
2 8 JAM 1999

The Nottingham Trent University
Library & Information Services

SHORT LOAN COLLECTION

Date Time Date Time

Please return this item to the Issuing Library.
Fines are payable for late return.

THIS ITEM MAY NOT BE RENEWED
Short Loan Coll May 1996

l o l H t o z -
40 0675722 X

ProQuest Number: 10290253

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com p le te manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 10290253

Published by ProQuest LLC(2017). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106- 1346

Real Tim e R ecursive Block

Parameter Estim ation o f Second

Order System s

Christopher K. Goodwin B.Sc, M.Phil

July 1997

This thesis is submitted to The Nottingham Trent University in partial fu l

filment of the requirements fo r the degree of Doctor o f Philosophy.

This copy o f the thesis has been supplied on condition that anyone who

consults it is understood to recognize that its copyright rests with its author,

and that no quotation from the thesis and no information derived from it

may be published without the author’s prior written consent.

“Truth is our currency.” — Martin Bell

A b s tra c t

Many real world dynamic systems can be approximated well using second order sys

tems. It is often required, therefore, in engineering and other situations to deterimine

the characterizing param eters of observed data, with the assumption that the data

represents a second order system.

This study investigates the param eter estimation problem encompassing a wide

range of techniques and algorithms. Conventional approaches are tested and in some

cases combined to produce hybrid algorithms. Two novel methods are also applied,

and compared with the other techniques. These novel methods are neural networks

and genetic algorithms.

Further, a new algorithm is proposed which is applied to all techniques tested.

This new algorithm adaptively adjusts the sampling frequency at which observed data

is read, based on previous estimates of the parameters. It is shown that this improves

the accuracy of the param eter estimation process.

A complete simulation environment is devised enabling parameter estimation to be

tested under a range of situations. Firstly, when the system parameters are constant

with time. Then secondly, when the parameters vary through the time period of the

observed data. The simulation enables the parameters to be estimated in blocks of

data. Further enhancement of the algorithms enable them to perform recursively,

taking account of previous block’s estimates. Finally, all algorithms are tested on

their tolerance to two types of noise. The complete simulation allows recursive block

param eter estimation which adaptively varies the sampling frequency to increase the

accuracy of the estimation, under a range of noise conditions.accuracy of the estimation, under a range of noise conditions.

11

I
j

j

A cknow ledgem en ts

When I started my studies towards this thesis, I had only recently arrived in the East

Midlands. I would like to thank my supervisor, Dr. David Al-Dabass, for giving me the

opportunity to take the student bursary position; I hope he has no cause to regret it.

The award gave me a stable background for making my way in a new and wonderful

part of the country.

Further thanks must go to Dr. David Al-Dabass for his contribution, both in ideas

and experience, throughout the period of the study. I would also like to thank several

of the other lecturers in the Computing Department. Dr. Dominic Palmer-Brown has

always been enthusiastic and inspiring as well as an im portant source of ideas. Thanks

also go to Pete Halstead, Pete Thomas and others for their lucid explanations at times

of my own consternation.

The support staff in the departm ent, both technical and administrative, deserve

particular thanks. W ithout the technical support which enabled both the local and

global computer networking I would be significantly less well-informed. Notable names

include Tim Gittins, Pat Hamilton, Chris Noble and John Haslam. They have always

done their best to help, even when the backlog of work had no end in sight. The secre

taries too have always done their utm ost to help and make my time as straightforward

as possible.

One of the most im portant group of people to thank are my peers A— those who

started their journey in post-graduate research in the department at the same time

as myself, plus those who were already present when I joined and those who started

after. I would like to thank Andy “Norm” Cheetham for showing me the ropes and

for valuable discussions. Thanks to Simon Treavis and Nick Burton for the musical

education I received. I now know what I don’t like! Thanks also to Stu Barker —

your music was better — plus I hope we were able to sort out some problems together.

Thanks also to Jonny “radiation leak” Tepper — I hope my grammars okay! Finally,

to Chris Roadlcnight, thanks for the supply of doughnuts, cyclomania and unerring

help in uncountable ways in producing this thesis.

C o n ten ts

A bstract , i

A cknow ledgem ents iii

C ontents v iii

List o f figures xii

List o f tables x v

1 Introduction 1

1.1 A Stereo Camera S y stem ... 1

1.1.1 Introduction and A pplications.. 1

1.1.2 Geometry of A Stereo Camera S y s t e m ... 2

1.1.3 Point Object L o c a t io n ... 3

1.1.4 Point Object Tracking and N o i s e .. 5

1.2 Second Order S y stem ... 7

1.2.1 F orm ula tion ..* 7

1.2.2 Generality of the Second Order S y s te m ... 8

1.2.3 Param eter Estimation ... 8

1.3 Main A im s... 9

2 R eview 10

2.1 Param eter Estimation .. 10

v

2.2 Vision S y s te m s ... 11

2.3 Signal Processing and Neural N etw orks... 13

2.3.1 Digital Signal P rocessing .. 13

2.3.2 Adaptive Filter Techniques... 15

2.3.3 Tapped Delay L ines.. 16

2.4 Genetic A lgo rithm s... 17

3 A dap tive B lock R ecursive P aram eter E stim ation A lgorithm 19

3.1 In tro d u ctio n .. 19

3.2 Real Time Param eter E s t im a tio n .. 21

3.3 Adaptive Sampling Frequency A lg o rith m .. 23

3.3.1 In troduction ... 23

3.3.2 Algorithm D e ta ils ... 23

3.4 Parameter Estimation A lgo rithm s... 24

3.4.1 Time Derivative Methods ... 25

3.4.2 Difference E q u a tio n s ... 25

3.4.3 Polynomial Least Squares F i t t i n g .. 26

3.4.4 Digital F ilte rin g ... 27

3.4.5 Neural Networks for Time Derivative E stim ation 27

3.4.6 High Level Param eter E s tim a tio n .. 29

3.4.7 Downhill S im p lex .. 32

3.4.8 Recursive Downhill S im p le x .. 34

3.4.9 Artificial Neural Networks'for Parameter E s t im a t io n 34

3.4.10 Recursive Neural N etw orks... 36

3.4.11 Genetic Algorithms for Parameter E s tim a tio n 37

3.4.12 E p is ta s is ... 46

4 Software Im plem entation and Test Strategy 48

4.1 Simulation S tr u c tu r e ... 48

vi

4.1.1 Structure D e ta i l s ... 48

4.1.2 Initialization... 51

4.1.3 E x e c u tio n .. 52

4.1.4 Peripheral F u n c tio n s ... 53

4.2 Estimation Algorithms ... 53

4.2.1 G e n e r a l .. 53

4.2.2 Recursive E s tim a tio n ... 54

4.2.3 Genetic Algorithm S tru c tu re ... 54

4.3 Test S t r a t e g y .. 55

4.4 Test Parameter G eneration ... 56

4.5 Performance M easu rem en t... 57

4.6 Error Function A n a ly s is ... 58

5 E xperim ental R esu lts and D iscu ssion 68

5.1 Time Derivative Estimation M e th o d s ... 68

5.1.1 In troduction .. 68

5.1.2 Difference Equation Derivative E s tim a tio n 69

5.1.3 Polynomial LS F itting For Derivative E s t im a tio n 73

5.1.4 Pre-processing Signal F ilte rin g ... 76

5.1.5 Neural Networks for Derivative E s tim a tio n 79

5.1.6 Summary of Derivative Estim ation M e th o d s 84

5.2 Direct Parameter E stim ation .. 85

5.2.1 In troduction ... 85

5.2.2 High Level M e th o d ... 86

5.2.3 Downhill Simplex M e th o d ... 90

5.2.4 Neural Networks .. 94

5.2.5 Genetic A lgo rithm s... 96

5.3 Continuously Running Block Param eter E s tim a tio n 100

5.3.1 In troduction100

5.3.2 Derivative Estimation For Continuous Param eter Estimation . . 105

5.3.3 High Level M e th o d ... 107

5.3.4 Downhill Simplex M e th o d .. 110

5.3.5 Neural Network For Continuous Param eter E s t im a t io n 116

5.3.6 Genetic Algorithms For Continuous Param eter Estimation . . . 118

5.4 D iscussion ... 123

5.4.1 Initial Parameter E stim ation 124

5.4.2 Recursive Block E s t im a tio n ... 127

5.4.3 Computational Com plexity...128

6 C onclusions and Further W ork 132

6.1 C o n clu sio n s ...132

6.1.1 Stereo Camera Vision S y s te m .. 132

6.1.2 Second Order S y s te m s ... 133

6.1.3 Estimation A ccu ra c y ...134

6.1.4 Adaptive Sampling Frequency A lg o rith m ...135

6.1.5 Estimation A lg o rith m s... 135

6.1.6 O v e rv ie w .. 137

6.2 Further W o r k ..138

R eferences 140

B ib liograph y 146

A p p en d ices 149

A D erivation of C om plex Solution to th e Second Order System 150

B B ackpropagation 154

L ist o f F ig u res

1.1 The stereo camera system, viewing an object in the xy plane...................... 2

3.1 The recursive parameter estimation algorithm.. 22

3.2 The construction of the time derivatives from difference equations. . . . 26

3.3 A neural network for time derivative estimation. The input is fed via

a tapped delay line. Each output unit corresponds to a desired, output

estimate.. 28

3.4 A typical observed input wave, seen over three blocks. Due to the ASFA

the time period fo r each block increases as the sampling frequency is

reduced to improve the estimates... 30

3.5 A feedforward network with recursive connections. Input from the tapped

delay line plus the previous time step’s output is used for the current

estimation. (Bias units are not shown in this figure.) This network

requires a recursive mode of operation... 37

3.6 A feedforward neural network with connections from both the hidden

units and output unit(s) leading to the input layer. This gives the net

work temporal information and hence requires a recursive mode of oper

ation ... 38

3.7 A fully recurrent neural network. The layer o f N input units feed into a

cluster of fully interconnected units. Any of these units can be selected

as an output. This network requires a recursive mode of operation. . . . 39

3.8 Two offspring undergo one point crossover. A point is chosen along the

length o f the offspring, and the tails swapped..................... 42

3.9 Two offspring undergo two cut crossover. Two points are chosen along

the length of the offspring, and the sections of chromosome are swapped

between the offspring... 43

3.10 An offspring undergoing mutation. Any point in the chromosome can be

reversed... 44

4.1 The class structure of the estimation simulation. Data moves between

the SQEdata database and the instance o f the SOE process. This contains

an E stA lg class which contains the estimation algorithm.......................... 49

4.2 Structural design o f the real time recursive block parameter estimation

simulation ... 61

4.3 Object design fo r the SQEdata class. The central division describes the

principle functions and the lower the data structures.................................. 62

4.4 Object design fo r the SOE class. The central division describes the prin

ciple functions and the lower the data structures.. 63

4.5 Object design fo r the E stA lg class. The central division describes the

principle functions and the lower the data structures.................................. 64

4.6 A flow chart describing the structure of the genetic algorithm estimation

process... 65

4.7 An input target signal sampled for one second at 25Hz. Signal frequency

is 2Hz, with no damping and zero mean... 66

4.8 RM S error functions between a target signal and an estimated signal,

a) When the phase varies, b) When the frequency varies, c) W ien the

frequency varies and phase is optimized, d) When frequency is varied

and phase optimzed and the error function is the correlation function. . 67

x

5.1 A signal (a) is sampled at a varying sampling frequency, (b) shows the

sampling frequency at the end o f each block, (c) shows the estimated

frequency o f the signal compared to the actual frequency................................ 71

5.2 A noisy signal is fitted with a fourth order polynomial. The polynomial

matches more closely with the noise free signal, allowing more accurate

derivative estimation... 75

5.3 The RM S curve fo r a a network with 17 input units, 8 hidden units with

nonlinear hidden units. Training data varies in all respects except the

damping parameter which is always set to zero. The asymptotic approach

indicates no plateaux in the problem space.. 82

5.4 The PSD of an input signal with white noise. The dominant frequency

remains significantly proud o f the background interference............................ 90

5.5 Profile of an input signal where just the £ parameter is adjusted in a si

nusoidal fashion. a) The second order system signal, b) The f parameter

variation..101

5.6 Profile of an input signal where just the ujn parameter is adjusted in

a sinusoidal fashion, a) The second order system signal, b) The ujn

parameter variation.. 102

5.7 Profile of an input signal where just the U parameter is adjusted in a

sinusoidal fashion, a) The second order system signal, b) The U param

eter variation... 103

5.8 Profile of an input signal where each parameter is varied in a sinusoidal

fashion ...104

5.9 Figure showing the estimated and actual frequency o f a signal over the

course of a run.. 109

5.10 The actual and estimated frequency of a test signal. The last two blocks

are poorly estimated..' 115

5.11 Variation of TA A D ’s fo r frequency and external input when the W vari

able is adjusted fo r the fitness function ... 123

5.12 Graph showing the complexity of each algorithm as a function of block

length. N.B. Each axis is nonlinear... *......................... 129

B .l Two common transfer functions, a) The sigmoid, b) the tank function. 156

xii

L ist o f T ables

5.1 Table showing AA D vectors fo r the difference equation method with dif

ferent levels and type of noise on the input signal.. 72

5.2 Table showing A A D vectors for the polynomial LS method with different

levels and type of noise on the input signal.. 74

5.3 Table showing A A D vectors for the difference equation method with pre

processing filtering with different MWA orders. White noise is used at

magnitude 0.01... 78

5.4 Table showing A A D vectors for a neural network trained with uncor

rupted training patterns, and tested on noisy test patterns......................... 84

5.5 Table showing A A D vectors for parameter estimation with F F T method

after one and three blocks using the ASFA. Damping is set to zero to

allow fo r long block lengths... 88

5.6 Table showing A A D vectors for the high level method with a variety of

noise levels and types... 89

5.7 Table showing A A D ’s fo r the Downhill Simplex method with different

levels of noise on the input s ig n a l... 93

5.S Table showing AA D vectors with the GA method using the correlation

and mean fitness function, when different types and levels of noise are

added to the input signal... 100

xiii

5.9 Table showing TAAD vectors for parameter estimation using derivative

information obtained from polynomial least squares fitting. Noise of dif

ferent types and magnitudes is added to the input signal................................ 106

5.10 Table showing the TAAD of one hundred test signals with different sam

ple lengths, but kept in a fixed ratio of N /n c . Ten blocks are used. . . . 108

5.11 Table showing TAAD fo r test signals estimated using the continuously

running High Level method, with noise added to the incoming data. . . I l l

5.12 Table showing TAAD in non-continuously and continuously running mode. 113

5.13 Table showing TAAD for test signals estimated using the continuously

running Downhill Simplex method, with noise added to the incoming data.llA

5.14 Table showing TAAD fo r different test signals, using a neural network

for parameter estimation..117

5.15 Table showing the TAAD vectors fo r one block and ten block runs where

the number of generations o f the GA are increased.................................120

5.16 Table showing the TAAD vectors when the perturbation percentage varies. 122

5.17 Table showing TAAD vectors for parameter estimation using a genetic

algorithm (GA). Noise o f different types and magnitudes is added to the

input signals... 124

5.18 Summary of AAD vectors fo r estimation, algorithms with noise free input

signals and non time-varying parameters after one block. Ranking is in

order of accuracy o f frequency estimate.. 125

5.19 Summary of AAD vectors after one block for estimation algorithms with

white noise magnitude 0.1, and impulse noise with amplitude 0.1 and

probability 10% on input signals. Parameters are non time-varying.

Ranking is in order o f accuracy of frequency estimate............................. 130

xiv

5.20 Summary of TAAD vectors after ten blocks for estimation algorithms

with no noise, white noise magnitude 0.1, and impulse noise with am

plitude 0.1 and probability 10% on input signals. Parameters are time

varying. Ranking is in order of accuracy of frequency estimate.................... 131

6.1 List o f algorithms based on whether they can be used in a recursive mode. 135

xv

C h a p te r 1

In tro d u c tio n

1.1 A Stereo Cam era S ystem

1.1.1 Introduction and A p p lica tion s

To see the world around us, we have two eyes. This allows us to pinpoint the position

of something we can see. Two eyes are needed to eliminate any ambiguity about the

object’s position. So it is too with a vision system based on a pair of cameras, or a

stereo camera pair.

W ith such a stereo camera system it becomes theoretically possible for a machine

to locate itself within a three dimensional world. There are many machines and robots

which use vision based on a single camera, but these systems always dedicate their a t

tention to one plane, and in this m anner allow accurate location tasks to be performed.

A stereo camera vision system is not lim ited to one plane, and is capable of shifting

attention from one point to any other.

Machines and robots with a stereo vision system would be able to locate objects’

positions relative to themselves, and hence locate itself in the world. If the machine

or robot were able to process the image information it received it would become an

autonomous robot, navigating itself unaided. This is the aim of developing a stereo

camera vision system.

1

2w

Figure 1.1: The stereo camera system, viewing an object in the xy plane.

1 .1 .2 G eom etry o f A Stereo C am era S ystem

Notation used in this section follows th a t of [1]. Consider the two camera system

depicted in Figure 1.1. The figure is in the icy-plane with the origin and axes shown.

Each camera is assumed to be simply a box, with a single lens at the entrance opening

onto a screen on which the image is focused. The lens of the left and right cameras

are placed at + 5 and —S on the y-axis, respectively. The left camera is at an angle

A l and the right camera at an angle A ji to the y-axis. Each camera’s focal length is

/ , and the screen width is 2w. The straight-through view for each camera will pass

through the centre of the lens and end at the centre of the screen.

The field of view of each camera depends on the length / and width w. In most

adjustm ents these overlap, creating an area in the icy-plane common to each camera’s

field of view. It is points within this area which may be pinpointed in the camera

reference frame.

2

Given a point within the field of view of both cameras it is the aim to determine

its co-ordinates (x ,y). Each camera will produce an image of the scene on its screens.

The point on the left camera’s screen will be displaced from the centre of the screen

by a distance I, and the point’s image on the right cam era’s screen by a distance r.

To determine {x, y) it is necessary to know each camera’s position, orientation and

dimensions, plus the displacements of the point on each screen.

1.1 .3 Point O bject L ocation

For the left hand camera, the line joining the point object and the centre of the lens

makes an angle L with the y-axis. Thus,

— = tan L . (1.1)
6 - y

Similarly, for the right hand camera, the line joining the point object and the camera

lens makes an angle R with the y-axis,

— = tan R (1.2)
S + y v '

Solving these equations simultaneously for x and y,

(tan L tan Rx = 25 — (1.3)
Vtan L -f tan R J

_ (tan L — tan R \
y = s l — r — - s (i.4)Vtan L -f tan R .

Each of these lines will make an angle with the central axis of each camera. For

the left hand camera this is 0jr,, and for the right hand camera it is 0r . Obviously,

ta n h — tan(.4£, — $ i) (1.5)

ta n R = tan(A n — 6r) (1.6)

But &l and Or can also be expressed in other terms. From the projections on the

back of the cameras, tan Ol = 1/ f and tan0R = r / f . Inserting these into equations 1.5

and 1.6 and using the identity ta n (a ± /3) — (ta n a ± tan /?)/(l tan a tan/?),

t a n i = f
f + I tan A l
f tan A r — r

ta n /? — -7------------— . (1.8)
/ + r tan A r

By inserting these equations into equations 1.1 and 1.2, co-ordinates for the position

of the point object in the xy plane can be calculated. This calculation is based on

knowledge of the camera separation, the cam era’s angles, the focal length of the camera

lenses and the displacements of the point object images on the camera screens.

It is im portant to define a sign convention here for the angles used. Angles measured

from the central axis of the left camera in an anti-clockwise direction are positive, and

those measured clockwise are negative. For the right hand camera this rule is reversed.

It is natural for the displacements I and r to have the same sign as their corresponding

angle Ol and Or . This means th a t for the example of Figure 1.1, the angles A l , A r , Ol

and Or are all positive. The displacements I and r in this figure are thus also positive.

To calculate the position of the object in the ^-direction once its position in the xy

plane is known is not difficult. Either camera can be used to do this. The image of the

point object in say, the left camera, will be a vertical displacement di above the central

axis, giving co-ordinates (/,d/). These can be used to calculate the angle 0Z between

the line passing from the object to its image with the horizontal plane. Then 2 may

be obtained from tan 0 z = z/*Jx2 + (y -f S)2. This is presented for completeness and

discussion in this work is lim ited to the xy plane.

One major assumption has been made so far — a method exists for extracting the

location of point object on each camera screen. This task is not a simple one. In

this work, however, the image processing algorithms needed for this problem are not

investigated.

1.1 .4 Point O bject Tracking and N o ise

W ith a stereo camera vision system as described above, it is possible to accurately

determine the position of a point object which is in the field of view of both cameras.

An image from each camera can be collected at discrete tim e intervals, and delivered to

an image processing algorithm which extracts the point object displacements. These

are then used together with the knowledge of the camera system geometry to calculate

the co-ordinates of the point object in the camera reference frame. This process can

be performed repeatedly and a series of values for the object’s position recorded at

discrete time points. The object’s trajectory can hence be tracked.

In the real world it is not always possible to obtain completely accurate trajectories.

Noise can be introduced at a number of points in the process. Camera vibration, limited

pixel resolution and image processing limitations can all lead to noise.

Reducing the corruption due to noise of object trajectories can be addressed with

a number of digital signal processing techniques. It is reducing such noise with novel

methods tha t forms part of the work for this thesis.

C am era V ibration

There are many applications of stereoscopic camera systems where noise may be intro

duced due to camera vibration. Applications most at risk are those where the cameras

are mounted on a moving platform or platforms. For example, cameras mounted on

a moving vehicle which view the lane boundary markers as the vehicle proceeds along

the road will experience vibration from the.road surface, engine vibration and buffeting

from the air.

If each camera is mounted on a separate platform, vibration of each platform will

affect the camera separation, corrupting the geometry information.

A further problem arises with the relatively slow sampling frequency of the cameras.

Video cameras operate typically at twenty-five frames per second. Anything moving

5

within the view of such a camera with oscillatory motion greater than half of this

sampling frequency will then not be accurately analysed as aliasing effects will prevail.

In this work it is assumed that noise is limited to within the half sampling rate limit.

L im ited P ix e l R eso lu tion

One source of noise stems from the finite number of pixels present on the camera screen.

Each pixel projects a solid angle out into the real world. The image of a point object

within this solid angle will fall upon a single pixel. As the point object moves, its image

will move across the finite area of a single pixel until it moves enough to pass across

onto an adjacent pixel. The object can therefore move by some amount and still fire

the same pixel.

The extent of this problem depends on the camera pixel size, and the distance of

the object from the camera. The magnitude of the problem can vary, and an example

is given here to illustrate its extent.

Consider a cam era pair where each camera has 640 pixels across its screen. The focal

length of the cam era is 50mm and its width is 20mm. Each pixel is then 20mm/640 =

0.03125mm wide. A pixel on the central axis will cover an angle of tan -1 (0.03125/50) =

0.0358° whilst a pixel at the edge of the screen will project an angle 0.0344°.

An object lm from the camera lens would then need to move 0.64mm off the vision

axis to ensure changing pixel, and 0.57mm at the extremity of vision. These values

scale up proportionally to the distance of the object from the camera, so an object on

the vision axis 1km away has to move 0.64m to ensure changing pixel.

The limited pixel resolution problem causes only minor noise problems. W hether

these distances are significant is dependent on the application of the stereoscopic cam

eras.

6

1.2 Second Order System

1.2.1 Form ulation

The general second order equation for a variable, y , moving through time, is,

l | + 2 + = (1.9)

where £ relates to the damping of the system, wn relates to the natural frequency

with con — 2irfn and U is the external force on the system. Each parameter is assumed

to be independent of time.

A solution of this equation is,

Vt — (ci H t r l crit ̂ -f (c2 t er2< H (1.10)V n (r i - r 2)J \ r 2(r i - r 2) y rvr2

where,

- 4wj
r i = ------------^2----------- ̂ ^

r2 = — 11 (1-12)
- x 2 0 + r2x l0

ci = ------------------ (1-13)
r 2 - rq

^ 2o ria:i0 . .C2 = (1.14)
r2 - ri

and x\o is the initial starting value, and x2o is the initial value of the first derivative

of the variable y. These are also known as the state variables of the system. The

derivation of this solution is given in Appendix A.

A common example of a second order system is a pendulum. The weight at the

end of a line will move with Simple Harmonic Motion (SHM) moving back and forth

about a central equilibrium position. In the case of no damping, the angular frequency

of the pendulum will equate to the natural frequency wn of Equation 1.9. When the

damping, £, has a positive and non-zero value then the amplitude of the pendulum’s

swing will decrease with time. The actual frequency, u>0, would also decrease according

to,

"a = v/(l - f 2K (1.15)

If the damping has a negative value then the pendulum would actually increase its

amplitude. The external force variable, £/, is related to the equilibrium position of the

pendulum and indicates an offset.

1.2.2 G enerality o f th e Second Order S ystem

The second order equation is im portant because it can be used in a wide range of

situations as an approximation to the actual process. This is especially true for short

periods of time. Despite the fact th a t all of the parameters of the second order sys

tem are tim e independent, it is often applied in situations where one or more of the

parameters is not tim e invariant. The approximation is only valid here when the time

dependency of the variable over the time sample is small.

1.2.3 P aram eter E stim ation

Given values for the parameters of a second order equation, the trajectory of the

variable y can be calculated for any time t. This trajectory is defined by the values of

the parameters used to create it.

The process of param eter estimation aims to perform the opposite of this scenario.

Given a trajectory of y through time, what are the values of the parameters that

generated this trajectory?

This is far from a trivial problem. Each point on the trajectory requires the solution

of the nonlinear Equation 1.10. The values of the parameters which satisfy all the

solutions must match. Since there are five unknowns, three parameters and two initial

values, it is necessary to use at least five points of the trajectory. Since the equation

8

is nonlinear, however, well-known solution guaranteed methods are unlikely to work.

There are several “standard” methods for solving this problem. None can guar

antee finding a solution, however, and they vary in their speed and accuracy. The

entire problem also becomes much more difficult to solve when noise is present on the

trajectory, as it can aggravate the algorithms attem pts to solve the problem.

1.3 M ain A im s

This study works in the context of observing and tracking an object using a stereo cam

era system. It will examine the problem of determining the characterizing parameters

of the object’s motion, in the assumption that it is a second order system.

Several methods for performing parameter estimation will be investigated and com

pared. Novel methods will be tested against conventional methods. Merit will be based

on robustness, accuracy and computational load.

An im portant part of this study will examine the performance and robustness of

the param eter estimation algorithms when the incoming trajectories are corrupted with

noise. W hite noise and impulse noise will be used in varying magnitudes, and with

impulse noise, different probabilities.

9

C h a p te r 2

R eview

2.1 Param eter E stim ation

The general problem of param eter estimation, or system identification as it is also

known, is not new. It has been a fundamental element of engineering and many other

fields for many decades, if not hundreds of years.

Given an observed system, param eter estimation attem pts to determine the values

of parameters which characterize the system. This topic is well covered in many stan

dard text books such as the [17]. Such works cover a wide range of system identification

problems.

In this work, the general second order system is taken as the target. A second order

system is controlled by three parameters: damping, natural frequency and external

input to the system. There are two conventional ways tha t parameter estimation is

tackled in this situation, both of which are tested for comparison in this study.

Firstly, a power series approach is used. Here, a polynomial is fitted to the sig

nal data which is assumed to be of a second order system. Time derivatives of this

polynomial can then be calculated. These time derivatives can be inserted into three

equations which are derived from the general form of the second order equation, the

results of which are values for the characterizing parameters. This method depends on

10

the polynomial fit being a sufficiently accurate estimate of the time derivatives.

The second conventional m ethod is based on frequency analysis using a Fourier

transform. This method returns the dominant frequency of the signal which can be

approximated as the natural frequency of the second order system. Some extra m anip

ulation is required to obtain estim ates for the other parameters, and this is covered in

full detail in Chapter 3.

There are several other conventional methods which can be used for the problem of

system identification. These include a simple random guess policy algorithm, a binary

search iterative algorithm, the Newton-Raphson root finding algorithm [31, 32] and

the Downhill Simplex algorithm [32]. All of these algorithms are iterative and work

on a similar principle. Each algorithm in some manner generates an estimate of the

parameters. From these it generates a signal based on the second order system, and

compares this internally generated signal with the input signal. A measurement of

the difference between the two is then formulated and fed back into the algorithm.

W ith this information it can adjust the estimate values in such a way as to reduce

the measure of difference between the generated and actual signal. Once the difference

falls below a predefined level, the algorithm terminates.

In this work, the Downhill Simplex is compared with other methods and is described

in full in Chapter 3. The Genetic Algorithm also used in this work follows a similar

basis as just described and is also described fully in the next chapter and reviewed

below.

2.2 V ision System s

The basis of a 3D vision system as described in Chapter 1 is elementary. To implement

a working system in practice requires a number of significant other problems to be

overcome. These range from suitability of cameras for a given application, through

image processing and extraction of image elements, to control and actions to be taken

11

based on image data. This study examines the feasibility of such a system from the

position of processing the collected information.

There are many applications of stereo camera vision systems, not least of which is

th a t for a vehicle control system. This application has been receiving increasingly wider

investigation over the last few decades. W ith the evolution of faster and more powerful

processing abilities the image processing algorithms have become more complex and

powerful.

Baluja et al [5] developed their ALVINN vehicle in the Tate 805s which used a

feedforward neural network (FNN) to process the images obtained from a digital camera

mounted on the vehicle. This system was limited, however, since the FNN could not

tolerate the presence of noise, or distractors, such as other vehicles, pedestrians and

confusing road markings. They developed the use of a simple recurrent neural network

which fed the input with past outputs from both the context units and the output

units [5]. This proved capable of handling many types of distractor.

A modular system has been developed by Foresti et al [18] where each module acts

at a certain level of the processing of the image. Each module gives information to

those above and below it in the chain. Each module is a knowledge based system

requiring a priori information to obtain fast results.

Matteucci et al in a similar .way used a model of the motion to aid in analysing

the image sequences of road scenes, and in addition use Kalman filtering to remove

noise [27].

A study of the effects of the camera angle and tilt on the noise were carried out

by Sohn and Kehtarnavaz [39]. They determined the optimal orientation of the noise

to minimize the noise. They also defined a region of the image which was constantly

within view. As the camera vibrated the exact zone it viewed would alter, but would

remain viewing a similar region. There was a safe region which was always viewed

regardless of the vibration. This is an im portant area of the image since it is only

12

objects within it that can be constantly tracked.

Noise is becoming a major problem now that the computers monitoring a vehicle’s

motion by camera are capable of processing several frames a second, meaning the vehicle

can travel at higher speeds. The original ALVINN was able to steer the buggy at speeds

of only centimetres per second. When vehicles travel at 30mph the vibration would

cause a camera pair to be constantly shaken, altering their alignment, and affecting the

calculation of the position of objects in view. Zhuang [46] describes how the extrinsic

param eters of a stereo camera pair can be automatically calculated when an external

object of known dimensions is viewed, such as road markings or telegraph poles.

2.3 Signal P rocessing and Neural N etw orks

2.3 .1 D ig ita l S ignal P rocessin g

Digital signal processing (DSP) has been around for many decades. Many of its tech

niques are borrowed or adapted from its analogue partner. Many tasks which people

used to be able to do with analogue electronics want to be accomplished in the digital

domain eg. when designing digital HR filters, their properties are based on a num ber

of possible analogue equivalents.

One of the great interests in modern DSP is adaptive filtering. Whereas previously

filters were passive, not changing their characteristics throughout their use, adaptive

filters are dynamic, altering the way they treat signals during use. A target signal is

necessary for the filter to be trained with, and in such cases as channel equalization,

training can continue when the filter is in use.

Many neural networks can be viewed as nonlinear adaptive filters, although their

development did not stem from the DSP sector. Therefore, many of the applications

and problems which DSP developers have known about with linear filtering, are also

present with neural networks. It has only been in the last few years that the relevance

13

of neural networks in DSP has been understood by the m ajority and a huge amount

of work published in this area.

Many good texts on DSP exist [22, 30] which detail many of the important aspects

of the field, including design of filters, adaptive linear filters and frequency domain

processing. Shynk undergoes a tutorial paper [38] in which he covers many HR adaptive

algorithms. He notes the reduction in computational load the use of an HR filter, rather

than an FIR filter, represents. There are several problems with their use, however.

Quantification of an adaptive filter’s convergence, stability, and susceptibility to local

minima and saddle points is discussed. The current understanding of IIR filters means

tha t convergence rates and stability can only be estimated. Use of the Least Mean

Square (LMS) algorithm for IIR filtering is noted to be unsatisfactory, but this is

when uncorrupted signals are used for training; when noisy data is used, the biasing

problem previously encountered lessens significantly. Puskorius and Feldkamp [33]

explain why IIR filters, including fully recurrent neural networks, are harder to train,

and the algorithms tha t do exist are more complex than the FIR algorithms. W ith

the arrival of the Extended Kalman Filter (EI<F) algorithm, however, they feel tha t

this powerful algorithm should confirm recurrent networks as important dynamical

system controllers, and describe their successful simulations with the pole-balancing

and bioreactor problems. Wieland [43] describes his use of an algorithm less complex

to understand, a genetic algorithm, which he uses to find the weights of recurrent

networks used to control a cart balancing a pole. The power of the architecture is

demonstrated by reducing the number of inputs from the normal 4, right down to 1

(with zero inputs tried unsuccessfully!). Success was achieved even when a hinged pole

was used.

14

2 .3 .2 A d ap tive F ilter Techniques

Widrow, the co-inventor of the LMS algorithm [42], discusses many of the possible

applications of adaptive filters in signal processing and control problems — tim e series

prediction, system modelling, inverse modelling, channel equalization, echo cancelling,

noise cancelling and inverse control among them [41]. The applications described can

use any type of adaptive filter, both linear and nonlinear, and Jundi reviews some uses

for neural network adaptive filters [23].

Conell and Xydeas [12] give an excellent paper on their attem pts to use adaptive

methods to reduce the background noise of traffic and general city noise in the tele

phone kiosk situation. A reference microphone is used above the kiosk to take in the

outside noise. The signal from the speaker’s mouthpiece is used as the signal that must

be cleaned up. Taking direct noise cancellation use spectral subtraction as the worst

method of filtering, they use many other methods to achieve their goal. Noise cancel

lation is poor due to the poor correlation between the reference and primary signal.

Use of the LMS algorithm in both the tim e and frequency domain achieve good results.

Then filtering only the real part of the frequency domain signal improves upon this.

Their final system uses an auto-regressive moving average (ARMA) model on each of

the LMS weights. They did try neural networks, but networks of a size which could be

implemented fast could not achieve sufficient noise reduction.

Rahm an et al [34] also filtered signals in both the frequency and time domain. They

used phase Shift Key (PSK) and Frequency Shift Key (FSK) signals, and found tha t

good results were obtained, with fast convergence of the FNN. As Conell and Xydeas

point out, however, there is no real advantage in performing a simple transition to

the frequency domain since this process is a linear one and no advantage is thus made.

Anderson and Montgomery [2] found tha t a FNN out-performed an Optimal filter for a

chaotic signal, but performed as well as the Optimal filter for two sine signals corrupted

with noise. In confirmation with Conell and Xydeas, they noted tha t neural networks

15

are not yet implemented in readily available hardware, with the computer simulations

being too slow. Other filtering methods which perform just as well can be obtained

in dedicated hardware. They state the main advantage of the neural network is in its

ability to act with little or no prior knowledge of the signals.

2.3 .3 Tapped D elay Lines

Medvedev and Toivonen [29] demonstrate the advantage of using a tapped delay line

on each weight in an adaptive filter, in a similar way to Conell* and Xydeas found with

the ARMA model. Known as Time Delay neural networks (TDNN’s) when tapped

delay lines are used on each weight in a neural network, these have been used in speech

recognition systems.

Fechner [16] demonstrates an advantage of neural networks over Optimal filtering.

Sinusoidal signals were corrupted with Gaussian noise, and non-Gaussian noise such

as impulse spikes. The neural net and Optimal filters achieved similar results with the

Gaussian noise corrupted signals, but the Optimal filter acted badly with the impulse

corrupted signals, whilst the neural network was able to cope.

The use of fully recurrent networks, and the simpler Elman network (SRN) [15]

and the powerful EKF training algorithm in other areas such as keyword recognition

and channel equalization is common [6, 26]. There is a decision to be made by anyone

needing the use of adaptive filters — whether the difficulties involved with the use of

IIR filters is outweighed by the benefits in performance and compactness.

Genetic algorithms (GA), and the related topics of Evolutionary Programming (EP)

or Genetic Programming (GP), have been around for many years. Their usefulness lies

in their ability to search large areas of the search space, and for their ability to escape

local minima. Critics of GA’s claim they are slow and have limited ability to converge

to a precise solution, although this la tter problem has been addressed successfully in

recent works. They also suffer from epistasis, where a change in the chromosome must

16

occur in two different places simultaneously to be beneficial, and is thus unlikely. There

is also vibrant discussion on the best values for such parameters as the population size,

which type of cross-over to use and the choice of several other parameters. Beasely et

al give an excellent overview and introduction to genetic algorithms [7], and also has a

further look in more detail at some of the difficulties [8].

2.4 G enetic A lgorithm s

Recent research has combined the two fields of neural networks and GA’s, with their

combined attractiveness of both being inspired by the natural world. A review of

evolutionary neural networks is given by Yao [45].

Whitley et al [40] was possibly the first to use a GA to find the weights of a neural

network for several different benchmark problems. In [40] the GA tagged GENITOR

is described, which encodes a population of weight matrices in binary form. A similar

algorithm was later used by Wieland [43] in his work with recurrent network controllers.

W hitley made the conclusion that the accuracy and convergence rate of the GA were

respectively proportional and inversely proportional to the population size. W hitley

advocated the use of large population sizes, with 6000 chromosomes being typical. This

allowed several solutions to the problem to co-exist within the population. Koza [25],

howrever, preferred the use of small populations, between 50 and 100 chromosomes,

as well as the use of real number representations. The small population size allowed

only one solution to the problem to exist, and rapid convergence when possible was

obtained.

Koza, along with Rice [25], went on to develop a GP method tha t evolved LISP

code that found both the weights and the connectivity of a neural network. W hit

ley also performed this, and both found there were strong improvements in network

performance with a tailored connectivity.

Hugo de Garis demonstrated in [14] the versatility of GA’s to find weight values for

17

a variety of network problems. He considered networks which had tim e independent

input and output, and time dependent input and output, as well as the other two com

binations. His GenNETS were able to find good solutions for the networks, resulting

in a network th a t controlled a simulated spider tha t could hunt, eat' and flee.

McDonnell and Waagen [28] devised a GA that created recurrent neural networks

for tim e series prediction. Their GA was able to converge very accurately on good

solutions, since they used a real number representation, and the operators of cross-over

and m utation varied the value of each weight by a decreasing am ount as tim e proceeded.

They produced recurrent networks tha t predicted the Mackey Glass equation [28], and

the sun spot data of the last few centuries.

Angeline et al [3] devised a GP technique they called GNARLY which constructed

neural networks of any configuration and with any number of hidden units. The only

limits were set by the number of required input and output units. It used the concept

of a tem perature to vary the probabilities of the parameters of the GA. Although this

is a very general algorithm, there is no reason for it to scale be tter than any other GA.

Convergence rates of neural networks “trained” by GA’s is not as slow as is often

expected. Along with their ability to search large areas of the search space, they are a

sensible option for many neural net users.

Neural networks is a vast subject. They are used for finding relations between

highly nonlinear input and output sequences. Their advantage lies in the lack of a

priori knowledge about the system, and model systems purely from examples of input

and output. For complex applications they can often be more computationally efficient

and simpler than alternative methods. Some applications involve speech and word

recognition, machine fault diagnosis, moving target classification, financial investment

planning, non-rigid body analysis and in medicine [4, 19, 35, 9, 11].

18

C h a p te r 3

A d ap tiv e B lock R ecursive

P a ra m e te r E s tim a tio n A lg o rith m

3.1 Introduction

In real-time systems data is collected using devices taking measurements from the real

world. The data is fed to an analysis module which produces some sort of classification

of the input. This can be fed in turn to a controller module which can make a decision

based upon the analysis m odule’s output. Often, there is an element of feedback, and

the action of the controller affects the outside world. In a real-time system, the modules

perform their tasks at a speed which keeps them up to date with the incoming data.

A continuously running param eter estimation algorithm collects data in the same

fashion, receiving a data point at known, discrete times. An analysis module then

estimates the param eters of this input signal and outputs the estimates. This output

may then be passed to a control module which may take specific action depending on

the parameter estimates.

In this work, a continuously running recursive block algorithm is proposed. A block

of data is read into the input buuffer, and this is then passed in one step to the analysis

module. This module outputs estimates for the signal’s three characterizing parameters

19

— damping coefficient, natural frequency and external input. The estim ate of the

natural frequency is then used to control the sampling frequency at which incoming

data is read.

Such an algorithm would need to be able to cope with a large range of param eter

values, and would ideally be scale and position invariant. It would need to adapt itself

to changing parameter values to m aintain optimal estimation accuracy.

Any such system will need to comprise two main phases. The first phase will require

an initial estimate of the parameters to be made with no preyious knowledge. This is

to start the system. This phase then seeds the second phase of the system, which is

the continuously running algorithm which uses previous estimates to aid the current

estimation.

Each time the algorithm makes an estim ate, it will assume the parameters remain

constant during the block duration. This will not necessarily be true, and the algorithm

will adapt itself to cope with changing parameters.

This chapter describes a scheme for realizing such a system. A hybrid approach is

proposed. Section 3.2 gives a detailed breakdown of the proposed algorithm ’s steps.

Individual modules of the algorithm are then detailed in later sections. Section 3.3

gives a description of the adaptive sampling frequency algorithm which allows later

processes to work with higher accuracy.

Subsequent sections then give details of the estimation algorithms explored, which

are also categorized on whether they can be used for initial or continuously running

parameter estimation. All algorithms can be used for initialization, but not all can be

used with an element of feedback in a continuously running mode.

Some of the algorithms determine the parameters by first estimating the tim e deriva

tives of the input signal. These include polynomial least squares fitting, difference

equations and neural networks. These methods may also be augmented with digital

filtering. The remaining methods estim ate the parameters directly; these include a

20

high level approach using signal processing methods, the Downhill Simplex algorithm,

neural networks and genetic algorithms.

3.2 R eal T im e Param eter E stim ation

The real-time recursive block param eter estimation system proposed here has several

desirable features. Firstly, it adapts the sampling frequency at which data is collected,

allowing the parameter estim ation methods to operate at high efficiency and high

accuracy. This also allows a large range of parameters to be estimated accurately.

Secondly, it incorporates recursive estimation algorithms which allow current estimates

to consider previous estimates. Since the parameters vary relatively slowly with time,

the previous estimates provide useful information.

The steps of the complete algorithm are enumerated below, and shown pictorially

in Figure 3.1.

1. Collect the input sequence of length N at the highest sampling frequency f s

allowed by the equipment, which must be at least double that of the highest

signal frequency expected since the actual frequency is unknown.

2. Use a non-recursive param eter estimation method to produce an initial estimate

of the parameters. Pass these estimates on to the recursive estimation algorithm

to initialize it.

3. Based on the frequency estim ate, adjust the sampling frequency by a factor

fdnc/Is- fd is the dominant frequency and n c is the desired number of data

points per cycle.

4. Collect N data points from the input stream at the new sampling frequency.

5. Use a recursive estimation method to estimate the current parameter values.

6. Return to step 3.

21

Input

Collect N Non-recursive
►data points
atfCl) Estimation

Adaptive
^Sampling

m -
Frequency
Algorithm

Collect N
data points
at f(n)

Recursive

Estimation

Estimated
Parameters

Figure 3.1: The recursive parameter estimation algorithm.

At the very beginning of the algorithm, a sampling frequency must be selected

which will be able to cope with the incoming signal. To satisfy the Nyquist condition

and eliminate aliasing problems, this must be at least double the highest frequency to

be detected.

The first use of an estimation module allows an initial estimate of the param eters

to be made. The algorithm must be a non-recursive one, since there are no preceding

estimates. This will produce only an approximate estimate of the parameters. The

frequency estimate, however, is used by the adaptive sampling frequency algorithm to

adjust the sampling frequency so th a t a specified number of data points per cycle of the

input is collected during each block. This will allow subsequent estimation algorithms in

the recursive blocks to improve their performance. At this stage, a recursive algorithm

is created by starting the estimation process using a non-recursive algorithm.

A new block of input data is received by the estimation algorithm from the input

stream at the new sampling frequency. This is used to generate estimates using a

22

recursive algorithm. The first tim e the recursive estimator is used, it will also use the

estimates from the non-recursive estim ator, otherwise it uses its own past estimates.

The adaptive sampling frequency algorithm can use this algorithms frequency estim ate

to update the sampling frequency again before the next block of data is received.

3.3 A daptive Sam pling Frequency A lgorithm

3.3.1 In troduction

When digital data is received by an input device, the time between data points is

accurately known, A t = 1/ f s. If the input signal is oscillatory, and its frequency is

low compared to that of the sampling frequency, then there will be many data points

during each cycle of the signal. Conversely, a high frequency input signal, relative to

the sampling frequency, will have only a few data points describing each cycle. A signal

of frequency f s/ 4 for example will have only four data points within each cycle.

At each extreme of low and high, there is either an excess of data points or a

shortage, respectively, for efficient accurate analysis. Too many data points per cycle

will lead to excessive computation for param eter estimation, although the accuracy can

be high. W ith a small number of da ta points the speed of analysis will be high, but

estimation accuracy will deteriorate.

It is therefore desirable to adjust the sampling frequency to optimize the number of

data points collected per cycle to produce a good compromise between excessive com

putation and accuracy. This is the aim of the adaptive sampling frequency approach.

3.3 .2 A lgorithm D eta ils

The algorithm will attem pt to adjust the sampling frequency, / s, of the data collection

device so that the signal’s dominant frequency and the sampling frequency maintain a

constant ratio. This can also be viewed as keeping the number of data points per cycle

23

of the dominant frequency constant, n c. It will collect a sequence of the input da ta

with N data points. An estimation algorithm is then used to determine the dominant

frequency in the signal, and adjust the sampling frequency accordingly. The next N

length input sample is then collected.

The following steps are taken:

1. Fill the current input buffer, length N , with the latest input.

2. Make an estimate of the input signal’s dominant frequency, fd-

3. Calculate a scaling factor, A, such th a t,

where nc is the number of points per cycle of the input signal that is desired.

4. Update the sampling frequency by a factor of A and return to step 1.

W hen the sampling frequency is at the correct frequency, A will be unity. For the

condition A — 1 to be met, f s/n c must equal the dominant frequency.

The sampling frequency is adjusted after each sequence of N data points is collected.

Other processes which estimate the param eters of the signal will be applied to the same

data. These methods will work optimally a t a given value of n c and when A is near

unity. It may take several iterations of this algorithm for the most accurate param eter

estimates to be obtained.

3.4 Param eter E stim ation A lgorithm s

Algorithms used to perform param eter estimation of second order systems can be

broadly classified as direct or indirect via tim e derivative estimates, as well as recursive

or non-recursive.

24

3 .4 .1 T im e D erivative M eth od s

In his paper [1] Al-Dabass describes a method whereby the tim e derivatives of a signal

may be used to determine the parameters of a second order system. This approach is

described here.

The general second order system can be w ritten using state variable notation. If

X\ = x, x 2 ~ d x /d t , Xs = d2x /d t2 and so on, and a = 2 and b = co2, then,

X3 + a.x2 + b.xi — U * (3.1)

is the general second order system. By differentiating this twice and re-arranging,

the following equations give values for a and 6,

X 5 . X 2 - X 4 . X 3
a = -----------------5— (3.2)

x 4.x2 - x§

6 = _ E |± L ^ £ i (3.3)
£3 — x 2.x4

and £ and con are determined from a and b. Equations 3.2 and 3.3 are used in

Equation 3.1 to estimate U .

It is therefore possible to obtain parameter estimates via tim e derivative estimation.

This is achieved by several methods described below.

3 .4 .2 D ifference E quations

If no noise is present, and the recorded signal is exactly correct, then derivative esti

mation poses little problem since difference equations may be used. Xi is simply the

current position, xn. x 2 is the first derivative or velocity, (x n — x n- i) /A t . The second

derivative, acceleration, is (x 2n — x 2n- i) /A t . And so on (fig. 3.2). Here n is the sample

number, and A t is the tim e between samples, or 1 /f s.

Introduction of noise on the signal when using difference equations can be expected

to affect the accuracy of estimates substantially. Even small amounts of noise will give

x l(n -1)x l(n - 4) xl(n- 3) x l(n - 2) xl(n)

x2(n- 2) x2(n- 1) x2(n)x2(n- 3)

x3(n)x3(n- 2) x 3 (n -1)

x 4 (n -1) x4(")

x5(n)

Figure 3.2: The construction of the time derivatives from difference equations.

significant errors in the derivative values.

3.4 .3 P o lyn om ial L east Squares F itting

The state variables Xi through to £5 can be estimated using a polynomial fitted to the

input signal with the least squares criterion. The LS algorithm returns the coefficients

of a polynomial of the specified order which fits the target data with the lowest least

squares error.

i=o
X — ^ jT a d 1' (3-4)

i=0

Differentiating this equation n times gives the dny /d tn tim e derivative. As long as

the order, 0 , is greater than four, then the state variable x 5 can be evaluated. Further,

the derivatives can be estimated at any tim e by simply choosing the relevant value for

t-

Polynomial LS fitting can also act as a smoother when noise is present, performing

26

lowpass filtering. This can be expected to work particularly well when the adaptive

sampling frequency is used since the signal will be low relative to the sampling fre

quency.

3 .4 .4 D ig ita l F iltering

Filtering the signal can be used to reduce the noise and allow for more accurate deriva

tive estimation. An ideal filter would be a bandpass filter centred on the natural

frequency of the signal. This could be determined by use of a'Fourier transform. This

ideal situation may, however, not be totally necessary.

Application of the adaptive sampling frequency algorithm always means tha t the

signal’s frequency is low relative to the sampling frequency. In this case, lowpass filters

can be used with good effect. Filters can include the simple averaging filter, or the

digital Butterworth filter.

3.4 .5 N eural N etw orks for T im e D erivative E stim ation

Neural networks also provide a method for dealing w ith noise. Feedforward neural

networks are capable of performing any nonlinear m apping between their input and

output, given sufficient units in their hidden layer. They also possess“generalization”

properties which also helps to give accurate answers despite noisy input.

Two configurations are possible: a single neural network is trained to output all

of the time derivatives in its output layer, or alternatively, five separate networks can

each be trained to output just one derivative each.

Figure 3.3 shows a neural network architecture to estim ate only one derivative. A

three layered network has an input layer, a hidden layer and an output layer. The

input layer consists of a tapped delay line with a one tim e step delay between units.

This layer is the same length as the input window, N . There is also a bias unit for this

layer. The input layer is fully connected to the units in the hidden layer, whose output

27

Input

Z-1

Hidden

Output

Figure 3.3: A neural network for time derivative estimation. The input is fed via a

tapped delay line. Each output unit corresponds to a desired output estimate.

is connected to tlie unit in the output layer. The output unit is trained to output a

tim e derivative. The architecture for a network that estimates all five derivatives will

have an additional four output units, each fully connected to the hidden layer above.

The full mode of operation of a neural network is described in detail in Appendix B.

Briefly, however, each unit in the input layer attains the value of the input signal. This

is then propagated down to the hidden layer via the connections. Each connection has

an associated weight value. Each hidden unit sums the input layer via the weighted

connections. Each unit then transforms this sum with either a sigmoid or a hyperbolic

tangent function, or alternatively, leaves it unchanged. In this la tter case, it is termed

a “linear” unit. This process is then repeated from the hidden layer to the output

layer. The unit(s) of the output layer then describe the estim ated derivative(s). This

is called a forward pass of the network.

Of course, the result depends upon the weights in the network and it is first neces

28

sary to obtain a weight m atrix tha t will produce the desired results for a large range

of input patterns. This is done by “training” the network by repeatedly presenting

example inputs and slightly adjusting the weights each time to move the output to

wards a desired value. After many presentations and ensuring th a t the network is

performing well with the training patterns, training can stop and the network used

with unchanging weights to estimate derivatives on patterns previously unseen. Net

work performance will depend on many factors, but primarily on the representative

quality of the training data.

The algorithm that actually changes the weights in the training of the network is

the backpropagation algorithm. This is described in full in Appendix B.

3.4 .6 H igh L evel P aram eter E stim ation

There are a number of processes that can be performed to obtain the parameters of the

second order solution. Recall tha t the parameters are damping (£), natural angular

frequency (wn) and the external input (£/). These are assumed to be constant over the

N length sample. Described below are methods for estimating these parameters by

extracting features of the signal.

The core of these methods is the Fourier Transform from which a Power Spectral

Density (PSD) can be obtained. This describes the magnitude of the N f 2 + 1 frequency

bins ranging from zero to f s/ 2Hz.

D am ping (f)

The observed damping, let it be called E, is a function of both £ and con A. Especially

for low frequency signals, the overall damping will equal 2£ xwn. Therefore, to calculate

an estimate for f , the observed damping must first be estimated and then divided by

the frequency estimate.

Figre 3.4 shows a typical observed signal, along with some of its characterizing

29

T3 2

i | ~r~i T p~rr | i i i | i i i | i i t~t r i i | r i '■ i | i i i |
0 . 0 0 . 4 0 . 8 1 . 2 1 . 6 2 . 0 2 . 4 2 . 8 3 . 2 3 . 6

Tim e (s)

Figure 3.4: A typical observed input wave, seen over three blocks. Due to the ASFA

the time period fo r each block increases as the sampling frequency is reduced to improve

the estimates.

features. The amplitude in each block is shown, as well as the range of each block.

A value for £ is obtained with successive estimates of the magnitude of the dominant

frequency from one block of input signal to the next. If Af, and Ab+i are the magnitudes

of the dominant frequency in blocks b and b + 1, £ is approximated by,

e - T in
Ab

(3.5)
^nifb T ^6+l)/^ Ab+1

where con is the estim ated frequency, and t\, is the duration tim e of incoming blocks

of data. It is necessary to have more than one block to make an estimate for £, over

which time the sampling frequency, and hence t b, may change. In this case, the average

of the period of each block is used. Note that the better the estimate for frequency,

the more accurate the £ estim ate will be.

It is possible to perform a similar operation with a single block, by" considering a

30

block as two equally sized blocks and performing a Fourier transform on each of these.

It is intended, however, tha t the block lengths be kept to a minimum for this study,

and as a result, the length will already be short. Any further reduction would increase

the error in the frequency estimate above the current level.

N atural Frequency (o?n)

A Fourier Transform is used in the form of an FF T to obtain the PSD of the input

signal. The highest peak in the PSD is taken as the dominant frequency, or c3n. It is

im portant to disregard the first point of the PSD, as this relates to the DC offset of the

input signal. Equivalently, the mean of the signal can be subtracted from it before the

FFT is applied. This method is limited in its accuracy due to the quantizing effect of

the frequency bins. Each frequency bin is of size f s/2 N . Increasing the sample length

will therefore increase accuracy. Use of the adaptive sampling frequency algorithm will

also aid the estimation by adjusting the sampling frequency to keep it in a fixed ra.

with the target frequency.

E xternal Input (U)

The external input to the signal manifests itself as an offset to the signal. It also

determines the value x will oscillate about and, if damping is present, eventually settle

down to. This can be seen by putting x" and x' to zero in the second order system

(where x" and x r denote the second and first time derivatives of x). The result is,

U
x = ~ lW2a

The external input is estimated by first evaluating the mean of the input signal, /i, and

also using the estimated frequency so tha t,

U =

This estimate should work better the longer the input signal length, so th a t /j, can

be evaluated more accurately, or when the number of cycles is near an integer value

31

which is attained with the adaptive sampling frequency algorithm. Further, the greater

the sample length, the greater the accuracy of the frequency estimate. If the actual

frequency is not constant, as in the tim e varying case, the frequency estim ate will be

less accurate, reducing the accuracy for the external input.

3.4 .7 D ow nhill S im p lex

This algorithm is an iterative m ethod tha t progressively reduces an error function

starting from an initial guess. It was first devised by Nelder* and Mead in 1965 [32],

and the description below is based on the Numerical Recipes publication [32]. It is a

general method for searching an error space for nonlinear equations.

The Downhill Simplex m ethod requires an initial guess P0, of the param eter vector

to be made to seed it. Based on this initial guess, a further set of parameter vectors

Pi, are generated using Equation 3.6,

Pi — P 0 T Adi (3*6)

where the M x M size m atrix Si has all its elements set to zero except for the ith

element which is unity. This equation can be enhanced by changing A also into an M

length vector where each element reflects the expected range of the parameter.

The result is n + 1, n length vectors, where each vector represents a location in

parameter space.A method for visualizing the mechanics of this algorithm uses the

geometrical form of the simplex, from the which the algorithm gets its name. A simplex

is a form consisting of n + 1 points plotted in n-dimensional space. A line is then

joined from each point of the simplex to every other point, enclosing a volume of the

n-dimensional space. In its simplest form, a 2-dimensional space will support a 3-point

simplex, or as it is more commonly called, a triangle.

It is the task of the search algorithm to move the simplex through param eter space

until the solution is found. This is performed by evaluating an error function at each

32

point of the simplex. The point is then moved through the opposite face of the simplex.

If this does not result in a lower error, then it is moved back by half the distance. If

this doesn’t improve the error, it is moved away from the centre of the simplex by a

factor of two. If still this doesn’t work then the entire simplex is reduced in size. By

this method, the simplex moves around in parameter space, changing shape and size

according to the terrain of the error space, all the time searching for a lower error. It

is therefore an error gradient descent method.

Termination of the algorithm can arise from three situations. Firstly, if it has

exceeded the maximum number of allowable error function evaluations set by the user.

Secondly, if the error of the lowest point falls below a pre-set tolerance level, indicating

a successful find. Thirdly, the simplex may collapse upon a local minima, and in so

doing, fall below a critical user set size..

Performance of this algorithm is strongly dependent upon the initial conditions

since it is a gradient descent algorithm. If the starting point is not close to the global

minima, the simplex may descend down a local minima giving a non-optimal solution.

This study attem pts to find the values for the three characterizing parameters of

a second order system, namely, damping, frequency and external input. These three

alone, however, do not define the initial conditions. There needs to be an error function

to measure how close the estimated parameters are. It is achieved by generating a

signal from the estimated parameters and comparing this with the observed profile. As

a result, the two initial conditions, X\ 0 and x 2o, must also be estimated by the simplex

algorithm to define a unique profile to compare against the observed profile. This adds

two dimensions to the optimization task; the alternative is to estimate only the three

parameters and sweep through a range of possible values for x io and x 2o. This is a

great increase in the computational load.

Comparison between the target and estimated signals is achieved with one of two

functions. The first is the standard RMS difference. The second combines the correla

33

tion between the two profiles and the difference between their means. Details of this

are given in Section 4.6.

3.4 .8 R ecursive D ow nhill S im plex

This algorithm can be expected to benefit from introducing a recursive element, al

lowing it to run usefully in a continuously running mode of operation. It introduces a

negligible amount of computational load and can be expected to increase the robustness

of the algorithm.

Since performance depends strongly on the accuracy of the initial guess, initializing

a run with the estimated parameters from the previous data block will provide a good

place to start the search. Although the parameters may be varying in tim e, and so

be different from one block to the next, the variation is slow, and estimates from one

block will be relevant to estimates for the next block.

It is also necessary to update the estimates for Xi0 and x 2o. This requires th a t the

values for x \ and x 2 at the end of the estim ated signal be calculated and passed on.

3 .4 .9 A rtificial N eural N etw ork s for P aram eter E stim ation

Artificial Neural networks (ANNs) are a powerful method for performing nonlinear

mappings between input and output vectors. It has been shown th a t they can map

any function to an arbitrary accuracy given sufficient units in their hidden layer(s [40].

ANNs can be used for this work by training a network to output an estim ate of a

param eter given the input signal as the network input. The network is then performing

the nonlinear transformation from the input signal trajectory to param eter value i.e.

damping coefficient, natural frequency or offset.

Figure 3.3 shows a neural network known as a feedforward neural network (FFNN)

which can be used for this task. A tapped delay line of N input units are fully connected

via weights to units in a hidden layer. These hidden units are in turn connected via

34

weights to the unit(s) in the output layer. In addition, bias units which have values

fixed at unity feed into the hidden and output layers allowing for a permanent offset

for units in the subsequent layer.

As each block of N data points is received, it is fed down the tapped delay line filling

the input layer. The units adopt these values as their activations. The activations of the

input units are passed down the weighted connections to the units in the hidden layer.

Each unit in the hidden layer sums its input, and passes the to tal through a nonlinear

transfer function. This is now the activation of the hidden unit. Once this has been

performed for each unit in the hidden layer, the output layer starts receiving input.

These units also sum and perform a transfer function. The output un it’s activation is

taken as the output of the network. This process is described in the equations included

in Appendix B.

W ith an appropriate weight m atrix such a network can perform the nonlinear m ap

ping between input signal and, say frequency estimation. Obtaining a weight m atrix

to perform the desired task is done by “training” the network. The backpropagation

algorithm is used to adjust the weights when the network is given examples of the

input and output mappings. Training often involves showing the network many exam

ples of the mapping, called a set. Showing the set once to the network is known as an

“epoch” . Many epochs are often needed before the network generates outputs close to

the desired output.

Once training is complete the network can be tested by showing a test set. The

networks performance can then be demonstrated with input patterns it has not yet

seen. If the performance is good, the network has been trained successfully and can be

used with real data. Otherwise, further training for more epochs is necessary.

35

3.4 .10 R ecursive N eu ral N etw ork s

A FFNN only uses current and past inputs to generate its output. Its architecture is

non-recursive. This can be used as an initial param eter estimation method, like the

high level parameter estimation or tim e derivative methods, but the architecture can

be upgraded to a recursive one by adding some extra connections. This would allow

NN’s to be used for the block recursive mode.

Figure 3.5 shows a recursive architecture. Connections lead from the output unit(s)

of the network to units in the input layer. These connections have fixed weight values

of one. Input to the network consists of the tapped delay line input, plus a copy of

the last output estimate of the network. This arrangement can be further extended

by creating a tapped delay line on the past outputs. Since the parameter values vary

relatively slowly over time, the past output estimates, and a possible tapped delay line

of past inputs, provide additional useful information for the network.

Recursion can be taken to another level. Connections can be made from the hidden

units to input nodes. This arrangement (fig. 3.6) was first used by Elman [15] and

allows the input to have knowledge of the previous state of the hidden units. This

feedback can give time-context information and it is for reason that Elman used this

architecture. Maintaining an input from the previous output of the network gives the

network considerable temporal information.

The concept of recursive connections can be taken to its extreme in the form of a

fully recurrent neural network (fig. 3.7). Here, a layer of input units feeds into a cluster

of fully recurrent units. Each recurrent unit is connected to every other recurrent unit,

including itself. One or more of the units is selected to be an output unit. Such a highly

recursive network can be compact, but training is more difficult and computationally

more expensive than the FFNN.

In both types of recursive network, the im portant principle is the same. Past in

formation is used to estimate the current time step’s estim ate. Since the continuously

36

Input

z-i

Hidden

Output

Figure 3.5: A feedforward network with recursive connections. Input from the tapped

delay line plus the previous time step’s output is used fo r the current estimation. (Bias

units are not shown in this figure.) This network requires a recursive mode o f operation.

running system assumes that the parameters will have reasonably slowly varying pa

rameters, this information will be useful.

3.4.11 G en etic A lgorithm s for P aram eter E stim ation

This section describes the general genetic algorithm (GA). It first describes the basic al

gorithm, then selects each aspect to discuss in more detail. Difficulties GAs experience

are then described.

A G eneral G en etic A lgorithm

The genetic algorithm (GA) is a versatile method to perform a stochastic parameter

optimization search. GAs are capable of searching a large param eter space, and focus

their search for optim al parameters in promising regions of the search space. They have

37

Hidden

Figure 3.6: A feedforward neural network with connections from both the hidden units

and output unit(s) leading to the input layer. This gives the network temporal infor

mation and hence requires a recursive mode o f operation.

been shown to be particularly suited to multimodal solution problems (see sec. 4.6). It

is inspired by the concept of evolution, and borrows several ideas from genetic repro

duction. These hinge on the three basic genetic operators of reproduction, crossover

and mutation.

In brief, a GA creates a population of chromosomes. Each chromosome is an en

coding of the parameters to be optimized. The chromosomes are each given a m erit

rating, depending on how well the decoded parameters suit the problem. This figure

of merit is known as a chromosome’s “fitness”. If a chromosome is denoted by a “C”,

then

Fc — Func(C) (3.7)

where Fc is the fitness and F unc represents the fitness function. The population

38

Input
Layer

Hidden
Layer

Output
Unit

Figure 3.7: A fully recurrent neural network. The layer of N input units feed into a

cluster of fully interconnected units. Any of these units can be selected as an output.

This network requires a recursive mode of operation.

of chromosomes is ranked according to the fitness of each member. Two chromosomes

are selected at random, with a preference for fitter chromosomes, to become parents.

These combine via a reproduction process to produce two offspring.

Reproduction(Cpi + Cp2) = Coi + Co2

where pi and p2 indicate the parents, and ol and o2 are the offspring. The offspring

have their fitness measured, and if they rank, they will be inserted into the population,

displacing the weakest member of the population.

This process of selecting parents, creating offspring and ranking them in the popu

lation is known as a “generation” . Many generations are performed, and with time, the

fitness of the population improves with the highest ranking chromosome representing

the best solution to date.

The algorithm stops when either a lim it of the number of generations is reached, or

39

a chromosome becomes sufficiently optimal. Good results can be obtained with many

variations of this algorithm. They have been shown to be highly robust to a large

variation in the controlling parameters, such as population size and choice of genetic

operators [24].

Population Initialization

To start a GA, a population must be created. This is usually done purely at random.

The number of chromosomes in the population is chosen. Each chromosome is then

created at random, and is a string of zeros and ones — a binary encoding of the desired

parameters.

The chromosome is a representation of the param eter values to be searched. The

number of bits used to encode each parapneter must be chosen, and a note kept of the

scaling required to eventually decode the chromosome. This may present a limitation

for the user since the range a parameter can take must be pre-determined. Each binary

string for each parameter is concatenated to form a single long chromosome.

For example, an 8 bit binary string representing one param eter can have a range of

values from 00000000 to 11111111, which is decoded to be values between 0 and 255.

This will allow the parameter to be described in a range with only 256 different values.

A quantizing effect takes place., This may cause problems, and a balance between

sufficient accuracy in the param eter’s value, and overloading the GA with excessively

long chromosomes.

F itness Function

Each chromosome in the population is then passed through the fitness function. The

fitness function gives a figure of merit on how well the decoded chromosome solves the

problem.

The process decodes each binary number and scales it for each parameter repre

sented. A pass of the problem in which the parameters are used is now made, and a

40

fitness is returned based on how well the problem was solved. This fitness is a figure

of merit for each chromosome and allows the entire population to be ranked in order

of its fitness. The chromosomes which best solve the problem are at the top end of the

population.

Parent Selection

The first generation has now been created, and selection for the next generation can

now commence. A selection procedure now starts, whereby two chromosomes are

selected to act as parents to produce some offspring. The parents are reproduced to

form the offspring. Then two other genetic operators, crossover and mutation act on

the offspring.

Selection of the parents can be accomplished in many ways. The method used here

is called tournament selection — in one round of the tournament a potential parent is

selected at random from the population and its ranking in the population noted. A

number of rounds are conducted, and the chromosome with the highest ranking goes

on to become a parent. The greater the number of rounds, the greater the chance of

having a high ranking parent. This emphasis on selecting higher ranking parents is

known as the selection pressure, and ensures that new solutions are sought for in areas

of the parameter space which are already producing good results.

Offspring P rodu ction

Once the two parents have been selected, they are copied. These copies are term ed the

offspring, and these go on to the processes of crossover and mutation.

There are two common types of crossover; one point and two point. In one point

crossover, the offspring are placed side by side and a point is chosen at random along

their length. At this point a cut is made and the tails of each offspring is swapped with

the other i.e. the offspring exchange their latter sections. This is shown in Figure 3.8.

Two point crossover takes each offspring, and makes two cuts in each. The cut-out

41

BEFORE AFTER

cut

Figure 3.8: Two offspring undergo one point crossover. A point is chosen along the

length of the offspring, and the tails swapped.

section from each offspring is then swapped (fig. 3.9). The position of the first cut is

random, with the length of the removed section being fixed.

Mutation is then applied to each offspring. There is a probability tha t each bit

in the chromosome binary string will be “flipped” i.e. a “1” will become a “0” , and

vice-versa (fig. 3.10). This probability is usually very low, so that there are only likely

to be one or two mutations per offspring, or even less.

Once these genetic operations have been performed for each offspring, each offspring

has its fitness measured. If its fitness merits it, the offspring will be inserted into the

population with the bottom most member of the population hence being lost, since

the population size is always kept at a fixed size. If the fitness of the offspring is worse

than the weakest member of the population, it does not enter the population and is

lost.

42

BEFORE AFTER

cut 2cut 1

Figure 3.9: Two offspring undergo two cut crossover. Two points are chosen along

the length of the offspring, and the sections of chromosome are swapped between the

offspring.

Generations

The process of selecting parents, creating offspring, and then ranking the offspring

constitutes one generation. As the number of generations increases, the weaker chro

mosomes are removed from the population, and the overall fitness of the population

increases. When one particular solution of the problem begins to dominate in the

population, the population is said to be converging. Generations continue until one of

the termination criteria is fulfilled: i) The fitness of the highest ranking member falls

below a pre-set critical value, ii) the maximum number of generations is exceeded, iii)

the maximum number of function evaluations is exceeded.

43

BEFORE AFTER

Figure 3.10: An offspring undergoing mutation. Any point in the chromosome can be

reversed.

G enetic A lgorithm T heory

Why does the GA work? How does it achieve its resistance to local minima traps, and

why is it particularly suited to multimodal problems? There are several reasons for its

success.

Firstly, the initialization where each chromosome is randomly generated gives the

GA a wide view of the search space. The larger the population size, the greater this

spread.

Crossover is a crucial genetic operator. It allows sections of chromosomes to swap.

It has been extensively shown tha t “building blocks” form in chromosomes[21, 20].

When these blocks are beneficial to a chromosome they are more likely to be passed

to the next generation. The crossover operator allows parts or all of building blocks

to be swapped between different solutions and to be built upon. It is the creation or

perpetration of building blocks that leads to the convergence of the GA.

44

Finally, the mutation operator allows for resistance to local minima. The random

change of a chromosome within the local minima may push it outside and into a

new and better minima [7]. It also acts to prevent premature convergence, where the

genetic diversity is prematurely lost, preventing a rapid descent of the current minima.

As the number of generations increases and the chromosomes become more similar, the

mutation operator becomes more im portant in allowing escape from local minima, and

it is common to increase the m utation probability as generations pass.

Variations of th e G enetic A lgorithm

The genetic algorithm described above is term ed a “steady state” genetic algorithm[40].

This is due to the relatively slow m anner in which the population will evolve. Since

one generation only produces two offspring, the overall difference between adjacent

generations is slight. It is also a monotonically reducing algorithm i.e. the fitness of

the highest ranked chromosome never decreases.

A common variation of the GA is when a top percentage of the current population

is taken, and offspring are created only from this select few until the next generation

is once again full, but only with offspring[7]. The new generation is then ranked as

before and the process repeats. In term s of generations, this method converges much

quicker than the steady state version. There is little difference, however, in the number

of offspring created and fitness tested. In this form, this variation is not monotonically

reducing since there is no guarantee th a t any one of the offspring will definitely be

fitter than the highest ranking chromosome from the preceding generation. This can

simply be remedied by allowing the elite parents to also enter into the next generation.

A different and common selection process is known as “roulette5 selection. In this

case, the fitness needs to be one which is maximized. Each chromosome selects part

of a “roulette wheel”, with the amount selected proportional to its fitness function.

The fittest chromosome thus takes the largest part of the wheel. A chromosome is

then selected by randomly choosing a place on the wheel, and which ever chromosome

45

covers this point is chosen. This process allows super fit chromosomes to have a much

higher chance of being selected than in tournament selection. This is not necessarily

desirable, as reproduction based strongly on a single super fit chromosome is likely to

force the population into prem ature convergence, losing genetic diversity and increasing

the chance of a local m inim a trap.

There is a further variation of the crossover operator. Here, a chromosome is re

structured into a series of loops. Each loop represents one of the parameters. Crossover

between chromosomes is then allowed only between corresponding loops. This approach

makes it more likely for the creation and building of blocks [24].

There are a host of other more minor variations, but those described above cover the

most common of the most major variations. Other genetic operators are often proposed,

bu t rarely do they serve any globally applicable use. Despite all these variations, GAs

rem ain highly robust, and good results can be obtained with almost any variation of

GA, and even with a large range of controlling parameters.

3 .4 .1 2 E pistasis

Epistasis can be observed in the biological genetic process as well as in the genetic

algorithm. This is the requirement that two parts of the chromosome must change

simultaneously for any benefit to the chromosome as a whole to be noticed. If only one

of the changes occurs, no improvement in the fitness will be noticed, or it may even

decrease.

An example taken from [7] is th a t of a bat, with its sonar emission and hearing

ability. When evolving, a flying bat with no sonar system would often collide with

objects. The same can be said for a bat with either only the ability to emit sonar

sound, or only the ability to hear sonar sound. It is when the two aspects occur

simultaneously that any benefit is seen.

In the GA, the chance that building blocks will be created at two different parts of

46

the chromosome at the same time and subsequently built upon is remote, compared to

the creation of a single building block. Thus, a problem tha t requires the development

of a dual aspect can expect to do so only slowly with a GA.

47

C h a p te r 4

S oftw are Im p le m e n ta tio n an d T est

S tra te g y

4.1 Sim ulation Structure

Simulation of the real time recursive block parameter estimation environment is written

in the C + + programming language. This is an Object Orientated language, where

classes are constructed which contain both data, and the functions that act upon the

data. This language lends itself to a modular construction, and with a little care, these

modules can easily reflect the problem in hand.

4.1 .1 S tructure D eta ils

There are three main classes in the structure of this simulation (fig. 4.1). The most

prominent class, SOE (Second Order Equation) controls all the data leading up to and

after the estimation of parameters from a single block of target signal. This class is

fed data by the SOEdata class, which is essentially a database to store all important

input and output information for all estimates made by the SOE class in a run of the

simulation.

At the heart of this study is param eter estimation. The estimation is performed by

48

SOEdata

Figure 4.1: The class structure o f the estimation simulation. Data moves between the

SOEdata database and the instance o f the SOE process. This contains an EstAlg class

which contains the estimation algorithm.

a variety of different algorithms, but the input and output is always the same. Going

into the algorithm is the target signal, and coming out are the estimated parameters.

The class which actually performs the estimation is EstA lg . Of course, the contents

of this class vary depending upon the chosen estimation algorithm. The EstAlg class

is called within a function of the SOE class, when this class has prepared all the relevant

data.

Each run of the simulation involves estimating one hundred parameter vectors,

which may vary with time, with each parameter vector being estim ated over ten con

secutive blocks. The SOEdata class contains the initial values for the parameters for

each of the one hundred test vectors, plus the two initial conditions, x i0 and x 2o, neces

sary to identify a unique trajectory. These vectors are passed one at a time to the SOE

class which generates the signal on the fly for each block. The SOE class contains the

EstAlg

49

sampling frequency, f s, and is thus able to feed the EstA lg class with data according

to the adaptive sampling frequency algorithm. The parameters at the end of each

block are stored, and at the end of each series of ten blocks, the history of the run is

passed to the SOEdata class. At the end of the simulation, the SOEdata class dumps

the history of the entire simulation to disk for analysis later by the user.

Figure 4.2 depicts the structure of the simulation in pictorial form. The steps are

as follows:

1. SOEdata feeds in the target parameter vectors from disk.

2. Initialization of SOE occurs, which also includes details of the EstA lg initializa

tion.

3. Start the vector number loop.

4. SOE receives target vector from SOEdata .

5. Zero the clock.

6. Start the block number loop.

7. Target signal is generated based on the current clock value, the current sampling

frequency, and the target parameters.

8. Target signal is passed to EstA lg which returns an estim ate vector.

9. Frequency estim ate is passed to the adaptive sampling frequency algorithm func

tion within SOE to update the sampling frequency. Clock is updated.

10. End of block num ber loop.

11. Pass run history to SOEdata .

12. End vector num ber loop.

13. Dump statistics to disk for analysis later.

50

An object design for each class is shown in figures 4.3, reffig:object-soe and 4.5.

Each class contains both functionality and data. The first subdivision in each diagram

holds the class name. The second contains the principle functions inherent to the class.

These describe the most significant processes the class carries out. In the third box

is listed the class’s primary data structures. It is upon these data structures th a t the

functions operate.

4.1 .2 In itia lization

A separate program generates the param eter data. There are limits imposed on the

values of some parameters; for the frequency parameter this stems from the initial

sampling frequency used, and for the other parameters and the initial conditions, these

stem from a need to lim it the range of the x variable to approximately ± 2. There are

sometimes further limitations on the param eter and starting condition ranges when

the estimation algorithm fails on the maximum ranges, and simpler signal profiles are

required.

Other initialization details, such as initial sampling frequency, details for the adap

tive sampling frequency i.e. sample length and nc and the noise and magnitude of

noise to be used, are kept in a . in f file which is read at the beginning of each simula

tion. Memory arrays are dynamically created so tha t the program does not have to be

re-compiled whenever controlling parameters are varied.

Some of the estimation algorithms called in EstAlg also require some user defined

variables e.g. for polynomial least squares fitting, the polynomial order is user defined.

To save loading this information each tim e the EstAlg class is called, it is stored

within the SOE initialization and passed as a function parameter when the estimation

algorithm is called.

These measures attem pt to make the simulation “user friendly” by allowing many

of the simulation parameters to be set within . in f files rather than hardcoded into the

51

program. This allows for greater speed in testing the performance of the estimation

algorithms under a wide range of situations.

4 .1 .3 E xecu tion

In the simulations, each estimation algorithm is executed many times. There are a

hundred test param eter vectors, and each of these can be estim ated over a number of

blocks. This situation allows for a straightforward design using two fo r loops. The

inner loop cycles through the number of blocks, whilst the second cycles through the

target parameter vector list.

S O E .I n i t i a l i z a t io n ()

f o r (v e c to r = 0 ; v e c to r < NumVectors ; vector++)

{

SOE. ZeroClockO

SOE.ReceiveTargetParameters(SOEdata(v e c to r))

f o r (b lock = 0 ; b lo ck < NUmBlocks ; block++)

{

SOE. C a lc u la te S ig n a l()

SOE. Estim ateParam eters()

SOE.UpdateClockQ

SOE. AdaptiveSamplingFrequencyAlg()

SOE.DeliverDetails(SOEdata)

} / / Block loop

} / / V ector loop

SOEdata. S t o r e A l lD e t a i l s ()

52

4.1 .4 Peripheral Functions

There are some functions used in the simulation which do not relate directly to any

specific class, since they are general mathematical functions. These include functions

for calculating the RMS error between two vectors, calculating the correlation between

two vectors and calculating the mean of a vector.

These functions are outside of the class system and are stand alone functions used

by the various estimation algorithms. For example, the GA algorithm uses the RMS

and correlation functions to compare the target and estimated signals to obtain a fitness

for the estim ated parameters.

4.2 E stim ation A lgorithm s

4.2.1 G eneral

All of the estimation algorithms are encoded as classes. Each class has only three

functions called externally. These are the initialization function, the execution of the

algorithm and a function to return the estimated parameters. All other functions for

the algorithm class are called internally.

Several of the algorithms have a simple internal structure where the estim ation

requires only a single core function, maybe with a few supporting functions. These

include the difference equations, the polynomial LS fitting and the Downhill Simplex.

The high level algorithm contains several important functions based around a

Fourier Transform class. The target signal is used to initialize the class, which af

ter performing an FFT, executes several other tasks e.g. PSD and dominant frequency

search. The algorithm then combines the results from these functions to produce its

estimate for the parameters.

Estimation using a neural network, either for derivative estimation or direct param

eter estimation, follows a straightforward approach, similar to those described above,

53

with the addition tha t the network size, and other details, are loaded at the beginning

of the simulation and passed in through the SOE class. The m ajor difference with this

algorithm is that a network must first be trained so it can perform the estimation task.

Training is performed in a separate simulation. Training data with specified char

acteristics for the signals is randomly generated. These must be different from the test

signals used to measure the performance of the network in the estimation simulation.

Training is conducted and monitored, and when the error of the network reaches min

imum levels, the weight m atrix which identifies the unique network is transported to

the estimation simulation and is used in a “read only” mode.

4.2 .2 R ecursive E stim a tio n

When the estimation algorithm is recursive, there are two phases to the estimation

procedure. An initial estim ate has to be made, which then is used to seed a recursive

estimation algorithm. This can be seen in Figure 4.2.

Since all the algorithms can work as initial estimators, each recursive algorithm

used itself in “initial estim ator” mode to complete the first phase. The only exception

to this is the Downhill Simplex m ethod which is seeded by the high level algorithm.

This simply involves inserting both the Fourier transform class and simplex class in

the SOE ’s EstimateQ algorithm and keeping track of the current block number.

4.2 .3 G enetic A lgorith m Structure

A genetic algorithm (GA) is a more involved estimation algorithm with several steps

in its initialization and its running. The structure is shown in Figure 4.6. Its steps are:

1. Receive target trajectory.

2. Create a random population.

3. Test each chromosome and obtain its fitness.

54

4. Rank the entire population according to fitness.

5. Select two chromosomes to be parents.

6. Create the offspring and perform the genetic operators.

7. Find the fitness of the offspring.

8. Insert the offspring into the population.

9. Test for the termination conditions. Return to step 5pf another generation is

available.

10. Decode the fittest chromosome and return the estimated parameters to SOE .

When the GA is used in a recursive fashion, there is only one additional feature of

the algorithm, other than keeping a track of which block the GA is operating in. This

is to re-encode the chromosome sections which relate to the initial conditions. This is

achieved by calculating the expected values for the initial conditions and then encoding

them into binary and replacing the relevant section of each chromosome.

4.3 Test Strategy

Experiments are started with simpler problems, which are then built upon and learnt

from, until the full continuously running estimation algorithm is complete. Experimen

tal work starts with parameter estimation for an initial, single block of data. Firstly,

this is achieved via derivative estimation in Section 5.1. Then other methods which

estim ate the parameters are directly examined. Together these sections constitute the

first stage of a continuously running param eter estimation system by allowing the first

estim ate to be made without any previous estimates. Section 5.3 completes the sys

tem by examining all the methods for parameter estimation which can operate in a

continuously running mode.

55

4.4 Test Param eter G eneration

To measure how well each method estimates the parameters, a standard experiment

is used. An experiment will consist of a single run made up of typically one hundred

param eter sets which require estimating. In the first two sections where an initial

estim ate is required, the parameters do not vary within the tim e range and only one

block of data is fed to the param eter estimation module for each of the one hundred

param eter sets. In the last section where the system runs in a continously running

mode, the parameters vary their value sinusoidally according to pre-set frequencies.

The parameter values which make up a run are chosen at random within certain

ranges. It is clear from careful anaylsis of the test procedure th a t some methods are

capable of coping with the complete param eter ranges, whilst others require the range

of some of the parameters to be limited, and this is discussed in each appropriate

section.

A set of parameters is chosen at random within the following ranges:

-0 .4
e

0.4
< < —

Un

0.01 (jJrnax < <-̂n < ^max

—t X < u < M-n&max

The reasons for the choice of these bands require some explanation. Firstly, the

observed damping, E, is a function of both the value of £ and wn, and is 2£wn. Secondly,

the maximum frequency, u)max is a function of the initial sampling frequency, f s used

for receiving incoming data, and is set to,

“W = J (4.1)

This ensures th a t there are at least four data points per cycle of the incoming signal.

This is the minimum number of points tha t can describe the amplitude of a sinusoidal

56

signal, which is necessary since some of the methods used for parameter estim ation

depend on fitting an internally generated estimate signal, including magnitude, to the

target signal.

The value of xmax is an arbitrarily chosen value to limit the overall range of the

variable x. x max actually describes the largest magnitude for the equilibrium position

of x and not its maximum value. In the generation of the tests signals, however, the

values of the initial conditions aq0 and x^0 are selected so that the signals have a range

in amplitude from 0.5 to 2.0. This is done by selecting at random a phase angle,

and an amplitude, A, and then setting,

 ̂ Uxio — Acos<p+ —

X 2 o = — cO n A sin 4>

This entire set of conditions allows a robust set of signals to be generated, whilst

keeping a high element of variation in the signals. As mentioned, some methods require

these restrictions to be tightened.

In the continuously running mode experiments, damping £ is always set to zero

since running a second order system for many blocks with non-zero damping can easily

arise with the signal vanishing to zero or becoming unstable and oscillating to wild

values. It is still a valid task for the estimation algorithms to correctly return a value

of zero for the £ parameter.

4.5 Perform ance M easurem ent

It is necessary to have some yardstick by which to measure the performance of each

run. To do this in the first two sections where the parameter estimation is for one

block only, the Absolute Average Difference (AAD) vector is used. The AAD vector is

(A A D z, AAD ^n, A AD u), where,

57

A A D tf) =

1 P
A.AD{ion) = — ^] |cc?n ton |

A A P({/) = - i : \ U - U\

where P is the number of test patterns (usually one hundred). Naturally a zero

AAD vector means perfect estimation.

When continuous param eter estim ation is applied, the Total AAD (TAAD) vector

is used to measure performance. The TAAD is simply the to tal of the AAD vectors

for each block of data for a signal. If there are M blocks of data in the P test sets,

1 I p M

ta a d (= - ~ y :j : i e - f i (4.2)

and similarly for the other two parameters. Again, a zero vector indicates perfect

estimation.

It is im portant to note th a t when discussing sampling frequency, hertz (cycles/s) is

used as the basic unit. Whenever con or a related variable is discussed, angular frequency

is always used. Therefore, if the sampling frequency f s is 25Hz, and ujn = f s/ 4, it has

a value of 25 x 27r/4 = 39.9Hz.

4.6 Error Function A nalysis

Two of the direct param eter estimation algorithms, namely the Downhill Simplex and

the Genetic Algorithm (GA), have their basis in the comparison of the incoming data

signal and a signal internally generated by estim ated parameters. By comparing these

two signals and determining how similar they are, the algorithms can give some figure

of m erit to the parameters tha t generated the estim ated signal.

There are two functions used by the two algorithms to compare the signals; the

first is the straightforward Root Mean Square (RMS) error,

58

R M S = y ̂ {ytargetji) Vestimate^)) 2 ̂̂

W hen the signals are identical in all respects i.e. each data value matches, the RMS

is zero.

The other combines the correlation between the signals and the difference between

the signal’s means,

E rror = -C o rr (y target, yestimaie) +]̂ ars« (4.4)

The correlation function returns values between ±1.0. It returns +1.0 if the vectors

are identical ignoring scale and position.

How do these functions vary? Figure 4.7 shows an input target signal of 2Hz

sampled at 25Hz for one second. There is no damping and no external input. A second,

estim ated signal, is generated from estim ated parameters. The estimated parameters

need to m atch the target parameters and this is achieved when either of the error

functions are a t their global minima.

The variation of the RMS function when the phase between two otherwise identical

signals is moved from zero to 2tr, is shown in Figure 4.8(a). The error near zero

and 2tt phase exhibit a low error, whereas the error rises to a maximum at tt radians

phase difference. The important feature is th a t there is only a single peak in the error

curve, and a simple gradient descent search algorithm will easily find the global minima

between two signals which vary only in their phase.

W hen the two signals have the same phase but their frequencies are different, a

more complex error profile is seen (fig. 4.8(b)). The target frequency is again 2Hz, and

the estim ated signal sweeps from zero to one quarter of the sampling frequency. The

global m inim a appears as expected at 2Hz. Either side of this are a number of local

minima.

A slightly different, but still multi-modal error function, is seen when the phase is

59

optimized at each estimated frequency (fig. 4.8(c)). Each of the minima, including the

global, are slightly broader when the phase is not optimzed.

Finally, Figure 4.8(d) the correlation and mean error function is shown at each

frequency when the phase is optimized. The local minima at higher frequencies still

occur, but at lower frequencies than the target, there is only one minima.

The multi-modal nature of the error curves poses a particular problem for the

iterative optimization algorithms. Such algorithms work by descending the error curve.

If they are placed in a m inim a other than the global minima, the error curve will lead

them to an erroneous conclusion. To combat this, either the algorithm must possess

the ability to escape from non-global minima, or the algorithm must be initialized with

an estimate within the global minima.

60

Zero clock

Initialize SOE

End Vector loop

Update clock

Start Vector loop

End Block loop

Estimate parameters

Start Block loop

Calculate target
trajectory

Pass parameter

vector to SOE

SOEdata receives
run history

SOEdata loads all
parameter vectors

SOEdata dumps entire

history to disk

Adaptive Samplling

Frequency Algorithm

Figure 4.2: Structural design of the real time recursive block parameter estimation

simulation.

61

SOEdata

GetFirstVector
GetNextVector
ReceiveEstimates
StoreEstimates

Source vectors
Result vectors

Figure 4.3: Object design for the SOEdata class. The central division describes the

principle functions and the lower the data structures.

62

SOE

GetParameters
GenerateObservedBlockData
EstimateParameters
AdaptiveSFAlgorithm

Sampling frequency
Observed signal
Target parameters
Estimated parameters

Figure 4.4: Object design fo r the SOE class. The central division describes the principle

functions and the lower the data structures.

63

EstAlg

GetObservedData
EstimateParameters
RetumEstimate

Observed signal
Previous estimates
(recursive only)

Figure 4.5: Object design fo r the EstAlg class. The central division describes the

principle functions and the lower the data structures.

64

Target
data,

Another
generation?

Yes

No

Select parents

Create offspring

Rank population

Calculate offspring’s fitness

Return best estimates

Insert offspring in population

Calculate population’s fitness

Cretae random population

Figure 4.6: A flow chart describing the structure of the genetic algorithm estimation

process.

65

0 . 0 -

- 0 . 5 -

0.0 0.2 0 . 4 0 . 6
Time (s)

0.8 0

Figure 4.7: An input target signal sampled for one second at 25Hz. Signal frequency is

2Hz, with no damping and zero mean.

66

3.0-i

0.0 1111111111 rn r rm 11 rrrrrnTn rmTmTTTTfTlTnrrrrTi
2.0 3 .0 4 .0 5 .0 6 .0 7 .0

Phase {<p)
2 .0 3 .0 4 .0 5 .0
Frequency (Hz)

(a) (b)

1 . 0 -1 0 . 0-1

ao
cd

—1 -0 ,5 -<1)
5-<J-ioo

0.500

0 .0 2.0 3 .0 4 .0 5 .0 6 .0 7 .0
Frequency (Hz)

0 .0 1.0 2 .0 3 .0 4 .0 5 .0 6 .0 7 .0
Frequency (Hz)

(C) (d)

Figure 4.8: RM S error functions between, a target signal and an estimated signal, a)

WRien the phase varies, b) When the frequency varies, c) WHien the frequency varies

and phase is optimized, d) When frequency is varied and phase optimzed and the error

function is the correlation function.

67

C h a p te r 5

E x p e rim e n ta l R esu lts an d

D iscussion

This chapter is dedicated to the reproduction of the results obtained with extensive

experimental work into different estimation methods for the parameters of the general

second order system. It details each stage of the experimentation, describing notable

features in the results.

The overall test strategy and preliminary analysis is described within Chapter 4.

A full conclusion of the work described in this chapter is contained in Chapter 6.

5.1 T im e D erivative Estim ation M ethods

5 .1 .1 Introduction

This section covers parameter estimation using time derivatives, as discussed in Sec

tion 3.4.1. Once the time derivatives have been estimated, the parameters of the second

order system are calculated using the equations of [1]. Firstly, the use of simple dif

ference equations to estimate the derivative is covered, which operates by subtracting

consecutive data points. A series of alternative estimation methods is then tried to

counter the problem of noise. These are polynomial least squares smoothing, digital

68

filtering and the application of feedforward neural networks.

If is the zeroth derivative, £2 the first derivative (velocity) and so on up to £5,

then,

5 . 3 :2 — £ 4 - 3 :3

£ 4 . £ 2 — £ 3

£ 5 . £ 3 — £ 4

x l - £2.£4

where b — lu% and a = 2(ujn .

5.1 .2 D ifference E quation D erivative E stim ation

For each parameter set in a run, six points are generated, since the difference equations

require only six points to calculate all the required derivatives. The parameters £, u>n

and U are estimated using the equations of Section 3.4.1.

W ith a pure uncorrupted input signal, this method achieves an AAD vector of

(0.31,0.27,20.3). This is a run where the sampling rate is fixed at 25Hz. This is a poor

estim ate of the damping parameter, which only has a range of ±0.4. The frequency

estim ate is good, since the range of this param eter is 3.93 — 39.3. In this case, U can

vary between ± tu j.

The ASFA w ith Fixed Param eters

Application of the adaptive sampling frequency algorithm (ASFA) when the parameters

remain fixed, produces more accurate param eter estimates. It only takes a few blocks

of input signal for the sampling frequency to stabilize, where

, u nnc
Js = —

Z / i

after each block. After four data blocks the AAD vector is (0.2,0.02,1.4), clearly a

marked increase in accuracy.

69

Figure 5.1 shows how the sampling frequency and the estimate of frequency vary

over the tim e period of the signal. In Figure 5.1a the input signal is shown. Note that

the number of points increases towards the end of the signal, indicating an increased

sampling frequency. In Figure 5.1b the sampling frequency is shown to move from its

initial value of 25Hz up to nearer 48Hz. The actual frequency of this signal is 2.8Hz;

with the algorithm attem pting to feed in 16 data points per cycle, this would require

a sampling frequency of fn x n c , or 2.88 x 16 = 46.1Hz. This shows the algorithm is

getting close to the desired sampling frequency.

Figure 5.1c shows the estimated frequency compared to the target frequency. The

first estimate is made with a sampling frequency of 25Hz. The second is made with an

adjusted sampling frequency of 50Hz, allowing for a more precise estimate to be made.

The feedback system quickly settles down to produce an estimate only 1Hz out.

The estimates for all three parameters receive a significant improvement in their

accuracy due to the use of the adaptive sampling frequency algorithm when the pa

rameters remain fixed with respect to time. The estimate for.£, is still however, poor

at 0.2 when the actual value is zero. Despite the equations which calculate a and b

(eqn.’s 3.2 and 3.3) and hence the parameters is exact, the difference equations for

calculating each of the time derivatives is not exact. This is where an error in the

parameter estimation occurs.

N oise Tolerance

Adding noise to the input signal produces a rapid degradation in the accuracy of the

estimates. Table 5.1 shows the resulting AAD vectors when noise is used. Both white

noise of equal probability distribution and impulse noise are tested.

In the second column, the number of test signals where the £ estimate is greater

than 0.6 is tabled. Such signal’s estimates are not used in calculating the AAD for

the run, and are effectively discarded as too poor. In this case, the signals are left out

for the run with 0.01 amplitude white noise have an AAD vector of (1.76,1.37, 236.9).

70

0.0

- 0 . 1

- 0 . 2 -

3 -

- 0 .5
0.0 0 .2 0 .3 0 .4 0 .5 0 .6 /

Time (s) '

Time (s)

Estimated
 Actual

Time (s)

(b) (c)

Figure 5.1: A signal (a) is sampled at a varying sampling frequency, (b) shows the

sampling frequency at the end of each block, (c) shows the estimated frequency of the

signal compared to the actual frequency.

71

Noise Type Out of range

If 1 > 0.6

AAD

f U

No noise 20 0.26 0.16 12.394007

W hite noise

Mag=0.001

38 0.35 0.32 31.6

W hite noise

M ag=0.01

52 0.44 1.0 193

W hite noise

Mag=0.1

70 0.38 2.9 685

Impulse noise

Prob=10% Amp=0.1

34 0.3 0.7 130

Impulse noise

Prob=15% Amp=0.4

52 0.3 1.5 501

Table 5.1: Table showing A A D vectors for the difference equation method with different

levels and type of noise on the input signal.

This effect is more pronounced when other methods are used.

W ith only modest amounts of noise, the estimate of £ becomes worse than sim

ply guessing the result. The estimate of U also suffers from noise, but despite the

degradation, the estim ate of lou is still reasonable.

C om m ents

These few runs dem onstrate tha t the time derivative estimation method for parameter

estimation is an accurate method when the adaptive sampling frequency algorithm is

applied. Tolerance to noise is low, however, with poor results being obtained with even

small amounts of either white or impulse noise.

72

5 .1 .3 P olyn om ia l LS F ittin g For D erivative E stim ation

By taking a block of input signal and fitting a polynomial with the least squares (LS)

criteria, a set of polynomial coefficients are generated which allow the derivatives to be

calculated at any point on the polynomial. To fit a polynomial of order N , there must

be at least N + 1 points, and to evaluate the fourth derivative, the order m ust be

at least four. There must therefore be at least five points per block in the input signal.

A further consideration is th a t each derivative of a second order system has a

sinusoidally varying profile. The polynomial order must be able to approximate this

sufficiently well. The higher the order used, the better the polynomial will be able to

m atch the fourth derivative’s profile. Low orders can still be used, however, as long as

the approximation is not too coarse.

Polynomials and their derivatives are always evaluated at the centre of the input

block. It can be shown th a t the derivative estimates for a polynomial fit with the LS

algorithm are most accurate towards the centre of the vector.

It is possible to achieve an almost arbitrary accuracy when no noise is present in the

system. By using the highest polynomial order possible for the length of the block used,

optimal results are obtained. Increasing the block length allows for improved accuracy,

since this allows for higher polynomial orders to be used, which can approximate the

higher derivative orders better. For example, a block length of 6 and a 5th order

polynomial, the AAD vector is (0.03,0.12,31.2). When the block length is 8 and an

order of seven used, this improves to (0.005,0.033,7/22).

N oise Tolerance

Adding white noise to the signal disables the accuracy of this setup. A polynomial of

order one less than the length of the data can match each data point exactly. Such

a polynomial mimics the noise on each data point, and no smoothing occurs. Lower

orders must be used if smoothing is to take place.

73

Noise Type Out of range

If 1 > 0.6

AAD

f U

No noise 0 0.04 0.3 51.3

White noise

Mag=0.001

7 0.07 0.3 56.1

White noise

Mag=0.01

16 0.08 0.4 67.3

White noise

Mag=0.1

14 0.18 1.0 137

Impulse noise

Prob=10% A m p=0.1

9 0.1 0.56 76.5

Impulse noise

Prob=15% Amp=0.4

8 0.18 1.1 145

Table 5.2: Table showing A A D vectors for the polynomial L S method with different

levels and type of noise on the input signal.

A sixth order polynomial is used with a block length of 12. Table 5.2 shows the

AAD vectors for different levels of noise and types of noise using this arrangement.

In the run of white noise with magnitude 0.01, where 16 of the signals have f

estimates out of range, the AAD vector for the signals that were left out is (1.5,2.5,494).

This is significantly different from those estimates within range, and demonstrates that

the potential for making significantly erroneous estimates is quite rare, but severe.

The source of the high errors is test signals tha t have frequencies at the far low end

of the scale. When wn is approximately less than 6.0, there is a high chance tha t the

estim ate will be significantly out. There is no simple solution to this difficulty — it is a

property of the algorithm th a t frequencies significantly below the sampling frequency

74

■—- 6 th o rd e r polynom ial
- - Noisy s ignal
— P u re s ignal0 . 2 -

- 0 . 2 -

-0 .3 -

0 .4 -

-0 .5
0 .0 0.2 0.3

Time (s)
0.4 0.5

Figure 5.2: A noisy signal is fitted with a fourth order polynomial The polynomial

matches more closely with the noise free signal, allowing more accurate derivative es

timation,.

with white corrupting noise, cannot be estimated accurately. Study shows tha t the

higher derivatives are estimated more poorly than the lower ones, which suggests th a t

the high frequency variation of the noise is perturbing the higher coefficients of the

polynomial LS fit, whereas, in high frequency signals, it is the signal itself which is

dominant, it is possible to estimate the lower frequency signals accurately only by

reducing the sampling frequency, at the expense of excluding higher frequency signals.

Figure 5.2 shows a noisy input signal, where the noise has a maximum m agnitude

of 0.1. Also shown are the 4th order polynomial fit and the noise free signal. It can

be seen tha t the polynomial curve matches more closely the noise free signal than the

noisy one.

Despite the low order, good results are obtained due to the short block length. The

high derivatives are estimated well since a straight line is a reasonable approximation

75

over the short block length. Increasing the block length decreases the validity of this

approximation. Increasing the order allows the polynomial to mimic the noise and

decrease the derivative estim ate accuracy.

C om m ents

Use of a polynomial fitted used the LS criteria to the incoming signal produces arbi

trarily accurate results when no noise is present. Increased accuracy is achieved with

increased sample length whilst m aintaining the maximum allowed polynomial order.

Application of noise to the incoming signal disables this property and the polyno

mial has to be used as a smoother. As noise increases, higher order coefficients are

distracted by the noise, notable when the signal frequency is low. As a result, low

frequency signals (compared to the sampling frequency) cannot be estimated with cer

tainty when noise is present. E ither the sampling frequency must be reduced, or low

frequencies removed from the test data.

This problem can be expected to cause difficulties when the ASFA algorithm is

used when estimating signals with variable parameter values. Signals which start with

a high frequency which then reduce can be expected to be estim ated accurately, as the

ASFA will adjust the sampling frequency. Signals with a low initial frequency will fail

in the same fashion as above, and the ASFA will fail to fix an appropriate sampling

frequency.

5.1 .4 P re-processing S ignal F iltering

Since noise significantly reduces the capabilities of both the difference equations and

the polynomial fitting approaches for derivative estimation, filtering the input signals

before they are passed to the estim ation algorithm is performed. W ith the noise partly

filtered out, estimation can be expected to be more accurate.

Filtering can be any of lowpass, highpass, bandstop or bandpass. Ideally, a bandpass

76

filter centred on the actual input signal’s frequency would remove most noise and still

leave the signal substantially unaffected. Since it is the frequency of the signal which

is sought, however, this is not possible. Further, such a filtering system would have to

consist of a bank of bandpass filters each tuned to a separate frequency, and the best one

used depending on the estimated frequency. Although this is a possible approach for

an adaptive system, it is clumsy and not entirely necessary due to other considerations.

Since the input signals can range from a low frequency up to middle range frequency,

and white noise has frequency content across the entire range of frequencies, whilst

impulse noise has high frequency elements, lowpass filtering will remove a substantial

part of the noise from any input signal.

T he M oving W indow Average F ilter

A simple lowpass filter is the Moving Window Average (MWA), where a number of

data points from the input signal are averaged to produce the output for the current

tim e step ie.
1 N~l

1 v i = 0

where N is the order of the filter, or the size of the moving window. The resulting

output signal yn lags the original signal by (N — l) / 2, but this does not affect the

parameter estimation process.

M W A Filtering and Difference Equations

Application of the MWA filter with the difference equation method improves param eter

estimation measurably. Table 5.3 shows the results of runs with 0.01 magnitude white

noise and a range of MWA order.

Considering only those signals where the f estimate falls within range, the use of a

MWA has no measurable effect on the f estim ate itself. On wn and £/, however, there

is an improvement by a factor of approximately 3 with the best results obtained with

77

MWA

order

Out of range

If 1 > 0*6

AAD

f Wn U

No noise 20 0.27 0.17 12.7

1 52 0.46 1.14 206.7

3 43 0.4 0.55 73.9

5 42 0.40 0.50 42.1

7 92 0.40 1.41 86.8

Table 5.3: Table showing AAD vectors fo r the difference equation method with pre

processing filtering with different MWA orders. White noise is used at magnitude 0.01.

MWA order 5. An order of 7 results in 92% of the test patterns falling out of range.

In the other cases, the out of range vectors are not excessively poor.

Since the MWA is a lowpass filter, it may be thought tha t only low frequency

signals should be tested. This would allow maximum noise reduction, and hence a

maximization of estimation accuracy. This is not the case. If only low frequency test

signals are presented to the algorithm, very high numbers of estimates fall out of range

because the signal does not vary over many of the six data points used, and so noise

becomes a large factor.

This process can be countered by using the adaptive sampling frequency algorithm

(with zero damping). The sampling frequency is adjusted so tha t 6/16th’s of a cycle

are used in the difference equations. This will mean the signal varies over a reasonable

range. Experiments show, however, tha t even small amounts of noise (white noise of

magnitude 0.01) allow the sampling frequency to explode in some cases. On cases

where the sampling frequency remains stable, accuracy is greatly improved.

M W A F ilterin g and P olynom ial LS F ittin g

Applying the MWA pre-processing with the polynomial fitting always produces less

accurate estimates than when no MWA filtering is used. This is with both white noise

and impulse noise. Since the polynomial least squares fitting acts as its own filter, and

the MWA is also a lowpass filter, it is of little surprise tha t no noticeable difference is

observed since the two filters perform a similar job.

C om m ents

This section has shown tha t the MWA can improve the estimation accuracy when the

difference equation method is used when white noise is present on the signal. It is

shown, however, that the short sample length used in calculating the time derivatives

led to problems when the signal moved through only a small range. It is also shown

th a t a benefit in applying the MWA lowpass filter on low frequency signals.

Further work for param eter estimation via time derivative estimation must therefore

lie in the direction of increasing the sample size used in calculating the time deriva

tives. The polynomial LS fitting does allow for this, and other methods such as neural

networks can also be used (see next section).

5 .1 .5 N eu ral N etw orks for D erivative E stim ation

The motivation for applying neural networks in this problem is clear; the transformation

from an input signal to a time derivative is a nonlinear one, and neural networks

are capable of performing such mappings. Neural networks are also well known for

their tolerance to noise. This combination of properties make neural networks a good

prospect for this problem.

Feedforward neural networks trained with backpropagation are used with the hy

perbolic tangent function as the transfer function. This function ranges between ±1.0,

allowing easier estimation of negative derivative values.

79

A network is trained with signal trajectories as the input. Five output units are

used, each one trained to output one of the five state variables Xi, x 2, x 3, x4 or x§

which are then used to calculate the param eter estimates. It is necessary to perform

scaling on both the input and output.

Although networks are able to generalize, scaling of the input is performed to make

the network’s job as easy as possible. Firstly, the mean of the input signal is removed

from the input signal. It is then scaled so the maximum input value is unity. This

translation and scaling allows any offset and any m agnitude of signal to be standardized,

making the estimation process more tolerant of input variance.

Input and O utput Scaling

Scaling of the output is necessary since derivative values can get very large, the more so

for higher derivatives. The fourth derivative for example, is proportional to ujn raised

to the fourth power. Since omegan can easily have values of 6 x 27rHz, this leads to

extremely large values. Scaling is performed by taking the n th root, where n is the

order of the derivative. Negative values are first made positive, rooted, and then made

negative once more. This gives a maximum value of a derivative of w™aa;, so dividing

by this value gives a linearly varying function ranging between ±1.0. This allows the

tanh function to be used on the output units of the network. If O is the output value,

then the scaled output, Os is,

„ ,dnx. 1 _ j_ .
°s{~ n~) = ° n (5.1)dtn w™ax K }

Linear output units with unsealed output cannot be used since the error which is

backpropagated during training for the higher derivative output units would swamp

that of the lower derivative output units. Linear output units can still be necessary

with scaled output, whoever, since negative damping can lead to scaled derivative

values outside of the range ± 1.0.

80

P relim in ary E xperim ents

Two m ajor points can be concluded from preliminary experiments. After testing a

variety of networks eg. one layered linear adaptive filters, networks with linear hidden

units, it is apparent tha t the minimum requirements for a network to perform the

mapping is a neural network with nonlinear hidden units. This reinforces the principle

that the mapping from input signal to derivatives is a nonlinear one. The second point

is tha t the networks are not able to cope well with training data where the damping

param eter has non-zero values. Best accuracy is obtained when all training and test

patterns have zero £ values.

Based on these principles, a suitably sized network to optimally perform the task

can be performed. Training data consisting of one thousand patterns with the frequency

ranging between a maximum of f s x 2tt/4 and 1% of this and damping set to zero is

used. The external input is limited so tha t the equilibrium position is between ±1.0,

and the am plitude ranges between (0.5,2.0). Scaling and translation is used to add to

the invariance of the process.

After testing networks with between 6 and 12 hidden units and a range of input

lengths, the best performing network in terms of AAD vector has 8 tanh hidden units,

linear output units with 17 input units. Increasing the number of hidden units has no

beneficial effect.

For all networks, the profile of the RMS curve is one tha t falls sharply at the

beginning of training and then gradually shallows out to asymptotically approach some

value. No plateaux are encountered, or local minima apparently . escaped from and

similar behaviour is always found regardless of the initial weight m atrix. Training does

benefit, however, from a reduction in the learning rate mid-training. This is shown

in Figure 5.3. Here, training is carried out for 25 epochs with a learning rate of 0.1.

At this epoch, it is reduced by a factor of ten to 0.01 where the dip in the RMS is

observed. The same change in learning rate is made at epoch 40, and a smaller dip is

81

0.30-1

0 . 20 -

0 . 10-

0. 00'T"n-i i n i l i | r i i i i i i i r | i i i i i i i t i | i i i i i i i i - i | i i) i r i i i i |

0 10 20 30 40 50
Epoch

Figure 5.3: The RM S curve for a a network with 17 input units, 8 hidden units with

nonlinear hidden units. Training data varies in all respects except the damping param

eter which is always set to zero. The asymptotic approach indicates no plateaux in the

problem space.

seen here also.

The AAD vector for this network over 250 test patterns is (0.043,0.92,42.0). This

compares well with the AAD for the polynomial method when no noise is present and

with the same input length and a polynomial order of 6 of (0.002,0.04,2.8). This latter

case is also with a variable damping parameter, an im portant failing of the network

method.

A lternative Training M ethods

A number of alternative training methods is tested with neural networks to improve

their accuracy. One method involves training five separate networks, each with one

output unit — one network for each of the five derivatives. Their outputs are then

82

combined to produce the param eter estimates. Similar accuracy is recorded using this

method as with one single network.

Another m ethod attem pts to train the network with a genetic algorithm (GA). The

advantage of this approach is th a t the fitness function of the GA is not the RMS value

of the network, but rather the accuracy in the param eter estimates. As a result, it can

be hoped that only networks which give good param eter estimates go on to the next

generation. Networks using this method give “average” results. That is, regardless of

the input, the networks try to give outputs which result in average parameter values

being generated. This is due to the fitness function being simply the sum of the

AAD vectors, and average values give good all-round fitness. Reducing the number of

training patterns results in networks which are unable to generalize and so fail on the

test data.

N oise Tolerance

Tolerance to noise for networks trained with backpropagation is tested. White noise

of different maximum magnitudes, and impulse noise of different probabilities and

amplitude are used. The best tolerance to noise is obtained when a network is trained

with uncorrupted noise, although training with all types of noise was tried. Table 5.4

lists the performance of A 17 input unit, 8 unit tanh function hidden layer and 5 linear

unit output layer network trained with uncorrupted data and tested with different noise

levels.

The neural network m ethod appears to give accurate estimation of the £ parameter.

This is only the case when the test signals have zero value for £. Exposing the above

network to test signals which have £ between ±0.4 gives an AAD of (0/2,4.1,3952). It

is im portant, therefore, to limit the use of the neural network to non-damped signals.

83

Noise Type Out of range

If 1 > 0.6

AAD

f U

No noise 0 0.04 0.91 36.4

White noise

M ag=0.01

1 0.04 0.99 37.6

White noise

Mag=0.1

6 0.6 2.4 69.5

Impulse noise

Prob.=10% amp=0.1

4 0.04 1:6 51.0

Impulse noise

Prob.=15% Amp=0.4

1 0.06 3.91 119.6

Table 5.4: Table showing AAD vectors for a neural network trained with uncorrupted

training patterns, and tested on noisy test patterns.

5.1 .6 Sum m ary o f D erivative E stim ation M eth o d s

There are three main approaches explored. Of these, the polynomial least squares fit

ting approach gives most accurate results for the widest range of parameters. Indeed,

in the absence of noise, an arbitrary precision can be obtained. W hen noise is present,

performance is still good, giving reasonable accuracy on the parameters. This method

also allows the parameters to have almost any sensible values and any sensible start

ing conditions. This method benefits particularly from use of the adaptive sampling

frequency algorithm, with increased accuracy in parameter estim ation as the optimal

sampling rate is obtained. This method is particularly suited to a continuously running

mode since it gives the most accurate estimate of the frequency parameter. Its only

drawback lies in inability to estimate frequencies at very low frequencies relative to the

sampling frequency when noise is present.

Use of the difference equations suffers from three main problems, Two occurring

84

when noise is present. Firstly, the difference equations give only approximate values

for the derivatives by their nature. Secondly, when any noise is present, even small

amounts, the derivative values become widely inaccurate. Parameter estimation is

further encumbered since the difference equations only use six consecutive data points

in their calculations, and when these six points are in a part of the signal which does

n to vary over a large range, the effect of noise is amplified.

Neural networks were tried, partly to overcome this last problem. A network’s input

can have any length, and so can be expected to cover more of the signal. Network’s

are unable, however, to cope w ith input data where the signal had a non-zero damping

coefficient. Scaling of the input and output allowed for any offset and amplitude to be

catered for, whilst the network learned to estimate the derivatives for any frequency

and initial conditions. Given the limitation that only non-damped signals could be

used, noise tolerance was good, with the U estimate being more accurate than with

the polynomial method, and con only a small factor different.

5.2 D irect P aram eter Estim ation

5.2.1 In troduction

This section covers the m ethods used to estimate the parameters of a second order

system by direct methods, as opposed to first finding the time derivatives of an input

signal. These methods are introduced in Section 3.4.6 onwards. A high level approach

using signal processing m ethods is discussed first. In the next section, recursive neural

networks are covered. Then in la tte r sections, iterative algorithms, such as the conven

tional Downhill Simplex m ethod and the relatively new method of genetic algorithms,

are covered.

For the experiments in this section, test signals are used where the parameters do

not vary with time, as in the previous section for derivative estimation. It is in the

85

following section (sec. 5.3) th a t tracking a varying param eter is covered.

5.2 .2 H igh Level M eth od

Introduction

In this method, features of the input signal are used to estimate its parameters. A

Fourier transform is used to obtain the Power Spectral Density (PSD), or frequency

content, of the signal. The dominant frequency is taken as the natural frequency of

the second order system signal. The mean of the signal is usedfin conjunction with the

frequency estimate to an external input estimate, and the magnitude of the dominant

frequency over consecutive blocks allows the damping coefficient to be estimated.

The Fast Fourier Transform (FFT) algorithm is used to obtain the PSD. This

algorithm always uses a sample length which is a power of two. If the incoming signal

is not of such a length, it is padded out with zeros to the next power of two. This

can lead to inaccuracies in the frequency estimate, and so in general, it is best to use

sample lengths which do not require padding.

If the number of points in a sample is Ar, then the PSD consists of (N/2) + 1

positive values. The first is the absolute value of the mean, and the remaining N/ 2

points correspond to frequency bins equally spaced from up to /s /2 . The spacing

between frequency bins is inversely proportional to the number of points in the sample.

The frequency bin with the highest value is taken as the frequency estimate of the input

signal. It follows tha t the more data points in the sample, the higher the accuracy of

estimate ie.

Calculation of the mean of the input signal leads to an estimate of the external

input as the mean is a reflection of the equilibrium position of the signal, and

U
%eq — 9

For the mean to reflect the equilibrium position most accurately, the signal needs to

be a whole number of cycles. If this is not the case, the estimate is still good if the

86

signal consists of several cycles. The mean can mis-represent the equilibrium, however,

if only part of a cycle is present in the signal. This is likely for shorter sample lengths

and lower frequencies. The adaptive sampling frequency m ethod is usually setup to

attem pt to include exactly one cycle in the input signal, however, and use of this signal

can be expected to improve the estim ate of the external input.

A value for £ is obtained with successive estimates of the m agnitude of the dominant

frequency from one block of input signal to the next. If Ab is the magnitude of the

dominant frequency in block 6, and Ab+i the amplitude in the next adjacent block, £

is approximated by,

u n (tb + t&+i)/2 AbJf. i ̂ ^
where ujn is the estimated frequency, and tf, is the time between blocks of incoming

data. It is necessary to have more than one block to make an estim ate for £, over which

tim e the sampling frequency, and hence U may change. In this case, the average of the

period of each block is used. Note th a t the better the estim ate for frequency, the more

accurate the £ estimate will be.

N oise Free E xperim ents

A set of runs where the test data had zero damping, but frequencies between /s /4 and

1% of this, random amplitudes and offsets, produces the results shown in table 5.5.

Despite the zero damping used to allow for the long block lengths used, the accuracy

of £ is still important from this run. The AAD vectors are shown after one block (no

damping estimate can be produced on a single block) and after three blocks with the

ASFA applied (with no time variation of the parameters).

As theory predicts, the accuracy of the estimates increases with increased block

length. Accuracy can also be increased by application of the adaptive sampling fre

quency algorithm (ASFA). When the ratio of sample length to nc is greater than 2,

87

Block length AAD after 1 block AAD after 3 block

nc ratio £ U f U

64/8 - 0.59 15.1 0.0005 0.44 12.4

32/8 - 1.28 30.0 0.0018 0.89 29.1

16/8 - 3.08 68.2 0.0129 2.06 61.6

8/8 - 7.22 170.1 0.0305 7.21 192.1

16/4 - 3.08 68.2 0.0041 1.39 42.8

Table 5.5: Table showing A A D vectors fo r parameter estimation with F F T method after

one and three blocks using the ASF A . Damping is set to zero to allow fo r long block

lengths.

there is approximately a 30% improvement in the frequency estimate, whilst there is

a smaller improvement in U. Note, th a t when the ratio is less than 2, the algorithm

performs poorly, and also the ASFA has no effect.

N oise Tolerance

Noise tolerance can be expected to be high for this method. The estimate for the

frequency parameter is taken as the frequency bin of the largest value in the PSD. Only

if noise of a different frequency has a greater magnitude will the estimate be wrong.

This is unlikely, since white noise will approximately add equally to all frequency bins.

Impulse noise may well produce a large high frequency content. The accuracy of the

damping coefficient also relies to an equal extent on whether the correct frequency bin

is selected. Additionally, the estimate for U depends on the mean of the signal. This

too should not be adversely affected by white noise if its mean is zero. Impulse noise

may again cause difficulties since it will offset the mean in one direction. Results are

shown in table 5.6.

The £ estimate is largely unaffected by noise, as is the frequency estimate even at

88

Noise Type AAD after 1 block AAD after 3 blocks

e U f 0)n U

No noise - 3.08 68.2 0.004 1.39 42.8

White noise

Mag=0.1

- 3.08 68.3 0.004 1.39 42.6

White noise

Mag=0.4

- 4.27 78.9 0.006 2.29 103.7

White noise

Mag=0.8

6.31 221.5 0.009' 3.81 143.9

Impulse noise

Prob=10% Amp=0.1

- 3.08 67.7 0.004 1.40 42.9

Impulse noise

Prob=15% Amp=0.4

- 3.36 76.5 0.007 1.37 51.0

Table 5.6: Table showing AAD vectors fo r the high level method with a variety of noise

levels and types.

white noise magnitudes of 0.4. Only the offset is affected significantly by the noise.

This high tolerance to noise can be understood with inspection of the PSD (fig. 5.4).

The white noise provides some frequency content across the board, but the dominant

frequency remains a high peak.

C om m ents

The approach used in this method yields accurate estimates of the unknown parameters,

even with high levels of noise. It is also fast, with the main computational load being

the FFT. For parameter estimation of a second order system it is highly suitable. The

methods are not easily transferable, however, to other parameter estimation areas,

since they are specific to this particular problem. For example, this approach could

89

1 . 8 - i

CD 1.2-

0 . 6 -

0.0

Frequency

Figure 5.4: The PSD of an input signal with white noise. The dominant frequency

remains significantly proud of the background interference.

not be used on the filter coefficient estimation [45].

5 .2 .3 D ow nhill Sim plex M eth od

The Downhill Simplex method attem pts to optimize a function by varying the depen

dent param eters in an iterative manner. It needs to be seeded with an initial guess

on the N target parameters; from here, it generates a further N guesses which can be

visualized as TV-fi! points in parameter space. These points enclose a volume known

as a simplex. By repeatedly moving the point with the highest error the simplex can

move through parameter space, following a downhill path on the error curve.

This algorithm is known to be quite slow but robust. It has to evaluate the error

function each time a new estimate is made, and several hundred estimates per parame

ter set is not unusual. The algorithm finishes either when the error falls below a critical

value or a pre-set maximum number of iterations is exceeded.

90

Two error functions are tested. The first is the RMS between the target trajectory

and the trajectory generated by the estimated parameters. Use of the RMS does force

the algorithm to also estimate the initial conditions of the target trajectory in addition

to the main three parameters. The second error function is the sum of the correlation

between the target and estimate trajectories, plus the diiference in the means. The

correlation function is scale and position invariant, but returns a value of unity is the

two trajectories have the same shape. Adding the mean term allows the external input

param eter to be optimized. Use of this error function imposes less restriction on the

initial conditions, since only their ratio has to be correct, rather than their exact value

as with the RMS function.

This algorithm is heavily dependent on the initial guess, and it is therefore impor

tan t to make this guess as accurate as possible. To do this, the high level approach of

Section 5.2.2 is employed, and as a result, the simplex m ethod becomes an augmen

tation of this method. The estimated damping is always set to zero. The frequency

is estim ated using a Fourier transform and taking the dominant frequency as the fre

quency. Calculation of the mean in conjunction with the estim ated frequency gives an

estimate of U . The initial conditions are estimated using the phase information of the

dominant frequency obtained from the Fourier transform.

xio — A d cos </>£>-f /i

%2o = — AotOn sin 4>d (5.3)

where A d is the amplitude of the dominant frequency,and 4>d is the phase of the

dominant frequency, fi is the mean of the target trajectory.

The successful use of the simplex method will need a good initial estimate. Sec

tion 4.6 examines how the RMS error function varies between a target and estimated

signal. It shows a series of local minima with one global minima when the two sig

nals match. Initializing the simplex anywhere but in this global minima will almost

91

certainly result in an inaccurate estimate.

P relim inary R esu lts

This algorithm is an augmentation of the high level approach of Section 5.2.2 which re

sults in good param eter estimation in itself. W ith 100 test patterns where the damping

parameter £ ranges between (—0.4/u>n, 0.4/wn) (to prevent excessive overall damping or

instability), an AAD of (0.03,3.2,63.4) is obtained without use of the simplex. Use of

the simplex algorithm subsequent to this gives and AAD of (0.11,0.78,37.1). 15 of these

have an RMS of less than 0.0001, which collectively have an AAD of (0.03,0.01,0.2).

These results show that this m ethod improves the estimate on frequency and ex

ternal input, and when the RMS is very low, the estimate is very accurate. This is

undoubtedly an improvement on the high level approach except for the damping pa

rameter. The estim ate is poorer for £ than when a guess of zero is made! This is a

reflection th a t the RMS is not particularly suited as a mechanism by which to deter

mine this parameter. One pattern with an eventual RMS of 0.0002 has an AAD of

(0 .8 ,0 .5 ,1.8). Another way of describing the problem is tha t for a certain RMS error,

there is a range of combinations of the parameters and starting conditions which will

produce such an RMS. It is just th a t the lower the RMS limit gets lower, the smaller

the number of possible values of the parameters which are dramatically different from

those that created the target data.

Use of the correlation and mean error function does not produce good results.

The AAD is (0.031,3.1,64.5). This does suggest that the correlation function is more

sensitive to damping, although the estim ate is really still poor.

Adding noise to the input signal decreases the accuracy of the simplex method.

Table 5.7 shows the results.

These results can be compared with table 5.6 to see what improvement the sim

plex algorithm gives over the plain high level approach. In all cases, the accuracy is

greater with the simplex augmenting the high level algorithm. For example, with 0.1

92

Noise Type AAD

e U

Initialization

algorithm

0.03 3.16 63.4

No noise 0.11 0.78 37.1

W hite noise

A m p=0.1

0.18 1.38 46.1

W hite noise

Amp=0.4

0.16 3.71 16111

Impulse noise

P rob= 10% A m p=0.1

0.12 0.95 37.9

Impulse noise

Prob=15% Amp=0.4

0.13 1.76 59.9

Table 5.7: Table showing A A D ’s fo r the Downhill Simplex method with different levels

of noise on the input signal.

magnitude white noise, the plain high level approach gives an AAD of (—,3.08,68.3)

(no value available for the first term), with a sample length of 16. The same sample

length and noise level with the simplex gives an AAD of (0.18,1.38,46.1), a significant

improvement.

There is a distinct disadvantage to using the simplex algorithm despite its obvious

benefit in estimate accuracy. It is an algorithm iterates, and so takes a significant

amount of time to run, many more times, say, than the high level approach alone.

C om m ents

As with many of the algorithms in this study, the Downhill Simplex method can be

expected to improve in performance when the adaptive sampling frequency algorithm

93

is used. Unlike o ther algorithms, this is not because a single cycle will be included in

the input data block (although this may well aid accuracy), bu t because of the final

and best estimate from a previous block can be used to seed the algorithm for the next

block of input signal. This will work best when the parameters vary least over time.

This is covered in Section 5.3.4.

5.2 .4 N eu ral N etw ork s

Neural networks can be used for the parameter estimation task since they are well-

known mappers between nonlinear input and output relationships. The mapping from

an input signal to a param eter such as damping or frequency is nonlinear, and so it

is reasonable to use this approach. Further, neural networks are well-known for their

noise tolerance, an im portant element of this study’s investigations.

A feedforward neural network can be used to estimate the parameters of a second

order system by presenting the trajectory of the signal to the input layer of the network,

and training it to output the desired parameters using an algorithm such as backprop-

agation. By adding connections from either or both of the hidden and output layers,

extra information is available for the network. When feedback connections lead from

the hidden units to the input layer, they are known as Elman connections, and supply

the network with a view of its own internal representation of the problem. Feedback

from the output units to the input layer allows the network to view its own estimates

for the problem.

To allow networks with feedback to learn, they must be presented with a series

of temporarily adjacent patterns. The network can then learn to generalize over the

entire length of the sequence. Training data is created, therefore, in groups, where each

group consists of a number of patterns to be presented to the network, which are part

of the same sequence of input signal.

94

Prelim inary R esults

Experiments quickly show tha t neural networks are lim ited in their ability for solving

this problem, as found in param eter estimation with networks via derivative estimation

(see Section 5.1.5). Training data tha t uses input signals which have a non-zero damp

ing are not learnt, and a network trained with zero damping does not output accurate

parameter values if the test data has non-zero damping. Further, input signals with

external inputs which are non-zero are also not learnt well. Only frequency is estim ated

with any real accuracy, and this only under limited conditions of zero damping and

external input.

Neural networks do benefit marginally, however, from having recursive connections.

A network with no recursive connections estimates frequency less accurately than a net

work with connections from the output units to the input layer. Recursive connections

from the hidden layer to the input do not aid frequency estimation. The A A D omegan

for a non-recursive network with data with zero damping and offset, and fixed ampli

tude signals, is 1.2, whilst that of a recursive network is 1.1. Training is difficult, with

momentum a necessary tool to obtain convergence. There is also a high sensitivity to

the initial weight m atrix, and several runs have to be made for each network. Adding

white noise to the test data gives an A A D Wn of 1.3 for both types of network.

Varying the size of networks gives a reasonable and predictable result; tha t is, with

more hidden units the higher the accuracy of the output, and the more likely that

training will be successful. Eight hidden units is found to be the minimum number

of hidden units tha t give good accuracy. Increasing the number of input units also

improves accuracy, but again, the effect gets less as the number increases.

Experiments show th a t use of feedforward neural networks for direct parameter

estimation, even with recursion, is limited. The problem is, strongly nonlinear, and

training is difficult being highly dependent on the initial weight matrix. Only frequency

can be estimated with any reasonable accuracy and networks with recursive connections

95

aid estimation only mildly.

Use of the adaptive sampling frequency algorithm can be expected to aid the ability

of networks to estimate input signals with non-zero external input and varying ampli

tude. Scaling of the input by first removing its mean, and then normalizing to unity,

will become more accurate when one cycle of the input signal fits within one input

pattern . This is covered in Section 5.3.5.

Fully R ecurrent N eural N etw orks

It is also possible to test a fully recurrent neural network, where there are only two

layers to the network. The first input layer leads as normal to a second layer. This

layer is fully recurrent, where every unit is connected via a weight to every other unit,

including itself. The Real-Time Recurrent learning (RTRL) [44] is used to train such

networks. A network with ten input units, and nine fully recurrent units trained with

blocks of input signal and scaled frequency as the output, however, fails to make any

learning.

C om m ents

Use of neural networks for direct param eter estimation is limited. The input signals for

both training and testing must be relatively simple, having fixed amplitude, zero damp

ing and zero external input. Networks with feedback connections, and also the fully

recurrent neural network do not lead to any improvement in the parameter estimation.

5 .2 .5 G enetic A lgorith m s

A Genetic Algorithm (GA) is a search method particularly suited to multimodal pa

ram eter space and also to problems which have highly nonlinear or even discontinuous

solutions. Section 4.6 shows how matching an estimated signal to a target signal is

multi-modal for both the RMS and correlation functions. It is also clear tha t the

96

parameter estimation problem lies in the nonlinear domain.

A population of “chromosomes” encoding the parameters in a binary sequence

combine to form offspring which can assert themselves in future generations of the

population, depending on how well the offspring solve the desired problem. Essentially,

the GA searches for solutions to a problem near other solutions with a bias towards

those solutions which appear promising. They are capable, however, of leaping from

local minima to local minima in their search for an optimal solution.

F itness Functions

A GA is used here to search for the three parameters of the second order system.

The fitness of an individual in the population is determined by recreating a signal

from the parameters encoded in the individual, and comparing this with the target

trajectory. The most obvious method of comparison, the RMS, cannot be used without

also estimating the initial conditions :rlo and a;2o. This is also true for the fitness

function based on the correlation between the two signals and the difference in their

means.

it is possible to devise a method where the initial conditions do not have to be

estimated. This is performed by sweeping through possible combinations of the two

variables, and recording, say, the fitness at each combination. Then after the sweep,

the combination with the best fitness is taken as the fitness for this set of estim ated

parameters. This method, however, increases the computational load considerably

A critical facet of GA’s is selecting a suitable fitness function. The two tested here

are the RMS between the target and estimated signals, and a second function based

on the correlation between the trajectories and the difference in their means. If x is

the fitness, then,

s i / \ , f a c tu a l f le s tim a te , „ . N
X — C o r r y y a c tu a l , y e s tim a te) H 777 (5 * 4)

97

where fx is the mean of a signal, and W is some weighting value.

To perform an optimization w ithout directly estimating the initial conditions, each

parameter estimate set is tested by sweeping the initial conditions. This is performed

with,

X i o — COS(<56) T [Atarget

X 2 o = — COS(^)

where </> is varies from 0 to 2tt in a fixed number of equally spaced steps. The greater

the number of steps, the higher the accuracy, but the greater the computational load.

R esults

The GA is run using the one hundred test data sets and an AAD vector evaluated

in the normal fashion for each run. Runs where the correlation function and mean

function were used had a weighting value for W of 30.0. Discussion of the W variable

is given in sectionsec:ch5-crga.

W ith the RMS fitness function, an AAD of (0.031,8.91,269.2) with a sample length

of 16. When the correlation fitness function is used this improves to an AAD of

(0.021,1.79,180.3). This is a predictable result; the RMS fitness function demands

that the initial conditions m atch those of the target signal’s initial conditions, whereas

the correlation and mean fitness function require only that they are in the correct ratio

— a more flexible criteria. This is because it is the profile of the signals which provides

a low error, rather than m atched values.

Attempting to optimize the estim ation by sweeping through values for the initial

conditions, thus avoiding the necessity to estimate them at all with the GA, does

not produce beneficial results. W hen the initial conditions are generated by sweeping

through the phase divided into twenty, the AAD with the correlation and mean fitness

function is (0.023,2.31,72.5), and the RMS fitness function is AAD is similar. This

98

is an improvement for U by a factor of approximately 2, bu t does deteriate the u;n

estim ate by approximately by 35%. It can be expected tha t the frequency estim ate

will improve if the number of divisions for the phase is increased, but the algorithm

will take proportionally longer to run.

It is possible to run the GA using the ASFA, even though the parameters do not

vary, and still expect some benefit. The GA is run in a mode where the initial conditions

are estimated. At the end of each block, each chromosome has the part of the bit string

which represents the initial conditions replaced with binary representations of the final

conditions of the estimated signal. Then, a t the beginning of each block after the first,

the population will be primed with chromosomes which already have a high probability

of representing good solutions.

W ith the correlation and mean fitness function, an AAD of (0.027,1.93,95.2) is

obtained. This is slightly poorer for the frequency estimate, but as with the sweep

method, an improvement of nearly a factor of 2 for the external input.

N oise T olerance

Noise tolerance is tested with a GA using the correlation and mean fitness function

over a single block of incoming data. The sample length is 16, and the frequency can

range between / s /4 to 1% of this value. The GA has a population of 50 chromosomes

and runs lor 300 generations. The results of adding different levels and types of noise

are shown in table 5.8.

99

Noise Type AAD

f U

No noise. 0.021 1.79 180.3

White noise

Mag=0.1

0.026 2.24 167.5

W hite noise

Mag=0.4

0.030 3.10 186.5

Impulse noise

P rob= 10% A m p=0.1

0.031 2.00 114.1

Impulse noise

Prob=15% Amp—0.4

0.028 2.24 157.1

Table 5.8: Table showing AAD vectors with the GA method using the correlation and

mean fitness function, when different types and levels of noise are added to the input

signal.

5.3 C ontinuously R unning B lock Param eter E sti

m ation

5.3.1 In troduction

In subsequent sections, experiments and results for parameter estimation of a second

order system are given when performed in a continuously running mode. Importantly,

the param eters of the system vary smoothly with time. A block of data is fed into

the param eter estimation algorithm and an estimate is generated by this module. The

Adaptive Sampling Frequency Algorithm (ASFA) is applied to adjust the sampling

frequency to increase the accuracy of the estimates. The next block is then fed in, and

the param eter estimation repeated.

There is an element of feedback, when the estimate for the frequency of the input

100

y-\ 0.0-
><l

0 . 0 2.0 3 .0 4 .0 5 .0 6.0 7.0
Time (s)

0.0

- 0 . 1
0.0 2.0 3 .0 4 .0 5 .0 6 .0 7.0

Time (s)

Figure 5.5: Profile of an input signal where just the £ parameter is adjusted in a

sinusoidal fashion, a) The second order system signal, b) The £ parameter variation.

signal is used to adjust the sampling frequency with which the next block is read in.

This is the adaptive sampling frequency algorithm (ASFA). As described in previous

sections, significant improvements in the accuracy of the estimates can be expected

when the ASFA is applied.

When running in the continuously running mode, the data generation module can

be set to vary the value of the parameters. This will affect the profile of the generated

signal, and the parameter estim ation methods will be expected to track the parameter

variation.

How the variation of a param eter during the course of the data generation is shown

in the the following figures. Adjusting the £ term in a sinusoidal fashion results in

the profile of Figure 5.5, in the absence of other parameter variation. The amplitude

modulates at the same rate as the £ variation.

Varying the frequency uon (fig. 5.6) produces a double effect. Naturally, the fre-

101

Noise Type AAD

(U

No noise. 0.021 1.79 180.3

W hite noise

Mag=0.1

0.026 2.24 167.5

W hite noise

Mag=0.4

0.030 3.10 186.5

Impulse noise

Prob=10% Amp=0.1

0.031 2.00 114.1

Impulse noise

Prob=15% Amp=0.4

0.028 2.24 157.1

Table 5.8: Table showing A A D vectors with the GA method using the correlation and

mean fitness function, when different types and levels o f noise are added to the input

signal.

5.3 C ontinuously R unning B lock Param eter Esti

m ation

5.3 .1 Introduction

In subsequent sections, experiments and results for param eter estimation of a second

order system are given when performed in a continuously running mode. Importantly,

the parameters of the system vary smoothly with tim e. A block of data is fed into

the parameter estimation algorithm and an estimate is generated by this module. The

Adaptive Sampling Frequency Algorithm (ASFA) is applied to adjust the sampling

frequency to increase the accuracy of the estimates. The next block is then fed in, and

the parameter estimation repeated.

There is an element of feedback, when the estim ate for the frequency of the input

100

C+A 0.0-

0.0 2 .0 3.0 4 .0 5 .0 6.0
Time (s)

0.0 2 .0 3.0 4 .0 5.0 6 .0 7.0
Time (s)

Figure 5.5: Profile o f an input signal where just the £ parameter is adjusted in a

sinusoidal fashion, a) The second order system signal, b) The £ parameter variation.

signal is used to adjust the sampling frequency with which the next block is read in.

This is the adaptive sampling frequency algorithm (ASFA). As described in previous

sections, significant improvements in the accuracy of the estimates can be expected

when the ASFA is applied.

When running in the continuously running mode, the data generation module can

be set to vary the value of the parameters. This will affect the profile of the generated

signal, and the param eter estimation methods will be expected to track the parameter

variation.

How the variation of a parameter during the course of the data generation is shown

in the the following figures. Adjusting the £ term in a sinusoidal fashion results in

the profile of Figure 5.5, in the absence of other param eter variation. The amplitude

modulates at the same rate as the £ variation.

Varying the frequency u)n (fig. 5.6) produces a double effect. Naturally, the fre

101

2.0-i

0 -

0.0

-1 . 0 "

- 2.0
2.0 3 .0 4.0

Time (s)
5 .0 6 .0 7.0

1 2 n

1 0 J

6 -

4-

0 . 0 2 .0 3 .0 4 .0 5 .0 6 .0 7.0
Time (s)

Figure 5.6: Profile of an input signal where just the ton parameter is adjusted in a

sinusoidal fashion, a) The second order system signal, b) The ton parameter variation.

quency increases and decreases with the param eter variation. Secondly, the amplitude

increases with lower frequency and vica-versa. This can be understood by considering

the second order system of a pendulum in the form of a weight on a string. W hen

set swinging it will oscillate with a fixed amplitude. If the string is shortened, the

frequency will increase, and also, the amplitude will decrease. Increasing the string

length will result in a lower frequency but a larger amplitude.

Varying the external input only has the effect of shifting the mean position of the

signal (fig. 5.7).

Although varying each param eter individually, whilst the other two remain con

stant, gives rise to simple wave forms, combining variations in the parameters gives

more complex profiles since both the overall damping and the mean position are func

tions of ton as well as the more obvious £ and U respectively. This can be seen in

Figure 5.8 where the variations of the three previous examples are combined in one

102

3-i

2 -

-2
0.0 2 .0 3.0 4 .0 5 .0

Time (s)
7.0

50-i

-50
0.0 2 .0 3 .0 4 .0 5 .0 6 .0 7.0

Time (s)

Figure 5.7: Profile of an input signal where just the U parameter is adjusted in a

sinusoidal fashion. a) The second order system signal, b) The U parameter variation.

input signal. It is possible to tell by inspection that the frequency starts off high,

grows lower, and then again higher in the course of this sample. It is not so trivial

to determine, if indeed possible by eye, .that the damping and external inputs are also

varying.

It is the task of the param eter estimation module to give as accurate an estimate

of the parameters at the end of each block.

Perform ance M easurem ent

To measure the performance of each method, an extension of the AAD vector is used

whereby for a run consisting of N b blocks of input signal, the total AAD, or TAAD, is

evaluated as,

I N b- i

TAAD = — g AAD ,. (5.5)

103

3 -1

2 -

- 2
0.0 2.0 3.0 4 .0 5.0 6 .0 7.0

Time (s)

Figure 5.8: Profile of an input signal where each parameter is varied in a sinusoidal

fashion.

This is covered fully in Section 4.5.

Test D ata

Test data consists of one hundred initial param eter settings, including initial conditions.

These allow a test signal to be generated, as with previous experiments. Variation of the

parameters is achieved by a sinusoidal pattern proportional to the frequency parameter.

It is necessary, however, to maintain the £ parameter at zero to ensure tha t the signal

does not become either damped to a zero magnitude, or expand to excessive values.

At a given tim e t, the frequency and external input are based on their initial value as,

u>n(t) — w„(0) + 0.3 x u>n(0) sin(0.05u?n(0)t)

U(t) — U(0) +0.1 x U(0) cos(0.04o;n(0)t)

Hence, the frequency will change in magnitude by 30% with at l/2 0 th of its actual

frequency. Similarly for the external input, it will vary by 10% of its initial value at

1 /25th of the initial frequency. This variation in parameters gives significant alteration

to the initial values which the estimation algorithms must be able to cope with. Making

the variations proportional to the initial frequency ensures tha t no excessive or too rapid

a change in the parameter values is seen. W ith the random nature of the initial values,

104

the test signals therefore represent a constrained but variable, and meaningful test set.

Unless otherwise stated, experiments for evaluating a TAAD vector run for ten

blocks.

5.3 .2 D erivative E stim ation For C ontinuous P aram eter E sti

m ation

This section continues the work of Section 5.1.3 where the parameters of the second

order system are estim ated based on a polynomial least squares fit to the input tra

jectory. This method is the most effective tested and so is passed on for continuous

parameter estimation.

Prelim inary R esu lts

As shown in Section 5.1.3, it is possible to get an arbitrary accuracy on the param eter

estimation using polynomial least squares fitting when no noise is present. This is

also true for continuous param eter estimation when the parameters vary with tim e,

except th a t to achieve the same degree of accuracy with tim e varying parameters,

the polynomial order (and hence the sample length) must be increased. For example,

when there is no param eter variation, a sample length of 7 and maximum order 6,

results in a TAAD of (0.002,0.22,9.6). To achieve the same order of accuracy when

the parameters vary with tim e a sample length and corresponding maximum order of

twelve is required.

This can be explained by recalling tha t the derivatives are calculated at the mid

point of the signal, since this is where the higher orders of the polynomial have their

most accurate values. The TAAD takes the target parameter values from the end of

the block, and since these are different in the parameter varying case from the centre

of the signal, the TAAD will be greater.

105

Noise Type Out of range

If 1 > 0-6

AAD

f U

No noise 0 0.008 0.36 13.2

W hite noise

0.1 mag

0 0.065 1.73 64.9

White noise

0.4 mag

4 0.23 76.0 59,000

Impulse noise

10% prob 0.1 mag

0 0.028 1.37 54.7

Impulse noise

15% prob 0.4 mag

1 0.104 8.00 1519

Table 5.9: Table showing TAAD vectors fo r parameter estimation using derivative

information obtained from polynomial least squares fitting. Noise o f different types and

magnitudes is added to the input signal.

N oise Tolerance

In a more realistic scenario, noise will be present on the input signal, and in this

situation, the maximum order for a given sample length cannot be used, as described

in Section 5.1.3. Table 5.9 shows the results of running test signals where noise is

added to the incoming signal. Here, the sample length is 12, with a polynomial order

of 7, and n c set to 8.

Experiments show that when noise is added to the signal, even relatively small

amounts eg. 0.1 magnitude white noise, this algorithm cannot estimate with any

certainty low frequency signals in the first data block. As a result, the ASFA sets

an inappropriate sampling frequency and subsequent blocks also give inaccurate esti

mates. W ith an initial sampling frequency of 25Hz, signals above approximately 1Hz

are estimated correctly, whilst those below result in inaccurate estimates. The data

106

sets for table 5.9 use frequencies between 1 and 6.25Hz. If frequencies below this are

required when noise is present, then a lower initial sampling frequency must be used.

C om m ents

When white noise of magnitude 0.4 is added, the TAAD has unreasonable values.

Although many of the test signals have much more reasonable AAD’s, this result does

indicate the instability of this algorithm with these parameters. Increasing the sample

length does allow for improved performance - increasing from 12 to 24 gives a TAAD

of (0.167,17.2,310). Again, overall unacceptable, but it does indicate that more of the

test signals are being correctly estim ated and “locked onto” by the ASFA.

5.3 .3 H igh Level M eth od

This method, using a Fourier transform to extract features of the signal, is an accurate

parameter estimation approach as demonstrated in Section 5.2.2. It is also particularly

resilient to noise corruption.

Since the accuracy of param eter estimates in this method are dependent upon the

frequency estimate, with both U and (being functions of ujn, higher accuracy can be

expected with a long sample length allowing the FFT to return a more precise value

on the dominant frequency. If the ASFA were not being used, the benefit obtained

from long sample lengths would have to be countered with the fact tha t the frequency

in the sample is changing with tim e and a short sample would give the most accurate

result. Due to the ASFA where nc points occur per cycle, a suitable value for the ratio

of N /n c must be maintained, where N is the sample length.

Prelim inary R esults

If the ratio N /n c is high eg. N = 64 and nc — 4, then after a few blocks, approximately

eight cycles would be in the sample the FFT performs on. In this time, a significant

107

N /n c TAAD

£ U

16/4 0.009 2.5 47.4

32/8 0.009 2.6 46.0

64/16 0.0083 3.1 56.4

Table 5.10: Table showing the TAAD of one hundred test signals with different sample

lengths, but kept in a fixed ratio o f N /nc* Ten blocks are used.

change in the actual frequency can occur and so an erroneous result returned. W ith

a ratio of one, however, the ASFA would be not be able to operate properly since the

sampling frequency could not be adapted to low frequencies.

A ratio of two or four is suitable. Improved results are obtained by increasing the

sample length. This is not a problem after a few blocks, since the ASFA adjusts the

sampling frequency so th a t only a sample where the frequency change is small is used.

Results are shown in table 5.10.

There is a danger which must be avoided. If the sample length is too large, the first

block will cover a large segment of time, over which the frequency variation itself may

complete at least one cycle. This can result in a low frequency oscillation becoming

dominant in the Fourier transform, giving a grossly inaccurate result. This problem is

due partly, however, to the specific manner in which the test data is created, and may

not always apply in a real world situation.

Although the accuracy of the damping and frequency estimates improves as the

sample length improves with the fixed ratio, the estimate of external input does not

follow the same pattern. The estim ate for U is based on the mean of the signal segment,

as well as the frequency estimate. The variation of the two are independent and it can

be only this which explains the reduction in accuracy.

Figure 5.9 shows the actual and estimated frequency of a signal over the course of

108

50.0-1 *-*-* E s t im a te
- - A ctual

30.0-

20.0

Time (s)

Figure 5.9: Figure showing the estimated and actual frequency of a signal over the

course o f a run.

a run, with a data point collected at the end of each block. It can be seen how the

estimated frequency lags actual frequency.

N oise Tolerance

Noise tolerance is very good with moderate noise levels (see table 5.11). When white

noise of magnitude 0.3, or impulse noise of magnitude 0.1 and probability 10% is

applied, the A AD at the end of each run is almost unchanged from the tests where

noise is absent, and indeed, is slightly lower.

As the noise levels increase, however, the chance of a different frequency other

than the actual frequency being dominant in the PSD becomes more probable. When

this happens it is a catastrophe for the algorithm in its current form. If the wrong

frequency is returned as dominant, the sampling frequency for the next block of data is

inappropriate. This easily leads to the actual signal being lost to aliasing or swamped

109

in a low frequency bin. It is possible for the estimated frequency to explode into

unrealistic values.

W hen the parameters are varying, the system is more susceptible than when the

param eters do not vary. This is because the dominant frequencies of the signal may

cross frequency bin boundaries, and so the power of the signal will be spread across

more than one frequency bin. As a result, noise does not have to be of such a great

m agnitude to become dominant. So, although in Section 5.2.2 white noise levels could

rise up to 0.4 and above without problems, the level is much lower in this situation.

Safeguards could be put in place which check tha t the estimated frequency is not

going beyond expected bounds, or th a t the dominant frequency is not too different

from the dominant frequency in the previous block. Once noise levels have risen above

a certain level, however, it is unreasonable to expect this approach to be able to cope

consistently. It can be pointed out though, that once noise has risen to such levels, it

is unreasonable to expect any method to extract a signal from so much noise.

5 .3 .4 D ow nhill S im plex M eth od

In Section 5.2.3, the Downhill Simplex algorithm is applied to the initial stage of

param eter estimation when an estimate is required for the first block of incoming data.

In m any cases, results were very good, with highly accurate results being obtainable

where the RMS fell below 0.001 and param eter estimation is approximately to three

significant figures. There are also failures amongst the successes, however, where the

simplex sought a solution in a non-global minima. W ithin the perm itted number of

function evaluations, it was not able to find a solution near the actual.

The task for the algorithm is made more difficult in the continuously running mode

of operation. Previously, the function th a t the simplex algorithm used to generate its

estim ate signal from the estim ated parameters was identical to that which generated

the target signal from the target parameters. In continuously running mode, this is no

110

Noise Type TAAD

f U

No noise 0.009 2.48 47.4

W hite noise

Mag.=0.1

0.009 2.49 47.8

White noise

Mag.=0.4

0.010 3.63 79.0

Impulse noise

Prob=10% Amp=0.1

0.009 2.48 47.7

Impulse noise

Prob=15% Amp=0.4

0.010 2.61 66.3

Table 5.11: Table showing TAAD for test signals estimated using the continuously

running High Level method, with noise added to the incoming data.

I l l

longer the case, since the actual signal is generated using two additional parameters

— the frequency and external input variation parameters. This study does not use a

simplex which attem pts to find the variation rates, although it is capable and could

lead to a more accurate param eter estimation method.

There are further problems for this algorithm when used in the continuously running

mode; a run made up of say, ten blocks of data, has ten opportunities to go wrong.

This is significant because at the end of each block, the estimated parameters and

final conditions are used to seed the algorithm at the start of the next block. Since the

performance of the algorithm is heavily dependent on the starting estimated parameter

values, when these are wrong, the algorithm has little chance of getting back on the

right track and there is a high probability that all subsequent estimates will miss the

mark. The whole system may also go unstable if the ASFA is used and inappropriate

sampling frequencies are used to read in the next block. In brief — if the algorithm gets

the estim ates significantly wrong on one data block, it will probably get all subsequent

estimates wrong.

As in the previous section for this algorithm, the initial estimate to seed the simplex

is based on the results of applying the high level approach of Section 5.2.2. At the end

of the algorithm’s iterations, its estimates for the parameters and the final state of Xi

and x 2 are used to initialize the algorithm for the next block of input data.

P relim in ary R esu lts

In Section 5.2.3, 3% of the test signals concluded with an estimate of frequency which

was over a factor of two out. An equivalent run where the parameter values were

changing with tim e, 5% of the signals were incorrectly estimated by a factor of two

or more. All such cases are less than approximately 1Hz. The problem is due to the

initialization method which uses an FFT, which can only return quantized values for

the frequency, and at the low frequency end this means that frequencies are estimated

incorrectly by over a factor of two. It has be shown th a t it is difficult for this method

112

Number of

blocks

TAAD

U

1 0.002 2.29 46.7

10 0.006 1.92 48.7

Table 5.12: Table showing TAAD in non-continuously and continuously running mode.

to escape such local minima (sec. 4.6). The effect can be eradicated by limiting the fre

quency allowed in the test data to greater than 1Hz or by reducing the initial sampling

frequency, in which case the maximum frequency tested m ust be reduced. Alterna

tively, the effect can be tempered by using a longer sample length so the FFT can

return a more accurate frequency estimate.

Table 5.12 shows the TAAD vectors for the test data in both the non-continuous

and continuously running modes. There is no great difference in performance between

the simplex method applied to a single block of da ta or after ten consecutive blocks,

except in the case of the frequency estimate.

Figure 5.10 shows the frequency estimate for one test vector over the ten blocks.

Although the estimate tracks the actual value for the m ajority of the run, at the end the

estimate is nearly half of the target. W ith the penultim ate block’s estimate beginning

to wander, this confirms the difficulty tha t this algorithm can experience when seeding

with the previous blocks estimate. It is also an im portant indicator, that the failure of

the algorithm occurs on the most rapidly varying section of the graph.

N oise Tolerance

Tolerance to noise is tested by adding white noise and impulse to the test signals as

they are generated. Each signal lasts for ten blocks and the ASFA is used. Results are

shown in table 5.13.

It is evident tha t noise does result in a reduction in performance for this method.

113

Noise Type TAAD

£ U

No noise 0.006 1.92 48.68

W hite noise

0.1 mag

0.007 2.22 62.6

W hite noise

0.4 mag

0.006 2.74 89.1

Impulse noise

10% prob. 0.1 mag

0.006 1.98 50.1

Impulse noise

15% prob. 0.4 mag

0.006 1.91 60.5

Table 5-13: Table showing TAAD for test signals estimated using the continuously

running Downhill Simplex method, with noise added to the incoming data.

114

52.0-1

 E s t im a te
A ctua l47.0

3 7 .0 -

32.0-

27 .0-

2 2 . 0 -) i i-------1-[-----1--------1-----1--------1------------1-1------------1-1------------1-1
0.5 1.0 1.5 2 .0 2 .5 3 .0 3 .5 4.0

Time (s)

Figure 5.10: The actual and estimated frequency of a test signal. The last two blocks

are poorly estimated.

It is interesting to note th a t the performance degrades proportionally with noise mag

nitude, as one would expect.

C om m ents

This algorithm works well when the initial estimate for seeding is within the global

minima. When this is not. the case, however, it cannot remove itself from the incorrect

local minima. This poses particular problems when consecutive blocks depend upon

prior estimates for seeding purposes.

Otherwise, this algorithm has been robust, and behaves well when noise is added.

It is, however, slow. Many evaluations of the functions require evaluating for the this

algorithm.

115

5 .3 .5 N eural N etw ork For C ontinuous P aram eter E stim ation

In Section 5.2.4 it is shown th a t neural networks can be used successfully for direct

param eter estimation with certain restrictions. These are th a t the input patterns need

to be of constant amplitude and zero damping and external input. The networks are

unable to generalize with training data th a t has inputs patterns which do not comply

to these restrictions, even with pre-scaling.

It is reasonable to expect a neural network to have further difficulty with parameter

estimation when the frequency param eter varies with time. In* training, the neural net

is exposed to signal data tha t has a fixed frequency. Yet, when used in this application,

the input pattern is no longer of a single fixed frequency, but rather, in some fashion

varies.

R esu lts

A feedforward neural network with sixteen input units, twelve hidden units and one

output unit to estimate the frequency is trained with training data which conforms to

the restrictions. Further, the training data consists of signals with a fixed frequency.

The network is then used in forward pass mode. The estim ated frequency is used in

the ASFA, where the estim ated frequency is adjusted by the ratio of f r / f s ? where f§

is the current sampling frequency, and f j is the sampling frequency used to generate

the training data for the network. This is in addition to the scaling of the frequency

output.

In the tests, only the frequency is varied in a sinusoidal fashion as before. This

is compared with similar test signals whose parameters do not vary with time. The

former set is also tested when noise is added to the signals. The results are shown in

table 5.14. Only the TAAD of the frequency parameter is shown since both f and U

remain zero throughout all tests.

W hen there is no variation in the frequency parameter over the ten data blocks, the

116

Signal Type can TAAD

No freq var.,

No noise

0.96

W ith freq var.

No noise.

2.70

W hite noise

0.1 mag

2.81

W hite noise

0.4 mag

4.32

Impulse noise

0.1 mag 10% prob

2.77

Impulse noise

0.4 mag 15% prob

3.74

Table 5.14: Table showing TAAD for different test signals, using a neural network for

parameter estimation.

network is able to estim ate the frequency with good accuracy (TAAD= 0.96). When

the signal’s frequency varies with time, however, the TAAD degrades to 2.7. In this

situation, the network is being presented with subtly different signals to those it is

trained with, and the difference manifests itself in the reduced performance. It would

be possible to train the network with test signals which did vary in time in the same

fashion as the test data. This is only a practicable idea if the manner of the param eter

variation is known in advance since there is literally an infinite number of different

ways the signal could vary, and it is not sensible to propose to train a network for each

of many possibilities.

Noise tolerance is reasonable, with only significant degradation in performance oc

curring when noise levels are high.

117

C om m ents

Use of neural networks for param eter estimation is limited to a narrow range of pos

sible situations. Damping and external input must remain zero, as well as the signal

amplitude remaining constant. Noise tolerance is, however, reasonable.

5.3.6 G enetic A lgorith m s For C ontinuous P aram eter E stim a

tion

Section 5.2.5 uses a genetic algorithm (GA) to estimate the parameters of a second order

system for a single data block, and when the parameters do not vary with time. There

are only minor adjustments which are required for the algorithm to work effectively on

a set of continuous blocks, and employing the ASFA.

As with the Downhill Simplex m ethod, a GA estimates not just the parameters,

£, wn and £/, but the initial conditions too, £ l0 and x 2o- This is necessary since the

GA works by comparing a signal generated by the estimated parameters with the

original input signal. Whereas the param eters are slowly varying with time, the initial

conditions from one block to another are wildly different. As a result, the estimates

for Xio and x 2o need updating in the GA population when a new block is started.

The encoding of the parameters in the population remains unadjusted. Although it is

possible to have a fitness function th a t doesn’t directly depend on the GA to estim ate

the initial conditions, the results of Section 5.2.5 indicated tha t the performance of such

a fitness function is not high, and it increases the computational load of the algorithm

considerably.

The updating of Xi0 and x 2o is achieved by decoding the each chromosome in the GA

population, and calculating the final conditions. These are then encoded and replace

the old initial conditions in the chromosome.
I

It is im portant to note a problem also experienced by the Downhill Simplex method,

which is that the fitness function fits a second order system signal to a target signal

118

where the parameters are varying in tim e ie. it attem pts to m atch the target signal

with something only similar to it.

G A Param eters

There are a large number of factors controlling a GA, although they are well known

for their robustness, and can perform well with a wide range of settings. For example,

the m utation and crossover probabilities can have a wide range of values and yet the

GA will still produce good results.

Despite this, some experiments are designed to test the difference in performance

of the GA with a range of varying factors. As well as the study of the influence of

noise, five other points are investigated;

1. Number of generations. Runs are made to confirm that increasing the number of

generations increases convergence.

2. Checking whether maintaining the same population throughout a series of blocks

is better than starting with a new population at the start of each block.

3. When a population is maintained throughout a parameter set, does adding a

perturbation to the initial conditions aid performance?

4. How can the fitness function be varied to improve performance?

G enerations

There are two parts to finding the influence of more generations. Firstly, a run is

performed where only one block per set is made, and then secondly, a run with ten

blocks is performed. Each is done for a variety of generations. The results are shown

in table 5.15.

It can be easily understood th a t when only one block per target parameter set is

performed, the estimation becomes more accurate as the number of generations increase

119

Number of TAAD 1 block TAAD 10 blocks

generations U f U

100 0.006 3.49 279.2 0.015 2.71 147.6

200 0.012 3.13 98.4 0.016 1.89 81.8

300 0.011 3.03 72.7 0.016 1.79 67.5

400 0.015 2.97 69.8 0.022 2.52 114.90

Table 5.15: Table showing the TAAD vectors fo r one block and ten block runs where

the number of generations of the GA are increased.

— the extra generations allow a lower error to be achieved in the population. When the

mode of operation is continuous, however, and the population is maintained throughout

the ten consecutive blocks, the performance drops between 300 to 400 generations.

This phenomena is due to a too high a degree of convergence in the population.

W ith each consecutive block the population becomes less diverse, and the chromosomes

in the population represent highly similar solutions. Then, as the next data block brings

in a new signal with different characteristic parameters, the population is unable to

adjust via the main operator of crossover. Only the weakly contributing mutation

operator can shift the population. When the number of generations is lower eg. 200,

the population is not able to converge to the same extent and stagnate in one particular

solution. Instead, a diverse selection of chromosomes is maintained which are able to

contribute usefully by supplying a range of chromosome bits in the crossover operator.

C ontinuous Populations

In the previous section where the number of generations is adjusted, the population

could stagnate and would fail to adapt if the number of generations grew too high.

This effect is caused by the use of a continuous population ie. one th a t is created at

the beginning of a param eter set search, and remains until all through the blocks. The

120

alternative is to completely re-create a population at the beginning of each block. This

does not incur any extra computational work, since even in the continuous population

each chromosome needs its initial conditions updating and re-ranking.

A run where the population is maintained has a TAAD of (0.016,1.79,67.5). A

TAAD of (0.014,1.95,152.1) is obtained when the population is re-created at the be

ginning of each block. This indicates a benefit in using a continuous population.

Here, there were 300 generations. Improved accuracy may be obtained by using a

re-created population and increasing the number of generations. This approach will

not incur the problems of stagnation but will require greater computational time.

In itia l C ondition P erturbation

W hen running a continuous population, the initial conditions for each chromosome are

updated at the end of each block so tha t they represent the new initial conditions for

the s tart of the next block. Due to the parameter variation, however, these will not

be wholly accurate and some benefit could be obtained by perturbing the new values

represented.

This is achieved at the end of each block by adding a small random value propor

tional to the initial conditions’ value, ie.

Xi0(new) = x i0(old) + p x x lo(old). (5.6)

Table 5.16 shows a table of results where p varies. It is clear tha t this approach

does not improve GA performance.

F itn ess Function Variation

In Section 5.2.5 the RMS function is shown to be a poor fitness function. This is

true also in the continuously running case. There is also the possibility of varying the

correlation and mean function.

121

p TAAD

f U

0% 0.016 1.79 67.5

1% 0.018 1.72 71.0

5% 0.024 2.27 88.8

10% 0.014 2.30 93.5

Table 5.16: Table showing the TAAD vectors when the perturbation percentage varies.

The variable W from Equation 4.4 can be varied to adjust the relative importance

of the mean function to the correlation function. Figure 5.11 shows a graph describing

the TAAD values for the frequency and external offset values for a range of values for

W . When the value of W is large, the significance of the mean function is less, and the

profile of the target and estim ated signals is more im portant. As a result, the frequency

TAAD is smaller. The inverse of this affect is observed when W becomes smaller.

N oise Tolerance

Based on the experiments described above, a GA can be produced which will give a

high performance, and can be tested when noise isp resent on the input signals. The

GA parameter settings are to have a continuous population over the ten blocks of each

test set, no initial condition perturbation, a fitness function utilizing the correlation

and mean functions with W set to 30, and a maximum number of generations of 300.

Table 5.17 shows the results when various types and magnitudes of noise are imposed

on the input signals.

C om m ents

A genetic algorithm (GA) is a general optimization m ethod th a t is capable of estimating

the parameters of a second order system to-a good degree of accuracy. It is able to

122

75.0-i

^ 7 0 . 0 -

4-̂
3
£1£5.0-
a• H

cd , _ _ ‘pj 60.0 -
u
CD+J
K*{

W 55.0 -

50.0-}—
1 . 6

Figure 5.11: Variation o f TAAD ’s fo r frequency and external input when the W variable

is adjusted fo r the fitness function .

produce good estimates under a wide range of settings.

It has been shown th a t the best fitness function combines the correlation func

tion between the target and estimated signals, and the difference between the means.

For continuously running, the chromosomes in the population need to be updated to

represent the last known conditions in preparation for the next block.

5.4 D iscussion

As described in Chapter 3, the continuously running parameter estimation algorithm

requires an estimation algorithm to seed a recursive method. It turns out th a t all

algorithms can be used for the initial estimation, whilst only a few can be adjusted to

benefit from a recursive mode of operation.

Given below is a summary of the results obtained by the experimentation discussed

in this chapter. The first section describes the performance of algorithms for a single

123

W(40)

W(10)
1 I I I j I I

1.7 1.8 1.9 2.0
Frequency (Hz)

Noise Type AAD

f U

No noise 0.022 1.74 82.5

W hite noise

Mag=0.1

0.020 2.23 86.3

W hite noise

Mag=0.4

0.019 3.41 121.3

Impulse noise

Prob=10% Amp=0.1

0.024 2.04 80.0

Impulse noise

Prob=15% Amp=0.4

0.023 2.44 114.3

Table 5.17: Table showing TAAD vectors for parameter estimation using a genetic

algorithm (GA). Noise o f different types and magnitudes is added to the input signals.

block of incoming data where the parameters are time invariant. This gives a measure

of which algorithms are best suited to the first stage of the complete continuously

running algorithm. Both noisy and noiseless input signals are summarized. Following

this is a summary of results obtained for time varying param eters, and where the

adaptive sampling frequency algorithm is used.

5.4.1 In itia l P aram eter E stim ation

Each estimation algorithm is tested for parameter estimation with a single block of

incoming signal. The signals are generated from parameters th a t do not vary in time.

Table 5.18 shows the results of each m ethod when no noise is present on the signal.

The ranking is dependent on the accuracy of the frequency estimate.

All the algorithms had only a short sample of data to make the estimation with.

Typically the length is 16 data points sampled at 25Hz. The sample is kept short since

124

Estimation Out of range AAD

Algorithm Ifl > 0-6 (U

Difference equations 20 0.26 0.16 12.4

Polynomial LS 0 0.04 0.3 51.3

Simplex with RMS 0 0.11 0.78 37.1

FFNN’s via deriv. est. 0 0.04 0.91 36.4

FFNN via direct est. - - 1.2 -

GA with corr+m ean 0 0.021 1.79 180.3

FFT (Block length=16) - - 3.08 68.2

Table 5.18: Summary of A AD vectors for estimation algorithms with noise free in

put signals and non time-varying parameters after one block. Ranking is in order o f

accuracy o f frequency estimate.

the methods may wish to be used in a parameter varying situation, and short samples

are required so that the variation can be tracked and updated frequently. It can be

expected for some methods, however, that longer samples will improve accuracy, for

example the high level approach using an FFT will increase its frequency estimate in

proportion to the length of the sample.

Although the difference equation method produces the most accurate frequency and

external input estimates, its damping estimate is poor. More importantly, 20% of the

estimates have such poor estimates for damping they are excluded.

Polynomial LS fitting gives the highest damping accuracy, and the next best fre

quency estimate, although the external input estimate is relatively poor. It may be

recalled tha t an arbitrary accuracy can be obtained with polynomial LS fitting when

no noise is present.

Use of neural networks for derivative estimation produces relatively good results

across all three parameters. However, it should be noted that the network doesn’t per

125

form well with signals tha t have non-zero damping, and the results shown are generated

when such signals are used in the testing.

Another consideration is the computational complexity of each algorithm. This will

be dealt with in depth in Section 5.4.3.

Table 5.19 shows a table of results for the estimation algorithms when noise is

present on the incoming signal. Results for white noise of m agnitude 0.1 and impulse

noise of amplitude 0.1 and probability 10% are shown.

Performance of each algorithm is similar for each type of noise w ith only slight

variations between them. Polynomial LS fitting ranks top in both situations due to

its good frequency estimation. Its damping and external input estim ation is poor,

however, relative to the other methods. Further, it also fails on its damping estimate

completely in a good proportion of cases. Difference equations have an even greater

failure rate when noise is present.

It is interesting to note the accuracy with which the GA can estim ate the damping

coefficient despite its relatively mediocre ranking. This is most likely due to the corre

lation function used in the fitness function of the GA, which takes into consideration

the differences in the profiles between the target and estimated signals.

In considering which of the algorithms is “best”, it must be remembered the purpose

of using the algorithms in this fashion, which is to give an estim ate of the parameters

which can then be fed to another algorithm, which will probably operate in a recursive

mode. This algorithm will require a good estimate of all three parameters. Possibly

more im portant than this, however, is to consider the effect of the adaptive sampling fre

quency algorithm. This depends only on the frequency estimate, and a good frequency

estim ate will provide the following algorithm to operate optimally. This algorithm,

with a good estim ate for frequency, can then make accurate estimates of the other two

parameters even if the seed value is poor.

As a result, despite the polynomial LS algorithm’s lack of accuracy in the damping

126

field, since it produces the m ost accurate frequency estimate when noise is present, and

the second most accurate when noise is absent, it is better th a t it should be selected as

the algorithm used in the first stage of the continuously running block algorithm. It is

possible though, that specific applications will require more accurate initial estimates

of damping and external input.

5 .4 .2 R ecursive B lock E stim ation

Continuously running param eter estim ation differs from the initial param eter estim a

tion in two important ways; Firstly, the parameter values vary with tim e. Secondly,

several of the estimation algorithms use information from prior blocks to aid estimation

in the current block.

In the simulations, the param eter values vary sinusoidlally, except for the damping

parameter which is kept at zero to prevent the signal value either vanishing to zero or

exploding. Each run lasted ten blocks and the adaptive sampling frequency algorithm

is used to increase the accuracy of the estimates. Measurement of performance uses

the TAAD (Total Absolute Average Difference) which compares the estimates with the

actual values after each block in a run.

Tables 5.20 shows a summary of the TAAD vectors obtained for each of the methods

used under these conditions under three noise situations. Namely, no noise present,

white noise of magnitude 0.1 and impulse noise of amplitude 0.1 and probability 10%.

Ranking is in order of accuracy of the frequency parameter.

In all situations the polynomial LS method gives better results by a significant

margin. When noise is absent in particular the estimate of all three parameters is

high.

Both the Simplex and GA m ethods have broadly similar results, although the GA

appears less able to estim ate damping. Interestingly, the Simplex is superior to the

High Level approach. This is because the since the Simplex initializes itself with the

127

High Level algorithm.

As presented, the summary results do not give full note of the ability of the High

Level method. This algorithm is particularly resilient to noise and can give results

similar to those presented here even when noise levels are four times; or even more, the

level.

5.4 .3 C om putational C om p lex ity

In computation quantities, the algorithms vary significantly (fig. 5.12). All the algo

rithms take more computations the longer the block length, but in different proportions.

The Simplex and the GA varies linearly with block length, although they do have sig

nificant other overheads. The NN algorithm varies depending on the size of the network

used and lies somewhere close to the proportion of the square of the block length. The

High Level method which uses an FFT has a workload proportional to the TV log N ,

where N is the block length. Finally, the polynomial LS m ethod’s computations is

proportional to the square of the block length.

Having stated these figures, however, it must be noted th a t the FFT, the LS fit

and the NN are fast algorithms, especially when compared to the Simplex and GA

methods. These latter two make many repetitions of calculations per block, whereas

the others make only a single sweep per block.

In practice, therefore, the Simplex and GA methods are very slow to run and could

not realistically be expected to run in a real-time mode. They could be used in a

post-processing scenario, and with increased iterations, could possibly outperform the

polynomial LS method.

128

C
om

pl
ex

it
y

ANN an d
Po lynom ia l LS

FFT

GA and
Sim plex

Block le n g th (N)

Figure 5.12: Graph showing the complexity of each algorithm as a function of block

length. N.B. Each axis is nonlinear.

129

White noise Mag= 0.1

Estimation Out of range AAD

Algorithm If 1 > 0.6 f U

Polynomial LS 14 0.18 1.0 137

NN direct 0 - 1-.3 -

Simplex 0 0.18 1.38 46.1

GA with corr+mean 0 0.026 2.24 167.5

NN deriv. est. 6 0.6 2.4 69.5

Difference equations 70 0.38 2.9 685

FFT Method 0 - 3.1 68

Impulse Noise Am p= 0.1 Prob= 10%

Polynomial LS 9 0.1 0.56 76.5

Difference equations 34 0.3 0.7 130

Simplex 0 0.12 0.95 38

NN deriv. est. 4 0.04 1.6 51.0

GA with corr-fmean 0 0.031 2.0 114

FFT Method 0 ~ 3.1 68

Table 5.19: Summary o f AAD vectors after one block for estimation algorithms with

white noise magnitude 0.1, and impulse noise with amplitude 0.1 and probability 10%

on input signals. Parameters are non time-varying. Ranking is in order o f accuracy o f

frequency estimate.

130

W hite noise M ag= 0.1

Estimation AAD

Algorithm e U

No Noise

Poly LS 0.008 0.36 13.2

GA 0.022 1.74 82.5

Simplex 0.006 1.92 48.7 ■

High Level 0.009 2.48 47.4

NN via direct - 2.7 -

W hite Noise Mag=0.1

Poly LS 0.065 1.73 64.9

Simplex 0.007 2.22 62.6

GA 0.020 2.23 86.3

High Level 0.009 2.49 47.8'

NN for direct - 2.81 -

Impulse Noise Am p—0.1 Prob=10%

Poly LS 0.028 1.37 54.7

Simplex 0.006 1.98 50.1

GA 0.024 2.04 80.0

High Level 0.009 2.48 47.7

NN via direct - 2.77 -

Table 5.20: Summary of TAAD vectors after ten blocks fo r estimation algorithms with

no noise, white noise magnitude 0.1, and impulse noise with amplitude 0.1 and prob

ability 10% on input signals. Parameters are time varying. Ranking is in order of

accuracy of frequency estimate.

131

C h a p te r 6

C onclusions an d F u r th e r W ork

6.1 Conclusions

6 .1 .1 S tereo C am era V ision S ystem

This study has examined the feasibility of a stereo camera vision system that could be

used in a real-world situation to monitor parameters of objects it observes. Considera

tion has been given to the types of noise that may be experienced by the vision system

which has been reflected in the extensive number of experiments carried out.

As described in the first chapter, the vision system consists of two “pin-hole” cam

eras situated at known positions in the camera reference frame. Variation of the cam

eras’ angles allows different parts of the world to be viewed. Such a system as this is

able to pin-point the location of a point object within view of both cameras. A method

for performing this triangulation is given.

This study has identified a number of options for improving the quality of informa

tion extracted from a vision system by a post-processing approach. Once the location

of the tracked object within the stereo images is found, and their position in the real-

world reference frame calculated, the methods in this study can be used to reduce the

corrupting effect of noise when estimating the parameters of the object. Some m eth

ods, such as the polynomial least squares, is fast, and could be performed in real-time.

132

Other methods, such as the iterative simplex and GA ones, would need to be run

off-line.

As covered below, the sampling rate of the cameras is required to vary to optimize

results. In conventional cameras this will not be possible and so it is envisaged th a t

any such vision system would use some electronic means of image storage as used, for

example, by CCD’s.

Although not dealt with here, it is assumed th a t the processing knowledge and

power exists to extract the location of objects within a camera’s image. This infor

mation can then be passed to other processing algorithms to obtain characterizing

parameter values for observed objects.

6.1 .2 Second Order S ystem s

The algorithms presented in this work are not, however, limited to input from a vision

system. Any measurement device tha t read a signal at a known sampling rate will

present a data stream that can be used. This means th a t the work conducted here has

enormous scope and could be used in a vast range of applications and fields.

Many dynamic systems can be approximated with a second order system. Such a

system is sufficiently complex to display the significant features of higher order systems

but can be analyzed without excessive computation.

A second order system is determined by three parameters and two variables. The

parameters are the damping, the natural frequency and the external input. The precise

trajectory is determined by the initial values of the signal and its first derivative.

This study concentrates on determining the parameter values, although some of the

algorithms necessitate the evaluation of the initial conditions also.

133

6.1 .3 E stim ation A ccuracy

To measure the accuracy of the algorithms the AAD and TAAD measures were intro

duced. Secondly, the algorithms must be able to cope with varying noise such as white

noise and impulse noise. Thirdly, the algorithms must be able to track the parameter

variation. This requires th a t the incoming signal blocks must represent only a small

variation in param eter value. In the simulations, parameter variation is proportional

to the frequency param eter, and this allows the introduction of an adaptive sampling

frequency algorithm.

A major aim of this work was to devise an algorithm that would monitor the value

of the parameters through tim e via examination of the incoming signal, given also that

the value of the param eters will vary slowly with time. The problem is first broken

down by determining the parameters based on blocks of data of known and fixed length.

There are then two stages to a continuously running system. Firstly, an initial estimate

of the parameters is required given no other information than the incoming signal and

knowledge of the sampling frequency. Once this is achieved, a second stage starts which

may use previous estimates of the parameters in addition to the incoming signal to aid

estimation for the current block. Table 6.1 lists the algorithms according to whether

or not they can be used in a recursive fashion. All the algorithms can be used in a

non-recursive manner, and so can all be used in the initial stage of the continuously

running algorithm to make an initial estimate of the parameters from the first data

block.

Two methods use estimation of the tim e derivatives of the incoming signal to make

the final param eter estimation. These are the difference equation and polynomial least

squares fitting algorithm. The method for obtaining the parameters from the time

derivatives is given in a paper by Al-Dabass [1].

134

Estimation Algorithm

Non-recursive Recursive

Difference Equations

Polynomial LS fitting

High Level

Downhill Simplex

Genetic Algorithm

Neural Networks

Table 6.1: List o f algorithms based on whether they can be used in a recursive mode.

6.1 .4 A daptive Sam pling Frequency A lgorith m

Many of these algorithms benefit from use of the adaptive sampling frequency algorithm

(ASFA). This was developed so that the number of points per cycle is approximately

constant. Another way of viewing this is tha t the sample covers a period of time over

which the parameters do not vary significantly. This is achieved by examining the

estimated signal frequency and then adjusting the sampling frequency so tha t a fixed

number of points is present per cycle.

6.1 .5 E stim ation A lgorithm s

D ifference Equations

Use of difference equations is a basic m ethod for obtaining the tim e derivatives (see

Section 3.4.1). It requires only five data points to obtain the fourth time derivative

needed. It is therefore computationally very inexpensive, and because the number of

points is low, can monitor the parameter variation closely, especially when the ASFA

is used. It suffers from two drawbacks, however. Firstly, using difference equations to

evaluate time derivatives is only approximate. Secondly, this m ethods suffers greatly

when noise is present. This is observed in the results when this m ethod ranks most

accurate method when no noise is present, bu t falls to almost last when noise is present.

135

H igh L evel A pproach

Application of an F F T in the High Level approach is surprisingly a poor estimation

method for frequency (although see Further Work) because the block length used is

so short. Use of a higher band of sampling frequency would allow longer samples to

be used whilst each block covered the same period of time. This was not done in this

work to maintain consistency between methods. This algorithm is good, however, in

its resistance to noise corruption. Accuracy is maintained almost at the same level

as when noise is absent up to a high level. Above a certain noise level the method

collapses and highly erroneous estimates are made. This is due to noise becoming the

dominant frequency in the spectrum.

D ow nhill S im plex

The Downhill Simplex method is a method that takes the result from the High Level

algorithm to act as a seed. It then uses its parameter estimates to seed the next block

and start the Simplex. This algorithm ranks well in both noisy and noiseless situations

and improves on the High Level algorithms estimates. It is, however, slow, performing

many iterations and comparisons each block.

G enetic A lgorithm s

A similar situation is true with the Genetic Algorithm. Demonstration of its abili

ties and properties are shown in experiment and some GA param eter estimation is

performed to optimize results. It is shown that the GA benefits from working in a

recursive manner. It ranks well, but again, is computationally expensive performing

many comparisons per block.

136

FFT Plus Iterative A lgorithm

It is shown that the FFT algorithm can be used to give an estimate of the parameters,

and this can then be used to give initial conditions for either the Downhill Simplex

or the GA approaches. This can be termed seeding the algorithms. This approach is

shown to improve the estimates given by the FFT approach. This hybrid does reduce

the speed with which estim ates are generated, since both the simplex and GA are

iterative, and hence slow algorithms.

N eural Networks

Neural networks perform poorly in this study. It is shown that they cannot perform

well when the incoming signal is position and scale variable. Scaling of the input

and output is also necessary. Reasonable frequency estimate are only achieved with a

damping of zero. Although training is slow and must be performed off-line, it is a quick

method since it requires only a single pass in operation. Although neural networks can

be trained and operated in a recursive mode, little to no benefit is observed in this

work from doing so. Indeed, a fully recurrent neural network trained with RTRL fails

with even the basic mapping from signal to frequency.

6.1.6 O verview

Overall, the estimation of param eters is best achieved with the polynomial least squares

fitting algorithm which determines the time derivatives of the signal block. These are

then translated into param eter estimates. As previously mentioned, in a noiseless

situation this algorithm can obtain an arbitrary accuracy given an increasing block

length. This increases the accuracy of the higher derivative estimates. This algorithm

is successful because it fulfils the least squares criteria exactly, and also within one

sweep of the algorithm. The GA and Simplex methods attem pt to descend the LS

criteria, and only approach the optimal solution.

137

The Simplex and GA m ethods do have their place, however. In situations where

the system is not known, they can m atch a function to the incoming data regardless

of the function.

This study has produced two previously undocumented hybrid systems. These are

the application of the simplex algorithm after an initial estimate using an FFT, and

also by following the FFT using a GA to improve the estimates. The combination

allows a the relatively quick FF T to seed the simplex or GA. It is usual to give random

initial conditions for these two algorithms, but it is shown here tha t seeding causes a

more rapid improvement in the estimates.

Block parameter estimation and the simulation thereof enabled the use of the Adap

tive Sampling Frequency Algorithm (ASFA). The combination of the former and the

new algorithm allowed improvement in the estimates to be made. This approach is

also previously undocumentated.

6.2 Further Work

In this work a system is developed for tracking and monitoring the value of tim e varying

parameters of a second order system. It can be concluded that the best method to do

this is with a polynomial least squares approach.

In this study only simulated data has been used. It would be beneficial to see

how accurately the algorithms can cope with real data. This would require a real-life

situation which can be approximated to a second order system to be identified. Such

systems may include vehicle suspension systems and the wave-form of human speech.

This may well involve adjustm ent to cope with different types of noise eg. white noise

with a non zero mean. It will also be im portant to see how well each method copes when

the system being compared is not exactly a second order system, as in the simulations

carried out so far.

The adaptive sampling frequency algorithm is currently quite crude, jumping to

138

precise values for the sampling frequency. Since the parameters are expected to vary

slowly, a more intelligent system could be developed which allows only small changes

in the sampling frequency to be made. This would result in a more stable system, and

prevent large variations in the sampling frequency value.

This approach could be expanded to cover all of the parameters. In this work

the parameters were simulated to vary sinusoidally with time. It would therefore be

possible to perform some prediction on the expected value of each parameter. Although

real data may not conform to sinusoidal variation, it may show continuous and smooth

variation in the absence of catastrophes.

Fourier transforms are used in this study to indicate the natural frequency of the

signal. A limitation of this approach is the accuracy of the estimate is governed by

the sample length. This problem could be avoided by use of the chirp7z transform.

This algorithm is based on the FFT, but is able to return a more accurate estim ate in

frequency, for a reduction in the range covered by the transform. This algorithm could

be used, therefore, to lock onto the natural frequency giving a higher accuracy on its

estimate. This would also improve the estimates of the other parameters since these

are dependent on the natural frequency estimate when usnig the high level approach.

Observations of an object using a camera pair allows its path to be tracked in each

dimension. From these the characteristics of the motion can be estimated. These can

be used to predict the motion of the object.

It is also possible to track line objects from images. Once lines can be extracted

from images, their motion can be analyzed and their properties estimated. Line objects

may can be rigid, flexible, or compressible. This idea can be extended further to areas

of a surface which can be tracked. Again, rigid, non-rigid and compressible areas can

be analyzed and parameters estimated.

139

R eferences

[1] D. Al-Dabass, uCharacteristics Estimation of Point Objects using Stereo

Vision”, IEE Colloqium on Digital Signal Processing, Savoy Place, Lon

don, 1985.

[2] B.Anderson and D.Montgomery, “A Method fo r Noise Filtering With

Feedforward Neural networks: Analysis and Comparison with Lowpass

and Optimal Filtering”, International Joint Conference on Neural Net

works, Vols 1-3, 1990, Ch. 430, pp.A 209-A 214.

[3] P.J.Angeline, G.Saunders and J.Pollack, “An Evoluationary Algorithm

that Constructs Recurrent Neural Networks”, IEEE Transactions on Neu

ral Networks, January 1994, Vol.5, Issue 1, pp.54-65.

[4] S.N.Balakrishnan and J.Rainwater, “Use of Time Varying Dynamics in

Neural Network To Solve Multi-target Classification.”, Proceeds of the

IEEE 1992 National Aerospace and Electronics Conference, 18th-22nd

May 1992. Vol.l, pp.414-20.

[5] S.Baluja and D.Pomerleau, “Using the Representation in a Neural Net

works Hidden Layer For Task Specific Focus of Attention”, International

Joint Conference on Artificial Intelligence, 1995, Ch.278, pp.133-139.

140

[6] Sa H. Bang and Bing J. Sheu, “Neural Network Communication Receiver

Based on the Nonlinear Filtering”, International Joint Conference on Neu

ral Networks, 1992, Vol.2, pp .999-1004.

[7] D.Beasley, D.Bull and R.Martin, “An Overview o f Genetic Algorithms:

Part 1 Fundamentals”, University Computing, 15(2), pp.58-69, 1993.

[8] D.Beasley, D.Bull and R.Martin, “An Overview o f Genetic Algorithms:

Part 2 Advanced Methods”, University Computing, 15(40, pp .170-181,

1993.

[9] M.J.Boek, “Experiments in the Application of Neural Networks to Rotat

ing MAchine Fault Diagnosis”, International Joint Conference on Neural

Networks, 18th-21st November 1991, Vol.l, pp.769-74.

[10] C.H.Chen, “Neural Networks for Financial Market Prediction”, 1994

IEEE International Conference on Neural Networks, Vol 1-7, 1994,

Ch.881, pp .1199-1202.

[11] T.Cken, W.C.Lin and C.T.Chen, “Artificial Neural Networks fo r 3D Non-

rigid Motion Analysis”, IEEE Transactions on Neural Networks, Novem

ber 1995, Vol.6, Issue 6, pp. 1394-1401.

[12] J.M.Conell and C.S.Xydeas, “A Comparison o f Acoustic Noise Cancel

lation Techniques fo r Telephone Speech”, 6th International Conference

on Digital Processing of Signals in Communications, 2nd-6th September

1991, pp.320-325.

[13] J.Dayhoff, “Neural Network Architectures: An Introduction”, 1990, Van

Nostrand Reinhold, ISBN: 0-442-20744-1.

[14] Hugo de Garis, “GenNETS: Genetically Programmed Neural Nets”, In

ternational Joint Conference on Neural Networks, 1991, Vol.2, pp.1391-6.

141

[15] J. Elman, “Finding Structure in Tim e”, Cognitive Science, No. 14,

pp. 179-211, 1990.

[16] T.Fechner, “Nonlinear Noise Filtering With Neural Networks: Compar

ison with Weiner Optimal Filtering”, 3rd International Conference on

ANN’s, 25-27th May 1993, pp.143-7.

[17] “Feedback and Control System s”, Schaum’s Outline Series.

[18] G.Foresti, V.Murino, S.Regazzoni, G.Vernazza, -“A Distributed Approach

to 3D Road Scene Recognition”, IEEE Trans, on Vehicular Technology,

vol.43 No.2, pp.3890-406.

[19] T.W.Frison, “Controlling Chaos with a Neural Network”, International

Conference on Fuzzy Systems, 20th-24th March 1995, Vol.4, pp.1943-8.

[20] D.E.Goldberg, Genetic Algorithms in Search, Optimization and Machine

Learning., 1989, Addison-Wesley, ISBN 0-201-15767-5

[21] J.H.Holland, “Adaptation in Natural and Artificial Systems”, Ann Arbor,

MLUniversity of Michigan Press 1975.

[22] E.C. Ifeachor and B.W. Jervis, “Digital Signal Processing: A Practical

Approach”, 1993, Addison Wesley ISBN 0-201-54413-X.

[23] K.Jundi, T.El-Ali, P.Eloe and F.Scarpino, “Introduction to Neural Net

works and Adaptive Filtering - 3 Illustrative Examples”, IEEE 1993 Na

tional Aerospace and Electronics Conference, Naecon 1993, Vols 1 and 2,

1993, Ch. 180, pp.904-912.

[24] P.G.Korning, “Training Neural Networks By Means o f Genetic Algo

rithms Working On Very Long Chromosones”, International Journal of

Neural Systems, 1995, Vol.6, No.3, pp.299-316.

142

[25] J.R. Koza and J.P. Rice, “Genetic Generation of Both the Weights and

Architecture fo r a Neural Network”, International Joint Conference on

Neural Networks, 8th-14th July 1991, Vol.2, pp.397-404.

[26] K.P.Li and J.A.Naylor, “A Whole Word Recurrent Neural Network for

Keyword Spotting”, ICASSP, 23-26th March 1992, Vol.2, pp.81-84.

[27] P.Matteucci, C.Regazzoni, G.Foresti, “Real Time Approach To 3D Object

Tracking In Complex Scenes”, Electronics Letters, vol.30 No.6, pp.475-7,

March 1994.

[28] J.R.McDonnell and D.Waagen. “Evolving Recurrent Perceptrons fo r Time

Series Modelling ”, IEEE Transactions on Neural Networks, January 1994,

Vol.5, Issue 1, pp.24-38. .

[29] A.V.Medvedev and H.T.Toivonen, “A Systematic Synthesis of a Neural

Network Based Smoother”, Proceeds of 1992 IEEE International sympo

sium on Intelligent Control, llth -13 th Auguest 1992, pp. 147-51.

[30] B.Mulgrew and C.Cowan, “Adaptive Filters and Equalizers”, Kluwer Aca

demic Publishers, 1988, ISBN: 0-89838-285-8.

[31] J.Ortega, W .Rheinboldt, “Iterative Solution of Nonlinear Equations in

Several Variables”,New York Academic Press, 1970.

[32] W.H.Press, W .T.Vetterling, B.P.Flannery, S.A.Teukolsky, “Numerical

Recipes in C: The A rt o f Scientific Computing: 2nd Edition”, 1992, Cam

bridge University Press, ISBN: 0-521-43108-5.

[33] G.V.Puskorius and L.A.Feldkamp, “Neurocontrol of Nonlinear Dynamical

Systems With Kalman Filter Trained Recurrent Networks”, IEEE Trans

actions on Neural Networks, March 1994, Vol.5, Issue 2, pp.279-97.

143

[34] M.T.Rahman, G.L.Lebby and E.E.Sherrod, “Noise Cancellation in Time

and Frequency Domain Using Neural Networks”, Proceeds of the 26th

South-Eastern Symposium on System Theory, 20-22nd March 1994,

pp.634-7.

[35] A.N.Refenes and M.Azema-Barac, “Neural Network Applications in Fi

nancial Asset Management”.

[36] D.Rummelhart and J.McClelland (editors), “Parallel Distribuated Pro

cessing”, Vol.I and II, MIT Press, Cambridge MA, 1986.

[37] M.D.Schuster, “A Comprehensive Analysis o f Neural Solution to the

Multi-Target Tracking Data Association Problem”, IEEE Trans, on

Aerospace and Electronic Systems, Vol29, N o .l,Jan .1993, pp.260-267.

[38] J.J.Shynk, “Adaptive HR Filtering”, IEEE ASAP Magazine April 1989.

[39] W.Sohn and N.Kehtarnavaz, “Analysis of Camera Movement Errors in

Vision Based Vehicle Tracking” , IEEE Trans, on Pattern Analysis and

Machine Intelligence vol. 17 No.l Jan 1995.

[40] D.Whitley, T.Starkweather, C.Bogart, “Genetic Algorithms and Neural

Networks: Optimizing Connections and Connectivity”, Parallel Comput

ing, 1990, Vol. 14, No.3, pp.347-361.

[41] B.Widrow, M.Lehr, F.Beaufays, E.Wam and M.Bilello, “Learning Algo

rithm for Adaptive Signal Processing and Control”, 1993 IEEE Interna

tional Conference on Neural Networks, Vols 1-3, 1993, Ch. 360, pp.1-8.

[42] B.Widrow and D.Stearns, “Adaptive Signal Processing”, Prentice-Hall,

Englewood Cliffs, NJ, 1985.

144

[43] P.W ieland, “Evolving Neural Network Controllers for Unstable System s”,

International Joint Conference on Neural Networks, 8th-14th July 1991,

VoL‘2, pp.667-677.

[44] R.W illiams and D.Zipser, “Experimental Analysis o f the Real-Time Re

current Learning Algorithm”, Connection Science,

[45] L.Yao, W.A.Sethares, “Nonlinear Parameter Estimation Via the Genetic

Algorithm ”, IEEE Transactions on Signal Processing, April 1994, Vol.42,

Issue 4, pp.927-35.

[46] H.Zhuang, “A Self Calibration Approach to Extrinsic Parameter Estima

tion of Stereo Cameras”, IEEE Int.Conf. Robotics and Automation, vol.4,

pp .3428-33, 1994.

N o.l, pp.87-111,1989.

145

B ib lio g rap h y

1. S.Barker, “High Speed Face Location at Optimal Resolution”, World Congress on

Neural Networks, 1995.

2. D.A.Castelow,P.F.Buxton, M.Rygol, P.Courtly, S.B.Pollard, “A Plotform for the

Development o f a Machine stereo Vision System fo r the Control of A Robot Ve

hicle”, IEEE Colloqium of Autonomous Guided Vehichles, 7th November 1991,

pp.61-63.

3. T.Catfolis, “A Method fo r Improving the Real-Time Recurrent Learning Algo

rithm ”, Neural networks, V6, ppS07-21, 1993.

4. A.Cichocki and R.Unbehauen, “Neural Networks for Optimization and Signal

Processing”, 1994, Wiley, ISBN: 3 519 06444 8.

5. Daw-Tung Lin, J. Dayhoff and P. Ligomenides, “Trajectory Recognition With

a Time Delay Neural Network”, International Joint Conference on Neural Net

works, 7 th -llth June 1993, Vol.3, pp .197-202.

6. M. Dorigo and Machine Learning, “ALEC SYS and the AutonMmouse: Learning

to Control a Real Robot by Distributed Classifier System s”, Vol.19,Part 3,page

209-40, 1995.

7. C.K.Goodwin, D.Al-Dabass, K.Sivayoganathan, ”,Simulation of a Vision Steering

System for Road Vehicles”, Eurosim ’95 Simulations Congress, pp. 1247-1252,

Sept. ll-15th 1995, Technical University of Vienna, Austria, ISBN 0-444-822-410.

146

8. C.K.Goodwin, D.Al-Dabass, K.Sivayoganathan, ” Feasibility of a Vision Based

Steering System ”, 28th International Symposium on Automotive Technology and

Automation, 18-22nd Sept. 1995, S tuttgart, Germany. ISBN 0 9477 19741.

9. P.Husbands, I.Harvey,D.Cliff, “Circle in the Round: State Space Attractors for

Evolved Sighted Robots”, Robotics and Autonomous Systems, 1995, Vol. 15, No.l-

2, pp.83-106.

10. K.Kristinsson and G.A.Deumont, “System Identification and Control Using Ge

netic Algorithms”, IEEE Transaction on Systems, Man and Cybernetics, Septem

ber 1992, Vol.22, Issue 5, pp. 1033-46.

11. A.Kuntman, N.Uyanik, B.M.Baysal, “A Novel Method To Estgimate Various

Equation of State Parameters”, Polymer, 1994, Vol.35, No.15, pp.3356-3358.

12. B.B.Litkouhi, A.Y.Lee, D.B.Craig, “Estimator and Controller Design for Lane-

Track: A Vision Based Automatic Vehicle Steering System ”, Proceedings of the

32nd IEEE Conference on Decision and Control, Vols 1-4, 1993, Ch.819, pp.1868-

1873.

13. L.R.Lopez and H.J.Caulfield, “A Principle Complexity in Evolution”, Lecture

Notes in Computer Science, 1991, Vol.496, pp.405-9.

14. M.B.Matthews and J.S.Moschytz, “Neural Network Nonlinear Adaptive Filter

ing Using the Extended Kalman Filter Algorithm”, International Neural Network

Conference, Vols 1 and 2, 1990,

Ch. 216, pp.115-118.

15. J.R.McDonnell and D.Waagen. “Evolving Recurrent Perceptrons for Time Series

Modelling”, IEEE Transactions on Neural Networks, January 1994, Vol.5, Issue

1, pp.24-38.

147

16. A.V.Medvedev and H.T.Toivonen, “A Systematic Synthesis o f a Neural Network

Based Smoother”, Proceeds of 1992 IEEE International symposium on Intelligent

Control, llth -13 th Auguest 1992, pp. 147-51.

17. aNeural Networks Summer School: Theory, Design and Applications”, Cam

bridge University, 19-22nd Sept. 1.994.

18. F.Mondada and D.Floreano, “Evolution of Neural Control Structures: Some Ex

periments on Mobile Robots”, Robots and Autonmous Systems, 16,1995,pp .183-

195.

19. D.Ngeyen and B.Widrow, “ The Truck B acker Upper : An example of self

learning in neural networks ”, Neural Networks for Control, M IT Press, Cam

bridge MA, 1990.

20. J.Ortega, W .Rheinboldt, “Iterative Solution of Nonlinear Equations in Several

Variables”,New York Academic Press, 1970.

21. S.Papert and M.Minsky, “Perceptrons: An Introduction to Computational Ge

ometry”, MIT Press, Boston, 1969.

22. D.Pavisic, L.Blondel, J.P.Draye, G.Libert, P.Chapelle, “Efficient use of Dynamic

Recurrent Neural Networks fo r Active Noise-Control”, Proceedings of the 15th

International Congress on Acoustics, Vol II, 1995, Ch.173, pp.243-246.

23. F.Rosenblatt, “The Perceptron, A Probabilistic Model fo r Information Storage

and Organisation in the Brain”, Psychological Review, No.65, pp .386-404, 1958.

24. D.Ruclc, S.Rogers, M.Kabrisky, P.Maybeck, M.Oxley, “ Comparitive Analysis

of Backpropogation and the Extended Kalman Filter for Training Multilayered

Perceptrons”, IEEE Trans, on Pattern Analysis and Machine Intelligence, V14,

No.6, pp.686-90, 1992. ' .

148

25. M.Schoenauer and E.Ronald, “Neuro-Genetic Truck Backer Upper Controller”,

Proceeds of IEEE Conference on Computation, June 1994, Vol.2, pp .720-723.

26. K.Sekihara, H.Haneishi, N.Ohyama, *Details o f Simulated Annealing Algorithm

To Estimate Parameters o f Multiple Current Dipoles Using Biomagnetic D ata”,

IEEE Transactions on Medical Imaging, June 1992, V ol.ll, Issue 2, pp .293-299.

27. M.K.Sen and P.L.Stoffa, “Rapid Sampling of Model Space Using Genetic Algo

rithms: Examples from Seismic Waveform Inversion”, Geophysical Journal Int.,

1992, Vol. 108, Part 1, pp.281-92.

28. H.Sito, M.Mori, “Application o f Genetic Algorithms To Stereo matching o f Im

ages”, Pattern Recognition Letters, 1995, Vol. 16, Part 8, pp.815-21.

29. G.Sun, H.Chen, Y.Lee, “A Fast On-line Learning Algorithm for Recurrent Neural

Networks”, International Joint Conference on Neural Networks, Vols 1 and 2,

1991, Ch. 290, pp.B 13-B 18.

30. S.Tsugawa, e<Vision Based Vehicles in Japan: Machine Vision Systems And Driv

ing Control System s”, IEEE Transactions of Industrial Electronics, Auguest 1994,

Vol.41, Issue 4, pp.398-405.

31. R.Williams, “Training Recurrent Networks Using the Extended Kalman Filter”,

Int. Joint Conference on Neural Networks , Baltimore 1992, V4, pp.241-46.

32. Xin Yao, “A Review o f Evolutionary Artificial Neural Networks”, International

Journal of Intelligent Systems, 1993, Vol.8, No.4, pp.539-567.

33. D.Zipser, “A Subgrouping Strategy That Reduces Complexity and Speeds Up Learn

ing In Recurrent Networks”, Neural Computation, 1,552-558, 1989.

149

A p p en d ix A

D eriva tion o f C om plex S o lu tion to

th e Second O rd e r S ystem

This appendix derives the solution x (t) \ given the initial conditions x 1o and x 2o, and

input (constant) U, of the characterizing equation,

a x" + bx' -1- cx = U (A .l)

where a = 1.0, b ~ 2£cun and c = w2. Each apostrophe given to each x indicates a

time derivative e.g. x" = .

The roots of the characterizing equation are,

—b db y/b2 — 4ac
^ = 2a---------

Note that,

—b + Vb2 — 4 ac —b — s/b2 — 4acri x r 2 = --------------------- *----------------------
2a 2a

b2 — (b2 — 4ac) c
4a2 a

The Free solution can be written as,

150

x(t) — cierit + c2erst (A .3)

To find the values for and c2, we examine the initial conditions for x (t) and x'(t).

The initial conditions are,

xio —

X 2 o = s ' (0)

We can therefore write tha t,

Now since,

we can write

zio = ci + c2 (A.4)

x '(t) — ci.rierit + c2r2eT2t (A.5)

%2o = n c i + c2r 2 (A.6)

Inserting Equation A.4 into Equation A.6, we get,

x 2o = n (x io - c2) + C 2 . r 2

— r l - % l o — r l - ^ 2 + c 2-r 2

Re-arranging,

*2o ~ r i .x l0 = c2(r2 - rx) (A.7)

Further re-arranging for c2, we get,

151

x2o - r i . x i 0C2 = --------------- (A.8)
r 2 — r i

Now inserting Equation A.8 into Equation A.4,

x2o - rx.xio
C \ X i 0 C 2 — X \ o

r-2 - n
*1 o-r2 ~ x 2o

(A-9)r2 - n

We now calculate the forced solution which is then added to the free solution.

x(t) ~ f w(t — r)*U (t).dT (A.10)
J 0

where w(-) is a free response of the system = c\erit + c2er2t.

Therefore, for U(t) — U ,

x(t) = U j c1eriter' r (A .ll)

with w (t) = Cieri* + C2era< we can deduce C\ + C2 from u>(0) = 0, and recalling that

u/(0) = 1 (universal initial condition for weight functions).

0 — ci + c2

C1 = ~ C2

We can now write.j"i

wr(t) = c1r 1eri* -f c2r2er2i

u/(0) = l = c i r 1 + c2r2

1 = c x rx - r2ci - d (r x - r 2)

Ci = (d - r2)~l

c2 = - (d - r2)~1

152

Therfore x(t) — U /J as before E quation A.6,

Uerit UeT2t ' U 1
7*1 (ri - r 2) r2(n - r2) - r2) r2{rx - r 2)

Uer' f UeT2i U
rl (rl - r 2) r2{r1 - r 2) r i r 2

The to tal solution is then,

x(t) = cierit -f c2er2t H-
Ueri1 f/er2< *

r i (n — r2) r2(rl - r2 rx.r2

x(t) = Ci + i/
r i(n - r2) erii + c2

U
r2{ri - r 2) er2t +

r i r 2

153

A p p e n d ix B

B ack p ro p a g a tio n

Backpropagation [36] is the most widely used of the algorithms to train feedforward

neural networks. There are many variations, each claiming an improvement to the

basic algorithm in either speed of training or quality of training, but almost invariably

at some other cost. The use of momentum alone to augment the basic algorithm is

covered here, as it remains one of the best ways of improving overall performance.

Figure 3.3 shows a general feedforward neural network. It is made up of a number

of layers of units (also known as artificial neurons). Between the layers of units are

weighted connections, allowing information to pass from the top layer, down the con

nections and onto the next layer. Each unit has a value called its activation, and the

weight m atrix is also known as the impulse response of the network.

Backpropagation (BP) uses error gradient information to obtain minima in the

search space of the impulse response. It is closely related to the Widrow-Hopf rule

for adaptive linear filters, and indeed, the LMS algorithm is a special case of the BP

algorithm when the network has only an input and an output layer.

When training a feedforward network with backpropagation, there are two clear

phases. The forward phase is when the input signal is propagated forward through the

network to produce values for the output unit(s). In the back progagation phase, this

output is compared with the desired output for the current input pattern, and an error

154

is propagated back through the network, which updates the weights in such a way as

to make the network output nearer to the desired output.

At the beginning of the forward phase, units in the input layer are given activations

from the outside world. Each unit in the layer below then conducts a summing process.

When each layer is complete, the next layer below performs the summing process. For

a general unit i in layer I, the summing process is,

N { - 1

* = E • (B-1)
j=0

where N is the number of units in the Ith layer, and I = 0 is the input layer, and

there are L — 1 layers. The weight w\j refers to the weight leading from the jfth unit

in the (I — l) th layer to the unit i in the Ith layer.

Once the summing is complete, the unit performs a transfer function on the summed

weighted input to arrive at the un it’s activation,

Xi - / (*) (B.2)

where x is the activation of a unit and /(•) is the transfer function.

The actual form of /(•) can be any function tha t is differentiable as all algorithms

using error gradient descent require / '(•) in calculating weight updates. Common

functions include the sigmoid,

V ~ 1 + exp~^ (B*3)

and the hyperbolic tanh function,

1 — PXT)
y = tanh(7z) = (B.4)

1 + exp ^ x

The variable 7 allows the steepness of the curve to be varied, but is usually simply

set to unity. Figure B .l show the forms of the two transfer functions. The significant

difference between them is th a t the sigmoid ranges between zero and one, and the

155

tanh function ranges between ±1. Many other functions have been used, with success

commonly dependent on the application. Functions are usually nonlinear, to maintain a

network’s nonlinear mapping abilities, and often limit both the minimum and maximum

values.

m 0.2"5
<0 0 .0 Î0.2

(a) 0>)

Figure B .l: Two common transfer functions, a) The sigmoid, b) the tanh function .

The activation of the output unit(s) is named yi for each of the i output units.

Once values for all yi have been evaluated by the forward phase, the backpropagation

phase may begin. This starts with a calculation of an error vector,

— d{ yi (B.5)

This is performed for the output layer only, and d{ represents the desired output of

the ith output unit for the current input pattern. To update the weights connecting

the output and the last hidden layer the Widrow-Hopf rule is applied,

(B.6)

156

where j is the unit in the L — 2th layer, L — 1 is the to ta l number of layers, / '(•)

is the derivative of the transfer function of the output unit i, /j, is a learning rate, e* is

the error of the ith output unit and Xj is the activation of the j t h unit in the L — 2th

layer.

For all other weight layers above this ie. for updating weights connecting to a

hidden layer,

dw-j = f{s i)2 iiS hx lf l . (B.7)

where Sh is calculated for each unit in the current Ith hidden layer,

Sh= eiwhi (B.8)
i= 0

where N i-i is the number of units in the (I — l) th layer. Once the weight update

has been calculated for each unit in each layer, layer by layer, then for all i and all j ,

W new - W oid + dw (B.9)

Thus, the error is propagated back through the network for each layer in the net

work. Once complete, a new input pattern is presented and a forward phase can start.

The learning rate variable, f.i, is user set. If set to unity, each input pattern would

remove any useful adjustment of weights already performed. Too small a value of fi

would result in the weights being adjusted too slowly, and an excessive number of

presentation of input patterns would be needed before the network accurately output

the desired values. In practice, the value of fi can be 0.3 and can go as low as 0.1.

Values outside this range are by no means prohibited, but would be used only in special

cases.

One of the major problems with neural networks is their susceptibility to local

minima. This means tha t the network is not performing at its optim al rate, and the

157

output it provides is substandard. One of the most commonly used techniques for

preventing capture in local m inim a is the use of a momentum term .

Adding a m om entum [13] term to the plain BP algorithm takes into consideration

the weight update from the previous propagation. If a weight update occurs at a tim e

step n, then it will also include information from the weight update at tim e n — 1.

Thus, the equation for a weight update becomes,

W new(n) = W 0id(n) + dw(n) + a d w (n — 1) (B.10)

Here, a is a param eter between zero and one which determines the importance

given to the previous weight change. High values of a of around 0.9 are common.

Momentum can be understood by visualizing the error surface as an undulating

surface over which the network searches for a minima. The gradient descent rules of

BP always move it downwards. This means that if the current position on the error

surface is in a shallow hollow, then the network will not be able to leave this hollow

and move on to a deeper, globally minimal position. Adding a momentum term allows

the motion of the network’s position to pass on through a local minima and up over

a nearby brow, and down into another minima. The greater the value of a, the more

able it is to do this. In this fashion the network can escape a local minima.

Implementation of m om entum in a BP algorithm can frequently improve conver

gence rates by a significant factor and reduce the chance of the network being caught in

a local minima whilst only a reasonable increase in storage and calculations is required.

158

