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A b s tra c t

Many real world dynamic systems can be approximated well using second order sys­

tems. It is often required, therefore, in engineering and other situations to deterimine 

the characterizing param eters of observed data, with the assumption that the data 

represents a second order system.

This study investigates the param eter estimation problem encompassing a wide 

range of techniques and algorithms. Conventional approaches are tested and in some 

cases combined to produce hybrid algorithms. Two novel methods are also applied, 

and compared with the other techniques. These novel methods are neural networks 

and genetic algorithms.

Further, a new algorithm is proposed which is applied to all techniques tested. 

This new algorithm adaptively adjusts the sampling frequency at which observed data 

is read, based on previous estimates of the parameters. It is shown that this improves 

the accuracy of the param eter estimation process.

A complete simulation environment is devised enabling parameter estimation to  be 

tested under a range of situations. Firstly, when the system parameters are constant 

with time. Then secondly, when the parameters vary through the time period of the 

observed data. The simulation enables the parameters to be estimated in blocks of 

data. Further enhancement of the algorithms enable them  to perform recursively, 

taking account of previous block’s estimates. Finally, all algorithms are tested on 

their tolerance to two types of noise. The complete simulation allows recursive block 

param eter estimation which adaptively varies the sampling frequency to increase the



accuracy of the estimation, under a range of noise conditions.accuracy of the estimation, under a range of noise conditions. 
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C h a p te r  1

In tro d u c tio n

1.1 A Stereo Cam era S ystem

1.1.1 Introduction  and A p p lica tion s

To see the world around us, we have two eyes. This allows us to pinpoint the position 

of something we can see. Two eyes are needed to eliminate any ambiguity about the 

object’s position. So it is too with a vision system based on a pair of cameras, or a 

stereo camera pair.

W ith such a stereo camera system it becomes theoretically possible for a machine 

to locate itself within a three dimensional world. There are many machines and robots 

which use vision based on a single camera, but these systems always dedicate their a t­

tention to one plane, and in this m anner allow accurate location tasks to be performed. 

A stereo camera vision system is not lim ited to one plane, and is capable of shifting 

attention from one point to any other.

Machines and robots with a stereo vision system would be able to locate objects’ 

positions relative to themselves, and hence locate itself in the world. If the machine 

or robot were able to process the image information it received it would become an 

autonomous robot, navigating itself unaided. This is the aim of developing a stereo 

camera vision system.
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Figure 1.1: The stereo camera system, viewing an object in the xy plane.

1 .1 .2  G eom etry o f A  Stereo C am era S ystem

Notation used in this section follows th a t of [1]. Consider the two camera system 

depicted in Figure 1.1. The figure is in the icy-plane with the origin and axes shown. 

Each camera is assumed to be simply a box, with a single lens at the entrance opening 

onto a screen on which the image is focused. The lens of the left and right cameras 

are placed at + 5  and —S  on the y-axis, respectively. The left camera is at an angle 

A l  and the right camera at an angle A ji to the y-axis. Each camera’s focal length is 

/ ,  and the screen width is 2w. The straight-through view for each camera will pass 

through the centre of the lens and end at the centre of the screen.

The field of view of each camera depends on the length /  and width w. In most 

adjustm ents these overlap, creating an area in the icy-plane common to each camera’s 

field of view. It is points within this area which may be pinpointed in the camera 

reference frame.

2



Given a point within the field of view of both cameras it is the aim to determine 

its co-ordinates (x ,y ). Each camera will produce an image of the scene on its screens. 

The point on the left camera’s screen will be displaced from the centre of the screen 

by a distance I, and the point’s image on the right cam era’s screen by a distance r.

To determine {x, y) it is necessary to know each camera’s position, orientation and 

dimensions, plus the displacements of the point on each screen.

1.1 .3  Point O bject L ocation

For the left hand camera, the line joining the point object and the centre of the lens 

makes an angle L with the y-axis. Thus,

— =  tan L . (1.1) 
6 -  y

Similarly, for the right hand camera, the line joining the point object and the camera 

lens makes an angle R  with the y-axis,

— =  tan R  (1.2)
S + y v '

Solving these equations simultaneously for x and y,

( tan L tan Rx =  25    —  (1.3)
Vtan L -f tan R J

_ ( tan  L — tan R \
y = s l — r — - s  (i.4)Vtan L -f tan R .

Each of these lines will make an angle with the central axis of each camera. For 

the left hand camera this is 0jr,, and for the right hand camera it is 0r . Obviously,

ta n h  — tan(.4£, — $ i)  (1.5)

ta n R  =  tan(A n — 6r ) (1.6)



But &l and Or  can also be expressed in other terms. From the projections on the 

back of the cameras, tan Ol =  1/ f  and tan0R =  r / f .  Inserting these into equations 1.5 

and 1.6 and using the identity ta n (a  ± /3 ) — ( ta n a  ±  tan /? )/(l tan a  tan/?),

t a n i  =  f
f  +  I tan A l
f  tan A r — r

ta n /?  — -7------------— . (1.8)
/  +  r  tan A r

By inserting these equations into equations 1.1 and 1.2, co-ordinates for the position 

of the point object in the xy  plane can be calculated. This calculation is based on 

knowledge of the camera separation, the cam era’s angles, the focal length of the camera 

lenses and the displacements of the point object images on the camera screens.

It is im portant to define a sign convention here for the angles used. Angles measured 

from the central axis of the left camera in an anti-clockwise direction are positive, and 

those measured clockwise are negative. For the right hand camera this rule is reversed. 

It is natural for the displacements I and r  to  have the same sign as their corresponding 

angle Ol and Or . This means th a t for the example of Figure 1.1, the angles A l , A r , Ol 

and Or are all positive. The displacements I and r in this figure are thus also positive.

To calculate the position of the object in the ^-direction once its position in the xy  

plane is known is not difficult. Either camera can be used to do this. The image of the 

point object in say, the left camera, will be a vertical displacement di above the central 

axis, giving co-ordinates (/,d/). These can be used to calculate the angle 0Z between 

the line passing from the object to its image with the horizontal plane. Then 2 may 

be obtained from tan 0 z =  z/*Jx2 +  (y -f S )2. This is presented for completeness and 

discussion in this work is lim ited to the xy  plane.

One major assumption has been made so far — a method exists for extracting the 

location of point object on each camera screen. This task is not a simple one. In 

this work, however, the image processing algorithms needed for this problem are not 

investigated.



1.1 .4  Point O bject Tracking and N o ise

W ith a stereo camera vision system as described above, it is possible to accurately 

determine the position of a point object which is in the  field of view of both cameras. 

An image from each camera can be collected at discrete tim e intervals, and delivered to 

an image processing algorithm which extracts the point object displacements. These 

are then used together with the knowledge of the camera system geometry to calculate 

the co-ordinates of the point object in the camera reference frame. This process can 

be performed repeatedly and a series of values for the object’s position recorded at 

discrete time points. The object’s trajectory can hence be tracked.

In the real world it is not always possible to  obtain completely accurate trajectories. 

Noise can be introduced at a number of points in the process. Camera vibration, limited 

pixel resolution and image processing limitations can all lead to  noise.

Reducing the corruption due to noise of object trajectories can be addressed with 

a number of digital signal processing techniques. It is reducing such noise with novel 

methods tha t forms part of the work for this thesis.

C am era V ibration

There are many applications of stereoscopic camera systems where noise may be intro­

duced due to camera vibration. Applications most at risk are those where the cameras 

are mounted on a moving platform or platforms. For example, cameras mounted on 

a moving vehicle which view the lane boundary markers as the vehicle proceeds along 

the road will experience vibration from the.road surface, engine vibration and buffeting 

from the air.

If each camera is mounted on a separate platform, vibration of each platform will 

affect the camera separation, corrupting the geometry information.

A further problem arises with the relatively slow sampling frequency of the cameras. 

Video cameras operate typically at twenty-five frames per second. Anything moving

5



within the view of such a camera with oscillatory motion greater than half of this 

sampling frequency will then not be accurately analysed as aliasing effects will prevail. 

In this work it is assumed that noise is limited to within the half sampling rate limit.

L im ited  P ix e l R eso lu tion

One source of noise stems from the finite number of pixels present on the camera screen. 

Each pixel projects a solid angle out into the real world. The image of a point object 

within this solid angle will fall upon a single pixel. As the point object moves, its image 

will move across the finite area of a single pixel until it moves enough to pass across 

onto an adjacent pixel. The object can therefore move by some amount and still fire 

the same pixel.

The extent of this problem depends on the camera pixel size, and the distance of 

the object from the  camera. The magnitude of the problem can vary, and an example 

is given here to illustrate its extent.

Consider a cam era pair where each camera has 640 pixels across its screen. The focal 

length of the cam era is 50mm and its width is 20mm. Each pixel is then 20mm/640 = 

0.03125mm wide. A pixel on the central axis will cover an angle of tan -1 (0.03125/50) =  

0.0358° whilst a pixel at the edge of the screen will project an angle 0.0344°.

An object lm  from the camera lens would then need to move 0.64mm off the vision 

axis to ensure changing pixel, and 0.57mm at the extremity of vision. These values 

scale up proportionally to the distance of the object from the camera, so an object on 

the vision axis 1km away has to move 0.64m to ensure changing pixel.

The limited pixel resolution problem causes only minor noise problems. W hether 

these distances are significant is dependent on the application of the stereoscopic cam­

eras.
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1.2 Second Order System

1.2.1 Form ulation

The general second order equation for a variable, y , moving through time, is,

l | + 2  +  =  (1.9)

where £ relates to the damping of the system, wn relates to  the natural frequency 

with con — 2irfn and U is the external force on the system. Each parameter is assumed 

to be independent of time.

A solution of this equation is,

Vt — (ci H t r l  crit  ̂ -f (c2  t er2< H (1.10)V  n ( r i - r 2)J \  r 2( r i - r 2 ) y  rvr2

where,

-  4wj
r i =  ------------^2-----------   ̂ ^

r2 = —   11 (1-12)
- x 2 0 + r2x l0

ci =  ------------------  (1-13)
r 2 -  rq

^ 2o ria:i0 . .C2 =    (1.14)
r2 -  ri

and x\o is the initial starting value, and x2o is the initial value of the first derivative 

of the variable y. These are also known as the state variables of the system. The 

derivation of this solution is given in Appendix A.

A common example of a second order system is a pendulum. The weight at the

end of a line will move with Simple Harmonic Motion (SHM) moving back and forth

about a central equilibrium position. In the case of no damping, the angular frequency 

of the pendulum will equate to the natural frequency wn of Equation 1.9. When the 

damping, £, has a positive and non-zero value then the amplitude of the pendulum’s



swing will decrease with time. The actual frequency, u>0, would also decrease according 

to,

"a  =  v/(l -  f 2K  (1.15)

If the damping has a negative value then the pendulum would actually increase its 

amplitude. The external force variable, £/, is related to the equilibrium position of the 

pendulum and indicates an offset.

1.2.2 G enerality  o f  th e  Second Order S ystem

The second order equation is im portant because it can be used in a wide range of 

situations as an approximation to the actual process. This is especially true for short 

periods of time. Despite the fact th a t all of the parameters of the second order sys­

tem  are tim e independent, it is often applied in situations where one or more of the 

parameters is not tim e invariant. The approximation is only valid here when the time 

dependency of the variable over the time sample is small.

1.2.3 P aram eter E stim ation

Given values for the parameters of a second order equation, the trajectory of the 

variable y can be calculated for any time t. This trajectory is defined by the values of 

the parameters used to  create it.

The process of param eter estimation aims to  perform the opposite of this scenario. 

Given a trajectory of y through time, what are the values of the parameters that 

generated this trajectory?

This is far from a trivial problem. Each point on the trajectory requires the solution 

of the nonlinear Equation 1.10. The values of the parameters which satisfy all the 

solutions must match. Since there are five unknowns, three parameters and two initial 

values, it is necessary to use at least five points of the trajectory. Since the equation
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is nonlinear, however, well-known solution guaranteed methods are unlikely to  work.

There are several “standard” methods for solving this problem. None can guar­

antee finding a solution, however, and they vary in their speed and accuracy. The 

entire problem also becomes much more difficult to solve when noise is present on the 

trajectory, as it can aggravate the algorithms attem pts to solve the problem.

1.3 M ain A im s

This study works in the context of observing and tracking an object using a stereo cam­

era system. It will examine the problem of determining the characterizing parameters 

of the object’s motion, in the assumption that it is a second order system.

Several methods for performing parameter estimation will be investigated and com­

pared. Novel methods will be tested against conventional methods. Merit will be based 

on robustness, accuracy and computational load.

An im portant part of this study will examine the performance and robustness of 

the param eter estimation algorithms when the incoming trajectories are corrupted with 

noise. W hite noise and impulse noise will be used in varying magnitudes, and with 

impulse noise, different probabilities.
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C h a p te r  2

R eview

2.1 Param eter E stim ation

The general problem of param eter estimation, or system identification as it is also 

known, is not new. It has been a fundamental element of engineering and many other 

fields for many decades, if not hundreds of years.

Given an observed system, param eter estimation attem pts to determine the values 

of parameters which characterize the system. This topic is well covered in many stan­

dard text books such as the [17]. Such works cover a wide range of system identification 

problems.

In this work, the general second order system is taken as the target. A second order 

system is controlled by three parameters: damping, natural frequency and external 

input to the system. There are two conventional ways tha t parameter estimation is 

tackled in this situation, both of which are tested for comparison in this study.

Firstly, a power series approach is used. Here, a polynomial is fitted to the sig­

nal data which is assumed to be of a second order system. Time derivatives of this 

polynomial can then be calculated. These time derivatives can be inserted into three 

equations which are derived from the general form of the second order equation, the 

results of which are values for the characterizing parameters. This method depends on
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the polynomial fit being a sufficiently accurate estimate of the time derivatives.

The second conventional m ethod is based on frequency analysis using a Fourier 

transform. This method returns the dominant frequency of the signal which can be 

approximated as the natural frequency of the second order system. Some extra m anip­

ulation is required to obtain estim ates for the other parameters, and this is covered in 

full detail in Chapter 3.

There are several other conventional methods which can be used for the problem of 

system identification. These include a simple random guess policy algorithm, a binary 

search iterative algorithm, the Newton-Raphson root finding algorithm [31, 32] and 

the Downhill Simplex algorithm [32]. All of these algorithms are iterative and work 

on a similar principle. Each algorithm in some manner generates an estimate of the 

parameters. From these it generates a signal based on the second order system, and 

compares this internally generated signal with the input signal. A measurement of 

the difference between the two is then formulated and fed back into the algorithm. 

W ith this information it can adjust the estimate values in such a way as to reduce 

the measure of difference between the generated and actual signal. Once the difference 

falls below a predefined level, the algorithm terminates.

In this work, the Downhill Simplex is compared with other methods and is described 

in full in Chapter 3. The Genetic Algorithm also used in this work follows a similar 

basis as just described and is also described fully in the next chapter and reviewed 

below.

2.2 V ision System s

The basis of a 3D vision system as described in Chapter 1 is elementary. To implement 

a working system in practice requires a number of significant other problems to  be 

overcome. These range from suitability of cameras for a given application, through 

image processing and extraction of image elements, to control and actions to be taken
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based on image data. This study examines the feasibility of such a system from the 

position of processing the collected information.

There are many applications of stereo camera vision systems, not least of which is 

th a t for a vehicle control system. This application has been receiving increasingly wider 

investigation over the last few decades. W ith the evolution of faster and more powerful 

processing abilities the image processing algorithms have become more complex and 

powerful.

Baluja et al [5] developed their ALVINN vehicle in the Tate 805s which used a 

feedforward neural network (FNN) to process the images obtained from a digital camera 

mounted on the vehicle. This system was limited, however, since the FNN could not 

tolerate the presence of noise, or distractors, such as other vehicles, pedestrians and 

confusing road markings. They developed the use of a simple recurrent neural network 

which fed the input with past outputs from both the context units and the output 

units [5]. This proved capable of handling many types of distractor.

A modular system has been developed by Foresti et al [18] where each module acts 

at a certain level of the processing of the image. Each module gives information to 

those above and below it in the chain. Each module is a knowledge based system 

requiring a priori information to obtain fast results.

Matteucci et al in a similar .way used a model of the motion to aid in analysing 

the image sequences of road scenes, and in addition use Kalman filtering to remove 

noise [27].

A study of the effects of the camera angle and tilt on the noise were carried out 

by Sohn and Kehtarnavaz [39]. They determined the optimal orientation of the noise 

to minimize the noise. They also defined a region of the image which was constantly 

within view. As the camera vibrated the exact zone it viewed would alter, but would 

remain viewing a similar region. There was a safe region which was always viewed 

regardless of the vibration. This is an im portant area of the image since it is only
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objects within it that can be constantly tracked.

Noise is becoming a major problem now that the computers monitoring a vehicle’s 

motion by camera are capable of processing several frames a second, meaning the vehicle 

can travel at higher speeds. The original ALVINN was able to steer the buggy at speeds 

of only centimetres per second. When vehicles travel at 30mph the vibration would 

cause a camera pair to be constantly shaken, altering their alignment, and affecting the 

calculation of the position of objects in view. Zhuang [46] describes how the extrinsic 

param eters of a stereo camera pair can be automatically calculated when an external 

object of known dimensions is viewed, such as road markings or telegraph poles.

2.3 Signal P rocessing and Neural N etw orks

2.3 .1  D ig ita l S ignal P rocessin g

Digital signal processing (DSP) has been around for many decades. Many of its tech­

niques are borrowed or adapted from its analogue partner. Many tasks which people 

used to be able to do with analogue electronics want to be accomplished in the digital 

domain eg. when designing digital HR filters, their properties are based on a num ber 

of possible analogue equivalents.

One of the great interests in modern DSP is adaptive filtering. Whereas previously 

filters were passive, not changing their characteristics throughout their use, adaptive 

filters are dynamic, altering the way they treat signals during use. A target signal is 

necessary for the filter to be trained with, and in such cases as channel equalization, 

training can continue when the filter is in use.

Many neural networks can be viewed as nonlinear adaptive filters, although their 

development did not stem from the DSP sector. Therefore, many of the applications 

and problems which DSP developers have known about with linear filtering, are also 

present with neural networks. It has only been in the last few years that the relevance
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of neural networks in DSP has been understood by the m ajority and a huge amount 

of work published in this area.

Many good texts on DSP exist [22, 30] which detail many of the important aspects 

of the field, including design of filters, adaptive linear filters and frequency domain 

processing. Shynk undergoes a tutorial paper [38] in which he covers many HR adaptive 

algorithms. He notes the reduction in computational load the use of an HR filter, rather 

than an FIR filter, represents. There are several problems with their use, however. 

Quantification of an adaptive filter’s convergence, stability, and susceptibility to local 

minima and saddle points is discussed. The current understanding of IIR filters means 

tha t convergence rates and stability can only be estimated. Use of the Least Mean 

Square (LMS) algorithm for IIR  filtering is noted to be unsatisfactory, but this is 

when uncorrupted signals are used for training; when noisy data is used, the biasing 

problem previously encountered lessens significantly. Puskorius and Feldkamp [33] 

explain why IIR filters, including fully recurrent neural networks, are harder to train, 

and the algorithms tha t do exist are more complex than the FIR algorithms. W ith 

the arrival of the Extended Kalman Filter (EI<F) algorithm, however, they feel tha t 

this powerful algorithm should confirm recurrent networks as important dynamical 

system controllers, and describe their successful simulations with the pole-balancing 

and bioreactor problems. Wieland [43] describes his use of an algorithm less complex 

to understand, a genetic algorithm, which he uses to find the weights of recurrent 

networks used to control a cart balancing a pole. The power of the architecture is 

demonstrated by reducing the number of inputs from the normal 4, right down to 1 

(with zero inputs tried unsuccessfully!). Success was achieved even when a hinged pole 

was used.
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2 .3 .2  A d ap tive  F ilter Techniques

Widrow, the co-inventor of the LMS algorithm [42], discusses many of the possible 

applications of adaptive filters in signal processing and control problems — tim e series 

prediction, system modelling, inverse modelling, channel equalization, echo cancelling, 

noise cancelling and inverse control among them  [41]. The applications described can 

use any type of adaptive filter, both linear and nonlinear, and Jundi reviews some uses 

for neural network adaptive filters [23].

Conell and Xydeas [12] give an excellent paper on their attem pts to use adaptive 

methods to reduce the background noise of traffic and general city noise in the tele­

phone kiosk situation. A reference microphone is used above the kiosk to take in the 

outside noise. The signal from the speaker’s mouthpiece is used as the signal that must 

be cleaned up. Taking direct noise cancellation use spectral subtraction as the worst 

method of filtering, they use many other methods to achieve their goal. Noise cancel­

lation is poor due to  the poor correlation between the reference and primary signal. 

Use of the LMS algorithm in both the tim e and frequency domain achieve good results. 

Then filtering only the real part of the frequency domain signal improves upon this. 

Their final system uses an auto-regressive moving average (ARMA) model on each of 

the LMS weights. They did try  neural networks, but networks of a size which could be 

implemented fast could not achieve sufficient noise reduction.

Rahm an et al [34] also filtered signals in both the frequency and time domain. They 

used phase Shift Key (PSK) and Frequency Shift Key (FSK) signals, and found tha t 

good results were obtained, with fast convergence of the FNN. As Conell and Xydeas 

point out, however, there is no real advantage in performing a simple transition to 

the frequency domain since this process is a linear one and no advantage is thus made. 

Anderson and Montgomery [2] found tha t a FNN out-performed an Optimal filter for a 

chaotic signal, but performed as well as the Optimal filter for two sine signals corrupted 

with noise. In confirmation with Conell and Xydeas, they noted tha t neural networks
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are not yet implemented in readily available hardware, with the computer simulations 

being too slow. Other filtering methods which perform just as well can be obtained 

in dedicated hardware. They state  the main advantage of the neural network is in its 

ability to act with little or no prior knowledge of the signals.

2.3 .3  Tapped D elay  Lines

Medvedev and Toivonen [29] demonstrate the advantage of using a tapped delay line 

on each weight in an adaptive filter, in a similar way to Conell* and Xydeas found with 

the ARMA model. Known as Time Delay neural networks (TDNN’s) when tapped 

delay lines are used on each weight in a neural network, these have been used in speech 

recognition systems.

Fechner [16] demonstrates an advantage of neural networks over Optimal filtering. 

Sinusoidal signals were corrupted with Gaussian noise, and non-Gaussian noise such 

as impulse spikes. The neural net and Optimal filters achieved similar results with the 

Gaussian noise corrupted signals, but the Optimal filter acted badly with the impulse 

corrupted signals, whilst the neural network was able to  cope.

The use of fully recurrent networks, and the simpler Elman network (SRN) [15] 

and the powerful EKF training algorithm in other areas such as keyword recognition 

and channel equalization is common [6, 26]. There is a decision to be made by anyone 

needing the use of adaptive filters — whether the difficulties involved with the use of 

IIR filters is outweighed by the benefits in performance and compactness.

Genetic algorithms (GA), and the related topics of Evolutionary Programming (EP) 

or Genetic Programming (GP), have been around for many years. Their usefulness lies 

in their ability to search large areas of the search space, and for their ability to escape 

local minima. Critics of GA’s claim they are slow and have limited ability to converge 

to a precise solution, although this la tter problem has been addressed successfully in 

recent works. They also suffer from epistasis, where a change in the chromosome must
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occur in two different places simultaneously to be beneficial, and is thus unlikely. There 

is also vibrant discussion on the best values for such parameters as the population size, 

which type of cross-over to use and the choice of several other parameters. Beasely et 

al give an excellent overview and introduction to genetic algorithms [7], and also has a 

further look in more detail at some of the difficulties [8].

2.4 G enetic  A lgorithm s

Recent research has combined the two fields of neural networks and GA’s, with their 

combined attractiveness of both being inspired by the natural world. A review of 

evolutionary neural networks is given by Yao [45].

Whitley et al [40] was possibly the first to use a GA to find the weights of a neural 

network for several different benchmark problems. In [40] the GA tagged GENITOR 

is described, which encodes a population of weight matrices in binary form. A similar 

algorithm was later used by Wieland [43] in his work with recurrent network controllers. 

W hitley made the  conclusion that the accuracy and convergence rate of the GA were 

respectively proportional and inversely proportional to the population size. W hitley 

advocated the use of large population sizes, with 6000 chromosomes being typical. This 

allowed several solutions to the problem to co-exist within the population. Koza [25], 

howrever, preferred the use of small populations, between 50 and 100 chromosomes, 

as well as the use of real number representations. The small population size allowed 

only one solution to the problem to exist, and rapid convergence when possible was 

obtained.

Koza, along with Rice [25], went on to develop a GP method tha t evolved LISP 

code that found both the weights and the connectivity of a neural network. W hit­

ley also performed this, and both found there were strong improvements in network 

performance with a tailored connectivity.

Hugo de Garis demonstrated in [14] the versatility of GA’s to find weight values for
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a variety of network problems. He considered networks which had tim e independent 

input and output, and time dependent input and output, as well as the other two com­

binations. His GenNETS were able to find good solutions for the  networks, resulting 

in a  network th a t controlled a simulated spider tha t could hunt, eat' and flee.

McDonnell and Waagen [28] devised a GA that created recurrent neural networks 

for tim e series prediction. Their GA was able to converge very accurately on good 

solutions, since they used a real number representation, and the operators of cross-over 

and m utation varied the value of each weight by a decreasing am ount as tim e proceeded. 

They produced recurrent networks tha t predicted the Mackey Glass equation [28], and 

the sun spot data of the last few centuries.

Angeline et al [3] devised a GP technique they called GNARLY which constructed 

neural networks of any configuration and with any number of hidden units. The only 

limits were set by the number of required input and output units. It used the concept 

of a  tem perature to vary the probabilities of the parameters of the  GA. Although this 

is a very general algorithm, there is no reason for it to scale be tter than  any other GA.

Convergence rates of neural networks “trained” by GA’s is not as slow as is often 

expected. Along with their ability to search large areas of the search space, they are a 

sensible option for many neural net users.

Neural networks is a vast subject. They are used for finding relations between 

highly nonlinear input and output sequences. Their advantage lies in the lack of a 

priori knowledge about the system, and model systems purely from examples of input 

and output. For complex applications they can often be more computationally efficient 

and simpler than alternative methods. Some applications involve speech and word 

recognition, machine fault diagnosis, moving target classification, financial investment 

planning, non-rigid body analysis and in medicine [4, 19, 35, 9, 11].
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C h a p te r  3 

A d ap tiv e  B lock  R ecursive 

P a ra m e te r  E s tim a tio n  A lg o rith m

3.1 Introduction

In real-time systems data  is collected using devices taking measurements from the real 

world. The data is fed to an analysis module which produces some sort of classification 

of the input. This can be fed in turn  to a controller module which can make a decision 

based upon the analysis m odule’s output. Often, there is an element of feedback, and 

the action of the controller affects the outside world. In a real-time system, the modules 

perform their tasks at a speed which keeps them up to date with the incoming data.

A continuously running param eter estimation algorithm collects data in the same 

fashion, receiving a data  point at known, discrete times. An analysis module then 

estimates the param eters of this input signal and outputs the estimates. This output 

may then be passed to  a control module which may take specific action depending on 

the parameter estimates.

In this work, a continuously running recursive block algorithm is proposed. A block 

of data is read into the input buuffer, and this is then passed in one step to the analysis 

module. This module outputs estimates for the signal’s three characterizing parameters
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— damping coefficient, natural frequency and external input. The estim ate of the 

natural frequency is then used to control the sampling frequency at which incoming 

data is read.

Such an algorithm would need to be able to  cope with a large range of param eter 

values, and would ideally be scale and position invariant. It would need to adapt itself 

to changing parameter values to  m aintain optimal estimation accuracy.

Any such system will need to comprise two main phases. The first phase will require 

an initial estimate of the parameters to  be made with no preyious knowledge. This is 

to start the system. This phase then seeds the second phase of the system, which is 

the continuously running algorithm which uses previous estimates to aid the current 

estimation.

Each time the algorithm makes an estim ate, it will assume the parameters remain 

constant during the block duration. This will not necessarily be true, and the algorithm 

will adapt itself to cope with changing parameters.

This chapter describes a scheme for realizing such a system. A hybrid approach is 

proposed. Section 3.2 gives a  detailed breakdown of the proposed algorithm ’s steps. 

Individual modules of the algorithm are then detailed in later sections. Section 3.3 

gives a description of the adaptive sampling frequency algorithm which allows later 

processes to work with higher accuracy.

Subsequent sections then give details of the estimation algorithms explored, which 

are also categorized on whether they can be used for initial or continuously running 

parameter estimation. All algorithms can be used for initialization, but not all can be 

used with an element of feedback in a continuously running mode.

Some of the algorithms determine the parameters by first estimating the tim e deriva­

tives of the input signal. These include polynomial least squares fitting, difference 

equations and neural networks. These methods may also be augmented with digital 

filtering. The remaining methods estim ate the parameters directly; these include a
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high level approach using signal processing methods, the Downhill Simplex algorithm, 

neural networks and genetic algorithms.

3.2 R eal T im e Param eter E stim ation

The real-time recursive block param eter estimation system proposed here has several 

desirable features. Firstly, it adapts the sampling frequency at which data is collected, 

allowing the parameter estim ation methods to operate at high efficiency and high 

accuracy. This also allows a large range of parameters to be estimated accurately. 

Secondly, it incorporates recursive estimation algorithms which allow current estimates 

to consider previous estimates. Since the parameters vary relatively slowly with time, 

the previous estimates provide useful information.

The steps of the complete algorithm are enumerated below, and shown pictorially 

in Figure 3.1.

1. Collect the input sequence of length N  at the highest sampling frequency f s 

allowed by the equipment, which must be at least double that of the highest 

signal frequency expected since the actual frequency is unknown.

2. Use a non-recursive param eter estimation method to produce an initial estimate 

of the parameters. Pass these estimates on to the recursive estimation algorithm 

to initialize it.

3. Based on the frequency estim ate, adjust the sampling frequency by a factor 

fdnc/Is- fd is the dominant frequency and n c is the desired number of data 

points per cycle.

4. Collect N  data points from the input stream at the new sampling frequency.

5. Use a recursive estimation method to estimate the current parameter values.

6. Return to step 3.
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Figure 3.1: The recursive parameter estimation algorithm.

At the very beginning of the algorithm, a sampling frequency must be selected 

which will be able to cope with the incoming signal. To satisfy the Nyquist condition 

and eliminate aliasing problems, this must be at least double the highest frequency to 

be detected.

The first use of an estimation module allows an initial estimate of the param eters 

to be made. The algorithm must be a non-recursive one, since there are no preceding 

estimates. This will produce only an approximate estimate of the parameters. The 

frequency estimate, however, is used by the adaptive sampling frequency algorithm to 

adjust the sampling frequency so th a t a specified number of data points per cycle of the 

input is collected during each block. This will allow subsequent estimation algorithms in 

the recursive blocks to improve their performance. At this stage, a recursive algorithm 

is created by starting the estimation process using a non-recursive algorithm.

A new block of input data is received by the estimation algorithm from the input 

stream  at the new sampling frequency. This is used to generate estimates using a
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recursive algorithm. The first tim e the  recursive estimator is used, it will also use the  

estimates from the non-recursive estim ator, otherwise it uses its own past estimates. 

The adaptive sampling frequency algorithm can use this algorithms frequency estim ate 

to update the sampling frequency again before the next block of data is received.

3.3 A daptive Sam pling Frequency A lgorithm

3.3.1 In troduction

When digital data is received by an input device, the time between data points is 

accurately known, A t = 1/ f s. If the input signal is oscillatory, and its frequency is 

low compared to that of the sampling frequency, then there will be many data points 

during each cycle of the signal. Conversely, a high frequency input signal, relative to  

the sampling frequency, will have only a few data points describing each cycle. A signal 

of frequency f s/ 4 for example will have only four data  points within each cycle.

At each extreme of low and high, there is either an excess of data points or a 

shortage, respectively, for efficient accurate analysis. Too many data points per cycle 

will lead to excessive computation for param eter estimation, although the accuracy can 

be high. W ith a small number of da ta  points the speed of analysis will be high, but 

estimation accuracy will deteriorate.

It is therefore desirable to  adjust the sampling frequency to optimize the number of 

data points collected per cycle to produce a good compromise between excessive com­

putation and accuracy. This is the aim of the adaptive sampling frequency approach.

3.3 .2  A lgorithm  D eta ils

The algorithm will attem pt to adjust the sampling frequency, / s, of the data collection 

device so that the signal’s dominant frequency and the sampling frequency maintain a 

constant ratio. This can also be viewed as keeping the number of data points per cycle
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of the dominant frequency constant, n c. It will collect a sequence of the input da ta  

with N  data points. An estimation algorithm is then used to determine the dominant 

frequency in the signal, and adjust the sampling frequency accordingly. The next N  

length input sample is then collected.

The following steps are taken:

1. Fill the current input buffer, length N , with the latest input.

2. Make an estimate of the input signal’s dominant frequency, fd-

3. Calculate a scaling factor, A, such th a t,

where nc is the number of points per cycle of the input signal that is desired.

4. Update the sampling frequency by a factor of A and return to step 1.

W hen the sampling frequency is at the correct frequency, A will be unity. For the 

condition A — 1 to be met, f s/n c must equal the dominant frequency.

The sampling frequency is adjusted after each sequence of N  data  points is collected. 

Other processes which estimate the param eters of the signal will be applied to the same 

data. These methods will work optimally a t a given value of n c and when A is near 

unity. It may take several iterations of this algorithm for the most accurate param eter 

estimates to be obtained.

3.4 Param eter E stim ation  A lgorithm s

Algorithms used to perform param eter estimation of second order systems can be 

broadly classified as direct or indirect via tim e derivative estimates, as well as recursive 

or non-recursive.
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3 .4 .1  T im e D erivative M eth od s

In his paper [1] Al-Dabass describes a method whereby the tim e derivatives of a signal 

may be used to determine the parameters of a second order system. This approach is 

described here.

The general second order system can be w ritten using state variable notation. If 

X\ = x, x 2 ~  d x /d t , Xs =  d2x /d t2 and so on, and a =  2 and b = co2, then,

X3 +  a.x2 +  b.xi — U * (3.1)

is the general second order system. By differentiating this twice and re-arranging, 

the following equations give values for a and 6,

X 5 . X 2  -  X 4 . X 3
a = -----------------5— (3.2)

x 4.x2 -  x§

6 =  _ E |± L ^ £ i  (3.3)
£3 — x 2.x4

and £ and con are determined from a and b. Equations 3.2 and 3.3 are used in 

Equation 3.1 to estimate U .

It is therefore possible to obtain parameter estimates via tim e derivative estimation. 

This is achieved by several methods described below.

3 .4 .2  D ifference E quations

If no noise is present, and the recorded signal is exactly correct, then derivative esti­

mation poses little problem since difference equations may be used. Xi is simply the 

current position, xn. x 2 is the first derivative or velocity, (x n — x n- i ) /A t .  The second 

derivative, acceleration, is (x 2n — x 2n- i ) /A t .  And so on (fig. 3.2). Here n is the sample 

number, and A t  is the tim e between samples, or 1 /f s.

Introduction of noise on the signal when using difference equations can be expected 

to affect the accuracy of estimates substantially. Even small amounts of noise will give
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Figure 3.2: The construction of the time derivatives from  difference equations. 

significant errors in the derivative values.

3.4 .3  P o lyn om ial L east Squares F itting

The state variables Xi through to  £5 can be estimated using a polynomial fitted to  the 

input signal with the least squares criterion. The LS algorithm returns the coefficients 

of a polynomial of the specified order which fits the target data with the lowest least 

squares error.

i=o
X  —  ^ jT  a d 1' (3-4)

i=0

Differentiating this equation n times gives the dny /d tn tim e derivative. As long as 

the order, 0 ,  is greater than four, then the state variable x 5 can be evaluated. Further, 

the derivatives can be estimated at any tim e by simply choosing the relevant value for 

t-

Polynomial LS fitting can also act as a smoother when noise is present, performing
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lowpass filtering. This can be expected to work particularly well when the adaptive 

sampling frequency is used since the signal will be low relative to  the sampling fre­

quency.

3 .4 .4  D ig ita l F iltering

Filtering the signal can be used to reduce the noise and allow for more accurate deriva­

tive estimation. An ideal filter would be a bandpass filter centred on the natural 

frequency of the signal. This could be determined by use of a'Fourier transform. This 

ideal situation may, however, not be totally necessary.

Application of the adaptive sampling frequency algorithm  always means tha t the 

signal’s frequency is low relative to the sampling frequency. In this case, lowpass filters 

can be used with good effect. Filters can include the simple averaging filter, or the 

digital Butterworth filter.

3.4 .5  N eural N etw orks for T im e D erivative E stim ation

Neural networks also provide a method for dealing w ith noise. Feedforward neural 

networks are capable of performing any nonlinear m apping between their input and 

output, given sufficient units in their hidden layer. They also possess“generalization” 

properties which also helps to give accurate answers despite noisy input.

Two configurations are possible: a single neural network is trained to output all 

of the time derivatives in its output layer, or alternatively, five separate networks can 

each be trained to output just one derivative each.

Figure 3.3 shows a neural network architecture to estim ate only one derivative. A 

three layered network has an input layer, a hidden layer and an output layer. The 

input layer consists of a tapped delay line with a one tim e step delay between units. 

This layer is the same length as the input window, N . There is also a bias unit for this 

layer. The input layer is fully connected to the units in the hidden layer, whose output
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Figure 3.3: A neural network for time derivative estimation. The input is fed via a 

tapped delay line. Each output unit corresponds to a desired output estimate.

is connected to tlie unit in the output layer. The output unit is trained to output a 

tim e derivative. The architecture for a network that estimates all five derivatives will 

have an additional four output units, each fully connected to the hidden layer above.

The full mode of operation of a neural network is described in detail in Appendix B. 

Briefly, however, each unit in the input layer attains the value of the input signal. This 

is then propagated down to the hidden layer via the connections. Each connection has 

an associated weight value. Each hidden unit sums the input layer via the weighted 

connections. Each unit then transforms this sum with either a sigmoid or a hyperbolic 

tangent function, or alternatively, leaves it unchanged. In this la tter case, it is termed 

a “linear” unit. This process is then repeated from the hidden layer to the output 

layer. The unit(s) of the output layer then describe the estim ated derivative(s). This 

is called a forward pass of the network.

Of course, the result depends upon the weights in the network and it is first neces­

28



sary to  obtain a weight m atrix  tha t will produce the desired results for a large range 

of input patterns. This is done by “training” the network by repeatedly presenting 

example inputs and slightly adjusting the weights each time to move the output to­

wards a desired value. After many presentations and ensuring th a t the network is 

performing well with the training patterns, training can stop and the network used 

with unchanging weights to estimate derivatives on patterns previously unseen. Net­

work performance will depend on many factors, but primarily on the representative 

quality of the training data.

The algorithm that actually changes the weights in the training of the network is 

the backpropagation algorithm. This is described in full in Appendix B.

3.4 .6  H igh L evel P aram eter E stim ation

There are a number of processes that can be performed to obtain the parameters of the 

second order solution. Recall tha t the parameters are damping (£), natural angular 

frequency (wn) and the external input (£/). These are assumed to  be constant over the 

N  length sample. Described below are methods for estimating these parameters by 

extracting features of the signal.

The core of these methods is the Fourier Transform from which a Power Spectral 

Density (PSD) can be obtained. This describes the magnitude of the N f  2 +  1 frequency 

bins ranging from zero to f s/ 2Hz.

D am ping (f)

The observed damping, let it be called E, is a function of both £ and con A. Especially 

for low frequency signals, the overall damping will equal 2£ xwn. Therefore, to calculate 

an estimate for f , the observed damping must first be estimated and then divided by 

the frequency estimate.

Figre 3.4 shows a typical observed signal, along with some of its characterizing
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Figure 3.4: A typical observed input wave, seen over three blocks. Due to the ASFA 

the time period fo r each block increases as the sampling frequency is reduced to improve 

the estimates.

features. The amplitude in each block is shown, as well as the range of each block. 

A value for £ is obtained with successive estimates of the magnitude of the dominant 

frequency from one block of input signal to the next. If Af, and Ab+i are the magnitudes 

of the dominant frequency in blocks b and b + 1, £ is approximated by,

e - T ­ in
Ab

(3.5)
^nifb T  ^6+l)/^ Ab+1

where con is the estim ated frequency, and t\, is the duration tim e of incoming blocks 

of data. It is necessary to have more than one block to make an estimate for £, over 

which time the sampling frequency, and hence t b, may change. In this case, the average 

of the period of each block is used. Note that the better the estimate for frequency, 

the more accurate the £ estim ate will be.

It is possible to perform a similar operation with a single block, by" considering a

30



block as two equally sized blocks and performing a Fourier transform on each of these. 

It is intended, however, tha t the block lengths be kept to a minimum for this study, 

and as a result, the length will already be short. Any further reduction would increase 

the error in the frequency estimate above the current level.

N atural Frequency (o?n)

A Fourier Transform is used in the form of an FF T  to obtain the PSD of the input 

signal. The highest peak in the PSD is taken as the dominant frequency, or c3n. It is 

im portant to disregard the first point of the PSD, as this relates to the DC offset of the 

input signal. Equivalently, the mean of the signal can be subtracted from it before the 

FFT is applied. This method is limited in its accuracy due to  the quantizing effect of 

the frequency bins. Each frequency bin is of size f s/2 N . Increasing the sample length 

will therefore increase accuracy. Use of the adaptive sampling frequency algorithm will 

also aid the estimation by adjusting the sampling frequency to keep it in a  fixed ra. 

with the target frequency.

E xternal Input (U)

The external input to the signal manifests itself as an offset to the signal. It also 

determines the value x will oscillate about and, if damping is present, eventually settle 

down to. This can be seen by putting x" and x' to zero in the second order system 

(where x" and x r denote the second and first time derivatives of x). The result is,

U
x = ~ lW2a

The external input is estimated by first evaluating the mean of the input signal, /i, and 

also using the estimated frequency so tha t,

U =

This estimate should work better the longer the input signal length, so th a t /j, can 

be evaluated more accurately, or when the number of cycles is near an integer value
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which is attained with the adaptive sampling frequency algorithm. Further, the greater 

the sample length, the greater the  accuracy of the frequency estimate. If the actual 

frequency is not constant, as in the tim e varying case, the frequency estim ate will be 

less accurate, reducing the accuracy for the external input.

3.4 .7  D ow nhill S im p lex

This algorithm is an iterative m ethod tha t progressively reduces an error function 

starting from an initial guess. It was first devised by Nelder* and Mead in 1965 [32], 

and the description below is based on the Numerical Recipes publication [32]. It is a 

general method for searching an error space for nonlinear equations.

The Downhill Simplex m ethod requires an initial guess P0, of the param eter vector 

to be made to seed it. Based on this initial guess, a further set of parameter vectors 

Pi, are generated using Equation 3.6,

Pi — P 0 T  Adi (3*6)

where the M  x M  size m atrix  Si has all its elements set to zero except for the ith  

element which is unity. This equation can be enhanced by changing A also into an M  

length vector where each element reflects the expected range of the parameter.

The result is n +  1, n length vectors, where each vector represents a location in 

parameter space.A method for visualizing the mechanics of this algorithm uses the 

geometrical form of the simplex, from the which the algorithm gets its name. A simplex 

is a form consisting of n +  1 points plotted in n-dimensional space. A line is then 

joined from each point of the simplex to  every other point, enclosing a volume of the 

n-dimensional space. In its simplest form, a 2-dimensional space will support a 3-point 

simplex, or as it is more commonly called, a triangle.

It is the task of the search algorithm to move the simplex through param eter space 

until the solution is found. This is performed by evaluating an error function at each
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point of the simplex. The point is then moved through the opposite face of the simplex. 

If this does not result in a lower error, then it is moved back by half the distance. If 

this doesn’t improve the error, it is moved away from the centre of the simplex by a 

factor of two. If still this doesn’t work then the entire simplex is reduced in size. By 

this method, the simplex moves around in parameter space, changing shape and size 

according to the terrain of the error space, all the time searching for a lower error. It 

is therefore an error gradient descent method.

Termination of the algorithm can arise from three situations. Firstly, if it has 

exceeded the maximum number of allowable error function evaluations set by the user. 

Secondly, if the error of the lowest point falls below a pre-set tolerance level, indicating 

a successful find. Thirdly, the simplex may collapse upon a local minima, and in so 

doing, fall below a critical user set size..

Performance of this algorithm is strongly dependent upon the initial conditions 

since it is a gradient descent algorithm. If the starting point is not close to the global 

minima, the simplex may descend down a local minima giving a non-optimal solution.

This study attem pts to find the values for the three characterizing parameters of 

a second order system, namely, damping, frequency and external input. These three 

alone, however, do not define the initial conditions. There needs to be an error function 

to measure how close the estimated parameters are. It is achieved by generating a 

signal from the estimated parameters and comparing this with the observed profile. As 

a result, the two initial conditions, X\ 0 and x 2o, must also be estimated by the simplex 

algorithm to define a unique profile to compare against the observed profile. This adds 

two dimensions to the optimization task; the alternative is to estimate only the three 

parameters and sweep through a range of possible values for x io and x 2o. This is a 

great increase in the computational load.

Comparison between the target and estimated signals is achieved with one of two 

functions. The first is the standard RMS difference. The second combines the correla­
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tion between the two profiles and the difference between their means. Details of this 

are given in Section 4.6.

3.4 .8  R ecursive D ow nhill S im plex

This algorithm can be expected to  benefit from introducing a recursive element, al­

lowing it to run usefully in a continuously running mode of operation. It introduces a 

negligible amount of computational load and can be expected to increase the robustness 

of the algorithm.

Since performance depends strongly on the accuracy of the initial guess, initializing 

a run with the estimated parameters from the previous data block will provide a good 

place to start the search. Although the parameters may be varying in tim e, and so 

be different from one block to the next, the variation is slow, and estimates from one 

block will be relevant to estimates for the next block.

It is also necessary to update the estimates for Xi0 and x 2o. This requires th a t the 

values for x \ and x 2 at the end of the estim ated signal be calculated and passed on.

3 .4 .9  A rtificial N eural N etw ork s for P aram eter E stim ation

Artificial Neural networks (ANNs) are a powerful method for performing nonlinear 

mappings between input and output vectors. It has been shown th a t they can map 

any function to an arbitrary accuracy given sufficient units in their hidden layer(s [40].

ANNs can be used for this work by training a network to output an estim ate of a 

param eter given the input signal as the network input. The network is then performing 

the nonlinear transformation from the input signal trajectory to param eter value i.e. 

damping coefficient, natural frequency or offset.

Figure 3.3 shows a neural network known as a feedforward neural network (FFNN) 

which can be used for this task. A tapped delay line of N  input units are fully connected 

via weights to units in a hidden layer. These hidden units are in turn connected via
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weights to the unit(s) in the output layer. In addition, bias units which have values 

fixed at unity feed into the hidden and output layers allowing for a permanent offset 

for units in the subsequent layer.

As each block of N  data  points is received, it is fed down the tapped delay line filling 

the input layer. The units adopt these values as their activations. The activations of the 

input units are passed down the weighted connections to the units in the hidden layer. 

Each unit in the hidden layer sums its input, and passes the to tal through a nonlinear 

transfer function. This is now the activation of the hidden unit. Once this has been 

performed for each unit in the hidden layer, the output layer starts receiving input. 

These units also sum and perform a transfer function. The output un it’s activation is 

taken as the output of the network. This process is described in the equations included 

in Appendix B.

W ith an appropriate weight m atrix  such a network can perform the nonlinear m ap­

ping between input signal and, say frequency estimation. Obtaining a weight m atrix 

to perform the desired task is done by “training” the network. The backpropagation 

algorithm is used to adjust the weights when the network is given examples of the 

input and output mappings. Training often involves showing the network many exam­

ples of the mapping, called a set. Showing the set once to the network is known as an 

“epoch” . Many epochs are often needed before the network generates outputs close to 

the desired output.

Once training is complete the network can be tested by showing a test set. The 

networks performance can then be demonstrated with input patterns it has not yet 

seen. If the performance is good, the network has been trained successfully and can be 

used with real data. Otherwise, further training for more epochs is necessary.
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3.4 .10  R ecursive N eu ral N etw ork s

A FFNN only uses current and past inputs to generate its output. Its architecture is 

non-recursive. This can be used as an initial param eter estimation method, like the 

high level parameter estimation or tim e derivative methods, but the architecture can 

be upgraded to a recursive one by adding some extra connections. This would allow 

NN’s to be used for the block recursive mode.

Figure 3.5 shows a recursive architecture. Connections lead from the output unit(s) 

of the network to units in the input layer. These connections have fixed weight values 

of one. Input to the network consists of the tapped delay line input, plus a copy of 

the last output estimate of the network. This arrangement can be further extended 

by creating a tapped delay line on the past outputs. Since the parameter values vary 

relatively slowly over time, the past output estimates, and a possible tapped delay line 

of past inputs, provide additional useful information for the network.

Recursion can be taken to another level. Connections can be made from the hidden 

units to  input nodes. This arrangement (fig. 3.6) was first used by Elman [15] and 

allows the input to have knowledge of the previous state of the hidden units. This 

feedback can give time-context information and it is for reason that Elman used this 

architecture. Maintaining an input from the previous output of the network gives the 

network considerable temporal information.

The concept of recursive connections can be taken to its extreme in the form of a 

fully recurrent neural network (fig. 3.7). Here, a layer of input units feeds into a cluster 

of fully recurrent units. Each recurrent unit is connected to every other recurrent unit, 

including itself. One or more of the units is selected to be an output unit. Such a highly 

recursive network can be compact, but training is more difficult and computationally 

more expensive than the FFNN.

In both types of recursive network, the im portant principle is the same. Past in­

formation is used to estimate the current time step’s estim ate. Since the continuously
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Figure 3.5: A feedforward network with recursive connections. Input from  the tapped 

delay line plus the previous time step’s output is used fo r  the current estimation. (Bias 

units are not shown in this figure.) This network requires a recursive mode o f operation.

running system assumes that the parameters will have reasonably slowly varying pa­

rameters, this information will be useful.

3.4.11 G en etic  A lgorithm s for P aram eter E stim ation

This section describes the general genetic algorithm (GA). It first describes the basic al­

gorithm, then selects each aspect to discuss in more detail. Difficulties GAs experience 

are then described.

A G eneral G en etic  A lgorithm

The genetic algorithm (GA) is a  versatile method to perform a stochastic parameter 

optimization search. GAs are capable of searching a large param eter space, and focus 

their search for optim al parameters in promising regions of the search space. They have
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Hidden

Figure 3.6: A feedforward neural network with connections from  both the hidden units 

and output unit(s) leading to the input layer. This gives the network temporal infor­

mation and hence requires a recursive mode o f operation.

been shown to be particularly suited to multimodal solution problems (see sec. 4.6). It 

is inspired by the concept of evolution, and borrows several ideas from genetic repro­

duction. These hinge on the three basic genetic operators of reproduction, crossover 

and mutation.

In brief, a GA creates a population of chromosomes. Each chromosome is an en­

coding of the parameters to be optimized. The chromosomes are each given a m erit 

rating, depending on how well the decoded parameters suit the problem. This figure 

of merit is known as a chromosome’s “fitness”. If a chromosome is denoted by a “C”, 

then

Fc — Func(C) (3.7)

where Fc is the fitness and F unc  represents the fitness function. The population
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Figure 3.7: A fully recurrent neural network. The layer of N  input units feed into a 

cluster of fully interconnected units. Any of these units can be selected as an output. 

This network requires a recursive mode of operation.

of chromosomes is ranked according to the fitness of each member. Two chromosomes 

are selected at random, with a preference for fitter chromosomes, to become parents. 

These combine via a reproduction process to produce two offspring.

Reproduction(Cpi +  Cp2) = Coi +  Co2

where pi and p2 indicate the parents, and ol and o2 are the offspring. The offspring 

have their fitness measured, and if they rank, they will be inserted into the population, 

displacing the weakest member of the population.

This process of selecting parents, creating offspring and ranking them in the popu­

lation is known as a “generation” . Many generations are performed, and with time, the 

fitness of the population improves with the highest ranking chromosome representing 

the best solution to date.

The algorithm stops when either a lim it of the number of generations is reached, or
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a chromosome becomes sufficiently optimal. Good results can be obtained with many 

variations of this algorithm. They have been shown to be highly robust to a large 

variation in the controlling parameters, such as population size and choice of genetic 

operators [24].

Population  Initialization

To start a GA, a population must be created. This is usually done purely at random. 

The number of chromosomes in the population is chosen. Each chromosome is then 

created at random, and is a string of zeros and ones — a binary encoding of the desired 

parameters.

The chromosome is a representation of the param eter values to be searched. The 

number of bits used to encode each parapneter must be chosen, and a note kept of the 

scaling required to eventually decode the chromosome. This may present a limitation 

for the user since the range a parameter can take must be pre-determined. Each binary 

string for each parameter is concatenated to form a single long chromosome.

For example, an 8 bit binary string representing one param eter can have a range of 

values from 00000000 to 11111111, which is decoded to be values between 0 and 255. 

This will allow the parameter to be described in a range with only 256 different values. 

A quantizing effect takes place., This may cause problems, and a balance between 

sufficient accuracy in the param eter’s value, and overloading the GA with excessively 

long chromosomes.

F itness Function

Each chromosome in the population is then passed through the fitness function. The 

fitness function gives a figure of merit on how well the decoded chromosome solves the 

problem.

The process decodes each binary number and scales it for each parameter repre­

sented. A pass of the problem in which the parameters are used is now made, and a
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fitness is returned based on how well the problem was solved. This fitness is a  figure 

of merit for each chromosome and allows the entire population to be ranked in order 

of its fitness. The chromosomes which best solve the problem are at the top end of the 

population.

Parent Selection

The first generation has now been created, and selection for the next generation can 

now commence. A selection procedure now starts, whereby two chromosomes are 

selected to act as parents to  produce some offspring. The parents are reproduced to 

form the offspring. Then two other genetic operators, crossover and mutation act on 

the offspring.

Selection of the parents can be accomplished in many ways. The method used here 

is called tournament selection — in one round of the tournament a potential parent is 

selected at random from the population and its ranking in the population noted. A 

number of rounds are conducted, and the chromosome with the highest ranking goes 

on to become a parent. The greater the number of rounds, the greater the chance of 

having a high ranking parent. This emphasis on selecting higher ranking parents is 

known as the selection pressure, and ensures that new solutions are sought for in areas 

of the parameter space which are already producing good results.

Offspring P rodu ction

Once the two parents have been selected, they are copied. These copies are term ed the 

offspring, and these go on to the processes of crossover and mutation.

There are two common types of crossover; one point and two point. In one point 

crossover, the offspring are placed side by side and a point is chosen at random along 

their length. At this point a cut is made and the tails of each offspring is swapped with 

the other i.e. the offspring exchange their latter sections. This is shown in Figure 3.8. 

Two point crossover takes each offspring, and makes two cuts in each. The cut-out
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cut

Figure 3.8: Two offspring undergo one point crossover. A point is chosen along the 

length of the offspring, and the tails swapped.

section from each offspring is then swapped (fig. 3.9). The position of the first cut is 

random, with the length of the removed section being fixed.

Mutation is then applied to each offspring. There is a probability tha t each bit 

in the chromosome binary string will be “flipped” i.e. a “1” will become a “0” , and 

vice-versa (fig. 3.10). This probability is usually very low, so that there are only likely 

to be one or two mutations per offspring, or even less.

Once these genetic operations have been performed for each offspring, each offspring 

has its fitness measured. If its fitness merits it, the offspring will be inserted into the 

population with the bottom most member of the population hence being lost, since 

the population size is always kept at a fixed size. If the fitness of the offspring is worse 

than the weakest member of the population, it does not enter the population and is 

lost.
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Figure 3.9: Two offspring undergo two cut crossover. Two points are chosen along 

the length of the offspring, and the sections of chromosome are swapped between the 

offspring.

Generations

The process of selecting parents, creating offspring, and then ranking the offspring 

constitutes one generation. As the number of generations increases, the weaker chro­

mosomes are removed from the population, and the overall fitness of the population 

increases. When one particular solution of the problem begins to dominate in the 

population, the population is said to be converging. Generations continue until one of 

the termination criteria is fulfilled: i) The fitness of the highest ranking member falls 

below a pre-set critical value, ii) the maximum number of generations is exceeded, iii) 

the maximum number of function evaluations is exceeded.
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Figure 3.10: An offspring undergoing mutation. Any point in the chromosome can be 

reversed.

G enetic  A lgorithm  T heory

Why does the GA work? How does it achieve its resistance to local minima traps, and 

why is it particularly suited to multimodal problems? There are several reasons for its 

success.

Firstly, the initialization where each chromosome is randomly generated gives the 

GA a wide view of the search space. The larger the population size, the greater this 

spread.

Crossover is a crucial genetic operator. It allows sections of chromosomes to swap. 

It has been extensively shown tha t “building blocks” form in chromosomes[21, 20]. 

When these blocks are beneficial to a chromosome they are more likely to be passed 

to the next generation. The crossover operator allows parts or all of building blocks 

to be swapped between different solutions and to be built upon. It is the creation or 

perpetration of building blocks that leads to the convergence of the GA.
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Finally, the mutation operator allows for resistance to local minima. The random 

change of a chromosome within the local minima may push it outside and into a 

new and better minima [7]. It also acts to prevent premature convergence, where the 

genetic diversity is prematurely lost, preventing a rapid descent of the current minima. 

As the number of generations increases and the chromosomes become more similar, the 

mutation operator becomes more im portant in allowing escape from local minima, and 

it is common to increase the m utation probability as generations pass.

Variations of th e  G enetic  A lgorithm

The genetic algorithm described above is term ed a “steady state” genetic algorithm[40]. 

This is due to the relatively slow m anner in which the population will evolve. Since 

one generation only produces two offspring, the overall difference between adjacent 

generations is slight. It is also a monotonically reducing algorithm i.e. the fitness of 

the highest ranked chromosome never decreases.

A common variation of the GA is when a top percentage of the current population 

is taken, and offspring are created only from this select few until the next generation 

is once again full, but only with offspring[7]. The new generation is then ranked as 

before and the process repeats. In term s of generations, this method converges much 

quicker than the steady state version. There is little difference, however, in the number 

of offspring created and fitness tested. In this form, this variation is not monotonically 

reducing since there is no guarantee th a t any one of the offspring will definitely be 

fitter than the highest ranking chromosome from the preceding generation. This can 

simply be remedied by allowing the elite parents to also enter into the next generation.

A different and common selection process is known as “roulette5 selection. In this 

case, the fitness needs to be one which is maximized. Each chromosome selects part 

of a “roulette wheel”, with the amount selected proportional to its fitness function. 

The fittest chromosome thus takes the largest part of the wheel. A chromosome is 

then selected by randomly choosing a place on the wheel, and which ever chromosome
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covers this point is chosen. This process allows super fit chromosomes to have a much 

higher chance of being selected than in tournament selection. This is not necessarily 

desirable, as reproduction based strongly on a single super fit chromosome is likely to 

force the population into prem ature convergence, losing genetic diversity and increasing 

the chance of a local m inim a trap.

There is a further variation of the crossover operator. Here, a chromosome is re­

structured into a series of loops. Each loop represents one of the parameters. Crossover 

between chromosomes is then allowed only between corresponding loops. This approach 

makes it more likely for the creation and building of blocks [24].

There are a host of other more minor variations, but those described above cover the 

most common of the most major variations. Other genetic operators are often proposed, 

bu t rarely do they serve any globally applicable use. Despite all these variations, GAs 

rem ain highly robust, and good results can be obtained with almost any variation of 

GA, and even with a large range of controlling parameters.

3 .4 .1 2  E pistasis

Epistasis can be observed in the biological genetic process as well as in the genetic 

algorithm. This is the requirement that two parts of the chromosome must change 

simultaneously for any benefit to the chromosome as a whole to be noticed. If only one 

of the changes occurs, no improvement in the fitness will be noticed, or it may even 

decrease.

An example taken from [7] is th a t of a bat, with its sonar emission and hearing 

ability. When evolving, a flying bat with no sonar system would often collide with 

objects. The same can be said for a bat with either only the ability to emit sonar 

sound, or only the ability to hear sonar sound. It is when the two aspects occur 

simultaneously that any benefit is seen.

In the GA, the chance that building blocks will be created at two different parts of
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the chromosome at the same time and subsequently built upon is remote, compared to 

the creation of a  single building block. Thus, a problem tha t requires the development 

of a dual aspect can expect to do so only slowly with a GA.
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C h a p te r  4

S oftw are  Im p le m e n ta tio n  an d  T est 

S tra te g y

4.1 Sim ulation Structure

Simulation of the real time recursive block parameter estimation environment is written 

in the C + +  programming language. This is an Object Orientated language, where 

classes are constructed which contain both data, and the functions that act upon the 

data. This language lends itself to a modular construction, and with a little  care, these 

modules can easily reflect the problem in hand.

4.1 .1  S tructure D eta ils

There are three main classes in the structure of this simulation (fig. 4.1). The most 

prominent class, SOE (Second Order Equation) controls all the data leading up to and 

after the estimation of parameters from a single block of target signal. This class is 

fed data by the SOEdata class, which is essentially a database to store all important 

input and output information for all estimates made by the SOE class in a run of the 

simulation.

At the heart of this study is param eter estimation. The estimation is performed by
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SOEdata

Figure 4.1: The class structure o f the estimation simulation. Data moves between the 

SOEdata database and the instance o f the SOE process. This contains an EstAlg class 

which contains the estimation algorithm.

a variety of different algorithms, but the input and output is always the same. Going 

into the algorithm is the target signal, and coming out are the estimated parameters. 

The class which actually performs the estimation is EstA lg . Of course, the contents 

of this class vary depending upon the chosen estimation algorithm. The EstAlg class 

is called within a function of the SOE class, when this class has prepared all the relevant 

data.

Each run of the simulation involves estimating one hundred parameter vectors, 

which may vary with time, with each parameter vector being estim ated over ten con­

secutive blocks. The SOEdata class contains the initial values for the parameters for 

each of the one hundred test vectors, plus the two initial conditions, x i0 and x 2o, neces­

sary to identify a unique trajectory. These vectors are passed one at a time to the SOE 

class which generates the signal on the fly for each block. The SOE class contains the

EstAlg
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sampling frequency, f s, and is thus able to feed the EstA lg class with data  according 

to the adaptive sampling frequency algorithm. The parameters at the end of each 

block are stored, and at the end of each series of ten blocks, the history of the run is 

passed to the SOEdata class. At the end of the simulation, the SOEdata class dumps 

the history of the entire simulation to disk for analysis later by the user.

Figure 4.2 depicts the structure of the simulation in pictorial form. The steps are 

as follows:

1. SOEdata feeds in the target parameter vectors from disk.

2. Initialization of SOE occurs, which also includes details of the EstA lg initializa­

tion.

3. Start the vector number loop.

4. SOE receives target vector from SOEdata .

5. Zero the clock.

6. Start the block number loop.

7. Target signal is generated based on the current clock value, the current sampling 

frequency, and the target parameters.

8. Target signal is passed to EstA lg which returns an estim ate vector.

9. Frequency estim ate is passed to the adaptive sampling frequency algorithm func­

tion within SOE to update the sampling frequency. Clock is updated.

10. End of block num ber loop.

11. Pass run history to  SOEdata .

12. End vector num ber loop.

13. Dump statistics to disk for analysis later.
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An object design for each class is shown in figures 4.3, reffig:object-soe and 4.5. 

Each class contains both functionality and data. The first subdivision in each diagram 

holds the class name. The second contains the principle functions inherent to  the class. 

These describe the most significant processes the class carries out. In the third box 

is listed the class’s primary data structures. It is upon these data structures th a t the 

functions operate.

4.1 .2  In itia lization

A separate program generates the param eter data. There are limits imposed on the 

values of some parameters; for the frequency parameter this stems from the initial 

sampling frequency used, and for the other parameters and the initial conditions, these 

stem from a need to lim it the range of the x  variable to approximately ± 2. There are 

sometimes further limitations on the param eter and starting condition ranges when 

the estimation algorithm fails on the maximum ranges, and simpler signal profiles are 

required.

Other initialization details, such as initial sampling frequency, details for the adap­

tive sampling frequency i.e. sample length and nc  and the noise and magnitude of 

noise to be used, are kept in a . in f  file which is read at the beginning of each simula­

tion. Memory arrays are dynamically created so tha t the program does not have to be 

re-compiled whenever controlling parameters are varied.

Some of the estimation algorithms called in EstAlg also require some user defined 

variables e.g. for polynomial least squares fitting, the polynomial order is user defined. 

To save loading this information each tim e the EstAlg class is called, it is stored 

within the SOE initialization and passed as a function parameter when the estimation 

algorithm is called.

These measures attem pt to make the simulation “user friendly” by allowing many 

of the simulation parameters to be set within . in f  files rather than hardcoded into the
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program. This allows for greater speed in testing the performance of the estimation 

algorithms under a wide range of situations.

4 .1 .3  E xecu tion

In the simulations, each estimation algorithm is executed many times. There are a 

hundred test param eter vectors, and each of these can be estim ated over a number of 

blocks. This situation allows for a straightforward design using two fo r  loops. The 

inner loop cycles through the number of blocks, whilst the second cycles through the 

target parameter vector list.

S O E .I n i t i a l i z a t io n ()

f o r  ( v e c to r  = 0 ; v e c to r  < NumVectors ; vector++ )

{

SOE. ZeroClockO

SOE.ReceiveTargetParameters( SOEdata( v e c to r  ) ) 

f o r  ( b lock  = 0 ; b lo ck  < NUmBlocks ; block++ )

{

SOE. C a lc u la te S ig n a l()

SOE. Estim ateParam eters()

SOE.UpdateClockQ

SOE. AdaptiveSamplingFrequencyAlg()

SOE.DeliverDetails(SOEdata)

} / /  Block loop

}  / /  V ector loop

SOEdata. S t o r e A l lD e t a i l s ()
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4.1 .4  Peripheral Functions

There are some functions used in the simulation which do not relate directly to any 

specific class, since they are general mathematical functions. These include functions 

for calculating the RMS error between two vectors, calculating the correlation between 

two vectors and calculating the mean of a vector.

These functions are outside of the class system and are stand alone functions used 

by the various estimation algorithms. For example, the GA algorithm uses the RMS 

and correlation functions to compare the target and estimated signals to obtain a fitness 

for the estim ated parameters.

4.2 E stim ation  A lgorithm s

4.2.1 G eneral

All of the estimation algorithms are encoded as classes. Each class has only three 

functions called externally. These are the initialization function, the execution of the 

algorithm and a function to return the estimated parameters. All other functions for 

the algorithm class are called internally.

Several of the algorithms have a simple internal structure where the estim ation 

requires only a single core function, maybe with a few supporting functions. These 

include the difference equations, the polynomial LS fitting and the Downhill Simplex.

The high level algorithm contains several important functions based around a 

Fourier Transform class. The target signal is used to initialize the class, which af­

ter performing an FFT, executes several other tasks e.g. PSD and dominant frequency 

search. The algorithm then combines the results from these functions to produce its 

estimate for the parameters.

Estimation using a neural network, either for derivative estimation or direct param ­

eter estimation, follows a straightforward approach, similar to those described above,
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with the addition tha t the network size, and other details, are loaded at the beginning 

of the simulation and passed in through the SOE class. The m ajor difference with this 

algorithm is that a network must first be trained so it can perform the estimation task.

Training is performed in a separate simulation. Training data with specified char­

acteristics for the signals is randomly generated. These must be different from the test 

signals used to measure the performance of the network in the estimation simulation. 

Training is conducted and monitored, and when the error of the network reaches min­

imum levels, the weight m atrix which identifies the unique network is transported to 

the estimation simulation and is used in a “read only” mode.

4.2 .2  R ecursive E stim a tio n

When the estimation algorithm is recursive, there are two phases to the estimation 

procedure. An initial estim ate has to  be made, which then is used to seed a recursive 

estimation algorithm. This can be seen in Figure 4.2.

Since all the algorithms can work as initial estimators, each recursive algorithm 

used itself in “initial estim ator” mode to  complete the first phase. The only exception 

to this is the Downhill Simplex m ethod which is seeded by the high level algorithm. 

This simply involves inserting both  the Fourier transform class and simplex class in 

the SOE ’s EstimateQ  algorithm and keeping track of the current block number.

4.2 .3  G enetic A lgorith m  Structure

A genetic algorithm (GA) is a more involved estimation algorithm with several steps 

in its initialization and its running. The structure is shown in Figure 4.6. Its steps are:

1. Receive target trajectory.

2. Create a random population.

3. Test each chromosome and obtain its fitness.
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4. Rank the entire population according to  fitness.

5. Select two chromosomes to  be parents.

6. Create the offspring and perform the genetic operators.

7. Find the fitness of the offspring.

8. Insert the offspring into the population.

9. Test for the termination conditions. Return to step 5pf another generation is 

available.

10. Decode the fittest chromosome and return the estimated parameters to SOE .

When the GA is used in a recursive fashion, there is only one additional feature of 

the algorithm, other than keeping a track of which block the GA is operating in. This 

is to re-encode the chromosome sections which relate to the initial conditions. This is 

achieved by calculating the expected values for the initial conditions and then encoding 

them  into binary and replacing the relevant section of each chromosome.

4.3 Test Strategy

Experiments are started with simpler problems, which are then built upon and learnt 

from, until the full continuously running estimation algorithm is complete. Experimen­

tal work starts with parameter estimation for an initial, single block of data. Firstly, 

this is achieved via derivative estimation in Section 5.1. Then other methods which 

estim ate the parameters are directly examined. Together these sections constitute the 

first stage of a continuously running param eter estimation system by allowing the first 

estim ate to be made without any previous estimates. Section 5.3 completes the sys­

tem  by examining all the methods for parameter estimation which can operate in a 

continuously running mode.
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4.4 Test Param eter G eneration

To measure how well each method estimates the parameters, a standard experiment 

is used. An experiment will consist of a single run made up of typically one hundred 

param eter sets which require estimating. In the first two sections where an initial 

estim ate is required, the parameters do not vary within the tim e range and only one 

block of data is fed to the param eter estimation module for each of the one hundred 

param eter sets. In the last section where the system runs in a continously running 

mode, the parameters vary their value sinusoidally according to pre-set frequencies.

The parameter values which make up a run are chosen at random within certain 

ranges. It is clear from careful anaylsis of the test procedure th a t some methods are 

capable of coping with the complete param eter ranges, whilst others require the range 

of some of the parameters to be limited, and this is discussed in each appropriate 

section.

A set of parameters is chosen at random within the following ranges:

-0 .4
e

0.4
< < —

Un

0.01 (jJrnax < <-̂n < ^max

—t X < u < M-n&max

The reasons for the choice of these bands require some explanation. Firstly, the 

observed damping, E, is a function of both the value of £ and wn, and is 2£wn. Secondly, 

the maximum frequency, u)max is a function of the initial sampling frequency, f s used 

for receiving incoming data, and is set to,

“W  =  J  (4.1)

This ensures th a t there are at least four data points per cycle of the incoming signal. 

This is the minimum number of points tha t can describe the amplitude of a sinusoidal
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signal, which is necessary since some of the methods used for parameter estim ation 

depend on fitting an internally generated estimate signal, including magnitude, to the 

target signal.

The value of xmax is an arbitrarily chosen value to limit the overall range of the 

variable x. x max actually describes the largest magnitude for the equilibrium position 

of x  and not its maximum value. In the generation of the tests signals, however, the 

values of the initial conditions aq0 and x^0 are selected so that the signals have a range 

in amplitude from 0.5 to 2.0. This is done by selecting at random a phase angle, 

and an amplitude, A, and then setting,

 ̂ Uxio — Acos<p+ —

X 2 o  =  — cO n  A  sin 4>

This entire set of conditions allows a robust set of signals to be generated, whilst 

keeping a high element of variation in the signals. As mentioned, some methods require 

these restrictions to be tightened.

In the continuously running mode experiments, damping £ is always set to zero 

since running a second order system for many blocks with non-zero damping can easily 

arise with the signal vanishing to zero or becoming unstable and oscillating to  wild 

values. It is still a valid task for the estimation algorithms to correctly return a value 

of zero for the £ parameter.

4.5 Perform ance M easurem ent

It is necessary to have some yardstick by which to measure the performance of each 

run. To do this in the first two sections where the parameter estimation is for one 

block only, the Absolute Average Difference (AAD) vector is used. The AAD vector is 

(A A D z, AAD ^n, A AD u), where,
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A A D tf)  =

1 P
A.AD{ion) =  —  ^ ] |cc?n ton |

A A P({/) =  - i : \ U - U\

where P  is the number of test patterns (usually one hundred). Naturally a  zero 

AAD vector means perfect estimation.

When continuous param eter estim ation is applied, the Total AAD (TAAD) vector 

is used to measure performance. The TAAD is simply the to tal of the AAD vectors 

for each block of data for a signal. If there are M  blocks of data in the P  test sets,

1 I p  M

ta a d ( = - ~ y :j :  i e - f i  (4.2)

and similarly for the other two parameters. Again, a zero vector indicates perfect 

estimation.

It is im portant to note th a t when discussing sampling frequency, hertz (cycles/s) is 

used as the basic unit. Whenever con or a related variable is discussed, angular frequency 

is always used. Therefore, if the sampling frequency f s is 25Hz, and ujn = f s/ 4, it has 

a value of 25 x 27r/4 =  39.9Hz.

4.6 Error Function A nalysis

Two of the direct param eter estimation algorithms, namely the Downhill Simplex and 

the Genetic Algorithm (GA), have their basis in the comparison of the incoming data 

signal and a signal internally generated by estim ated parameters. By comparing these 

two signals and determining how similar they are, the algorithms can give some figure 

of m erit to the parameters tha t generated the estim ated signal.

There are two functions used by the two algorithms to compare the signals; the 

first is the straightforward Root Mean Square (RMS) error,
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W hen the signals are identical in all respects i.e. each data value matches, the RMS 

is zero.

The other combines the correlation between the signals and the difference between 

the signal’s means,

E rror = -C o rr (y target, yestimaie) +  ]̂ ars«  (4.4)

The correlation function returns values between ±1.0. It returns +1.0 if the vectors 

are identical ignoring scale and position.

How do these functions vary? Figure 4.7 shows an input target signal of 2Hz 

sampled at 25Hz for one second. There is no damping and no external input. A second, 

estim ated signal, is generated from estim ated parameters. The estimated parameters 

need to m atch the target parameters and this is achieved when either of the error 

functions are a t their global minima.

The variation of the RMS function when the phase between two otherwise identical 

signals is moved from zero to 2tr, is shown in Figure 4.8(a). The error near zero 

and 2tt phase exhibit a low error, whereas the error rises to a maximum at tt radians 

phase difference. The important feature is th a t there is only a single peak in the error 

curve, and a simple gradient descent search algorithm will easily find the global minima 

between two signals which vary only in their phase.

W hen the  two signals have the same phase but their frequencies are different, a 

more complex error profile is seen (fig. 4.8(b)). The target frequency is again 2Hz, and 

the estim ated signal sweeps from zero to one quarter of the sampling frequency. The 

global m inim a appears as expected at 2Hz. Either side of this are a number of local 

minima.

A slightly different, but still multi-modal error function, is seen when the phase is
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optimized at each estimated frequency (fig. 4.8(c)). Each of the minima, including the 

global, are slightly broader when the phase is not optimzed.

Finally, Figure 4.8(d) the correlation and mean error function is shown at each 

frequency when the phase is optimized. The local minima at higher frequencies still 

occur, but at lower frequencies than the target, there is only one minima.

The multi-modal nature of the error curves poses a particular problem for the 

iterative optimization algorithms. Such algorithms work by descending the error curve. 

If they are placed in a m inim a other than the global minima, the error curve will lead 

them to an erroneous conclusion. To combat this, either the algorithm must possess 

the ability to  escape from non-global minima, or the algorithm must be initialized with 

an estimate within the global minima.
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Zero clock

Initialize SOE

End Vector loop

Update clock

Start Vector loop

End Block loop

Estimate parameters

Start Block loop

Calculate target 
trajectory

Pass parameter 

vector to SOE

SOEdata receives 
run history

SOEdata loads all 
parameter vectors

SOEdata dumps entire 

history to disk

Adaptive Samplling 

Frequency Algorithm

Figure 4.2: Structural design of the real time recursive block parameter estimation 

simulation.
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SOEdata

GetFirstVector
GetNextVector
ReceiveEstimates
StoreEstimates

Source vectors 
Result vectors

Figure 4.3: Object design for the SOEdata class. The central division describes the 

principle functions and the lower the data structures.
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SOE

GetParameters
GenerateObservedBlockData
EstimateParameters
AdaptiveSFAlgorithm

Sampling frequency
Observed signal
Target parameters
Estimated parameters

Figure 4.4: Object design fo r  the SOE class. The central division describes the principle 

functions and the lower the data structures.
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EstAlg

GetObservedData
EstimateParameters
RetumEstimate

Observed signal
Previous estimates
(recursive only)

Figure 4.5: Object design fo r the EstAlg class. The central division describes the 

principle functions and the lower the data structures.
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Target
data,

Another
generation?

Yes

No

Select parents

Create offspring

Rank population

Calculate offspring’s fitness

Return best estimates

Insert offspring in population

Calculate population’s fitness

Cretae random population

Figure 4.6: A flow chart describing the structure of the genetic algorithm estimation 

process.
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Figure 4.7: An input target signal sampled for one second at 25Hz. Signal frequency is 

2Hz, with no damping and zero mean.
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Figure 4.8: RM S error functions between, a target signal and an estimated signal, a) 

WRien the phase varies, b) When the frequency varies, c) WHien the frequency varies 

and phase is optimized, d) When frequency is varied and phase optimzed and the error 

function is the correlation function.
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C h a p te r  5 

E x p e rim e n ta l R esu lts  an d  

D iscussion

This chapter is dedicated to the reproduction of the results obtained with extensive 

experimental work into different estimation methods for the parameters of the general 

second order system. It details each stage of the experimentation, describing notable 

features in the results.

The overall test strategy and preliminary analysis is described within Chapter 4. 

A full conclusion of the work described in this chapter is contained in Chapter 6.

5.1 T im e D erivative Estim ation M ethods

5 .1 .1  Introduction

This section covers parameter estimation using time derivatives, as discussed in Sec­

tion 3.4.1. Once the time derivatives have been estimated, the parameters of the second 

order system are calculated using the equations of [1]. Firstly, the  use of simple dif­

ference equations to estimate the derivative is covered, which operates by subtracting 

consecutive data points. A series of alternative estimation methods is then tried to 

counter the problem of noise. These are polynomial least squares smoothing, digital
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filtering and the application of feedforward neural networks.

If is the zeroth derivative, £2 the first derivative (velocity) and so on up to  £5, 

then,

# 5 . 3 :2  —  £ 4 - 3 :3

£ 4 . £ 2  —  £ 3

£ 5 . £ 3 —  £ 4

x l -  £2.£4 

where b — lu% and a =  2(ujn .

5.1 .2  D ifference E quation  D erivative E stim ation

For each parameter set in a run, six points are generated, since the difference equations 

require only six points to calculate all the required derivatives. The parameters £, u>n 

and U are estimated using the equations of Section 3.4.1.

W ith a pure uncorrupted input signal, this method achieves an AAD vector of 

(0.31,0.27,20.3). This is a run where the sampling rate is fixed at 25Hz. This is a poor 

estim ate of the damping parameter, which only has a range of ±0.4. The frequency 

estim ate is good, since the range of this param eter is 3.93 — 39.3. In this case, U can 

vary between ± tu j.

The ASFA w ith  Fixed Param eters

Application of the adaptive sampling frequency algorithm (ASFA) when the parameters 

remain fixed, produces more accurate param eter estimates. It only takes a few blocks 

of input signal for the sampling frequency to stabilize, where

, u nnc  
Js =  —

Z / i

after each block. After four data blocks the AAD vector is (0.2,0.02,1.4), clearly a 

marked increase in accuracy.
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Figure 5.1 shows how the sampling frequency and the estimate of frequency vary 

over the tim e period of the signal. In Figure 5.1a the input signal is shown. Note that 

the number of points increases towards the end of the signal, indicating an increased 

sampling frequency. In Figure 5.1b the sampling frequency is shown to move from its 

initial value of 25Hz up to nearer 48Hz. The actual frequency of this signal is 2.8Hz; 

with the algorithm attem pting to  feed in 16 data points per cycle, this would require 

a sampling frequency of fn  x n c , or 2.88 x 16 =  46.1Hz. This shows the algorithm is 

getting close to the desired sampling frequency.

Figure 5.1c shows the estimated frequency compared to the target frequency. The 

first estimate is made with a sampling frequency of 25Hz. The second is made with an 

adjusted sampling frequency of 50Hz, allowing for a more precise estimate to be made. 

The feedback system quickly settles down to produce an estimate only 1Hz out.

The estimates for all three parameters receive a significant improvement in their 

accuracy due to  the use of the adaptive sampling frequency algorithm when the pa­

rameters remain fixed with respect to time. The estimate for.£, is still however, poor 

at 0.2 when the actual value is zero. Despite the equations which calculate a and b 

(eqn.’s 3.2 and 3.3) and hence the parameters is exact, the difference equations for 

calculating each of the time derivatives is not exact. This is where an error in the 

parameter estimation occurs.

N oise Tolerance

Adding noise to the input signal produces a rapid degradation in the accuracy of the 

estimates. Table 5.1 shows the resulting AAD vectors when noise is used. Both white 

noise of equal probability distribution and impulse noise are tested.

In the second column, the number of test signals where the £ estimate is greater 

than 0.6 is tabled. Such signal’s estimates are not used in calculating the AAD for 

the run, and are effectively discarded as too poor. In this case, the signals are left out 

for the run with 0.01 amplitude white noise have an AAD vector of (1.76,1.37, 236.9).

70



0.0

- 0 . 1

- 0 . 2 -

3 -

- 0 .5
0.0 0 .2  0 .3  0 .4  0 .5  0 .6 /

Time (s) '

Time (s)

Estimated 
 Actual

Time (s)

(b) (c)

Figure 5.1: A signal (a) is sampled at a varying sampling frequency, (b) shows the 

sampling frequency at the end of each block, (c) shows the estimated frequency of the 

signal compared to the actual frequency.
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Noise Type Out of range

If 1 >  0.6

AAD

f U

No noise 20 0.26 0.16 12.394007

W hite noise 

Mag=0.001

38 0.35 0.32 31.6

W hite noise 

M ag=0.01

52 0.44 1.0 193

W hite noise 

Mag=0.1

70 0.38 2.9 685

Impulse noise 

Prob=10% Amp=0.1

34 0.3 0.7 130

Impulse noise 

Prob=15% Amp=0.4

52 0.3 1.5 501

Table 5.1: Table showing A A D  vectors for the difference equation method with different 

levels and type of noise on the input signal.

This effect is more pronounced when other methods are used.

W ith only modest amounts of noise, the estimate of £ becomes worse than sim­

ply guessing the result. The estimate of U also suffers from noise, but despite the 

degradation, the estim ate of lou is still reasonable.

C om m ents

These few runs dem onstrate tha t the time derivative estimation method for parameter 

estimation is an accurate method when the adaptive sampling frequency algorithm is 

applied. Tolerance to noise is low, however, with poor results being obtained with even 

small amounts of either white or impulse noise.
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5 .1 .3  P olyn om ia l LS F ittin g  For D erivative E stim ation

By taking a block of input signal and fitting a polynomial with the least squares (LS) 

criteria, a set of polynomial coefficients are generated which allow the derivatives to be 

calculated at any point on the polynomial. To fit a polynomial of order N , there must 

be at least N  +  1 points, and to evaluate the fourth derivative, the order m ust be 

at least four. There must therefore be at least five points per block in the input signal.

A further consideration is th a t each derivative of a second order system has a 

sinusoidally varying profile. The polynomial order must be able to  approximate this 

sufficiently well. The higher the order used, the better the polynomial will be able to 

m atch the fourth derivative’s profile. Low orders can still be used, however, as long as 

the approximation is not too coarse.

Polynomials and their derivatives are always evaluated at the centre of the input 

block. It can be shown th a t the derivative estimates for a polynomial fit with the LS 

algorithm are most accurate towards the centre of the vector.

It is possible to achieve an almost arbitrary accuracy when no noise is present in the 

system. By using the highest polynomial order possible for the length of the block used, 

optimal results are obtained. Increasing the block length allows for improved accuracy, 

since this allows for higher polynomial orders to be used, which can approximate the 

higher derivative orders better. For example, a block length of 6 and a 5th order 

polynomial, the AAD vector is (0.03,0.12,31.2). When the block length is 8 and an 

order of seven used, this improves to  (0.005,0.033,7/22).

N oise Tolerance

Adding white noise to the signal disables the accuracy of this setup. A polynomial of 

order one less than the length of the data can match each data point exactly. Such 

a polynomial mimics the noise on each data point, and no smoothing occurs. Lower 

orders must be used if smoothing is to take place.
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Noise Type Out of range

If 1 > 0.6

AAD

f U

No noise 0 0.04 0.3 51.3

White noise 

Mag=0.001

7 0.07 0.3 56.1

White noise 

Mag=0.01

16 0.08 0.4 67.3

White noise 

Mag=0.1

14 0.18 1.0 137

Impulse noise 

Prob=10% A m p=0.1

9 0.1 0.56 76.5

Impulse noise 

Prob=15% Amp=0.4

8 0.18 1.1 145

Table 5.2: Table showing A A D  vectors for the polynomial L S  method with different 

levels and type of noise on the input signal.

A sixth order polynomial is used with a block length of 12. Table 5.2 shows the 

AAD vectors for different levels of noise and types of noise using this arrangement.

In the run of white noise with magnitude 0.01, where 16 of the signals have f 

estimates out of range, the AAD vector for the signals that were left out is (1.5,2.5,494). 

This is significantly different from those estimates within range, and demonstrates that 

the potential for making significantly erroneous estimates is quite rare, but severe.

The source of the high errors is test signals tha t have frequencies at the far low end 

of the scale. When wn is approximately less than 6.0, there is a high chance tha t the 

estim ate will be significantly out. There is no simple solution to  this difficulty — it is a 

property of the algorithm th a t frequencies significantly below the sampling frequency
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Figure 5.2: A noisy signal is fitted with a fourth order polynomial The polynomial 

matches more closely with the noise free signal, allowing more accurate derivative es­

timation,.

with white corrupting noise, cannot be estimated accurately. Study shows tha t the 

higher derivatives are estimated more poorly than the lower ones, which suggests th a t 

the high frequency variation of the noise is perturbing the higher coefficients of the 

polynomial LS fit, whereas, in high frequency signals, it is the signal itself which is 

dominant, it is possible to estimate the lower frequency signals accurately only by 

reducing the sampling frequency, at the expense of excluding higher frequency signals.

Figure 5.2 shows a noisy input signal, where the noise has a maximum m agnitude 

of 0.1. Also shown are the 4th order polynomial fit and the noise free signal. It can 

be seen tha t the polynomial curve matches more closely the noise free signal than the 

noisy one.

Despite the low order, good results are obtained due to the short block length. The 

high derivatives are estimated well since a straight line is a reasonable approximation
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over the short block length. Increasing the block length decreases the validity of this 

approximation. Increasing the order allows the polynomial to  mimic the noise and 

decrease the derivative estim ate accuracy.

C om m ents

Use of a polynomial fitted used the LS criteria to the incoming signal produces arbi­

trarily accurate results when no noise is present. Increased accuracy is achieved with 

increased sample length whilst m aintaining the maximum allowed polynomial order.

Application of noise to  the incoming signal disables this property and the polyno­

mial has to be used as a smoother. As noise increases, higher order coefficients are 

distracted by the noise, notable when the signal frequency is low. As a result, low 

frequency signals (compared to the sampling frequency) cannot be estimated with cer­

tainty when noise is present. E ither the  sampling frequency must be reduced, or low 

frequencies removed from the test data.

This problem can be expected to  cause difficulties when the ASFA algorithm is 

used when estimating signals with variable parameter values. Signals which start with 

a high frequency which then reduce can be expected to be estim ated accurately, as the 

ASFA will adjust the sampling frequency. Signals with a low initial frequency will fail 

in the same fashion as above, and the ASFA will fail to fix an appropriate sampling 

frequency.

5.1 .4  P re-processing  S ignal F iltering

Since noise significantly reduces the capabilities of both the difference equations and 

the polynomial fitting approaches for derivative estimation, filtering the input signals 

before they are passed to the estim ation algorithm is performed. W ith the noise partly 

filtered out, estimation can be expected to be more accurate.

Filtering can be any of lowpass, highpass, bandstop or bandpass. Ideally, a bandpass
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filter centred on the actual input signal’s frequency would remove most noise and still 

leave the signal substantially unaffected. Since it is the frequency of the signal which 

is sought, however, this is not possible. Further, such a filtering system would have to 

consist of a bank of bandpass filters each tuned to a  separate frequency, and the best one 

used depending on the estimated frequency. Although this is a possible approach for 

an adaptive system, it is clumsy and not entirely necessary due to other considerations.

Since the input signals can range from a low frequency up to  middle range frequency, 

and white noise has frequency content across the entire range of frequencies, whilst 

impulse noise has high frequency elements, lowpass filtering will remove a substantial 

part of the noise from any input signal.

T he M oving W indow  Average F ilter

A simple lowpass filter is the Moving Window Average (MWA), where a number of 

data points from the input signal are averaged to produce the output for the current 

tim e step ie.
1 N~l 

1 v i = 0

where N  is the order of the filter, or the size of the moving window. The resulting 

output signal yn lags the original signal by (N  — l ) / 2, but this does not affect the 

parameter estimation process.

M W A Filtering and Difference Equations

Application of the MWA filter with the difference equation method improves param eter 

estimation measurably. Table 5.3 shows the results of runs with 0.01 magnitude white 

noise and a range of MWA order.

Considering only those signals where the f  estimate falls within range, the use of a 

MWA has no measurable effect on the f  estim ate itself. On wn and £/, however, there 

is an improvement by a factor of approximately 3 with the best results obtained with
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MWA

order

Out of range

If 1 >  0*6

AAD

f Wn U

No noise 20 0.27 0.17 12.7

1 52 0.46 1.14 206.7

3 43 0.4 0.55 73.9

5 42 0.40 0.50 42.1

7 92 0.40 1.41 86.8

Table 5.3: Table showing AAD  vectors fo r  the difference equation method with pre­

processing filtering with different MWA orders. White noise is used at magnitude 0.01.

MWA order 5. An order of 7 results in 92% of the test patterns falling out of range. 

In the other cases, the out of range vectors are not excessively poor.

Since the MWA is a lowpass filter, it may be thought tha t only low frequency 

signals should be tested. This would allow maximum noise reduction, and hence a 

maximization of estimation accuracy. This is not the case. If only low frequency test 

signals are presented to the algorithm, very high numbers of estimates fall out of range 

because the signal does not vary over many of the six data points used, and so noise 

becomes a large factor.

This process can be countered by using the adaptive sampling frequency algorithm 

(with zero damping). The sampling frequency is adjusted so tha t 6/16th’s of a cycle 

are used in the difference equations. This will mean the signal varies over a reasonable 

range. Experiments show, however, tha t even small amounts of noise (white noise of 

magnitude 0.01) allow the sampling frequency to explode in some cases. On cases 

where the sampling frequency remains stable, accuracy is greatly improved.



M W A  F ilterin g  and P olynom ial LS F ittin g

Applying the MWA pre-processing with the polynomial fitting always produces less 

accurate estimates than when no MWA filtering is used. This is with both white noise 

and impulse noise. Since the polynomial least squares fitting acts as its own filter, and 

the MWA is also a lowpass filter, it is of little surprise tha t no noticeable difference is 

observed since the two filters perform a similar job.

C om m ents

This section has shown tha t the MWA can improve the estimation accuracy when the 

difference equation method is used when white noise is present on the signal. It is 

shown, however, that the short sample length used in calculating the time derivatives 

led to problems when the signal moved through only a small range. It is also shown 

th a t a benefit in applying the MWA lowpass filter on low frequency signals.

Further work for param eter estimation via time derivative estimation must therefore 

lie in the direction of increasing the sample size used in calculating the time deriva­

tives. The polynomial LS fitting does allow for this, and other methods such as neural 

networks can also be used (see next section).

5 .1 .5  N eu ral N etw orks for D erivative E stim ation

The motivation for applying neural networks in this problem is clear; the transformation 

from an input signal to a time derivative is a nonlinear one, and neural networks 

are capable of performing such mappings. Neural networks are also well known for 

their tolerance to noise. This combination of properties make neural networks a good 

prospect for this problem.

Feedforward neural networks trained with backpropagation are used with the hy­

perbolic tangent function as the transfer function. This function ranges between ±1.0, 

allowing easier estimation of negative derivative values.
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A network is trained with signal trajectories as the input. Five output units are 

used, each one trained to output one of the five state variables Xi, x 2, x 3, x4 or x§ 

which are then used to calculate the param eter estimates. It is necessary to perform 

scaling on both the input and output.

Although networks are able to generalize, scaling of the input is performed to make 

the network’s job as easy as possible. Firstly, the mean of the input signal is removed 

from the input signal. It is then scaled so the maximum input value is unity. This 

translation and scaling allows any offset and any m agnitude of signal to be standardized, 

making the estimation process more tolerant of input variance.

Input and O utput Scaling

Scaling of the output is necessary since derivative values can get very large, the more so 

for higher derivatives. The fourth derivative for example, is proportional to ujn raised 

to the fourth power. Since omegan can easily have values of 6 x 27rHz, this leads to 

extremely large values. Scaling is performed by taking the n th  root, where n is the 

order of the derivative. Negative values are first made positive, rooted, and then made 

negative once more. This gives a maximum value of a derivative of w™aa;, so dividing 

by this value gives a linearly varying function ranging between ±1.0. This allows the 

tanh function to be used on the output units of the network. If O is the output value, 

then the scaled output, Os is,

„ ,dnx. 1 _ j_ .
°s{~ n~ )  =  ° n (5.1)dtn w™ax K }

Linear output units with unsealed output cannot be used since the error which is 

backpropagated during training for the higher derivative output units would swamp 

that of the lower derivative output units. Linear output units can still be necessary 

with scaled output, whoever, since negative damping can lead to scaled derivative 

values outside of the range ± 1.0.
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P relim in ary  E xperim ents

Two m ajor points can be concluded from preliminary experiments. After testing a 

variety of networks eg. one layered linear adaptive filters, networks with linear hidden 

units, it is apparent tha t the minimum requirements for a network to perform the 

mapping is a  neural network with nonlinear hidden units. This reinforces the principle 

that the mapping from input signal to derivatives is a nonlinear one. The second point 

is tha t the networks are not able to  cope well with training data where the damping 

param eter has non-zero values. Best accuracy is obtained when all training and test 

patterns have zero £ values.

Based on these principles, a suitably sized network to  optimally perform the task 

can be performed. Training data consisting of one thousand patterns with the frequency 

ranging between a maximum of f s  x 2tt/4 and 1% of this and damping set to zero is 

used. The external input is limited so tha t the equilibrium position is between ±1.0, 

and the am plitude ranges between (0.5,2.0). Scaling and translation is used to add to 

the invariance of the process.

After testing networks with between 6 and 12 hidden units and a range of input 

lengths, the best performing network in terms of AAD vector has 8 tanh hidden units, 

linear output units with 17 input units. Increasing the number of hidden units has no 

beneficial effect.

For all networks, the profile of the RMS curve is one tha t falls sharply at the 

beginning of training and then gradually shallows out to asymptotically approach some 

value. No plateaux are encountered, or local minima apparently . escaped from and 

similar behaviour is always found regardless of the initial weight m atrix. Training does 

benefit, however, from a reduction in the learning rate mid-training. This is shown 

in Figure 5.3. Here, training is carried out for 25 epochs with a learning rate of 0.1. 

At this epoch, it is reduced by a factor of ten to 0.01 where the dip in the RMS is 

observed. The same change in learning rate is made at epoch 40, and a smaller dip is
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Figure 5.3: The RM S curve for a a network with 17 input units, 8 hidden units with

nonlinear hidden units. Training data varies in all respects except the damping param­

eter which is always set to zero. The asymptotic approach indicates no plateaux in the 

problem space.

seen here also.

The AAD vector for this network over 250 test patterns is (0.043,0.92,42.0). This 

compares well with the AAD for the polynomial method when no noise is present and 

with the same input length and a polynomial order of 6 of (0.002,0.04,2.8). This latter 

case is also with a variable damping parameter, an im portant failing of the network 

method.

A lternative Training M ethods

A number of alternative training methods is tested with neural networks to improve 

their accuracy. One method involves training five separate networks, each with one 

output unit — one network for each of the five derivatives. Their outputs are then
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combined to produce the param eter estimates. Similar accuracy is recorded using this 

method as with one single network.

Another m ethod attem pts to  train the network with a genetic algorithm (GA). The 

advantage of this approach is th a t the fitness function of the GA is not the RMS value 

of the network, but rather the accuracy in the param eter estimates. As a result, it can 

be hoped that only networks which give good param eter estimates go on to the next 

generation. Networks using this method give “average” results. That is, regardless of 

the input, the networks try  to  give outputs which result in average parameter values 

being generated. This is due to  the fitness function being simply the sum of the 

AAD vectors, and average values give good all-round fitness. Reducing the number of 

training patterns results in networks which are unable to generalize and so fail on the 

test data.

N oise  Tolerance

Tolerance to noise for networks trained with backpropagation is tested. White noise 

of different maximum magnitudes, and impulse noise of different probabilities and 

amplitude are used. The best tolerance to noise is obtained when a network is trained 

with uncorrupted noise, although training with all types of noise was tried. Table 5.4 

lists the performance of A 17 input unit, 8 unit tanh function hidden layer and 5 linear 

unit output layer network trained with uncorrupted data and tested with different noise 

levels.

The neural network m ethod appears to give accurate estimation of the £ parameter. 

This is only the case when the test signals have zero value for £. Exposing the above 

network to test signals which have £ between ±0.4 gives an AAD of (0/2,4.1,3952). It 

is im portant, therefore, to limit the use of the neural network to non-damped signals.
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Noise Type Out of range

If 1 >  0.6

AAD

f U

No noise 0 0.04 0.91 36.4

White noise 

M ag=0.01

1 0.04 0.99 37.6

White noise 

Mag=0.1

6 0.6 2.4 69.5

Impulse noise 

Prob.=10% amp=0.1

4 0.04 1:6 51.0

Impulse noise 

Prob.=15% Amp=0.4

1 0.06 3.91 119.6

Table 5.4: Table showing AAD  vectors for a neural network trained with uncorrupted 

training patterns, and tested on noisy test patterns.

5.1 .6  Sum m ary o f  D erivative E stim ation  M eth o d s

There are three main approaches explored. Of these, the polynomial least squares fit­

ting approach gives most accurate results for the widest range of parameters. Indeed, 

in the absence of noise, an arbitrary precision can be obtained. W hen noise is present, 

performance is still good, giving reasonable accuracy on the parameters. This method 

also allows the parameters to have almost any sensible values and any sensible start­

ing conditions. This method benefits particularly from use of the adaptive sampling 

frequency algorithm, with increased accuracy in parameter estim ation as the optimal 

sampling rate is obtained. This method is particularly suited to a continuously running 

mode since it gives the most accurate estimate of the frequency parameter. Its only 

drawback lies in inability to estimate frequencies at very low frequencies relative to the 

sampling frequency when noise is present.

Use of the difference equations suffers from three main problems, Two occurring
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when noise is present. Firstly, the difference equations give only approximate values 

for the derivatives by their nature. Secondly, when any noise is present, even small 

amounts, the derivative values become widely inaccurate. Parameter estimation is 

further encumbered since the difference equations only use six consecutive data points 

in their calculations, and when these six points are in a part of the signal which does 

n to vary over a large range, the  effect of noise is amplified.

Neural networks were tried, partly  to overcome this last problem. A network’s input 

can have any length, and so can be expected to cover more of the signal. Network’s 

are unable, however, to  cope w ith input data where the signal had a non-zero damping 

coefficient. Scaling of the input and output allowed for any offset and amplitude to  be 

catered for, whilst the network learned to estimate the derivatives for any frequency 

and initial conditions. Given the limitation that only non-damped signals could be 

used, noise tolerance was good, with the U estimate being more accurate than with 

the polynomial method, and con only a small factor different.

5.2 D irect P aram eter Estim ation

5.2.1 In troduction

This section covers the m ethods used to estimate the parameters of a second order 

system by direct methods, as opposed to  first finding the time derivatives of an input 

signal. These methods are introduced in Section 3.4.6 onwards. A high level approach 

using signal processing m ethods is discussed first. In the next section, recursive neural 

networks are covered. Then in la tte r sections, iterative algorithms, such as the conven­

tional Downhill Simplex m ethod and the relatively new method of genetic algorithms, 

are covered.

For the experiments in this section, test signals are used where the parameters do 

not vary with time, as in the  previous section for derivative estimation. It is in the
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following section (sec. 5.3) th a t tracking a varying param eter is covered.

5.2 .2  H igh Level M eth od  

Introduction

In this method, features of the input signal are used to estimate its parameters. A 

Fourier transform is used to obtain the Power Spectral Density (PSD), or frequency 

content, of the signal. The dominant frequency is taken as the natural frequency of 

the second order system signal. The mean of the signal is usedfin conjunction with the 

frequency estimate to an external input estimate, and the magnitude of the dominant 

frequency over consecutive blocks allows the damping coefficient to be estimated.

The Fast Fourier Transform (FFT) algorithm is used to obtain the PSD. This 

algorithm always uses a sample length which is a power of two. If the incoming signal 

is not of such a length, it is padded out with zeros to the next power of two. This 

can lead to inaccuracies in the frequency estimate, and so in general, it is best to  use 

sample lengths which do not require padding.

If the number of points in a sample is Ar, then the PSD consists of (N/2)  +  1 

positive values. The first is the absolute value of the mean, and the remaining N/ 2  

points correspond to frequency bins equally spaced from up to /s /2 . The spacing 

between frequency bins is inversely proportional to the number of points in the sample. 

The frequency bin with the highest value is taken as the frequency estimate of the input 

signal. It follows tha t the more data points in the sample, the higher the accuracy of 

estimate ie.

Calculation of the mean of the input signal leads to an estimate of the external 

input as the mean is a reflection of the equilibrium position of the signal, and

U
%eq —  9

For the mean to reflect the equilibrium position most accurately, the signal needs to 

be a whole number of cycles. If this is not the case, the estimate is still good if the
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signal consists of several cycles. The mean can mis-represent the equilibrium, however, 

if only part of a cycle is present in the  signal. This is likely for shorter sample lengths 

and lower frequencies. The adaptive sampling frequency m ethod is usually setup to 

attem pt to include exactly one cycle in the input signal, however, and use of this signal 

can be expected to improve the estim ate of the external input.

A value for £ is obtained with successive estimates of the m agnitude of the dominant 

frequency from one block of input signal to the next. If Ab is the magnitude of the 

dominant frequency in block 6, and Ab+i the amplitude in the next adjacent block, £ 

is approximated by,

u n ( tb  +  t&+i)/2 AbJf. i  ̂ ^
where ujn is the estimated frequency, and tf, is the time between blocks of incoming 

data. It is necessary to have more than  one block to make an estim ate for £, over which 

tim e the sampling frequency, and hence U may change. In this case, the average of the 

period of each block is used. Note th a t the better the estim ate for frequency, the more 

accurate the £ estimate will be.

N oise  Free E xperim ents

A set of runs where the test data had zero damping, but frequencies between /s /4  and 

1% of this, random amplitudes and offsets, produces the results shown in table 5.5. 

Despite the zero damping used to allow for the long block lengths used, the accuracy 

of £ is still important from this run. The AAD vectors are shown after one block (no 

damping estimate can be produced on a single block) and after three blocks with the 

ASFA applied (with no time variation of the parameters).

As theory predicts, the accuracy of the estimates increases with increased block 

length. Accuracy can also be increased by application of the adaptive sampling fre­

quency algorithm (ASFA). When the ratio of sample length to nc  is greater than 2,
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Block length AAD after 1 block AAD after 3 block

nc  ratio £ U f U

64/8 - 0.59 15.1 0.0005 0.44 12.4

32/8 - 1.28 30.0 0.0018 0.89 29.1

16/8 - 3.08 68.2 0.0129 2.06 61.6

8/8 - 7.22 170.1 0.0305 7.21 192.1

16/4 - 3.08 68.2 0.0041 1.39 42.8

Table 5.5: Table showing A A D  vectors fo r  parameter estimation with F F T method after 

one and three blocks using the ASF A . Damping is set to zero to allow fo r  long block 

lengths.

there is approximately a 30% improvement in the frequency estimate, whilst there is 

a smaller improvement in U. Note, th a t when the ratio is less than 2, the algorithm 

performs poorly, and also the ASFA has no effect.

N oise Tolerance

Noise tolerance can be expected to be high for this method. The estimate for the 

frequency parameter is taken as the frequency bin of the largest value in the PSD. Only 

if noise of a different frequency has a greater magnitude will the estimate be wrong. 

This is unlikely, since white noise will approximately add equally to all frequency bins. 

Impulse noise may well produce a large high frequency content. The accuracy of the 

damping coefficient also relies to an equal extent on whether the correct frequency bin 

is selected. Additionally, the estimate for U depends on the mean of the signal. This 

too should not be adversely affected by white noise if its mean is zero. Impulse noise 

may again cause difficulties since it will offset the mean in one direction. Results are 

shown in table 5.6.

The £ estimate is largely unaffected by noise, as is the frequency estimate even at
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Noise Type AAD after 1 block AAD after 3 blocks

e U f 0)n U

No noise - 3.08 68.2 0.004 1.39 42.8

White noise 

Mag=0.1

- 3.08 68.3 0.004 1.39 42.6

White noise 

Mag=0.4

- 4.27 78.9 0.006 2.29 103.7

White noise 

Mag=0.8

6.31 221.5 0.009' 3.81 143.9

Impulse noise 

Prob=10% Amp=0.1

- 3.08 67.7 0.004 1.40 42.9

Impulse noise 

Prob=15% Amp=0.4

- 3.36 76.5 0.007 1.37 51.0

Table 5.6: Table showing AAD  vectors fo r  the high level method with a variety of noise 

levels and types.

white noise magnitudes of 0.4. Only the  offset is affected significantly by the noise. 

This high tolerance to noise can be understood with inspection of the PSD (fig. 5.4). 

The white noise provides some frequency content across the board, but the dominant 

frequency remains a high peak.

C om m ents

The approach used in this method yields accurate estimates of the unknown parameters, 

even with high levels of noise. It is also fast, with the main computational load being 

the FFT. For parameter estimation of a  second order system it is highly suitable. The 

methods are not easily transferable, however, to other parameter estimation areas, 

since they are specific to this particular problem. For example, this approach could
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Figure 5.4: The PSD of an input signal with white noise. The dominant frequency 

remains significantly proud of the background interference.

not be used on the filter coefficient estimation [45].

5 .2 .3  D ow nhill Sim plex M eth od

The Downhill Simplex method attem pts to optimize a function by varying the depen­

dent param eters in an iterative manner. It needs to be seeded with an initial guess 

on the N  target parameters; from here, it generates a further N  guesses which can be 

visualized as TV-fi! points in parameter space. These points enclose a volume known 

as a simplex. By repeatedly moving the point with the highest error the simplex can 

move through parameter space, following a downhill path on the error curve.

This algorithm is known to be quite slow but robust. It has to evaluate the error 

function each time a new estimate is made, and several hundred estimates per parame­

ter set is not unusual. The algorithm finishes either when the error falls below a critical 

value or a pre-set maximum number of iterations is exceeded.
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Two error functions are tested. The first is the RMS between the target trajectory 

and the trajectory generated by the estimated parameters. Use of the RMS does force 

the algorithm to also estimate the initial conditions of the target trajectory in addition 

to the main three parameters. The second error function is the sum of the  correlation 

between the target and estimate trajectories, plus the diiference in the means. The 

correlation function is scale and position invariant, but returns a value of unity is the 

two trajectories have the same shape. Adding the mean term  allows the external input 

param eter to be optimized. Use of this error function imposes less restriction on the 

initial conditions, since only their ratio has to be correct, rather than their exact value 

as with the RMS function.

This algorithm is heavily dependent on the initial guess, and it is therefore impor­

tan t to make this guess as accurate as possible. To do this, the high level approach of 

Section 5.2.2 is employed, and as a result, the simplex m ethod becomes an augmen­

tation of this method. The estimated damping is always set to  zero. The frequency 

is estim ated using a Fourier transform and taking the dominant frequency as the fre­

quency. Calculation of the mean in conjunction with the estim ated frequency gives an 

estimate of U . The initial conditions are estimated using the phase information of the 

dominant frequency obtained from the Fourier transform.

xio — A d cos </>£>-f  /i

%2o =  — AotOn sin 4>d (5.3)

where A d is the amplitude of the dominant frequency,and 4>d is the phase of the 

dominant frequency, fi is the mean of the target trajectory.

The successful use of the simplex method will need a good initial estimate. Sec­

tion 4.6 examines how the RMS error function varies between a target and estimated

signal. It shows a series of local minima with one global minima when the two sig­

nals match. Initializing the simplex anywhere but in this global minima will almost
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certainly result in an inaccurate estimate.

P relim inary R esu lts

This algorithm is an augmentation of the high level approach of Section 5.2.2 which re­

sults in good param eter estimation in itself. W ith 100 test patterns where the damping 

parameter £ ranges between (—0.4/u>n, 0.4/wn) (to prevent excessive overall damping or 

instability), an AAD of (0.03,3.2,63.4) is obtained without use of the simplex. Use of 

the simplex algorithm subsequent to this gives and AAD of (0.11,0.78,37.1). 15 of these 

have an RMS of less than  0.0001, which collectively have an AAD of (0.03,0.01,0.2).

These results show that this m ethod improves the estimate on frequency and ex­

ternal input, and when the RMS is very low, the estimate is very accurate. This is 

undoubtedly an improvement on the high level approach except for the damping pa­

rameter. The estim ate is poorer for £ than when a guess of zero is made! This is a 

reflection th a t the RMS is not particularly suited as a mechanism by which to deter­

mine this parameter. One pattern with an eventual RMS of 0.0002 has an AAD of 

(0 .8 ,0 .5 ,1.8). Another way of describing the problem is tha t for a certain RMS error, 

there is a range of combinations of the parameters and starting conditions which will 

produce such an RMS. It is just th a t the lower the RMS limit gets lower, the smaller 

the number of possible values of the parameters which are dramatically different from 

those that created the target data.

Use of the correlation and mean error function does not produce good results. 

The AAD is (0.031,3.1,64.5). This does suggest that the correlation function is more 

sensitive to damping, although the estim ate is really still poor.

Adding noise to the input signal decreases the accuracy of the simplex method. 

Table 5.7 shows the results.

These results can be compared with table 5.6 to see what improvement the sim­

plex algorithm gives over the plain high level approach. In all cases, the accuracy is 

greater with the simplex augmenting the high level algorithm. For example, with 0.1
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Noise Type AAD

e U

Initialization

algorithm

0.03 3.16 63.4

No noise 0.11 0.78 37.1

W hite noise 

A m p=0.1

0.18 1.38 46.1

W hite noise 

Amp=0.4

0.16 3.71 16111

Impulse noise 

P rob= 10% A m p=0.1

0.12 0.95 37.9

Impulse noise 

Prob=15% Amp=0.4

0.13 1.76 59.9

Table 5.7: Table showing A A D ’s fo r  the Downhill Simplex method with different levels 

of noise on the input signal.

magnitude white noise, the plain high level approach gives an AAD of (—,3.08,68.3) 

(no value available for the first term ), with a sample length of 16. The same sample 

length and noise level with the simplex gives an AAD of (0.18,1.38,46.1), a significant 

improvement.

There is a distinct disadvantage to using the simplex algorithm despite its obvious 

benefit in estimate accuracy. It is an algorithm iterates, and so takes a significant 

amount of time to run, many more times, say, than the high level approach alone.

C om m ents

As with many of the algorithms in this study, the Downhill Simplex method can be 

expected to improve in performance when the adaptive sampling frequency algorithm
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is used. Unlike o ther algorithms, this is not because a single cycle will be included in 

the input data block (although this may well aid accuracy), bu t because of the final 

and best estimate from a previous block can be used to  seed the algorithm for the next 

block of input signal. This will work best when the parameters vary least over time. 

This is covered in Section 5.3.4.

5.2 .4  N eu ral N etw ork s

Neural networks can be used for the parameter estimation task since they are well- 

known mappers between nonlinear input and output relationships. The mapping from 

an input signal to  a param eter such as damping or frequency is nonlinear, and so it 

is reasonable to use this approach. Further, neural networks are well-known for their 

noise tolerance, an im portant element of this study’s investigations.

A feedforward neural network can be used to estimate the parameters of a second 

order system by presenting the trajectory of the signal to the input layer of the network, 

and training it to output the desired parameters using an algorithm such as backprop- 

agation. By adding connections from either or both of the hidden and output layers, 

extra information is available for the network. When feedback connections lead from 

the hidden units to  the input layer, they are known as Elman connections, and supply 

the network with a view of its own internal representation of the problem. Feedback 

from the output units to the input layer allows the network to view its own estimates 

for the problem.

To allow networks with feedback to learn, they must be presented with a series 

of temporarily adjacent patterns. The network can then learn to  generalize over the 

entire length of the sequence. Training data is created, therefore, in groups, where each 

group consists of a  number of patterns to be presented to the network, which are part 

of the same sequence of input signal.
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Prelim inary R esults

Experiments quickly show tha t neural networks are lim ited in their ability for solving 

this problem, as found in param eter estimation with networks via derivative estimation 

(see Section 5.1.5). Training data tha t uses input signals which have a non-zero damp­

ing are not learnt, and a network trained with zero damping does not output accurate 

parameter values if the test data has non-zero damping. Further, input signals with 

external inputs which are non-zero are also not learnt well. Only frequency is estim ated 

with any real accuracy, and this only under limited conditions of zero damping and 

external input.

Neural networks do benefit marginally, however, from having recursive connections. 

A network with no recursive connections estimates frequency less accurately than a net­

work with connections from the output units to  the input layer. Recursive connections 

from the hidden layer to the input do not aid frequency estimation. The A A D omegan 

for a non-recursive network with data with zero damping and offset, and fixed ampli­

tude signals, is 1.2, whilst that of a recursive network is 1.1. Training is difficult, with 

momentum a necessary tool to obtain convergence. There is also a high sensitivity to 

the initial weight m atrix, and several runs have to be made for each network. Adding 

white noise to the test data gives an A A D Wn of 1.3 for both types of network.

Varying the size of networks gives a reasonable and predictable result; tha t is, with 

more hidden units the higher the accuracy of the output, and the more likely that 

training will be successful. Eight hidden units is found to be the minimum number 

of hidden units tha t give good accuracy. Increasing the number of input units also 

improves accuracy, but again, the effect gets less as the number increases.

Experiments show th a t use of feedforward neural networks for direct parameter 

estimation, even with recursion, is limited. The problem is, strongly nonlinear, and 

training is difficult being highly dependent on the initial weight matrix. Only frequency 

can be estimated with any reasonable accuracy and networks with recursive connections
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aid estimation only mildly.

Use of the adaptive sampling frequency algorithm can be expected to aid the ability 

of networks to estimate input signals with non-zero external input and varying ampli­

tude. Scaling of the input by first removing its mean, and then normalizing to unity, 

will become more accurate when one cycle of the input signal fits within one input 

pattern . This is covered in Section 5.3.5.

Fully R ecurrent N eural N etw orks

It is also possible to test a fully recurrent neural network, where there are only two 

layers to the network. The first input layer leads as normal to a second layer. This 

layer is fully recurrent, where every unit is connected via a weight to every other unit, 

including itself. The Real-Time Recurrent learning (RTRL) [44] is used to train  such 

networks. A network with ten  input units, and nine fully recurrent units trained with 

blocks of input signal and scaled frequency as the output, however, fails to make any 

learning.

C om m ents

Use of neural networks for direct param eter estimation is limited. The input signals for 

both training and testing must be relatively simple, having fixed amplitude, zero damp­

ing and zero external input. Networks with feedback connections, and also the fully 

recurrent neural network do not lead to any improvement in the parameter estimation.

5 .2 .5  G enetic A lgorith m s

A Genetic Algorithm (GA) is a search method particularly suited to multimodal pa­

ram eter space and also to problems which have highly nonlinear or even discontinuous 

solutions. Section 4.6 shows how matching an estimated signal to a target signal is 

multi-modal for both the RMS and correlation functions. It is also clear tha t the
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parameter estimation problem lies in the nonlinear domain.

A population of “chromosomes” encoding the parameters in a binary sequence 

combine to form offspring which can assert themselves in future generations of the 

population, depending on how well the offspring solve the desired problem. Essentially, 

the GA searches for solutions to  a problem near other solutions with a bias towards 

those solutions which appear promising. They are capable, however, of leaping from 

local minima to local minima in their search for an optimal solution.

F itness Functions

A GA is used here to search for the three parameters of the second order system. 

The fitness of an individual in the population is determined by recreating a signal 

from the parameters encoded in the individual, and comparing this with the  target 

trajectory. The most obvious method of comparison, the RMS, cannot be used without 

also estimating the initial conditions :rlo and a;2o. This is also true for the fitness 

function based on the correlation between the two signals and the difference in their 

means.

it is possible to devise a method where the initial conditions do not have to be 

estimated. This is performed by sweeping through possible combinations of the two 

variables, and recording, say, the fitness at each combination. Then after the sweep, 

the combination with the best fitness is taken as the fitness for this set of estim ated 

parameters. This method, however, increases the computational load considerably

A critical facet of GA’s is selecting a suitable fitness function. The two tested here 

are the RMS between the target and estimated signals, and a second function based 

on the correlation between the trajectories and the difference in their means. If x  is 

the fitness, then,

s i  / \ , f a c tu a l  f le s tim a te  ,  „ . N
X  — C o r r y y a c tu a l ,  y e s tim a te )  H 777 ( 5 * 4 )

97



where fx is the mean of a signal, and W  is some weighting value.

To perform an optimization w ithout directly estimating the initial conditions, each 

parameter estimate set is tested by sweeping the initial conditions. This is performed 

with,

X i o  —  COS(<56) T [Atarget

X 2 o  =  — COS( ^)

where </> is varies from 0 to 2tt in a fixed number of equally spaced steps. The greater 

the number of steps, the higher the accuracy, but the greater the computational load.

R esults

The GA is run using the one hundred test data sets and an AAD vector evaluated 

in the normal fashion for each run. Runs where the correlation function and mean 

function were used had a weighting value for W  of 30.0. Discussion of the W  variable 

is given in sectionsec:ch5-crga.

W ith the RMS fitness function, an AAD of (0.031,8.91,269.2) with a sample length 

of 16. When the correlation fitness function is used this improves to an AAD of 

(0.021,1.79,180.3). This is a predictable result; the RMS fitness function demands 

that the initial conditions m atch those of the target signal’s initial conditions, whereas 

the correlation and mean fitness function require only that they are in the correct ratio 

— a more flexible criteria. This is because it is the profile of the signals which provides 

a low error, rather than m atched values.

Attempting to optimize the estim ation by sweeping through values for the initial 

conditions, thus avoiding the necessity to estimate them at all with the GA, does 

not produce beneficial results. W hen the initial conditions are generated by sweeping 

through the phase divided into twenty, the AAD with the correlation and mean fitness 

function is (0.023,2.31,72.5), and the RMS fitness function is AAD is similar. This
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is an improvement for U by a factor of approximately 2, bu t does deteriate the u;n 

estim ate by approximately by 35%. It can be expected tha t the frequency estim ate 

will improve if the number of divisions for the phase is increased, but the algorithm 

will take proportionally longer to run.

It is possible to run the GA using the ASFA, even though the parameters do not 

vary, and still expect some benefit. The GA is run in a mode where the initial conditions 

are estimated. At the end of each block, each chromosome has the part of the bit string 

which represents the initial conditions replaced with binary representations of the final 

conditions of the estimated signal. Then, a t the beginning of each block after the first, 

the population will be primed with chromosomes which already have a high probability 

of representing good solutions.

W ith the correlation and mean fitness function, an AAD of (0.027,1.93,95.2) is 

obtained. This is slightly poorer for the frequency estimate, but as with the sweep 

method, an improvement of nearly a factor of 2 for the external input.

N oise  T olerance

Noise tolerance is tested with a GA using the correlation and mean fitness function 

over a single block of incoming data. The sample length is 16, and the frequency can 

range between / s /4  to 1% of this value. The GA has a population of 50 chromosomes 

and runs lor 300 generations. The results of adding different levels and types of noise 

are shown in table 5.8.
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Noise Type AAD

f U

No noise. 0.021 1.79 180.3

White noise 

Mag=0.1

0.026 2.24 167.5

W hite noise 

Mag=0.4

0.030 3.10 186.5

Impulse noise 

P rob= 10% A m p=0.1

0.031 2.00 114.1

Impulse noise 

Prob=15% Amp—0.4

0.028 2.24 157.1

Table 5.8: Table showing AAD  vectors with the GA method using the correlation and 

mean fitness function, when different types and levels of noise are added to the input 

signal.

5.3 C ontinuously R unning B lock Param eter E sti­

m ation

5.3.1 In troduction

In subsequent sections, experiments and results for parameter estimation of a second 

order system are given when performed in a continuously running mode. Importantly, 

the param eters of the system vary smoothly with time. A block of data is fed into 

the param eter estimation algorithm and an estimate is generated by this module. The 

Adaptive Sampling Frequency Algorithm (ASFA) is applied to adjust the sampling 

frequency to increase the accuracy of the estimates. The next block is then fed in, and 

the param eter estimation repeated.

There is an element of feedback, when the estimate for the frequency of the input
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Figure 5.5: Profile of an input signal where just the £ parameter is adjusted in a 

sinusoidal fashion, a) The second order system signal, b) The £ parameter variation.

signal is used to adjust the sampling frequency with which the next block is read in. 

This is the adaptive sampling frequency algorithm (ASFA). As described in previous 

sections, significant improvements in the accuracy of the estimates can be expected 

when the ASFA is applied.

When running in the continuously running mode, the data generation module can 

be set to vary the value of the parameters. This will affect the profile of the generated 

signal, and the parameter estim ation methods will be expected to track the parameter 

variation.

How the variation of a param eter during the course of the data generation is shown 

in the the following figures. Adjusting the £ term in a sinusoidal fashion results in 

the profile of Figure 5.5, in the absence of other parameter variation. The amplitude 

modulates at the same rate as the £ variation.

Varying the frequency uon (fig. 5.6) produces a double effect. Naturally, the fre-
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Noise Type AAD

( U

No noise. 0.021 1.79 180.3

W hite noise 

Mag=0.1

0.026 2.24 167.5

W hite noise 

Mag=0.4

0.030 3.10 186.5

Impulse noise 

Prob=10% Amp=0.1

0.031 2.00 114.1

Impulse noise 

Prob=15% Amp=0.4

0.028 2.24 157.1

Table 5.8: Table showing A A D  vectors with the GA method using the correlation and 

mean fitness function, when different types and levels o f noise are added to the input 

signal.

5.3 C ontinuously R unning B lock  Param eter Esti­

m ation

5.3 .1  Introduction

In subsequent sections, experiments and results for param eter estimation of a second 

order system are given when performed in a continuously running mode. Importantly, 

the parameters of the system vary smoothly with tim e. A block of data is fed into 

the parameter estimation algorithm and an estimate is generated by this module. The 

Adaptive Sampling Frequency Algorithm (ASFA) is applied to adjust the sampling 

frequency to increase the accuracy of the estimates. The next block is then fed in, and 

the parameter estimation repeated.

There is an element of feedback, when the estim ate for the frequency of the input
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Figure 5.5: Profile o f an input signal where just the £ parameter is adjusted in a 

sinusoidal fashion, a) The second order system signal, b) The £ parameter variation.

signal is used to adjust the sampling frequency with which the next block is read in. 

This is the adaptive sampling frequency algorithm (ASFA). As described in previous 

sections, significant improvements in the accuracy of the estimates can be expected 

when the ASFA is applied.

When running in the continuously running mode, the data generation module can 

be set to vary the value of the parameters. This will affect the profile of the generated 

signal, and the param eter estimation methods will be expected to track the parameter 

variation.

How the variation of a parameter during the course of the data generation is shown 

in the the following figures. Adjusting the £ term in a sinusoidal fashion results in 

the profile of Figure 5.5, in the absence of other param eter variation. The amplitude 

modulates at the same rate as the £ variation.

Varying the frequency u)n (fig. 5.6) produces a double effect. Naturally, the fre­
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Figure 5.6: Profile of an input signal where just the ton parameter is adjusted in a 

sinusoidal fashion, a) The second order system signal, b) The ton parameter variation.

quency increases and decreases with the param eter variation. Secondly, the amplitude 

increases with lower frequency and vica-versa. This can be understood by considering 

the second order system of a pendulum in the form of a weight on a string. W hen 

set swinging it will oscillate with a  fixed amplitude. If the  string is shortened, the 

frequency will increase, and also, the amplitude will decrease. Increasing the string 

length will result in a lower frequency but a larger amplitude.

Varying the external input only has the effect of shifting the mean position of the 

signal (fig. 5.7).

Although varying each param eter individually, whilst the other two remain con­

stant, gives rise to simple wave forms, combining variations in the parameters gives 

more complex profiles since both the overall damping and the mean position are func­

tions of ton as well as the more obvious £ and U respectively. This can be seen in 

Figure 5.8 where the variations of the three previous examples are combined in one
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Figure 5.7: Profile of an input signal where just the U parameter is adjusted in a 

sinusoidal fashion. a) The second order system signal, b) The U parameter variation.

input signal. It is possible to  tell by inspection that the frequency starts off high, 

grows lower, and then again higher in the course of this sample. It is not so trivial 

to determine, if indeed possible by eye, .that the damping and external inputs are also 

varying.

It is the task of the param eter estimation module to give as accurate an estimate 

of the parameters at the end of each block.

Perform ance M easurem ent

To measure the performance of each method, an extension of the AAD vector is used 

whereby for a run consisting of N b blocks of input signal, the total AAD, or TAAD, is 

evaluated as,

I  N b- i

TAAD  = —  g  AAD ,. (5.5)
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Figure 5.8: Profile of an input signal where each parameter is varied in a sinusoidal 

fashion.

This is covered fully in Section 4.5.

Test D ata

Test data  consists of one hundred initial param eter settings, including initial conditions. 

These allow a test signal to be generated, as with previous experiments. Variation of the 

parameters is achieved by a sinusoidal pattern proportional to  the frequency parameter. 

It is necessary, however, to maintain the £ parameter at zero to  ensure tha t the signal 

does not become either damped to a zero magnitude, or expand to excessive values. 

At a given tim e t, the frequency and external input are based on their initial value as,

u>n(t) — w„(0) +  0.3 x u>n(0) sin(0.05u?n(0)t)

U(t) — U(0) +0.1 x U(0) cos(0.04o;n(0)t)

Hence, the frequency will change in magnitude by 30% with at l/2 0 th  of its actual 

frequency. Similarly for the external input, it will vary by 10% of its initial value at 

1 /25th  of the initial frequency. This variation in parameters gives significant alteration 

to the initial values which the estimation algorithms must be able to cope with. Making 

the variations proportional to the initial frequency ensures tha t no excessive or too rapid 

a change in the parameter values is seen. W ith the random nature of the  initial values,
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the test signals therefore represent a constrained but variable, and meaningful test set.

Unless otherwise stated, experiments for evaluating a TAAD vector run for ten 

blocks.

5.3 .2  D erivative E stim ation  For C ontinuous P aram eter E sti­

m ation

This section continues the work of Section 5.1.3 where the parameters of the second 

order system are estim ated based on a polynomial least squares fit to the input tra ­

jectory. This method is the most effective tested and so is passed on for continuous 

parameter estimation.

Prelim inary R esu lts

As shown in Section 5.1.3, it is possible to get an arbitrary accuracy on the param eter 

estimation using polynomial least squares fitting when no noise is present. This is 

also true for continuous param eter estimation when the parameters vary with tim e, 

except th a t to achieve the same degree of accuracy with tim e varying parameters, 

the polynomial order (and hence the sample length) must be increased. For example, 

when there is no param eter variation, a sample length of 7 and maximum order 6, 

results in a TAAD of (0.002,0.22,9.6). To achieve the same order of accuracy when 

the parameters vary with tim e a sample length and corresponding maximum order of 

twelve is required.

This can be explained by recalling tha t the derivatives are calculated at the mid­

point of the signal, since this is where the higher orders of the polynomial have their 

most accurate values. The TAAD takes the target parameter values from the end of 

the block, and since these are different in the parameter varying case from the centre 

of the signal, the TAAD will be greater.
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Noise Type Out of range

If 1 >  0-6

AAD

f U

No noise 0 0.008 0.36 13.2

W hite noise 

0.1 mag

0 0.065 1.73 64.9

White noise 

0.4 mag

4 0.23 76.0 59,000

Impulse noise 

10% prob 0.1 mag

0 0.028 1.37 54.7

Impulse noise 

15% prob 0.4 mag

1 0.104 8.00 1519

Table 5.9: Table showing TAAD vectors fo r  parameter estimation using derivative

information obtained from polynomial least squares fitting. Noise o f different types and 

magnitudes is added to the input signal.

N oise Tolerance

In a more realistic scenario, noise will be present on the input signal, and in this 

situation, the maximum order for a given sample length cannot be used, as described 

in Section 5.1.3. Table 5.9 shows the results of running test signals where noise is 

added to the incoming signal. Here, the sample length is 12, with a polynomial order 

of 7, and n c  set to 8.

Experiments show that when noise is added to the signal, even relatively small 

amounts eg. 0.1 magnitude white noise, this algorithm cannot estimate with any 

certainty low frequency signals in the first data block. As a result, the ASFA sets 

an inappropriate sampling frequency and subsequent blocks also give inaccurate esti­

mates. W ith an initial sampling frequency of 25Hz, signals above approximately 1Hz 

are estimated correctly, whilst those below result in inaccurate estimates. The data
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sets for table 5.9 use frequencies between 1 and 6.25Hz. If frequencies below this are 

required when noise is present, then a lower initial sampling frequency must be used.

C om m ents

When white noise of magnitude 0.4 is added, the TAAD has unreasonable values. 

Although many of the test signals have much more reasonable AAD’s, this result does 

indicate the instability of this algorithm with these parameters. Increasing the sample 

length does allow for improved performance - increasing from 12 to 24 gives a TAAD 

of (0.167,17.2,310). Again, overall unacceptable, but it does indicate that more of the 

test signals are being correctly estim ated and “locked onto” by the ASFA.

5.3 .3  H igh Level M eth od

This method, using a Fourier transform to extract features of the signal, is an accurate 

parameter estimation approach as demonstrated in Section 5.2.2. It is also particularly 

resilient to noise corruption.

Since the accuracy of param eter estimates in this method are dependent upon the 

frequency estimate, with both U and (  being functions of ujn, higher accuracy can be 

expected with a long sample length allowing the FFT to return a more precise value 

on the dominant frequency. If the ASFA were not being used, the benefit obtained 

from long sample lengths would have to be countered with the fact tha t the frequency 

in the sample is changing with tim e and a short sample would give the most accurate 

result. Due to the ASFA where nc  points occur per cycle, a suitable value for the ratio 

of N /n c  must be maintained, where N  is the sample length.

Prelim inary R esults

If the ratio N /n c  is high eg. N  = 64 and nc — 4, then after a few blocks, approximately 

eight cycles would be in the sample the FFT performs on. In this time, a significant
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N /n c TAAD

£ U

16/4 0.009 2.5 47.4

32/8 0.009 2.6 46.0

64/16 0.0083 3.1 56.4

Table 5.10: Table showing the TAAD of one hundred test signals with different sample

lengths, but kept in a fixed ratio o f N /nc* Ten blocks are used.

change in the actual frequency can occur and so an erroneous result returned. W ith 

a ratio of one, however, the ASFA would be not be able to operate properly since the 

sampling frequency could not be adapted to low frequencies.

A ratio of two or four is suitable. Improved results are obtained by increasing the 

sample length. This is not a problem after a few blocks, since the ASFA adjusts the 

sampling frequency so th a t only a sample where the frequency change is small is used. 

Results are shown in table 5.10.

There is a danger which must be avoided. If the sample length is too large, the first

block will cover a large segment of time, over which the frequency variation itself may 

complete at least one cycle. This can result in a low frequency oscillation becoming 

dominant in the Fourier transform, giving a grossly inaccurate result. This problem is 

due partly, however, to the specific manner in which the test data is created, and may 

not always apply in a real world situation.

Although the accuracy of the damping and frequency estimates improves as the 

sample length improves with the fixed ratio, the estimate of external input does not 

follow the same pattern. The estim ate for U is based on the mean of the signal segment, 

as well as the frequency estimate. The variation of the two are independent and it can 

be only this which explains the reduction in accuracy.

Figure 5.9 shows the actual and estimated frequency of a signal over the course of
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Figure 5.9: Figure showing the estimated and actual frequency of a signal over the 

course o f a run.

a run, with a data point collected at the end of each block. It can be seen how the 

estimated frequency lags actual frequency.

N oise Tolerance

Noise tolerance is very good with moderate noise levels (see table 5.11). When white 

noise of magnitude 0.3, or impulse noise of magnitude 0.1 and probability 10% is 

applied, the A AD at the end of each run is almost unchanged from the tests where 

noise is absent, and indeed, is slightly lower.

As the noise levels increase, however, the chance of a different frequency other 

than the actual frequency being dominant in the PSD becomes more probable. When 

this happens it is a catastrophe for the algorithm in its current form. If the wrong 

frequency is returned as dominant, the sampling frequency for the next block of data is 

inappropriate. This easily leads to  the actual signal being lost to aliasing or swamped
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in a low frequency bin. It is possible for the estimated frequency to explode into 

unrealistic values.

W hen the parameters are varying, the system is more susceptible than when the 

param eters do not vary. This is because the dominant frequencies of the signal may 

cross frequency bin boundaries, and so the power of the signal will be spread across 

more than  one frequency bin. As a result, noise does not have to be of such a great 

m agnitude to become dominant. So, although in Section 5.2.2 white noise levels could 

rise up to 0.4 and above without problems, the level is much lower in this situation.

Safeguards could be put in place which check tha t the estimated frequency is not 

going beyond expected bounds, or th a t the dominant frequency is not too different 

from the dominant frequency in the previous block. Once noise levels have risen above 

a certain level, however, it is unreasonable to expect this approach to  be able to  cope 

consistently. It can be pointed out though, that once noise has risen to such levels, it 

is unreasonable to expect any method to  extract a signal from so much noise.

5 .3 .4  D ow nhill S im plex M eth od

In Section 5.2.3, the Downhill Simplex algorithm is applied to the initial stage of 

param eter estimation when an estimate is required for the first block of incoming data. 

In m any cases, results were very good, with highly accurate results being obtainable 

where the RMS fell below 0.001 and param eter estimation is approximately to three 

significant figures. There are also failures amongst the successes, however, where the 

simplex sought a solution in a non-global minima. W ithin the perm itted number of 

function evaluations, it was not able to find a solution near the actual.

The task for the algorithm is made more difficult in the continuously running mode 

of operation. Previously, the function th a t the simplex algorithm used to generate its 

estim ate signal from the estim ated parameters was identical to that which generated 

the target signal from the target parameters. In continuously running mode, this is no
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Noise Type TAAD

f U

No noise 0.009 2.48 47.4

W hite noise 

Mag.=0.1

0.009 2.49 47.8

White noise 

Mag.=0.4

0.010 3.63 79.0

Impulse noise 

Prob=10% Amp=0.1

0.009 2.48 47.7

Impulse noise 

Prob=15% Amp=0.4

0.010 2.61 66.3

Table 5.11: Table showing TAAD for test signals estimated using the continuously 

running High Level method, with noise added to the incoming data.
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longer the case, since the actual signal is generated using two additional parameters 

— the frequency and external input variation parameters. This study does not use a 

simplex which attem pts to find the variation rates, although it is capable and could 

lead to a more accurate param eter estimation method.

There are further problems for this algorithm when used in the continuously running 

mode; a run made up of say, ten blocks of data, has ten opportunities to go wrong. 

This is significant because at the end of each block, the estimated parameters and 

final conditions are used to seed the algorithm at the start of the next block. Since the 

performance of the algorithm is heavily dependent on the starting estimated parameter 

values, when these are wrong, the algorithm has little chance of getting back on the 

right track and there is a high probability that all subsequent estimates will miss the 

mark. The whole system may also go unstable if the ASFA is used and inappropriate 

sampling frequencies are used to read in the next block. In brief — if the algorithm gets 

the estim ates significantly wrong on one data block, it will probably get all subsequent 

estimates wrong.

As in the previous section for this algorithm, the initial estimate to seed the simplex 

is based on the results of applying the high level approach of Section 5.2.2. At the end 

of the algorithm’s iterations, its estimates for the parameters and the final state of Xi 

and x 2 are used to initialize the algorithm for the next block of input data.

P relim in ary R esu lts

In Section 5.2.3, 3% of the test signals concluded with an estimate of frequency which 

was over a factor of two out. An equivalent run where the parameter values were 

changing with tim e, 5% of the signals were incorrectly estimated by a factor of two 

or more. All such cases are less than approximately 1Hz. The problem is due to the 

initialization method which uses an FFT, which can only return quantized values for 

the frequency, and at the low frequency end this means that frequencies are estimated 

incorrectly by over a factor of two. It has be shown th a t it is difficult for this method
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Number of 

blocks

TAAD

U

1 0.002 2.29 46.7

10 0.006 1.92 48.7

Table 5.12: Table showing TAAD in non-continuously and continuously running mode.

to  escape such local minima (sec. 4.6). The effect can be eradicated by limiting the fre­

quency allowed in the test data to  greater than 1Hz or by reducing the initial sampling 

frequency, in which case the maximum frequency tested m ust be reduced. Alterna­

tively, the effect can be tempered by using a longer sample length so the FFT can 

return a more accurate frequency estimate.

Table 5.12 shows the TAAD vectors for the test data in both  the non-continuous 

and continuously running modes. There is no great difference in performance between 

the simplex method applied to a single block of da ta  or after ten consecutive blocks, 

except in the case of the frequency estimate.

Figure 5.10 shows the frequency estimate for one test vector over the ten blocks. 

Although the estimate tracks the actual value for the m ajority of the run, at the end the 

estimate is nearly half of the target. W ith the penultim ate block’s estimate beginning 

to wander, this confirms the  difficulty tha t this algorithm can experience when seeding 

with the previous blocks estimate. It is also an im portant indicator, that the failure of 

the algorithm occurs on the most rapidly varying section of the  graph.

N oise Tolerance

Tolerance to noise is tested by adding white noise and impulse to the test signals as 

they are generated. Each signal lasts for ten blocks and the ASFA is used. Results are 

shown in table 5.13.

It is evident tha t noise does result in a reduction in performance for this method.
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Noise Type TAAD

£ U

No noise 0.006 1.92 48.68

W hite noise 

0.1 mag

0.007 2.22 62.6

W hite noise 

0.4 mag

0.006 2.74 89.1

Impulse noise 

10% prob. 0.1 mag

0.006 1.98 50.1

Impulse noise 

15% prob. 0.4 mag

0.006 1.91 60.5

Table 5-13: Table showing TAAD for test signals estimated using the continuously

running Downhill Simplex method, with noise added to the incoming data.
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Figure 5.10: The actual and estimated frequency of a test signal. The last two blocks 

are poorly estimated.

It is interesting to note th a t the performance degrades proportionally with noise mag­

nitude, as one would expect.

C om m ents

This algorithm works well when the initial estimate for seeding is within the global 

minima. When this is not. the case, however, it cannot remove itself from the incorrect 

local minima. This poses particular problems when consecutive blocks depend upon 

prior estimates for seeding purposes.

Otherwise, this algorithm has been robust, and behaves well when noise is added. 

It is, however, slow. Many evaluations of the functions require evaluating for the this 

algorithm.
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5 .3 .5  N eural N etw ork  For C ontinuous P aram eter E stim ation

In Section 5.2.4 it is shown th a t neural networks can be used successfully for direct 

param eter estimation with certain restrictions. These are th a t the input patterns need 

to be of constant amplitude and zero damping and external input. The networks are 

unable to  generalize with training data th a t has inputs patterns which do not comply 

to these restrictions, even with pre-scaling.

It is reasonable to expect a neural network to have further difficulty with parameter 

estimation when the frequency param eter varies with time. In* training, the neural net 

is exposed to signal data tha t has a fixed frequency. Yet, when used in this application, 

the input pattern is no longer of a  single fixed frequency, but rather, in some fashion 

varies.

R esu lts

A feedforward neural network with sixteen input units, twelve hidden units and one 

output unit to estimate the frequency is trained with training data which conforms to 

the restrictions. Further, the training data consists of signals with a fixed frequency. 

The network is then used in forward pass mode. The estim ated frequency is used in 

the ASFA, where the estim ated frequency is adjusted by the ratio of f r / f s ? where f§  

is the current sampling frequency, and f j  is the sampling frequency used to generate 

the training data for the network. This is in addition to  the scaling of the frequency 

output.

In the tests, only the frequency is varied in a sinusoidal fashion as before. This 

is compared with similar test signals whose parameters do not vary with time. The 

former set is also tested when noise is added to the signals. The results are shown in 

table 5.14. Only the TAAD of the frequency parameter is shown since both f  and U 

remain zero throughout all tests.

W hen there is no variation in the frequency parameter over the ten data blocks, the
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Signal Type can TAAD

No freq var., 

No noise

0.96

W ith freq var. 

No noise.

2.70

W hite noise 

0.1 mag

2.81

W hite noise 

0.4 mag

4.32

Impulse noise 

0.1 mag 10% prob

2.77

Impulse noise 

0.4 mag 15% prob

3.74

Table 5.14: Table showing TAAD for different test signals, using a neural network for  

parameter estimation.

network is able to estim ate the frequency with good accuracy (TAAD= 0.96). When 

the signal’s frequency varies with time, however, the TAAD degrades to 2.7. In this 

situation, the network is being presented with subtly different signals to those it is 

trained with, and the difference manifests itself in the reduced performance. It would 

be possible to  train the network with test signals which did vary in time in the same 

fashion as the test data. This is only a practicable idea if the manner of the param eter 

variation is known in advance since there is literally an infinite number of different 

ways the signal could vary, and it is not sensible to propose to train  a network for each 

of many possibilities.

Noise tolerance is reasonable, with only significant degradation in performance oc­

curring when noise levels are high.
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C om m ents

Use of neural networks for param eter estimation is limited to a narrow range of pos­

sible situations. Damping and external input must remain zero, as well as the signal 

amplitude remaining constant. Noise tolerance is, however, reasonable.

5.3.6 G enetic  A lgorith m s For C ontinuous P aram eter E stim a­

tion

Section 5.2.5 uses a genetic algorithm (GA) to estimate the parameters of a second order 

system for a single data block, and when the parameters do not vary with time. There 

are only minor adjustments which are required for the algorithm to work effectively on 

a set of continuous blocks, and employing the ASFA.

As with the Downhill Simplex m ethod, a GA estimates not just the parameters, 

£, wn and £/, but the initial conditions too, £ l0 and x 2o- This is necessary since the 

GA works by comparing a signal generated by the estimated parameters with the 

original input signal. Whereas the param eters are slowly varying with time, the initial 

conditions from one block to another are wildly different. As a result, the estimates 

for Xio and x 2o need updating in the GA population when a new block is started. 

The encoding of the parameters in the population remains unadjusted. Although it is 

possible to have a fitness function th a t doesn’t directly depend on the GA to estim ate 

the initial conditions, the results of Section 5.2.5 indicated tha t the performance of such 

a fitness function is not high, and it increases the computational load of the algorithm 

considerably.

The updating of Xi0 and x 2o is achieved by decoding the each chromosome in the GA 

population, and calculating the final conditions. These are then encoded and replace 

the old initial conditions in the chromosome.
I

It is im portant to note a problem also experienced by the Downhill Simplex method, 

which is that the fitness function fits a second order system signal to a target signal
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where the parameters are varying in tim e ie. it attem pts to m atch the target signal 

with something only similar to it.

G A  Param eters

There are a large number of factors controlling a GA, although they are well known 

for their robustness, and can perform well with a wide range of settings. For example, 

the m utation and crossover probabilities can have a wide range of values and yet the 

GA will still produce good results.

Despite this, some experiments are designed to test the difference in performance 

of the GA with a range of varying factors. As well as the study of the influence of 

noise, five other points are investigated;

1. Number of generations. Runs are made to confirm that increasing the number of 

generations increases convergence.

2. Checking whether maintaining the same population throughout a series of blocks 

is better than starting with a new population at the start of each block.

3. When a population is maintained throughout a parameter set, does adding a 

perturbation to the initial conditions aid performance?

4. How can the fitness function be varied to improve performance?

G enerations

There are two parts to finding the influence of more generations. Firstly, a run is 

performed where only one block per set is made, and then secondly, a run with ten 

blocks is performed. Each is done for a variety of generations. The results are shown 

in table 5.15.

It can be easily understood th a t when only one block per target parameter set is 

performed, the estimation becomes more accurate as the number of generations increase
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Number of TAAD 1 block TAAD 10 blocks

generations U f U

100 0.006 3.49 279.2 0.015 2.71 147.6

200 0.012 3.13 98.4 0.016 1.89 81.8

300 0.011 3.03 72.7 0.016 1.79 67.5

400 0.015 2.97 69.8 0.022 2.52 114.90

Table 5.15: Table showing the TAAD vectors fo r  one block and ten block runs where 

the number of generations of the GA are increased.

— the extra  generations allow a lower error to  be achieved in the population. When the 

mode of operation is continuous, however, and the population is maintained throughout 

the ten consecutive blocks, the performance drops between 300 to 400 generations.

This phenomena is due to a too high a degree of convergence in the population. 

W ith each consecutive block the population becomes less diverse, and the chromosomes 

in the population represent highly similar solutions. Then, as the next data block brings 

in a new signal with different characteristic parameters, the population is unable to 

adjust via the main operator of crossover. Only the weakly contributing mutation 

operator can shift the population. When the number of generations is lower eg. 200, 

the population is not able to converge to the same extent and stagnate in one particular 

solution. Instead, a diverse selection of chromosomes is maintained which are able to 

contribute usefully by supplying a range of chromosome bits in the crossover operator.

C ontinuous Populations

In the previous section where the number of generations is adjusted, the population 

could stagnate and would fail to adapt if the number of generations grew too high. 

This effect is caused by the use of a continuous population ie. one th a t is created at 

the beginning of a param eter set search, and remains until all through the blocks. The
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alternative is to completely re-create a population at the beginning of each block. This 

does not incur any extra computational work, since even in the continuous population 

each chromosome needs its initial conditions updating and re-ranking.

A run where the population is maintained has a TAAD of (0.016,1.79,67.5). A 

TAAD of (0.014,1.95,152.1) is obtained when the population is re-created at the be­

ginning of each block. This indicates a benefit in using a continuous population.

Here, there were 300 generations. Improved accuracy may be obtained by using a 

re-created population and increasing the number of generations. This approach will 

not incur the problems of stagnation but will require greater computational time.

In itia l C ondition  P erturbation

W hen running a continuous population, the initial conditions for each chromosome are 

updated at the end of each block so tha t they represent the new initial conditions for 

the s tart of the next block. Due to the parameter variation, however, these will not 

be wholly accurate and some benefit could be obtained by perturbing the new values 

represented.

This is achieved at the end of each block by adding a small random value propor­

tional to the initial conditions’ value, ie.

Xi0(new) = x i0(old) +  p x x lo(old). (5.6)

Table 5.16 shows a table of results where p varies. It is clear tha t this approach 

does not improve GA performance.

F itn ess Function Variation

In Section 5.2.5 the RMS function is shown to be a poor fitness function. This is 

true also in the continuously running case. There is also the possibility of varying the 

correlation and mean function.
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p TAAD

f U

0% 0.016 1.79 67.5

1% 0.018 1.72 71.0

5% 0.024 2.27 88.8

10% 0.014 2.30 93.5

Table 5.16: Table showing the TAAD vectors when the perturbation percentage varies.

The variable W  from Equation 4.4 can be varied to adjust the relative importance 

of the mean function to the correlation function. Figure 5.11 shows a graph describing 

the TAAD values for the frequency and external offset values for a range of values for 

W . When the value of W  is large, the significance of the  mean function is less, and the 

profile of the target and estim ated signals is more im portant. As a result, the frequency 

TAAD is smaller. The inverse of this affect is observed when W  becomes smaller.

N oise Tolerance

Based on the experiments described above, a GA can be produced which will give a 

high performance, and can be tested when noise isp resent on the input signals. The 

GA parameter settings are to have a continuous population over the ten blocks of each 

test set, no initial condition perturbation, a fitness function utilizing the correlation 

and mean functions with W  set to  30, and a maximum number of generations of 300. 

Table 5.17 shows the results when various types and magnitudes of noise are imposed 

on the input signals.

C om m ents

A genetic algorithm (GA) is a general optimization m ethod th a t is capable of estimating 

the parameters of a second order system to-a good degree of accuracy. It is able to
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Figure 5.11: Variation o f TAAD ’s fo r  frequency and external input when the W  variable

is adjusted fo r  the fitness function .

produce good estimates under a wide range of settings.

It has been shown th a t the best fitness function combines the correlation func­

tion between the target and estimated signals, and the difference between the means.

For continuously running, the chromosomes in the population need to be updated to

represent the last known conditions in preparation for the next block.

5.4 D iscussion

As described in Chapter 3, the continuously running parameter estimation algorithm

requires an estimation algorithm to seed a recursive method. It turns out th a t all

algorithms can be used for the initial estimation, whilst only a few can be adjusted to

benefit from a recursive mode of operation.

Given below is a summary of the results obtained by the experimentation discussed

in this chapter. The first section describes the performance of algorithms for a single
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Noise Type AAD

f U

No noise 0.022 1.74 82.5

W hite noise 

Mag=0.1

0.020 2.23 86.3

W hite noise 

Mag=0.4

0.019 3.41 121.3

Impulse noise 

Prob=10% Amp=0.1

0.024 2.04 80.0

Impulse noise 

Prob=15% Amp=0.4

0.023 2.44 114.3

Table 5.17: Table showing TAAD vectors for parameter estimation using a genetic 

algorithm (GA). Noise o f different types and magnitudes is added to the input signals.

block of incoming data where the parameters are time invariant. This gives a measure 

of which algorithms are best suited to  the first stage of the complete continuously 

running algorithm. Both noisy and noiseless input signals are summarized. Following 

this is a summary of results obtained for time varying param eters, and where the 

adaptive sampling frequency algorithm is used.

5.4.1 In itia l P aram eter E stim ation

Each estimation algorithm is tested for parameter estimation with a single block of 

incoming signal. The signals are generated from parameters th a t do not vary in time. 

Table 5.18 shows the results of each m ethod when no noise is present on the signal. 

The ranking is dependent on the accuracy of the frequency estimate.

All the algorithms had only a short sample of data to make the estimation with. 

Typically the length is 16 data points sampled at 25Hz. The sample is kept short since
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Estimation Out of range AAD

Algorithm Ifl >  0-6 ( U

Difference equations 20 0.26 0.16 12.4

Polynomial LS 0 0.04 0.3 51.3

Simplex with RMS 0 0.11 0.78 37.1

FFNN’s via deriv. est. 0 0.04 0.91 36.4

FFNN via direct est. - - 1.2 -

GA with corr+m ean 0 0.021 1.79 180.3

FFT (Block length=16) - - 3.08 68.2

Table 5.18: Summary of A AD  vectors for estimation algorithms with noise free in­

put signals and non time-varying parameters after one block. Ranking is in order o f 

accuracy o f frequency estimate.

the methods may wish to be used in a parameter varying situation, and short samples 

are required so that the variation can be tracked and updated frequently. It can be 

expected for some methods, however, that longer samples will improve accuracy, for 

example the high level approach using an FFT will increase its frequency estimate in 

proportion to the length of the sample.

Although the difference equation method produces the most accurate frequency and 

external input estimates, its damping estimate is poor. More importantly, 20% of the 

estimates have such poor estimates for damping they are excluded.

Polynomial LS fitting gives the highest damping accuracy, and the next best fre­

quency estimate, although the external input estimate is relatively poor. It may be 

recalled tha t an arbitrary accuracy can be obtained with polynomial LS fitting when 

no noise is present.

Use of neural networks for derivative estimation produces relatively good results 

across all three parameters. However, it should be noted that the network doesn’t per­
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form well with signals tha t have non-zero damping, and the results shown are generated 

when such signals are used in the testing.

Another consideration is the computational complexity of each algorithm. This will 

be dealt with in depth in Section 5.4.3.

Table 5.19 shows a table of results for the estimation algorithms when noise is 

present on the incoming signal. Results for white noise of m agnitude 0.1 and impulse 

noise of amplitude 0.1 and probability 10% are shown.

Performance of each algorithm is similar for each type of noise w ith only slight 

variations between them. Polynomial LS fitting ranks top in both situations due to 

its good frequency estimation. Its damping and external input estim ation is poor, 

however, relative to the other methods. Further, it also fails on its damping estimate 

completely in a good proportion of cases. Difference equations have an even greater 

failure rate when noise is present.

It is interesting to note the accuracy with which the GA can estim ate the damping 

coefficient despite its relatively mediocre ranking. This is most likely due to the corre­

lation function used in the fitness function of the GA, which takes into consideration 

the differences in the profiles between the target and estimated signals.

In considering which of the algorithms is “best”, it must be remembered the purpose 

of using the algorithms in this fashion, which is to give an estim ate of the parameters 

which can then be fed to another algorithm, which will probably operate in a recursive 

mode. This algorithm will require a good estimate of all three parameters. Possibly 

more im portant than this, however, is to consider the effect of the adaptive sampling fre­

quency algorithm. This depends only on the frequency estimate, and a good frequency 

estim ate will provide the following algorithm to operate optimally. This algorithm, 

with a good estim ate for frequency, can then make accurate estimates of the other two 

parameters even if the seed value is poor.

As a result, despite the polynomial LS algorithm’s lack of accuracy in the damping
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field, since it produces the m ost accurate frequency estimate when noise is present, and 

the second most accurate when noise is absent, it is better th a t it should be selected as 

the algorithm used in the first stage of the continuously running block algorithm. It is 

possible though, that specific applications will require more accurate initial estimates 

of damping and external input.

5 .4 .2  R ecursive B lock  E stim ation

Continuously running param eter estim ation differs from the initial param eter estim a­

tion in two important ways; Firstly, the  parameter values vary with tim e. Secondly, 

several of the estimation algorithms use information from prior blocks to aid estimation 

in the current block.

In the simulations, the param eter values vary sinusoidlally, except for the damping 

parameter which is kept at zero to  prevent the signal value either vanishing to zero or 

exploding. Each run lasted ten blocks and the adaptive sampling frequency algorithm 

is used to increase the accuracy of the estimates. Measurement of performance uses 

the TAAD (Total Absolute Average Difference) which compares the estimates with the 

actual values after each block in a run.

Tables 5.20 shows a summary of the TAAD vectors obtained for each of the methods 

used under these conditions under three noise situations. Namely, no noise present, 

white noise of magnitude 0.1 and impulse noise of amplitude 0.1 and probability 10%. 

Ranking is in order of accuracy of the frequency parameter.

In all situations the polynomial LS method gives better results by a significant 

margin. When noise is absent in particular the estimate of all three parameters is 

high.

Both the Simplex and GA m ethods have broadly similar results, although the GA 

appears less able to estim ate damping. Interestingly, the Simplex is superior to the 

High Level approach. This is because the since the Simplex initializes itself with the
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High Level algorithm.

As presented, the summary results do not give full note of the ability of the High 

Level method. This algorithm is particularly resilient to noise and can give results 

similar to those presented here even when noise levels are four times; or even more, the 

level.

5.4 .3  C om putational C om p lex ity

In computation quantities, the algorithms vary significantly (fig. 5.12). All the algo­

rithms take more computations the longer the block length, but in different proportions. 

The Simplex and the GA varies linearly with block length, although they do have sig­

nificant other overheads. The NN algorithm varies depending on the size of the network 

used and lies somewhere close to the proportion of the square of the block length. The 

High Level method which uses an FFT  has a workload proportional to the TV log N , 

where N  is the block length. Finally, the polynomial LS m ethod’s computations is 

proportional to the square of the block length.

Having stated these figures, however, it must be noted th a t the FFT, the LS fit 

and the NN are fast algorithms, especially when compared to  the Simplex and GA 

methods. These latter two make many repetitions of calculations per block, whereas 

the others make only a single sweep per block.

In practice, therefore, the Simplex and GA methods are very slow to run and could 

not realistically be expected to run in a real-time mode. They could be used in a 

post-processing scenario, and with increased iterations, could possibly outperform the 

polynomial LS method.
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White noise Mag= 0.1

Estimation Out of range AAD

Algorithm If 1 > 0.6 f U

Polynomial LS 14 0.18 1.0 137

NN direct 0 - 1-.3 -

Simplex 0 0.18 1.38 46.1

GA with corr+mean 0 0.026 2.24 167.5

NN deriv. est. 6 0.6 2.4 69.5

Difference equations 70 0.38 2.9 685

FFT  Method 0 - 3.1 68

Impulse Noise Am p= 0.1 Prob= 10%

Polynomial LS 9 0.1 0.56 76.5

Difference equations 34 0.3 0.7 130

Simplex 0 0.12 0.95 38

NN deriv. est. 4 0.04 1.6 51.0

GA with corr-fmean 0 0.031 2.0 114

FFT Method 0 ~ 3.1 68

Table 5.19: Summary o f AAD  vectors after one block for estimation algorithms with 

white noise magnitude 0.1, and impulse noise with amplitude 0.1 and probability 10% 

on input signals. Parameters are non time-varying. Ranking is in order o f accuracy o f 

frequency estimate.
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W hite noise M ag= 0.1

Estimation AAD

Algorithm e U

No Noise

Poly LS 0.008 0.36 13.2

GA 0.022 1.74 82.5

Simplex 0.006 1.92 48.7 ■

High Level 0.009 2.48 47.4

NN via direct - 2.7 -

W hite Noise Mag=0.1

Poly LS 0.065 1.73 64.9

Simplex 0.007 2.22 62.6

GA 0.020 2.23 86.3

High Level 0.009 2.49 47.8'

NN for direct - 2.81 -

Impulse Noise Am p—0.1 Prob=10%

Poly LS 0.028 1.37 54.7

Simplex 0.006 1.98 50.1

GA 0.024 2.04 80.0

High Level 0.009 2.48 47.7

NN via direct - 2.77 -

Table 5.20: Summary of TAAD vectors after ten blocks fo r  estimation algorithms with 

no noise, white noise magnitude 0.1, and impulse noise with amplitude 0.1 and prob­

ability 10% on input signals. Parameters are time varying. Ranking is in order of 

accuracy of frequency estimate.
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C h a p te r  6

C onclusions an d  F u r th e r  W ork

6.1 Conclusions

6 .1 .1  S tereo  C am era V ision  S ystem

This study has examined the feasibility of a stereo camera vision system that could be 

used in a real-world situation to monitor parameters of objects it observes. Considera­

tion has been given to the types of noise that may be experienced by the vision system 

which has been reflected in the extensive number of experiments carried out.

As described in the first chapter, the vision system consists of two “pin-hole” cam­

eras situated at known positions in the camera reference frame. Variation of the cam­

eras’ angles allows different parts of the world to be viewed. Such a system as this is 

able to  pin-point the location of a point object within view of both cameras. A method 

for performing this triangulation is given.

This study has identified a number of options for improving the quality of informa­

tion extracted from a vision system by a post-processing approach. Once the location 

of the  tracked object within the stereo images is found, and their position in the real- 

world reference frame calculated, the methods in this study can be used to reduce the 

corrupting effect of noise when estimating the parameters of the object. Some m eth­

ods, such as the polynomial least squares, is fast, and could be performed in real-time.
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Other methods, such as the iterative simplex and GA ones, would need to be run 

off-line.

As covered below, the sampling rate of the cameras is required to vary to optimize 

results. In conventional cameras this will not be possible and so it is envisaged th a t 

any such vision system would use some electronic means of image storage as used, for 

example, by CCD’s.

Although not dealt with here, it is assumed th a t the processing knowledge and 

power exists to extract the location of objects within a camera’s image. This infor­

mation can then be passed to other processing algorithms to obtain characterizing 

parameter values for observed objects.

6.1 .2  Second Order S ystem s

The algorithms presented in this work are not, however, limited to  input from a vision 

system. Any measurement device tha t read a signal at a known sampling rate will 

present a data stream that can be used. This means th a t the work conducted here has 

enormous scope and could be used in a vast range of applications and fields.

Many dynamic systems can be approximated with a second order system. Such a 

system is sufficiently complex to  display the significant features of higher order systems 

but can be analyzed without excessive computation.

A second order system is determined by three parameters and two variables. The 

parameters are the damping, the natural frequency and the external input. The precise 

trajectory is determined by the initial values of the signal and its first derivative. 

This study concentrates on determining the parameter values, although some of the 

algorithms necessitate the evaluation of the initial conditions also.
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6.1 .3  E stim ation  A ccuracy

To measure the accuracy of the algorithms the AAD and TAAD measures were intro­

duced. Secondly, the algorithms must be able to cope with varying noise such as white 

noise and impulse noise. Thirdly, the algorithms must be able to track the parameter 

variation. This requires th a t the incoming signal blocks must represent only a small 

variation in param eter value. In the simulations, parameter variation is proportional 

to the frequency param eter, and this allows the introduction of an adaptive sampling 

frequency algorithm.

A major aim of this work was to devise an algorithm that would monitor the value 

of the parameters through tim e via examination of the incoming signal, given also that 

the value of the param eters will vary slowly with time. The problem is first broken 

down by determining the parameters based on blocks of data of known and fixed length. 

There are then two stages to a continuously running system. Firstly, an initial estimate 

of the parameters is required given no other information than the incoming signal and 

knowledge of the sampling frequency. Once this is achieved, a second stage starts which 

may use previous estimates of the parameters in addition to the incoming signal to aid 

estimation for the current block. Table 6.1 lists the algorithms according to whether 

or not they can be used in a recursive fashion. All the algorithms can be used in a 

non-recursive manner, and so can all be used in the initial stage of the continuously 

running algorithm to make an initial estimate of the parameters from the first data 

block.

Two methods use estimation of the tim e derivatives of the incoming signal to make 

the final param eter estimation. These are the difference equation and polynomial least 

squares fitting algorithm. The method for obtaining the parameters from the time 

derivatives is given in a paper by Al-Dabass [1].
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Estimation Algorithm

Non-recursive Recursive

Difference Equations 

Polynomial LS fitting 

High Level

Downhill Simplex 

Genetic Algorithm 

Neural Networks

Table 6.1: List o f algorithms based on whether they can be used in a recursive mode.

6.1 .4  A daptive Sam pling Frequency A lgorith m

Many of these algorithms benefit from use of the adaptive sampling frequency algorithm 

(ASFA). This was developed so that the number of points per cycle is approximately 

constant. Another way of viewing this is tha t the sample covers a  period of time over 

which the parameters do not vary significantly. This is achieved by examining the 

estimated signal frequency and then adjusting the sampling frequency so tha t a fixed 

number of points is present per cycle.

6.1 .5  E stim ation  A lgorithm s

D ifference Equations

Use of difference equations is a basic m ethod for obtaining the tim e derivatives (see 

Section 3.4.1). It requires only five data points to obtain the fourth time derivative 

needed. It is therefore computationally very inexpensive, and because the number of 

points is low, can monitor the parameter variation closely, especially when the ASFA 

is used. It suffers from two drawbacks, however. Firstly, using difference equations to 

evaluate time derivatives is only approximate. Secondly, this m ethods suffers greatly 

when noise is present. This is observed in the results when this m ethod ranks most 

accurate method when no noise is present, bu t falls to almost last when noise is present.
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H igh L evel A pproach

Application of an F F T  in the High Level approach is surprisingly a poor estimation 

method for frequency (although see Further Work) because the block length used is 

so short. Use of a higher band of sampling frequency would allow longer samples to 

be used whilst each block covered the same period of time. This was not done in this 

work to maintain consistency between methods. This algorithm is good, however, in 

its resistance to noise corruption. Accuracy is maintained almost at the same level 

as when noise is absent up to a high level. Above a certain noise level the method 

collapses and highly erroneous estimates are made. This is due to  noise becoming the 

dominant frequency in the spectrum.

D ow nhill S im plex

The Downhill Simplex method is a method that takes the result from the High Level 

algorithm to act as a seed. It then uses its parameter estimates to seed the next block 

and start the Simplex. This algorithm ranks well in both noisy and noiseless situations 

and improves on the High Level algorithms estimates. It is, however, slow, performing 

many iterations and comparisons each block.

G enetic  A lgorithm s

A similar situation is true with the Genetic Algorithm. Demonstration of its abili­

ties and properties are shown in experiment and some GA param eter estimation is 

performed to optimize results. It is shown that the GA benefits from working in a 

recursive manner. It ranks well, but again, is computationally expensive performing 

many comparisons per block.
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FFT  Plus Iterative A lgorithm

It is shown that the FFT algorithm can be used to give an estimate of the parameters, 

and this can then be used to give initial conditions for either the Downhill Simplex 

or the GA approaches. This can be termed seeding the algorithms. This approach is 

shown to improve the estimates given by the FFT approach. This hybrid does reduce 

the speed with which estim ates are generated, since both the simplex and GA are 

iterative, and hence slow algorithms.

N eural Networks

Neural networks perform poorly in this study. It is shown that they cannot perform 

well when the incoming signal is position and scale variable. Scaling of the input 

and output is also necessary. Reasonable frequency estimate are only achieved with a 

damping of zero. Although training is slow and must be performed off-line, it is a quick 

method since it requires only a single pass in operation. Although neural networks can 

be trained and operated in a recursive mode, little to  no benefit is observed in this 

work from doing so. Indeed, a fully recurrent neural network trained with RTRL fails 

with even the basic mapping from signal to frequency.

6.1.6 O verview

Overall, the estimation of param eters is best achieved with the polynomial least squares 

fitting algorithm which determines the time derivatives of the signal block. These are 

then translated into param eter estimates. As previously mentioned, in a noiseless 

situation this algorithm can obtain an arbitrary accuracy given an increasing block 

length. This increases the accuracy of the higher derivative estimates. This algorithm 

is successful because it fulfils the least squares criteria exactly, and also within one 

sweep of the algorithm. The GA and Simplex methods attem pt to descend the LS 

criteria, and only approach the optimal solution.
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The Simplex and GA m ethods do have their place, however. In situations where 

the system is not known, they can m atch a function to  the incoming data regardless 

of the function.

This study has produced two previously undocumented hybrid systems. These are 

the application of the simplex algorithm after an initial estimate using an FFT, and 

also by following the FFT  using a GA to improve the estimates. The combination 

allows a the relatively quick FF T  to seed the simplex or GA. It is usual to give random 

initial conditions for these two algorithms, but it is shown here tha t seeding causes a 

more rapid improvement in the estimates.

Block parameter estimation and the simulation thereof enabled the use of the Adap­

tive Sampling Frequency Algorithm (ASFA). The combination of the former and the 

new algorithm allowed improvement in the estimates to be made. This approach is 

also previously undocumentated.

6.2 Further Work

In this work a system is developed for tracking and monitoring the value of tim e varying 

parameters of a second order system. It can be concluded that the best method to do 

this is with a polynomial least squares approach.

In this study only simulated data has been used. It would be beneficial to see 

how accurately the algorithms can cope with real data. This would require a real-life 

situation which can be approximated to a second order system to be identified. Such 

systems may include vehicle suspension systems and the wave-form of human speech. 

This may well involve adjustm ent to cope with different types of noise eg. white noise 

with a non zero mean. It will also be im portant to see how well each method copes when 

the system being compared is not exactly a second order system, as in the simulations 

carried out so far.

The adaptive sampling frequency algorithm is currently quite crude, jumping to
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precise values for the sampling frequency. Since the parameters are expected to  vary 

slowly, a more intelligent system could be developed which allows only small changes 

in the sampling frequency to be made. This would result in a more stable system, and 

prevent large variations in the sampling frequency value.

This approach could be expanded to cover all of the parameters. In this work 

the parameters were simulated to vary sinusoidally with time. It would therefore be 

possible to perform some prediction on the expected value of each parameter. Although 

real data may not conform to sinusoidal variation, it may show continuous and smooth 

variation in the absence of catastrophes.

Fourier transforms are used in this study to indicate the natural frequency of the 

signal. A limitation of this approach is the accuracy of the estimate is governed by 

the sample length. This problem could be avoided by use of the chirp7z transform. 

This algorithm is based on the FFT, but is able to return a more accurate estim ate in 

frequency, for a reduction in the range covered by the transform. This algorithm could 

be used, therefore, to lock onto the natural frequency giving a higher accuracy on its 

estimate. This would also improve the estimates of the other parameters since these 

are dependent on the natural frequency estimate when usnig the high level approach.

Observations of an object using a camera pair allows its path to be tracked in each 

dimension. From these the characteristics of the motion can be estimated. These can 

be used to predict the motion of the object.

It is also possible to track line objects from images. Once lines can be extracted 

from images, their motion can be analyzed and their properties estimated. Line objects 

may can be rigid, flexible, or compressible. This idea can be extended further to  areas 

of a surface which can be tracked. Again, rigid, non-rigid and compressible areas can 

be analyzed and parameters estimated.
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A p p en d ix  A  

D eriva tion  o f C om plex  S o lu tion  to  

th e  Second O rd e r  S ystem

This appendix derives the solution x ( t ) \  given the initial conditions x 1o and x 2o, and 

input (constant) U, of the characterizing equation,

a x" +  bx' -1- cx =  U (A .l)

where a =  1.0, b ~  2£cun and c =  w2. Each apostrophe given to each x  indicates a

time derivative e.g. x" =  .

The roots of the characterizing equation are,

—b db y/b2 — 4ac 
^  =  2a---------

Note that,

—b +  Vb2 — 4 ac —b — s/b2 — 4acri x r 2 =  --------------------- *----------------------
2a 2a

b2 — (b2 — 4ac) c 
4a2 a

The Free solution can be written as,
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x(t) — cierit +  c2erst (A .3)

To find the values for and c2, we examine the initial conditions for x (t)  and x'(t). 

The initial conditions are,

xio —

X 2 o  =  s ' ( 0 )

We can therefore write tha t,

Now since,

we can write

zio =  ci +  c2 (A.4)

x '(t) — ci.rierit +  c2r2eT2t (A.5)

%2o =  n c i  +  c2r 2 (A.6)

Inserting Equation A.4 into Equation A.6, we get,

x 2o =  n (x io  -  c2) +  C 2 . r 2

— r l - % l o  — r l - ^ 2  +  c 2-r 2

Re-arranging,

*2o ~  r i .x l0 =  c2(r2 -  rx) (A.7)

Further re-arranging for c2, we get,
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x2o - r i . x i 0C2 = ---------------  (A.8)
r 2 — r  i

Now inserting Equation A.8 into Equation A.4,

x2o -  rx.xio
C \  X i 0  C 2  —  X \ o

r-2 -  n  
*1 o-r2 ~  x 2o

(A-9)r2 -  n

We now calculate the forced solution which is then added to  the free solution.

x(t) ~  f  w(t — r)*U (t).dT  (A.10)
J  0

where w(-) is a free response of the system =  c\erit +  c2er2t.

Therefore, for U(t) — U ,

x(t) = U j  c1eriter' r (A .ll)

with w (t) =  Cieri* +  C2era< we can deduce C\ +  C2 from u>(0) =  0, and recalling that 

u/(0) =  1 (universal initial condition for weight functions).

0 — ci +  c2

C1 =  ~ C2

We can now write.j"i

wr(t) = c1r 1eri* -f c2r2er2i 

u/(0) =  l = c i r 1 +  c2r2

1 =  c x rx -  r2ci -  d ( r x -  r 2)

Ci = ( d  -  r2)~l

c2 = - ( d  -  r2)~1

152



Therfore x(t) — U /J  as before E quation A.6,

Uerit UeT2t ' U 1
7*1 (ri -  r 2) r2( n  -  r2) -  r2) r2{rx -  r 2)

Uer' f UeT2i U
rl (rl - r 2) r2{r1 -  r 2) r i r 2

The to tal solution is then,

x(t)  =  cierit -f c2er2t H-
Ueri1 f/er2< *

r i ( n  — r2) r2(rl -  r2 rx.r2

x(t)  =  Ci + i/
r i(n  -  r2) erii +  c2

U
r2{ri -  r 2) er2t +

r i r 2
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A p p e n d ix  B

B ack p ro p a g a tio n

Backpropagation [36] is the most widely used of the algorithms to train feedforward 

neural networks. There are many variations, each claiming an improvement to the 

basic algorithm in either speed of training or quality of training, but almost invariably 

at some other cost. The use of momentum alone to augment the basic algorithm is 

covered here, as it remains one of the best ways of improving overall performance.

Figure 3.3 shows a general feedforward neural network. It is made up of a number 

of layers of units (also known as artificial neurons). Between the layers of units are 

weighted connections, allowing information to pass from the top layer, down the con­

nections and onto the next layer. Each unit has a value called its activation, and the 

weight m atrix  is also known as the impulse response of the network.

Backpropagation (BP) uses error gradient information to  obtain minima in the 

search space of the impulse response. It is closely related to the Widrow-Hopf rule 

for adaptive linear filters, and indeed, the LMS algorithm is a special case of the BP 

algorithm when the network has only an input and an output layer.

When training a feedforward network with backpropagation, there are two clear 

phases. The forward phase is when the input signal is propagated forward through the 

network to produce values for the output unit(s). In the back progagation phase, this 

output is compared with the desired output for the current input pattern, and an error
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is propagated back through the network, which updates the weights in such a way as 

to make the network output nearer to the desired output.

At the beginning of the forward phase, units in the input layer are given activations 

from the outside world. Each unit in the layer below then conducts a summing process. 

When each layer is complete, the next layer below performs the summing process. For 

a general unit i in layer I, the summing process is,

N { - 1

*  = E  • (B-1)
j=0

where N  is the number of units in the Ith  layer, and I = 0 is the input layer, and 

there are L  — 1 layers. The weight w\j refers to the weight leading from the jfth unit 

in the (I — l) th  layer to the unit i in the Ith  layer.

Once the summing is complete, the unit performs a transfer function on the summed 

weighted input to arrive at the un it’s activation,

Xi -  / ( * )  (B.2)

where x is the activation of a  unit and /(• )  is the transfer function.

The actual form of /(•)  can be any function tha t is differentiable as all algorithms 

using error gradient descent require / '(•) in calculating weight updates. Common 

functions include the sigmoid,

V ~  1 +  exp~^ (B*3)

and the hyperbolic tanh function,

1 — PXT)
y = tanh(7z) =  (B.4)

1 +  exp ^ x

The variable 7 allows the steepness of the curve to be varied, but is usually simply

set to unity. Figure B .l show the forms of the two transfer functions. The significant

difference between them  is th a t the sigmoid ranges between zero and one, and the
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tanh function ranges between ±1. Many other functions have been used, with success 

commonly dependent on the application. Functions are usually nonlinear, to  maintain a 

network’s nonlinear mapping abilities, and often limit both the minimum and maximum 

values.

m 0.2"5 
<0 0 .0  Î0.2

(a) 0>)

Figure B .l: Two common transfer functions, a) The sigmoid, b) the tanh function .

The activation of the output unit(s) is named yi for each of the i output units.

Once values for all yi have been evaluated by the forward phase, the backpropagation

phase may begin. This starts with a calculation of an error vector,

— d{ yi (B.5)

This is performed for the output layer only, and d{ represents the desired output of

the ith  output unit for the current input pattern. To update the weights connecting 

the output and the last hidden layer the Widrow-Hopf rule is applied,

(B.6)
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where j  is the unit in the L — 2th layer, L  — 1 is the to ta l number of layers, / '( • )  

is the derivative of the transfer function of the output unit i, /j, is a learning rate, e* is 

the error of the ith  output unit and Xj is the activation of the  j t h  unit in the L — 2th 

layer.

For all other weight layers above this ie. for updating weights connecting to a 

hidden layer,

dw-j =  f{s i)2 iiS hx lf l . (B.7)

where Sh is calculated for each unit in the current Ith  hidden layer,

Sh=  eiwhi (B.8)
i= 0

where N i-i  is the number of units in the (I — l) th  layer. Once the weight update 

has been calculated for each unit in each layer, layer by layer, then for all i and all j ,

W new -  W oid +  dw  (B.9)

Thus, the error is propagated back through the network for each layer in the net­

work. Once complete, a new input pattern  is presented and a forward phase can start.

The learning rate variable, f.i, is user set. If set to unity, each input pattern would 

remove any useful adjustment of weights already performed. Too small a value of fi 

would result in the weights being adjusted too slowly, and an excessive number of 

presentation of input patterns would be needed before the network accurately output 

the desired values. In practice, the value of fi can be 0.3 and can go as low as 0.1. 

Values outside this range are by no means prohibited, but would be used only in special 

cases.

One of the major problems with neural networks is their susceptibility to local 

minima. This means tha t the network is not performing at its optim al rate, and the
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output it provides is substandard. One of the most commonly used techniques for 

preventing capture in local m inim a is the use of a momentum term .

Adding a m om entum  [13] term  to the plain BP algorithm takes into consideration 

the weight update from the previous propagation. If a weight update occurs at a tim e 

step n, then it will also include information from the weight update at tim e n — 1. 

Thus, the equation for a weight update becomes,

W new(n) = W 0id(n) +  dw(n)  +  a d w ( n  — 1) (B.10)

Here, a  is a param eter between zero and one which determines the importance

given to the previous weight change. High values of a  of around 0.9 are common.

Momentum can be understood by visualizing the error surface as an undulating 

surface over which the network searches for a minima. The gradient descent rules of 

BP always move it downwards. This means that if the current position on the error 

surface is in a shallow hollow, then the network will not be able to  leave this hollow 

and move on to a deeper, globally minimal position. Adding a momentum term  allows 

the motion of the network’s position to pass on through a local minima and up over 

a nearby brow, and down into another minima. The greater the value of a,  the more

able it is to do this. In this fashion the network can escape a local minima.

Implementation of m om entum  in a BP algorithm can frequently improve conver­

gence rates by a significant factor and reduce the chance of the network being caught in 

a local minima whilst only a reasonable increase in storage and calculations is required.
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