basic differences in approach of the two classes of methods, the 
following comparisons can be made:
(a). The Lagrangian methods maintain the interface as a discontinuity and explicitly can 
track its evolution. If detailed information regarding the interface location is desired, 

Eulerian methods may need elaborate procedures to deduce the interface location based 
on die volume fraction information, and uncertainty corresponding to one grid cell is 
unavoidable (Ashgriz and Poo 1991; Hirt and Nichols 1981; Lafaurie, Nardone, 
Scardovelli, Zaleski and Zanetti, 1994; Liang 1991). In the Lagrangian case, the 
interface can be tracked as an (n-l)-dimensional entity for n-dimensional space (De 
Gregoria and Schwartz 1986; Glimm, Grove, Lindquist, McBiyan and Tryggvason, 
1988; Miyata 1986; Wang and McLay 1986). No modelling is necessary to define the 

interface or its effect on the flow field. In the cases of Eulerian schemes, modelling or 
solution of fractions or other functions yielding information in the two-phase regions.

(b). In Lagrangian method, boundaiy conditions can be applied at an exact location of 
the interface since the interface position is explicitly known at each instant. However, 
in an Eulaerian method, the boundary conditions are manipulated to appear in the 
governing transport equations(Brackbill, Kothe and Zemach, 1992). This leads to 
smearing of a boundary condition.

(c). In a Lagrangian method, the gird adapts to the interface and hence the grid 
rearrangement and motion terms have to be incoiporated. When the interface begins to 
distort, the grid needs to be regenerated each time, which may require the solution of 
another equation (Thompson, Warsi and Mastin, 1985). The resulting grid on which the 
field variables are computed may be skewed and unevenly distributed, thus influencing 
the accuracy of the field solver. The Eulerian methods have an advantage in this regard 
since the computations are performed on a fixed grid, hence obviating the need for grid 
rearrangement. However, when an interface is in an arbitrary shaped, it is difficult to 
obtain an improved resolution in desired regions, unless complicated local refinements 
are adopted.
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Chapter 3

Physical and Mathematical Descriptions o f the Problem

3.1 Introduction

According to the philosophy of CFD researches, an investigation on a certain problem is 

generally carried out in two steps:

(a), based on a concrete physical phenomenon, propose a mathematical model which 

includes controlling equations and well-posed boundary conditions;

(b). numerical solving of the mathematical model.

Our present study of the inert bubble problem is in line with this approach. As the first 

step, this chapter begins with the description of the physical problem, and then gives the 

governing equations and well-posed boundary conditions. The numerical method for 

solving the mathematical model will be presented in the next chapter.

3.2 Physical M odel

Physically, the problem of an inert bubble introduced into a hot liquid can be 

summarised as “unsteady conjugate heat and fluid flows inside and around an inert 

bubble”. When the bubble is sparged into the hot liquid, it will rise up. The rising-up is 

an accelerating procedure during which the position of the gas-liquid interface ^ ( r ) ,

flow velocity V , acceleration 5 , temperature T and concentration c are time- 

dependent, so the problem is unsteady; While in order to study the mechanism of the 

heat and mass transfer at the interface, flows in both sides of the bubble surface have to 

be taken into account, therefore, the problem contains conjugate heat and fluid flows.
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Moreover, the gas-liquid interface is physically of zero-thickness where heat and mass 

transfer between the two phases take place. From the point of view of a chemical 

reaction, it is a procedure of changing electronics between ions; this procedure always 

happen in the liquid side where the dissolved gas can freely ionise, and the procedure 

may accompanied by heat transfer. Considering these facts of chemical reaction, and for 

simplicity as well, the heat and mass transfer could be regarded as procedures between 

bubble surface and the liquid in the current study.

In order to address a single inert bubble moving in a hot volatile liquid, the following 

assumptions are considered as valid:

(a), both the gas and the liquid are Newtonian fluids and the physical properties of the 

two fluids are constants; Especially, the flows are incompressible;

(b). the dissolving of the bubble is sufficiently slow and the concentration of dissolved 

mass is dilute enough so that the Stefan flow can be ignored. In the meanwhile, the 

dissolution of the dispersed-phase is not vice-versa and therefore can be regarded as 

a unidirectional diffusion from the dispersed phase at the interface;

(c). there is no surface-active material;

(d). the flows are laminar and axisymmetric;

(e). the flow inside the bubble is isothermal.

3.3 Basic Governing Equations

The heat and fluid flows in both sides of the gas-liquid interface are mathematically 

described by a group of coupled equations. These include the continuity of fluids, 

momentum equation, energy equation and the transport equation of species. 

Considering that the fluids in both sides of the interface are different, we use 

superscripts (1) and (2) to denote the dispersed and the continuous phases, respectively; 

and for simplicity, these two superscripts are referred to as indexes (/) (i =1 and 2) in

this thesis but we should bear in mind that (/) is not a free index for summation law. The
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basic governing equations of the current inert bubble problem are as follows: 

continuity:

V-V = 0, (3.1)

momentum:

energy:

dT + V-VT = aV2T,  (3.3)
dt

and species continuity:
F ir -
—  + V • Vc = D V 2c . (3.4)
dt

Equations (3.1)~ (3.4) are based on observing the bubbly flows on the Earth. We call a 

coordinates system fixed to the Earth the absolute coordinates, and a variable measured

in the absolute coordinates system an absolute variable, then V is the absolute velocity 

of fluid motion; V is the Hamilton operator, t is absolute time; p , T , c are absolute 

pressure, temperature and concentration respectively; p ,  v , a and D are fluid 

properties, namely, density, viscosity, thermal diffusivity and mass diffusivity, g  is the 

acceleration of gravity. In case of high-speed flows, g  is very small as compared with 

the inertial force and is omitted sometimes.

3.4 Initial and Boundary Conditions

As we mentioned before, well-posed equations must be implemented with well-posed
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initial and boundary conditions so that unique numerical solutions can be obtained.

3.4.1 Initial Conditions

At the instant when an inert bubble is introduced into a hot liquid by a sparger, it can be 

regarded as spherical and motionless, so the initial conditions can be imposed as:

At t = 0,

V = 0, (3.5)

p® = constant 1, (3.6)

T {,) -  constant 2, (3.7)

= constant 3, (3.8)

3.4.2 Boundary Conditions

In the range of incompressible regime, equations (3.1)~ (3.4) are elliptic in spatial 

dimensions, and therefore boundary conditions should be imposed at all spatial 

boundaries. For the current inert bubble problem, it has a far field boundary, gas-liquid 

interface and a geometric axis of the symmetric bubble.

The far field is the place where the blockage effects of the inert bubble can be 

neglected. In this case, the flow fields can be regarded as undisturbed and therefore the 

boundary conditions here is as following:

At far field,

V = 0, (3.9)

P{2) = Pv, > (3.10)
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r (2) = r „ ,  (3.ii)

c(2)=0,  (3.12)

where the subscript “sys” denotes the state of the system environment.

The geometric axis of the symmetric bubble has relatively simple and straightforward 
boundary conditions:
At axis of the symmetry,

V -g  = ± V x £ >  (3.13)

^ •  = °> (3-14)
OX

dT -  0, (3.15)dx

dc(i-
dx

= 0, (3.16)

where x -  is the direction peipendicular to the gravity g, ie, x -  is a horizontal 

coordinate.

The boundary condition at the gas-liquid interface is the most complex and its treatment 
will be a key issue in our future study. Here we only present the boundary conditions, 
these include the kinetic conditions and the dynamic conditions. The kinetic conditions 

are the continuity of tangential velocity and the conservation of mass; the dynamic 
conditions are the continuity of tangential stress and the balance of normal stress. 
Denote a bubble profile with a general function f ,  its tangential and normal unit
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vectors are t and h respectively, and the stress tensor is f , then the above mentioned 

boundary conditions are as follows:

At r  (gas-liquid interface), 

kinetic conditions:

N dm*
{ p ^ - p ^ i ^ + v - v r

dt
(3.17)

v}l)=v}2);

dynamic conditions:

# = ■ ? «  /  t

filK c = T {2)n  ̂ * n ■

(3.18)

(3.19)

(3.20)

where mb is the total mass of the bubble, g is the tension force.

Boundary conditions for temperature and concentration also posed at the interface,

T  = Tsat, (3.21)

(3.22)

3.5 Noil-Inertial Coordinates and Norm alisation o f Equations

3.5.1 Non-Inertial Coordinate System

For the convenience of carrying out 

numerical study, it is beneficial to keep 

the bubble at the middle of the x  =  r ,u

Figure 3.1 Non-inertial coordinates
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computational domain. Based on this purpose, a coordinates system origin at the 

geometric centre of the bubble is selected.

Shown in figure 3.1, the coordinates system (x, y) is fixed to the bubble, the origin O 

moves in the absolute coordinates system at a velocity VQ(t) and acceleration aQ(t), 

and then we have

dV0 (t)
dt

= a0(t), (3.23)

W = V - V 0(t)9 (3.24)

where W is the velocity of flow in the non-inertial coordinates system (x, y).

3.5.2 Transform of Equations

Denote the components of W with u and v , in x -  and y -  directions respectively, the 

governing equations for present study, namely, equations (3.1)~ (3.5) can be rewritten 

in the non-inertial coordinates system (x, y) as follows: 

continuity,

d(ru) | d(ry) = Q
dx dy

(3.25)

x-momentum:

d{ru) d{ruu) d{rvu) 
dt dx dy

i a/n a _|___ r dll') dj* i / . 1 i r duy 1 u
p(') J dx

r  V ----- n----
I dx) dy

r v —SyJ-J- — y --
r _

(3.26)

y -  momentum:
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d(rv) d(rwv) ( d(rvv)
_j  ---------- \- ■

dt dx dy
1 d p {' d (  dv

+ — \ rv —
dx I dx

+
dy

rv dv
dy

■rg-ra0(t), (3.27)

energy:

d(rT) ^ d(ruT) ^ d(rvT) _ d dT Y d
+  — ----------  +

dt dx
----- —---------/ u  i j —
dy dx dx J dy

ra-
dT_
dy

(3.28)

and species continuity:

d(rc) d(ruc) d(rvc) _ d 
dt dx dy dx

r dc 3 d f  dc
rD—  +— rD —  

v )  3yl dy
(3.29)

It should bear in mind that (x, y) can be eitlier a Cartesian or an axisymmetric system. 

In case of Cartesian coordinates, the last term in the square bracket of equation (3.24),

w, -v- will disappear; In the meanwhile, r is a constant in this time and is set to be

r = 1. On the other hand, for the case of axisymmetric system, r becomes the 

horizontal coordinate in the meridional plane, that is, r = x .

In case of buoyancy-driven flows, namely, natural convections, a so-called Boussinesq 
approximation (Gray and Giorgin, 1976) is often introduced to consider the buoyancy 
effects on flows. This approximation is consisted of three parts as follows:
(a), viscous dissipation is negligible;
(b). except the density, all properties of the fluid are constants;

(c). the variation of density has effects only in the momentum equation, and is presented 
in the term of buoyancy force.

According to the Boussinesq approximation, we have

(3.30)
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where the subscript “re/” denotes reference values, ft is the voluminal expansion 

coefficient of the fluid. Define an effective pressure, p eff, as following:

P.ff = P + Prefgy > (3--31)

equation (3.27) can be changed into:

d(rv) d(ruv) A  rvv) _ 
dt dx dy

(  . a (0 >
i aV 8 _|___ ( dv~] + A viz—rr_

J dx
r v

v dX y
t V

f y )

+ r g f t r  - T ref\ - m 0(t)
(3.32)

3.5.3 Normalisation of Basic Equations

Dimensionless equations are often preferred by CFD researchers because field- 

parameters for different flows may be different in magnitude order while flows have 

similarities. For example, flows at a same Reynolds number may have quite different 

velocities. Based on the introduction of the dimensionless parameters describing the 

current problem, the flow fields can be non-dimensionalised by introducing some 

referencing parameters denoted by subscript “re f’ as follows:
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then equations (3.25)~ (3.29) can be changed into normalised and written in a general 

form as following:

dt dx 1+“ ( " ( 0dy
8_

dx
FT d(j)

dx
d (

FT d(f>
dy{ dy

+ rS (3.34)

where for Cartesian coordinates, ie, r = 1,

<f)

0
1

Re(l)
1 rS =

Re(,)
1

ReWprW
1

dx

dy (Re0))2 
0 
0

V 2
ref

a,

And for axisymmetric system, ie, r -  x , we have

T =

~

0 (
1

Re(,)
1

Re(,)
1

II

V 
/

V

Re(,) Pr(/)
1

.Pe{i)

0
0 'eff

dx

% + •

Re(,'> 

Gr

f - J L l
s. X 2 y

dy (Re('>)2 K r 
0 
0

Corresponding to the form changes in governing equations, modifications on the 

solution determining conditions have to be made as well,
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At t -  0,

u = 0, v = -V0(o), (3.35)

Pe} = constant 1’, (3.36)

F (i) = constant 2 ’, (3.37)

c(i) = constant 3’; (3.38)

At far field,

« = 0 , v = -V0 (t), (3.39)

P® = 0 . (3-40)

F (2)= 0 ,  (3.41)

c (2)= 0 ;  (3.42)

At axis of the symmetry ( x = 0 ),
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dx
(3.46)

At the gas-liquid interface F , the kinetic and dynamic conditions still take their original

form of equations (3.17)~ (3.20) and we will talk more details about these conditions 

when we calculate a real gas-liquid interface in chapter 5; For equations (3.21) and

(3.22), their dimensionless forms are:

The normalised equation (3.34) and the solution determining conditions are the 

mathematical model for our inert bubble problem. For the convenience, the top bars for 

dimensionless flow field parameters will be omitted in the following chapters but we 

should bear in mind that all of these parameters are dimensionless except those specially 

declared.

3.6 Summary o f  the Chapter

Physical and mathematical models of an inert bubble introduced into a hot liquid have 

been presented. The problem is physically described as “unsteady conjugate heat and 

fluid flows inside and around an inert bubble” in this chapter. In order to highlight the 

“zero-thickness” of the gas-liquid interface and to study the mechanism of interfacial 

heat and mass transfer, appropriate assumptions on the flow regime are imposed.

Mathematical description of the problem is a coupled system of fluid continuity, 

momentum conservation, energy conservation and species’ conservation. Well-posed 

solution-determining conditions are presented.

T = 1, (3.47)

c = 1. (3.48)
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Chapter 4

CFD Strategies for Moving Boundary Problems

4.1 Introduction

Based on the mathematical model established for the inert bubble problem, this chapter 

and the next are arranged to pursue numerical strategies for solving the mathematical 

model. Considering that the shape of the inert bubble is a time-dependent geometry and 

the gas-liquid interface is a moving boundary, it is natural and necessary to begin our 

numerical algorithm development for moving boundary problems.

This chapter present a calculation procedure for heat and fluid flows in geometries with 

time-dependent moving boundaries. The procedure incorporates a moving mesh 

arrangement with a multi-block iteration strategy and has been developed to assist 

future simulations of heat and mass transfer in the inert bubble problem. The basic 

equations are discretised using a finite volume method (FVM) with high order total 

variation diminishing (TVD) schemes employed to obtain high numerical accuracy. The 

discretised equations are solved by the SIMPLE algorithm with a non-staggered grid 

arrangement. The space conservation law is invoked and applied for the explicit 

tracking of a moving boundary with a moving mesh. For mapping complex geometries 

a multi-block iteration strategy is employed.

4.2 Eulerian-Lagrangian Transform ation

hi order to calculate heat and fluid flows using moving mesh, a Eulerian-Lagrangian 

transform of basic equations must be earned out.
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Consider a Lagrangian (time-dependent) non-orthogonal coordinates system (t, g, 77), 

where

4=4{t> x, y )9 77 — rj(t, x, y). (4.1)

At a certain instant t , the inverse transformation of equation (4.1) exists

x=x(t, 1, if), y  = y{t,(4.2)

provided equation (4.1) is a one-to-one transformation. In case both (x, y) and (<£, 77) 

are right hand systems, we have

J  =
xn y*

x$yn - y $ xn > 0 > (4.3)

where the subscripts £, and 77 denote partial derivatives with respect to £ and 17 

respectively, ie,

dx dy dx dy „
xs ^  ( ■ )

For a general flows field parameter p , its derivatives can be obtained by applying the 

chain rule of differentiation,

dp _ 1 
dx J

r dp dp} dtp _ 1 f  dtp dtp^
^ 1] d% ^  drt1/  dy n d% * dtj

(4.5)

dtp dtp dp dp dp dp—  = xg —  + Vb — ,  = x_ —  + y _ — .
d£ dx dy d77 n dx 7 dy

(4.6)

The metrics of the Lagrangian system is calculated as follows:

a = + y2n
P = x4xn - y ^ y tJ 
Y = x) + y |

(4.7)
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Equations (4.1)~ (4.7) give a complete Eulerian-Lagrangian transformation.

Based on the Eulerian-Lagrangian transformation, the governing equations for the 

present study, given by equation (3.34), are re-written as follows:

drJ*) , a L
dt d%\

Glr<f> -
J

dtf) d(j) 

. d?7
+ —  r 

dr}\
= rJS ,(  4.8)

where (j) , T and rS are the same as those in equation (3.34) and are omitted here. G\ 

and G) are curvilinear components of the relative velocity Wr , which is defined as the 

difference between physical and grid velocities, that is,

W, =W-W„

G'r =G '-G i =(«-«8K - ( v- v* K  ’ 

G2 =G 2 -G 2 = {v-vs )c( - ( u - u s )y(

(4.9)

ug and vg are components of grid velocity W , 

dRW„
dt

dx
U8 =~T 8 dt

dy_
dt

(4.10)

4.3 FVM Discretisation on M oving M esh

4.3.1 Finite Volume Integration
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Integrating equation (4.8) over the shaded control volume shown in figure 4.1, we have

At
A£A r} + n U  T d<f> G  ( h  a - ? -

. J

\ ‘ /
A Tj - r

n _ V

+ G ^ — y
r
J  077

\ "
A# - r

y e _ V

r U  r  G J - y c t -

G U - T- r djL

= [jrS]pA%Ati + S'
= 5i

A rj
y _i5

' a £
J W

(4.11)

where

7 --(-/S )— A
J y ’ d

+ r U - p f l - A l ;
J

r l
(4.12)

Set

J „ = F J n - D n(A<*>)„, =

J , = F J s - D , (  A<p)„ =

r T \
r —a  

v  J  J n

Arj

Sn - &

A1)
\  J  ) s ‘vP

Fe= G lM , D . = \ r j r I

= K0w - D w{A0)w>
r Nr —y 

V J j

V e ~ V p  

A£

Ip -V w

(4.13)

equation (4.11) changes into:

J n ~ J S + J e = s i + At
(4.14)
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In equation (4.13), cell-face fluxes dn, ds , de and d w are always consisted of two 

parts. For convenience, denote a cell-face flux with df  (f~  n, s, e and w), then we have

^ / = ^ / + ^ / 5 (4.15)

 \ -----
-V- NE

SE

■t j

NW  i

I

Figure 4.1 Control volume for integration

where xf-cf  and J-Df  are convective and diffusive fluxes respectively,

=-D AA</,)f .

(4.16)

(4.17)

d-j is often calculated using central-difference schemes in which second order accuracy 

can always be obtained. J cf , however, is difficult to be calculated because there is a

balance between accuracy and stability. For engineering calculations, the stability is 

often more important than the accuracy and therefore schemes with lower accuracy may 

be used. Here for convenience of description, we temporarily use the first order upwind
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scheme, which is unconditionally stable and the simplest convective scheme, to 

discretise ; development of high order accurate schemes will be introduced later.

Based on the above understanding, we have 

5*5

=

J :  =

F J p 'S
i

IV o

F „  & N . if (g,1,  <  o)

F A .  n  (g:„, >  0)
F s $ p .  if (P ' r ,  <  0)

F e</>P .  if (Gl  * °)
F A .  i f  ( < ^ < 0 )

F w <f>w .  i f  ( < ? , * < > )

F w (f>p , if(op<o)

~ D n fa

= - D . b * - + , \

, (4.18)

and the discretised form of equation (4.8) is obtained as following: 

ctptfip = aN<fiN + cis(j)s + ctE(j)E + aw(j)w + S2,

where

a N  =  A .  +  m ax (-F n, 0)

as = A  + max(Fs, 0)

a E ~  Dn +  max(- Fe, 0)

aw =DW +max(Fw, 0)

ap ~ {  aN +as +aE +aw + (jrAtjAij)/At ) /a4

S2 = S { + (Jrtf)0 A^ArjjAt + a p{\ ~ a

(4.19)

(4.20)
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is an under-relaxation factor for iteration.

4.3.2 Space Conservation Law

The application of the space conservation law (SCL) is fundamental to heat and fluid 

flow calculations using a moving mesh. However, as pointed out by Demirdzic and 

Peric (1988), although the SCL was discovered by Trulio and Trigger (1961) and 

“rediscovered” by Thomas and Lombard (1979), its importance has not always been 

sufficiently realised by researchers. As a result problems have been encountered with 

oscillations and instabilities, the sensitivity to volume changes and difficulties in 

pressure iteration.

n y
{Ax)"

,M—1

Figure 4.2 Space conservation law
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The SCL is illustrated in figure 4.2. For simplicity, a Cartesian co-ordinate cell is 

employed. The volume of the cell, V-, is calculated as

P = AxAy. (4.21)

To calculate the time change rate of ¥■ using a differential scheme such as the first- 

order implicit scheme, we have

[A(Ax)f Ay" + [A(Ay)]‘ Ax" .
At At '

It is easy to see that the shaded area in figure 4.2 has been used twice in calculating the 

area increase and that this will result in a computational error. The error cannot be 

avoided by choosing another differential scheme since a similar problem will always be 

encountered.

In mathematical terms the SCL can be obtained from equation (4.8) by setting (j> = 1, 

r  = 0 , S = 0 , r - 1 and Wr - -Wg (W = 0 ), which results in:

d j  dGel d G 2
—  = — S- + — (4. 23) 
dt dt; dr) v '

Equation (4.23) implies that the time derivative of the computational cell volume is 

closely related to the grid velocity. To satisfy the SCL, one method is to calculate the 

grid velocity using equation (4.10) and then update J  through equation (4.23). An 

alternative approach, proposed by Demirdzic and Peric (1988), is to calculate the grid 

velocity from known grid positions in such a way that the SCL is satisfied. However, in 

Demirdzic and Peric (1988)’s “general formula” for grid velocity, the projection of the 

cell face, which might possibly be zero, is used as denominator, which would cause the 

calculation to fail. For this reason the former method of satisfying the SCL is employed 

in our paper.
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4.3.3 High Order Schemes and Deferred Correction 

Why high order schemes?

The accuracy with which transport processes are approximated numerically is of crucial 

importance in assessing the predictive realism of mathematical models which represent 

physical processes. Advection usually poses the biggest problems, since this process 

provokes or is associated with steep property gradients and thus raises the need for 

high-accuracy approximation schemes.

Because advection is represented by a first order derivative, its approximation by a first 

order numerical scheme can be argued be both appropriate and consistent on physical as 

well as mathematical grounds. Indeed, the essential validity of this argument is 

reflected, among others, by unconditional boundness of the first order upwind scheme 

which we used in equation (4.18), due to the absence of parasitic components in the 

resulting numerical solution. However, this scheme is generally unacceptable on 

grounds of accuracy, unless extremely fme grids are used, since it introduces a high 

level of artificial second order diffusions which trends to seriously erode property 

gradients in the same way as physical diffusion does.

The use of high order approximations is the route most frequently taken in efforts to 

increase accuracy. However, schemes of order two and above, particularly symmetric 

one, can provoke spurious oscillations when the Peclet number Pe is high in 

combination with steep gradients of the flow properties. Such oscillations are not only 

optical defects but can have seriously deleterious or even catastrophic effects on the 

iterative stability and convergence properties of coupled system.

The tendency towards oscillation may be counteracted, in principle, by adding an 

oscillatory scheme a component which introduces a bias towards upstream flow 

conditions or strengthens the bias which may already be an inherent feature of the 

scheme. This can be effected either explicitly, by the addition of an artificial diffusion
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fragment to the advective flux returned by the basic scheme (for example, Jameson, 

Schmidt and Turkel, 1981), or implicitly, through an increase in the contribution or 

weight of values residing at the upstream nodes of the approximation stencil (Wanning 

and Beam, 1976). If, as is usually the case, the strength of the oscillation-damping 

mechanism is decided upon by an a priori choice of weighting factors or coefficients, 

then the resulting composite scheme will not, in general, be monotonic. To achieve 

monotonicity, upstream biasing must be controlled by the oscillatory features of the 

solution, ie, the scheme must be non-linear.

Early proposals for using non-linear limiters, sensitised to the ratio of consecutive 

gradients of the numerical solution, were made by Boris and Book (1973, 1976) and van 

Leer (1974, 1977, 1979). It was not until Harten (1983) injected formal mathematical 

rigour into the subject by proposing the total variation diminishing (TVD) concept as 

the criterion for developing high resolution convection schemes which combine 

accuracy with monotonicity and entropy preservation.

Within the framework of an explicit time-marching solution, any second order accurate 

TVD scheme may be constructed by linearly blending the Lax and Wendrof (1960) and 

Warming and Beam (1976) schemes in conjunction with a smart slope limiter which 

switches off the antidiffusive flux when a local extremum (an oscillation) is detected. 

Different schemes arise through different limiter forms and Sweby (1984) has presented 

a general framework in terms of a TVD diagram. On the other hand, if interest is 

focused on steady state only, it is possible to re-interpret Sweby’s TVD diagram in 

terms of the normalised variable diagram (NVD) and normalised variable formulation 

(NVF) proposed by Leonard (1988). Using this NVF methodology and following 

Sweby’s rationale, Leonard (1988) and Gaskell and Lau (1988) have formulate the 

SHARP and SMART schemes, respectively, both being monotonic implementations of 

Leonard’s (1979) QUICK scheme.
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TVD and cp{x) ~ x  diagram

The construction of any numerical scheme required to be monotonicity-preserving rest 

on two general principles:

(a). No new local (spatial) extrema must be created;

(b). The value of an existing local minimum must be non-decreasing and that of a local 

maximum must be non-increasing.

Consider a spatially one-dimensional scalar conservation law

M  + t3 L 0 , (4.24)
d t d x  v '

where ^ is a bounded function defined on a zone [a, b\ (it is permitted for 

[a, b] — (— oo, + 00)), the numerical solution for <j> is defined on discrete grid nodes: 

a -  x0 < xl < • • • < xm = b , the total variation (TV) is defined as

m

^ W = £ W * . ) - ^  T  U-25)M

The solution is said to be TVD (Harten, 1983) if

Tv{4>n+l)<Tv{$n). (4.26)

Equation (4.26) is the so-called TVD constraint. This constraint ensures the scheme is

stable while the numerical results are physically reasonable. Therefore, the TVD

constraint actually places two limitations to a discrete scheme: one is on the length of 

time step, and another is on spatial accuracy. As a result, the TVD constraint given in 

equation (4.26) is often employed to construct numerical schemes of high spatial 

accuracy (second order).

Integrating equation (4.24) over the control volume shown in figure 4.3, and using first 

order explicit difference in temporal direction, we have
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* r l =?>/' -<>ko.5 (4.27)

/- l z + 2

Figure 4.3 One-dimensional finite volume and associated nodal stencil

where u -  l̂ L. The key issue in equation (4.27) is how to calculate the cell-face values 
Ax

<f>!‘_Q 5 and « 0.5 . A general form of the discrete approximation of equation (4.24) (and of 

equation (4.27) as well) is

<T‘ -cUt-*t\ (4-28)

where C and D are scheme-specific “influence coefficients”. In terms of equation 

(4.28), the conditions sufficient to secure the TVD constraint, ie, inequality (4.26) are 

Ci >0
<D(. >0 . (4.29)

Ci+ Dt Z 1

If we used the first order upwind scheme, as that used in equation (4.18), to calculate
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.̂”05 and ^0.5 , we have the upwind scheme for equation (4.24) as follows:

* r l =fi-»■ -a * )  . (4.30)

where 2 = At/Ax. If we set C. = —(w + |«|), (m- | w|) and 2,|w|<l, obviously

equation (4.30) can satisfy equation (4.29) and therefore, the first order upwind scheme 

in equation (4.30) is a TVD scheme. The problem is that this scheme has only first order 

accuracy and the artificial viscosity is too big.

The Lax and Wendroff (1960) scheme for equation (4.24) is as follows:

So, the Lax-Wendroff scheme is the first order upwind scheme plus the last term of 

equation (4.32). When |^|<1, this plus term is a negative second order viscous

Because of this, the last term of equation (4.32) is called as “anti-diffusive” term.

The above analysis indicates that a combination of the upwind and the Lax-Wendroff 

schemes may be of both TVD and second order accuracy. For simplicity and without 

losing generality, we set w > 0 and therefore u > 0. Based on the above indication, 

equation (4.32) is rewritten as follows:

This scheme has second-order accuracy but is not a TVD scheme if \u\ < 1. Rearrange 

equation (4.31), we have

dissipation which can cut down the artificial viscosity of the first order upwind scheme.
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(4.33)

where

c, =u + - ( l - u )u ffOr.-.o.s)
. Xi+0.5

^fc-0.5)

î+0.5

is called a limiter. The choice of (p{x) dictates the order of the scheme and its 

boundedness properties. Second order accuracy may, for example, can be obtained by 

the choice

<p(z)=(l - 0 ) x  1 +0* x  , O<0<1, (4.34)
L - W W~B

<p{z)

<p(z)=2z (p{z)=Z [ W- B )

 / f ! / i l l  <p {z ) = 2

-1

-1

Figure 4.4 Range of boundness-preserving limiters for monotonic blend of 
Lax-Wendroff and Wanning-Beam schemes
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which represents a weighted linear average of the Lax and Wendroff (1960) scheme 

(“1”) and the Warming and Beam (1976) scheme (% ). While this approximation is only 

conditionally bounded (TVD), Sweby (1984) has shown that a TVD form arises from 

the constraint

min(2%, 2) , %>0
<p{x)=' • (4.35)

0 % < 0

Hence, any form of equation (4.33) for which (p(j) lies in the shaded area of figure 4.4 

is bounded and has second order accuracy.

MUSCAL method and ~ <fic diagram (NVD)

As we mentioned, in the context of an iterative solution for statistically steady flows 

within the finite volume framework, the essential task is to approximate the volume- 

face fluxes, combining accuracy with boundness. For a one-dimensional “volume” and 

positive velocity, schemes up to third order accuracy may be constructed by 

approximating the face value (f>f  in figure 4.3 by the upwind value <f>v corrected by an

“anti-diffusive” gradient involving , <J>C and <pv . This is a key feature of van Leer’s 

(1979) Monotonic Upstream Scheme for Conservation Laws (MUSCAL) method. A 

general form of a MUSCAL scheme may be written as:

</>f =0C + ̂ [(1 + *0fe> - ^ c )+ ( 1- ^ c  -&/)]> (4.36)

where the numerical parameter k  controls the order of the scheme. Unbounded forms 

corresponding to the central differencing (CD), second order (linear) upwind 

differencing (LUDS) and Leonard’s (1979) quadratic upstream-weighted differencing 

(QUICK) arise by setting k -  1, -1  and 0.5 respectively.

The approach to construct bounded forms leans on that outlined in the previous section
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(TVD and <p(%) ~ % diagram). Thus, to render equation (4.36) monotonic, while

For further consideration, it is expedient to replace the dimensional convected property 

0 by the normalised variable (NV) <fif , proposed by Leonard (1988) and defined as 

follows:

^ = i r z f -  (4 3 8 )Y D  Y U

With this definition, equation (4.37) may be written as

retaining a five-point stencil (for one dimensional), a slope limiter <p(%f ) is introduced

in a manner similar to that in equation (4.33):

(4.37)

\ X f )
(4.39)

Since

(4.40)

equation (4.39) can be simplified to

(4.41)

Introduce a symmetric limiter which satisfying the following condition:

<p(xf )=Xf<p —  , (4.42)

60



Chapter 4 CFD Strategies for Moving Boundary Problems

equation (4.41) becomes

'if = ic  +\ <p {z f)k - ic )>  (4.43)

which is evidently independent of the parameter k  . Substituting equations (4.40) and 

(4.43) into equation (4.35) allows the TVD constraints to be expressed as:

(j)c <<j)j-<2(j)c and < 1, if  0<<j>c <1

(4.44)
i f = ic  > or (f)c > \

<t>f  = 2<pc LUDS CD

Figure 4.5 i f  ~ 0C diagram (NVD)

Again, Sweby’s TVD condition, taken in conjuction with the blending of Lax-Wendroff 

(Lax and Wendroff, 1960) and Warming-Beam (Warming and Beam, 1976), can be 

represented by the shaded area in figure 4.4. An analogous graphical representation can 

readily be derived using condition (4.44) together with form (4.36), the later written for
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special of a weighted linear average of the central differencing scheme (CD, k  - 1) and 

the second order upwind scheme (LUDS, a:  = -1), ie,

The graphical representation is given in figure 4.5, and the shaded area again is the 

range in which the composite second order scheme is fully bounded.

Deferred correction

With high order schemes, the evaluation of <j>f  may involve a large number of

neighbouring grid points. Therefore, in order to simplify the solution of the resulting 

system of algebraic equations, a compact procedure is usually used. In this thesis, 

Khosla and Rubin’s (1974) deferred correction is employed. Ni, Tao and Wang’s (1999) 

analysis shows that this procedure is also an effective method to stabilise numerical 

calculation when high order schemes are used.

In equations (4.18), we calculated the value of <f>f  using the first-order upwind scheme

and obtained the discretised equation (4.19). For the convenience of description, we 

denote the cell-face values of <f>, calculated by the first order upwind scheme and a high

order scheme respectively, as tj/j and (j)f  . Therefore, the cell-face convective fluxes in

equation (4.16) can be replaced by their equivalent fluxes:

(4.45)

CD LUDS

(4.46)

equation (4.14) is transformed to

(4.47)
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where SDC is the contribution due to the adopted deferred correction procedure,

SDC = F n ( t f - i O -  (4.48)

The final discretised governing equations take a general form as following:

C tp (j)p  — d p f & N  +  O 'E ^ E  a ,W {f)W ^ 2  ^ D C  > (4.49)

where the discretisation coefficients, aP , a N , as , aE, aw and the source term S2 are

still calculated using equation (4.20). SDC may have different expanded form when

different high order schemes are used. For example, when Harten’s (1983) minmod 

scheme is used, we have

S DC = \ {  Gl,nGnn m inmod(An, A ;,)-  minmod(An,A +n)

— Gr,sGr̂ s m inm od{As ’As ) + G l,sGl~s min mod(As , A+s )

+ G*eG?+ min mod(Ae,A ~ )-  G,2eG,2~ min mod(Ae,A +e )

-  G?tWG?+ minmod(Aw,A~v)+  G2WG2~ minmod{Aw,A+w^

< _ . (4.50)
A j- — (f)P — (j)p_J , A j-  — (f)p+x — (f) >A+f  -  &P+2 “  0 P + 1

min mod(x, y) = sgn(x)max{0, y  ̂ g«(x)]}

G± _  1 ±  sgn(G)
2

4.3.4 Non-Staggered SIMPLE Method 

About the non-staggered SIMPLE method

The SIMPLE (semi-implicit method for pressure-linked equations) (Patankar and 

Spalding, 1972; Patankar, 1980) is one of the most sophisticated and successful 

numerical method for incompressible heat and fluid flows. Under the condition of
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incompressibility, the continuity of fluids is only a constraint for velocity field and 

therefore the pressure-velocity coupling is very weak in the differential governing 

equations. This weak coupling is a difficulty for numerical methods and the central 

problem for calculation of incompressible flows is the pressure-velocity coupling. In a 

decoupled iterating method, this coupling has two meanings:

(a), the pressure is an elliptic field and therefore, the gradient of pressure in the 

momentum equation shall be discretised by the central differencing (CD) scheme. 

However, CD may obtain a non-physical “chess-board” pressure field (Patankar, 

1980) if there is no special strategy for remedy;

(b). a decoupled iterating method obtains the correct pressure field by correcting the 

pressure step by step. So it is important to obtain the accurate pressure correction in 

each iteration step.

In the SIMPLE method, the staggered grid arrangement (Patankar and Spalding, 1972) 

and the non-staggered grid arrangement with a momentum interpolation technique 

(Rhie and Chow, 1983) are two methodologies to solve the “chess-board” pressure field 

problem; And the pressure correction equation is employed to obtain accurate pressure 

correction.

In the present study, the non-staggered grid algorithm is selected based on its 

advantages (Peric, Kessler and Scheuerer, 1988) as follows:

(a), all variables share the same location; hence, only one set of control volume is 

needed;

(b). in a discretisation equation, the convection contributions to the coefficients are 

same for all variables;

(c). for a complex geometry, Cartesian velocity components can be used in conjunction 

with non-orthogonal coordinates, yielding simpler equations than when numerical 

coordinate-oriented velocity components are employed.

Momentum interpolation
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The momentum interpolation and the pressure correction are two facets of the pressure- 

velocity coupling. As the first step, the momentum interpolation and relevant concepts 

should be introduced.

By setting (j> -  u and (f> = v in equation (4.49) respectively, we have

u - h u +

v = h„ +

JrA%Arj'\ dp 
a P J dx

f JrAt;Arj''
V aP J

dp

(4.51)

where

S  a N B U NB + ^  a N B V NB + *̂v (4.52)

S" and S ” are the differences between S2 + SDC in equation (4.49) and the pressure 

gradients for <f> = u and (j) = v , respectively.

According to equation (4.5), we have

§ £ .-1  
dx J

/  dp d p '

y ' W y ' ^

dp 1 f  dp dp —  = — -  x„ —  + x* —  
8y J  { " d£, { dr/

(4.53)

Substituting equation (4.53) into equation (4.51) results in

dp_
d£, “ dr}

C, dp_
d£ dr}

(4.54)

where
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B.
r y ^ A r f

1p  J p

' r y ^ A - r f

\  a P  )  p

B v  =

'  rx}}A<!;Arf̂
,  c B =

rx^A£,Ar]'
{ aP J

p I  a p  )

(4.55)

According to equation (4.9), the curvilinear velocities G,! and G2 become

G'r =Hi +Bx^ -  + Ci ^ -  
1 1 d% 1 dr]

g? = h 2+ b 2^ + c 2 °P-
2 2 d£ 2 drj

(4.56)

where

Hi ={y„K ~ xnhv ) - Gl

B\ =Buy t} -  BvxtJ = /  rA^Art^

■ H 2 = { x ( K - y f h „ ) - G  

« > c i =c uy„ - C vxtl
v “p

B2 -  Bvx^ Buy | rAgAr/

f rAgAr/^ f i . (4.57)

V
/? , C2 = c v̂ - c „ ^  =

\  “p J

^ rA^Ar^
V u p  J

In order to eliminate the non-physical “chess-board” pressure field (Patankar, 1980), 

two methods, ie, Patankar and Spalding’s (1972) staggered grids arrangement method 

and Rhie and Chow’s (1983) momentum interpolation method, are available. For the 

non-staggered method used in the current study, Rhie and Chow’s (1983) momentum 

interpolation scheme, which is originally for fixed mesh system, is modified to calculate 

the relative curvilinear velocity components, G). and G,2 at cell faces of the control 

volume in our moving mesh arrangement. The derivation of the interpolation scheme is

66



Chapter 4 CFD Strategies for Moving Boundary Problems

straightforward and omitted for simplicity; here we directly give its final form as 

following:

=G\n

Gr.e = G;e + C2e

P n P p

%N ~%P

P e -  P p

P n  P p \ dPy

''dp , g). = g). +b . P p ~ P dp ’ ’Udn Uds

> Grw = Grw + C2iV P p - P w
Pp Pw

dp
dp

(4.58)

where the terms with top bars in G).n are the linear interpolation between the 

corresponding parts of G). P and Glr N, and those in G). s , G2e and G2W are similar. The

terms in square brackets have forth-order truncation error. When pressure oscillation 

occurs, the terms have big values; and when the pressure field is smooth (which is 

physically correct for incompressible flows), the terms are high order infinitesimalities. 

This procedure ensures strong velocity-pressure coupling and shows better convergence 

behaviour than the original SIMPLE, as reported by Rhie and Chow (1983) and Peric, 

Kessler and Scheuerer (1988).

Pressure correction equation and corrections of pressure and velocity

The second task for the pressure-velocity coupling is to obtain unknown pressure field 

by solving a pressure correction equation derived from the continuity of fluid.

By setting <f> = 1, =0 and S($)= 0 in equation (4.11) and integrating over the control

volume, the discretised continuity equation is obtained as:

(g;.„- G l f \ v + (Gle - G ^  J S l z P d ^ , (4.59)

In the iteration procedure, the flow fields of u \  v* and p* (the superscript asterisk 

denotes an intermediate iteration value) can not satisfy conservations of both continuity
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and momentum, therefore the corrections should be applied as:

u = u * + u v = v*+v', p ~ p * + p \ (4.60)

and

G,1 = g,1* + GI G?=G 2*-fG.2 (4.61)

where u' , v ' , G,1 and G,2 are the corrections of velocity, and p' is the pressure 

correction. Assuming that the effects of pressure correction on hu and hv in equation 

(4.54) and on Hl and H 2 in equation (4.56) are negligible, the relations between the 

corrections of velocity and pressure are obtained as following:

U' mBmv +Cmv
u d£ u dp

, dp' dp' v = B -=— + Cv -=— 
v v dp

(4.62)

and

=Bln

G,e =C2,e

f P n - P p '
4 n  ~ 4 p  j  

\
P e ~ P p 

^Pe ~ Pp j
Gr>w = C 2w

Pp - P s '
. 4p ~4s j

'  P'p -  Pw  ̂
KPp ~Pw >

(4.63)

Substituting equations (4.61) and (4.63) into equation (4.59) and rearranging the terms, 

we have the pressure correction equation as:

(Jr')° -(Jr)GpPp = CNp p + Csp s + CEp E + Cwp w + ihp H — A^Ap ,
At

(4.64)

where
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CN — ( BlnArj)/(^N <%p)

Cs =(-Bu Ari)/(tP- t s )

CE = ( -  C2eA^)/{riE — rip)

(4.65)
Cw =  (— ^ 2, w ^ ) / ( 77p ~ rhv)

C p  =  C n  +  C s  +  C e  +  C w

mp = (g£ - G,‘*„ + (g * -G,2’

4.3.5 Numerical Grid Generation

In recent years, there has been considerable progress in developing computational 

methods to solve the Navier-Stokes equations in regions with irregularly shaped 

boundaries. For this purpose, fmite-element methods (FEM) are considered as natural 

choice due to their intrinsic geometric flexibility. However, for calculations of heat and 

fluid flow problems, the computational theories and skills for finite-difference methods 

(FDM) are more mature than those for FEM. Therefore, many CFD researchers are 

working on the development of FDM for heat and fluid flows; and several successful 

methods, such as the extension of computational region (Patankar, 1980), combination 

of coordinates (Rastogi and Rodi, 1978), and the triangle network (Winslow, 1967) 

have been developed. For most of the engineering problems such as our present 

conjugate heat and fluid flows for a single bubble, the complex boundaries are basically 

impossible to be fitted by any of available simple coordinates systems. In these cases, 

body fitted coordinates (BFC) and nonorthogonal curvilinear grids are attractive choices 

and have been widely employed by CFD researchers. Our finite volume discretisation 

and the non-staggered SIMPLE method are just based on the moving body fitted 

coordinates system.
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An excellent review on numerical method of grid generation was presented by 

Thompson, Warsi and Mastin (1982). Here we only introduce the grids generation 

differential equation method for body-fitted coordinates systems, ie, the so-called TTM 

method (Thompson, Thames and Mastin, 1974), where the TTM is a short form of 

Thompson, Thames and Mastin. This method was originally proposed by Winslow 

(1967) but systemically studied and developed by Thompson, Thames and Mastin 

(1974) and Thompson, Warsi and Mastin (1982, 1985). More general information 

about numerical grid generation can be found in relevant references.

The generation of body-fitted grids is a boundary value problem whose solution is a 

classic task for theory and study of partial differential equations. Second order elliptic 

equations are mathematical description of boundary value problems. The simplest 

elliptic equation is the Laplace equation. With well-posed boundary values, the solution 

of the Laplace equation has second order smoothness, which is a desired characteristic 

of numerical grids. According to the extremum principle and the uniqueness of the 

solution of Laplace equation, the curvilinear coordinates £ and ij can be regarded as 

the solutions of the following Laplace equations in the physically space:

V2£ = e24 , e2<f
+  ■

dxz 6yl
=  0

(4.66)

V rj — +  *

dx dy"
=  0

Setting the boundary values of tj(x, y) and r/(x, y) at all physical boundaries, equation

(4.66) becomes a well-posed Laplcae problem with the first kind- Dirichlet boundary 

conditions and can be solved numerically.

Although the solution methods for the Laplace equations are well studied, the irregular 

physical boundaries impose difficulties for solving equation (4.66) in the physical 

space. Because of this, equation (4.66) is always transformed into the computational
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space where the computational domain can be set as regular. The transformed Laplace 

equations are as follows:

d2x - n d2x d2x
a — - - 2  B ---------------------+  y — -

2 dgdrf '  d£2

d2* o o d2x d2x a — - - 2 ( 3 -------+ y — -  = 0
d^drj d

(4.67)

where the metrics a , (3 and y  are defined by equation (4.7). Again, setting the 

boundary values of g(x,  y )  and tj(x, y )  at all physical boundaries, equation (4.67) can 

be solved.

Although the non-staggered SIMPLE method can be theoretically applied to an 

arbitrarily non-orthogonal mesh, good orthogonality for numerical grids is still expected 

so as to obtain a smooth convergent path. It is well known that for a certain numerical 

method, the more non-orthogonal the mesh is, the convergent path is the rougher. 

Thomas and Middlecoff (1980) proposed a method of controlling the non-orthogonality 

and distribution by adding source terms to equation (4.67). Shieh (1984) proposed a 

more efficient grid-controlling function. In this paper, Shieh’s (1984) method is used. 

With the added source term, equation (4.67) changes into the Poisson equation,

d2x _ 0 d2x d2x a — -— 2(3-------+ y
d ? d$dtj d ?

d2x d2x d2x a — - - 2 ( 3  + y
d%drj d%‘

= - r

dx + P, dx
dB, A drj

(4.68)

where F\ and P2 are the grid-controlling functions as follows (Shieh, 1984),
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A  (7) = “ X  ajsign(rj -  r]l )exp(~ bjL))
1=1

"h , s
< fe) = “X  ai si^  ~ )exP\- bf L) j > (4-69)

/=1

l )= tJc',(v - v,T  ; L j = f t ( z - { , ) 2

a j , a f , bj, b f , cj and cf are coefficients which are selected to control the distance 

between grid lines to specified points, lines or faces so that the distribution of grids can 

be controlled.

4.4 M ulti-Block Computation

In application of numerical schemes to practical problems with complex geometries, 

despite the power and sophistication of present grid generation capabilities, the use of a 

single-grid system may cause difficulty in generating a reasonable single grid to cover 

the entire flow domain. For example, using a single grid system to map a spherical-cap 

or skirted gas bubble surrounded by liquid results in severely skewed grid lines which 

make calculation difficult. This challenging problem makes multi-block methods, also 

known as zonal approaches, more attractive. As the grids can be either patched (Rai,

1984) or overlapping (Steger, 1991), the flow domain of interest but with arbitrary 

geometry can be easily covered. Liu and Shyy (1996) summarised the advantages of 

multi-block methods as follows:

(a), it can resolve the topological complexity of a complicated geometry by permitting 

grid components to be generated individually and more easily fitted with local 

boundary geometry;

(b). grid lines need not be continuous across grid interfaces, and local grid refinement
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and adaptive redistribution can be conducted more easily to accommodate different 

physical length scales; and

(c). it provides a natural route for parallel computation.

The most important point in a zonal approach is to properly treat the zonal boundaries 

so as to make good use of the above advantages of the methods. Because the grid lines 

may not be continuous across block interfaces, information between blocks has to be 

transferred with additional work. These information transformation methods should 

preferably be easy to implement while maintaining good efficiency and desirable 

accuracy. A major related issue is that, for many flow problems, it is often important to 

use conservative interface procedure to ensure that physical laws are satisfied. Such a 

consideration can impose serious constraints on the construction of an interface 

interpolation scheme; furthermore, in some cases, the above needs can conflict with one 

another. Simultaneous achievement of both conservation and accuracy can be a veiy 

difficult task. This difficulty has attracted the attention of scientists even since the 

appearance of multi-block methods and the following treatments have been proposed: 

the chimera scheme for interpolations on overlaid grids (Benek, Buning and Steger,

1985), Rai’s scheme for a TVD (Total Variation Diminishing) finite difference 

formulation (Rai, 1984), Bush’s (1985) scheme based on characteristic boundary 

conditions, and the FDM-FEM hybrid scheme (Nakahashi and Obayashi, 1987). Later 

than those, Furukawa, Yamasaki and Inoue (1991) proposed a zonal approach with non

overlapping structured grids, in which the requirements of uniquely defining the zone 

boundary satisfying flux conservation across the boundary were met; and more recently, 

Liu and Shyy (1996) devised an interpolation scheme based on the local conservative 

correction method for mass flux at the grid interfaces.

The multi-block method in this paper, which is employed to combine with the moving 

mesh method so as to calculate bubble deformation later, has two key issues for the 

treatment of the zonal boundaries. These are the uniquely defining the zonal boundary 

and an appropriate interpolation method.
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4.4.1 Uniqueness of Zonal Boundary

In the present multi-block calculation method, we use a composite grid system. So the 

computational domain is divided into several zones, and grids are generated 

independently in each zone (block). The zone boundary is defined as the interface 

between the blocks.

Block2

a

Blockl

Zonal Boundary 
Furukawa etal. 1991 (dotted)

Present Zonal 
Boundary (solid)

Figure 4.6 Multi-block and zonal boundary

Consider the composite multi-block grid system shown in figure 4.6. If the zonal 

boundary is not straight, the independent generation of the grids can cause gaps or 

overlaps where the boundaries of the two blocks do not coincide. In order to avoid this, 

Furukawa, Yamasaki and Inoue (1991) proposed defining the zonal boundary by the 

boundary of one block, block 1 in figure 4.6 for example. Consequently, the first cell in 

block 2 connected to the zone boundary is no longer a quadrilateral but a polygon. (That 

is, in figure 4.6, cell ABCD is changed into A'BCD'D"A"A'). Furukawa, Yamasaki
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and Inoue (1991) further developed an accurate method of high order for evaluating the 

flux across the zonal boundary. The numerical tests in their paper have demonstrated the 

potential of the method when applied to complex geometries.

However, altering the near boundary cells in block 2 from quadrilaterals to polygons 

also introduces extra calculation difficulties. Firstly, no single formula is available for 

the calculation of polygonal cell faces (or cell volumes in three-dimensional problems), 

and some means is required to identify the complex shape of each cell adjoining the 

boundary. Secondly, because with a moving mesh the grid speeds for different 

boundary points are different, there are extra computational difficulties in defining the 

topology of polygonal cells.

In this paper, the zone boundary is defined as one of the two blocks shown in figure 4.6. 

In the meantime, in order to guarantee the uniqueness of the boundary, the nodes of 

block 1, where the mesh has been generated first, are employed to interpolate the 

boundary nodes of block 2 using a cubic spline interpolation. The topology of the near 

boundary cells is retained as a “general” quadrilateral with curvilinear sections as the 

boundaries, hi order to calculate the area of the cell, a cubic spline fit is also used to 

evaluate the determinant of the metric tensor, J ; while the cell area is calculated as 

JA^Arj. The remainder of the near boundary cell is naturally and understandably treated 

as a “general” quadrilateral following the basic ideas of body fitted co-ordinates. This 

application of a cubic spline fit will compensate for the implicit error in the calculation 

of cell area.

4.4.2 Zonal Boundary Variable Interpolation

In order to solve incompressible flows described by equation (1), boundary values of </> 

are needed. The <j> at the zone boundary for block 1 is calculated as follows (see figure 

4.6):
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where the numbers in the bracket in the superscripts stand for the blocks, sN -  IN  and 

sM = M I , Sj = RI and sQ = Q R . The point I  is defined as the intersection of the

linear segment MN  and the extended co-ordinate curve, which passes through point R 

and outwards from block 1 to block2.

The $  is used as a boundary value for block 1, and also to evaluate the convection- 

diffusion flux through the zonal boundary. For block 2, the processing method is similar 

to that for block 1, and is omitted here.

In order to ensure the conservation of physical laws, a conservative treatment for mass 

flux should be carried out so that the interpolation scheme, ie, equation (4.70), can be 

regarded as appropriate.

Block 2

w P )(2) A n,J

Block 1

Figure 4.7 Notations used in two-block interface

Suppose the grids scenario of an interface schematically shown in figure 4.7, where the
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grids on the side of block 1 are indexed from * = 1 to imax, and from j  = 1 to jmcuc for 

block 2; 5̂  and sf^ are area of control volumes on blocks 1 and 2 sides, respectively; 

W$  and W$J are velocity components normal to sP and sf^ respectively. The 

conservation of mass flux is expressed as:

j  max

$ - 4 °  = X > £ M 2) • (4-71)
M M

The interpolated velocity values obtained by equation (4.70) may not be able to satisfy 

equation (4.71) and therefore, a scaling procedure is carried out. For the convenience of 

description, we calculate the velocity W$j firstly and denote its value obtained by

equation (4.70) as W^J*. The scaling procedure is

1 max

^ = * $ * • 7=  ■ (4-72>
“  '(2)* . „ (2) 

n .j  j
j =1

Equation (4.72) ensures the conservation of mass flux across the interface. The 

calculation of w ff  is similar and is omitted here for simplicity.

4.5 Validations o f  the Numerical M ethods

Until now, a complete algorithm for moving boundary problems has been presented in 

this chapter. A series of validations are to be carried out so as to examine the calculating 

performance of the algorithm. The testing examples and the purpose of the validations 

are as follows:
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(a), lid-driven flow in a squeezed cavity, to validate the use of non-staggered non

ortho gonal mesh and high order schemes;

(b). laminar flow through tubes with constrictions, to validate the use of body-fitted 

coordinates in axisymmetric system;

(c). flow over a backward-facing step, to validate the multi-block calculation for fluid 

flow;

(d). natural convection in horizontal annulus, to validate the multi-block calculation of 

heat and fluid flows;

(e). flow in channel with moving indentation, to validate the calculation of time- 

dependent moving boundary problems.

4.5.1 Lid-Driven Flow in A Squeezed Cavity

Demirdzic, Lilek and Peric (1992) proposed a lid-driven flow in a cavity with inclined 

sidewalls to test the use of non-orthogonal grids. The geometry and boundary conditions 

are shown in figure 4.8, in which the inclination angle fd -  45°, and L = 1, density 

p  = 1 and lid velocity UL = 1. The Reynolds number, defined using the lid velocity, 

UL, and cavity length, L , is 1000 by setting the viscosity to be 0.001. Demirdzic, Lilek 

and Peric (1992) proved that it is impossible to obtain a grid dependent solution if the 

mesh is coarser than 80x80. They provided a set of benchmark solutions on an 

extremely fine mesh, 320 x 320, and a high order convection scheme was applied.

In the present calculation, a non-uniform mesh of 160x160, which expands 

symmetrically towards the centrelines (CL1 and CL2 in figure 4.8) from all walls, is 

found to be fine enough to obtain the grid-independent solution and is therefore 

adopted. We have also tried to further refine the mesh to 320 x 320, similar to what 

Demirdzic, Lilek and Peric (1992) did; however, no further accuracy improvement was 

achieved.
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To check the effects of using high order schemes, following convection schemes, 

namely, the first-order upwind scheme, the power-law (which is also of first-order 

resolution), the second-order TVD scheme OSHER (Chakaravarthy and Osher, 1983), 

and the third-order scheme SMART (Gaskell and Lau, 1988), were employed. The 

computational results are presented in figures 4.9 and 4.10, respectively.

v = 0, u - U

CL2

u =v = 0

Figure 4.8 Geometry and boundary conditions for squeezed lid-driven cavity flow

The profiles of Cartesian velocity components, u in horizontal and v in vertical, along 

centrelines are shown in figures 4.9. The results for using different convection schemes 

are compared with the benchmark solutions (Demirdzic, Lilek and Peric, 1992). It is 

noted that, first-order schemes (the first-order upwind and the power-law) give worse 

results while high-order schemes (the OSHER and the SMART) offer excellent 

agreements with the benchmark solution.
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Figure 4.9a Centerline velocity profiles in the squeezed cavity
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Figure 4.9b Centerline velocity profiles in the squeezed cavity
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111 figure 4.10, convergent paths of calculations using the above-mentioned first-order 

upwind and the third-order SMART schemes are described. Although the numerical 

accuracy for different schemes is different, the effect of deferred correction method is 

obvious as the convergent path for SMART is almost on the same level of roughness 

with that of the first-order upwind.

10’6 1000
Iteration

1 5 0 05 0 0

10

5 0 0 1000
Iteration

1 5 0 0

(a). First order upwind (*>). SMART (third-order)

Figure 4.10 Convergent paths of different convection schemes

4.5.2 Laminar Flow Through Tubes with Constrictions

The laminar flow through a circular pipe with a sinusoidal constriction, experimentally 

studied by Young and Tsai (1973) and numerically studied by Rastogi (1984) and Karki 

and Patankar (1988), is selected to validate the using of body-fitted grids in 

axisymmetric coordinates system. The geometry is shown schematically in figure 4.11. 

Both the tube and the constriction are axisymmetric. The radius of the stenosis was 

specified as a cosine curve:

R _ _  d_
Rn ~ 2Rn

f  \
7VC1 + cos — - X 0 < x < X 0 . (4.73)
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The number of grid is taken as 82x30 in the x ~ r  coordinates. The density of grid 

points was higher near the wall and the grid was stretched in the axial direction with 

more grid points in the constricted region.

Table 4.1 Model Geometries

Ro d/Ro X q/Rq Stenosis

Model no. (in.) (% reduction in area)

M-2 0.372 2/3 4 89

M-3 0.372 2/3 2 89

Results have been obtained for two geometries corresponding to models M~2 and M-3 

of Young and Tsai (1973). The geometric characteristics of these stenoses are given in 

table 4.1. Computations were done at Re=50 and 100 for model M-2 and at Re=40 for 

model M-3.

/ — ■l ----  - < c r /  /  7 7 7

' r

R eattachm ent  
^  point

4  *&►»

( " r „ ^ — ------- --—
Separation  point )

[X  Flow  
yj d  i

x p\
/  / y y y f z  o -----------------------  xj\ jL.......... ... J - y ^ / 4 / / /

| . ----------- -
X0

«-----------------------►

Figure 4.11 Geometric configuration of the pipe with a constriction

T T T T

Figure 4.12 Flow pattern for Model M-3 at Re=40
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Table 4.2 Comparison of the present results with experiments

Re Model

no.

Separation point ( X / X o ) Reattachment point ( X / X q)

Experiment Present Experiment Present

50 M-2 0.37 0.37 2.2 2.1

100 M-2 0.37 0.37 4.1 4.1

40 M-3 0.37 0.37 2.9 3.1

The flow pattern for model M-3 for Re=40 is plotted in figure 4.12. Table 4.2 gives a 

comparison between the present results and the experimental results of Young and Tasi 

(1973). The agreement between the two sets of results is good. The error of X , /X o  is 

acceptable considering the experimental error at low Reynolds numbers.

4.5.3 Separated Flow Over Backward-Facing Step

The flow over a backward-facing step provides an excellent test case for the accuracy of 

a numerical method because of the dependence of the reattachment length on Reynolds 

number. Freitas (1995) recommended an experimental configuration which was used by 

Armaly, Durst, Pereira and Schonung (1983) as a benchmark problem for algorithm 

validation. Here we employ it to validate the potential of calculations using a multi

block mesh.

The inlet height of the channel is h -  5.2 mm, the step height 5 = 4.9 mm. In 

experiments, the upstream length of the step is nearly 40 inlet heights to ensure the flow 

is fully developed. Reynolds number is defined as Re = uavx D / v , where uav is the

averaged inlet velocity, D = 2h, v = 1.5 xlO-5 (air). In our calculation, the 

computational domain is divided into upstream and downstream blocks at the step. A 

fully developed parabolic velocity profile is imposed at 5 step heights upstream of the 

expansion, and the total length of the computational domain is set at 40 step heights.
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Non-slip boundary conditions are applied at the top and bottom walls; a uniform static 

pressure is imposed at the exit boundary. At the zonal boundary, pressure is transmitted 

upstream from the downstream block, and velocity is transmitted in the opposite 

direction. Typical grids are illustrated in figure 4.13. For block 1, the grid size is 27x54, 

horizontal x vertical; For block 2, three mesh sizes, 177 x 103 (mesh 1), 352 x 103 

(mesh 2) and 452 x 162 (mesh 3), have been used to evaluate the grid independence of 

the results for a flow at Re = 450. The computed results are given in figure 4.14 and 

table 4.3.

Figure 4.13 Illustration of grids distribution for calculation of backward facing step
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Figure 4.14 Positions of reattachment points in a step flow
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Table 4.3 Reattachment points predicted by three meshes

*2 *3

Mesh 1 7.69 6.53 10.67

Mesh 2 8.69 7.87 10.88

Mesh 3 8.72 7.89 10.88

Experiment 9.5 7.6 11.3

In Table 4.3, the size and location of the separation vortex at R e -  450, scaled by the 

lengths xl9 x2 and x3 (see figure 4.14 for the definition), calculated by the present

method with three different meshes are compared with experiments by Armaly, Durst, 

Pereira and Schonung (1983). It can be seen that the differences between calculation 

and experiment are reduced by increasing the grid number, from mesh 1 to mesh 2. For 

example, the error forxj has been reduced by 10.5% (the error for xx is 8.5% with mesh 

2). This also implies that mesh 1 is not dense enough to get a grid-independent solution. 

However, further increasing grid density from mesh 2 to mesh 3, gives a reduction of 

only 0.3% in the error of x l . It is noted that with this change the error for x2 even 

increases by 0.26%, which is about the same as the error reduction for xx and may 

result from experimental deviations will be mentioned later. It is therefore concluded 

that mesh 2 is fine enough to provide a grid independent solution. At the same time, we 

observe that the calculated xx, x2 and x3, with mesh 2 or mesh 3, are smaller than their

experimental values. Nevertheless these errors are generally smaller than those when 

commercial CFD codes are tested against the benchmarks as tabulated by Freitas (1995) 

and perhaps should be accepted.

Figure 4.14 compares the calculated distributions of xl9 x2 and jc3, with experiments
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(Armaly, Durst, Pereira and Schonung, 1983) as at different Reynolds number. In view 

of the results presented in table 1, only mesh 2 has been used in getting these 

distributions. Calculations for different Reynolds numbers are also available in Lee and 

Chiu (1992). The comparison between their results and the present prediction is also 

shown in figure 4.14, with satisfactory agreement up to Re = 600; as is also shown for 

the calculations by Lee and Chiu (1992). At still higher Reynolds numbers the deviation 

between calculation and experiment becomes steadily larger. As concluded by Kim and 

Moin (1985) and Freitas (1995), these deviations are not surprising and probably not a 

result of numerical error, but are more likely to be a result of the apparent three 

dimensionality and unsteadiness in the measured flow.

4.5.4 Natural Convection in Horizontal Annulus

The calculation of natural convection heat transfer in a horizontal annulus demonstrates 

the use of multi-block non-orthogonal meshes. The configuration employed here is that 

of the detailed experimental study by Kuehn and Goldstein (1976) also used for the 

numerical simulation using SIMPLE algorithm by Date (1986). The value of 

L/Djn (ratio of gap width/inner diameter) is 0.8, the Rayleigh number

Ra = p r -  4.7 xlO4 and the Prandtl number Pr = 0.7 . Following the usual
v

methods, as the heat and flow fields are symmetric, half of the concentric annulus, 

divided along the vertical symmetry line, is employed as the computational domain. In 

order to validate the robustness of the calculation procedure of using the multi-block 

body-fitted non-orthogonal mesh, the whole annulus is divided into two non-symmetric 

blocks as the computational domain (shown in figure 4.15). The mesh numbers for the 

two blocks are 82x52 and 74x42, respectively. Convergence paths for the mass 

residuals are shown in figure 4.16. The computational results are compared with 

measurements and shown in figures 4.17- 4.20.
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(a). Computational domain (b). Non-orthogonal grids

Figure 4.15 Computational domain and grids for the natural convection in annulus
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block 1

block 2

310

2000500 1000
Iterations

1500

Figure 4.16 Convergent path for natural convection in annulus
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Figure 4.17 shows the local thermal conductivities at the inner and outer cylinders, 

defined as follows:

K r_l o g ^ / r ^ dT
T,n ~Tm,

Excellent agreement between calculation and experiment is achieved. Even at the near 

upper symmetry line (<9 = 0°) of outer wall, where Date (1986) got a deviation of 10%.

The presently computed temperature and angular velocity profiles, also show good 

agreement with their respective measurements by Kuehn and Goldstein (1976), as 

shown in figure 4.18 and figure 4.19. Since the computational blocks are not symmetric,

14

Present

Inner - iJ Kuehn & Goldstein (1976)

12

Outer

cr

60
sita

Figure 4.17 Local equivalent conductivities at inner and outer walls
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Figure 4.18 Temperature profiles
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Figure 4.19 Distribution of angular velocity
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AV '*  ^

(a) Interferogram, Kuehn etal (1976) (b) Present Results

Figure 4.20 Contour of non-dimensional temperature

the results in these figures are mean values at the two sides of the geometric symmetry 

line. In fact, a maximum magnitude of 2 percent for the non-symmetric deviation, 

defined as the relative deviation of temperature at any two symmetric points, has 

resulted from the calculation, perhaps because the grids are still not fine enough. As can 

be seen from figure 11, very good symmetry for the temperature field and excellent 

agreement with Kuehn and Goldstein (1976)’s results are obtained in the present 

calculation.

4.5.5 Time-Dependent Moving Indentation Channel Flow

The unsteady channel flow with a time-dependent moving indentation in one wall, 

which Pedley and Stephanoff (1985) proposed as a benchmark experimental 

investigation, and to which Ralph and Pedley (1988), Rosenfeld and Kwak (1991) and 

Lee and Chiu (1992) have derived computed solutions, has been used here to assess the 

suitability of a multi-block moving mesh for calculation.
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X4XbX5X2 Xa X3

Figure 4.21 Computational domain for moving indentation problem

As shown in figure 4.21, the lower wall between x2 and x5 is moving periodically with 

the vertical co-ordinate y(x, t) defined as following:

y(x, t*)= f(x)h(t*),

where h(t*)=  0.5(l -c o s 2 7 t f * ) ,

/ t o ’

0.5£*[l + tanh y(x — xa )] 
s
0.5^[l-tanh p;]
0

xx < x < x2 
x2 < X  < x3 
x3 < X  < x4 , 
x4 < X  < x5 
x5 < X  < x6

s = 0.38, ^ = 4.14, x3 - x 2 = x5 - x 4 = 2.5, x4 - x 3 = 8, x2 +x3 =2xa, and

x4 + x5 = xb = 0 . Ralph and Pedley (1988) calculated how the downstream boundary 

can generally affect the solution up to (x6 - x ) - 2 .  Following their suggestion, 

(x2 - x x) = 2 and (x6 - x 5) -1 2  are taken as the computational domain in the present 

paper. In order to evaluate the multi-block calculation, the computational domain has 

been deliberately divided into two blocks along the vertical position x = xb = 0 , as

shown in figure 4.21. The dimensionless time is defined by t* =cot, where t is the 

dimensional time and co is the frequency of indentation movement. The Reynolds
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number based on the averaged inlet velocity w^and the inlet height L is Re = 501, 

while the Strouhal number is St = Lco/uav =0.037. No-slip boundary conditions are 

imposed on the top and bottom walls and a fully developed parabolic velocity profile at 

the inlet, uniform pressure and d<f)/dyt = 0 for velocity at exit; The zone boundary is 

treated in the same way as the backward facing step in section 3.1. The grid number is 

102x52 for block 1 and 177x60 for block 2 with a time step At of 0.01. The 

computational results are shown in figures 4.22 and 4.23.

t = 0.2 

t = 0.3 

t = 0.4 

t = 0.5 

t = 0.6

t = 0.1

f = 0.8 

t = 0.9 

t = 1.0

Figure 4.22 Streamlines at various instants in a cycle
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Figure 4.22 shows the streamlines for a series of instants during one cycle of the 

indentation movement. The eddy doubling described by Pedley and Stephanoff (1985) 

is observed around i* ~ 0 . 6 , when the indentation has reached its top position and is 

moving downward. With this combination of Re and St numbers, no obvious vortex 

shedding is observed, which agrees with Lee and Chiu (1992)’s simulation.

The positions of crests and troughs of the eddies are compared to the experimental 

results by Pedley and Stephanoff (1985) in figure 14, where Lee and Chiu (1992)’s 

computed results are also given for comparison. Although noticeable differences can be 

found between the simulations of Lee and Chiu (1992) and the present, the overall 

agreement of both simulations with experiment is reasonable.
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Figure 4.23 Position of the crests and troughs of the eddies
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4.6 Summary

A calculation procedure for heat and fluid flows in geometries with time-dependent 

moving boundaries has been developed to assist future simulations of the inert bubble 

problem. The procedure, which is based on the non-staggered SIMPLE method with 

TVD treatment, incorporates a moving mesh arrangement with multi-block iteration to 

calculate moving boundary problems. The procedure is validated by a series of testing 

problems showing the robustness for further simulation of time-dependent inert bubble 

problem.
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Chapter 5 

Numerical Study o f Gas-Liquid Interfacial Flows in Bubbles

5.1 Introduction

As described in chapter 3, the heat and fluid flows for the inert bubble problem are 

conjugate and unsteady. Compared with single-phase problems, the “conjugate flows” 

here have more specific meanings. It means the flows, separated by the zero-thickness 

gas-liquid interface, are conjugate and coupled by the interfacial boundary conditions 

(equations (3.17)~ (3.20)) though the fluids on both sides of the interface are different. 

Moreover, “unsteady” means the shape of the inert bubble is changeable; this imposes a 

new task of determining the bubble shape whose movement cannot be supposed to be 

externally decided but can only be decided by the interfacial conditions. Therefore, 

further to the numerical method for general moving boundary problems presented in 

chapter 4, special treatments on gas-liquid interfaces must be made.

This chapter presents a complete numerical study on gas-liquid interfacial flow 

problems. Treatments are applied to a gas-liquid surface so as to determine the bubble 

shape and the interfacial velocity. These treatments include a “continuous stress 

method” and a “modified Ryskin-Leal method”. Based on these, a full numerical 

algorithm for steady problems is presented and applied to the study of interfacial flows 

in deformable bubbles and drops with benchmark numerical solutions or experimental 

data.
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5.2 Gas-Liquid Interface Treatments

5.2.1 Expansion of Interfacial Boundary Conditions

The interfacial boundary conditions 

given by equations (3.17)~ (3.20) 

are in general forms and should be 

expanded into the moving non- 

orthogonal coordinates system so as 

to carry out further treatments for 

determining the interfacial velocity 

and bubble shape.

Figure 5.1 Zoned computational domain

Consider a two-block system shown 

in figure 5.1. The transform relation 

between the (x, y) and the (<£, rj) 

coordinates system has been given 

by equation (4.1). The coordinate 

lines 77 = rjmax in block 1 and 7; = 0 

in block 2 are duplicated and

describing the bubble profile. Therefore, unit vectors in the tangential and normal 

directions of the bubble face are as follows:

x J  + y tJ

nxi + nyj

f i + y l

-y^T + x̂ J
(5.1)

The velocity in tangential and normal directions:
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Wr =
uxg +  vy  ̂

Wr,
-  uy  ̂ +

f i f + y f

(5.2)

And the stresses of fluids

r,« Re('V 5v dv (5.3)

rf)=-jp(/)+ 2Re(i)
Jf du dv

\ y<d,? -JC{ a#
( 5v 5m

+ n ^ ~ y^ .
(5.4)

Based on the above relations, the interfacial boundary conditions given by equations 

(3.17)~(3.20) can be expanded,

Kinetic conditions:

wP=wS2)=0// n (5.5)

WM=WP; 

dynamic conditions:

T&0 =A2)^ p Lt >

(5.6)

(5.7)

T$ 0  +_L
" '  We

1 _1

V J
ri2) (5.8)

where Rm and are curvature radii in the meridional plane and the azimuthal surface 

respectively; and their calculating formula will be introduced in a lateral section in this 

chapter.
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5.2.2 Continuous Stress Method

As we stated in section 5.1, there are two challenging tasks for calculating conjugate 

flows for a deformable single bubble. These are the determinations of the interfacial 

velocity and the bubble shape, respectively. The continuous stress method introduced 

here is for the first task.

Because a primitive variable based calculation requires explicit boundaiy values of u 

and v , which are implicitly given by the continuity of tangential stress in equation (5.7) 

and need to satisfy equations (5.5) and (5.6) as well, a special method to obtain the 

interfacial velocity must be found. This is the background for developing the 

“continuous stress method”.

Block2

M '

A" M

Block 1

Z - l

Zonal Boundary 
Furukawa etal, 1991 (dotted)

Present Zonal Boundary (solid)

Figure 5.2 Zonal boundary and gas-liquid interface 

Figure 5.2 is a two-block system separated by a gas-liquid interface. It has some slight
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differences with figure 4.6 because the fluids in the two blocks here are different. In 

figure 4.6, the single-phase flow can penetrate the zonal boundary while the 

interpolation is to obtain the boundary values of dependent variables by inner grid nodes 

located on both sides of the zonal boundary; In figure 5.2, fluids are not supposed to 

penetrate the zonal boundary (which is a gas-liquid interface) directly, and the 

interpolation here is to transfer the values of functions (such as stresses and tangential 

velocity) from one side to the other of the zonal boundary.

Based on the above background and the clarification of concepts, we can consider the 

fact that equations (5.5), (5.6) and (5.7) are well-posed boundary conditions for a bubble 

of a specified shape. This means that the implicit equation (5.7) can be satisfied all the 

time during the iteration procedure if the tangential velocity remains discontinuous. 

Therefore, we can use the discontinuity of tangential velocity to correct the zonal 

boundary values of u and v until a numerical convergence is reached. In order to satisfy 

equation (5.7), the velocity at both nodes on the zonal boundary and on the first inner 

grid line are corrected at the same time so that the velocity gradient across the interface 

can remains unchanged. For the convenience of description, we denote the nodes on the 

zonal boundary and the first inner grid line with subscripts Z and Z-l respectively and 

shown in figure 5.2, and we calculate uty and for example.

Rearranging equation (5.3), we have:

E ^ L  + G—  = C, (5.9)
dr/ dr/

where E = x4y , G = y4y , C = Re^ zf*yJ + (x4fi + y 4j)du /d t* -  (x4J  -  y 4ff)dvjdf . 

When we calculate the flow in block 1, the boundary values of block 2, wj-2̂ and zf^ of 

a previous iteration step are used to determine the new boundary velocity values, u^* 

and . Firstly, w j2̂ and zf^ are interpolated to block 1, the results are and r 0) 

respectively. Then, zf> in equation (5.9) is incorporated with = 0 , which results in:
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4!)* = [Euz-\ + Gvzh + -4-i)]/{E + G y 4/ x 4)
(5.10)

d> _ f j(0*vy -u y f /:

The tangential velocity corresponding to uy and v1-)1' wj''1’ , is not equal to IVj'1 and 

needs to be corrected. The discontinuity in the tangential velocity,

w7{l) (5.11)

can be incorporated with -  0 to obtain the corrections of the Cartesian velocity 

components. This results in

u' = w P xs/y
(5.12)

v' = Wj® y^/y

The corrections of velocity are applied to both the zonal boundaiy and the first inner 

cell nodes,

f4 0 = WZ)+ +a uz *«'

,(0 -JO*

4 - 1  = 4 - 1  + a uz * « '

;0) _ v(0* . r, . v'
Z -l -  Z - l  +  a uz V

(5.13)

where auz is an under-relaxation factor. Equation (5.13) ensures that the velocity 

gradient in 77 -  direction does not change during the correcting procedure of tangential 

velocity and therefore the continuity of tangential stress is guaranteed. This method for 

obtaining interfacial velocity is therefore named as the “continuous stress method”.
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5.2.3 Interface Deformation 

Modified Ryskin-Leal method

Following the determination of interfacial velocity by the “conjugate stress method”, 

the second challenging task for calculation of deformable bubbles is to decide the 

bubble shape by the second interfacial dynamic condition, the balance of normal forces 

described by equation (5.8). More precisely, the second task is to use the local excess of 

normal forces to update the interface shape step by step during iteration procedures so 

that equation (5.8) can be satisfied. This is the essential of the method proposed by 

Ryskin and Leal (1984a, 1984b, 1984c).

Ryskin and Leal (1984a, 1984b, 1984c) reviewed possible routes of determining the 

interface shape by using equation (5.8). These possibilities include treating the equation 

as a non-homogeneous differential equation for boundary-shape coordinates x and y ; 

or treating the whole problem in a genuine transient mode and applying equations (5.7) 

and (5.8) as boundary conditions. Based on their reviewing, Ryskin and Leal (1984a) 

proposed a simple and indirect method, in which the shape of an interface is modified at 

each iteration step by moving the points of the surface in local normal direction by an 

amount proportional to the pressure difference. As introduced by Ryskin and Leal 

(1984a), due to the restraint of using orthogonal meshes, the interface updating had to 

be done indirectly by changing the scale factor, the Lame metric coefficients (Ryskin 

and Leal, 1984a) of the coordinates system. Such changing of scale factor is possible to 

induce instability of numerical calculation. Moreover, the adoption of orthogonal 

meshes adds a troublesome requirement to the application of this method.

In order to sort out the problem, Salvador (1994) proposed to decide the interface shape 

by directly modifying the coordinates of the points. In this method, general non- 

orthogonal mesh can be used. Salvador (1994) studied the bubbles in the range of 

{Rê 2\We)=[0, 100]x[o, 4] using this method while Raymond and Rosant (2000)
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applied the method to (Re^\We)= [0 , 1 0 0 ] x  [o , 5] .  Recently, Li and Yan (2002a, 2002b) 

have further applied the method to (Rê 2\We)= [0, 2 0 0 ] x [ o ,  5 0 ] .  Although these 

applications are for studying bubbles using “external flow” models, their methods of 

determining the interface shape can be straightforwardly modified to our current study.

new

pro

Figure 5.3 Determination of the new interface position

Consider an initial interface shape R% shown in figure 5.3. It could be a result of an 

unconverged calculation where the dynamic condition, equation (5.8), has not been 

satisfied and therefore further iterations must be carried out. The imbalance of normal 

forces on the current iteration (denoted by script K ),

A r?  = r  <2)*tt * n
1------

’ p We KR'n

1 1
 +  —

R
(5.14)

is used to predict the interface shape. That is,

Rnzew +aproAr?nK , (5.15)
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where nK is the unit normal vector of the interface given by equation (5.1), a  is an 

under-relaxation factor.

The new position of the interface, Rnzew determined by equation (5.15) is not an exact 

value. This is because magnitude of apro is only specified by numerical experiments. 

For a larger a pro, the displacement of interface may be larger than actual values; while 

for a smaller a pro, the displacement could be smaller. To determine exact position at

the K + Ith iteration, the conservation of the bubble volume must be controlled. The 

volume of bubble can be specified by

(5.16)

The updated position of the interface is therefore decided as

R%+1 =<K .£!r, (5.17)

where 91 is a scaling factor of the volume,

¥■k  Y
(5.18)

The two-step method of determining interface shape by applying equations (5.15) and

(5.17) is called as “modified Ryskin-Leal method”.

Curvature radii

The cuivature radii, Rm and Ra appeared in equation (5.8), are in the meridional and 

azimuthal surfaces respectively. In space, the physical meanings of the curvature radii 

and of equation (5.8) can be illustrated in figure 5.4.
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Consider an interface Rz determined by the modified Ryskin-Leal method. As the 

curvilinear 77 coordinates for the interface are constants, namely, 77 = 77,^  = rj$n, so the 

Eulerian coordinates of Rz can be functions of £ , 

xz ~ xz{<?)
(5.19)

y z  =yz (€)

o m

yr

Figure 5.4 Definition of curvature radii

Therefore, the curvature in the meridional surface x ~ y  is
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The curvature in the azimuthal surface is determined by its definition,

i ^
R ( 2 . 2W2
K " x ( X f + y 4 )

(5.21)

It should be noticed that y,  <0 in figure 5.1. In the meanwhile, due to the axisymmetric 

assumption, at the two ends of interfacial profile, we have

— = — . (5.22)

Equation (5.22) is also applicable to the whole interfacial profile of spherical bubbles or 

drops.

Harmonious decomposition of normal constraints

As pointed out by Salvador (1994), the determination of interface by equations (5.15) 

and (5.17) is a highly unstable treatment and therefore extremely low values of the 

under-relaxation factor apro should be used in equation (5.15). This problem is genetic

from the original Ryskin-Leal method, where the relaxation factor is reported to be on 

the magnitude of o(l0“3) while McLaughlin (1996) and Ponoth and McLaughlin (2000) 

even had to use relaxation factors of o(l(T4). In order to reduce instability, Salvador 

(1994) suggested to carry out a harmonious decomposition to the imbalance of normal 

stress given by equation (5.14) before the updating of interfacial profile is processed. 

This harmonious decomposition is adopted in our study and introduced in the following.

Consider the imbalance of normal forces, Arn. It is a continuous function of £. 

Because of the axisymmetry assumption, Arn can be further treated as a periodical 

function in the zone of [- %max, 4max ]. A harmonious decomposition can be carried out 

by expanding Avn using the Fourier series as following:
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ATn + [«* cos(kco%) + bk sin(kco%)\, (5.23)
^ *=1

7Uwhere co =----- ,
L a x

ak = f r ~  f ?  Ath -dt; , k = 0, 1, 2, 3,.......
S w o t

< m 

bk = dr,T(£) • sin(kco4)■ d% , k = 1, 2, 3,........
Swat *n,OT

For calculations based on discretisation,

i 4wax
2  fe  ) * cos(ko)^ ) • , £ = 0, 1, 2, 3,........

S /« a t

1 %inax

bk =~—  ^ A^n fe ) ■ sin(ko)^ )■ , k = 1, 2, 3,........
S w a t

According to Salvador’s (1994) suggestion, the maximum order of the Fourier series 

can be set as kmax -  5 ~ 6.

5.3 Solution A pproach

The solution approach for the gas-liquid interfacial flows in the single inert bubble 

problem can be summarised as follows:

(a). Define a far field boundary R = Rm where the flow blockage effects due to the 

bubble can be neglected;

(b). Give an initial field;
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(c). Determine a zoned computational domain separated by the bubble profile and 

generate a non-orthogonal mesh in it. The shape of the bubble is described by

* z = (4 >  r z ) ,  (5-24)

where the superscript K  denotes an iteration step;

(d). Obtain an approximation to the velocity and pressure fields by carrying out several 

iterations on the equations for heat and flow using the SIMPLE algorithm presented 

in chapter 4, subject to boundary conditions (5.5) to (5.7) at the zonal boundary and 

conditions (3.39) to (3.46) at other boundaries. In an iterating step, the two blocks 

are calculated in sequence and the velocity values at the zonal boundary are 

calculated by equations (5.10) to (5.20). Carry on iterating until the following 

inequality is satisfied:

EVT = I JF p  - W±2)*\<en ; (5.25)

(f). Calculate the imbalance of nonnal-stress according to equation (5.14) and cany out 

a harmonious decomposition using equation (5.23);

(g). Update the profile of the interface according to equations (5.15) and (5.17);

(f). If all the following inequalities are satisfied,

ETN=\ATn\<.en , (5.26)

ERZ = |/?fr+1 -  R%| ^ s  pr0 , (5.27)

EVT = \ w f , (5.28)

convergence can be declared; Otherwise, return to step (d), and cany on iterating 

until all the above convergent criteria are satisfied.
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The relaxation factors can be valued as: auz -  0.01 ~ 0.5 (this is up to <X> , use a small 

value if & « 1  or <Pp » 1 ) ,  a pro = (l ~ 5)x 10~3. The criteria of convergence: sn = 10“2,

sn  = 1°”35 £n = lb”’ and spro = (l~5)xl0~5. During the calculation, we found that the

roles of equations (5.40) and (5.41) were equivalent, and if equations (5.41) and (5.42) 

were satisfied then all the governing equations and boundary conditions were also 

generally satisfied within acceptable tolerances. Specifically, the maximum norm of the 

residual for the pressure correction equation (ie, continuity of mass) was o(l0^).

5.4 Results and Analysis

5.4.1 Spherical Drops

Two groups of results have been obtained. The first group are to examine the robustness 

of the numerical procedure and to observe the topology of two types of wake structure; 

the second group are to study the wake structure and its variation with exterior 

Reynolds number of a spherical drop at typical density and viscosity ratios which are 

used in industrial liquid spraying processes.

In the first group, three cases of a single liquid drop problem are studied and simulated. 

Case 1 is concerned with a water drop falling in air with the viscosity ratio 

(internal/external) 0 p =55,  and density ratio <X>p = 790, and at an external Reynolds

number, Re^  = 100. The other two cases are respectively concerned with a liquid drop 

moving in an unbounded immiscible liquid with =?>, &p =\ and at R e^  =100 (case

2) and a drop flow with =5, Qp = 0.1 and at R e^  =300 (case 3). Numerical

calculations are earned out with a mesh arrangement as: block 1 = 82x42 and 

block 2 = 90 x 82. The outer bound of computational domain is assigned at 50 times the 

equivalent drop radius, where a free stream condition is imposed. Meanwhile, 

comparisons have been made between the present numerical results and those obtained
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by other researchers such as LeClair, Hamielec, Pmppacher and Hall (1972) and Juncu 

(1999).

Flow structure

Rivkind and Ryskin (1976) have suggested two types of returning flow which may arise 

at the rear of a spherical drop. One is the returning flow or vortex behind the drop 

without a separation; the other is the vortex attached to the drop surface. Juncu (1999) 

has named these two wakes as a fluid vortex and a solid vortex, respectively. In the 

presence of a fluid vortex, a “break-up” of the circulatory flow inside the drop is 

inevitable, this means that two vortex pairs will appear inside the drop.

a) Case 1 —fluid vortex

0

(b) Case 2 —fluid vortex (c) Case 3 —solid vortex

Figure 5.5 Flow structure inside and around a spherical droplet

Figure 5.5 shows the streamlines inside and outside a liquid drop for the three cases 

respectively. It can be seen from the figure that both two types of returning flow have 

been simulated. For case 1, as no “break-up” of internal flow can be identified, the 

vortex is therefore a fluid vortex. For case 2, the vortex identified is at a distance away
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from the drop, it is also a fluid vortex. However, it is noted that, for case 3, two ring 

vortices (one with a larger size and the other with a smaller size near the rear stagnant 

point) exist inside the drop. This means that, for case 3, a “break-up” has taken place 

for the internal circulation of the drop and therefore the wake flow of the drop is in a 

form of solid vortex.

Rear Stagnant Point

Nodal Point

Saddle Point

Saddle Point

Separation Point

Rear Stagnant Point

Saddle Point

(b) Solid Vortex(a) Fluid Vortex

Figure 5.6 Topology of two wake-vortex types

The differences between the two types of wake vortex can be identified in a zoomed 

area of the rear stagnant point, as shown in figure 5.6. With a comparison of the 

topologies for the two types of wake, the fluid-vortex type has a smooth and unity 

internal circulation, while the flow inside a solid-vortex type is broken and a separation 

point can be identified. For case 2, as the wake vortex is not attached to the drop body
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as seen in figure 5.6a, a nodal point of the streamlines between the rear stagnant point 

and the saddle point where is the end of wake vortex, can be observed. For the case of a 

solid-vortex type, the wake vortex is attached to the drop and therefore only a saddle 

point exists as shown in figure 5.6b.

Wake vortex length

The ratio of wake vortex length to the diameter of a drop is an important parameter for 

the study of mass transfer as the wake vortex is believed to have important effects on 

heat and mass transfer (Schmidt, Nassar and Lubbert, 1992). Therefore, it is necessary 

to calculate the ratio accurately. The results of calculation are obtained and compared 

with corresponding benchmark values showing good agreements; this is shown in Table 

5.1.

Table 5.1 Comparison of wake vortex length

Benchmark Value Present Error (%)

Case 1 0.85 0.86 1.18

Case 2 0.5 0.49 2

Case 3 2.3 2.25 2.17

Interfacial characteristics

Figure 5.7 shows the interfacial characteristics of the drop, where the tangential velocity 

Wt , interface pressure coefficient p} 2\  exterior interface vorticity Q®  and interior 

interface vorticity . The definitions of these parameters are:

(5.29)

n(2) _ „  
n  (2 )  _  PeJT Peff,co

5 ~ 0.5pMv,lf  ’ ( ' }
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.... Present -i Re=100 
O  LeClair(1972H % = 5 5 ,O  = 7 9 0  
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Figure 5.7a Tangential velocity at interface of a spherical droplet
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Figure 5.7b Pressure coefficient at interface of a spherical droplet
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..... Present -i Re=10Q 
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Figure 5.7c Exterior vorticity /2 ^ a t interface of a spherical droplet
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Figure 5.7d Interior vorticity /2 ^a t interface of a spherical droplet
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D {i)= ^ V x W {iK (5.31)

In general, good agreements between the present calculation and benchmark solutions 

have been obtained.

Wake structure and its variation with exterior Reynolds number

It is an interesting but very difficult topic to decide the wake type behind a drop as the 

ratio of viscosity , ratio of density Qp and the exterior Re ^  are all factors which 

influence wake type. In the present study, drops with fixed and 0 P values in liquid 

spraying processes are considered. In an industrial spraying procedure, the density and

Figure 5.8 Wake flow structure and its change with R e^
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viscosity of the liquid (such as water) are often at a magnitude level larger than that of 

the surrounding fluid (generally air), so values of <Pfl and @p are selected as: =55 and

00=790, which are values of water to air, to represent a liquid spraying procedure. The 

exterior Reynolds number Re^  =10, 20, 25, 30, 40, 50, 80, 100, 120,150, 300, 400, 500 

and 550 are calculated to study the variation of wake structure. The mesh for simulation 

is the same as that of group 1. The results are shown in figures 5.8 and 5.9, respectively.

Figure 5.8 shows the zoomed wake zone at Re® =30, 80, 150, 400, 500 and 550 

respectively. Two changes of wake topology can be found when increases from 10 

to 550. The first change takes place at about R e^  =27 and the second takes place at 

about ite(2)=100. In the calculation, no wake vortex was observed at R e^  =25, but a 

fluid vortex can be clearly identified at Re^  =30; as shown in figure 5.8, it appears at 

the rear stagnant point. As R e^  increases, the vortex moves towards the drop and the 

distance between the vortex and the drop body becomes smaller and smaller. Re^  =100 

is a critical value as the fluid vortex has already attached to the drop at the rear stagnant 

point. Our calculation for Re® =120 reveals that the internal circulation of the drop has 

broken up, this means the second change of wake topology has taken place and the 

wake has become a solid vortex. At Re^=150, the two-vortex structure of the internal 

circulation can be clearly identified; this is shown in figure 5.8. This topology of the 

wake (solid vortex type) is remained up to Re® = 400. As shown in figure 5.9, the 

wake length increases quickly with Re® after the wake vortex is formed while this 

length is almost the same in the range of Re® > 400. A third change of wake structure 

is the appearance of another vortex at about 0 - 140° outside the drop when Re® > 450. 

This vortex can be identified at Re® = 500 in figure 5.8 and seen stronger at 

Re® = 550. However, this vortex should not be regarded as a change of topology as no 

additional nodal or saddle point is introduced.
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Figure 5.9 Wake zone length and its change with R e^

5.4.2 Deformable Liquid Drops

The numerical procedure is further employed to calculate deformable drops. For 

convenience of discussion, the results for the deformation of droplets and bubbles are 

presented and discussed in terms of Re^ and Weber number.

Dandy and Leal (1989) presented a numerical study of a buoyancy-driven deformable 

drop moving through a quiescent liquid. Here we use their results to validate the 

calculation of deformable interfaces. The ratios of fluid properties are 0 p -  0.909 and

= 4, which are chosen as big values to expose interesting flow behaviour in the

recirculating wake (Dandy and Leal, 1989). The settings of computational domain and 

mesh are the same as those for calculating spherical drops. The results of streamlines in 

the present calculation are compared with those of Dandy and Leal’s (1989) in figure 

5.10, where good agreement is demonstrated.
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(b) Re(2)=2, We=6

(c) Re(2)=60, We=0.5 (d) Re(2)=60, We=2

(e) Re(2)=60, We=4

Figure 5.10 Shapes of deformable drops &p -  0.909, <Pp -  0.909, 

left hand side of axis: Dandy and Leal (1989), right hand side of axis: present calculation
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5.4.3 Deformable Bubbles: Validation by Experimental Data

Raymond and Rosant (2000) carried out an extensive study of moderately deformed 

bubbles in the range of (Re^, We)= [l, 100]x [o, 5]. Corresponding to their experimental 

conditions (at room temperature, 20 SC, and in atmosphere), the ratios of fluid properties 

are set as cPp = 1:800 and &M = 1:100.

Six cases with the Reynolds and Weber numbers given in table 5.2 are calculated. 

Figure 5.11 shows the convergent paths when (R ecife) =(28, 3.7) and 

(Re^,JFc?)=(9.3, 4), respectively, in terms of EVT and ERZ which are defined by 

equations (5.27) and (5.28). The error EVT is shown to reduce quickly for a given 

bubble shape. The profile error ERZ, however, reduces at a slower rate because of the 

extreme under-relaxation. Our calculations reveal that for the larger Reynolds and 

Weber numbers, a lower relaxation factor should be used and therefore a slower 

convergent rate is obtained.

Table 5.2 Comparison between computed and measured aspect ratios

(Re(2), We)

h/w

Raymond and Rosant (2000)

h/w

Present calculation

(0.5, 0.15) 0.98 0.975

(3.7, 1.00) 0.87 0.877

(28., 3.70) 0.64 0.640

(1.9, 1.30) 0.84 0.836

(9.3, 4.00) 0.57 0.601

(48, 7.7) 0.24 0.488
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Re(2)=28, We=3.7 
Re(2)=9.3, We=4.0
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(a) Convergent path of EVT
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Figure 5.11 Convergent path of calculating deformable bubbles

Re(2)=28, We=3.7 

Re(2)=9.3,We=4.0
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(Re<2>, We) Raymond and Rosant (2000) Present Result

(0.5, 0.15)

(3.7, 1.0)

(28, 3.7)

(1.9, 1.3)

(9.3, 4.0)

o

(48, 7.7)

Figure 5.12 Comparison of bubble shapes
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Figure 5.12 compares the calculated bubble shapes with the photographs given by 

Raymond and Rosant (2000) and shows good agreements between them. The aspect 

ratios of the bubbles h/w,  where h and w are the height and width of the bubble 

respectively, are also calculated and compared with their measured values in table 5.2. 

The agreements between them are again very good for bubbles of moderate 

deformation; the last case, [Rê 2\  We) =(48, 7.7), is more challenging because of the 

large bubble deformation (h/w = 0.24). This case is presented for the sake of 

completeness. It should be noticed that the experimentally observed bubble shape is not 

axisymmetric and that the assumptions used in the numerical model may therefore not 

applicable here.

5.5 Summary o f  Chapter

A complete numerical study on gas-liquid interfacial flow problems of bubbles has been 

presented in this chapter. A “continuous stress method” and a “modified Ryskin-Leal 

method” are proposed and applied to a gas-liquid interface so as to determine the bubble 

shape and the interfacial velocity.

Numerical calculations of interfacial flows in single spherical and deformable drops and 

deformable bubbles. The robustness of the algorithm is shown in the calculations. These 

prove that the algorithm and codes are capable of calculating interfacial conjugate heat 

and fluid flows and can be used for further study on bubbles. The calculation also shows 

that for bubbles with the Weber number valued greater than 7.7, which was 

experimentally observed to be asymmetric, the calculation is physically meaningless.
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Chapter 6 

Steady Heat and Fluid Flows Inside and Around Inert Bubbles

6.1 Introduction

In chapter 3, the inert bubble problem is physically modelled as unsteady conjugate heat 

and fluid flows. When the bubble is introduced into the unbounded hot liquid, it rises up 

quickly and reaches a steady terminal state. For a slowly dissolving inert bubble, the 

rates of heat and mass transfer also reach their peak values at the terminal state and 

therefore, the flow phenomena at the interface are the clearest. However, even at this 

stage, many flow phenomena of the bubbles are still unknown. For example, the 

structure of flow fields and the interfacial characteristics are unclear for a spherical 

bubble in the range of Re^  > 200. Clift, Grace and Weber (1978) stated that “for drops 

and bubbles rising or falling freely in systems of practical importance, significant 

deformations from spherical occur for all R e^  > 600 and “the shape of the drop or 

bubble remains spherical if the Weber number is small enough”. Recently, Juncu (1999) 

studied the structure of flow fields and interfacial characteristics of a drop for 

R e^  < 500. However, for a spherical bubble, the exterior Reynolds number R e^  = 200 

appears to be the upper limit for which complete steady-state flow fields have been 

reliably determined so far.

In the meanwhile, our review in chapter 2 shows that a conjugate flow model has never 

been applied to study the interfacial flows of bubbles, although this model has found its 

application in calculating single drops. Indeed, the momentum, heat and mass transfer is 

a conjugate procedure between a gas bubble and a surrounding liquid; In order to study 

these mechanisms, both sides of the interface must be treated as real fluids although 

0 P«  1 and 0 M« l .
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This chapter studies the steady conjugate heat and fluid flows in single inert bubbles. 

The calculations are carried out for both spherical and moderately deformed bubbles. 

For spherical bubbles, the flow structure and interfacial characteristics at 

10 <Re^ <550 is studied. Simulation on deformable bubbles is the main work of this 

chapter. Studies on the shape, flow structure and drag coefficient are earned out for 

moderately deformed bubbles; a comparison between the present conjugate model and 

Ryskin and Leal’s (1984a, 1984b) “external flow model” is made. Detailed heat and 

mass transfer characteristics at the gas-liquid interface are studied.

6.2 Spherical Bubbles

In order to study the general bubble dynamics of single bubbles, an air bubble rising in 

an unbounded quiescent water is considered. The parameters are <Pp=l:790 and 

0jj= 1:55. Exterior Reynolds number Re{T> varies from 50, 100, 200, 300, 400, 500 and 

550. The numerical grids are the same as that of calculating the drops, ie, block 1= 

82x42 and block 2= 90x82; The outer boundary is assigned at 50 times of the 

equivalent bubble radius. The results presented and analysed are the flow structure 

(topology of streamlines) inside and around a spherical bubble and the interfacial 

characteristics.

6.2.1 Flow Structure of a Single Spherical Bubble

Figure 6.1 shows the streamlines inside and around the single air bubbles. Unlike a 

falling drop, the flows around the air bubbles are not separating from the spheres and no 

circulation “break-up” is observed throughout the Reynolds number range from 50 to 

550. Moreover, no wake zone behind the bubble is observed.
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Figure 6.1 Flow structure inside and around a spherical air bubble

6.2.2 Interfacial Characteristics

Figure 6.2 shows the results of interfacial parameters such as tangential velocity Wt , 

pressure P^2\  exterior vorticity and interior vorticity which are defined by 

equations (5.29) to (5.31). It is found that the tangential gradients of all these parameters 

increase with exterior Reynolds number. The vortexes, and D^2\  have the same 

strength level although differences of density and viscosity are very large between the 

two sides of the interface. Based on these results of rotational flows, it is seen that the 

one-side calculating method for a bubble (liquid side) and the corresponding treatments 

of “free surface” or “inviscid bubble” are not proper and therefore a conjugate study is 

necessary.
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Figure 6.2a Interfacial tangential velocity of a spherical bubble
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Figure 6.2b Interfacial pressure of a spherical bubble
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Figure 6.2c Exterior Vorticity £2^) of a spherical bubble
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Figure 6.2d Exterior Vorticity of a spherical bubble
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6.3 M oderately Deformed Bubbles

The deformation of a single bubble is a very complex problem. The shape of a bubble 

rising at its terminal state could be spherical, ellipsoidal, spherical-capped or dimpled; 

this is decided by the properties of the fluids and the rising velocity. For a rising bubble 

that can physically arrive at a terminal steady state in experimental studies, the exterior 

Reynolds number is up to R e^ = 0(100 ~ 200) or even higher, depending on the Weber 

number. Based on the validations in chapter 5, we restrict our current calculations to 

bubbles of (Re^,JTe)= [o, 200]x [o, 6] so that the results are with physical meaning.

6.3.1 Bubble Shape

Figure 6.3 presents the computed bubble shapes for all cases considered. For R e^ < 20, 

the progression of bubble shape with increase of We is in accord with qualitative 

“expectations” based on the most commonly reported experimental observations, 

namely, spherical to oblate-ellipsoid, and to more complicated “oblate” shapes with 

flattening at the rear. On the other hand, when Re^ >50, the front stagnation pressure 

becomes dominant and the bubble initially flattens more at the front than at the back. 

The case of Re ̂ = 5 0  lies approximately on the border between the two types of 

deformation: one characteristic of lower Re®, with stronger deformation at the rear, 

and the other characteristic of higher Re®, with stronger deformation in the front. 

Consequently, at Re® =50 the bubbles almost preserve fore-aft symmetric. The change 

of bubble shape is described in figure 6.4 in terms of aspect ratio, h/w. The progression 

is also in accord with the experimental observation of Raymond and Rosant (2000), 

where h/w decreases with We for a certain Re® while it also tends to decrease with the 

increase of Re® for a given We value except at W e-1.

127



Chapter 6 Steady Heat and Flow in Inert Bubbles

We

100

200

£
i

%

Figure 6.3 Shapes of moderately deformed bubbles
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Figure 6.4 Influence of the Weber number on aspect ratio
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Figure 6.5 Influence of the Weber number on exchange surface coefficient
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Figure 6.5 shows the influence of Weber number on the exchange surface coefficient 

sJ sq , where sl and s0 are surface of a deformed bubble at the actual Weber number 

and the same bubble at We = 0. Due to the moderate value of the maximum Weber 

number considered (We = 6), the variations of the coefficient are quite small. The 

maximum deviation from the bubble surface at We- 0 is smaller than 4% at Re^ = 1 

(10% for Re^ =10 and 11% for R e^ =100, respectively). However, this increase of 

the surface area can have a significant impact on the efficiency of systems involving a 

large number of bubbles.

6.3.2 Flow Structure

As shown in previous sections, flow separation can take place for both spherical and 

deformed drops but doesn’t occur for spherical bubbles. This phenomenon has also been 

noticed by Magnaudet, Rivero and Fabre (1995). An immediate question is whether 

flow separation can take place at the surface of a deformed bubble. The answer to this 

problem is definitely positive as such phenomena have been demonstrated by numerical 

simulations using “external flow models”, such as by Ryskin and Leal (1984b) and Li 

and Yan (2002a, 2002b). However, it is an argument that an “external flow model” 

which treats the bubble surface as a “free surface” has only one mechanism for 

producing vorticity: the curvature; while a conjugate flow model has two mechanisms: 

both the curvature and the no-slip condition (Dandy and Leal, 1989). The generated 

vorticity can be brought to the rear of the bubble by convection and accumulates there 

and, as a result, flow separation takes place. Therefore it is necessary to find the 

differences between flow fields around a deformed bubble calculated by the current 

conjugate model and those calculated by “external flow models”. In addition, as 

observed by Rivkind and Ryskin (1976), LeClair, Hamielec, Prupacher and Hall (1972) 

and Juncu (1999) and also revealed in our previous preliminary tests, both a “fluid 

vortex” and a “solid vortex” may occur as a wake vortex behind a drop calculated by a
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R e= 1, W e=  6

R e= 20, W e=  6

R c= 50, W e=  6

R e=  200 , W e = 3Re= 100, W e=  6

R e= 200 , W e=6R e= 200 , W e=  5R e= 200 , W c = 4

Figure 6.6 Flow structures of moderately deformed bubbles
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conjugate model, it is also necessaiy to find whether these flow structures can possibly 

happen behind a bubble.

Figure 6.6 shows the flow separation for deformed bubbles. In the ranges of Reynolds 

and Weber numbers considered in this paper, a standing-vortex structure is observed to 

begin at 4<We<5 for R e^= 50 , at 4<We<5 for Re^=100, and at 3<We<4 for 

Re^ = 200. These rough ranges are in agreement with those of Ryskin and Leal’s 

(1984a, 1984b) “external flow model”. Moreover, according to the suggestions by 

Hartunian and Sears (1957), two distinct criteria for the change of bubble rising path 

from rectilinear to zigzag or helical are:

(a), a critical Reynolds number R e^ » 200 for impure liquids;

(b). a critical Weber number We « 3.2 for pure liquids.

Our numerical solutions show that for R e^ =200, the Weber number required for the 

separation is a value of 0(3-4). This agrees quite well with Hartunian and Sears’s 

(1957) experimental value of We & 3.2 providing the separation will result in a zigzag 

rising path.

The topology of flow structure with the appearance of flow separation is illustrated in 

figure 6.7 where the internal flow “breaks up” and a pair of counter-rotating ring- 

vortices, one smaller-sized separation vortex and the other larger-sized main vortex, can 

be observed. Because of this counter-rotating vortex pair, a saddle point exists on the 

axis. Outside the bubble, only a separation ring vortex is observed and therefore a 

saddle point also exists on the axis where the end of the wake is. This wake flow 

structure is a typical “solid vortex” that we have mentioned before. In the present paper, 

we have only observed the occurrence of solid vortices attached to deformed bubbles; 

no fluid vortex behind a bubble has been observed though there is no obvious reason for 

its disappearance.
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Figure 6.7 Topology of vortex structure

A comparison of the flow structures calculated by the present conjugate model with 

those calculated by Ryskin and Leal’s (1984a, 1984b) “external flow model” is carried 

out and presented in figure 6.8. Ignoring the vortices inside the bubbles, which are 

impossible to be obtained with an “external flow model”, a perceivable difference 

between the results is that the separation vortices predicted by the conjugate model are 

smaller than those by the external flow model of Ryskin and Leal (1984a, 1984b). As 

separation is a phenomenon occurring in viscous flows, it could be concluded from this 

difference that an “external flow model” may have over predicted the viscous effect 

when separation occurs behind a bubble.
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(a) Re(2)=100, We=5 (b) Re(2)=100, We=6

(c) Re(2)=200, We=5 (d) Re(2)=200, We=6

Figure 6.8 Comparison of flow structures with results of Ryskin and Leal (1984b). 

Left of axis: Ryskin and Leal; right of axis: present calculation

6.3.3 Drag Coefficient

The definition of drag force coefficient given in the numenclature is the same as that of 

Ryskin and Leal (1984a, 1984b) to allow a direct comparison of our results with their 

data. However, when we integrate the local forces computed by our conjugate flow 

model, the tangential stress has also to be counted, as described by equation (5.33). 

Therefore, the extended form of CD is:
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c ° (6 1 >

The results of CD are presented in figure 6.9, where Ryskin and Leal’s (1984a) data are 

also plotted for comparison. In the range of (Re^,IFb)=[5, 50]x[o, 6], our results are 

basically in agreement with those of Ryskin and Leal (1984a). Even in the case of 

Re1-2) =100, the agreement is acceptable until We< 4; after which flow separation is 

observed to occur. Our calculated CD values for (Re^,lLe)=100x [4, 6] and for 

(Re^,JLe)= 200 x [3, 6] are considerably lower than the corresponding results of Ryskin 

and Leal (1984a). This deviation agrees with our previous observation that the external 

flow model over predicts the viscous effect in cases where separation occurs. In the 

range of (Re^,JF6?)= [o, 5]x [o, 6], however, the viscous forces are important compared 

with the inertia. An “external flow model” treats the bubble surface as “tangential stress 

free” and therefore could under predict the viscous effect. Based on this understanding, 

it is no surprise that our CD values in this range are higher than those given by Ryskin 

and Leal (1984a).

Re= 1
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20

200

—  Present Result 

O Ryskin and Leal (1984a)

We

Figure 6.9 Drag force coefficients of moderately deformed bubbles
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Figure 6.10a Tangential velocity for “rear-flattening” bubbles (Re(2)=10)
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Figure 6.10b Interfacial pressure for “rear-flattening” bubbles (Re(2)=10)
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Figure 6.10c Exterior vorticity for “rear-flattening” bubbles (Re(2)=10)
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Figure 6.1 la Tangential velocity for “fore-aft symmetric” bubbles (Re(2)=50)
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Figure 6.1 lb Interfacial pressure for “fore-aft symmetric” bubbles (Re(2)=50)
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Figure 6.1 lc Exterior vorticity for “fore-aft symmetric” bubbles (Re(2)=50)
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Figure 6.12a Tangential velocity for “front-flattening” bubbles (Re(2)=200)
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Figure 6.12b Interfacial pressure for “front-flattening” bubbles (Re(2)=200)
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Figure 6.12c Exterior vorticity for “front-flattening” bubbles (Re(2)=200)

6.3.4 Interfacial Characteristics

Based on the bubble deformations given in figure 6.3, three types of bubbles at 

ReV) ~ io, 50 and 200 are selected as representatives of “rear flattening”, “fore-aft 

symmetric” and “front flattening” bubbles respectively. The interfacial characteristics, 

tangential velocity Wt , interfacial pressure P ^  and exterior interface vorticity £2® for 

three types of bubbles are presented in figures 6.10, 6.11 and 6.12. Because the bubbles 

are only moderately deformed, the interfacial parameters of the bubbles are only 

different in magnitude; the tendencies of the distributions along the bubble profiles are 

similar to each other. For example, P ^  has two peak values, appearing at the front and 

rear stagnant points respectively; and a trough located in between of the two peaks, and
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it is almost at the same 6 angle where peak values for Q®  and Wt . This tendency 

shows that the shear strength reaches its peak value at this point. The 0 angle here is 

denoted as 0A.

6.3.5 Heat and Mass Transfer

Based on the slow dissolution and unidirectional diffusion assumptions presented in 

chapter 3, the heat and mass transfer in the continuous phase are considered. For an 

inert bubble dissolving slowly when it is rising in an unbounded liquid, without loosing 

generality, we use the fluid properties of hot water, namely, P r^  = 2 and S c^  = 500.

The contours of dimensionless temperature and concentration are shown in figures 6.13 

and 6.14. It can be seen that the thermal field has stronger diffusion while the 

concentration is more dominantly controlled by convection. As a result, the wake zone 

of concentration field is long and its diameter is small while this of the temperature field 

is short but big.

The local Nusselt and Sherwood numbers Nu and Sh respectively, are shown in figures 

6.15, 6.16 and 6.17 for three types of deformed bubbles. The distributions of Nu and Sh 

along the bubble profile have a good similarity, which indicates that although the 

equivalence for Aw and Sh is not available, the heat and mass transfer still have a 

formal analogy. In the meanwhile, the curves for the three types of bubbles are similar 

in shape but are different in magnitude. For a given Reynolds number, at R e^  =10 for 

example, the curve of N u~6  is monotonic with the maximum and minimum values 

occurred at the front and stagnant points respectively for the case of We - 1. In this case, 

the thermal or concentration boundary layer has its minimum and maximum thickness 

at the front and rear stagnant points, respectively. With the increase of Weber number, 

the Nu~ 6 curve becomes non-monotonic. A peak value of N u , which corresponds to 

the minimum thickness of
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Figure 6.13 Contour of temperature field
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Figure 6.14 Contour of concentration field
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Figure 6.16a Distribution of local Nusselt number for bubbles at Re(2)=50
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Figure 6.16b Distribution of local Sherwood number for bubbles at Re(2)=50
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thermal layer, moves backwardly. Denote 9 for the peak Nu as 0B. It can be seen that, 

9b * 9A , (6.2)

which means the minimum thickness of the thermal or concentration layer doesn’t occur 

at the same position where the strongest shear flow occurs.

In order to study the effects of wake vortex, wake contribution factors for heat and mass 

transfer, f T and f c, are defined as following:

f r  - (6.3)

fc (6.4)

where 9S is the 9 angle of separation point. For the case of (iie^, We)~(200, 6), 

which has the biggest separation zone (9S =131°) in the ranges of Reynolds and Weber 

numbers considered in this paper, we have f T =0.0049 and f c =0.0774. These values 

are quite small as compared with the area ratio of the separation zone to the bubble. 

Therefore, viewing from the contribution factors only, wake and separation are not 

obviously beneficial to heat and mass transfer.

However, a notable phenomenon in figures 6.15-6.17, the recovery of Nu and Sh in the 

wake region, can be clearly identified. For the case of (R e W e ) = ( 200, 6), flow 

separation occurs at 9 - 9 s =131° (this can be identified in figure 6.12a), and a solid- 

type wake vortex attaches to the bubble body. As shown in figure 6.17, perceivable
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recovery of Nu and Sh takes place in the range of 131° <0 <180°. This recoveiy is a 

contribution of the wake vortex. In the zoomed-in wake zone shown in figure 6.18, the 

circulating flow takes in dissolved gas from the bubble body at the separation point, 

which results in the Sherwood number arrives at its minimum value. However, because 

of the steep concentration gradient, the circulating flow is “refreshed” before it arrives 

at the saddle point. That is, mass transfer occurs quickly when the concentrated liquid 

on its way from the separation point to the saddle point because of the mass diffusion 

induced by the steep gradient. Therefore, the returning flow from the saddle point to the 

rear stagnant point and then to the separation point has low gas concentration 

(“refreshed”) and a recovery of the Sherwood number is obtained.

Separation Point

O  IO 
00 °> cn o

pncentration
fradient

Rear Stagnant Poii

'Fresh Liquid

Saddle Roint

Figure 6.18 Wake vortex structure and its effects on heat and mass transfer

148



Chapter 6 Steady Heat and Flow in Inert Bubbles

6.4 Summary o f the Chapter

Steady heat and fluid flows inside and around inert spherical and deformable bubbles 

are studied in details. It is revealed that in nearly the whole range of exterior Reynolds 

number for a single bubble possibly to remain a spherical shape, namely, in the range of 

10 < Re^ < 550, flow separation behind a spherical bubble doesn’t take place. Study on 

deformable bubbles is the main object of this chapter. The dynamics of bubbles, 

including the bubble shape, flow structure, interfacial characteristics, drag coefficients 

and heat and mass transfer are studied and carefully analysed. The following concluding 

remarks can be drawn from the study:

(a). In the ranges of (Re^JTe)- [o, 200]x [o, 6], Re^ = 50 is the border of two types of 

deformation of a bubble: stronger in the rear at Re^ < 50 and stronger in the front at 

Re(2)>50.

(b). For a single air bubble rising in unbounded water, at room temperature and 

atmospheric pressure, flow separation from the bubble body is observed to onset at 

4 < We <5 for Re(2)= 50 ,at 4<We<5 for Re(2) =100, and at 3<We<4 for Re(2)=200. 

In all these cases, the flow structure is a typical solid vortex type with a pair of counter- 

rotating ring vortices inside and a single separation ring vortex outside the bubble;

(c). The conventional external flow model of the bubble, which treats the gas-liquid 

interface as a “free boundary” (a slip boundary free of tangential stress), can over 

predict the viscous effect on the separation which has occurred, and under predict the 

viscous effect at Re^ < 5 .

(d). The minimum thickness of the thermal or concentration layer doesn’t occur at the 

same position where the strongest shear flow occurs, this shows a non-linear 

relationship between the flow, thermal and concentration fields.

(e). A recoveiy of Sherwood and Nusselt numbers in the separation zone is observed 

and a physical explanation to this is proposed.
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Chapter 7 

Time-Accurate Simulations o f an Inert Bubble Introduced into a 

Hot Liquid

7.1 Introduction

In order to study the mechanisms of heat and mass transfer in bubbly flows, a close 

observation of the time-dependent behaviour of the bubble-rise is crucial. Before the 

inert bubble reaches its terminal state, which has been carefully studied in chapter 6, the 

rising is an accelerating procedure during which the shape, rising velocity, thermal and 

concentration fields change with time. This procedure is short in time but important to 

the heat and mass transfer because the bubble deformation and mainly happened during 

this period as it will be shown later in this chapter.

Time-accurate simulation of the bubble-rise is a complete application of the algorithm 

and CFD codes developed in this thesis. In order to solve the full mathematical model 

presented in chapter 3, the unknown time-dependent velocity and acceleration, VQ(t)

and a0(t) in equations (3.27), (3.32) and (3.34) must be decided and additional

independent equations must be derived and coupled with the mathematical model in 

chapter 3 so as to obtain the unique solution of an interfacial problem.

This chapter derives the controlling equations for V0(t) and a0(t) by analysing the

forces acting on the dispersed phase. A supplementation to the numerical method 

presented in chapter 5 for steady calculations is presented for time-accurate simulation 

in this chapter. Based on these, study on the unsteady flows and heat and mass transfer 

in an inert bubble introduced into a hot liquid is carried out.
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1 2  Rising Velocity and A cceleration

7.2.1 A Model Equation for Spherical Bubbles

As reviewed in chapter 2, the spherical model has important roles in analysing the 

dynamics of single bubbles. Indeed, many works have been done for the analysis of 

forces acting on a bubble by using a spherical model to establish the constitutive 

equation for the mathematical model of the single bubble problem. A summary of these 

models has been given by Clift, Grace and Weber (1978). Even in the recent years, 

spherical models were still being used by some researchers to calculate the translating 

velocity (Mei, 1994; Takagi and Matsumoto, 1995); this also shows the importance of 

the spherical model.

In the spherical models, the time-dependent rising velocity is modelled and

calculated using the dynamic parameters of the steady state. In order to model the time- 

dependent effects, a so-called “added mass term” and a “history force” are induced 

(Clift, Grace and Weber, 1978), and the balance of the forces is written as

bubble. On the right-hand side of the equation, the first term stands for buoyancy force, 

the second is the drag force and the final term is called the Basset history force which is 

induced by the contribution of a past acceleration. According to the suggestions by 

Clift, Grace and Weber (1978) and Takagi and Matsumoto (1995), the history term can 

be completely ignored. In the meanwhile, as the ration of gas-liquid density is generally 

very small, the contribution of the mass of the bubble is negligible on the left side.

(7.1)

where the — V- is the “added mass” whose volume equal to a half of that of the
2
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Therefore, equation (7.1) is reduced to

l  at

In a dimensionless form, equation (7.2) changes to

(7.2)

1 dV0(t) 1 FDdref
2 dt Frpll)V ^F

(7.3)

According to the definition of drag coefficient, the time-dependent drag force can be 

calculated as follows,

Fd ^ C D ^ d lA V o it )=
1 Eo2

6 f  Mo
(7.4)

Equation (7.3) becomes

d j M  _  2Ef_ ( J = |  Cfl _  ( { i)f (7.5)

According to spherical models, the drag coefficient CD can be approximately evaluated 

as (Mei, 1994):

Cn = 24 12
Re{2)

+ 0.75
y \

3.315
1 +

(r+>)0'5y

-n
(7.6)

1

' I
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Equation (7.6) is an ordinary differential equation. With a given initial value, this 

equation is solved using a second-order accurate scheme in this thesis,

7.2.2 A Full Analytical Model

In the spherical model methods, the rising velocity is unreasonably decoupled from the 

full mathematical description of the problem and is treated as independent of the flow 

fields. This treatment is unacceptable for deformable bubbles. In the meanwhile, the 

drag coefficient of a deformable bubble defined in the numenclature cannot be simply 

evaluated by using equation (7.6) as the drag force is time-dependent. In order to sort 

out this problem, a full analysis on the forces is needed.

Consider a single bubble rising in an unbounded liquid. The normal and tangential 

forces act on the body of the bubble through the surface. According to the axisymmetric 

assumption, the cooperation of these surface forces, obtained by integrating over the 

outer face of the bubble, is in the vertical direction and is the vectorial summation of the 

buoyancy and drag forces. That is,

where S is the surface of the bubble whose volume is ¥-, FB and FD are the buoyancy

(7.7)

s
(7.8)
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and drag forces respectively. It should be recalled that in the normal stress, as shown in 

equation (5.4), the pressure term is the static pressure of fluid, p ; not the effective 

pressure p eff defined by equation (3.31) whose dimensionless form is

Pcjr=P+-^y (7.9)

If the gravity of the fluid surrounding the bubble is negligible, equation (7.8) becomes

F»=0

Fy  = ~fd = 27tr{x̂  • 4 2) + y f  • rj2})- d f

(7.10)

while equation (7.10) results in

P e f f = P

(7.11)
Fr = 00

This is exactly the case of the water head having been neglected. This treatment is 

widely used to analyse the steady external flows over fluid particles.

Except the facial forces, the gravity is acting on the bubble in the form of a body force, 

Fg = p i,]Vg. (7.12)

Therefore, the acceleration of the bubble satisfies the following equation:

p * ¥ - a 0( ? ) - F , - F ,  =FB -{F D +F„). (7.13)

The rising velocity of the bubble can be given by the integration of a0 (t) ,

r0(‘)=V0{t„)+ ( a0 (t)-dt. (7.14)
*0

Give the initial value of V0 (t0) and proper initial fields, the mathematical model of the
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current problem becomes well posed and can be solved.

7.3 Solution Approach for Time-Accurate Simulation

Based on the solution approach presented in section 5.3, supplementations are carried 

out for time-accurate simulations. A full numerical procedure for calculating the time- 

dependent rising of a single bubble introduced into an unbounded liquid is summarised 

as follows:

(a). Define a far field boundary R = Rm where the flow blockage effects due to the 

bubble can be neglected;

(b). Give an initial field and a time step A t ;

(c). In time level tn+l = tn + At , determine a0(tn+l) and V0 (tn+{) according to equations 

(7.13) and (7.14) respectively;

(d). Solve the heat and fluid flows in steps similar to those for steady problem in section 

5.3, but the temporal derivative terms in the controlling equations must be included 

and therefore the so-called space conservation law (section 4.3.2) should be 

applied;

(e). Update the bubble profile step by step;

(f). Return to step (c) to update aQ(tn+x) and V0([n*1) if they are still changing with the

updating of bubble profile for t n+l; Otherwise, check the criteria E T N , ERZ and 

E V T , defined by inequalities (5.26)~ (5.28), if they are satisfied, convergence can 

be declared for the time-level t = tn+1 and go to step (h);

(g). Otherwise, return to step (d) and repeat carrying out internal iterations until all the 

above convergent criteria are satisfied and a0(t,1+l) and K0(f"+1) are not changing

with the updating of bubble profile for tn+1;

(h). Check the variation,

(7.15)

155



Chapter 7 Time-Accurate Simulation of an Inert Bubble

If inequality (7.15) is satisfied, the rising bubble has arrived at its terminal state and 

the calculation can be stopped; Otherwise, return to step (b) to calculate the next 

time-level.

The criterion sref defined by inequality (7.15) is important for the calculation and must

be valued on the magnitude of o(l0~3) or even higher. It should be noted that even in a 

same time level, the calculation is only similar to that for a steady problem but different 

from it because a0(t) and V0(t) are time dependent. So the time-accurate calculation is

not simply a series of steady problems; it is much more complicated and much more 

CPU-time consuming. The flow chart of the above calculation procedure is given in the 

appendix.

7.4 Results

Because the calculation is extremely time-consuming, calculations are carried out for 

the three types of deformations at terminal states observed in chapter 6. Nine cases are 

included, their terminal Reynolds and Weber numbers are 

(Re^, We) = [l 0, 50, 200]x[l, 3, 5]. The computational domain and mesh are the 

same as that used for previous calculations, i.e., the outer bound of computational 

domain is assigned at 50 times the equivalent bubble radius; mesh arrangement is: 

block 1 = 82 x 42 and block 2 = 90 x 82. The fluid properties are set to those of air bubble 

rising in hot water (100°C and latm), namely, &p =1:800, =1:100, Pr® =2 and

iSc® = 500. These are typical values selected to expose the flow and transfer phenomena 

in rising bubbles, and the selection is considered for not loosing generality.
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7.4.1 Rising Velocity

The time histories of dimensionless rising velocity for three kinds of bubbles are shown 

in figure 7.1. For comparison, Mei’s (1994) decoupled rising velocity model is 

employed. It can be seen that the decoupled model gives results close to those of lower 

Weber number cases calculated by the full analytical model. This may because the 

Mei’s (1994) model is for spherical bubbles. For results obtained by the full analytical 

model, at a given exterior Reynolds number, the bigger Weber number, the shorter 

dimensionless time is needed to reach the terminal state. The unsteady oscillatory rising 

velocity observed by Takagi, Matusmoto and Huang (1997), Krishna and Van Baten 

(1999) and Sato, Jung and Abe (2000) has not been found in our calculation. This could 

because the Weber number used here is small and the flow around the bubble is laminar 

and with only very weak flow separation in some cases.
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We=1 

W e=3 

W e=5
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Figure 7.1a Time histoiy of bubble rising velocity at R e^  =10
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Figure 7.1b Time history of bubble rising velocity at R e^  =50
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Figure 7.1c Time history of bubble rising velocity at R e^  = 200
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7.4.2 Evolution of Bubble Shape and Flow Structure

The evolution of bubble shape and flow structure for cases at 

(Re^, We) -  [lO, 50, 200]x[3, 5] are shown in figure 7.2. It should be noticed that

the velocity used to show flow structure here is the relative velocity Wr because the 

flow is unsteady. For cases at (Re^, W e)-  [lO, 50, 200]x [l], the deformation is very 

slight and therefore omitted here for simplicity. As shown in figure 7.2, the deformation 

of a bubble mainly occurs at the early stage of the acceleration, namely, before VQ (t)

arrives at about 80 percents of its value at terminal state. In the later stage of 

acceleration, the deformation is very slow. However, for the cases with separations, the 

onset of separation is only at the late stage of acceleration. There are two such cases: 

(Re(2), We)={50, 5) and (Re(2), We)=(200,5). For (Re(2), 5), the

onset of separation happens at t -  2.2, when VQ(t) is already nearly 95 percents of its 

terminal value; For (Re^, We) -  (50, 5), the separation takes place even later, at 

t = 1.575 when V0(t) equal to 99.6 percents of its terminal value. This phenomenon

further proves that separation is the accumulation of vortices, which has been concluded 

in chapter 6. Because of the curvature and no-slip boundary at the gas-liquid interface, 

vorticity is generated and be convected to the rear of the bubble and results in flow 

separation. This procedure takes time so the wake vortex can only be observed at the 

late stage of acceleration.

In the meanwhile, the late onset of separation raises a requirement for the convergent 

criterion sref defined by inequality (7.15), just like what we mentioned previously. For

case of (Re^, We)~(50, 5), the separation is impossible to be observed if 

sref = 5 x 10~3. hi our calculation, this criterion is set at s ref -1  x 10"4 so as to expose all 

the possible details of flow phenomena.
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Figure 7.2a Evolution of bubble shape and flow structure at R e^  = 10, We -  3
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Figure 7.2c Evolution of bubble shape and flow structure at R e^  = 50, W e-  3
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As already shown in figure 7.1, the time scale for a rising bubble to arrive at its terminal 

state is dependent on the exterior Reynolds number. At a higher Reynolds number, the 

dimensionless time for the bubble to reach its terminal state is longer. Again, the 

oscillation of bubble profile is not found in figure 7.2 because the deformation is 

moderate and the separation is weak.

7.4.3 Heat and Mass Transfer

Figures 7.3 and 7.4 show the time-dependent development of dimensionless 

temperature and concentration fields. In these figures, the propagation of the 

temperature and concentration, which is seen closely related to the deformation of 

bubbles, happens at the early stage of bubble rising, when deformation quickly occurs. 

And again, the thermal field has stronger diffusion while the concentration is more 

dominantly controlled by convection. This can be clearly observed at the very beginning 

of bubble-rise, where the contours of temperature are almost fore-aft symmetric while 

the concentration fields are obviously asymmetric. In the meanwhile, the concentration 

wake zone behind the bubble is narrow and long while that of temperature is wide and 

short. These phenomena are similar to those of steady state discussed in chapter 6.

The time-dependent histories of averaged Nusselt and Sherwood numbers, defined as:

f Sh • r  • Jxf~+~yf • d%
Nu = — :  —-— —   . S h .   7----— ------------. (7.16)av ,- - - - - - - - - - -  5 av J 80.   —  5 V JJ, r - ^ X f + y f - d l ;

/i80

I  Nu + y) 'd%

J
480”

[ \x] + y | -d%

are shown in figures 7.5 and 7.6. These parameters have a same story with the time- 

dependent rising velocity, that is, the parameters increase quickly at the early stage of 

bubble acceleration while the increase for late stage is very slow. This agrees well with 

the observation of the time-dependent propagation of dimensionless temperature and
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concentration. It should be noted that even at the instant when the bubble is introduced 

in the hot liquid, the averaged Nusselt and Sherwood numbers are not zero because of 

the diffusion effects.

7.5 Summary o f Chapter

Time-accurate simulations of an inert bubble introduced into a hot liquid are presented. 

The numerical method for steady gas-liquid interfacial flows is supplemented and 

developed to do time-accurate simulations. Independent equations for bubble rising 

velocity and acceleration are derived and a full analytical model is presented. The 

conclusions of this chapter can be summarised as follows:

(a). The rising velocity and acceleration of bubble-rise can be achieved by analysing the 

forces acting on the bubble; A full analytical model is presented in this chapter;

(b). Time-dependent simulations are extremely time-consuming, they are not simply a 

series of steady calculations but a multi-level iteration procedure;

(c). The rising velocity, bubble deformation and development of temperature and 

concentration fields share a same time history: fast change at the early stage of 

acceleration and slowing down later;

(d). Temperature field has stronger diffusion while mass transfer is more dominantly 

controlled by convection. Because of diffusion, the Nusselt and Sherwood numbers 

are not zero even at the instant when the bubble is introduced into the hot liquid;

(e). The onset of separation occurs at the nearly end of the acceleration stage. It proves 

that flow separation is a result of vorticity accumulation.
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Chapter 8

Conclusions and Recommendations for Further Work

With the financial support provided by the British Engineering and Physical Sciences 

Research Council (EPSRC), numerical simulations of an inert bubble introduced into a 

hot liquid are carried out to study the mechanisms of heat and mass transfer at a gas- 

liquid interface in two-phase bubbly flows. As the research is entirely numerical and 

theoretical, three main parts of the work are included as: (1) modelling of physical 

phenomena, (2) development of numerical algorithm and (3) numerical simulations and 

analyses. Attentions have been paid to the details of heat and fluid flows at the gas- 

liquid interface of the inert bubble.

The study begins with a physical and mathematical modelling of the phenomena; the 

physical and mathematical models are established and presented in chapter 3. The inert 

bubble introduced into a hot liquid is physically modelled as an “unsteady conjugate 

heat and fluid flows inside and around a deformable gas-liquid interface”; basic 

governing equations and well-posed solution-determining conditions are given, hi order 

to solve the mathematical model, the unsteady bubble deformation is treated as a 

moving boundary problem; and a numerical procedure with multi-block iteration and a 

moving mesh arrangement is proposed and presented in chapter 4. Especially, this 

procedure employs high order numerical schemes so as to highlight the flow 

phenomena at the moving boundary. Further to this procedure, chapter 5 introduces gas- 

liquid interface treatments to challenge the determinations of bubble profile and 

interfacial velocity by the complex dynamic boundary conditions. The algorithm 

presented in chapters 4 and 5 are validated. Moreover, the calculation of gas-liquid 

interfacial flows in chapter 5 gives a range for obtaining physical solutions for 

numerical simulation of bubbles. With all these preparation, detailed numerical studies
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on the dynamics of the inert bubble introduced into the hot liquid are carried out. These 

studies are on the bubble shape, flow structure, drag force, rising velocity, interfacial 

characteristics and heat and mass transfer; the results are presented in chapters 6 and 7, 

for steady and unsteady states respectively. For the convenience of description, the 

conclusions are summarised according to the three parts of the research work.

8.1 Physical and M athematical M odelling

In order to study the transfer phenomena and relevant mechanisms, both sides of a gas- 

liquid interface must be considered although the density and viscosity of the gas are 

smaller in magnitude order than those of the liquid. When both sides are considered, the 

heat and fluid flows are conjugate rather than those of “free surface problem” in 

“external flow model” of bubbles. Because the bubble-rise has an accelerating 

procedure, it is therefore physically modelled as “unsteady conjugate heat and fluid 

flows inside and around a deformable gas-liquid interface”.

Full Navier-Stokes equations and well-posed solution-determining conditions are 

employed as the mathematical description of the physical problem. Especially, kinetic 

and dynamic conditions are posed on the moving gas-liquid interfacial boundary. The 

mathematical model, in a dimensionless form, is presented in a non-inertial coordinates 

system for the convenience of studying the flows and transfer phenomena at the 

interface.

8.2 Developm ent o f  Num erical Algorithm and CFD codes

8.2.1 Finite Volume Method (FVM) with High Order Schemes

It is a basic requirement to obtain high-resolution numerical results for studying the
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mechanism of transfer phenomena. The SIMPLE method for incompressible heat and 

fluid flows is employed to develop a basic flow solver. In order to improve the 

numerical accuracy and resolution of results, high order total variation diminishing 

(TVD) schemes in finite volume integrating form are introduced and employed for 

discretisation of basic equations.

8.2.2 Multi-Block Iteration and Moving Mesh Arrangement

A numerical procedure with multi-block iteration is incorporated with a moving mesh 

arrangement to calculate heat and fluid flows in complex geometries separated by a 

time-dependent gas-liquid interface. The key issues of the multi-block iteration are the 

zonal boundary treatments; these include the uniqueness of the zonal boundary 

guaranteed by a spline-fitting and a zonal boundary interpolation method proposed by 

the present study. The moving mesh arrangement is employed to track the gas-liquid 

interface; and the spatial conservation law is applied to damp the discretisation error for 

moving mesh arrangement.

The reliability, good accuracy and robustness of this numerical procedure for studying 

complex heat and fluid flows in complex geometries with time-dependent moving 

boundaries are well examined and validated.

8.2.3 Gas-Liquid Interfacial Treatments

The numerical method for moving boundary problems is supplemented with gas-liquid 

interfacial treatments. These treatments include a “continuous stress method” for 

obtaining the explicit interfacial velocity which is implicitly given by the continuity of 

tangential stress; and a modified Ryskin-Leal method for determining the bubble shape 

by the balance of normal forces. Based on a comparison with the traditional “external 

flow model”, widely used by researchers for studying single bubbles, the “conjugate 

flow model” and the relevant interfacial treatments proposed in this paper and their
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importance on revealing the mechanism of transfer phenomena are highlighted.

8.2.4 Supplementation for Time-Accurate Simulation

Based on the analysis of forces acting on the gas-liquid interface, independent 

controlling equations are derived to obtain the velocity and acceleration of the rising 

bubble. These equations are supplemented to the numerical procedure to carry out time- 

accurate simulation of an inert bubble introduced into hot liquid.

8.3 Numerical Simulations and Results

With the numerical methods and the CFD codes developed in this study, investigations 

on the heat and fluid flows and relevant transfer mechanisms in an inert bubble 

introduced into a hot liquid are carefully studied. Contributions of this thesis include:

(a). A detailed study on the dynamics of spherical bubbles;

(b). Results and analysis’s on the dynamics of deformable bubbles at steady state. These 

detailed results are on bubble shape, flow structure, drag coefficient, interfacial 

characteristics, and heat and mass transfer phenomena.

(c). Understanding of unsteady behaviours of an inert bubble introduced into a hot 

liquid based on time-accurate simulations. The behaviours include the time- 

dependent rising velocity, evolution of bubble shape and flow structure, 

development of thermal and concentration fields and time history of Nusselt and 

Sherwood numbers.

8.3.1 Dynamics of Single Spherical Bubbles

The interfacial characteristics and flow structures of a single spherical bubble rising in 

an unbounded quiescent liquid are studied and compared with those of falling spherical 

droplets. In nearly the whole range of exterior Reynolds number for a single bubble
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possibly to remain a spherical shape, namely, in the range of 10 < Re^ < 550, flow 

separation behind a spherical bubble doesn’t take place while the interfacial vortices are 

found to have the same strength level although density and viscosity on both sides are 

different in magnitude order. The rotational flow results show that the one-side (liquid 

side) calculating method (“external flow model”) of single bubbles and the 

corresponding treatments of “free surface” or “inviscid bubble” may not be proper, the 

conjugate flow model and the treatments are more practical and reasonable.

8.3.2 Dynamics of Single Deformable Bubbles

Calculations of deformable bubbles are carried out based on validation by available 

experimental results, which shows the range of Weber numbers for obtaining physical 

solutions must be We < 7.7 so that axisymmetric assumption is valid. Therefore, only 

the moderately deformed bubbles in the ranges of (Re^,IFe)=[o, 200]x[0, 6] are 

numerically studied. The conclusions for these results and analysis’s are:

(a). In the ranges of (Re^,JTe)= [0, 200]x [0, 6], Re^ =50 is the border of two types of 

deformation of a bubble: stronger in the rear at Re^ < 50 and stronger in the front 

at R e^ > 50;

(b). For a single air bubble rising in unbounded water, at room temperature and 

atmospheric pressure, flow separation from the bubble body has been observed to 

onset at 4< W e< 5  for Re^ = 50, at 4 < We<5 for R e^ = 100, and at 3< W e< 4  for 

Re^ = 200. In all these cases, the flow structure is a typical solid vortex type with a 

pair of counter-rotating ring vortices inside and a single separation ring vortex 

outside the bubble;

(c). The conventional external flow model of the bubble, which treats the gas-liquid 

interface as a “free boundary” (a slip boundary free of tangential stress), can over 

predict the viscous effect where the flow separation has occurred, and under predict 

the viscous effect at R e^ < 5 ;
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(d). The minimum thickness of the thermal or concentration layer doesn’t occur at the 

same position where the strongest shear flow occurs, this shows a non-linear 

relationship between the flow, thermal and concentration fields.

(e). A recovery of Sherwood and Nusselt numbers in the separation zone is observed; 

this recovery can be physically explained by the flow structure and heat and mass 

transfer in the separated wake vortex.

8.3.3 Unsteady Behaviour of Inert Bubble Introduced into Hot Liquid

Time-accurate simulations of an inert bubble introduced into a hot liquid are carried out 

with the numerical method for gas-liquid interfacial flows, supplemented by 

independent equations for bubble rising velocity and acceleration. The conclusions of 

this study are summarised as follows:

(a). The rising velocity and acceleration of bubble-rise can be achieved by analysing the 

forces acting on the bubble; a full analytical model is developed;

(b). Time-dependent simulations are not simply a series of steady calculations but an 

extremely time-consuming multi-level iteration procedure;

(c). The rising velocity, bubble deformation and the development of temperature and 

concentration fields share a same time-history: fast change at the early stage of 

acceleration and slowing down later;

(d). Temperature field has stronger diffusion while mass transfer is more dominantly 

controlled by convection. Because of diffusion, the Nusselt and Sherwood numbers 

are not zero even at the instant when the bubble is introduced into the hot liquid;

(e). The onset of separation occurs at the nearly end of the acceleration stage, therefore, 

flow separation is a result of vorticity accumulation.

8.4 Recommendations for Further W ork

A famous CFD scientist has ever commented that excellent results could be obtained for
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CFD studies based on good understanding of physical problems by researchers. 

Applying this saying to the current entirely numerical and theoretical study, good 

understanding of bubble physics is the most important point.

Firstly, my study has tried the best to obtain support from available experiments. 

Because of the expenses, experimental studies are relatively rare in literatures, as 

reviewed in the begimiing of the present paper. For study the mechanism of interfacial 

transfer phenomena so far, our current numerical study seems in an outstripped position 

than experimental investigations. As a further work, detailed and careful experimental 

study on the heat and flow fields is the first choice to investigate the interfacial transfer 

phenomena and relevant mechanisms.

In the second, we still have a lot of works need to be done even for numerical 

simulations. For example, the current study is only on moderately deformed bubbles. In 

order to study the mechanism of interfacial transfer phenomena, bubbles at higher 

exterior Reynolds and Weber numbers should be studied as we found the wake vortex 

has special effects on heat and mass transfer in chapter 6. At a higher Reynolds number, 

the vortex shedding and local flow mixing may have important effects on heat and mass 

transfer and should be an important work needs to be done.

Meanwhile, numerical methods developed in the present study are not perfect for study 

more complex problem. For time-accurate simulations, the current method has high- 

order spatial accuracy; but the temporal accuracy is only first-order. How to improve the 

temporal accuracy of the numerical method could be a further work.
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Appendix Development o f FORTRAN Codes

Appendix 

Development o f FORTRAN Codes for Solving the Inert Bubble 

Problem

A .l Flow Chart for Steady Calculation

Figure A.l is the flow chart for calculating steady heat and fluid flows in the inert 

bubble problem in this paper. The functions of each code-blocks are as follows:

START

NO

YES

NO

YES

STOP

GRID

DEFORM

ASSUME

SOLVER

OUTPUT

Steady
solving
block

Figure A. 1 Flow chart for steady calculations

I
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GRID

Setting up computational domain and generating grids. The TTM method introduced in 

section 4.3.5 is employed to generate second-order smooth numerical mesh. Based on 

these, the geometrical parameters such J , a , (I and y  are calculated. In case of 

unsteady problem, the space conservation law is applied to calculating J .

ASSUME

Assuming initial fields. Uniform initial fields are always imposed for spherical bubbles; 

for deformable bubbles, the velocity and pressure values at the last profile updating are 

used. Far field boundary conditions will be posed in this block.

SOLVER

Firstly, establish the solution equations for velocity and solve them using TDM A 

method; Secondly, calculate the coefficients of pressure correction equations and obtain 

corrections of pressure and velocity.

CONVERG

Check the criteria EVT and ERZ.

DEFORM

Update the bubble profile by using the modified Ryskin-Leal method presented in 

section 5.2.3.

A.2 Flow Chart for Time-Accurate Simulations
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The flow chart for the algorithm 

presented in section 7.3 is shown 

in figure A.2. In this figure, the 

parameter NT is the index of time 

level. The basic code block is the 

“steady solving block” enclosed 

by the dashed lines in figure A.l 

whose computational function has 

been described. It should be 

noticed that the “steady solving 

block” is employed by an external 

iterating loop even at a physical 

time level while calculation for a 

series of time levels must be 

carried out for a time-accurate 

simulation. Because of these, we 

have no doubt about the extremely 

time-consuming calculations in 

chapter 7.

Figure A.2 Flow chart for time-accurate 
simulations

{NT+\ {N T+1

r\ VoW*
change

TAR

NT=NT <

Solve a0(t)NT+' and V0(t)N T+1

j “Steady solving block’

OUTPUT
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