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A b stra c t
A novel knowledge representation schema for application in natural language processing is 

presented along with the algorithms for its automatic population from text corpora. The natural 

language understanding task under consideration is the task of the automated assessment of 
students’ single sentence responses to technical questions. This knowledge representation schema 
shares much in common with a localist connectionist network and consequently possesses both 
representational and computational properties. The task of automated assessment is used as an 

empirical framework within which the performance of the knowledge representation schema can be 

evaluated. An initial experiment tested the ability of hand crafted knowledge structures to effectively 

encapsulate a correctness decision procedure. A correlation of 85% with the performance of an 
independent human marker was achieved. A second experiment tested the knowledge schema’s 
ability to generalise to new unseen data; this correlated 65% with human performance. To address 
the issue of knowledge base creation two algorithms are presented which produced networks 

consisting of composite and clustering node-types. These activation-passing networks provide a 

perceptual function generating higher order descriptions of the input data. As a control, a system 
using Latent Semantic Analysis as an automated decision procedure was input with raw student 

sentences to mark. A correlation of 37% with human marking was achieved. By feeding the same 
LSA procedure with perceptually augmented input, derived from algorithmically produced activation 
passing networks, correlations of 55% were achieved. For this application the perceptual 
enhancement provided by these networks produces a 48% improvement in correlation scores, 
demonstrating the network’s empirical utility in the automated assessment domain.
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1. Introduction

1.1. The Nature of Natural Language

Natural language is complex, surprisingly so. Many people, computer technicians and lay 

people alike have underestimated the difficulties involved in producing computer based 
systems capable of understanding natural language, and have been amazed how slow the 
technologies are in coming. There have been many techniques explored, some meeting 

with limited success, others not even achieving that. There has as yet been no 

comprehensive solution proposed or implemented.

This thesis is not, nor does it pretend to be, that solution. What this thesis does do is 
explore some of the problems of natural language from the perspective of a particular 
application; that of automated assessment. This application, it is proposed, offers an ideal 
empirical framework in which to study language phenomena, particularly those to do 

with meaning. The core technology employed, in the solution implemented, is a 

connectionist representation schema, which contrasts well with the logic and frame based 
representational schemas that are more common within the natural language 

understanding domain. This schema brings the advantages of simplicity and inherent 
processing capacity and also opens up avenues for exploring novel learning algorithms.

The problem of meaning is a difficult problem to solve, or even define. The problem is 

this: we wish to extract the meaning from text, but what form should this meaning take? 
Clearly the meaning cannot be the text itself, for not only is it possible to mean the same 

thing using two different pieces of text, but it is also possible to mean two different things 

with the same fragment of text, given different contexts. We can hypothesise that 
meaning itself is some complex, dynamic, context sensitive informational structure lying 
above the raw text level. But at this moment we have neither access to, nor knowledge of 
this structure. It seems that language itself is the only way we can measure, define and 

relate this concept of meaning.

If this is true there are two practical ways we can formally explore the nature of this 

meaning:

1. To examine or attempt to generate the logical consequences of a particular piece 
of text. These consequents are, or must constitute, a large component of the 
meaning of this text. These consequents must be expressed (or generated) in an 
analysable textual form.
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2. To examine many different pieces of text which supposedly mean the same thing. 

The invariant aspects of those sentences that do have identical meaning must 
shed light on the nature or structure of the meaning of these sentences.

An extensive search of the literature reveals no application that attempts to generate the 
full set of consequents that are possible from a piece of text. However, in a limited sense, 
message understanding and information retrieval tasks are, indeed, performing this type 

of task. In such applications a set of consequent or consequent types is predetermined. 

The retrieval process searches through this text looking for the matches or antecedents 
which would imply the consequent. Meaning is therefore being investigated by examining 

implication.

The task of automated assessment, on the other hand, more closely resembles the second 

of these techniques. All correct answers generated do indeed have a similar meaning. 

Further, this synonymity, or equivalence of meaning, can be rigorously defined by 
examining the mark awarded to it. The construction of a knowledge schema which models 
marker performance is essentially a process of reverse engineering. That is, a 

reconstruction of the decision making process by emulating observed behaviour. There is 
a caveat; there is no absolute guarantee that the reverse engineered knowledge structure 
will at all correspond to true meaning, in other words how it is mapped within the human 

brain. However this is a fundamental problem that is true for all artificial cognitive 

models. As with all such cognitive models, by virtue of the fact that the artificial construct 
exhibits (or will hopefully exhibit) reasonable performance, it gives an indication of the 
absolute complexity of the problem, regardless of the true human implementation.

1.2. Motivations for and Applications of Natural Language 

Processing

Computers are pervasive in modern society. Most jobs entail the use of computers in one 
form or another. The interface to computers (basically keyboard and monitor) is not only 

bulky and expensive but requires specific skills to use. Natural Language interfaces come 
in two forms: those that understand the spoken word and those that understand the 
written word. A written word interface cuts down on the specific skills required to use a 
computer; a spoken word interface does this, but also makes both keyboard and monitor 
redundant. The pressure to develop systems that would allow a more natural interface to 
computers, one that does not require specific training, is therefore very great.

Although speech and text recognition require completely different technologies to capture 
their input (sound processing techniques vs image processing techniques) they share
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many features of higher level processing. Orthodox linguistic theory would portray the 

processing strategy as shown in Figure 1-1.

Both spoken and written raw input is inherently non discrete and noisy. There is an 
isomorphism between these data streams that can lead us to hypothesise an idealised 

string which represents the abstracted properties of language. The phrase “the cat sat on 
the mat” can be spoken or written down (as it is here) but no two instances will be 

precisely the same.

Morphological Analysis

Syntactic Analysis

Semantic Analysis

Pragmatic Analysis

Written Input

Idealised String

Spoken Input

Meaning

Figure 1-1 Typical Processing Strategy

The language theories represented above are all theories that describe the composition of 
these idealised strings at different granularities and with their own symbol set. In other 
words they constitute a set of observed regularities within a particular symbolic 
framework. Syntax, for example, describes the composition of a sentence in terms of 
syntactic categories; componential semantics describes a sentence in terms of its 

primitive semantic categories.
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In performing recognition we are attempting to identify the correct idealised string to 
which the raw instance of spoken or written input maps. Language models can help in 
this task. Typically a selection of possible strings are generated by the recognition engine 

and language theories are applied to discount or affect the probability estimates of the 

various possibilities. This is one application of NLP technologies: text and speech 

recognition.

Another application of the technology is the divination of meaning. This is a task which, if 
the above diagram is to be believed, implies the understanding and application of all the 
subsumed language theories. It is a task, therefore, which although entirely distinct, may 

share many of the computational dependencies with recognition.

To emphasise the distinction between language understanding and language recognition 

consider the use of a word processor. Probably one of the most productive initial 
applications of NLP technology, and hence most researched within corporate institutions, 
would be the generation of text documents from dictation. This task of speech recognition 
is the task of mapping noisy indistinct acoustic data to idealised strings. Contrast this 
with the ability to say, "Computer: please save my document”, and have the computer 
perform the intended action. This implies understanding by the computer. It would 

require for example a knowledge of the various potential meanings of the word save and a 

mechanism for its resolution. It would also require an ability for the computer to identify 
the intended referent of a word from its internal set of observed (known about) entities 

and be able to relate these entities to the set of actions of which the computer is capable. 
{My document is the document being dictated into, save is an action of which the 
computer is capable).

There are two primary applications of natural language understanding technologies. 
Firstly, the translation of a natural string to an appropriate action by the computer, as 

above. Secondly, the ability to search documents intelligently. Microsoft, for example, is 

now providing help interfaces in the form of answer wizards, where a question is phrased 
in natural English and the documents are searched for the most relevant articles 
(Heckerman & Horvitz 1998). Although the technology employed in this case is relatively 
simple, to provide an accurate measure of relevancy through such an interface would 

require in-depth understanding.

Language understanding is a task distinct from language recognition but does share 
many of the computational dependencies.
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1.3. A Classification of Natural Language Understanding 

Problems

In order to set the problem of automated assessment into context we will consider four 
different types of natural language understanding problem.

1. What does “stringl” mean?
2. Does “stringl” match “tem platel” “template2” or “template3”....?
3. Out of a set of “strings” which match “tem platel”?
4. Does “stringl” mean the same as “string2”

The first is the most complex. As an open-ended problem it raises the philosophical issues 

of what it is to mean. How do we determine meaning and how do we demonstrate 
meaning? For computational systems it is difficult to see how we can approach this issue 
directly. The closest we can get is to take an entirely pragmatic, functional, Turing (1964) 

type approach. One way of tackling this problem it to attempt to demonstrate 

understanding by generating an appropriate response to an utterance. Conversational 

NLP models such as ELIZA (Weizenbaum 1966) and PARRY (Schank & Colby 1973) are 

the classic examples of such systems, and are indeed attempts to satisfy the Turing test 

for limited domains (that of a Rogerian psychoanalyst and a paranoid schizophrenic, 
respectively).

In the second type of problem the domain is more limited and the number of potential 

actions is fewer. The task of interpreting “Computer: please save my document” is within 
this class of problem. Here potential actions can be represented as templates and 

matching an utterance to a template is the same as saying is “stringl” most similar too 
“templatel” or “template2” or “template3”? etc. (Here a template is taken to be some 
arbitrary but matchable representation of meaning). This implies of course that the 
number of potential actions is predetermined and the various expectations can be 

generated. The in depth search application is also in this class of problem. If “stringl” is 
the search string, each article consists of a series of strings, then the aim of the search 

process is to return the article that contains the string or set of strings with the closest 

match.

Interestingly, despite first appearances, the actual implementation of conversational 
models such as ELIZA and PARRY, are closer to the second class of problem than the 
first. The systems appear to generate sensible output in response to input and therefore 
tackle the open ended question of meaning. However in practice such behaviour is often 

illusory as the systems are implemented with a sophisticated set of pattern matches. The

5



question of whether pattern matching over a critical level of sophistication approximates 

to true meaning is legitimate, but shall not be tackled here.

The third problem is: out of a given set of strings, which strings mean the same thing 

where this meaning is embodied within a particular template. It is a problem that has 
largely been overlooked within the literature, as at first it is difficult to see applications 

that require this form of processing. However, it is this task that will be analysed within 
this thesis as it is this that most closely matches the problem of automated assessment. It 

is perhaps a more simple task than those defined above, but this simplicity is seen as its 

great advantage. Given the fundamental complexity of the natural language 

understanding problem any task which simplifies the problem but still addresses the 
critical linguistic issues (and in addition can exhibit graceful degradation of performance, 

see later) must surely be useful.

The final problem is a more sophisticated and complex version of the third, but in the 
context of automated assessment, a more ideal solution. It asks almost the same thing: 

out of a given set of strings which strings mean the same thing where this meaning is 
embodied within a particular string. The difference being of course tha t the meaning is 
embodied, or entered as a string, as opposed to some arbitrary template. In real terms 
this means that the person defining the criteria for success need only specify a single 

correct sentence rather than a template in some arbitrary syntax. It is of course far more 

difficult to implement. To illustrate the difference in complexity imagine making a 

cat/dog identification machine. The third problem is analogous to saying - “Fm going to 

build this machine hand crafting whatever sensory apparatus and decision criteria I wish 
to use.” The fourth problem is analogous to saying - “I’m going to create a generalised 
decision making machine, this machine will then be able to tell me the difference between 

a cat and a dog after I have shown it just a single example of a dog.”

It is the intention in this thesis to prove that a solution to the third of these problems is 
tenable. This does not necessarily mean a complete 100% success solution, but to achieve 

results that are significantly above those that would be expected from random. (Where by 
random, in a marking schema where an answer is marked either wholly right or wholly 
wrong, we would expect half of those marked incorrect to be in tru th  correct and vice 

versa). Only after this has been achieved will the fourth problem be tackled. It will not be 
tackled head on.
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1.4. Automated Assessment

Specifically, the problem of automated assessment is this: a question is given to many 

students and many responses are generated. These answers are hand marked so it is 
possible to identify which answers are correct and which answers are incorrect. An 
artificial decision procedure must be generated which is capable of making this 
distinction between correct and incorrect answers. This decision procedure, if successful, 
will have the property that correct answers will be marked correct, whilst incorrect 

answer will be marked incorrect. Obviously there is no superficial characteristic of correct 

sentences upon which marking criteria can be defined. It is the contention of this thesis 
that a good performance can only be achieved if the knowledge base is capable of 
identifying the deeper semantic commonalties between correct sentences

As an evaluative mechanism, automated assessment is particularly useful due to the 

nature of the data produced. Many sentences are produced in answer to a particular 
question, and as these can be hand marked, we have the information of which is right and 

which is wrong. If a knowledge model is produced which does not work well, it is probable 
that only a few correct answers are identified and perhaps a few incorrect answers have 

been mis-identified as correct. A few minor adjustments could result in a marginally 

higher correlation rate. This means that automated assessment is an evaluation process 
that exhibits a graceful degradation of performance, in line with the quality of the 
knowledge model.

The task of automated assessment is to assess whether a response to a question is correct 

or not and, if the mark to be allocated is scaleable, to assess what mark should be given to 

it. If the tutor is able to generate an expectation of what the correct response should be 

then the task may be paraphrased thus: the task of automated assessment is to assess 
which responses out of a defined set most closely match tutor defined criteria.

1.4.1. M otivations for Autom ated Assessment

There are several motivations for developing an automated assessment system. Of the 

task itself: firstly, speed. In today’s climate of reducing staff/student ratios, automated 

marking frees up staff time for more all important student contact time. Also, marking 
turnaround is greatly reduced, giving the students feedback more quickly. Secondly, 
objectivity: by marking all scripts with a single machine, a standard is introduced where 
formerly marker variability (both between different markers and the same marker at 
different times) was notoriously high. Thirdly, focus: it enforces a stricter definition of the 
syllabus which must be advantageous to staff and student alike. Students are more aware
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of what they are expected to learn, and tutors aware of the knowledge they are supposed 

to impart.

Further, in line with an argument that shall be developed later within this thesis, 

automated assessment is a peculiar task which is ideal for empirically evaluating 

performance of natural language processing systems dealing with semantic extraction.

1.4.2. Problems with Autom ated Assessment

The notion of truth and its contextual variability raises some issues for an automated 
assessment system. Two questions may be set, and correct answers may be given for both 
questions. Both correct answers are ‘true’ in an abstract sense, but the correct answer for 

question two is not ‘true’ in response to question one, or at least a mark could not be given 

for it. To counter this the knowledge base in which information is stored could be marked 
up for its relevance towards particular questions. Note, this does not prevent sharing of 

information between questions, an obvious design criteria for any knowledge base system, 
but simply serves to identify the highest level ‘facts’ with their appropriate question. This 
is basically another way of saying: automated assessment is not the same as attempting 

to evaluate the tru th  of a specific sentence rather it is the task of determining whether a 
specific sentence or phrase correctly answers a specific question.

The issue must be raised of how variable marks could be allocated to question responses. 

Initially at least, this problem is best avoided by simply giving an all or nothing response 

to question responses, it is either all right or all wrong. At a later date this problem could 
be approached by either building composite answers out of parts (for example points to be 

raised in an essay) or employing fuzzy techniques.

Both the above problems refer to the logistical issues of the problem domain itself. 
However, by far the most complex problem is how to address the fundamental issue of 
assessing the semantic correlation of tutor defined criteria and student response. In brief, 

the approach to be used is the development of a representational schema which has 

processing as well as information storage capability. The development of this schema is 
based heavily upon careful investigation of a data set, which closely reflects the 

requirements of the problem domain in general.

1.4.3. Aims and Scale o f  Expected Success

It is important to stress that the development of an automated assessment system which 
is capable of discriminating correct from incorrect answers with 100% success rate is not 

expected. This would imply the development of a system which could comprehend the 
entire form and variety of the English language. Success is to be measured by several
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measures. Firstly, the coverage a particular knowledge representation schema gives over 
a data set gives an indication of the system’s semantic expressiveness and its 

applicability to the problem domain. Secondly, its ability to generalise to new unseen data 

should give a measure of the robustness and semantic coherence of the system. Finally, 
the extent to which the error reporting scheme correctly models of the deficiencies of the 
knowledge base gives an indication of the usefulness of using the framework to develop 
and refine knowledge base systems.

1.5. Outline of Task

In summary, automated assessment is suggested as an empirical framework within 

which knowledge representation schemas for natural language processing may be 

evaluated. Such a knowledge representation architecture is presented which is suitable 
for, not only high level semantic representation, but low level language processing tasks. 
From a careful analysis of the nature of the language presented by students, macro­

structures1 are developed within the knowledge schema which closely reflect the 
requirements of the problem domain. The architecture is evaluated within the automated 

assessment framework and refined.

Breaking down the path to this goal further and correlating with the chapters that are to 

appear within the thesis:

1.5.1. Investigation

Aside from the obvious areas of natural language processing and knowledge 

representation to be covered by a literature survey, a careful analysis of the form and 

variety of language is performed which concentrates upon those issues of language which 
are particularly problematic for computational systems. Where appropriate, mention is 
made of the probable information and processing requirements that a good solution to 

these problems would require. To focus the investigation, the analysis is based upon 
sample questions and responses, of a form similar to those likely to be used in the final 

system. This ensures relevance to the problem domain. Some work is also done placing 
the specific field of automated assessment into the wider context of natural language 

processing system evaluation.

1 The terms macro-nodes and macro-structures are used within this thesis in a very 
specific sense. The terms are equivalent and are intended to embody the fact that a 

discrete subset of nodes and links may be considered as a whole and demonstrate 

functional and representational properties as an ensemble.
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1.5.2. Knowledge Architecture and Learning Algorithms

A knowledge schema is developed which specifically addresses the issues raised in the 
above chapter at an architectural level. The schema draws heavily on the variety of 

knowledge representation schema that exist, but particularly the connectionist approach. 
The schema is especially similar to connectionism in that it incorporates an implicit 
processing component, through the passing of activation through a network. Unlike the 

more symbolic representation schemas (e.g. frames or logic) which would use a separate 
processing module to perform the semantic resolution, the mode of resolution is implicit 

in the network structure.

To address the principal problem of the large human effort required to produce these 
networks, two integrated algorithms are developed. The first algorithm is developed 
which generates networks of the type described in the section entitled ‘knowledge 

architecture’. It is a statistical algorithm that operates upon corpora of linear strings of 

discrete units. From statistical co-occurrence of items it recursively identifies composite 
units, growing a hierarchical tree in this manner. Once identified new links are 

instantiated between pre-existing nodes and newly identified nodes tha t model the causal 
relationships between the two. The second algorithm also operates on these same 
network types. Similarly, from the same type of learning data, new clustered nodes are 

identified and appropriate links are instantiated between pre-existing nodes and newly 

identified nodes. A clustered node is a node that represents a commonality between two 
or more other nodes. This commonality is defined in terms of context history. Context 
histories are therefore recorded for each node, and it is in respect to these that 

similarities between nodes are identified.

1.5.3. System Architecture and Im plem entation

Within this chapter the architecture of the final system is defined, and the mode of 
communication between the distinct modules is outlined. Also, the specifics of the data 

resources available are reviewed and their method of employment specified. Particular 

issues of implementation are also discussed in this chapter.

1.5.4. Experiments

Two sets of experiments are performed, the first analysing the knowledge architecture, 
the second analysing the learning algorithms. First an experimental approach is devised 
and empirical measures of error to be used are mathematically defined which allow the 

knowledge framework to be investigated. Specifically two experiments are performed: the 
first, called the blind test, which determines the adequacy of the defined representational
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schema to provide coverage of students; the second called the retrospective test which 

determines the ability of a configured network to generalise to new unseen data.

The networks that are produced by the learning algorithms are necessarily unsupervised 

in order to satisfy the constraint that little human effort is required in the network 
generation. The produced networks are therefore incapable of making a correctness 

decision in their own right; they simply provide a perceptual function, describing the 

same input data in a higher order form. The question of the evaluation of the networks is 

therefore complicated. Latent semantic analysis is introduced as a mechanism for 
performing this evaluation. The development of this evaluative framework and the 
description of the experimental results form the body of this chapter.

1.5.5. Conclusions

The final chapter summarises the conclusions that can be drawn from the previous 

chapters. Also some more abstract comments are made relating the implementation of 

the algorithms to what is known of human problem solving behaviour. Finally, 
consideration is given to areas of potential future development. '
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2. In vestigation  and L iterature R eview

2.1. Introduction

The investigation chapter will cover the following areas in order:

1) Analysis of properties of language
2) Review of knowledge representation schemas
3) Review of relevant natural language processing techniques

4) Review of automated assessment in the literature

In a little more detail: a thesis, which is to tackle some of the problems in natural 

language processing, and automated assessment specifically, must necessarily span a 

wide range of academic fields. The major fields to be considered are natural language 
processing and knowledge representation. We will start by analysing various properties 
of language, with specific reference to the type of language to be found in students’ single 

sentence responses.

An effective schema for knowledge representation, which adequately models the specific 

requirements of the problem domain, is seen as the key to a successful system. To this 

end a survey is later made of the major representation alternatives and comment is made 

on their relative merits and demerits.

A full survey of the field of natural language processing is impossible due to the vastness 
of the subject domain. Within this review, attention is paid solely to the issues of 
adapting connectionist representation schemas to the field of natural language processing 

and some of the problems to be overcome for this adaptation to be successful, such as the 
representation of time. Secondly, attention is paid to some of the general problems of 

NLP that are particularly relevant to the target application of automated assessment and 

solutions to these problems that have been attempted.

Finally, a review is made of the field of automated assessment. Although this is a very 
young discipline and only lightly represented within the literature the two major 
applications that have been researched cover some useful ground. This work on 
automated assessment is placed in the context of more general research that has been 
undertaken in the field of the empirical evaluation of natural language processing 

systems.
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2.2. Nature of Language

2.2.1. Problems Faced

In order to successfully represent the high order semantic information tha t is necessary 

to discriminate between a correct and an incorrect sentence, a clear analysis of the nature 

of language and the difficulties in representing the semantic information embodied 
within is vital.

This was performed by analysing in depth the responses given by students to a series of 
questions requiring simple single sentence answers. These sentences were collected in 
two sets from a total of approx 150 students over a period of two years (one set from each 

years intake). Twenty questions were asked of these students, and these students were 
expected to answer these questions in stressful, test conditions. (A broader range of 
sample questions and responses may be found in Appendix A.) While there are examples 

of many of these linguistic properties and difficulties in the literature, examples given 

here are mainly from the data collected. This is because text- book examples are often 

contrived and rare, whereas the examples from the data set clearly do occur and are not 
created solely for the purpose of illustrating a point.

The following lists those issues which were identified as particularly problematic, but 

which a knowledge representation scheme, if it is to be successful, must adequately 
model. Comments where appropriate have been made on the likely resources required to 
overcome these problems and the processing techniques which are most suitable.

2.2.1.1. Non-Reductive

The principle of reductive analysis implies that the whole is the sum of the parts. The 
corollary of which is: the sum of analysing the parts is equivalent to analysing the whole. 

Within the field of natural language processing, if this principle were to hold, the 
meaning of a sentence might be inferred by analysing the meaning of the individual 
words.

Within natural language this is clearly not the case, and there are at least two distinct 
reasons for this.

2.2.1.1.1. Ambiguity

Ambiguity is rife in the everyday use of language. A classic example is the word “bank 
Examine the following two sentences.
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“I  am going to fish off the hank”
“I  am going to the hank to get some money”

In the first example, clearly the speaker is referring to the bank to be found at the side of 
a river (a river-bank). In the second the speaker refers to a financial institution. A human 
reader would have no difficulty making the correct interpretation. The process of 

disambiguation is in most cases entirely unconscious.

However, if we wish to make our automated marker perform the same process of 

disambiguation we clearly have the problem of providing the system with enough 

information to perform the task. An entry in a dictionary will indicate tha t there are 
indeed two (or more) distinct senses of the word bank, but this in itself is insufficient to 
identify which sense a particular instance of the word bank refers to. For the human 
reader clearly it is the context of the word (the previous sentences, the sentence 
structure and the other words used) that make the disambiguation possible. The 
automated system must make use of this same resource.

There is a clear requirement here for a feedback type mechanism or blackboard 
architecture. This is the means by which a local process (in this case the correct sense 

identification of a particular lexical entry) is affected by information from a distinct local 

process (here this could be either the sense identification of other words or a syntactic 
parse of the entire sentence.)

A feedback type mechanism is obviously the necessary means by which disambiguation is 

performed, but it will require information resources (other than the sentence itself) to 
complete the operation. A list of the distinct senses for a particular word must be the 

primary resource. There are many possible sources for this type of information. Most 
dictionaries will list the distinct senses it attributes to each lexical entry, but the number 
and form of these senses can differ significantly in between dictionaries. Roget’s 
thesaurus has a coarser grained list of senses, many of which can map to a single word. 
WordNet has a similar mapping of many senses to a single word.

Secondly a signature or a set of discriminating criteria must be identified for each of the 

distinct senses of a particular word. Each of the above resources (dictionary, thesaurus 
and WordNet) have associated information that may be used for this purpose. For 
example information may be extracted from a dictionary definition to make the 
distinction. Alternatively the statistical distribution of a particular sense may be 
analysed within a sense tagged corpus, and a discriminating signature may be generated 
from this.

14



2.2.1.1.2. Idiom

There are many cases in natural language where a set of words if found in a particular 
order, imply a meaning which can not be inferred from the meanings of the constituent 
words. For example.

“It came straight from the horses mouth”
“It's raining cats and dogs”

To take an example from the sample student responses, phrases such as “operating 
system” or “assembly language” clearly refer to something more specific than a system 
that operates or a language used to assemble things.

Within a knowledge representation structure it is taken for granted that semantic 
information can be attached to word level objects. However, if the representational 

structure is to take account of such idiomatic phrases, there must be a facility for 

attaching semantic information to units greater than a single word. Furthermore, if such 
a higher level unit is identified, the meaning that would have been associated with the 
constituent words must be inhibited.

2.2.1.2. Am biguity - Com binatorial Explosion - Bootstrapping

The problem of ambiguity, as in resolving the meaning of an individual word with two 

distinct meanings, has already been mentioned. However the fact is, most words have, by 
dictionary definition, more than one meaning. This compounds the problem considerably. 

If a sentence is composed of 10 words and each of these words has 3 meanings, assuming 

all combinations are not mutually exclusive the sentence could have 310 or 59049 distinct 
meanings.

In the above example of ambiguity the context of the word was deemed the necessary 
means of resolution. In reality, often the context itself is ambiguous.

To demonstrate the enormity of the problem let us consider the stereotypically simple 
sentence:

The cat sat on the mat.

Using the relatively small Concise Oxford English Dictionary as the source for identifying 

distinct senses of a word, the following table is produced.
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Word THE CAT SAT ON THE MAT

P a r t  o f  

S p eech

adjective
adverb

noun verb preposition
adverb

adjective
adverb

noun
verb

Meanings definite

article

small furry 

quadruped

supported 

by buttocks

supported by 

or covering

definite

article

coarse 

fabric or 

floor 

covering

spiteful or

malicious

women

rested with 

hind legs 

bent

close to small

rug

person(Jaz 

z fan)

pose for 

portrait

concerning piece of 

material 

laid on 

table

whip (cat of 

nine tails)

to be an MP 

for a 

constituenc

y

added to to bring 

into a 

thickly 

tangled 

state

any wild

feline

animal

remain on 

nest to 

hatch eggs

forward

abv for

caterpillar

vehicle

be member 

of

committee

movement of 

operation 

being shown 

or performed

abv for

catalytic

converter

to be in 

session

to cause to 

be seated

remain in 

the same 

position

Num ber o f  
Meanings

1 7 9 6 1 4

Figure 2-1 Ambiguity in “the cat sat on the mat”
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Assuming meaning independence of individual word this produces a possible 
(Ix7x9x6xlx4=) 1512 different possible interpretations of this sentence, and this was 

using a very small primitive dictionary. If a larger dictionary is used an even greater 
number of permutations are generated.

If we have no a priori reason for preferring one interpretation over another.

"The spiteful lady posed for a portr'ait close to the table covering”

Is as valid an interpretation as.

“The small furry quadruped rested with its hind legs bent supported by the 
small rug”

Because four of the six words in the sentence are ambiguous the word “the” is the only 
definite context available in order to perform the sense disambiguation. This is clearly 

insufficient. In order to solve this problem a method of bootstrapped sense 

disambiguation will have to be used. This is a method by which multiple processes 

performed in parallel may affect each others outcome even though none are necessarily 
complete.

2.2.1.2.1. Samples

In considering the relation of ambiguity to the automated assessment problem domain 
and this data set in particular, there are two essential questions to answer:

1. How frequently does ambiguity occur within the data set?

2. Does ambiguity pose particular problems for the task considering the constraints 
involved?

Assessing the level of incidence and importance of ambiguity within a given data set is 

not easy. There are a number of reasons for this:

1. Firstly, in order to assess the level of ambiguity we need an almost prescriptive
definition of the number of senses that are valid for any particular word. As has

been mentioned earlier, there can be vast differences between different
dictionaries’judgements on the number and form of these senses.

2. Secondly, the distinction between the different possible senses of a word and the 
metaphorical use of a word can be difficult to make.
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If we are to take a dictionary as the authority on the number of senses of a word (in this 
case the Collins Concise Dictionary), the level of ambiguity within possible sentences is 

enormous.

Taking a sentence at random

"Allows use o f data structures but not interrupt handling "

The dictionary gives us the following possible senses for the component words used 
within the sentence. Note for simplicity word stems (lexemes) are used circumventing the 
need for morphological analysis:

Word Stem Number of Senses

allow 8

use 17

of 10

data 2

structure 6

but 12

not 3

interrupt 4

handle 15

Figure 2-2 Word Stems and Senses

Again, assuming sense independence this gives a total of (8x17x10x2x6x12x3x4x15=) 
35,251,200 possible interpretations of meaning of the entire sentence. (Of course, the use 

of syntax could cut down the number of potential meanings considerably.)

This brings us to the second question: does ambiguity pose particular problems for the 
task considering the constraints involved? There are a number of reasons why ambiguity 
is not as big a problem as we may at first assume.

Firstly, in the above example we use a dictionary to give us the number of senses possible 

for a word; in a real system the optional senses are more likely to come from a domain 
specific knowledge base, which is unlikely to have such a copious number of senses per 
word. Also, it is worth noting that in general it is the frequent non-domain specific words
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that have a greater number of senses. The domain specific words tend to have far less 

senses per word and it is these that are more relevant to an automated assessment 
system.

Secondly, the assumption of sense independence made above is clearly not a valid 
assumption. Each sense of a word is not equally likely, further, the choice of sense for a 
particular word within a sentence often has a clear effect on the choices of possible senses 
for other words occurring in that sentence.

Let us explore this issue more formally. Consider a notation where a sentence A consists 

of an ordered set of words, wi, W2, ..., wn., i.e. A={wi, W2, ..., wn}. If a particular word w 

matches a particular string S then S(w)=l. The distinct senses of S are denoted by the 
functions Si(), S2O, ..., Sns() where ns is the number of senses of S.

If w matches a particular string S then we impose the ideal where w must match one and 

only one of the senses of S i.e. ^  S.(w) = 1 and \fy3 x ,S x = l A y ^ x Z ) S y = 0 . The

probability of a word w being a particular sense Si given that the word has been 

identified as string S is the Bayesian probability p( Si(w) | S(w) ), and obviously

5 > (S ,(w ) |S (w ))  = 1.

So give two adjacent words w l and w2, and two distinct identifiable string types S and T 
each with their own set of senses. And given that w l and w2 have been identified as 

string types S and T respectively (i.e. S(wl) =1 and T(w2) =2), then in this notation the 

assumption of sense independence2 is basically stating 

p((£i(wi)|S(wi))|Ti(w 2)) = Jp((S'i(wi)|iS(wi))|T2 (w2) ) . That is, the probability of a word 

taking on a particular sense is independent of the sense taken on by adjacent words.

What does this mean in real terms? In a phrase such as “empty file" where empty has 14 
and file has 12 possible meanings, if the assumption of sense independence holds true, it 

would mean the probability of file taking on the sense of data is completely unaffected by 
the sense taken on by empty. This clearly does not tie in with observed behaviour. On a 

brief analysis of the data, from 19 instances of the word pair “empty file” it is clear that in 

the context of empty, file consistently takes on the sense of data. In other words

2 Note, to amplify the assumption that sense of a particular word is independent of the 
string type of the adjacent word can be stated as 

p((S\(wi) | S(wi)) | T (w 2)) = /?((Si(wi) | ,S(wi)) | U (W2)) , where U is another string type.
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P((FILEdata(w2)\FILE (w 2))\EMPTY(wi)) = 1 and even more specifically

p(( FILEda t a { w >2) \ F1LE{wz))\EMPTY c o n ta in in g  _ n o t h i n g { w i ) )  —  1.

Why should this be so? The only sensible conclusion is that word sense distribution is not 
independent. Also, to explain the surprising Bayesian probabilities of 1 found above, it is 

reasonable to assume that word sense distribution is heavily dependant upon the nature 

of the corpus.

This concept contrasts interestingly with Church’s (1988) notion of “lexical probabilities” 
where this refers to the likelihood that a word will behave in a particular syntactic 

manner. It is also in effect a subtle variation of the notion of collocations and mutual 
information (Rose 1993). The difference being, instead of looking at the effect the 

presence of one word string has on the probability of another word string being found 
adjacent, we are considering the effect that one word sense has upon the sense taken on 
by adjacent words.

In real terms, this means that the complexities that ambiguity can introduce are not as 
bad as it may first appear. The high domain specificity of the problem domain means that 
the sense distributions are highly idiosyncratic and focused. Also, the high domain 

specificity means that not only can the lexicon be of minimal size, but the senses that 
have to be considered for each lexical entry are small.

2.2.1.3. Anaphora

Anaphoric reference in language is a form of data compression. It is the means by which a 

sentence may refer to a noun already mentioned earlier in the text. It is a shortcut and a 

pronoun is often used. However multiple possible referents can cause ambiguity making 
the process of resolution non-trivial. This is a classic natural language processing 
problem.

The method of resolution must again balance multiple constraints against one another. 

These constraints may be of several forms: syntactic, semantic or constraints of recency. 

Syntactic constraints obviously relate to word classification, however the distinction 
between semantic and syntactic constraints can be somewhat nebulous. A semantic 
constraint is any element of a word’s meaning which precludes it from matching the 
wider semantic net supplied by the pronoun. Examine the following examples:

My wife has a daughter.
She likes to go to the cinema.
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My wife has a son.
She likes to go to the cinema.

The first example, because gender does not serve to discriminate the alternatives, is 

somewhat ambiguous. The second example exhibits no such ambiguity: the first possible 
referent is female, the second male, as the pronoun is female there is only one possible 
solution. This demonstrates anaphora resolution where the semantic information 
necessary to disambiguate is tightly tied to the word meaning, i.e. the sex. In this case 
the information is so tightly bound the necessary information could probably be derived 

from a dictionary definition. The following demonstrates a subtler example:

Peter has a dog called Rover.
He has strong sharp teeth.

Peter has a dog called Rover.
He takes him to the vet every year.

In the first example the pronoun he probably refers to Rover. The context of sharp teeth 
matches well with the notion of dog. In the second example he clearly refers to Peter as 
only a human will sensibly take something to the vet every year. There is nothing within 

the first sentence to disambiguate the two as the first sentences are identical. The 

contextual information is in the second sentence after the pronoun. But further the 
semantic contextual information necessary to disambiguate could not easily be inferred 
from a dictionary. This represents another example where what can only be referred to 
real-world knowledge is necessary.

Balanced against these constraints of syntax and semantics is the obvious constraint of 
recency. This simply means a pronoun is far more likely to refer to the noun in the last 

clause of the previous sentence than to a noun three sentences previous. From a 
psychological perspective this probably has much to do with the interaction of long term 
and short term memory.

Finally, a pronoun does not necessarily refer to a single lexical item. Frequently the 
referent is a whole clause or noun phrase.

My friend came to see me last night. It was an enjoyable experience.
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In the above example it does not refer to my friend, nor does it refer to last night, it refers
to the fact that my friend came to see me last night.

If an automated system were to attempt to tackle some of these problems the following
types of resources would be required.

• A resource that would identify the constraints implied from a particular syntactic 

category.

• An efficient and accurate syntactic parser, which could identify syntactic class given a 

word.
• A resource that would identify the constraints implied from a particular word sense.
• An accurate disambiguation model which given a word and context would identify 

appropriate word sense.

• A logical scoping context which given a possible list of referents and an anaphoric 
reference would compare constraints against each other and come up with a best 

match.

• A process to adjust for recency, which given a previous set of sentences would identify 
a list of possible referents.

2.2.1.3.1.1. Samples

Anaphoric reference is not particularly common within the sample data3. To give some
idea of the few contexts in which it arises the following examples are given.

"read a file or record or data before it has to be processed"
"to be processed before it trys and reads it"
"code sections which can be accessed then resume where it left off'
"It relies on the weather conditions."
"High Level as it needs to be compiled. "
"COBOL is a high level language because it uses english-like statements"
“ones that have no following or proceding items. The item is done and nothing 
relating to it follows, and it then goes onto the next step of the program if  one 
is there or exists."

Figure 2-3 Sample Student Data

3 There are in this section many examples of student data. Although there may indeed be 

genuine spelling mistakes within this thesis (although I hope not) those to be found 
within quoted student text are intentional verbatim copies of the text that the student in 
question used.
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Note that from the above samples, and indeed from the entire data set “it” appears to be 
the most common form of anaphoric reference, with an occasional example of the use of 
“one” or “ones”. This is to be expected as we are dealing with academic text that is 
concerned primarily with sexless, conceptual nouns.

Secondly, it should be noted that the referent is frequently found in the question. This 

means that answers cannot be considered as a self contained unit and the question and 
answer must be considered together in order to resolve the anaphoric references.

2.2.1.4. Synonymity

A single meaning can be represented by many words or groups of words. Or put the other 

way round, many words can mean the same thing. A good model of this synonymity 

would be the corner stone of a successful automated assessment system. If the aim is to 
produce a system that identifies the semantic correlation between two sentences, clearly 

a process that identifies the semantic correlation between component words is a valuable 
asset.

A thesaurus or WordNet are the two most likely resources for this type of information. 
However, an obstacle to the easy integration of such resources is the problem of 
ambiguity mentioned earlier. A typical lookup for a word entry in either of these 

resources can easily return upward of five distinct word senses.

2.2.1.4.1. Samples

For the purposes of automated assessment there is an important distinction to be made 

between theoretical, de-contextualised synonymity and two words that mean the same 
thing within a particular context. There are a number of reasons why this is the case.

1. A point (made more comprehensively in the metaphor section below) is that the 
meaning of a word is heavily affected or constrained by the context in which it 
occurs.

2. Meaning is a complex problem. The question of what does a particular sentence 

mean, as has been shown above, is extremely difficult to answer. The more 
accessible question is posed in automated assessment: Does SentenceA correctly 
answer the QuestionA?

It is the latter type of synonymity, therefore, that is of interest here: finding two words 
that mean the same thing within a particular context.
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The following two examples were produced in answer to the question:

"Define the term ’low-level language’ by completing the sentence ’A  low level 
language is

Answers:

"nearer to machine code"

"close to machine code"

In the above contexts “nearer” and “close” are synonymous in that using a simple 
replacement criteria they both adequately answer the question. However it is unlikely 
that anyone would claim that “nearer” and “close” are at all synonymous in the more 
general de-contextualised sense.

Again a similar situation is shown below.

"dependant upon conditions being met"
"dependant upon conditions being satisfied"
"dependant upon conditions being true”

These are fragments from answers to a question concerning the definition of “condition 

lists”. Again in context “met”, “satisfied” and “true” have similar meanings, but in a wider 
sense met”, “satisfied” and “true” could not be considered synonymous.

As a final demonstration consider the following phrases:

"follow one another"

"items following each other"
"follow each other"

"processed one after the other"
"lead on singularly one after the other"
"carried out one after another in an order"
"processed one at a time"

Each phrase is used to answer a question concerning the definition of sequence. This time 
the contexts are not identical, but are subtle variations of one another. The variability
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captures well the difficulty of identifying the invariant aspects of language that correct 

answers share.

2.2.1.5. M etaphor

Metaphor according to a dictionary (Collins Concise) definition is:

“a figure o f speech in which a word or phrase is applied to an object or action 
that it does not literally denote in order to imply a resemblance from, for 

example he is a ‘lion in battle’ ”

This poses a major problem for natural language understanding systems in general. 

However, its relevance to the specific automated assessment problem should be assessed 
first. Within novels and entertainment literature metaphor is undoubtedly pervasive. The 
sentence

George swam through the crowd.

in the context of a novel is easily interpreted, and clearly the meaning here is not literal. 

But how frequent is the use of metaphor in the academic type prose under investigation 
here? A careful study of the sample responses produced by students uncovered some 
interesting points.

Certainly the overt use of metaphor is considerably less frequent than in novels etc. In 
fact out of 1280 sentences (64 student’s responses to 20 questions) no overt use of 

metaphor could be found. The term overt metaphor here suggests that there are direct 
contradictions between a dictionary definition of a word and the use to which the word is 
put. However, a more subtle use of metaphor was found to be very prevalent. A good 
example can be found below.

“code closest to the machines architecture”

This was produced in answer to the question “What is a low level language?” and is in fact 
a fairly good answer. But although it may not at first seem so, this answer uses 
metaphor. ‘Close’ according to a literal definition implies physical locality. A language, 
which is an abstract thing, can not be close to a machine architecture, which is also an 
abstract thing.

Such examples may appear pedantic, but it must be borne in mind tha t computers and 
the artificial reasoning processes implemented upon them are fragile and pedantic by
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nature. Such examples also highlight the limitations of the above dictionary definition of 

metaphor. According to the above definition a word can be used metaphorically if it is an 
object or an action, but in this case it is neither. The term being used metaphorically here 
is closest which is an adjective, or an object descriptor.

By again making use of the terms context and constraint, as used frequently above, and 

accepting that contextual constraints can mutate or pervert the meaning of a particular 
word, a better working definition of metaphor might be:

"an instance o f speech whereby the meaning of the word within the context 
only takes on some o f the characteristics o f the de-contextualised meaning due 
to the constraints implied by other word meanings .”

This would account for the above “lion in battle” example whereby the constraints of 
other words prohibit the individual taking on the qualities of yellow and furry but would 
not prevent him from taking on the qualities of strong and proud. Also, it accounts for the 

second example where the abstract nature of the terms being used prohibit physical 
locality from being a valid interpretation but would allow the more relaxed interpretation 
of conceptual locality.

In terms of the resources required to address problems of metaphor a mapping from 
individual words to contextual constraints is needed. Also an essentially fuzzy processing 

mechanism is required, whereby these contextual constraints may be checked against 
each other and loose or inconsistent implications pruned off.

2.2.1.5.1. Samples

Evaluation of the incidence of metaphor within the sample data is somewhat problematic. 
This is because in order to tell whether a particular word or phrase is being used 
metaphorically we need to do the following:

1. Identify the meaning of the word or phrase, as it is being used from its 
context.

2. Look up the literal meaning of that word or phrase from some prescriptive 
source, e.g. dictionary.

3. Identify whether there is significant difference between the “meaning in 
context” and the literal meaning.

Stages (1) and (3) are obviously subjective and possibly error prone.
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With this caveat in mind the following examples demonstrate how meanings of words 

within the test data can differ from their defined literal meanings if we were to apply the 
strictest computer-type mentality to the sense matching:

"items which appear at ’the end’ of a structure"

“appear” according to Collins Concise Dictionary Plus (1989) has seven literal meanings 

none of which strictly mean “being at”, which is the meaning implied within the above 

context.

"Make sure that before a program tries to pi'ocess some data that there is 
actually some data to process”

Again, this may appear pedantic, but a strict definition of “try” must include some notion 

of volition, of which a program, being inanimate, must be incapable. There must be some 
level of metaphorical usage here.

“A selection in JSP  is the choice o f two or more separate items only one of 
which will be chosen in the program”

Similarly, it is only by stretching the literal definition that an inanimate program can be 
imbued with the power to choose.

It is perhaps also worth noting the comments of Garagliano (1996) who in connection

with analysis of the data used for the LOLITA project stated:

"Our data has shown how, against popular belief, metaphors are as common
in dry texts (eg financial reports) as they are in literature"

2.2.1.6. Inference

Making the distinction between what a sentence means in its own right and what is it 

reasonable to infer from a sentence is far more difficult than you might first assume. In 
other words what knowledge is it reasonable or necessary for a listener to possess before 
he can understand the meaning of a sentence?

When dealing with natural language processing the knowledge that the system possesses 
prior to being supplied with the sentence must either be explicitly supplied or learnt by
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the system. The most obvious source for word meanings is a dictionary, but is this 
sufficient to disentangle the sentence’s meaning?

Consider the above lion example:

“he is a lion in battle”

A dictionary definition of lion provides us with a definition:

“a large gregarious predatory feline mammal o f open country in parts of 
Africa and India having a tawny yellow coat and, in the male a shaggy 
mane.”

This is obviously insufficient for a computer to be able to make the appropriate 
interpretation. It seems that a certain amount of what we call ‘real-world knowledge’ is 
necessary to make valid interpretations of sentence meaning.

2.2.1.6.1. Samples

In order to demonstrate this same problem of inference in a more practical way consider 

the following example from the automated assessment samples discussed above. In 
answer to the question

“Define NON-RESIDENT’ in COBOL terms by completing the sentence 'NON­
RESIDENT segments o f COBOL code are...”?”

The following answers were given.

“segments that are pulled in to memory only when they are needed.”

“swapped out to disk when they are not being used.”

Both these answers are correct, but sire in a sense the double negative of each other. 
However the information necessary to ascertain that these statements mean similar 

things will certainly not be available from a dictionary. In order to make any sense of the 
above two sentences information along the following lines needs to be recorded 
somewhere.

1. MEMORY and DISK can store the same sort of things (INFORMATION)
2. SWAPPED in the context of DISK implies swapped from MEMORY
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3. PULLED in the context of MEMORY implies pulled from DISK
4. If INFORMATION is not being USED then it is not NEEDED

A reasoning process would then be required which could apply the above knowledge to 

one of the above sentences to obtain a logical identity with the other.

On balance, however, the incidence of such answer variants within the data set is 

extremely low. Representing the two logical variants explicitly and distinctly as two 

distinct patterns is a pragmatic and achievable alternative. (Specifically examples of 

these types of answer variants were found in questions 1 and 13 only and the ratios 

between the two logical variant of the answer were approximately 80:20 for the former 
and 70:30 for the latter.)

2.2.1.7. Role o f  Syntax

The role syntax should take within a natural language processing system is a contentious 

issue. The conventional understanding is that syntax is lower in the processing hierarchy 

than semantic analysis. Typically NLP systems will parse a sentence first then ascribe 

meanings to the individual parsed components and finally assemble these.

However, for real world systems, of the type under consideration here, this processing 
paradigm cannot be applied. There are several reasons for this. First, a typical syntactic 

parser using a generative grammar, implemented as a bottom-up process, will never 
consistently provide a perfect parse of naturally occurring language (although coverage 

rates are constantly improving). The reasons for the difficulty in producing valid parses 
are twofold:

1. As discussed above words are inherently ambiguous. Where the distinct 

senses of a word have a different syntactic class a syntactic parse can no 
longer be implemented as a bottom up deterministic process (an example of 
this is the word love, “I  love you” uses love as a verb, “this thing called love” 

uses love as a noun.). Higher level semantic information derived from context 

is sometime a necessity in order to arrive at a valid parse
2. A generative grammar produces valid grammar category strings from the 

recursive application of a finite set of rules. When a parse takes place a valid 
grammar category string is re-engineered to the rules that could generate it. 
There do exist a set of valid grammar category strings for which several 
distinct sets of grammar rules are acceptable parses. (Note this point 
contrasts interestingly with Sampson’s (1987) argument against the 
grammatical/ungrammatical distinction).
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The implication of a low parse rate is that sentences that cannot be parsed cannot have 
their content analysed.

Secondly, but possibly most importantly, the student responses are produced under test 

conditions; a naturally stressful environment. They are frequently ill formed, 
ungrammatical and contain multiple spelling errors. This considerably affects the 

performance of any syntactic parser.

Finally consider the following four sentences:

Romeo loved Juliet 
Romeo felt great love for Juliet 
Romeo felt lovingly towards Juliet 
Romeo had a loving feeling for Juliet

All four sentence mean approximately the same thing. Certainly in answer to the 
question “How did Romeo feel towards Juliet?” they would all be marked correct. 

However syntactically they are diverse. The concept love is embodied as a verb, noun, 
adverb and adjective. Careful consideration must be given to the role syntactic analysis is 
to play in the automated assessment system.

2.2.1.7.1. Samples

The following sample phrases, taken from the data set, show how the concept of 
dependency is discussed in its various syntactic forms:

"structure dependant on the data"
"depending on the input"
"depend on each other"
"depends on the selection"

Similarly to demonstrate various syntactic forms of the concept process:

"available to input during processing"
"operations that apply to a process"

and for test

"involve a lot o f unnecessary tests"
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"being true thus not having to be tested"
"helps in the testing o f the program"

Finally, for access.

"the main program able to be accessed by code"
"they are accessible by the rest o f the program"
"accesses are allowed by"

Note that to adopt a processing strategy that does not presume a syntactic parse is not 

entirely unconventional. For example see Weischedel et al (1991) and Lou & Foxley 

(1993, 1994a, 1995), which will be discussed later in this section.

2.2.I.8. Noise and Redundancy

Natural Language is almost by definition noisy. Within the automated assessment task 
this noise can be categorised into:

1. spelling errors

2. ungrammaticality

3. sense confusion

The following sentences have been taken from the generated responses to demonstrate 
the depth of the problem.

“peices o f code that is not in memry”
“segments o f code that is called”
“i that is har to understand but is faster as the comp can trslate it easier”
“one that uses mneumonics that the programmer and the machine 
understand”

Such sentences pose a serious challenge to a system which is intended to match the 

semantic content against some prescribed criteria. Let us consider each of the problems to 
be tackled in turn.

Superficially spelling correction is a well defined problem: an ill formed word is easily 
identified by comparing it against a list of acceptable well formed words. Non set 
membership implies an error. On deeper inspection this solution is somewhat 

problematic. Due to the morphological irregularity of English words, a comprehensive list 
is difficult to derive. Further the inflectional morphology of English leads to an ever
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expanding word list (Pinker 1994). Once identified the error must be corrected. Most 
approaches (Du & Chang 1994, Marzal & Vildal 1995, Zobel & Dart 1995) employ a 

technique which computes the normalised edit distances between two words. The edit 

distances are computed between the ill-formed word and all appropriate valid words in 
the lexicon. The valid word, which gives the smallest edit distance, is deemed the correct 

word. Although variations on this technique do exist (Kucick 92) a process with the same 
end results would have to be implemented. Note, though, that these techniques do not 

address the problem of a misspelled word coincidentally matching another well-formed 
word, a classic example being “there” and “their”.

The problems with syntax have been discussed above. The introduction of noise 
compounds these problems considerably. The problems of spelling mistakes heighten the 

ambiguity surrounding the grammatical classification of words. Also, it is impossible to 
parse a non-grammatical sentence with a generative grammar because these grammars 
only produce grammatical sentences.

Natural language contains a high degree of redundancy. Shannon (1951) placed this 
figure at 50%. This figure was arrived at by investigating the level of content that could 
be eliminated from a sentence before it became unintelligible. Redundant in this context 

does not imply devoid of semantic content, but implies a duplication of semantic content. 
A strong argument could be made for redundancy being nature’s way of resisting noise 
and damage to data. Nevertheless, redundancy is the only mechanism available to tackle 
the problems of noise within spelling and grammar.

2.3. Knowledge Representation Alternatives

The representation of knowledge is the key to the success of the outlined task. The 
representation module is the permanent store for the expert’s knowledge. There are 

several alternative forms of knowledge representation commonly used: logic, frames, 
semantic nets, cognitive graphs and connectionism. These are now individually discussed.

2.3.1. Logic

Logic has a long history, its roots go back to before Aristotle. Logic can be seen as an 
attempt to formalise the reasoning or thinking process. Indeed one of the first major 
works on logic (Boole 1854) was called “The Laws of Thought.” Logic took on its modern 
form with Frege (1879) who introduced the first complete theory of first order logic. 

However, the symbols now commonly associated with logic were first used 
comprehensively within Principia Mathematica (Russell & Whitehead 1910). Russell and 
Whitehead were also responsible for reducing mathematics to logic.
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2.3.1.1. Propositioned Logic

The most simple form of logic is propositional logic. Logic consists of statements which 
are considered either TRUE or FALSE depending upon their interpretation under a 

domain. These statements may be combined with well defined logical connectives, which 

are modelling or constraining the possible tru th  values of objects in the domain.

Although originally conceived as a tool to aid thought, the principal logical operators are 
somewhat divorced from their common sense counterparts. This is for reasons of internal 
integrity. The form of implication used in logic is known as "material implication” or the 
"Philonean conditional”. It can be defined within a truth table as follows:

p q pDq

F F T

F T T

T F F

T T T

Figure 2-4 Truth table for the Philonean conditional

Lewis (1912) published a paper which objected to the v and 3  operators being interpreted 
as their common sense equivalents of or and if-then. Specifically this is a question of 

implication. Common sense implication implies a causal connection between two events 

or states. Within logic this is not so and the tru th  value of the statement, with the if-then
clause, is entirely dependant upon the truth value of its parts and not the constituents
meaning.

Take the statement “penguins can fly” which is untrue. According to the above 
interpretation of implication this would render both the statements below correct.

IF penguins can fly THEN penguins are birds.
IF penguins can fly THEN penguins are not birds.

Both statements are, of course, in the real world, incorrect: there is no such simple rule 

for membership of the bird class. However because of the logical definition of implication 

and because the antecedent of both clauses is false, both of these apparently contradictory 
clauses are correct.

Implication is one manner in which logical reasoning differs from common sense 
reasoning; extensionality is another. To explain, the distinction between intension and
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extension must be made. The extension of a logical token is the class of entities (in the 

real world or world model) to which the token correctly applies. The intension of a token 
refers to the logical properties of that token only. The extension of UNICORN is therefore 

NULL or the empty set, while the intension is rich. Since the truth values of symbolic 
logic are determined by the extension of the referent, a clause such as

Vx UNICORN(x) => COW (x)

or every unicorn is a cow, which is obviously FALSE by intension, is TRUE because there 

is no extension of unicorn.

2.3.1.2. F irst O rder P redicate Logic (FOPL)

Propositional logic’s expressive power is severely constrained by the lack of variables. 

First order predicate logic introduces these as well as some quantification operators. 

Instead of simple propositions, predicates are used which take one or more variables as 

parameters. These predicates are also either TRUE or FALSE depending upon their 

interpretation under a domain. The predicate taking a variable is therefore defining a set 
of objects for which a certain property is TRUE.

The variable under the predicate e.g.

P(x)

can be scoped with one of the operators.

The universal quantifier or:

Vx P(x)

States that for all x the predicate P is true, or all x have the property P.

The existential quantifier or

3x P(x)

Asserts that ther exists at least one x that satisfies the predicate P (or has the property

P).

2.3.1.2.1. Advantages o f FOPL
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Drawing in part from the analysis made by Pavelin (1988) the advantages of FOPL can be 

listed thus:

1) Precision
First order predicate logic is an extremely well-defined formalism, with well understood 
semantics. There is no ambiguity within the system; in fact the rules of formation 

prohibit this.4

2) Expressiveness
The use of variables, and the notions of quantification and negation serve to make FOPL 
an expressive formalism, within which, with some work, most statements are encodeable.

3) Proof Theory
Once the state of the represented model is encoded within FOPL, the rules of logical 
deduction can derive the truth status of anything that is implied by the state. That is the 
completeness theorem: anything that is true in all models of the world can be proved.

2.3.1.2.2. Disadvantages o f FOPL

1) Deductive Reasoning

The reasoning, that logic models so well, is deductive reasoning. That is the process of 
reasoning by which a specific conclusion necessarily follows from a set of general 

premises. As both McDermot (1987) and Russell (1945) have argued most reasoning in 
the real world is inductive not deductive, where inductive reasoning is the process by 
which general principles are drawn from a set of principles, based mainly on experience 
or experimental evidence. As such inductive reasoning is far harder to formalise than 

deductive reasoning, for it is frequently an uncertain process, producing probabilities 
rather than absolutes.

2) Implications
The limitations of deductive reasoning tie in closely to the distinction made between 

common sense implication and Philonean conditional. As mentioned above, logic is

4 Although well defined it is undecidable if used to support arithemetic. There is also 

ambiguity because although the symbols are precise the reasoning is free of semantics 

and can be performed purely syntactically. Any symbol stands for whatever you choods it 
to stand for providing it satisfied the axioms and statements set down for it. The 
underlying logic for set theory and Boolean logic are equivalent and form the same 
category, so every symbol in FOPL stands for a category of objects and as such is refered 
to as a functor or a function symbol which stands for any function of atom that fits.
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commonly interpreted as being an extensional theory. It follows, therefore, that 

conditional statements that include objects having no extension have complex 
epistemological status. In other words we cannot describe the intension of a concept.

3) Non-monotonicity
A monotonic representational system is one where the set of all statements that are 

provable increases monotonically with the axioms added. A new axiom can never cause 
something that was previously provable, to become improvable, thus leading to a 

reduction in valid theorems.

However within real-world reasoning we frequently wish to express rules then stipulate 

exceptions to these rules. For example after saying all birds fly and there exists a bird 

called an ostrich:

Vx bird(x) flies(x) 
bird(ostrich)

we may wish to refine this by saying ostriches do not fly:

-iflies(ostrich)

Within monotonic logics this introduces an inconsistency after which everything becomes 

provable rendering the logic useless (Sowa 1991).

4) Boolean Truth Values
Within classic logics the interpretation of the model ascribes to a statement a value that 

is either TRUE or FALSE. However, from the common-sense reasoning angle, this is not 
flexible enough to capture the many vagaries of the world

5) Representational Recursion
Self-reference is a complex issue within formal systems such as logic (Hofstadter 1979).

But representational recursion, or the power to refer to propositions or other predicate 
names within other propositions, although prohibited, would be a powerful technique. 
One example of its usefulness is the power to represent equality of propositions. But a 
second and a more common requirement is the ability to represent information about 

propositions. For example “it is uncertain that...” or it is an “absolute necessity that...” or 
even “it is interesting that...” All such statements would be impossible to represent in 

first order predicate logic.
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There are three major variations on logic each of which address some of the problems 

discussed above.

2.3.1.3. M odal Logics

Modal logics were introduced by Lewis (1912) to tackle the problem of the Philonean 

conditional, which he replaced with the strict implication.

P=*Q

P implies Q, now can be read as: it is not possible that p should be true without q also 

being true.

It also addresses the last of the disadvantages listed above: the representation of 
knowledge about propositions. Hughes and Cresswell (1968) and Moore (1985) both give 

introductions to this theme. Specifically they deal with the problem of modelling an 
intelligent agent. Where a standard logic models the state of events within the world, if 
we wish to model an intelligent agent within this world we must be able to describe the 

agent’s beliefs about the state of events within the world. Lewis, in his original paper, 
also introduced the notions of ‘necessity’, ‘contingency, ‘impossibility’ and ‘possibility’.

The principle by which these notions are introduced is by augmenting the semantics of 
the logic model. Instead of a single proposition being true or false under a particular 
interpretation upon a domain, there exist a set of domains upon which the proposition 
may be interpreted. One of these said domains is distinguished and is the actual world.

2.3.1.4. Non Monotonic Logics

Non-monotonic logics deal with the problem of adding axioms to a system. Specifically, 

axioms that lead to contradictions of the previous theorems of the system. Non-monotonic 

logics can do this without invalidating the entire deductive scheme. As explained above, 
this is of primary use in the representation of rules which have exceptions. Various 

formulations of non-monotonic logics can be found and although their theoretical bases 
may differ, there is a fair amount of common ground. McDermott & Doyle (1980), 
McCarthy (1980) and Reiter(1985).

2.3.1.5. Fuzzy Logics

In fuzzy set theory (Zadeh 1974) an interpretation of a proposition within a domain 
returns, instead of a Boolean variable (true or false) a real number between the value of 0 

and 1. It is an attempt to capture the vagaries of the world, which is particularly
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pertinent to the scope of this thesis: natural language processing. As Zadeh (1982) 

himself states: “Almost everything that relates to natural language is a m atter of degree.” 

Core to fuzzy logic is the redefinition of the principle logical operators AND, OR and 
NOT, to viable numerical equivalents, which preserve the logical integrity of the system.

When applying this formalism to the application of natural language processing careful 
consideration must be given to the epistemological status of the real value, between zero 

and one. The consensus within the literature is that fuzzy logic is intended to model 

“uncertainty” and many researchers go to great lengths to make the distinction between 

the interpretation of fuzzy logic under “uncertainty” and under “probability’ (Kosko 
(1990))5. But within natural language there is a further temptation, and that is to 
interpret the fuzziness as conceptual locality, or semantic distance. There are two 
dangers inherent in this line of thinking. Firstly, is it valid to model conceptual locality 
along a single dimension? Secondly, is the integrity of the logical operators preserved 
under this interpretation?

2.3.2. Frames

The main premise of frame type representations is that knowledge should be clustered. 

This underlying notion of organising perception into chunks can be traced back as far as 
1781 with the publication of Kant’s Critique of Pure Reason (Kant 1787), but was 

revisited near the start of the century by Bartlett (1932).

From the AI perspective it was Minsky (1975) who stressed the importance of 
perceptual/representational chunking within the computational fields, and his represents 

the first attempt to formalise the process. He believed that most theoretical work in AI, as 
Ringland (1988) paraphrased: “was too fine-grained, local and unstructured to account for 
effective common sense thought.” Schank and Abelson (1977) emphasised similar points 

from the psychological perspective with their theory of Scripts.

In essence a frame is simply a cluster of facts and objects and a set of inference strategies 
for reasoning about this cluster. The frame theory has three major architectural

5 Some claim Kosko’s version of fuzziness to be somewhat naive. Using an underlying 
counting model a whole set of semantics can be derived. It is also possible to calculate the 

probability of a fuzzy event where fuzziness can be determined as a restriction of a set of 
probability families. The two probabilities are different as they operate on different 
support sets or universes.
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components: frames themselves, slots and fillers. A knowledge base consists of a series of 

frames. Each of these frames comprises a series of slots. These slots define the frame in 
terms of its composition and properties. Each slot is instantiated with a particular value; 

this is the filler.

The values that populate the fillers are determined by the nature of the individual 

knowledge base. If the knowledge base is epistemologically circular and so self contained 

(i.e. like a dictionary), each filler will be another frame. However in most cases, although 
some fillers will refer to other frames, most will be defined as primitive data types by the 

application process.

One slot type of particular distinction is the IS-A slot. The epistemological status of the 

IS-A slot is a cause of some concern in the AI literature (Brachman 1983). Here it shall be 

used to simply define the type hierarchy and therefore the vehicle for defining 

inheritance routes. For this is one manner in which frames are distinct from logics: 

inheritance is defined within the architecture. This simply means if one frame inherits 
from another, by default the inherit-er is assumed to have (at least) all the same slots as 
the inherit-ee and the filler values are that of the inherit-ee by default, but can be 
overridden.

Take the following simple example:

F R A M E N A M E B I RD
S LO T  1 M O V E M E N T :  FLIES
S L O T 2 B O D Y C O V E R I N G :  F E A T H E R S
S L OT 3 R E P R O D U C T I O N :  E G G S

F R A M E N A M E P E N G U I N
S L O T  1 IS-A:  BI RD
S L O T 2 M O V E M E N T :  SWI M

F R A M E N A M E K E S T R E L
S L O T  1 IS-A:  B IRD
S L O T 2 F O O D :  C A R N I V O R E

Figure 2-5 Frame inheritance example

This defines a fragment of a bird type hierarchy. A bird’s primary form of motion is 

defined at the abstract level to be flying. Kestrel is defined as an instance of a bird by use 

of the IS-A slot. As such it inherits the flying property and an application process 
reasoning upon this data base would assume as such. The penguin also inherits from bird 
but its motion is overridden to be swimming.
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In 1979 Hayes published a fierce attack on frame theory as it was presented in Minsky’s 
original paper (Minsky 1975). Her primary criticisms were that the theory itself added 

little new to what is expressible in first order predicate logic and that there was a severe 

lack of analysis in the formulation of the theory. To quote him directly: “Minsky 

introduced the terminology of frames to unify and denote a loose collection of related 

ideas on knowledge representation: a collection which, since the publication of his paper, 
has become even looser. It is not clear now what frames are, or were ever intended to be.” 

Brachman (1985) has also put his reservations about frames into print. He acknowledges 
that the frame theory attempts to address the “common-sense” reasoning problem but 

points out that the “epistemological ambiguities” within the architecture itself make a 
formulation of a reasoning knowledge base within the frame formalism a highly error 
prone process for the unwary.

However, to balance these comments it must be noted that the frame formalism still 
remains one of the most popular knowledge representation schemes for both theoretical 
work and practical working systems; particularly in the field of natural language 
understanding (NLU).

2.3.3. Sem antic Nets

Quillian (1966) proposed the first major computer system to use semantic nets. Since this 

many people have taken up the idea in a variety of working applications. One of 
particular relevance to this thesis is the spreading activation form outlined by Collins and 
Loftus (1975). However, there is a great diversity to be found in the implementation and 

the specifics of the architecture. Johnson Laird and his associates (Johnson-Laird, 

Herrmann & Chaffin 1984) published an analysis of the variety of semantic networks 
available that identified only three common properties:

1. All nets are constructed from nodes and links, and there exists a set of 
interpretative processes to operate upon the inter-linked network.

2. Networks map out the relations between a set of concepts and within the network 

formalism nothing can be expressed about the relation between the concepts and 
the objects themselves (in other words extension can not be represented). This is 

another way of saying that semantic networks are constructed on the assumption 

that intensional relations can be considered independently from extensional 
relations.

3. There is a general commitment to efficient representation.

The semantic net formalism has two architectural components: nodes and links. 

Unfortunately, much like the frame formalism, in its earliest incarnations the
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epistemological status of its primary architectural components was deemed ill defined 

(Randal 1988).

Roughly, a network consists of a series of nodes interconnected by different kinds of 

associative links. Each node is defined in terms of its links to other nodes. For application 
to his desired field, i.e. natural language translation/understanding, Quillian (1968) 
found it necessary to introduce different kinds of associative links in order to deal with 

the “complexity of English definitions.”

This touches on a problem that will surface frequently throughout this thesis, that is: 

over-imbuing the architectural components with semantic information can obscure 
reasoning processes operating on the knowledge base unless the epistemological 
distinction is clear cut and the reasoning process is aware of and can access this 
information. This reason has been put forward to explain the poor performance of 

Quillian’s (1996) early systems, by Randal amongst others: “One of the reasons for the 
poor performance of Quillian’s Teachable Language Comprehender, was that it did not 
take the semantic meanings of the links into account.”

Two subsequent systems, that of Carbonell (1970) and Winston (1975) adopted a different 
strategy for link meanings. Carbonell allowed links to be labelled and thus richness or 
word inter-relationships could be stored within the link itself. Winston kept the links 

more homogenous, but in order to compensate for the reduced expressiveness introduced 
a new type of node, a relationship node, with which complex relationships may be 

modelled. However both systems are flawed through inconsistent application which is 

due largely to epistemological ambiguity within the architectural distinctions being made.

This same criticism may be levied against most semantic network models before 1975. 

However at this time Woods (1975) published a paper which evaluated the 

epistemological foundations of semantic networks. In brief his conclusions may be 
summarised as follows:

1. Identified the need for logical adequacy for semantic networks (this was later 
established by Schubert (1976)).

2. Make a firm distinction between structural and assertional links where:

a) assertional links establish a relationship between two existing nodes and 
are represented with relational nodes.

b) structural links defines the meaning of that node.
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3. Deal with the intension/extension problem by regarding all implied statements as 
intensional but using an explicit existence predicate where necessary to state the 

extensional state of affairs.

To clarify the distinction between assertional links and structural links, it is worth noting 
that this is in fact a similar but more well grounded distinction to that made by Winston 
(1975) and even earlier by Shapiro (1971). However their solution was to represent the 
assertional links as nodes within the network.

Another interesting and distinguishing feature of semantic networks is tha t they make a 
type/token distinction at the architectural level. This is the distinction, say, between 

COW the type and ERMINTRUDE, a token of the COW type. The need for type/token 

distinction is a pervasive problem within AI and has obvious implications for the 

implementation for deductive and inductive reasoning schemes.

2.3.4. Cognitive Graphs

Although cognitive graphs have been criticised as offering “little new” to established 
knowledge representation schemes (Pavelin 1988), there can be no doubt that they do 
bring together what is best in previous schemes resulting in a flexible, extensive and 
precisely defined formalism. They were originally conceived by IBM employee John Sowa 

and were developed in his publication: Conceptual Structures: Information Processing in 

Mind and Machine (Sowa 1984). There have been later revisions to the initial work, e.g. 

Sowa & Way (1986), Sowa & Foo (1987) and a collection of conference papers Sowa, 
Minuau & Moulin (1993). Conceptual graphs are based on Pierce logic which is equivalent 
to FOPL but differs in that it is based on the 3 operator rather than the V operator.

Cognitive graphs are predominately logic based absorbing most of the formality of first 

order predicate logic inference. However, as the intended application is natural language 

processing they support many of the more common-sense reasoning features such as 
inheritance and modality.

An individual cognitive graph is like a small semantic network, which represents 
information at the same level as an individual sentence. There are three principal 

architectural constructs: concept-type, concept and conceptual relation. A concept type 
specifies a class of objects whilst a concept is an instance of this class; this is identical to 
the type-token distinction made within semantic nets. Conceptual relation simply 

identifies the relationship between concepts or concept types.
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It is assumed that a partial ordering is defined on all concept types which serves the 
same function as IS-A links in semantic links or frames, i.e. defines the inheritance 

hierarchy.

2.3.5. Connectionism

Connectionism, parallel distributed processing and neural networks are all terms which 
identify a biologically inspired processing paradigm which has curious representational 

properties. Especially with regard to the representational status of hidden nodes within a 

neural network.

The primitive components within this architecture are: nodes and links. The links 

connect the nodes into an interconnected network. Each node possesses an activation 
which it passes to other nodes through the links. Each link can be weighted which 

modifies the strength of the signal, to either excite or inhibit. Each node has a threshold 
or threshold function which determines the node’s activation on the basis of the incoming 
accumulated signal.

Formally, a particular node m is connected to j  nodes: no to nj. A set of weighted links 

( Wio to Wij) make this connection. (This specifies the most general case of full network 

inter-connectivity where any node can be connected to any other - including itself). An 

activation do is determined by the threshold function t() , defined on m . The activation 

of m is calculated as:

a(m) = Wix X a(jlx^

A subset of nodes within the network are connected to the outside world and for these 
nodes their activation is taken as an a priori value.

One of the earliest connectionist systems is that of McCulloch & Pitts (1943). Their simple 

system consisted of two layers of nodes, between which full inter-connectivity existed. A 
linear threshold activation function was used. They showed that within such a system the 
logical functions and , or and not could be modelled. Logic theory shows that any logical 
expression may be modelled using these primitives.

Hebb (1949) was the first to suggest a biologically plausible learning model which could 
adjust the weight values such that en masse a network may act as a simple pattern
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associator. In essence the rule was extremely simple: if two nodes are simultaneously 
excited then the weight linkage between them should be strengthened.

Rosenblatt (1962) continued this work with his perceptrons. This was a working model 

that has a precise mathematical formation and could further solve a wide variety of 

problems. Minsky & Papert (1969) pointed out two flaws in this work:

1. Due to combinatorial explosion the processing time necessary for the system to 
solve any but a few trivial problems makes it unusable (on a serial processor).

2. There exists an entire class of problems which the two-layer perceptron is entirely 
unable to solve (the most famous of which is the XOR problem) and there did not 

exist a training algorithm that could operate on multi layer perceptrons.

Due to the possibility of implementing such an algorithm on a parallel processor, and/or 
the huge increase in computing power which makes serial implementation for even quite 

large systems feasible, the first of these criticisms is no longer relevant. The second, 

however, dealt a serious blow to the connectionist community and research into this field 
essentially stopped for close to 20 years.

The breakthrough came with the generalised back propagation algorithm of Rumelhart & 

McClelland (1986)6, which was a well founded learning algorithm which could operate on 
multi-layer networks. (Multi-layer networks are able to solve the XOR problem and 

others like it). They state that the only requirement is the use of an activation function 
for which the derivative is known.

In brief, the network has a set of input nodes and a set of output nodes. The network is 

trained with input patterns and output patterns. An error value is computable for each of 
the output nodes (usually some function of the difference between actual activation and 
desired activation). If we know the activation levels of the node leading into this node and 

the weights of the links upon which this activation is carried, we can assess the 
contribution each node makes to the error. If we also know the derivative of the 
activation function we can assess how much each weight has to be changed in order to 
minimise the error value. Errors may be back propagated throughout the network by 
summing the error contribution each node makes to the output nodes, and so forth7.

6 Although to some extent, the basic elements of the theory can be traced back to the book 
of Bryson and Ho (1969).

7 Back propagation is essentially a negative feedback mechanism and as such is amenable 
to analysis techniques derived from control theory.
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This computational paradigm has proved hugely successful on a whole set of problems 

with which the formal computational model had previously had much trouble. Specifically 
four subclasses of problems have been identified for which the connectionist approach has 

proved particularly successful.

1. Integrating diverse sources of information (McClelland & Rumelhart 1981) 
(McClelland 1981) (Hinton 1984)

2. Extracting prototypes from examples (McClelland & Rumelhart 1986)(Elman 
1990)

3. Representing rules sub-rules and exceptions (Sejnowski & Rosenburg 1987)

4. Generalising from seen to new data (McClelland & Rumelhart 1986)

Interestingly, the connectionist paradigm circumvents many of the epistemological issues 
from which many of the formalisms above suffer. The input and output nodes have well 

defined meaning, determined by the causal, sensory process that activates the nodes on 

presentation with the input pattern. The epistemological status of the hidden nodes is 
somewhat nebulous and largely irrelevant, particularly for networks using distributed 

input/output representation and to which a learning algorithm is applied. Hidden nodes 
need not represent anything. Their presence is justified by the performance of the 
network as whole. This is taking an entirely functional, pragmatic view of the 
representation; a representation or token is justified if the existence of tha t token leads to 

a better performance of the system as a whole. Interestingly however, in several systems 

it has been found that hidden nodes evolve whose behaviour correlates highly with 

features to be found in the input data, and an internal representation can be seen to have 
evolved, the work of Rumelhart, Hinton & Williams (1986) for example.

2.3.5.1. Temporal Processing in Connectionist Networks

Processing data, which has a time dependent component, poses particular problems for a 

connectionist system. The dimensionality of the input pattern is generally limited to 
avoid combinatorial explosions between the hidden nodes. Therefore it is usually 

infeasible to encode many time frames within a single input pattern. Conversely, there is 
no direct analogy to long-term memory so the information from one time frame can be 
difficult to preserve in a distinct processing epoch. It can therefore be difficult for the 
network to make useful associations, or perform any general processing, between the 
information resident in different time frames. There are a number of solutions that have 
been proposed to this problem.

2.3.5.1.1. Windowed Input Patterns
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The simplest solution to the time representation problem is the time window approach. 

Here data is encoded within a fixed time ‘window’. This is the approach that was taken in 
the NETTALK system (Sejnowski & Rosenberg 1987). Under this system the input vector 
used is a concatenation of inputs from a series of time frames. The number of time frames 
defines the size of the window. This is limiting in that the size of the input vector is 
dependent upon the number of time frames the process has to take into account.

o o o.
3 nodes required to record 

single time frame

O 0 0.0 0 Q O 0 0,0 0 Q
tn t1 t0

Figure 2-6 Windowed input pattern encoding 4 tim e frames

2.3.5.1.2. Simple Recurrent Networks

An alternative is the use of a simple recurrent network (SRN) originally devised by 

Elman (1990) as a modification of a related structure developed by Jordan (1986). With 

this technique instead of the input pattern from previous time frames constituting part of 
the primary input vector, the hidden layer is fed back upon itself using time delay nodes. 

As the hidden layer is deterministically computed from the input layer it forms a valid if 
different encoding of the state of a particular time frame. Further, as the hidden layer is 
frequently smaller than the input layer it can be interpreted as a compressed version of 
the same. As such, the network necessary to compute the time dependent information is 
frequently smaller. Such networks can be used for prediction tasks (Servan-Schrieber et 

al 1989) amongst others and trained with the simple back propagation algorithm 
(Rumelhart et al 1986).
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Figure 2-7 A simple recurrent network

This technique is not as computationally expensive as the above ‘windowed’ approach, 
even if we wish to take into account many time frames into the past. This is due to the 

nature of the activation propagation. By simply adding a single set of delay nodes to re­

circulate the hidden layer nodes’ activations, automatically the input vectors from many 
previous time frames are taken into account in the computation of the output nodes. This 
is because the activations from the very first time frame never entirely disappear. They 

are simply diluted with new input. Each previous time frame simply becomes less 
important in the final calculation, in fact the rate of decay is proportional to the ratio of 

the weights between input layer and hidden later, and the delay layer and hidden layer.

2.3.5.1.3. Time Delay Networks

A third option is the use of time delay nodes within a network to model the temporal 

latency between component nodes of the input vector. Such an approach is used by (Lucas 
& Dampner 1992) in their syntactic neural networks.

2.3.5.1.4. Short Term Memory

As analysed within Gasser and Lee (Gasser and Lee 1992) both the above techniques are 
essentially contributing a short term memory to the connectionist process. This avenue is 
explored further in (Allott et al 1995) and indeed the fruits of which contribute largely to 
the second half of this thesis.
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2.4. Natural Language Processing

A complete survey of the natural language processing field is obviously not possible 
within the space available here, nor is it required. A general introduction to some of the 
problems and standard approaches to NLP can be found in (amongst others) Allen (1995), 

Winograd (1972), Carbonell & Hayes (1987), Collier (1994), and Dahl (1995). Here we 

consider the work of a few individuals that is directly pertinent to either the target 
application (automated assessment) and its inherent problems, or the relationship 

between the chosen knowledge schema (connectionism) and natural language processing 

issues.

2.4.1.1. Connectionism and Com putational Linguistics

Harris (1992) presented four aspects of natural language that pose particular problems 
for conventional symbolic natural language processing methods, but for which, he 

concludes, connectionism is better suited. As a vehicle to introduce some of the major 

problems that face natural language understanding and in order to review some of the 
linguistic approaches to these problems, these four issues will be quickly summarised.

1. Schematicity: this alludes to the fact that natural language can be described at 
varying levels of specificity: syntactic and semantic levels being the two most 

obvious. Conventionally linguists have restricted themselves to the analysis of 

only one of these levels. Harris claims that the ‘entire schematicity continuum’ 
must be used if all the regularities of a natural language are to be captured. 
Further, idiosyncratic utterances (which are far more frequent than may be first 

expected) have their own schema which must be represented in order to correctly 
extract the information from them (Filmore et al 1987).

2. Non-autonomy of Syntax: this is simply a corollary of the above which purports 

that syntax (or syntactic analysis) as an isolated sub task is not solvable. This is 
largely due to the ambiguities that are so prevalent within natural language. 
Further, there is work that suggests that certain syntactic sub-tasks such as 

noun-phrase extraction are influenced by semantic factors e.g. (Kuno 1987) and 
(Kluender 1989).

3. Non-compositionality of Semantics: the compositional theory of semantics as first 
proposed by Katz and Fodor (1963) is a theory of lexical semantics which equates 

an individual lexical item with a set of semantic features. The aggregation of the 
semantic features therefore defines the real-world referent to which the lexical 
item alludes. An example would be to equate the term bachelor with the semantic 
feature set [HUMAN, MALE, UNMARRIED]. There is a certain amount of 
psychological research which supports this view (Miller & Johnson-Laird 1976),
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and a fair few natural language understanding systems have performed well 
while operating under the basic tenants of compositional semantics (Schank 
1975). However since its inception problems have been noted. Bolinger (1965) 

noted that the compositional theory works fine for concrete nouns but 

considerably less well for verbs and abstract nouns. Miller (1978) among others 

(Miller & Johnson-Laird 1976) noted the theory’s inability to model polysemy, or 
the change in sense of a word due to context. However this charge may be levied 
at any localised theory of lexical semantics which by definition does not take 

context into account. Jackendoff (1983) gives a fuller exposition of these 
criticisms, but further suggests an epistemological shift, or reinterpretation of the 

basic theory which counters some of these criticisms. That is to interpret the 

composite parts as conditions of use or preference rules rather than the more 

fixed components.
4. Constraint Satisfaction: this issue is a reiteration of the point made in issue (3) 

above, that is: a localist theory of lexical semantics is insufficient to deal with the 

constraints imposed by context. Brugman (1981) and Brugman and Lakoff (1988) 

demonstrate clearly the profound effect of context on meaning by a detailed 
analysis of the variety of uses and implied meaning of the word “over”.

2.4.1.2. The D ifficulties w ith NLP

2.4.1.2.1. Lexical Disambiguation

Lexical ambiguity is a pervasive problem within natural language processing. The 
polysemous nature of most words whereby a single lexical item has several meanings or 
interpretations, means that a method of semantic resolution must be present if 

interpretative systems are to be developed. Miller et al (1991) propose a corpus based 

algorithm for lexical disambiguation. A parse is assumed such that the grammatical 
status of each word can be identified. When an ambiguous lexical item is encountered the 

alternative senses are listed and the context of the item is noted.

Using an external resource such as WordNet (Miller et al 1985) or Roget’s Thesaurus 
(Gwei 1987) a synset can be generated for each sense alternative. A corpus is searched for 

similar contexts and the co-ordinating item (an identified discriminatory criteria) for each 
of these contexts identified. The co-ordinating items for each of the contexts are matched 
against the members of each of the synsets. The ambiguous sense which has the synset 

with the greatest number of hits is deemed the correct item.

2.4.1.2.2. Sense Matching
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Many NLP systems rely on a process whereby text input is matched against a 
predetermined template. The ATIS (Air Travel Information System) project focuses on 

NLP problems within the travel domain. A team from SRI International lead by Jackson 

et al (1991) have produced a template matcher for robust natural language 
interpretation. Working from the principal that, within the travel domain, although the 
volume of information requests is high and the variety of actual utterances is high, the 
variety of the logical form of the request is very low. The task tackled was to reduce the 
large number of possible utterances to small number of logical requests (which were 

eventually translated into database requests). This was done by means of a robust 
template matcher.

A small number of templates are generated for each of the request types; four in the 
initial case. The template is rendered using a frame type of knowledge representation. 
Each frame has a set of slots, and each of the slots has a set of associated keywords. A 

scoring mechanism is devised using the words in the utterance with the number of slots 
and the keywords per slot. The template which scores highest under this mechanism 
becomes active. Once active the template fills its slots with filler values derived from the 
utterance.

The strength of this work are that an explicit parse is unnecessary, and so “the failure to 
find a complete parse can no longer be used as a hard constraint to reduce perplexity of 
the speech recogniser.” However the lack of a complete parse is also its downfall in that, 
due to the reduced amount of information, the filling of the slots is a more error prone 

process. This is addressed by combining a parsing element onto the system (Moore & 
Dowding 1991).

2.4.1.2.3. The Syntax Semantics Relation

Approaching the NLP problem as a modular sequential process is doomed to failure. The 
ambiguities of natural language mean that semantic analysis is impossible without 

syntactic structure and syntactic analysis is impossible without semantic information. 
The work of Weischedel et al (1991) represents an approach which recognises the 

impossibility of each of these tasks in isolation. Concentrating on NLP tasks as 
exemplified in the message understanding conferences (MUC-3) Weischedel attempted to 
match natural language utterances to pre-defined classes or templates. A standard NLP 
system architecture is as follows (see Figure 2-8).
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Figure 2-8 Standard NLP Architecture

As with most message understanding systems the process relies on being able to match a 

natural language utterance to a predefined class or template. In order to do this the main 
constituents or referents of the sentence need to be identified. This is typically performed 
through a syntactic parse. Syntactic parses when applied are rarely completely 

successful. It is more common to produce a series of partial parses. To use their own 
analogy; instead of a single parse tree being produced with a single root, a forest of parse 
trees is produced with independent roots. The approach that Weischedel8 et al propose to 
tackle this problem is as follows.

8 Earley (1970) has also published work along similar lines, documenting an efficient 

“chart parser” which is capable of producing partial parses.
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1. A syntactic parse is produced which will typically produce many distinct partial 
parses. A semantic interpreter assigns semantic interpretations to the 

constituents of the partial parses.
2. Using the greater information provided by the semantic assignment, a 

probabilistic algorithm combines the fragments acknowledging both semantic and 

syntactic information.

The above represents an algorithm which recognises the difficulty in implementing a 
natural language system as a modular sequential process, and proposes a tenable 
procedure for combining the information from the two sub-tasks in an interleaved 

manner.

2.5. Automated Assessment

Finally, we consider the application of automated assessment itself. This is done in two 
phases; firstly a survey of the specific techniques and solutions to this task available in 
the literature is given. Secondly, we define the scope of the investigation to be 
undertaken. This is done by placing the application of automated assessment in the 

context of more general work concerning the evaluation of natural language processing 
systems.

2.5.1. Autom ated Assessment L iterature

Within the literature identified, only two9 instances of automated assessment research 
have been identified. The first, Marshall’s intelligent marking assistant (Marshall 1986), 

documents an assisted process of essay marking and evaluation. The second, the STAMS, 
system researches a fuzzy logic based model for marking single sentence answers to 
questions. Finally the features available within QuestionMark, a commercially available 

system for marking simple text answers, are evaluated.

2.5.2. M arshall’s In telligen t M arking A ssistan t

Marshall’s Intelligent Marking Assistant (REPORT) tackles the problem of automated 
assessment of student scripts (these are essays not multiple question/answer scripts).

9 There is actually a third (very recent) automated assessment technique to be found in 
the literature, that of Latent Semantic Analysis. This will not be introduced till chapter 5 
for the necessary background theory is more naturally presented there.
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Marshall classifies his system as an expert system in that it possesses the following '(

elements:

1
1. A Knowledge Base to contain the expertise.
2. A Reasoning Engine to make inferences; applying (1) to the specific case.

3. A User Interface to allow the user to communicate with the system •

However, although its function is to assess the validity (semantic content) of student 

scripts, it is not in any real sense a natural language understanding system. To justify 

this assertion the system must be explained in greater depth.

The knowledge base itself consists of a series of rules of classic expert system form:

IF p AND q  THEN z

The antecedent conditions p and q are criteria by which aspects of the script are

evaluated. The consequent z can be of one of two things. i

Either it is an action - in this context this could be a modification to the running mark for

this script or possibly a prompt for the user to make a subjective evaluation of an essay
fragment; or the assertion of a new state which could lead to the satisfaction of a different i
rule thus allowing rules to be chained.

For example a typical rule may be: ;

IF (Z% of the marks for any report X are available for some >-a

section Y) AND (Z% is greater than 0%) THEN (X should
include Y) 3

The problem solver component triggers these rules as determined by the evidence within |

the script. In line with many implementations of expert systems it attempts to produce an 
explanation of the evaluation arrived at. Explanations are implemented by tagging J

individual explanations to each of the triggered rules and so a trace of rule activation can I
be followed. I

As far as can be discerned the conditions are of two types.

1. Automatically assessed conditions that are implemented as small functions.

These will be such things as: word/sentence count, paragraph length and simple ;■
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syntactic evaluations such as punctuation/capitalisation validation and subject 

verb agreement.
2. Subjectively assessed conditions: which by definition can only be satisfied by the 

user’s intervention. These will be rules such as (Is the main Body of text 
coherent?). In the working system when rules with such conditions are triggered, 

the system prompts for the user’s evaluation.

The final output of the system is a mark and an explanation. As noted above the 

explanation is generated as a series of ‘canned texts’, but like the ELIZA system 

(Weizenbaum 1976) there is a random element to the canned texts to introduce variety.

The REPORT system does not attempt to evaluate or classify the semantic content of 
texts. All semantic evaluation that is necessary is performed by the user, albeit in a 

structured and computer driven way. The system could be seen as an NLP system by 
virtue of the syntactic evaluations that are automated, however for the reasons explained 
above it should not be seen as an NLU system.

The work however is highly relevant to the task in hand. Firstly, it addresses the same 
problem: how to objectively and efficiently evaluate student work, in the context of ever 
increasing staff/student ratios. Secondly it is a paradigm of structured evaluation; in 

Marshall’s own words: “it can apply the evaluation criteria, make objective judgements 
and supply explanations consistently.”

2.5.3. A Simple Text Autom atic M arking System (STAMS)

The STAMS system (Lou & Foxley 1993,1994a,1995) again tackles the problem of 
automated assessment but as distinct from above, concentrates on: “marking the 

semantic content of single sentence responses in a marking context.” It forms part of the 
wider Ceilidh project (Abdullah & Foxley 1991, Benford, Burke & Foxley 1992, Lou & 
Foxley 1994b) which deals with computer managed course assessment in a broader 
perspective.

The aim is to match sentences of similar meaning, for example a tutor specified target 
meaning could be

The big hedgehog eats the small caterpillar.

It is desired that the automated marking system could identify all the following as having 
similar meaning.
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The huge hedgehog kills the small worm.
The great hedgehog eats the little catepillar.
The small larva is killed by the large hedgehog.

At the core of the system is a fuzzy logic (Zadeh 1965) inference engine which derives its 
fuzzy parameters from Roget’ Thesaurus through a series of independent tools (Gwei & 

Foxleyl987,1989, Gwei 1987).

The 990 or so headwords within Roget’ s Thesaurus are taken as the primitive concept 
types. The tools developed by Gwei and Foxley, when given a word (present in the tutor 

criteria or student sample) to look up, will return a list of all possible relevant primitive 
concepts. The following table illustrates a few of the most relevant headwords when the 
word ‘file’ is looked up.

Headword No Relevance Confidence Primitive
Concept

71 100% 100% Continuity
548 52% 100% Record
136 40% 100% Lateness
332 40% 100% Powderiness
194 37% 100% Receptacle
228 37% 100% Smoothness

Figure 2-9 Sample thesaurus output

According to Lou and Foxley (1994a): “the relevance value for a headword determines its 
ordering amongst the paragraphs considered, while the confidence value is a measure of 

the certainty of its meaning relative to the word given.” He also explains: “These 
measures depend on the number of occurrences, the degree of suffix/prefix manipulation 
used in deriving the term for each occurrence and whether the occurrence is a phrase 
containing a derivation or the derivation by itself.” For further explanation see Gwei and 
Foxley (1987).

55



The fuzzy membership of a particular word in a concept is derived from the above data. 

In cases where confidence is rated 100% the fuzzy set membership is equal to the 

relevance factor.

The multiple fuzzy memberships of a single word can therefore be expressed in a form 
(taking just the 3 most relevant terms):

1.0 0.52 0.40
/ w  ‘  nil +  ,«548 +  1̂36 

Where, pO to p990 (the denominator) represents an orthogonal vector space upon which 

an individual word’s meaning is plotted and the variable on the top (the numerator) of 
the fractions indicate the extent to which a word shares meaning with the abstract 

thesaurus headword (relevance). In a sense p embodies a words/phrases meaning and the 

pO to p990 is the orthogonal vector space upon which aspects of this meaning are plotted. 

The above syntax should be read as indicating set membership and not numerical 
division.

And so the multiple fuzzy memberships of two words (a phrase) are expressed in a multi 
dimensional equation:

vkl j -
1.0 0.52 0.40

' +  I T T  +  'jull JU54S jul 36 J
0.60 0.77 0.36

+  - —  +  ■2̂1 ju 14 //232

By defining an operator which assesses the overlap between two such phrases of 
arbitrary dimensionality, it is proposed that a fuzzy measure of the semantic similarity of 
two textual phrases can be assessed. The operator suggested for identifying such an 

overlap is the STAMS distance formula. Defined for example on a 3x4 and 2x4 phrase as:

Dju E x juK = 1 -  m a x ( m i n ( / /  Elx4 x n Klx4))

The architecture of the system can be pictured diagramatically as follows:
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Figure 2-10 STAMS process architecture

The above discusses the aggregation of semantic components from the word level to the 

phrase level and the subsequent comparison of semantic aggregates against each other. 
As yet nothing has been said of the semantic information that resides above the word 
level; principally the case role’s themes that are indicated by the syntactic structure.

The approach that has been used here is simplistic, but arguably necessarily so, for it is 
imperative that the process is as robust as possible. Essentially, case roles can be inferred 
from consistent word order, except for passive phrases where the assumed word order 

must be reversed. Passive phrases are identified by the independent storage of the 
passive verb in the lexicon.

However this approach is flawed. To discriminate between the active: “a tiger eats a cow” 
and the passive: “a cow is eaten by a tiger”; eat and eaten are stored independently in the 

lexicon. However this can lead to confusion if a sentence is phrased: “a tiger had eaten a 
cow”.

2.5.4. QuestionMark

Question Mark is a commercial system for automating the dissemination of tests and the 
automatic collection and marking of the results. It deals in the main with the simple 
question forms i.e. multiple choice and single word response. However, a module does

57



exist for marking free text answers. This is done by means of complex Boolean search 
phrases. Although the core technology is quite simple, it is possible to phrase relatively 
complex marking criteria within this formalism. To generate Boolean search criteria for 

answers, over even a very low level of complexity, proves extremely difficult to do. 

Especially so as there are no in built tools to help in this process.

2.5.5. E valuation o f  NLP systems with Autom ated Assessment

Finally, it is the purpose of this section to give an overview of the task of automated 

assessment. After an analysis of the general problems and possible approaches to 
automated assessment, some specific examples are. Most importantly, the use of 

automated assessment as an evaluative mechanism for knowledge representation 

schemas operating within a natural language processing context is presented and 
justified.

2.5.5.1. Question Type A lternatives

2.5.5.1.1. Multiple Choice

Multiple-choice questions are a well-established question type and automated methods of 
marking such scripts are actually used in many national exams. Such systems work by 

making students fill in pre-formatted papers with a pencil: drawing a heavy line between 
blocks for example. Machines then sense the graphite marks left upon the page and 

compare these against the stencil of the correct marks.

The method of assessment is well established and therefore poses no challenge. There is 

however substantial literature on the question types that are appropriate for multiple 

choice questions, the range of alternative choices that should be supplied and the 
distribution of mark we should expect a body of students to produce if it is to be 

considered a fair test. Some of these aspects may be relevant to the investigation.

2.5.5.1.2. Single Word

The automated assessment of questions requiring a single word response poses somewhat 

more of a challenge than that of multiple choice questions. However, again real world 
systems (such as QuestionMark) already have modules which can quite competently 
perform this function.
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Over and above multiple choice, single word evaluation is problematic in that the input 
can be fuzzy, variable and/or damaged. Some form of error correction is necessary in 

order to capture all, not just the exact matches to be found within the scripts. Error 
correction on this type of data is little more than spelling correction, which is a relatively 

mature (although still perhaps imperfect) science. Although the responses are single 

words and therefore have no context with which to augment the constraint satisfaction 
procedures used for error correction, the high level of domain specificity and the strong 

expectations that can be generated of responses can be used in their place.

Systems such as QuestionMark do not enter this level of complexity when evaluating 

damaged data, and in real terms the only way of coping with such input on real systems 

is for the marker to hard-code the expected variations.

2.5.5.1.3. Essays

At the other end of the spectrum is the marking of essays. For essays, however, 
formalising a marking scheme can be very difficult. Interestingly the marking criteria 

within academic fields differ, not simply between problem domains, but by subject area 
and style of teaching and evaluation used therein. Not surprisingly the most marked 

differentiation is between the arts and science subjects.

Going a step further than Marshall’s (1986) attempts, if it is our aim to evaluate the 
semantic content of an essay by an automated assessment procedure we must have some 

criteria by which to evaluate thb script. The most obvious criteria to use for such a task is 

some sort of model answer. For arts based subjects, such as English literature, a 
definitive model answer which captures the sense and variety of what was an acceptable 
analysis would be virtually impossible to create. In this thesis we shall concentrate on 

science based subjects, such as physics, computer sciences or geography. For these 
subjects the creation of a model answer is frequently an integral part of the examination 

process, although just how frequently they are in reality used as a marking template is 
debatable.

An analysis was made of the questions, scripts and model answers produced for the 1989 

set of exams set by the Computing Department at The Nottingham Trent University.

The questions themselves were a mix of single sentence questions tha t required a full 

essay type response and series of shorter questions each expecting a paragraph or more 
in response, the sum of which could be seen as a consistent script. For both question 
types, however, full model answers were prepared. Both model answers were similar in
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form: a point by point analysis of the elements of the answer expected and a mark 

allocation for each point.

On the surface these may seem like viable criteria against which the scripts may be 
evaluated. In principle each defined criterion could be fuzzily matched against each 
sentence within the script and a mark awarded in proportion to the number of good 

matches found. However, on closer analysis, comparing model answers to actual marked 

scripts, this was found not to be feasible. Although the marking scheme held in general, 

frequently marks were given for points raised outside of the marking scheme. 
Furthermore, there were many occasions where there existed no single section of the 

script where a particular point was raised, instead it was implicit throughout the 
response, or the point spread over several sentences. This would be extremely 
problematic for an automated assessment system, if implemented using a reductive 
sentence by sentence analysis.

On a more general note, since there is a tendency for students to use a far more 
expressive form of language in essay based answers, they are consequently far more 
difficult to mark by formal, artificial means than a more constrained question type. Also 
there are certain extremely problematic linguistic mechanisms, such as anaphoric 
reference, that are far more prevalent within essay based answers. Therefore in this work 

it was deemed more appropriate to perfect a more simple constrained question type 
before any such essay type questions were attempted.

2.5.5.1.4. Single Sentence

As a consequence the mid range problem of single sentence semantic evaluation was 
chosen as the target application. Essentially this is the same problem identified and 
attempted by Lou and Foxley (1994a) however there are a few essential differences in the 
approach taken here:

1) Primarily the difference is the core technology employed. A connectionist based system 

is being used as both the evaluative mechanism and the representation schema (as 
opposed to fuzzy logic and a fuzzy logic reasoning engine).

2) A heavy emphasis is put upon the application of the system to real data, and the 
performance of the system is to be evaluated with this data.

3) The application itself (single sentence automated assessment) is presented as a 
general method for evaluating the performance of any combined NLP/Kit system.

4) It is intended to implement learning algorithms which will simplify the knowledge 
creation phase.
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As mentioned earlier such tasks may be interpreted as semantic correlation. Given a 
tutor-defined target, the aim is to find instances of student sentences tha t correlate well 
with this prescribed meaning. By drawing on a range of educational evaluation texts 

(Nelson (1970), Grondlund (1981), Chase (1978)), questions types were constrained to 

three possible types. Each of the question types was intended to constrain the syntactic 

and semantic variety of the expected response.

The three question forms were:

1) Complete the sentence...?

2) Define ...?

3) Iterate...?

A quick example of each question type is given below.

Complete the sentence: ‘"One to One correspondence i s  ’: complete this sentence ”

Define: “Define the term SEQUENTIAL in Jackson Structured Programming (JSP) by 

completing the sentence "Sequential items are...."."

Iterate: “List the extra 3 schematic titles resulting from a JSP selection item ALPHA that 
has three options BETA, GAMMA and DELTA. The schematic logic item ALPHA-SEL 
would be followed by these three matching 'ALPHA-xxxxx'.

2.5.5.2. Comments

2.5.5.2.1. Scoring

For simplicity of analysis as well as enforcing a strict discrimination upon the tutor a 
Boolean marking scheme was employed, such that answers were marked as being either 

completely correct or completely incorrect. The decision process of the automated 
assessment was similarly constrained. This facilitates an easy comparison of results 
between methods.

2.5.5.2.2. Marker Variability

Whether a particular answer to a question is in any absolute sense correct is 

philosophically a highly problematic question. This problem is circumvented in the 

outlined scheme by supposing the independent conclusion of the tutor is a good 
approximation to the absolute truth value of the answer. However, it must be recognised 

that this is an approximation only, and in recognising this, obvious variability that can
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occur between markers must be admitted. To counter this, great care was taken over the 

generation of the question, such that the form of the expected responses was not only 
maximally constrained but that the semantic content could be objectively evaluated. 

Should marker variability still be considered an issue the truth value estimator (the 
tutor’s decision) could be augmented by using more evaluators and taking the consensus.

2.5.6. Difficulties in E valuating N atu ra l Language Processing

As noted by King (1996) the evaluation of natural language processing systems is 
surprisingly sparsely represented within the literature (certainly as of five years ago). 

However, it has recently been identified by many bodies as a core interface technology as 

regards the future and the use of computers, and efforts have been made to formalise the 

evaluative mechanisms to encourage sharing of information and techniques. Most 

notably:

• DARPA/ARPA conferences (DARPA proceedings 1993 etc.): the DARPA/ARPA series of 
evaluations covers a variety of speech and natural language processing tasks and sub 
tasks each of which is formally evaluated.

• MUC (Message Understanding) conferences(e.g. MUC-3 1991): deal with information 

extraction from message streams of a variety of forms.
• ATIS project: (Boisen & Bates 1992): concentrates mainly on spoken language tasks 

but within the common application domain of air transport.

• TREC series of conferences (Harman 1995): deals with the domain of text retrieval.

• TSNLP initiative (Lehmann 1993)(Balkan et al 1994) (Test Suites for Natural 
Language Processing) is an academic initiative to develop widespread pre-standard 

diagnostic and evaluations tools for both developers and users of NLP applications 
(but with an apparent bias towards machine translation.)

• EAGLES initiative (draft interim report 1994): (Expert Advisory Group for Language 
Engineering Standards) is a European Commission instigated initiative which builds 
on the ISO 9126 standard for quality characteristics to be used in the evaluation of 
software and applies it to NLP.

King (1996) in her extensive study of the field of natural language processing evaluation 
identifies two primary criteria under which evaluations should be made. Firstly, the issue 
of functionality and usability. Does the system do what is intended and does this have a 
useful real world application? Can the system easily be made to perform this function, in 
other words is it useable? This issue also extends to extensibility. Many NLP processes 

are typically highly domain specific. Can this domain be switched easily?
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Secondly, there is the issue of validity and reliability. Can the system perform the 
function intended for it and can it do so consistently and correctly? The problem of 
assessing the correctness and consistency of the system will be addressed next.

Flanagan (1994) made a thorough analysis of error types within the domain of machine 
translation. Great importance is placed on the fine-grained analysis of error type for two 

reasons. Firstly, it comprises fine grained, detailed feedback on the performance of the 
systems. Secondly careful analysis of error types and distribution can help identify 
problem errors and how best to correct them.

Given that an analysis of error types is clearly desirable, the question of how to generate 
this error data must be addressed. The most common criticism levied against NLP 

evaluative systems is that the human-assisted nature of the evaluations, inevitably 
creates a subjective element and “raises the issue of the extent to which the human is 
being evaluated as much as the systems performance” - a point made by King (1996). This 

issue is also raised by White et al (1994) as well as some more general concerns of the 
validity and reliability of the measures.

Interestingly, one of the first formal evaluations of a functioning NLP system (ALPAC 

1966), despite being criticised for being politically motivated and deliberately biased, 
circumvents the issue of human assistance and subjectivity, and provides a rigorous 
analysis of the performance of the system. Again the target domain was the heavily 

researched discipline of NLP: machine translation. As is the case with most NLP an 
element of subjectivity is inevitable, for the human determination of meaning is the only 
reliable process we have for “getting at the truth.” However, the critical distinction of this 

process is that human evaluation is used as the control against which the automated 

system is compared; the critical comparison between the two systems is as procedural and 
objective as possible. In other words, a task is given to system and human in parallel, and 

the performance correlated with human performance the target. This is as opposed to an 
automated system performing a particular function and a human evaluator assessing the 
output of the system.

Finally, a thorough analysis of the whole field of NLP evaluation has been made by 
Sparck-Jones & Galliers (1993), a summary of which exists in Sparck-Jones (1994). In 

this analysis an important distinction is made. That is between glass box and black box 

evaluations, where a glass box evaluation relates to metrics which are implementation 
specific and black box evaluation deals with application performance only and is therefore 
implementation independent. This ties in very closely with the distinction made between 
application task and application sub-task. An important point is made that as NLP
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applications are often quite diverse, comparison between systems is difficult due to the 

different application specific metrics employed. However, where application sub tasks 
correlate strongly with distinct linguistic phenomena (e.g. parsing, anaphoric reference, 
disambiguation etc.) cross NLP application evaluation and comparison is easier.

2.5.6.1. Autom ated Assessment as NLP Evaluation

With these NLP evaluation issues in mind the task of automated assessment is proposed 
as an application within which the performance of a knowledge representation schema 

operating with a natural language processing domain can be evaluated. There are several 

points which support this.

Firstly it is a macro application, the metrics for which can be compared between systems. 
But it is a macro application, which if it is to perform well, must subsume all other 

necessary linguistic sub-tasks (from disambiguation to logical implication), and therefore 

gives a general measure of linguistic competence.

Secondly, there exists an objective evaluation scheme by which performance can be 

measured. This scheme can be entirely automated. Further, as the evaluation of the 

component elements (individual sentences) is a Boolean process the performance of the 
entire system can be reductively and unequivocally compared against the human target 
performance.

The task lends itself to the generation of large amounts of input data, i.e. many sample 

sentences from many students all in answer to a particular question. The evaluation 
measure of the performance of the knowledge base therefore degrades well. The same 
cannot be said of many template matching systems where a single template is matched 
against a single stream of data; if there is no match or it is matched incorrectly there is 
no partial measure of success.

Finally, many tricky epistemological issues to do with the meaning of words and 

sentences are subtly avoided. A sentence is deemed true simply if its truth-value 

correlates with the assessment of the tutor. The large-scale statistical nature of the 
analysis and the diversity of the responses generated, which is due largely to the stressful 
exam type setting of the answer collection process, make systematic bias within the 
evaluation highly unlikely. Should it prove necessary the subjective nature of the tutor’s 
evaluation may be further diluted by taking the consensus of a number of human 
markers.
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The specific measures that are used to empirically investigate the application are 
developed and defined in Chapter 5.

2.6. Conclusions

Natural language is complex. All the features discussed in the “Nature of Language” 

section are present to varying degrees within the test data. The aim of the automated 
assessment task is to assess the similarity between sentences in order to divide the set 
into two groups: those that are correct and those that are incorrect. With this in mind, a 

good model of synonymity is essential to the success of the task. However, a number of 
factors mean that a model of synonymity is both insufficient in itself and non-trivial to 

achieve:

• Non reductive aspects of language such as idioms require distinct modelling.
• Ambiguity can make the assignment of a sense to a string very difficult.

• Noisy data, that is produced under exam type conditions, can mean that that some 
strings are not readily identifiable as there is no exact match with any of the contents 
of the lexicon.

• Metaphor and the general contextual effect of other words, mean that words can take 
on senses that are not necessarily one of the prescribed senses.

• In order to ascertain whether a particular question is correct sometimes it is necessary 

to compute the logical implications of a sentence rather than performing a bottom up 
word sense match.

To balance this, the high domain specificity of the specific questions and the limited 

lexicon involved mean that many of the language features described above are less 

important than in the analysis of true unconstrained natural language. This reduces the 
complexity of the problems but does not eradicate them.

Automated assessment is a difficult problem. Potentially, it touches on many academic 
disciplines each of which is as deep as it is broad, for example: knowledge representation, 
natural language processing, computational linguistics and AI processing techniques. A 

thorough review of all the potentially relevant disciplines and sciences would be 
impossible. As the success of the finished system is going to be heavily dependent upon 
the efficiency and accuracy with which the tutor can specify the criteria, which correct 

answers have in common, a large part of the above review is dedicated to comparing 
alternative knowledge representation systems. A cursory examination has also been 
made of some computational linguistic techniques that have the most relevance to the 

anticipated NLP problems that automated assessment will throw up. Finally, time is
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dedicated to considering connectionist processing techniques, specifically those that deal 

with temporal data. This will be more relevant to the latter part of this thesis, which will 

consider learning algorithms for the knowledge base.

In the last section the specific field of automated assessment was considered. First, the 
instances of automated assessment to be found in the literature were considered. Next, a 
case was developed for the use of automated assessment for the evaluation of knowledge 
schemas operating within the natural language processing domain. Specifically the task 

of the automated assessment of free text single sentence responses to simple constrained 

questions was suggested. It is believed this offers a fair compromise by introducing some 

of the complexity of natural language but falling short of the full scale complexity of 

unconstrained prose, such as that found in essays.

The evaluation of natural language systems is a very active area of research. Some of this 

work is summarised above and an attempt is made to identify the qualities a good 

evaluative system should possess. This establishes the relevant background from which a 

full battery of tests may be formally defined in order to give a good measure of the 

knowledge schema’s various aspects of performance.
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3. K now ledge A rchitecture and L earning A lgorithm s
In this Chapter novel data structures and algorithms are developed for an intended 

application to the problem of automated assessment of student text. This will be done in 

two phases: firstly, the development of the knowledge architecture itself. It is within this 
architecture that the data must be embodied which is capable of making the sentence 

judgement decisions. Secondly, to address the problem of knowledge base generation, 
algorithms shall be outlined which are capable of at least partly automating the 

generation of instances of these data structures from statistical analysis of student 

answers.

3.1. Knowledge Architecture

Many of the alternative knowledge representational schemas to be found in the literature 

have been discussed within the literature review, Chapter 2. To solve this very pragmatic 

problem of automated assessment an essentially connectionist schema has been 
developed. There were two overriding reasons for making this decision as outlined below. 

(However a fuller justification will only be possible once the main architectural elements 

of this knowledge schema have been discussed and these will be found toward the end of 
this section.)

1. Architectural simplicity: the connectionist schema has a simple architecture; 
there are no major epistemological distinctions made at the architectural level. It 
therefore does not fall prey to many of the representational ambiguities that can 

affect logic, frames and the like. It is the intention that the required 

representational and computational complexity can be modelled from these more 

primitive units. Specific macro-structures will be refined which model the 
particular requirements of the problem domain. Further, the tutor can interact 
with the knowledge base more easily due to this simplicity.

2. Processing: the connectionist schema has an implicit processing component, 
through the passing of activation through the network. The distributed form of 

processing this facilitates is particularly appropriate for the type of constraint 
satisfaction problems that characterises natural language processing as it neatly 
circumvents the inherent bootstrapping problems.

3. Learning: this is possibly the most important. It is intention to implement 
learning algorithms to operate on the developed knowledge structure. It appears 
from a cursory overview of the literature that connectionist systems are more
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amenable to and have better success with the implementation of general purpose 

learning algorithms; both supervised algorithms and unsupervised algorithms. 
Again, these issues shall be discussed in greater detail towards the end of this 

section.

3.1.1. Architecture

The knowledge architecture developed in this work tackles the complexities of 
representing the information within natural language by combining the best features of 
the alternative representation schemes discussed above. An essentially connectionist 
scheme is proposed where the reasoning engine is implicit in the passing of activation 
from node to node. But unlike most connectionist schemes each node (even hidden nodes) 

is symbolic, in that it represents a distinct, identifiable feature within the problem 
domain. (This approach is similar in many ways to that of Rumelhart and Mclelland 

(1981)).

This novel knowledge architecture is similar in many ways to a semantic net, but has 
borrowed heavily from many of the mainstream KR schemes.

As the user has to interact directly with the knowledge base, an emphasis has been put 
on simplicity. The architecture is essentially a hierarchically structured activation- 
passing network (APN). Such an architecture was chosen because it seems to model well 

the aspects of natural language that seem most important.

No distinction has been made between the KR and NLP levels. Also the architecture 
departs from the symbolic paradigm where a distinction is conventionally made between 
data representation and an engine used to process it. The architecture corresponds more 

closely to the connectionist paradigm where the reasoning capacity is embodied within 
the activation passing aspect of the network itself.

3.1.1.1. Node

The architecture proposed consists of a set of nodes. Each of these nodes has a unique 
identifier. Nodes can be further subdivided into nodes that receive input from the 

external world (evidence nodes) and those that receive input only from each other (hidden 
nodes) and output nodes, thus following the conventional neural network paradigm.

3.1.1.2. Links

Any pair of nodes may be bound together with a link. This link, at least in the knowledge 
schemes initial incarnation, is Boolean in nature. That is, there either exists a link for
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two nodes or there does not. This link is the means by which nodes pass activation 
between one another and is unidirectional in nature. Therefore with respect to a link 

there is a child node (the node from which activation is passed) and a parent node (the 
node that receives activation.) A particular node can therefore be both a child and a 
parent node, but defined by two distinct links. Conceivably it is possible for a link to have 
a negative weighting that will mean that the activation of a child will have a dampening 

(as opposed to an excitory) effect on the parent node.

3.1.1. S. A ctivation

Every node has an activation value, this represents the extent to which a feature exists 

within the input pattern. Again, in the initial incarnation of the knowledge scheme this 
will be a Boolean value, either 0 or 1. Evidence nodes assume an activation of 1 if their 

feature is identified within the input pattern. Hidden and output nodes assume an 
activation of 1 if the sum of the activation passing through the links exceeds the 
threshold value (see below).

If a node does become active, activation is propagated through its output links to the 
parent nodes.

3.1.1 A. Threshold

Each node also possesses a threshold value. This is the value that the sum of the 
activation, which is attributable to the input links, must exceed if a node is to be 
activated.

3.1.1.5. O perational Modes o f Nodes

Depending upon the configuration of the network, in other words the topology of the links 

and nodes, and the threshold value of a particular node, a node can operate in one of 
three modes.

3.1.1.5.1. Evidence

As mentioned above nodes are primarily divided into evidence nodes and hidden nodes. 
An evidence node receives input from somewhere other than the network itself. The 
mechanism by which a particular evidence node is activated is largely unimportant. It 

could be an external filtering mechanism which activates the nodes manually or the 
perceptual intelligence may be programmed into the node itself. (By this term “perceptual 
intelligence” I mean the code/system that is capable of tying raw sensory input to a 
symbolic item that is deemed to have some meaning within a computational system.)
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Within the system to be used here, evidential nodes are used to represent the low-level 

word knowledge. Each has associated with it a list of words (evidence list) whose presence 

in the sentence will lead to the activation of the node. This evidence list may contain all 
the morphological variations of a word, common spelling variations on a word or even 
abbreviations. In this case the evidential node is analogous to a lexeme.

For example

evidence
nodeclose

c lo se
closer

closely
c lo sest

evidence
list

Figure 3-1 Evidence Node Example

3.1.1.5.2. Clustered

A clustered node is of the hidden node sub-type so receives its activation from the links 
from other nodes. In the situation where a node receives input from multiple other nodes 

and the threshold is less than the number of links from which it could receive input then 
the node is said to be an clustered node.

A clustered node can be used to represent the abstract sense of several different nodes. It 

is then a disjunction of nodes and will become active if ANY of its children become active. 
In its simplest sense such nodes can be used to represent synonyms. Logically an 
abstracted node is equivalent to an OR gate (for Boolean activation and linkage models).

either
children
trigger
parent

ABSJJKING

love like

Figure 3-2 Clustered Node Example
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As an aside it is worth noting that it is possible to implement evidence lists in terms of 
abstracted nodes. For this application we have an evidence list for multiple nodes that 

contains a single entry which is identical to the node name. We then have a single 
clustering node which represents the superset of all the “evidence nodes”.

closely closer

close closely

Figure 3-3 Implementing Evidence Lists with Clustered Nodes

For purely practical reasons this approach is not taken. These practical reasons being 
that:

1. Using the graphical user interface supplied it is marginally more efficient for the 
tutor to create knowledge bases in this manner.

2. It introduces an architectural distinction within the database that correlates 
strongly with a functional distinction; this will facilitate an analysis of the 
knowledge base on pure functional grounds at a later date.

3.1.1.5.3. Composite Node

A composite node is again of the hidden node sub-type. In the situation where a node 
receives input from multiple other nodes and the threshold is equal to the sum of links 
from which it could receive input then the nodes is said to be a composite node.

A composite node is used to represent the compound sense of several nodes. It is a 
conjunction of nodes and becomes active only if ALL of its children become active. A fact 
can be represented with a composite type as a conjunction of abstract types. Logically a 
composite node is equivalent to an AND gate.
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all
children 

needed to 
trigger 
parent

FACT_23

d ogs cats

hate

Figure 3-4 Compound Node Example

Note this simple structure on its own takes no note of word order.

3.1.2. Network Qualities

Next we consider the manner in which sets of these nodes and links may act in 
collaboration to model/solve various natural language processing problems. We shall not 
concern ourselves here with how these structures will come into being10, but satisfy 
ourselves that such structured elements do holistically model the intended problem. Such 
collaborating nodes and links have been termed “macro-nodes”.

3.1.2.1. Abstraction:

Many words in certain contexts have similar meanings (e.g. synonyms). This abstract 

similarity may be adequately modelled by an interconnected network in which any ONE 
of a number of child nodes (synonymous words) may trigger the activation of a parent 
node (synonymous group/ abstract type).

10 Realistically in the short term such structures are to be created manually by the tutor, 
whilst in the latter part of this thesis we shall consider algorithms for the automatic 
identification of at least some of these macro-nodes.



c_alike

similar near

Figure 3-5 Abstraction

This the first level, abstraction correlates closely with the notion of synonymity. If 
abstraction is recursively applied it produces a deep type hierarchy that can be used to 
model less and less specific word categories. This is in many ways similar to the 

taxonomic classification of words to be found in Roget’s Thesaurus.

3.1.2.2. Composition

Certain words have a composite sense which is distinct from the conjugate sense of their 
parts, for example idioms. (Not as much the whole is greater that the sum of its parts but 
that the whole is different.) This phenomenon may be modelled by a network where a 

single parent node requires ALL of its children nodes to become active before it itself 
activates.

life long

life long

Figure 3-6 Composition

Also as has been seen earlier, this type of network structure adequately models facts, 

which as distinct from above represent a specific state of affairs as the conjunction of its
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component parts. (You may note that in this primitive representation actor and recipient 

are not distinguished).

3.1.2.3. Decomposition

Some words have a composite structure where their parts contribute different senses to 
the meaning of the word as a whole. For example, at the morphological level consider the 

word walk-ed: ’walk’ tells us the action, ’ed’ tells us that it happened in the past. 

Similarly, at the semantic level, the word husband, tells us that the entity referenced is 
[male], [human] and [married]. Both these cases could be represented by a child node 
that passes its activation to several parent nodes.

cjnarried

c_m ale c_human

husband

Figure 3-7 Decomposition

3.1.2.4. Parallelism

Closely associated with decomposition is the concept of parallelism whereby the separate 
aspects of a words meaning (modelled by spreading activation) may be computed 
concurrently.

syntax semantics

VERB c_motion

walk

Figure 3-8 Parallelism

74



Note if desired this general principle may be used within the representation of the simple 

fact structure (see 3.1.2.2) in order to distinguish between actor and recipient when 

considering a typical binary predicate.

3.1.2.5. Context

There are many words that have multiple meanings. In a particular case it is only 
possible to identify which meaning is applicable by looking at the context. This is the 

linguistic phenomenon of polysemy or homonymy. We may model this in a network by a 

single child node linking to two parent nodes in parallel. Both of these parents will 

require input from a node representing the correct context also, before it, itself, becomes 
active. Take the classic example of ’bank’, in a financial context it has a completely 
different meaning to a water/countryside context:

c_bank(1) c_bank(2)

c_financec_water

bank

Figure 3-9 Context 

3.1.2.6. D isam biguation  -  M utual Inhibition

The mutual exclusivity of two hypotheses or perhaps two word meanings may also be 
modelled by an activation-passing network. Using the bank example again it will mean 

either a ’commercial building’ or the ’side of a river’ not both. Mutually inhibitory links 

between sibling nodes ensure that only the node receiving most supporting evidence 
remains active. These mutually inhibitory links are implemented with linkage possessing 
negative weightings.
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-1

c_bank(2)c_bank(1)

1

Figure 3-10 Disambiguation

3.1.2.7. Feedback

Sometimes the information necessary to disambiguate two hypotheses is only available at 

a higher level process. In order to make use of this information it is necessary to 

implement feedback links whereby a parent node can affect the activation of a child.

c_bigcat

lion

Figure 3-11 Feedback

3.1.2.8. Connectionist process

The computational properties that simple node and link constructs possess have been 
shown above. It is a small step to show that more complex node and linkage 

arrangements (with an appropriate activation function) can approximate to a feed 
forward connectionist network. As has been demonstrated in numerous connectionist 
papers a three layer activation passing network is capable of embodying an arbitrary 

mapping between any two sets of patterns provided there are enough hidden nodes
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(Elisseeff and Paugam-Moisy 1997). Further, the Universal Approximation Theorem 

(Hornik, Stinchcombe and White 1989; Hornik 1993; Bishop 1995) demonstrates that a 

three layer network with one input, one output and sufficient nodes in the hidden layers 
can learn any function. This adds powerful computational power to our simple knowledge 

architecture. The following diagram 3-12 presents a typical topological arrangement of 

nodes that is capable of operating in a connectionist type manner.

Feed forward activation

Optional back prop learning 
algorithm

Figure 3-12 Connectionist Process

3.1.2.9. Logical Process

By virtue of the fact that all logical gates (OR, AND, NOT etc.) can be modelled by an 

interconnected network, and a standard vonNeuman architecture computer can be 
implemented entirely with such gates it should be possible to emulate any formal 

computation within the resource constraints.

The above points demonstrate that our chosen knowledge architecture has not only 

powerful representational flexibility but is capable of performing computation under both 

connectionist and symbolic processing paradigms.
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threshold =2

AND

AND

OR

threshold =1

e = ( a & b ) & ( c A d )

Figure 3-13 Logical Composition

3.1.3. Examples

To demonstrate how the above components can be bolted together into more complex 

functional units with interesting and useful computational and representational 

properties, three example models are presented.

3.1.3.1. Sim ple Phrase Modelling

Taking a phrase at random from the analysed student text, for example "processed 
concurrently”, the following demonstrates how a network could be used to capture some of 
the various ways in which this phrase may be expressed.
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c_process
concurrently

c_concurrently
c_process

at_the_same
time simultaneouslyconcurrrently

processedworked_out computed

work out the timesame

Figure 3-14 Phrase Modelling

In the above there are two broad synonymous groups, both modelled with abstracted 
nodes. The phrase itself is modelled as a compound node consisting of the two 
synonymous groups. The phrase “at the same time” is modelled as a composite node of the 
four individual words, as is the phrase “worked out”. The phrase work out is interesting 
as there is potential ambiguity between this and the phrase work out meaning exercise. It 

would be possible to eliminate this potential ambiguity by using a combination of mutual 
inhibition and feedback from higher contextual elements.

The entire network, although crude, gives some idea of how multiple phrases may be 
mapped onto the same conceptual element.

3.1.3.2. A ddition  Mode

The following model demonstrates how a composite macro-node architecture can be used 
to check simple addition sums.
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r Surri>
Correct

text encoding of 
number input

Answer

binary 
encoding 
of output

binary encoding of output

Adder Module

both inputs must 
be identical

Figure 3-15 Adder Module

The above network is intended to validate (mark as correct/incorrect) statements of J
simple addition such as:

i
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one plus one equals two
three plus three equals seven X
4 plus 2 equals six tX
2 plus 5 equals six X

For reasons of diagrammatic simplicity the macro node units required to validate the 
operator and equivalence sign (i.e. plus and equal) have been omitted, however it should 
be easy to see how these would be integrated into the system.

There are three inputs to the system (Argl,Arg2,Answer) and a single output which 

validates “sum correct”. The three inputs are encoded within the same form on a fixed 
string length encoding. If a variable activation node model is used which has biased 

inputs the characters may be encoded as partial activations on the node: (1/26 = ‘a’ 2/26 = 

b for example). This is the model demonstrated here, however the same is possible on a 
Boolean activation model. However more nodes have to be used for each character 
position and each character would have to be either distributed or bucket encoded.

Each input maps to a series of three nodes upon which the number is binary encoded 
(allowing the numbers 0-7 to be represented).11 Two fully interconnected layers are used 

to perform this mapping, for it is considered a fairly simple mapping. If the mapping were 

to be more complex, for example if not only the text string “one” were to map to 001 but4
the text string “1” then hidden layers could be used. This would be necessary when the 

features in the input domain were non linearly separable (Rumelhart McClelland 1986).

Figure 3-16 Text Recognition

The weightings of the networks necessary to perform this mapping could be learned by 
any of a number of learning algorithms (back propagation for example).

11 Note of course that ANNs are finite; consequently they cannot model arbitrary 
numbers. Any modelled function must therefore be bounded.
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The binary encoding resulting from the two arg values flow into the outputs of the adder 
module whilst the binary encoding of the result is indirectly validated against the output 

of the adder module.

The adder module is itself a network, with six input nodes and three output nodes. The 

internals are not represented in the above diagram since by treating it as a modular 
component it is possible to see two distinct implementations of the function.

Firstly it may be implemented as an adder circuit using nodes to replicate the 
functionality of AND and OR gates. Alternatively it may be implemented as a feed 
forward neural network where addition is solved by a simple pattern match process. 

Either way the end result is the same.

Using another network the output of the adder module can be compared against the 
binary encoded translation of the result string.

The end result is a network implemented purely from nodes and weights that is capable 
of evaluating sentences as above and judging them to be correct or incorrect. Further, a 
high degree of robustness is inherent within the system due to the network mapping 
between text string and binary encoding.

This is a network capable of representation and transforms between representations. 
Representations are chosen in accord with the functionality required and how it effects 
the desired process. It is capable of and uses both connectionist and logical processes.

3.I.3.3. D isam biguation Model

The third network demonstrates how the problem of bootstrapped contextual 

disambiguation may be solved with an appropriately configured network.

Take the phrase:

“get the train off the tracks”
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Let us concentrate on the two words: train and tracks. Further let us take just two senses 

of each of these words. The source used is Collins Concise Dictionary (1989)12.

a) Train (n): a line of coaches or wagons coupled together and drawn by a railway 

locomotive.
b) Train (n): something drawn along, such as the long back section of a dress that 

trails across the floor.

a) Track (n): a rail or a pair of parallel rails on which a vehicle such as a locomotive 

runs.
b) Track (n): a course for running of racing.

If train and track are free to take on each of these senses there are four distinct possible 

interpretations of the above sentence.

The diagram below demonstrates a network with appropriate excitatory and inhibitory 

links that can bootstrap this disambiguation with no further information.

12 Note in actual fact the above dictionary gives 20 distinct definitions for track and 12 
definitions for train. This gives 240 possible interpretations of the sentence if only train 
and track are ambiguous. To complicate matters further the item “tracks” has four senses 

in its own right which are distinct from the pluralisation of the noun track.
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[running]
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[vehicle] Track [rails]Train [dress]

TrackTrain

Figure 3-17 Disambiguation

The network is arranged hierarchically. Those items at the lowest level correspond to the 
lexical items ‘train’ and ‘track’ respectively. Both these items have excitatory links to both 

their respective senses. Each pair of senses are linked with mutually inhibitory weights 
to model the fact that a single lexical item can not simultaneously take on two senses. 
Each sense has excitatory links to its decomposed sense primitives. Each sense primitive 

has a mild excitatory feedback link to its child sense.

If train and track are simultaneously activated all four senses will receive equal 

activation. Because of the mutually inhibitory links, if either of a pair were slightly more 

active than the other, this differential would be exacerbated and that node would emerge 
as a definite winner. However, at this stage they are perfectly balanced. This activation 
will spread to the sense primitives and these primitives will feedback a proportion of this 
activation to their children nodes. Note that due to the semantic overlap the railway and 
transport primitives receive a greater input activation than the others. In turn, through 

the feedback links, the Trackfrailway] and Trainfvehicle] sense node receive a 

disproportionately higher activation. Thus two clear winners will emerge.
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3.1.4. Comments

In the previous section it has been shown how the primitive node/link constructs may be 

combined into specific structures of varying computational and representational power, 
all of which are relevant to representing language constructs. In the following section 

some more general comments are made on the nature of such networks and how they 

could potentially function with respect to the target domain of automated assessment 

task.

3.1.4.1. Understanding vs. Expectation Validation

It is our aim simply to discriminate between correct and incorrect responses to a question. 
To achieve this true understanding is not necessary. In this NLP problem where the 
context of the responses is highly constrained, it is possible to generate a strong 
expectation of what will be submitted. The underlying strategy then is to explicitly set 

down these expectations within the representational scheme offered by the chosen 

knowledge architecture. The submitted student sentence is then proffered as a set of 

evidence tha t either confirms or refutes this expectation.

The strategy then serves to focus attention on the pertinent information only. It carries 
with it, however, the disadvantage of being unable to perceive what it cannot expect.

3.1.4.2. Innate sim ilarity o f a ll  knowledge representation schemes

The choice of a particular knowledge architecture is somewhat arbitrary. Knowledge 
bases are used to represent information. The architecture of a particular base is just more 
information. Over a particular level of sophistication most can be proven to be isomorphic 

with each other. The work of Schubert (1991) demonstrates this point very clearly, where 

he defined mappings between semantic nets and first order predicate logic in order to 

establish equivalence, and further propounds convergence of all the major KR schemes.

From a pragmatic point of view, the choice of architecture should be determined by two 
factors:

1. Simplicity for editing.
2. Appropriateness for problem domain.

The choice of representation can affect the ease of computation, for a particular problem 
within a particular problem domain. This is what is meant by appropriateness for 
problem domain.
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To demonstrate, consider the problem of computing the rotation of an object around a 
particular origin in two dimensions. If the problem is represented in normal Cartesian co­

ordinates the solution is a matrix multiplication:

r c o s  0 s i n  O'( X) ( AK~ sind c o s ^

iP

On the other hand if the problem is formulated within a polar co-ordinate representation 

a rotation could be computed by simple addition, as follows:

( r,<j> + 0)  =  r(/) ’

Contrariwise, a simple linear translation would be extremely easy to compute using 
Cartesian co-ordinates but would be difficult using Polar co-ordinates.

The problem to be considered here is natural language processing. The contention is that 
many of the problems that natural language processing poses (such as representation of 
synonymity, disambiguation, bootstrapped processing, constraint satisfaction) are more 

appropriately solved by an activation passing network.

3.1.4.3. Knowledge Architecture Vs Knowledge Base

There is a distinction to be made between what a particular instance of a knowledge 

scheme can be used to represent and what the knowledge scheme itself (or the primitive 
architectural components that comprise that knowledge scheme) represents.

This distinction can be clarified by the use of two distinct terms: knowledge architecture 
and knowledge base. The knowledge architecture is the scheme itself; the knowledge base 
is a specific data realised within this architecture.

To illustrate, within predicate logic an atom and a predicate are distinguished 
architecturally, as are the slots and fillers within the frame formalism. Within logic, the 

distinction between a jaguar and a lion for instance would be made at the knowledge base 

level. However, the AND and OR operator are distinguished architecturally. Not so for a 
connectionist architecture, both AND and OR processes may be modelled by constructs 

built from the more primitive node, link and threshold, hence reside at the knowledge 
base level.
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Implicit within the entire approach of this thesis is the working hypothesis that the less 

the information residing within the architecture of the knowledge base, the greater the 
flexibility of representation, and more specifically, the more powerful and more general 

the learning algorithms that can be applied.

3.1.4.4. Relation  - Object D istinction

Careful consideration must be taken of the respective epistemological status of the 
knowledge architecture and the knowledge base. Common within many knowledge 

formalisms is an implicit Relation - Object distinction at the architectural level. This is 

undesirable for our purposes for the following reasons.

Firstly, it is difficult to express knowledge about relationships in the same way that we 

express knowledge about objects.

Similarly, complications arise if we try to represent knowledge about facts. With an 

implicit object-relation distinction a fact becomes a relation between n-objects. To then 

represent knowledge about facts we either give our (relation, object, object,..) the status of 

an object, or introduce a new entity type - a fact - and enhance the syntax (rules for 

combing entities) to allow facts into the (relation, object, object,..) construct. Either way 
the structure becomes unnecessarily complex.

Thirdly, we may wish to make a type/token distinction between relationships as we 
almost certainly do with objects. By removing the distinction we acquire a greater 

consistency.

By such a move nothing need be lost. Should it become essential to make such a 
distinction it is always possible to make this at the knowledge base level as opposed to the 

architectural.

3.1.4.5. D ata  Vs Process

In the above examples of knowledge representation schemes, the connectionist model is 

the only one capable of any form of process or reasoning. All the others are capable of the 
static representation of information only; a reasoning engine needs to be applied in order 

to make use of any of this information.

Within the connectionist model there is no real distinction made between data and 
process. It is probably no coincidence that the connectionist model is the best model for 

the application of generalised learning algorithms.
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3.1.4.6. Segmentation ofKR and NLP processes

Knowledge Representation and Natural Language Processing are traditionally thought of 

as two distinct but closely associated disciplines. In this application, as in others, they 
prove difficult to separate. Not only is the natural script being used to build and test the 

knowledge structures, but the language processing, itself, is a knowledge intensive 

process.

3.1.5. Legal M etaphor

To give a brief overview of the workings of the system, the overall technique is analogous 

to the workings within a court of law. The defendant is deemed innocent until proven 
guilty as the sentence is deemed incorrect until proven correct. The lawyer may put 
forward any number of hypotheses as to what the true sequence of events was on a 
particular day in the same way as our structure maps out the conjunctions of groups etc. 

that would indicate that the sentence is true. If enough mutually corroborative evidence 
is presented for a particular hypothesis the defendant/sentence is judged guilty/correct.

3.1.6. M athem atical Form alisation

To clarify the form of the proposed knowledge schema and to establish a formalism upon 
which the description of proposed algorithms can be based an attempt will be made to 

describe the knowledge schema mathematically.

A particular knowledge base can be characterised by a n-tuple K

K  =< C5jp,r,S,e >

where briefly

concept

C set of concepts

p function that returns parents of a concept

t function that returns the threshold value of a

D the set of possible strings

e function that returns the evidence strings of a
concept

and from which we can further define

P(C) power set of concepts
P(£) the power set of strings
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and more fully

C is a set of concepts and n is the number of concepts in C.

C =  { C 1 ,C 2 ,C 3 , .  , . , C n }

and P(C) is the power set (the set of all sets of) C

C =  { { } { C l } , { C l , C 2 } , { C 2 } , . . . }

p is function that returns parents of a concept the range of which defined on the power 

set of C and the domain of which is defined on C.

p  : C P (C )

t  is function that returns threshold of a concept; the range of which defined on the set of 
real numbers and the domain of which is defined on C.

2 is a finite set of string (say taken from a dictionary) where m is the number of strings.

£  =  {<7l, (72 ,  C T 3 , . . . ,  CTm}

and P(X) is the power set (the set of all sets of) 2

£  =  { { } { 0 ' iM<7' i,<X2},{c7 2 } , . . . }

e is a function that returns the evidence list for a concept; the range of which is defined 

on the power set of 2 and the domain of which is defined on C.

e : C P(Z)
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Of use also is the function r which returns the children of a particular node and like the 
parent function the range of which is defined on the power set of C and the domain of 
which is defined on C. This need not be represented explicitly as it is redundant 
information. (However it is to be found in the implementation as redundant data for 

performance reasons.) So r  is

r : C -> P(C)

and defined in terms of p as:

rn, \a i f f  p(a) = x) 
y  | 0  i f f  p(a) *x\

where obviously xe C.

Further an activation function a is defined for each node c. Again the domain of this 
function is defined on the set of real numbers. Thus this activation function can be 
defined in abstract as:

But specifically in the simple model discussed above where activation is Boolean and all 

weights are unitary, activation can be defined recursively as:

a(c) =

Using this formalism to firm up the definition of some of the nodes discussed above. 

An evidence node has a non empty evidence list

|e(c)| 0

A compound node has a threshold value equal to the sum of its children.

\r(c)\ = t(c)
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An abstract node has a non zero threshold value less than the sum of its children.

0 < |r(c)| < t(c)

This concludes the discussion and the definition of the knowledge architecture to be 
developed. Experiments that utilise and test the effectiveness of this architecture can be 

found in the first section of Chapter 5.

3.2. Learning Algorithms

3.2.1. Introduction

In the previous section knowledge representation, in general, has been considered and a 
specific schema has been detailed which is capable of representing information at many 

levels in the knowledge hierarchy: both at the abstract “fact” level and the shallow lexical 
level. It is hoped that that this knowledge structure shall be capable of embodying 

information in a sufficiently expressive and flexible manner to discriminate to a 

reasonable degree of accuracy between correct and incorrect student responses. This shall 

be the focus of subsequent experiments

Considering now the pragmatics of automated assessment it is essential that the issue of 

knowledge base creation be addressed. This has not been considered yet, as it is 
anticipated (in the initial stages at least) that this should be a manual process (with a few 

automated aids, such as various statistical tools and an integrated Rogets Thesaurus). 

But in the main a great deal of judgement is required by the tutor in order to construct 
these “sufficiently expressive” knowledge structures.

It is a natural extension of the work undertaken so far to consider how these structures 
may be created automatically. The hypothesis is that there will be statistical regularities 
within the student-generated responses that may be utilised in order to construct useful 

elements of the knowledge base.

Within this chapter the theoretical foundations for the implementation of two such 
algorithms will be laid down (in fact as we shall see later rather than two distinct 

algorithms they can be seen as two complementary aspects of the same algorithm.) Later, 
assuming that such structures can be created, we must consider how we can evaluate the 
usefulness of these structures. In order to do this we will introduce the subject of Latent 

Semantic Analysis, a complex mathematical technique, which is capable of automating
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the text evaluation procedure and so apply the produced networks to the target 

application of automated assessment.

3.2.2. Terminology

In order to clarify the description of the networks and later the experiments to be 
performed on these networks, let us introduce some new terminology. Firstly, we have:

Activation Passing Networks (APN) -  this is a general term used to encompass the 

networks described above, and relates specifically to the fact that the individual nodes 

that comprise the network are capable of passing activation to one another.

These networks can be subdivided using two terms that relate not to the functionality of 

the network, but to its origins and specifically the manner in which it was created.

Hand-Crafted Network (HCN) -  these are networks that have been produced by hand 
(using the tools available in the graphical user interface) therefore their construction is 

labour intensive.

Algorithmically Generated Networks (AGN) -  these are networks that have been 
produced automatically by particular algorithms. The only human intervention in the 
generation of these networks is the selection of the data to which the algorithms are 

exposed and the configuration of a variety of algorithmic parameters.

Finally, we introduce a new term that relates not to the networks but to the function to 

which the networks (specifically the AGNs) are put.

Perceptual Augmentation Process (PAP) — this describes a function which takes input 

data in an initial form and translates it to a new augmented form, where it is implied 

that this new form offers certain advantages, for example allows the data to be more 
effectively or efficiently processed, with reference to a specific computational function. In 
the cases to be considered in this thesis this computational function is that of automated 

assessment. Generally a Perceptual Augmentation Process adds information.

3.2.3. Form o f  A utom atically Produced Knowledge Structures

First we must consider what type of knowledge structures to produce.

92



Within the handcrafted, activation passing networks, previously defined, two distinct 
macro-node types (as shall be shown in subsequent experiments) are particularly useful. 
These are the composition structure and the clustering or abstracting structure. The 
compositioning and clustering structures are symmetric operations for the former is the 
manner in which raw-evidence is generalised, and the latter is the manner in which raw 

data is specialised.

It is intended that the networks to be produced will consist entirely of these nodetypes. 
Also, the networks will be active knowledge structures in that, due to their activation 
passing capability, they will be capable of limited functionality. In this sense they are 
similar to the hand-crafted knowledge structures produced within the previous chapter. 

They will differ in the extent and purpose of this enabled functionality. Specifically the 
handcrafted networks, by virtue of their topological arrangement and activation passing 

capability, are capable of functionally discriminating between correct and incorrect 

student responses (within the empirically derived tolerance levels). These new networks 
are to be generated from unsupervised13 learning algorithms. As such they are unlikely to 
be capable of such extreme function. Rather, it is anticipated that the grown network will 

uncover regularities within the problem domain. The complete network will therefore 

provide a perceptual function, which adds new analysis granularities to the raw atomic 
data. This theme will be expanded upon later.

3.2.3.1. Compositioning and Clustering -  Why?

What is the justification for attempting to construct a network out of only clustering and 
compositioning nodes? The justification is threefold:

1. Networks -  it will be shown that: the handcrafted networks adequately perform 

the correct/incorrect discrimination function. Given that these networks consist 

largely of these node-types, we have empirical justification for using 

compositioning and clustering as building blocks.
2. Neural Plausibility -  this architecture has a high degree of neural plausibility. 

The entire architecture is connectionist inspired. It is quite easy to see how real 

nerves could be arranged in these same collaborating structures.

13 The reason for the choice of developing unsupervised learning algorithms is quite 

simple: it is the intention to develop an automated assessment system that should be 
“potentially” viable in a real world environment. If the algorithms to be developed were 

supervised this would presume that the answers were pre-marked by an external entity 
(tutor). This somewhat reduces its real-world viability.

93



3. Language Domain -  as discussed in the previous section, these structures have 
been designed to exhibit functionality that is particularly suitable to the problems 

within the natural language processing domain.
4. Tenability of learning algorithms -  although somewhat a backward argument, a 

network consisting of composite and clustered nodes is justified by the fact it is 
possible to construct an algorithms which can construct such networks.

Why must the generation of such networks be integrated into the single algorithm?

This is a more subtle issue. To elucidate, let us first review the merits of clustering and 

compositioning one at a time. In isolation the merits of clustering input into higher order 
structures are fairly clear. Firstly, it is a form of lossy compression; a way of representing 
the same information in a lower dimensional construct. Secondly it is a mechanism for 
identifying families of atomic data; further these families may be recursively defined from 
previously identified clusters and composites. Thirdly, it is a way of representing 
abstracted data against which further information can be stored. This means, if three 

different atomic units share the same property, an abstracted node may represent all 
three of these units and the property may be marked up against the abstracted node 
rather than the three individual units. This is also a form of compression, but this time a 

lossless form.

Similarly, the merits of compositioning may be considered in isolation. In a basic sense it 

addresses the issue of the representation of context. It is a way in which two individual, 

but co-occurring units of atomic data can be considered as a whole, which compensates for 
errors that are introduced from an overly reductive analysis of incoming data. This is 

another way of saying that it is possible to capture information in transition matrix of bi­

grams that is not available in a transition matrix of uni-grams. This is because the 
behaviour or distribution of elements of length two is not predictable from the bi-grams 

constituent uni-grams. The uni-gram analysis is overly reductive.

Combining the two node-types into the same integrated network adds representational 
and computational richness to the network. In an integrated network it is possible to 

consider, not only clusters of composites and composites of clusters but composites of 
clusters of composites, etc. etc. Its constituent parts and its relationship to those parts 
define every new node, which is added to a network. These parts, or nodes are the 
language in which new nodes are phrased. When the language is richer it is possible to 
say things that were not possible before.
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Combining the two processes into the same algorithm solves the pragmatic problem of 

avoiding a functional stratification of the network. To explain: the algorithms to be 
considered address the issue of network growth. If one algorithm were to be applied and 

then the other, we would get networks that consist of a clustered stratum then a 

composite stratum. This may not be the most natural representation of the problem 

domain. The intended strategy is to interleave the processes so that compositioning or 
clustering may be applied at any point in the network at the most opportune time.

3.2.3.2. An Evolved Perceptual Framework

The unifying vision behind the creation of these networks and the growth algorithms is 

that of a naturally evolved perceptual framework. Starting from a raw atomic, reductive 

description of a problem domain, a process will be created, which by analysing corpora of 
data, will identify high order constructs and therefore provide a richer description of 
data. The networks shall become a perceptual augmentation process. The activation 

passing properties of the network make it a cohesive functional process in its own right 

that is capable of accepting input information in the raw atomic form. The output data 
consists of all activated nodes. These should be the high order constructs that have been 

“perceived” within the input string.

3.2.3.3. A Note on Com putational Complexity

This is a short note on the pragmatics of generating such networks. The algorithms to be 

developed are passive and unsupervised. New nodes will be identified and added to the 
network whenever a compositioning or clustering statistical criteria is satisfied. The 

compositioning and clustering relationship may be held between any identified node, 

therefore as each node is added it becomes a new node between which information must 
be stored, and against which relationships must be identified. The performance of the 
network growth algorithms is likely to decay exponentially with the size of the network.

This, unfortunately, is the corollary to the neural plausibility of the system. Neurally 
inspired algorithms tend to have a native parallel implementation. Implementing such 

processes on a serial machine usually results in exponential decay in performance.

The implication of this for the implementation is that, firstly, all algorithms will have to 
be highly optimised, but more importantly that the scale and scope of investigation will 

have to be limited to a low dimensional domain.

95



3.2.4. P u tting  Clustering/Compositioning in Context

To place this work in context, brief mention of the clustering and compositioning works 
that are available in the computational linguistics literature is needed. Although they are 

rarely phrased as such there are close parallels to both processes. Compositioning is 
extremely similar to N-gram analysis, Markov transition matrix analysis and collocation 
analysis. Whereas, on the clustering side there are various works, mostly in the field of 

syntactical analysis, that look at recursive word clustering. The algorithms to be 

considered in this thesis differ in that:

1. The two process, clustering and composistioning, are combined within a single 

algorithm
2. The output: rather than a matrix, a list of N-grams or a dendrogram (as would be 

produced by Markov, N-gram and hierarchical clustering analysis, respectively) 

will be an active, information rich network from which much the same 

information can be derived.
3. The granularity of analysis is dynamically and locally determined.

The following is not intended as a full literature survey of these subjects, for this would 
not only be impossible, but would not be strictly relevant. It is sufficient merely to draw 

the necessary parallels that will help give an intuitive understanding of how the 

clustering and compositioning algorithms work.

3.2.4.1. N-gram, Markov Transition M atrix

N-gram analysis, Markov transition matrices and collocation analysis are all ways of 
analysing the statistical regularities to be found in the problem domain. Within Natural 
Language Processing these techniques have been used at virtually all levels of 
granularity: orthographic regularities for text recognition, phonetic regularities for 

speech recognition, syntactic regularities as feedback to both of the above, and word level 
regularities through collocation analysis.

The principle behind all these techniques is that the statistical distribution of the distinct 
units of analysis is non-uniform. This non uniform distribution may then be utilised to 
enhance the decision procedure of some probabilistic task -  such as word recognition.

It is the norm in all these techniques to have a fixed granularity of analysis. For example 
an individual Markov model will be produced for fixed length entities within the problem 
domain, for example a unigram matrix, a bigram matrix or a trigram matrix. Note, due to 
the increasing combinatorial complexity as we progress from unigram to trigram the
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matrix itself gets exponentially bigger. This granularity is generally picked before the 

analysis takes place and is constant across the entire analysis.

3.2.4.2. Recursive Clustering Algorithm s

There are two highly relevant pieces of research in this area. Both originating from two 

similar but distinct PhD theses (Finch 1993, Hughes 1992). The first by Finch is 
effectively summarised in the papers Finch & Chater (1992a) Finch & Chater (1992b) 

Finch & Chater (1992c). Whilst the second by Hughes can be found in Hughes (1992) 
Hughes and Atwell (1993) Hughes and Atwell (1994). Both concern themselves with the 

problem of automatically determining syntactic categories from corpus data.

The broad approach in both is similar. Starting from an arbitrary corpus, identify a 
subset of words that are to be analysed. Each of these focal words is then characterised in 
an N-dimensional vector. This characterisation vector is derived from a statistical 
analysis of the corpus. What each dimension actually represents varies. However usually 

it relates to the distribution of other words (or more usually word groups) in relation to 

the focal word. For practical reasons of computational analysis the size of the 
characterisation vector is limited to a reasonable value.

Once each word is plotted in N-dimensional space it is necessary to develop some formal 
measure of similarity. A variety of measures are possible: simple Euclidean distance, 
angle between normalised characterisation vectors, Manhattan Metric, Spearman’s Rank 

Correlation Coefficient etc. Specific definitions of these will be found later.

Recursive clustering then proceeds as follows, a procedure first defined by Sokal & 
Sneath (1963):

1) Place each item in its own cluster

2) WHILE there is more than one cluster remaining
3) Find the two closest clusters.
4) Create a new cluster

5) Delete the two originating clusters
6) END

Left to its own devices this algorithm would keep clustering till just a single cluster is 
left.

A hierarchical taxonomy is produced which is called a dendrogram. This tree recursively 
decomposes (or constructs, depending upon whether you are starting from the tree’s root
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or a leaf) from the single top-level abstraction into the actually occurring words. In many 
cases the clustering procedure is halted at a predetermined “alpha-cut” level to stop the 

single rooted tree occurring.

For the specific application that was considered in both these theses, which was syntactic 

classification, the clusters that were produced at several levels within the classification 
hierarchy were compared with the orthodox grammatical classifications. Both 

applications seemed to meet with a fair degree of success in that this empirically derived 
classifications compared well with the orthodox syntactic classifications.

3.2.5. Compos itioning Algorithm

We now define the first half of the algorithm to be developed.

3.2.5.1. Introduction

This section describes a formal symbolic algorithm for producing context rich networks by 
processing corpora of linear strings of discrete units, identifying from the statistical co­
occurrence of elements’ probable compound units and the transition probabilities between 

the same. The networks produced this way are essentially connectionist in nature, in that 

the network comprises multiple inter-linked nodes each of which has a distinct activation 

level. However the individual nodes are symbolic in that each node represents unique 

discrete phenomena within the problem domain. The produced networks are deeply 
structured embodying useful contextual information from the problem domain, which is 
ideal for applying to recognition type tasks.

The outlined process closely parallels other statistical techniques that infer transition 

probabilities from statistical co-occurrence such as Markov models or N-Gram analysis, 

Brown (1982), Riseman & Hanson (1974) Jelinek et al (1983). With these techniques, 

however, when an attempt is made to analyze context over a wide field (ie. large N) the 
size of the corpus necessary to provide a good esimate of the transition probability rises 

exponentially, Keenan (1992). This problem is attributable to the need to specify N 

globally. The tree producing algorithm outlined here, by the use of some modifiable 
heuristics, estimates a unique value of N dynamically and locally. That is, we estimate 
the transition probabilities to and from a node if, and only if, our heuristic identifies the 

node as a suitable candidate.

3.2.5.2. D escription o f  A lgorithm

A standard statistical procedure attempts to identify a relationship between N variables. 
The algorithm outlined here does this with a set of primitive nodes, however when a
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strong relationship is found between two or more nodes they are concatenated into a new 
node and the procedure will then look for relationships with this node also. The number 

of variables is therefore constantly growing.

Relationships between nodes are identified using a context history which records the 

context for each node. Conversely a node can be defined as something for which a context 

history is recorded. Take the example where we are analysing written language, we will 
start with a set of primitive nodes ( in this example the 26 primitive graphemes) for 

which we will record the context history. When, for example, the letter ‘h’ has been found 
in the context of ‘t> many times ‘th ’ becomes a node in itself, and therefore against which 
context is now to be recorded. After some time we may identify V  as a candidate link for 

creating the ‘the’ node. The nature and depth of the produced networks may be modified 
through the use of two re-definable heuristics: the linkage heuristic and the compositing 

heuristic.

In outline, a new unconnected primitive node is instantiated for each primitive unit 
encountered in a string. Whenever this node is subsequently encountered within a string 

this node is made salient, and remains salient for a specified lifespan. That is, instance 
information is recorded temporarily for it on a list. The salient list is monitored at all 
times, so should two nodes be discovered which satisfy the linkage heuristic the 
appropriate context history is immediately attached to the concerned nodes.

When the link/context history combining two (or more) nodes exceeds a value specified by 
the compositing heuristic a new compound unit is instantiated that describes the 
conjunction of the children nodes.

Certain metrics are attached to the various entities in the tree. It is with respect to these 

metrics that the compositing and linkage heuristic are defined. Of significance is the 

measure of frequency (attached to nodes, links and global measures). An absolute 
measure of frequency would be inadequate for inter-node comparisons as new nodes are 
being created all the time and the new nodes are unaware of how often they occurred 

before they were created. More suitable would be a measure of acquisition velocity, that is 

to take an estimate of the differential of frequency over time. It was found that the 
regular resetting of all frequency values served as a satisfactory approximation to this.

The algorithm as discussed may be defined in pseudo code as follows:

LOOP { f o r  a l l  s t r i n g s )

{
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LOOP ( f o r  a l l  u n i t s )

{
I F  { n o d e  n o t  p r e v i o u s l y  s e e n )

{
DO I n s t a n t i a t e _ N o d e

}
E L S E  ( n o d e  a l r e a d y  s e e n )

{
DO A c t i v a t e _ T h i s _ N o d e  

DO P a s s _ A c t i v a t i o n _ T o _ P a r e n t s  

DO M a k e _ N o d e _ S a l i e n t  

LOOP ( a l l  s a l i e n t  n o d e s )

{
I F  ( N o d e s  m a t c h  LIN K A G E  H E U R IS T I C )

{
DO A d d _ L i n k _ T o _ H i s t o r y  

I F  ( L i n k  >  THRESHOLD H E U R IS T I C )

{
DO M a k e _ N o d e s _ I n t o _ C o m p o u n d  

DO L i n k _ C h i l d r e n _ T o _ P a r e n t  

}

}
}

}
DO D e l e t e _ _ S a l i e n t _ N o d e s  

}

where Pass_Activation_To_Parents is further recursively defined as

P a s s _ A c t i v a t i o n _ T o _ P a r e n t s

{
i f  ( I n c o m i n g _ A c t i v a t i o n _ R e a c h e s _ T h r e s h o l d )

{
DO A c t i v a t e _ T h i s _ N o d e  

DO P a s s _ A c t i v a t i o n _ T o _ P a r e n t s  

DO M a k e _ N o d e _ S a l i e n t

}

}

The nature of the parent or compound nodes needs some clarification. Firstly, note that a 
parent node receives activation from all its child nodes. The parent itself though, will not
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become active until it receives activation from all child nodes such that the combination 

satisfies the linkage heuristic. The linkage heuristic is therefore defining the nature of 
the network e.g. the conditions that two nodes must satisfy for the two to be considered a 

compound node.

Secondly we need to make a distinction between the type and token instance of a 
compound node. This is because unlike primitive nodes a compound can exist in 
overlapping positions within a string. Take the example of ‘banana’: the composite ‘ana’ 

exists twice in non-distinct positions.

3.2.5.3. Saliency

The distinction between the type and token instance of a node relates to the principle of 

saliency mentioned earlier, this probably needs a few words of explanation.

Within a standard neural net architecture it is difficult to pass on the positional 

information of a node explicitly within the activation it passes to its linked nodes. This is 
because an individual node is not computationally powerful enough to discriminate its 
input and effect the functional changes that a new node position would imply. It would be 

easier to pass on the positional information implicitly by only letting nodes in position 1 
pass on their activation to nodes in position 2 etc., however the number of nodes 
necessary to encode the input string and model the relationship between composites in 

their various positions would rise exponentially with the string length.

The network discussed in the previous section is in essence only recording the 

relationship between nodes of a particular type. However in order to both build and use 
the net we need to be able to identify instances of a node within an input string and be 
able to propagate this instance information through the network. The principle of 

saliency is a mechanism by which this information may be stored and passed throughout 
the network. The type of instance information that is stored with the node identifier on 
the salient list is dependent upon what is required by the linkage heuristic. In most 

simple cases this will simply be the position of the node within the string.

Saliency is in many ways a type of working symbolic memory. This contrasts interestingly 

with the essentially connectionist network. This is not a contrived distinction but one that 

appears essential to handle the highly time dependant input data.

This whole issue of handling time dependant data becomes quite complicated. For the 
purposes of this application the simple concept of saliency proves sufficient. For a more in
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depth discussion of both the nature of the problems and postulated solutions see Allott et 

al (1997b) and Allott et al (1997c).

3.2.5.4. Modifying the Network

As mentioned the nature and quality of the network is modifiable through two heuristics. 

To illustrate this consider the following examples. Firstly, the linkage heuristic which 

affects the quality of the network. In the simplest cases the metrics passed to salient 

nodes on instantiation will be node identifier and position found in the string. From this 
we could define linkage as simple left or right adjacency giving immediate left or right 
context. Alternatively we could extend this to give context within a pre-specified window 

i.e. found within 5 units.

Secondly, the compositing heuristic, which determines the depth. The simplest definition 

is a measure of the absolute frequency for a node divided by the total number of primitive 

units encountered. The next probable extension to this would be to modify this value with 
respect of the length of the compound, on the legitimate assumption that smaller 
compounds are likely to occur more frequently. This will stop trees becoming bottom 

heavy.

The second level of sophistication is to introduce a measure of a node’s suitability for a 

task into the network modification procedure. When the information necessary to do this 
is available at node creation this measure may be readily incorporated into the linkage 
heuristic. However, this is not always practical. Take the recognition task: a good 

measure of a node’s usefulness is whether the distribution of transition probabilities to 

new nodes is flat or not. A flat distribution can be used to no predictive effect. This 
information is available only after the node has existed for some time. In such cases we 
should consider tree generation as a two stage process. The first to generate a bushy, 

deep tree on pure statistical grounds, a second to prune the tree on functional grounds.

3.2.5.5. Formal Specification o f  D ata  Structure and H euristics

A particular network can be characterised by a 6-tuple

(P,Q,h,p,t,ev)

Where:

P  = { P0 i P l >P2^ Pn)
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is the initial set of primitive nodes and n(P) is the number of primitive nodes.

is the set of all newly identified and n(Q) is the number of new nodes. P(Q) is the power 

set of all newly identified (i.e. non-primitive) nodes.

From this we can define

I  - P ^ J Q ,

that is I  is the set of all nodes. Where n(I) is number of all nodes and so:

n(I)  = n{P) + n{Q).

Further P(I) is the power set of all nodes.

In order to model context histories the h function is used:

h : I , I - > N

That is a mapping is defined between pairs of nodes and the natural numbers.

In order to model parental linkages the p function is used, where

p : I - > P ( Q ) .

Which defines a mapping from each node to the power-set of all non-primitive nodes. 

Note, that a parental link may not be created to a primitive node, but may be created 
from a primitive node.

From this it is possible to define a child linkage function c, where

c : Q ~> I
And specifically:
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c< a ) =  IK  •
q xB Q ,q te p ( q x )

The number of children of a node therefore being n(c(qx)).

Activation is a dynamic property of the network and can be modelled by a simple function

a c t : I  —» [0 ,1 ]

mapping each node to number between zero and one in the general case and

a c t : I  —> {0,1}

for the simple case where nodes take on only Boolean activation values.

We must now further define

as the alphabet of simple words that we are to consider and that are present in our 

corpus. P(A) it follows is the power set of all strings.

An individual presentation of a sentence is modelled by a stream operator VF  . Where

W : A ,

that is ' F  maps natural numbers to individual words. f t ( 'F )  is therefore the size of the 

string. It follows therefore that

¥ ( « )  =  0 ,  w h e r e  n < 0 o r  n > z z C 'F ) .

Primitive nodes differ from composite or clustered nodes in that they are activated if their 
“evidence” is found within the input string. This “evidence” is modelled by a function

e v  : P —> P(A ).

The activation of primitive nodes can be described procedurally as follows
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f o r  ( i = 1 t o  nQ¥) )
{

for { P i  e  P )

{

i f  ( XF (i)e  e v ( P i )  ) then 

act(Pi)  =  1

}
}

In order to consider the activation of a composite node we must first describe incoming 

activation, this is generally described by the function:

in : Q —̂ R.

which maps all nodes to a real number. Specifically it is defined as:

i n ( q x ) =  ^ a c t ( y )
y e c ( q x )

All threshold functions are generically described as

g R

which simply maps a real and node onto a real. A set of threshold functions is defined

^  — {<?0 > <?i ’ <?2 <?/i }

in general, where the form of g is essentially defining the type of the node. In the specific 
implementation we are considering here there are only two threshold functions; the 
threshold function for composite nodes and the threshold function for clustering nodes. It 

follows then that here: G = , g clu„„}

The t function maps a node onto a specific threshold function,

t : Q —> G .
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This makes the generic definition of the activation of all non primitive nodes

act(qx) -  t(qx)(in(qx),qx).

For the specific case of the compositioning node the threshold function is defined as:

8 composite Q y  )

[1 , x > c ( q yY 
10, x < c(qy)

Before we can consider how to define the linkage heuristics we must model the principle 

of “saliency”. Saliency is a set of 3-tuples.

S  — {.Sq , Sj, s2

where each

Si = (node, start, stop) and node 6 I,  start e  N, stop e  N .

As each node becomes active a new node is added to the salient list i.e. S = S LJ sr 

The form of this tuple for a primitive node pt is trivial:

Si=(pi , t , t ) ,

where t  is a time variable, which is incremented as the elements of T* are iterated over. 

For a non-primitve node qt it is a little more complicated:

Si - (eh, start, stop),

where start is the time, t  when the node received its first contributing activation and stop 
is the time t  when it received its last.
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We are now in a position where we may define some possible linkage heuristics. 

Remember this is the heuristic that must be satisfied in order for a context history to be 

recorded against a node. A link heuristic maps from two salient tuples to a Boolean:

link : S,S —> {0 ,1}

Specifically simple right adjacency becomes:

1, stop(sx ) =  start(sy )  + 1  
0 ,  stop(sx ) ^  start(sy ) + 1

And left adjacency

1, stop(sx) = start (sy )  - 1  
0 ,  stop(sx ) =£ start(sy )  - 1

A windowed left right adjacency may be

Jl,|.stop(sJ“ tfarf(sy)|<3v|rt0p(sy)-sterKO|<3llink(sx, s y) — -s ?■[ 0 ,  otherwise I

In order to define the compositioning heuristic two further measures will be required.

The first is a measure of how frequently a node has been seen within the corpus. This is a
simple function mapping a node to a natural number:

The second is a global measure of how many primitive units have been presented to the 
system.

freq : /  —» N.

And specifically for a node ix :

freq(ij = ^p(ix,iy)
ivs P
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Global =  f̂req(ix)
ixsP

Compositing heuristics are also Boolean returning functions. Below we list three simple 

useful ones. All are defined with respect to a compositing constant: k c osite

A heuristic relying on absolute frequency

Or where a heuristic which makes an adjustment for the proposed length of the 

compound node (on the assumption that longer composites are less frequent):

p =  c o n s t a n t  t o  o f f s e t  d e c r e a s i n g  f r e q u e n c y
length : I —> N is a function that returns the length of a node in terms of 

the primitive nodes from which is made.

The entire process of network growth is essentially the identification of a new node x. 
Such that

i E ^ i A > k’ Global compositeComposite{x, y) =  <
Global composite

A heuristic that is dependent upon the frequency of the parent node:

Composite{x, y) = -
i P ^ l L>’ freq(x) composite

freq(x) composite

Composite(x, y )  =  •
i /rc g C p fo y )) .freq(x)
0  freq(p(x, y))

freqi*)

x(length(x)xlength(y))p >kt

x (length(x) x length(y))p < kt
composite

composite

where
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Q = Q u x .

An x is created for any two nodes for which the criteria

composite{ix, iy) = 1

holds true. Further two links are instantiated such that

p(ix) = p(ix) U x  and p (iy) = p( iy) u x ,

3.2.5.6. N ature o f  Links

It is important to stress that in the outlined algorithms there are in fact, unlike 

conventional connectionist networks, two distinct types of links: context links and 

activation links. The activation links are akin to those that are found in conventional 

neural networks, across which activation can be passed, and which can lead to the 
subsequent activation of connected nodes. They do, therefore, define a strict causal 

mapping between nodes. Context links are a softer link; they record the history of a node. 

In many senses that are a pure artefact of the learning algorithm, however because they 
do embody useful contextual information they are never actually removed. The process of 
node growth is interesting; it can be a visualised as a process within which a context link 

gets stronger and stronger, thickening in the process, as an association is established 
between nodes. Upon reaching a critical threshold the context link mutates: the centre of 

the link becomes a node in its own right and the two halves of the context link left become 
activation links.

We shall now consider the other half of the equation, the clustering algorithm:

3.2.6. Clustering Algorithm

3.2.6.1. Introduction

This section describes the sister algorithm to the compositioning algorithm. From the 
same starting data (corpora of linear strings of discrete units) a network is to be produced 
which consists of clustering units. The obvious criteria by which these clusters may be 
made is commonality of contextual history. Fortunately the history links required by the 
former algorithm is the ideal resource with which to evaluate contextual history.
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In words the clustering algorithm can roughly be described as follows. First some 

assumptions must be made: assume that the compositioning algorithm is in place; that it 
is already running and that context histories have been recorded for nodes; further that 
the contextual histories will continue to be added to whilst the clustering algorithm runs. 
Now take a node at random. Compute its “difference" with its nearest neighbours. If the 

difference calculated between any two nodes is less that the objective “clustering criteria” 

defined, then instantiate a new cluster and the appropriate activation links between child 

nodes and the new parent cluster. The precise manner in which this “difference” is 

calculated is discussed in the section below (Section 3.2.6.3).

When a new clustered node is instantiated a context history can be automatically 

generated for it, which is the aggregation of context history of the child nodes. Further 

when a new context link is identified for a child node it may safely be added to the 
context history of the parent, clustered node. In this manner clustered nodes are 

significantly different to composite nodes. This is because a clustered node represents the 
aggregation, generalisation or the super-set of its respective child nodes. Therefore what 
is true for the child node must be true for the parent node. A composite node is different; 
it represents a specialisation of its respective child nodes. What is true for the child node 

is only true for the parent composite node when the child node is appearing in a certain 
context. In composite nodes, therefore, the parent composite may not inherit context 

histories.

Note, there is an important distinction to be made between the clustering algorithms (see 
Section 3.2.4.2) that were described for the syntactic classification tasks and the 

clustering that takes place here. Both of the syntactic classification tasks used an 

algorithm that for each iteration compares every node against every other and clusters 
only those two nodes that are closest. The algorithm then proceeds on a best match basis 

with no concern for the absolute similarity of the two nodes to be considered. The 

clustering algorithm described in this thesis differs in that nodes are clustered only if 
they reach some absolute criteria of similarity rather that highest ranking. In this sense 
the clustering criteria is autonomously and locally implemented at the node level rather 
that at the global network level.

A further difference is that the syntactic classification algorithms produce single rooted 
trees (dendrograms). This means that a single child node can belong to only a single 
immediate cluster. There is no such restriction in the algorithms described here.
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3.2.6.2. Form alisation

The formalism for the base network is identical to that defined above for the 

compositioning algorithm.

The major addition is the definition of a new threshold function for clustering, this is 

simply:

The process of clustering is to identify new node x such that

Q=Qux,

and x is to represent the cluster of two nodes m  and n2. The threshold for the new 

function will be

t(x) — g c[uster.

And two linkages must hold between the children and the parent composite:

/(/ij) = l(nl )KJx and l(n2) =  /(ft2) u x .

In order to identify which nodes are to be clustered we need to define a clustering 

heuristic. Generically

cluster : / , / —> {1,0}, 

that is it maps from a pair of nodes to a Boolean value.

This cluster function is usually defined in terms of a distance function 8 . This maps a 

pair of functions to a range between zero and one:

8  : / , / - >  [0,1].

Several distance functions are discussed below in the similarity measure section.
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The definition of the cluster metric will generally require that the distance function 

report back a value greater than a predefined similarity constant ksimilarity and that a 

crude measure of statistical significance.be satisfied. This is usually a simple alpha cut on 

the frequency of the two clusters defined in terms of OCjrequency . So:

3.2.6.3. Measure o f  S im ilarity

In order to measure the similarity of two nodes some measure of the difference or 
distance between these two nodes must be mathematically defined. The most common 

way to do this is to characterise the two elements between which distance is to be 
calculated as a specific vector in a multidimensional space. This was the approach that 

was taken with both of the syntactic classification tasks described in Section 3.2.4.2.

In both of these applications the individual dimensions of this space mapped onto the 
different items that could be found in a words context (this could be words or word 

groups). The weighting of a dimension within a specific characterisation vector is 

proportional to the frequency that the contextual word appears in the focal word’s 

vicinity.

Precisely the same approach is to be taken here. The context history of a node (i.e. the set 
of context links) can be interpreted as a sparse vector that expands onto this very same 

space. For practical purposes the expanded vector will be normalised to facilitate 

comparison of vectors of differing frequency.

Once we have two characterisation vectors for the nodes there are a variety of distance 
measures that can be applies in order to ascertain a measure of similarity. In both of the 
syntactic classification tasks four measures were defined: Manhattan, Euclidean, 
Spearman Rank Correlation Coefficient and Cosine measure (or dot product). These shall 
now be defined in greater detail:

Manhattan Coefficient

cluster(x, y ) similarity a  freq(x) >̂ fr e q u

0 ,  otherwise
frequency a  freq(y) > afrequency
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Euclidean Metric

&(x>y) = J ' E ( x t - y t )2

Spearman Rank Correlation Coefficient

D(x,y) = j r / (RI’ - X lr )
1=1

Where Rx and Ry are new vectors computed from x and y by replacing each element by 

its ordering (the elements magnitude) in its parent vector.

Cosine Measure

w h e r e  D(x,y) =X •  F  =  | x | | r | c o s #  =  ^xt xy(
i=1

For the purposes of this application a process of what we call bounce back activation is 
used. This is done as follows. Select a node at random and activate this node fully. Pass 

the activation out through the “history links” to the others and let these other nodes take 
on activation proportional to the strength of the history link. Once received, bounce back 
this activation, again down the history nodes but this time let the strength of this 
activation be proportional to the difference between the strength of the activation of the 

node and the strength of the history link. The emitting node should of course be fully 
activated. But the most similar nodes will also take on a high activation.

When interpreted spatially so that the context history list is converted to a normalised N- 
dimensional vector, where N is the number of nodes in the network it is obvious that the 
bounce-back metric is equivalent to the dot product. Interestingly, where the vector is 
sparsely populated, which is usually the case, an optimised implementation can use the 
container of links pertaining to a node to reduce the number of dimensions that need to 

be considered in producing this metric.



What this means is that:
1. Bounce back activation is mathematically equivalent to the cosine measure.
2. Bounce back (for sparsely populated vectors) is a highly optimised 

implementation of the cosine measure.
3. Bounce back maintains a higher level of neural plausibility due to its locally 

autonomous implementation. (For discussion on Local Autonomy see Section 

3.2.8)

3.2.7. Interaction o f  Clustering and Compositioning

To consider how these algorithms co-operate it is easiest to describe (and indeed 

implement) the processes as parallel multi-threaded operations.

The following pseudo code describes this collaboration:

N e t w o r k  n ;

T i m e  t ;

F o r  { S e n t e n c e  s  = f i r s t _ s e n t e n c e  TO l a s t _  s e n t e n c e )

{
S a l i e n t L i s t  1 ?

F o r  ( W o r d  w  =  f i r s t „ w o r d _ i n _ s  TO l a s t _ w o r d _ i n _ s )

{
t  = t + l ;

I F  (w  NOT i n  n )

{
A d d  w  t o  n  a s  p r i m i t i v e  n o d e ;

A c t i v a t e  w ;

}
}

}

Which calls the activate process

A c t i v a t e ( N o d e  n )

{
i f ( T h r e s h o l d  r e a c h e d )

{
M a k e  n o d e  n  s a l i e n t  a t  t i m e  t ;

P a s s  a c t i v a t i o n  t o  p a r e n t s ;

}
}
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Asynchronous processes

L i n k a g e _ M o n i t o r

{
S c a n  c u r r e n t  l i s t  o f  s a l i e n t  n o d e s

I f  ( a n y  t w o  n o d e  s a t i s f y  l i n k a g e  h e u r i s t i c )

{
r e c o r d  h i s t o r y  l i n k s  a g a i n s t  c o r r e c t  n o d e s

}
}

C o m p o s i t i o n i n g _ M o n i t o r  

{
I f  ( a n y  l i n k  h i s t o r y  s a t i s f i e d  c o m p o s i t i o n i n g  h e u r i s t i c )

{
A d d  n e w  c o m p o s i t e  n o d e  t o  n

A d d  a c t i v a t i o n  l i n k s  f r o m  c h i l d r e n  t o  p a r e n t

}
}

C l u s t e r i n g _ M o n i t o r

{
I f  ( a n y  t w o  n o d e s  s a t i s f y  c l u s t e r i n g  h e u r i s t i c )

{
A d d  n e w  c l u s t e r  n o d e  t o  n

A d d  a c t i v a t i o n  l i n k s  f r o m  c h i l d r e n  t o  p a r e n t

}
}

This concludes the definition and discussion of the algorithms that may be applied to the 

activation passing networks from the previous section. The application and configuration 

of these when applied to real data will be discussed in Chapter 5.

3.2.8. Contrasting Learning Algorithm s with N eural Networks in General

It is necessary to explain how the outlined algorithms compare to neural networks and 
connectionist systems in general. Note, however, such a general discussion is not easy 
due to the enormous variety and flavours of connectionist systems. But we will start with 

the obvious commonalities, which are that the outlined system is node based, with 

interconnecting links and nodes that pass activation between each other along these 

links. Unlike many connectionist systems, however, the links are un-weighted, but there 
is no reason in principle why the system could not be extended along these lines. A 
distinction is preserved between input nodes, which are connected directly to external 
stimulus, and hidden nodes (in this case not strictly hidden), which take their activation 
indirectly from the external stimulus. The implemented algorithms are un-supervised 
and there is no direct analogy to the output node layer. All nodes have a localised (non­
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distributed) encoding and so map onto discrete identifiable features of the input domain. 
The activation function, which determines whether a parent node becomes active or not, 

comes in two forms for the two varieties of parent nodes that exist: composite and 
clustering. In both cases this activation function is a simple linear function. Possibly of 

most interest however is the fact that the network grows. That is the algorithm identifies 
new potential nodes and reconfigures the network over time.

In the panels discussion at the ICNN97 conference (Kohonen, Hinton, Taylor, Baum et al 
(1997)) classical connectionist learning, it was suggested, was based on two key ideas:

a) Memory less learning: that is no training examples are to be stored by the 

learning algorithm, such that each presentation of information can be considered 

in isolation.
b) Local Autonomy: the nodes of the network are autonomous learners, that is the 

only information that an individual node can use is that which it can obtain from 

its immediate local connections. To quote directly: “Local learning embodies the 
viewpoint that simple, autonomous learners such as single network nodes, can 
produce complex behaviour in a collective fashion.”

The focus of this discussion was to question the validity of these two key qualities in the 

development of novel connectionist systems.

Within this framework an interesting contrast can be made between so-called “Classical 
Connectionism” and the algorithms and data structures outlined in this section. This 

contrast is to be made on the principle of “Local Autonomy”. Basically the proposed 
algorithms break the constraint of local autonomy. It is within the outlined model of 
“saliency” that this constraint is broken, and necessarily so given the task attempted. The 

algorithm aims to identify new nodes that combine (through composition or clustering) 

other nodes within the system. These nodes are by definition originally unconnected. The 

connectivity that facilitates local autonomy, in the initial case, is simply not there. 
Saliency (or local memory, as the analogy has been made above) is the mechanism by 
which this connectivity is bootstrapped into existence.

We can also explore the differences between neural networks and the defined networks 
and algorithms from another angle. First let us make the distinction between an “active 
functioning network” and a “training algorithm.”

Consider first the “active functioning network.” Again the full spectrum of “connectionist” 
systems is very large, so let us constrain ourselves initially to considering only feed
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forward networks. A simple feed forward network by virtue of its topology, link weights 

and activation function defines a non-linear (possibly linear -  depending on the activation 

function) mapping between a predefined multi-dimensional input space and a predefined 

multi dimensional output space. The dimensions of the input space are defined by the 
input nodes and the dimensions of the output nodes are defined by the output nodes. 
Contrast this with the clustering/compositing networks defined in this thesis. Again it is 
the definition of a mapping from a multidimensional input space to output space. But 

over time the number of dimensions within this output space grows as new nodes are 

added to the system. The mapping is, however, typically simpler, consisting of simple 

threshold functions. It is also easier to decompose. Unlike a fully connected feed-forward 

network where the effect of a particular sub-space of the input space is only analysable by 
tracing the strength of the weights connecting almost all nodes, the effect of specific input 
subspace of a clustered/composite network is more discrete due to the selective 
connectivity of the links.

Consider now the training algorithms, specifically we shall consider the simple back 

propagation algorithm, however most connectionist learning algorithms are similar to 

this. The back propagation algorithm takes an initially configured feed forward network 

that defines a specific (and initially often random) mapping from an N-dimensional input 
to M-dimensional output, and adjusts it by changing the value of the weighted links. The 

manner that it adjusts the links is best explained by taking another multidimensional 
metaphor. This time each weight is to be viewed as a distinct dimension in the “error 
space”. The landscape of this error space is defined by the Error measure, which is a 

global measure that reflects the goodness or the effectiveness of a specific definition of the 
multidimensional mapping with regard to a specific task. The measurement necessarily 
requires a-priori knowledge of the specific output vector to which a specific input vector 

maps. This is another way of saying the algorithm is supervised. The weights of the 
network are adjusted by attempting to descend this error space by means of gradient 
descent to reach a point of optimum “goodness”.

To contrast, the learning algorithms for the clustering/compositing network are, critically, 
unsupervised. Also the algorithm is not adjusting a pre-ordained N to M dimensional 
mapping. Rather it is refining an N dimensional mapping to an output space that is 

constantly changing. The criteria by which the output space changes and the mapping 
gets adjusted, (because the algorithm is unsupervised) can not be effected by some global 
notion of goodness. Rather a very local notion of goodness is employed at 

each node in the system. This local notion of goodness may perhaps be generally 
characterised as “coherence”. That is inducing a logical orderly relationship of parts by 
analysing statistical regularity of co-occurrence. But specifically this global notion of
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coherence is embodied in the algorithms that define the clustering and compositing 

heuristics.

3.3. Conclusions

3.3.1. Knowledge Architecture

The knowledge representation scheme that has been chosen is essentially a localist 
connectionist network, where each node represents a distinct feature within the problem 

domain. In the initial case the activation function is Boolean as are the linkages, this is to 
simplify both the representation and the processing. This architecture was chosen over 

the alternatives for the following reasons:

1. Simplicity: it is essential that the knowledge representation scheme be simple so 

tha t the tutor can easily specify and refine the criteria by which the questions are 
judged. A connectionist type network maps very well onto a graphical 
representation, which is intuitive for the tutor to manipulate.

2. Extendibility: as has been discussed, the outlined network maps onto both 
connectionist and symbolic/logical processing paradigms. This means any 
structure may be enhanced with the appropriate computational properties 

deemed necessary at a later stage.
3. Macro structures: considerable effort has been made above to develop a set of 

macro structures (themselves constructed from the primitive connectionist units) 

which specifically map onto the perceived functional requirements of the problem 
domain.

4. Communication: natural language processing is traditionally a modular process 

consisting of several sub disciplines. As has been shown earlier, to attempt to 
perform these processes in a serial order is doomed to failure. There are 
innumerable examples of deadlocks; where syntactic information is needed to 

resolve semantic ambiguity or semantic information is needed to resolve syntactic 

ambiguity. Even within a single of these disciplines there are examples of 
deadlocks. Take for example the semantic ambiguity problem. The connectionist 
processing paradigm offers a solution to this problem. The parallel propagation of 
activation can allow a bootstrapping of a solution, similar to the constraint 
satisfaction problems solved with the interactive activation and competition 
models. (The symbolic alternative is the use of blackboard type architectures e.g. 
Hearsay II, Erman (1988))

5. Transparency: the localist representation of the network provides transparency 
to the processing. In other words, when the network has made a decision about a 
sentence it is possible to trace through the activations giving an intelligible
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explanation of the process. This is the much vaunted advantage that traditional 

symbolic expert systems have over distributed connectionist systems.

6. Learning: the knowledge architecture has been designed to be amenable to 
application of learning algorithms. Without having any hard evidence to support 

this claim, it does seem that knowledge schemas of architectural simplicity are 
more amenable to the application of generalised learning algorithms. The 
reasoning behind this being that the more architectural distinctions made within 

the knowledge base, the more complex the algorithm must be. Also incoming data 

must be categorised more finely.

As a final point, by choosing a simple architecture where the primitive elements have low 

computational and representational power, and bearing in mind that the entire structure 
will be iteratively refined in accordance with the strict functional requirements of the 
application, it should follow that any structure inherent within the problem domain 
should naturally emerge within the refined network. This means that, if indeed, one of 
the higher order knowledge description languages is more appropriate to the application, 

then the relevant high order qualities should be emergent properties of the evolving 

network. If recognised as such, this will be a useful exercise in itself. This work can be 

found within the publications Allott et al (1994a, 1994b, 1994c).

3.3.2. Learning Algorithms

Within the second section two algorithms have been defined for the production of 

activation-passing networks, which consist of compositioning and clustering nodes. This 

work has been published14 in Allott et al (1995), Allott et al (1997a), Allott et al (1997c), 

Allott et al (1997d).

Intuitively the richness of the representational structure and the consequent functional 
power that is due to the activation-passing properties of the network is very appealing. 
However, what remains to be proved is the empirical utility of these knowledge 

structures within the automated assessment application (or any other application for that 
matter.) The development of a framework within which this assessment of empirical 
utility can take place and the performance of this assessment will be the focus of the 

second section of Chapter 5.

14 In a further paper (1999b) some specific problems and solutions to the compositioning 
of highly time dependent data have been outlined, however this work has not been 

discussed in this thesis
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4. System  A rchitecture and Im plem entation

4.1. Architecture

In order to generate and evaluate knowledge bases within the automated assessment 

domain a full modular system must be developed. This system must facilitate: the 

generation of HCNs (hand-crafted networks); the persistence of knowledge bases; the 
collation and processing of student data; the application of HCNs to student data; the 
integration of any resources to aid in the generation of HCNs; the application of learning 

algorithms to produce AGNs (algorithmically produced networks); the application of 
AGNs to student data and the statistical analysis of results. Such a system may be 

analysed architecturally in terms of three distinct component types: external entities; 

data resources and data processes.

There are six primary data processes:

1. Data acquisition process.
2. HCN Creation -  knowledge acquisition.

3. HCN Decision process.

4. AGN Creation
5. AGN Decision Process.

6. Statistical Analysis Module.

There are three primary data resources:

1. Questions to be answered
2. Answers to questions given by students

3. Knowledge resource

And there are two external entity types (external entities that introduce data into the 
system):

1. Students
2. Experts

The data resource is the bank of student responses to questions and the questions asked 

themselves. Whereas the knowledge resource is the tutor created knowledge base which
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the decision process uses to discriminate between incorrect and correct responses. The 

data acquisition and knowledge acquisition processes are the mechanisms by which the 

two respective data bases are created and maintained. The experts are the external 

entities responsible for the knowledge base, whereas the students are the external 

entities from which the data base is derived.

The following diagram depicts these entities and the relationships tha t hold between 

them.

StudentsExperts

Results

Student
AnswersKnowledge

Knowledge
Acquisition

Decision
Module

Data
Acquisition

Figure 4-1 Entity-Process Diagram

We shall examine the specifics of each of these modules as well as the implementation. 
Mention may be made of the final task or use to which it will be put, but a fuller 
exposition will be found within the experiment section.
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4.1.1. Resources

4.1.1.1. Representation Module

The architectural qualities of the representational schema to be used have been discussed 

in depth within the previous chapter. Aspects considered here are: implementation, 

specifically issues of persistence, serialisation and sample constructs

A node of the form discussed in the previous chapter can be characterised within the 

following C++ class definition.

class C N o d e  : public C O b j e c t  

{
private:

int m _ N o d e I D ;

C L i s t  m _ P a r e n t s ;

C L i s t  m _ C h i l d r e n ;  

float m _ T h r e s h o l d ;  

float m _ A c t i v a t i o n ;

public:
void A c t i v a t e  ( f l o a t  i l n c o m i n g A c t i v a t i o n ) ;

}

Of the member variables only activation is a non persistent variable. In other words 

activation is a variable which is required at run-time only. All other variables must be 
serialisable so that a permanent record of the nodes state may be made. Using standard 
object oriented techniques this is done by streaming out the contents of the object, to a 
file, with stream operators. The format of the text file into which a permanent record of 

variable states is as follows:

N o d e  N o d e l D  

{
P a r e n t  O t h e r N o d e l D l

P a r e n t  O t h e r N o d e I D 2

P a r e n t  O t h e r N o d e I D 3

T h r e s h o l d  T h r e s h o l d V a l u e

}

A larger sample of such a file may be found in Appendix C.
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Note that child links are not recorded within the file. This is because the child/parent 

relationship is assumed to be a reciprocal relationship, as such child links are redundant 
and are instantiated at run-time only for purposes of computational efficiency.

The log file is a standard text file which can be edited by the tutor directly. However the 

preferred method of access is the graphical interface (see Section 4.1.2.2).

The entire log file is parsed as a two pass process. The first pass instantiates all nodes 

recording their unique ID within the instantiated object. Within the second pass all node 
linkages are resolved from node ID links to run-time object pointers.

It is apparent from the file structure that the instantiated network will form a tree-type 
hierarchy. There is at present no checking for recursive structures within this hierarchy.

4.1.1.2. D ata  Resource

The data resource used is the master document file generated by the QuestionMark 

application. See section on data acquisition process for a full description.

4.1.2. Processes

4.1.2.1. D ata  Acquisition Process

To set the tests to the students and to collate the student responses a commercially 
available assessment package called QuestionMark was used. The test could be sat by all 

students simultaneously, with the questions being disseminated and the answers being 
retrieved across the network.

The test itself was set to two sets of students, actually from subsequent academic years. 

There were approx 60-70 students in each set. 20 questions in all were given on a general 
“end of first year” computer science topics. The questions were given in test like 

environments and the students had approximately 45 minutes to complete the test. 

Students typed their responses directly into the computer. (Full details of the questions 
may be found in the appendix.) The students were not told nor were they aware that their 
responses would be analysed by a computer. As far as they were concerned there 
responses were simply going to be marked by their tutor ( and indeed they were).

The QuestionMark application has the facility to generate a master document which 
concatenates the answers to all questions from all students. The format of this file is:
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1. Student name/ student number
2. Question

3. Answer

For a full example see Appendix B. The format of this document is syntactically well 

defined. Making use of the distinctive text strings that exist within the master document, 

a fairly robust context sensitive grammar was identified which could parse the master 
document into its component parts. An API was provided that through a real time parser 
would access the master document and pull out a particular response from a particular 

student on request.

The principal calls in this API are:

c h a r *  G e t S t u d e n t N a m e { i n t  i S t u d e n t N o ) ;

c h a r *  G e t Q u e s t i o n ( i n t  i Q u e s t i o n N o ) ;

c h a r *  G e t A n s w e r ( i n t  i S t u d e n t N o ,  i n t  i Q u e s t i o n N o ) ;

4.1.2.2, Knowledge Acquisition -  HCN creation

The tutor views and edits the knowledge base through the knowledge editing module. 

This is a custom built Windows program which allows the knowledge structure to be 
edited with click and drag movements of the mouse.
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Auto A ssessm en t
F iles K-Base S tatistics T h esau ru s  Marks K-Edit

Concept Map

lanpORarj

r e s e m b l i

nearORusi

Figure 4-2 Screen-shot Knowledge Base Editor

The hierarchical network is presented with the lowest nodes within the tree on the left 

hand side of the tree. This is because most produced trees are wider than they are deep. 
The breadth of the network is explored through vertical scrolling which is seen as more 
natural behaviour.

Double clicking upon a node accesses the properties of a node. This will bring up an 
editable dialogue box as below:

Activation:

. sB g iip
S i P l i P '?

EvidencePatents

Figure 4-3 Screen-shot Dialog Node Details
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The qualities of a link are accessed by dragging between the relevant nodes.

The two dimensional presentation of the network on screen is governed by a simple 
constraint satisfaction algorithm, the prime constraint being to minimise the number of 

crossing linkages.

All changes made to the knowledge base through the GUI are made permanent when the 

knowledge base is saved. The form of the saved files is the file specified above. This is 
another way of saying that the text description file and the GUI network are two 

realisations or views of the same underlying knowledge base.

This covers the use of the point and click graphical user interface to produce hand crafted 
networks. Further details of tools that were used to aid this process can be found in 
sections 4.3,4.4 and 4.5.

4.1.2.3. HCN Decision Module

As has been explained within the Knowledge Architecture chapter, due to the nature of 
the activation passing nodes, the process of sentence evaluation is implemented as a 

distributed algorithm across the network. There is, unlike a conventional expert system, 

no central decision making component. The evaluation process works as follows. The 
words that constitute the sentence to be evaluated are passed to the knowledge base. 
Those primitive surface nodes that most closely match the individual nodes Eire activated. 

(Close matching in this sense is determined as those node who have an evidence list 
member that exactly matches the input string, see Section 3.1.1 for further details.) The 
contextual disambiguation that is a property of the interactive activation and 
computation model will lead to the appropriate deep nodes being activated. Deep nodes 

are combined through node linkage to trigger a full question node. Activation of a 
question nodes indicates that the presented question matches.

To simulate the sequential nature of the input sentences, input nodes were activated at 
consecutive time slots, where a single time slot was equivalent to the time that it should 

take an activation to pass along a link from its child to its parent node.

The implementation of the activation passing between nodes went through two phases of 
development. As is typical with such interconnected node based systems there can be a 
combinatorial explosion, which leads to an extremely slow simulation of the activation 
passing process on serial computers. To counter this an initial highly optimised algorithm 
was used, which by producing temporary data structures at each node, could dynamically
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reduce the number of links and states that need to be considered by making certain 

assumptions about the binary nature of the activation, and the directional nature of the 
linkages that passed only upwards through a bottom heavy hierarchy. In essence it was a 
serial algorithm that was aware of the topology of the network when passing activation 

from one node to another.

This optimised algorithm was very fast and efficient, two qualities tha t proved essential 

on the initial incarnation of the system as it was running on relatively poor hardware. 

However, later incarnations ran on much faster hardware and these considerations 
proved far less important. Further, the assumptions upon which the optimised algorithm 
depended upon, broke down when considering the algorithmically produced network. 

Specifically, the upward-directional nature of the linkages and even the bottom heaviness 
of the hierarchy could not be depended upon. For these instances a second algorithm was 

used. This was a far simpler algorithm, distributed in nature, which made no 
assumptions about the topology of the network. Consequently, the algorithm was slower, 

but was both simpler to implement and allowed far greater flexibility in the type one 

nodes that could be used and the topology of network that was permissible.

4.1.2.4. AGN creation -  the application  o f  the learning algorithm s

The composition and clustering algorithms have been discussed (Section 3.2). The 

creation of a particular algorithmically produced network simply involves (a) the 

configuration of the algorithm and (b) feeding the algorithm with the student response 
data. An activation passing network is produced which is similar to the HCNs in that it is 
made from the same architectural constituent parts, but the typical topology is entirely 
different. The process is implemented as a simple function which is fed with a set of 

student answers and produces a composite object which functions as an activation 
passing network. The produced network is an instantiated runtime object model, but may 
be persisted using standard streaming operators.

4.1.2.5. AGN Decision process

The AGNs produced from the learning algorithms, as has already been mentioned, cannot 
be used as a sentence judgment procedure. This is because unlike the HCNs, they do not 
have the single rooted tree-like topology where a root single node represents a specific 

answer’s tru th  status. Such a structure would be impossible for the stipulated algorithms 
to produce, as they are essentially unsupervised processes. Consequently a different 
sentence judgement process was needed. As will be discussed in depth in Chapter 5, the
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technique of Latent Semantic Analysis was used to perform this sentence judgement 

function.

In order that the two decision procedures (HCN and AGN) would appear the same to the 

outside world, and specifically to the statistical analysis module -  so that they may be 
compared -  the object-orientated technique was used of separating interface from 

implementation. Specifically a simple “Marker” interface is defined which not only do the 

HCN and AGN decision processes implement, but also the module that encapsulates the 

human markers decision of a sentences truth state.

4.1.2.6. S ta tis tica l Analysis Module

A whole battery of tests are developed in Chapter 5 for the analysis and comparison of 

the various decision modules. A standard analysis engine was implemented into which 

various statistical tests could be plugged as separate components. This engine facilitated 
the uniform reporting of the results to file or GUI as appropriate.

H  a l l h d l

Current Question—  
Human AMS

Summary----------

(* Question C  All Run
• ; '

Analysis:

I Mark Answer Sim p le

Print...

U
r  Control - ______________

r  * | r---  * |
Question 1 —  Answer Vi _u  « -ZJ

SVDTest I 

NetCreate ( 

AMS test IWFfk;

,

m
m m  m

Figure 4-4 GUI Interface used for Controlling Statistical Analysis
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Figure 4-5 Integrated GUI

4.1.3. Entities

4.1.3.1. Tutors

Tutors are assumed to be experienced computing science lecturers with extensive 

knowledge of the problem domain. Typically there is only one tutor associated with the 
generation of a particular knowledge base.

4.1.3.2. Students

Little previous experience of computers was assumed. Each of the students was taken 
from the second term of the first year, and each has completed an introductory course on 
computers.

4.2. Implementation

The entire system was written in C++, within three distinct modules:

1. Core engine
2. GUI module
3. Text interface module
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The core engine dealt with such issues as storing, serialisation and implementation of 
node dynamics which give rise to the decision process. The GUI module is a windows 

system which both presents the information and allows the user to trigger activities. The 
advantage of such an implementation was that the isolation of the two functions allowed 

a distinct DOS based GUI interface to be implemented which hooked into the same 
essential run-time activities that the GUI module did. This facilitated rapid 
development/testing for run-time components as well as giving users the flexibility to run 
the program on different operating systems.

The initial target platform is a PC compatible computer with 386 33Mhz or above, 4Mb 

memory and 10Mb hard disk space. (Note this was the original PC upon which the 
network was developed). The later systems upon which the algorithms were run were 
dual Pentium 500 Xeon processors, 256Mb of memory and utilising up to 100 Mb of hard 

disk.

The initial development environment was Windows 3.1 using a Borland compiler and the 

OWL (Object Windows Library) for the graphical user interface, and custom container 

libraries were used for implementation of the networks.

Approximately half way through the entire system was re-implemented. This time the 
target operating system was Windows NT Workstation 4.0. The development 
environment progressed through MSDev 4.0/5.0/6.0. Graphics components were 
implemented using a combination of raw Windows SDK, MFC (Microsoft Foundation 
Classes) and ATL (Active Template Library). COM (Component Object Model) and 

similar were used throughout to manage the architectural complexity. STL (Standard 

Template Library) was used for the container classes with which the networks and 
algorithms were implemented. Perl was used for a variety of pre-processing tasks.

4.3. Integrated Roget’s Thesaurus

To aid the creation of the knowledge base a custom interface onto a version of Roget's 
Thesaurus (Roget (1987)) has been integrated into the system. The various methods in 
which the thesaurus was employed in the creation of the knowledge base will be 

described below. Here a few paragraphs will be spent discussing the logical structure of 
the thesaurus and the interface that was implemented to aid navigation through this 
valuable data resource.
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4.3.1. S tructure

Roget’s thesaurus is arranged into a three deep hierarchy, going top down Section, Class 

and Header.

1. Section: there are six of these. In order: abstract relations, space, matter,
intellect, volition and emotion. These are the primary categories into which each 

word is classified.
2. Class: these are finer subdivisions of Headers. There are between 3 and 8 of these

per header. These, for example, divide the header abstract relations into order, 

number, time etc.
3. Header: there are just under 1000 of these in the entire book (exactly how many

depends on the particular revision). They consist of lists of words tha t fall under 
this category. In fact each header is further subdivided into the following sections.
a) Part of speech: the list of words under each header is first classified into 

the various parts of speech. Roget used five distinct parts of speech: 

nouns, verbs, adjectives, adverbs and interjections.
b) Paragraph: within each part of speech the words are grouped into 

paragraphs each of which has a keyword at its head. This keyword is 
supposed to give a key to the types of words that are to follow it, not to 

necessarily act as a synonymous grouping.

c) Semicolon groups: finally although all words are separated with 
commas, semicolons are used to group together subsets of words that have 

similar context or level of usage.

Apart from this structure the whole thesaurus is heavily cross indexed. The form of this 
cross indexing is that if any word occurring in a paragraph is itself a keyword of another 
paragraph, it is italicised and the number of the header to which it is linked is prepended.
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4.3.2. N avigation
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Figure 4-6 Custom GUI for Thesaurus

A simple user interface has been provided for to the tutor to navigate around the 

thesaurus and to extract the appropriate information. It consists of a simple dialog box 

containing multilevel listboxes. The first two levels display the current section and class 
respectively. Navigation is possible by clicking on the contents of these boxes. A click on a 
particular section displays the associated classes. A click on a particular class displays the 

list of associated headers in a third listbox. Two further listboxes are used to display the 

contents of a particular header once selected. Two are used here because if cross indexes 
are used to navigate, rather than the structured hierarchy, then both sides of the linkage 
are visible at the same time giving the user a visual representation of the context in 
which it was found.

Word lookup is also possible through the use of an edit box. Characteristically a word look 

up will match many distinct headers (again the problem of ambiguity). The various uses 

will be displayed within the header list box allowing the user to explore the possible 
variations.

Information may be extracted from the thesaurus in one of two ways. Individual words 
may be extracted as evidence nodes, or whole synonymous groups may be transplanted
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directly into the knowledge base. This is performed by the simple drag and drop of the 

appropriate elements.

4.4. Knowledge Base Creation

The physical tools used to develop and modify the knowledge base have been described 

above. Below that the actual procedure for generating the knowledge base shall be 

described. The process to be described is a bottom up process where the low level items 

are identified first, and the macroscopic structure is built up from this.

The process of knowledge base creation can be divided into four stages:

Lexical acquisition: at this stage the core evidence nodes are identified, that is the 

actual strings and string variations that occur frequently within the data.
Synonym grouping: this is where clusters are built up from the actual string forms. 
These clusters are intended to represent commonality of meaning. This is a somewhat 

looser criteria than actual synonymity and can be used to map the implied contextual 
meaning of lexical items rather than the orthodox meaning.

Fact definition: here the clustered groups are built up into compound nodes that are 
intended to model facts.
Iterative refinement: this is an optional stage that requires some measure of the 

performance of an operating network (such as a pre-marked set of answers). With this 
performance metric the network can be iteratively refined.

Each of these stages can be further broken down.

4.5. Lexical acquisition

4.5.1. Surface inspection

The first and simplest method is a simple surface inspection of the data. By sight the 
most frequently occurring words can be identified and turned into nodes. To make this 

process easier there is, built into the interface, an option by which a right mouse click on 
a selected word will immediately instantiate a new evidence node within the currently 
open knowledge base. A further utility is available which simply summarises word counts 
across answers for a specific question. In the cases where data has been pre-marked by a 
human these word counts can be clustered in terms of words occurring in correct answers 
and words occurring in incorrect answers. Similarly these words may be turned into 
evidence nodes by simply dragging them into an open knowledge base.
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4.5.1.1. Lem m atisation

The results of the surface inspection can be greatly enhanced if the individual words are 
lemmatised before hand. This lemmatisation process was crudely implemented in a 

simple C program that performed elementary string replacements. Evidence nodes 

instantiated from the lemmatised version automatically have their prime anticipated 

morphological variants added to their evidence list.

4.5.2. Synonym grouping

4.5.2.1. H and pick ing

Again the first method is simple manual inspection. Evidence nodes tha t are to be 
clustered are multiply selected then on a right click menu selection the entire set are 

attached to a newly instantiated parent synonym node. The criteria for clustering is the 

tutors own intuition as to what nodes share meaning.

4.5.2.2. Thesaurus inspection

The integrated Roget’s thesaurus described above can be used to partially automate this 

process of synonym grouping. A particular word may be selected within the data or typed 
directly into the thesaurus’ input editbox. This will essentially perform a look-up into the 

thesaurus index, producing the list of possible headers. Appropriate headers can then be 
selected by the user and relevant synonymous groups be inserted into the knowledge base 
in the manner described above. Note user intervention is required here to make the 
selection of appropriate headers, this is because the potential ambiguity here is difficult 

to resolve automatically.

4.5.2.3. Thesaurus head count

The thesaurus head count procedure is intended, in part, to overcome the problem of 
ambiguity which makes the automated integration of the thesaurus problematic. Simply, 
it is a process by which every word occurring in answer to a question is noted and looked 

up within the thesaurus index. Typically such a look up will return multiple hits 
corresponding to the multiple possible senses of a word. The hope is that most hits will 
have senses that most closely correspond to the senses used and implied by the answers 

to the questions.

The reasoning behind this process is that many different words will be used to express 
the same general meaning. Each word will, more than likely, have many possible 

meanings. However, each of these words is unlikely to share the same sense distribution. 
The senses that are most frequently shared, that is those with the greatest overlap, are 
likely to be the best choices.
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4.5.3. Fact definition

The definition of the fact that is to correspond to the correct answer template, typically 

occurs after the appropriate synonymous groups have been identified. In the simplest and 
most frequent cases this corresponds to the specification of a conjunction of synonymous 

groups. More complex issues are addressed on an ad hoc basis using a variety of the 
techniques discussed in the knowledge base section.

4.5.4. Iterative refinement

If there exists some mechanism by which performance can be evaluated, the knowledge 
base may be iteratively refined. Such performance measures will typically require that all 

or part of the answer data be pre hand-marked. Correlation measures that are 

particularly appropriate to the automated assessment task will be discussed in Chapter 5.

In order to actually refine the knowledge base, over and above the generalised correlative 

measure that indicate the performance across the data as a whole, it is extremely useful 

to implement exception lists. These are simply lists of the answers tha t are actually 
contributing adversely to the distinct error measures. In practice this works as follows.

1. A first pass at creating an adequate knowledge base is made.
2. The knowledge base is applied to the data set.

3. Correlative measures and exception lists are generated.

4. By looking at only the exception lists whilst refining the knowledge base, the 
present deficiencies are addressed directly.

This process addresses the issue of knowledge base creation in an efficient divide and 
conquer manner.

4.6. Conclusions

The description above documents an integrated system for both the generation and 

application of knowledge bases to collated student data. In the design and 

implementation great emphasis has been placed upon making the knowledge bases easy 
to create, and incorporating useful feedback on the performance of particular knowledge 
bases.

With this in mind the graphical user interface for the creation of knowledge bases has 
proved particularly successful. It has reduced the potentially horrendous problem of 

specifying a knowledge base in some arbitrary and complex formal syntax to a simple 
point and click procedure where the output is readily interpretable.
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The embedded functionality derived from the Roget’s Thesaurus has also proved useful, 

however there are a few caveats. Firstly, automated integration is difficult due to the 

recurring problem of ambiguity. Although not fully automated, the partial solution of the 
thesaurus word head count in conjunction with user intervention for manual ambiguity 
resolution does provide a workable solution. Secondly, and perhaps more importantly, the 
lack of domain specificity within the thesaurus means that the technical lexical 
requirements of the data set are completely unsatisfied by the resource. If further 
knowledge base construction improvements are deemed necessary, this issue of technical 

lexical acquisition and grouping must be a prime area for exploration.
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5. Experim ents
In this chapter metrics of evaluation are established and experiments are devised and 
reported on which directly investigate the validity of the theoretical data structures and 
learning algorithms developed in Chapter 3.

There are four experiments in all. They are divided into the evaluation of knowledge 
architecture and evaluation of learning algorithms.

Evaluation of Knowledge Architecture:

• Experiment 1 -  hand crafted knowledge bases conforming to the novel knowledge 
architecture were produced. These knowledge bases were applied to the task of the 
automated assessment of students’ single sentence responses to questions. Using 
human marked student responses as a control the performance metrics of the system 
were established.

• Experiment 2 -  the knowledge bases produced from the previous experiment were 
applied to new unseen data in order to establish the system’s capacity to generalise to 
novel data. The performance metrics of this system were contrasted with those from 
Experiment 1.

Evaluation of Learning:

• Experiment 3 -  uses the technique of Latent Semantic Analysis (LSA) in order to 
establish the control performance metrics necessary in order to evaluate the 
usefulness of the information provided by the learning algorithms. Incidentally, the 
performance metrics are of interest in their own right and can be compared to those 
from the previous two experiments.

• Experiment 4 — applies the learning algorithms devised in Chapter 3 Section 3.1.1 to 
the input data. Grown networks are used to “perceptually augment” the input data. 
This “perceptually augmented” data is fed to the same LSA algorithm as Experiment 
3 and the performance metrics are compared.

For all experiments considerable time and effort is expended devising not only the 
experimental design but also the actual metrics that provide the empirical evidence for the 
relevant theory.
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5.1. Evaluation of Knowledge Architecture

5.1.1. Introduction

The hypothesis underpinning the proposed evaluation experiments is that an artificial 
mechanism could diagnose simple sentences as being correct or incorrect and if these 
diagnoses correlate well with the independent evaluation of a human marker, the artificial 
mechanism has a good model of the sense of the sentence. This is very much within the 
Turing (1964) school of AI evaluation, using a functional evaluation of competence.

All sentences are given in response to a single simple question. A binary response is being 
forced upon the decision procedure which determines the truth status of that sentence, 
something that is enforced upon every teacher when they have to mark exam scripts. As 
many students sit the exam many possible responses or utterances are made to a single 
question. A tutor’s independent evaluation of the truth status of the utterances is seen as a 
good model of the correctness of the responses (if in fact such an objective evaluation is 
possible). Note, when we talk of the truth status of the utterance, we do not mean is this 
statement is true, but is a statement that correctly answers the question being asked. We 
therefore have a full statistically significant set of empirical data and an ideal control against 
which the system may be evaluated.

5.1.2. Metrics o f Evaluation

The metrics under which the performance of the knowledge schema may be evaluated can be 
divided into two broad types: glass box metrics and black box metrics. Black box metrics are 
implementation independent and therefore can be used to compare entirely different systems 
operating under the same application domain. Glass box metrics are implementation 
dependant and are therefore useful for plotting performance variations or identifying 
operational inefficiencies within a particular implementation only. These will be considered 
in turn.

5.1.2.1. Black Box Metrics

5.1.2.1.1. Empirical Measures of Success

Taking heed of Flanagan’s work (1994), specifically, and in general the work on evaluating 
NLP systems discussed in Chapter 2, in order to evaluate a knowledge architecture operating



under this domain, implementation independent statistics are necessary that evaluate and 
characterise the performance of any particular system.

Several distinct measures of success can be employed. Apart from a general measure of 
‘goodness’: correlation, four independent error metrics can be employed to best characterise 
the behaviour of the system. All these metrics are Bayesian statistics. Bayesian statistics are 
necessary to adjust for the correct /incorrect ratio of answers in any particular sample, and so 
allow aggregation of the metrics over the many questions within a particular sample. As 
implementation independent evaluations they concur with the Sparck-Jones & Galliers 
(1993) definition of a black box evaluation mechanism.

In order to define the respective error metrics, a mathematical language is necessary in 
which to phrase the performance of the various aspects of the system.

Each sentence Z+ is an finite ordered set of strings formed from a population of strings 2. The 
set of all possible sentences U  is the superset of all possible 2+‘s. A  particular sample of 
responses to a specific question Ai is a subset of U  and comprises individual sentences, thus:

Ai = {<jh, <7 2id  3(, <741, (75/,... oni}

w h e r e

A i d U

and so

V<7C U

A k n o w l e d g e  b a s e  K c o m p r i s e s  t h e  k n o w l e d g e  n e c e s s a r y  t o  m a r k  t h e  q u e s t i o n s  Q 
= { q i ,q 2 ,q 3 , . . . ,q m } ,  a n d  s o  i s  d e f i n e d :

K  = {ki,k2kxk4,ks,...km}
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However it is worth pointing out that in the above implementation, due to the node sharing 
nature of the hierarchical network , ki is a non discrete subset of K. In other words ki to km 
are non-orthogonal.

There are thus m questions and n students in any run of a system, with mxn sentences to 
evaluate.

Functions which evaluate a sentence’s truth value do so under a particular knowledge set ki, 
and do so within the Boolean set {0,1}. Thus an evaluative function e can be characterised:

e\A,K^{ 0,1}

There are three such evaluative functions of relevance here: t , t and s. t is the actual truth 
state of a sentence under a particular question i.e. if the first student’s answer to question 1 

was correct then, ?(<7i,fci) = l and if incorrect t((Ji,k\) = 0 . For obvious practical and

philosophical reasons the state of t is inaccessible. Instead the estimator function t is used, 
this is in fact the tutor’s assessment of the truth-value, and the fact that it is represented 
mathematically with an estimator function reflects the real world issue of marker variability 
mentioned above. The s function models the automated assessment system’s evaluation, so 

s((7i, £i) = 1 if the automated assessment system judges the first student’s response to 

question 1 correct, etc.

The following truth table characterises the performance of both systems (automated and 
human) for a particular question.

Answer to Question ql Tutor t Automated s.

CFi l 0 0
<712 1 0
<713 1 1
<714 1 1
<715 0 1
. . . . . . . . .

<7l/« 1 1

Figure 5-1 Sample Tutor-Automated Performance Table
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Now let us consider some specific measures of success:

5.1.2.1.1.1. Correlation

This is a simple statistical measure of similarity, but constitutes a good simple single 
measure of the performance of the system. This measure produces a figure between -1 and 1, 
where 1 is perfectly correlated and -1 is perfectly anti-correlated.

correl —
Jn^.t(i)2

5.1.2.1.1.2. False Positive

The false positive error is a measure of the chance that a system’s assessment that a question 
is correct is itself incorrect. This is in fact the Bayesian probability that a question is false 
given that the system has evaluated it true.

FP(<Ji) = p(t(C7i) = 0\s((Ti) = 1)

This metric may be derived empirically from a data set of answers Ai.

p(t(o i) = O|.s(0i) = 1) =
u ■

creAi

a , t(cr, k) = 0 and s(cr, k) = ll 
0 , otherwise j

u ■
creAi

a ,  s(cr,&) = ll 
0 ,  otherwise J

5.1.2.1.1.3. False Negative

The false negative error is a measure of the chance that a system’s assessment that a 
question is incorrect is itself incorrect. This is in fact the Bayesian probability that a question 
is correct given that the system has evaluated it false.
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FN(cn) = p(t(Oi) = 1|j(oi) = 0)

This metric may be derived empirically from a data set of answers Ai.

p(t(o t)  = 1|j(o0 = 0) =
u {creAi

<7, t(cr,k) — 1 and s(cr,k) = 0l 
0 ,  otherwise J

U ■
aeA i

cr, =
0 ,  otherwise J

5.1.2.1.1.4. Correct is Correct Estim ator

The correct estimator error is a measure of the chance that the system will evaluate a 
question correct if it is indeed correct. This is in fact the Bayesian probability that the system 
evaluates a question true given that it is true.

CE(cn) = pO(oi) = l|f(o 0  = 1)

This metric may be derived empirically from a data set of answers Ai.

-  l\t((7i) = 1)
u {creAi

cr, t(cr,k) = la n d s(cr ,k ) = l\ 
0 , otherwise J

u ■
<jeAi

cr, F(cr,fc) = ll 
0 , otherwise J

5.1.2.1.1.5. Incorrect is Incorrect Estim ator

The correct estimator error is a measure of the chance that the systems will evaluate a 
question incorrect if it is indeed incorrect. This is in fact the Bayesian probability that the 
system evaluates a question false given that it is false.

IE{cri) = p(s(Oi) = 0|F(o;) = 0)

This metric may be derived empirically from a data set of answers Ai.

3 
i $
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p(s(<7i) = 0|F(cn) = 0) =
u ■

creAi

cr, t ( cr , k )~0ands (cr , k )  = 0) 
0 ,  otherwise j

u j
creAi

cr, t ( a , k )  = Ol 
0 ,  otherwise J

5.1.2.1.2. Example

The following is some simple sample data upon which the calculations will be performed in 
order to demonstrate the various statistical measures described above.

5.1.2.1.2.1. D ata

Answer to Question q l Tutor t Automated s.

(Til 1 0
cr 12 1 0
(713 1 0
CTi4 0 1
<715 1 1
(716 0
(717 0 1
(718 0 1
(719 1
criio 1 1
CTlll 1 1
<7112 1 1
(7113 0 1
(7114 0 0
(7115 1 0

Figure 5-2 Sample Question Results



5.1.2.1.2.2. Error M easures

In order to illuminate the calculation process, here are the defined error measure which can 
be derived from the above test data.

Error Measure Value

i(cr,k) = 0 6

!i3 9

s(cr,k) = 0 7
s(a,k) -1 8

t(cr,k) = 1 and s(<J,k) = 0 5

t(cr,k) = 0 and s(cr,k) = 1 4

t (cr, k) = 1 and s((T,k) -  1 4

t (cr,k) = 0 and s(cr,k) = 0 2

Correlation -0.30

FP() 4+8=0.50

FN() 5+7=0.71

CEO 4+9=0.44

IEQ 2+6=0.67

Figure 5-3 Error Measures Derived from Sample

The five black box metrics to be used have already been outlined. That discussion gave a 
broad definition as well as a mathematical formulation, which could be used to derive the 
values from a given data set. A brief ‘practical’ interpretation is given now, of each of these 
metrics, to show how they would be used and what the implications of each of the values 
have.

The correlation metric gives a general measure of similarity of the performance of the two 
systems. Both correct and incorrect responses are taken into account. A value of 1 implies 
perfect correlation i.e. the two systems are operating identically. A value of 0 implies no 
correlation, as would be produced by two independent systems operating entirely randomly.



A value of -1 implies one system is operating as the inverse of another. The automated 
system would have to disagree with every human response to obtain this score.

The false negative and false positive metrics take the point of view of the user who is looking 
at the output of the automated assessment system (who has no knowledge of the true truth 
values of the inputs) and who wishes to assign confidence levels to the output the system is 
producing. A false negative value of 0 means if the system deems a sentence incorrect the 
user can have 100% confidence in its assessment. A false negative value of 1 means if the 
system deems a sentence incorrect, it can be assumed the system is in error and the sentence 
is truly correct. Conversely a false positive value of 0 means if the system deems a sentence 
correct the user can have 100% confidence in its assessment. A false positive value of 1 
means if the system deems a sentence correct, it can be assumed the system is in error and 
the sentence is truly incorrect.

The correct/incorrect estimator metrics take the point of view of a user passing a data set in 
to the system (who has full knowledge of the true truth value of the input statements) and 
who wishes for some measure of how the system will respond to them. A correct estimator 
value of 1 means a correct statement fed to the system will be deemed correct. A correct 
estimator value of 0 means a correct statement fed to the system will be deemed incorrect. 
Conversely an incorrect estimator value of 1 means an incorrect statement fed to the system 
will be deemed incorrect. An incorrect estimator value of 0 means an incorrect statement fed 
to the system will be deemed correct.

A further black box metric, the absolute mark, was also recorded to give some measure of the 
distribution of correct and incorrect responses, which relates in turn to the difficulty of the 
questions. This aspect is not reflected in any of the above metrics, intentionally in order to 
allow potential comparison between distinct data sets; a variable that would otherwise 
systematically bias a set of results upon the distribution of responses within a specific data 
set.

5.1.2.2. Glass Box Metrics

The glass box metrics concern the implementation of the system and as such relate to many 
of the facets of the system discussed in Chapter 3. Note as the glass box metrics relate to the 
knowledge base itself, and as will be explained the same knowledge base was used on both 
experiments, there is therefore only one set of glass box metrics.
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Net complexity is a measure of the sophistication of the knowledge base necessary to capture 
the form and variability of potential correct statements. The number of nodes necessary was 
seen as a good reflection of this property. This measure could be further enhanced by 
examining the number of links; the number of links to number of nodes ratio and the relative 
distribution of compound, abstract and evidence nodes. These however were not used in this 
case.

Knowledge reuse is a measure of the extent to which components of the knowledge base for a 
particular question are also used in other questions. Given the hierarchical tree type 
structure of the representation of a question, where the trunk of the tree corresponds to a 
single question, knowledge sharing can be envisaged as a tangling of the branches. 
Experimentally this is measured as the proportion of nodes for a particular question which 
are also part of the knowledge structure for other questions.

The difficulty that the tutor has in producing a good model of the semantics of a question is 
crudely reflected by time taken to create the model. Note this is only a very approximate 
measure as not all questions perform to the same standard. The acceptable standard is 
determined by the tutor on creation of the knowledge base and this itself can only be 
assessed during creation if the data set has been pre-marked. It does however give a general 
indicator of the effort required by the user which can be assessed in context, once measures 
of the performance of the model are available.

The final glass box metric under which the system will be assessed is the computational time 
taken to mark a single question across the entire data set. In practice this is taken as the 
average time across both experiments and their respective data sets. As an absolute figure 
the value is of little use as it is entirely dependant upon the processor upon which the system 
was run. (In this case the was an Intel 468 66MHz DX2 processor). However as a relative 
term it gives a sophisticated measure of the complexity of the network which takes into 
account the utilisation of the various components of the network which is in turn dependant 
upon the statistical distribution of the sentence types. To clarify this point: sentence 
resolution within this system is functionally a parallel process. However, this is being 
emulated here by a serial processor. Processing time will therefore correlate strongly with 
the complexity of the network; something that would not necessarily be true if a parallel 
process was implemented. Further, the tree modelling a particular question may comprise 
several branches some considerably more complex than others. In practice perhaps only one 
response utilises one of these more expensive branches. A processing time measure would
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reflect this under-utilisation, which is apparent through the disproportional statistical 
distribution of node activation across sentences, an aspect that simpler measures of net 
complexity (such as node count) miss.

5.1.3. Experiment 1 - Retrospective Experiment

5.1.3.1. Design

The first experiment is to investigate the expressiveness and sophistication of the knowledge 
representation formalism; simply is it possible to capture the form and variety of correct 
responses to a question, and is the proposed implementation of the decision procedure 
capable of making the distinction between correct and incorrect statements? All questions are 
pre-marked by the tutor, and these marks can be correlated with system performance 
providing constant feedback to the user. A procedure of iterative knowledge base 
development is proposed, which utilises the feedback provided to direct the development of 
the knowledge base. In the analysis of the results a qualitative analysis of the idiosyncratic 
complexity of the individual questions shall be refrained from. Instead, attention shall be 
focused on the objective quantitative analysis of performance of the overall system under the 
various applied metrics.

5.1.3.2. Procedure

1. The tutor set 20 questions of a general programming nature which in the tutor’s 
opinion could be answered satisfactorily with a single sentence reply.

2. The questions were presented over the network to the students and the responses 
were concatenated into a central database file.

3. Replies were hand marked by the tutor and the marks recorded.
4. Using the tutor’s own intuition a knowledge base is constructed which attempts to 

capture the sense and the variety of language which was used to express a valid 
reply. At this stage the interfaced Roget's thesaurus can be used to help anticipate 
the variety of language that could be used.

5. Each student reply is presented to the knowledge base one at a time and the 
automatic marker's decision is recorded.

6. For each student reply, the tutor’s mark is compared with the knowledge base 
decision. The two are correlated with each other to give a measure of similarity, and 
exceptions recorded.
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7. The knowledge base may then be edited by the tutor in order to better capture the 
exceptions and so increase the correlation rates. Return to step 5 until acceptable 
model of the human marker’s performance achieved.

For specific details of the process used to collect of the student responses see Section 4.1.2.1. 
For specific details of the process the tutor used to define the knowledge base see Sections 
4.1.2.2 and 4.4.
For examples of the Questions, Answers and Sample knowledge bases see Appendices A-C.

5.1.3.3. Results

5.1.3.3.1. Absolute Mark

Question Number Tutor Mark Automated. Mark

qi 0.75 0.63

q2 0.79 0.56

q3 0.97 0.97

q4 0.95 0.92

q5 0.52 0.33

q6 0.97 0.89

q7 0.89 0.86

q8 0.84 0.63

q9 0.54 0.7
qlO 0.05 0.05
q ll 0.86 0.51
ql2 0.54 0.43
ql3 0.43 0.38
ql4 0.37 0.41
ql5 0.40 0
ql6 0.24 0.4
ql7 0.48 0.67
ql8 0.46 0.43
ql9 0.41 0.38
q20 0.02 0.02

Average 0.55 0.48

Figure 5-4 Averages Experiment 1
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The above table shows that the set questions were of medium difficulty as evidenced by the 
fact that the average score was around the 55% mark. The automated marker consistently 
marked fewer responses correct than the human marker, which would hint towards the 
conclusion that the main cause of error is omission, in other words the inability of the 
network to fully generalise. However, more detailed analysis is necessary before this may be 
ascertained for definite. There seems to be a wide distribution of question difficulties with 
97% of students getting the easiest question correct and only 2% of students getting the most 
difficult question correct. On average 55% of students got each question correct.

5.1.3.3.2. Correlation

Question Number Correlation %

ql 95

q2 80

q3 98

q4 76

q5 79

q6 82

q7 72

q8 90

q9 82

qlO 84

q ll 73

ql2 93
ql3 96

ql4 84

ql5 82

ql6 93

ql7 88

ql8 73
ql9 91
q20 66

Average 83.85

Figure 5-5 Correlation Measure Experiment 1

149



Using this technique a good model (average correlation 85%) could be produced for each 
question in less than 5 minutes. It is the authors subjective opinion that with slightly longer 
construction time correlation rates approaching 100% could be achieved in almost all cases. 
In order to approach these higher correlation rates, many of the fi'inge answers need to be 
incorporated into the knowledge base. Interestingly many of the problems in incorporating 
the last few answers were attributable to spurious decisions on the part of the marker rather 
than genuine difficulties in extending the knowledge base.

The knowledge base captured over 72% of all questions (the minimum), with performance 
topping out at the 98% level. Note that there is no noticeable correlation between questions 
that are objectively hard (i.e. few students get the correct answer) and questions that the 
knowledge base has difficulty modelling (i.e. question getting low correlation rates). This 
would seem to imply that it is not necessarily difficult to model difficult questions.
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5.1.3,3.3. En'or Analysis

Question Number False
Positive

False Negative Correct Estimator Incorrect
Estimator

ql 0.00 0.15 0.89 1.00

q2 0.00 0.22 0.79 1.00

q3 0.00 0.09 0.92 1.00

q4 0.00 0.02 0.69 1.00

q5 0.00 0.07 0.75 1.00

q6 0.06 0.12 0.98 0.89

q7 0.00 0.30 0.79 1.00

q8 0.00 0.04 0.67 1.00

q9 0.00 0.14 0.94 1.00

qlO 0.00 0.16 0.33 1.00

q l l 0.00 0.21 0.93 1.00

ql2 0.00 0.08 0.88 1.00

ql3 0.00 0.06 0.78 1.00

ql4 0.00 0.04 0.71 1.00

ql5 0.00 0.03 0.77 1.00
ql6 0.00 0.09 0.90 1.00

ql7 0.00 0.10 0.85 1.00

ql8 0.00 0.11 0.86 1.00

ql9 0.00 0.16 0.75 1.00

q20 0.33 0.00 1.00 0.98

Average 0.02 0.11 0.81 0.99

Figure 5-6 Error Analysis Experiment 1

On a fine grained analysis of the error types it is apparent that there is an extremely low 
level of false positive errors. This means that if the system deems a sentence correct it almost 
certainly is correct. That is, there are few instances where the network incorrectly attributes 
‘correct’ to an incorrect answer, in fact just two questions (question 6 and question 20). The
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system’s conclusion that a particular question is incorrect is to be less trusted; a false 
negative score of 0.12, with a relatively diverse distribution of scores over the questions.

The positive estimator metric gives an error around the 75% mark showing that the system 
concurs with about three quarters of correct answers. The incorrect estimator rate is very 
high 99%, again reflecting the fact that the errors of over generalisation are rare.

To illustrate the distinction between the two families of error metrics, False Positive and 
Incorrect Estimator, for example, it is worth paying particular attention to the results of 
question 20. For question 20 only two students supplied the correct answer. The automated 
system identified these two, but also falsely identified one other. Both FP and IE metrics 
reflect the notion of over generalisation, for FP a high value indicates over-generalisation 
and for IE a low value indicates over generalisation. The metrics however report this error 
from different perspectives: the estimator metric from the students’ perspective, the false 
estimators from the system’s perspective. From the system’s perspective three false reports 
were produced, but a significant number of these were incorrect. The false negative metric 
therefore records a high error, 33%. However, from the students’ perspective 62 students got 
the question wrong, and 61 of these students got the result they deserved, that is 
approximately 98%.

Note for this unusual question (20) there was not a single instance of under generalisation 
the FN and CE metrics therefore both returned their extreme values: 0% and 100% 
respectively.

5.1.3.4. Conclusion

Experiment 1 was essentially a test of the expressive sophistication of the knowledge 
architecture. That is, was it possible to construct a structure which could discriminate 
between right and wrong answers? The above results seem to confirm that this is possible, to 
a reasonably high degree of accuracy considering the limited construction times. However, an 
obvious danger when constructing these knowledge bases is that we are arbitrarily 
discriminating between right and wrong answers, whereas we hope we are synthesising a 
knowledge-base which truly embodies generalised elements of the problem domain. Further, 
this experiment does not prove the system is useable as in normal scenarios we would not 
have the answers pre-hand marked.
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The most interesting result is that the system proves extremely reliable in its evaluation that 
a particular question is correct, less so that it is incorrect. This has obvious implications for 
any real-world application of the software. There is an implicit safety mechanism in the 
application of a system with low false/positive but high false/negative errors if we can assume 
that students will partially verify the conclusions of the system. That is, if students note that 
a question they believe correct has been marked wrong, it is in their interests to chase up the 
matter. A hypothetical system that has high false-positive but low false-negative errors is 
less secure, in as much as, it is not in the students interest to chase up a question they 
believe wrong but has been marked correct. As an interesting psychological aside, it has been 
noted at The Nottingham Trent University, where automated assessment for areas other 
than NLP has been in use for some time, that students are (probably quite sensibly) far more 
diligent in their validation of marking if led to believe that the script has been automatically 
marked.

5.1.4. Experiment 2 - B lind Experiment

5.1.4.1. Design

There is no obvious method for determining the arbitrariness of a constructed knowledge 
base at face value. However to get some measure of the generality of the knowledge base we 
could apply constructed bases against new unseen data and compare correlation rates. This 
is what has been done here. Knowledge bases constructed in Experiment 1 were applied to 
new data (actually the responses of the following year’s students, again see Section 4.1.2.1). 
This data set was then hand marked and coverage rates compared.
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5.1.4.2. Results

5.1.4.2.1. Average Mark

Question Number Tutor Mark Automated Mark

ql 0.80 0.43

q2 0.63 0.33

q3 0.98 0.69

q4 0.96 0.98

q5 0.41 0.18

q6 0.71 0.63

q7 0.94 0.71

q8 0.76 0.61

q9 0.51 0.20

qlO 0.12 0.14

q l l 0.90 0.63

ql2 0.39 0.31
ql3 0.39 0.22
ql4 0.37 0.25

ql5 0.33 0.27
ql6 0.26 0.18
ql7 0.31 0.37

ql8 0.45 0.29
ql9 0.52 0.35
q20 0.06 0.02

Average 0.51 0.37

Figure 5-7 Averages Experiment 2

The general distribution of correct and incorrect answers share many features of the previous 
experiment. Note, however, that although the average mark the students obtained is 
marginally greater for this set of students, the automated marker gave a lower score. This 
would seem to indicate that the coverage is not as good as the previous data set.
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5.1.4.2.2. CoiTelation

Question Number Correlation %

q i 52

q2 68

q3 72

q4 89

q5 48

q6 74

q7 66

q8 69

q9 41

qlO 52

q ll 73

ql2 68

qlS 54
ql4 63

ql5 82

ql6 46

qi7 82

ql8 71

ql9 59
q20 53

Average 64.1

Figure 5-8 Correlation Measure Experiment 2

When the knowledge base created in the previous phase was applied to a blind set of data an 
average coverage rate of 65% was obtained. It is to be remembered that this is a metric on 
which a random decision procedure would score 0%. Considering the present limitations of 
the system this is considered very encouraging. This data in itself gives no indication of the 
possible source of increased error.
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5.I.4.2.3. Error Analysis

Question Number False
Positive

False Negative Correct Estimator Incorrect
Estimator

ql 0.00 0.25 0.72 1.00

q2 0.00 0.17 0.52 1.00

q3 0.00 0.11 0.82 1.00
q4 0.03 0.28 0.74 0.97

q5 0.00 0.14 0.73 1.00
q6 0.00 0.17 0.26 0.82

q? 0.11 0.12 0.63 1.00

q8 0.00 0.29 0.50 1.00

q9 0.09 0.21 0.52 0.84
qlO 0.06 0.24 0.67 0.97
q l l 0.00 0.53 0.72 1.00
ql2 0.00 0.26 0.69 1.00
ql3 0.00 0.26 0.64 1.00
ql4 0.00 0.18 0.58 1.00

qi5 0.00 0.13 0.63 1.00
ql6 0.00 0.32 0.69 1.00
ql7 0.00 0.29 0.61 1.00
ql8 0.09 0.11 0.60 0.84
ql9 0.16 0.22 0.59 0.70
q20 0.00 0.34 0.71 1.00

Average 0.03 0.23 0.63 0.96

Figure 5-9 Error Analysis Experiment 2

Again, the false positive metric is notable for its extremely low error rate. This implies that 
even though the knowledge base is being applied to new unseen data, over generalisation has 
still not occurred. The false negative error rate has obviously increased, simply about 10%
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more of the questions deemed incorrect are now really correct. Aspects of the knowledge base 
are therefore not generalising to the new data set.

The correct rate has dropped by about 10% in line with the false negative rate. The incorrect -
estimator rate has dropped by only a few percent following the trend implied by the still low
false positive rate. \

5.1.5. Glass Box Metrics - Knowledge Base Construction

Question Number Net Complexity 
(number of 

nodes)

Knowledge 
Reuse 

(% node sharing)

User 
Time 

(mins - 
approx.)

Marking Time 
(seconds)

q l 41 70 8 0.31

q2 29 24 5 0.11

q3 38 68 7 0.22
q4 25 49 2 0.34

q5 12 82 3 0.27

q6 10 94- 6 0.09

q7 44 68 4 0.25

q8 49 29 3 0.35

q9 28 74 8 0.17
qlO 22 30 5 0.19
q l l 19 82 2 0.18
ql2 39 73 3 0.29
ql3 19 86 4 0.32
ql4 26 42 3 0.20
ql5 43 55 5 0.30
q!6 16 75 1 0.14
ql7 26 58 2 0.11
ql8 36 91 8 0.26
ql9 40 69 2 0.29
q20 49 64 3 0.32

Average 30.55 64.15 4.2 0.24

Figure 5-10 Glass Box Metrics
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The networks necessary to mark these scripts are not overly complex, all questions being 
under 50 nodes in size. There is good re-use of resources with on average 64% of a question’s 
nodes composition being shared by other questions. All knowledge bases were created in less 
that 10 minutes with the average being 4.2 minutes. Note this is an arbitrary measure, in a 
sense, as the tutor himself decides when to stop refining the network and so completely 
determines the creation time. The marking processing time is useful as a relative measure 
only, in that it gives a strong indication of the computational complexity of the different 
networks.

5.1.6. Summary

Correlation False
Positive

False
Negative

Correct
Estimator

Incorrect
Estimator

Retrospective 85 0.02 0.11 0.81 0.99

Blind 65 0.03 0.23 0.63 0.96

Figure 5-11 Experiment 1 & 2 Result Summary

A knowledge construct which provides an approx. 85% coverage will typically be about 30 
nodes in size. The time needed to mark is negligible: a single question answered by 64 
students takes approximately 1 second to mark. At this stage the time required to both 
construct and mark a set of student sentences is slightly greater than that required by the 
tutor to do so by hand. However it is anticipated that long term benefits (in terms of man 
hours) would accrue from the re-use of questions over different students. Probably the best 
mode of use would be the random selection of questions from a stable pre-configured bank of 
questions and knowledge bases.

The knowledge constructs generated necessarily embody information for both the KR and 
NLP processes in the one tree-like structure. A distinction, if one is to be made, is one of 
degree rather than absolute. Knowledge pertinent to language processing, to do with the 
status and category of a word, is held low down in the tree structure. Knowledge of a higher 
level which embodies facts etc. is held high up in the tree. As such it is expected that the low
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level nodes will be reusable across questions especially within the same domain. A level of 
cross domain reusability is provided through the thesaurus.

The automatic marker systematically marked fewer answers correct than the tutor. It is also 
noticeable that very rarely does the system mark an incorrect response correct. In a real 
application we can be reasonably certain (in our tests 98%) that a reply marked correct will 
indeed be correct. We can legitimately focus future efforts on capturing those unexpected 
correct replies.

When constructing knowledge bases our major problem is anticipating the variety of 
language which can be used to reply to a question. We have partially overcome that here by 
insisting on two runs of the system. The first on a set of prototype information to help 
generate these anticipations and a second true run. The next logical step in reducing the time 
required to generate the knowledge base and to improve coverage rates is to enhance the use 
of secondary knowledge sources and/or implement learning algorithms.

5.1.6.1. Problems - Sources o f Error

As noted, errors within the systems are apparently of an under generalisation nature. There 
are a number of possible sources of this.

5.1.6.1.1. Spelling Errors

It is the nature of this data, which is produced under stressful exam type conditions with an 
imposed time limit, that noise will be introduced, manifestly in the form of spelling errors. 
Individual evidence nodes within the network only become active if an appropriate evidence 
word is discovered within the input string. Spelling errors mean that many strings that are 
intended to imply the meaning of a particular evidence node simply do not match any of the 
attached evidence words. At present a limited number of expected spelling errors is added to 
the lists to counter this problem, but this is a far from ideal solution.

5.1.6.1.2. Knowledge Base Sophistication

This is a somewhat nebulous point, but basically alludes to the fact that in some cases the 
knowledge base is not sufficiently sophisticated enough to capture all possible manners in 
which a particular answer may be expressed. This may cover such things as: synonym groups 
that are not wide enough in their membership; disambiguation mechanisms that have ill- 
defined contexts; missing idiomatic phrases; or insufficient fact mappings to composite nodes. 
The best way to improve this is to draw in secondary knowledge sources to help both to better
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anticipate the variations of expression (e.g. thesauri) and to help compose the composite 
sense of the answers to be modelled (e.g. domain specific source books and encyclopaedias).

5.1.6.1.3. Syntax

No syntactic component is present within the current system. From the results given above 
the lack of a syntactic component does not appear to be contributing significantly to the 
overall error. This can be reasoned as follows. Syntactic information provides mainly clues 
towards word role within sentence context. The present system takes no notice of syntax 
(hence role), in effect all words are interpreted in all roles. Such a strategy will cause words 
to be interpreted within the wrong role and hence will give rise to incorrect statements being 
interpreted correctly. These are errors of over generalisation, from which, patently, the 
system does not suffer.

The reason role interpretation plays such a little part in the systems error is probably due to 
the strong contextual constraints implied by the question answering paradigm, and the 
semantic constraints of the component items.

*Pascal is a high level language"

Is a sensible combination of the appropriate terms “Pascal” “high-level language”.

“A high level language is Pascal”

Is almost without meaning, and unlikely to be presented by a student in answer to the 
question “What sort of language is Pascal?”

Further, if a student knows the correct terms that are expected within a correct answer, it is 
more than likely he/she will get them in the correct relationship with each other.

It must also be remembered that a full syntactic parse is virtually impossible to perform 
reliably on such data given the inherent noise within the sentences.

5.1.6.1.4. Fuzzification

At present the network uses a Boolean activation passing scheme. In that all questions are to 
be eventually marked either entirely correct or entirely incorrect this is convenient as it

160



leaves no room for ambiguity in the interpretation of the result. However fuzzification could 
be useful in enhancing the robustness of the processing mechanism in at least two ways.

Firstly, by accepting degrees of activation it is possible to model degrees of set membership. 
For synonyms in particular, this introduces a level of flexibility in the definition of synonym 
sets and could be the key to introducing a degree of metaphor into the system.

Secondly, fuzzification is a useful tool for resolving sense ambiguities in the manner outlined 
in the chapter on knowledge architecture. However, due to the limited scope of the semantic 
variation in such domain specific tests, this is not deemed an excessive contributory factor.

5.1.6.1.5. Logic

On the surface, logic interpretation would seem vital towards a functioning system for how 
else will you distinguish “Pascal is a high level language” from “Pascal is not a high level 
language”. Statistically, however the lack of such processing would seem to contribute little 
to the overall error. At some point however it will be necessary to introduce some form of 
logical processing to cope adequately with questions such as: “Define NON-RESIDENT in 
COBOL terms by completing the sentence NON-RESIDENT segments o f COBOL code are...”?” 
in particular (see Chapter 2).

Pure logic processing must obviously presume a fully developed syntactic process, for it is 
impossible to sensibly apply logical operators unless the roles and relationship of the key 
semantic components can be identified. This is clearly impossible.

If a feasible strategy of incorporating logical type operators within the input strings, an 
alternative more robust system must be developed, using token proximity for logical binding 
perhaps.

5.1.6.1.6. Anaphora

Due to the small scope of the answers supplied (usually a single sentence) and the fact that 
the given sentence is constrained heavily by the preceding sentence, the incidence of 
anaphora is very low. In cases where it does appear the constraint and limited scope make it 
easy to resolve.
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5.1.6.2. Quantitative Analysis o f Source o f  Error

In order to identify areas for further development it is imperative that a quantitative 
analysis of the contribution that the various aspects makes towards the overall error is made. 
This will maximise the likelihood that improvements made to this sector of the processing 
will result in a better global performance of the system. This was done as follows:

An error of under generalisation means that a given question node has not been activated. 
All errors that lead to the non-activation of a question node can be classified into one of two 
types. Those where the appropriate evidence nodes have not been activated; either the 
evidence nodes do not exist or the evidence and evidence strings do not match. These are 
errors of evidence. And those where although the correct evidence nodes have been activated, 
there are not enough paths that can lead to the activation of the correct node; these are 
errors of insufficient or inappropriate net complexity.

All of the above sources of error fall into one of these two types. Anaphora and spelling errors 
are errors of evidence; logic, fuzzification, syntax and knowledge generation are errors of net 
complexity.

In order to give more information about the error types a few simple tests are possible.

Firstly we can compare the percentage of evidence node activation within the two data sets. 
This is done as follows:

1. Analyse the tree for each question, by propagating a test signal downwards from the 
question node.

2. Identify all activated evidence nodes for this question, and use this to define the 
evidence set for this question (note these sets are non-exclusive between questions 
due to the knowledge sharing strategy employed).

3. Run all questions from this data set across the network and record the percentage of 
evidence nodes from each questions set that are activated by each answer.

4. Compare average percentage activation across the Blind and Retrospective data sets.

This produces the following results:
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Blind Retrospective

Average evidence set activation 20.3% 15.4%

Figure 5-12 Average Evidence Set Activation

Clearly the blind set has a greater percentage of its evidence set activated for each question. 
There are two possible explanations for this. Either the evidence nodes for concepts used to 
express answers in the newer retrospective data set do not exist within the network. Or the 
evidence strings attached to the network do not match the precise formulation of the words to 
be found within the input strings, the most likely source for this being spelling errors.

The first explanation is considered unlikely as the 64 answers within the first data set 
necessitate a wide lexical coverage, it is unlikely that the few missing items will account for 
the relative 25% difference in set activation. Further the domain specific nature of the 
questions means that that the lexical variety allowed within many of the questions is 
actually quite narrow.

Conversely, when it is considered that the knowledge base contained many evidence strings 
to specifically cater for the spelling mistakes occurring in the first data set, yet contained non 
that covered those original mistakes occurring in the second data set, this seems a viable 
explanation of the difference in set averages.

In summary the above data implies that the difference in evidence node activation is 
attributable to either the second data set requiring new evidence nodes to correctly model the 
sense or to the second data set requiring a more robust matching mechanism to match input 
strings against the existing evidence strings. For the reasons stated above the second cause is 
deemed the most contributory, although of course both have an input. In essence the 
contribution of the two factors is determined by the increase in diversity to be found in the 
second set. If the second set exhibits a greater semantic diversity then the first factor is most 
important; if the second set exhibits greater spelling diversity then the second factor is most 
important.
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Note this does not prove that knowledge base sophistication does not contribute, it will of 
course and will probably be the main source of error. It does however prove that errors of 
evidence contribute significantly to overall error.

In an attempt to quantify the increased spelling diversity in the second data set a further 
experiment is possible. If the evidence strings attached to evidence nodes are divided into 
strings that reflect the true form of a lexical item and those that reflect spelling variants 
upon that item, the two sets may be distinguished. If all spelling variants are switched off it 
would be possible to run the data sets over the knowledge base, re-marking the questions, 
and evaluate the contribution that spelling adjustments make on the two distinct sets.

Retrospective Blind

Correlation with spelling correction turned 
off

72.4% 61.2%

Figure 5-13 Correlation with Spelling Correction Off

The first data set performed much lower with the hard-coded spelling correction turned off, 
roughly a drop of 11%. The second data set also performed less well, but significantly less so, 
only 3%. This implies that the spelling corrections hard-coded within the knowledge base 
reflect more of the spelling errors to be found in the first data set than the second. In other 
words diversity of spelling between the first and second data sets is quite high. Spelling 
therefore must contribute in part to the overall performance differences between the first and 
second data sets.

As a final caveat all the error sources identified above contribute in part to the errors in 
sentence processing, and certainly for full interpretative systems errors of logic and semantic 
comprehensive must be the most significant. However in the context of the task of automated 
assessment attempted here, the above data seems to imply that errors of spelling, if not 
necessarily the most important, are certainly significant enough to warrant further 
investigation.
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5.1.7. Conclusions

From the results of the retrospective experiment (85%) it is clear that it is possible to 
generate knowledge bases which model well the semantic coherence between correct 
answers. The knowledge base creation model of the retrospective experiment is however 
unworkable in the real world as it presupposes the answers are hand marked (which would 
make the automated system redundant).

The knowledge base creation model from the blind experiment is however workable in 
practice. It simply uses a model generated from a previous data set. The results are obviously 
not as good (65%) as the retrospective test, but are encouraging in that it seems that the 
majority of the information embodied within the knowledge base is still valid for the new 
data set. The lower correlation rates are explained by an increase in the variability in content 
and structure of the new data set.

From an analysis of the sources of data it was deemed that logic, fuzzification, anaphora and 
syntax are, at this stage, either contributing insufficiently to the error or are two complex to 
resolve. Knowledge base sophistication and spelling errors, on the other hand, appear to 
contribute significantly to the overall performance of the system.

Automated spelling correction is an interesting problem, and although no perfect algorithm 
yet exists for its resolution, it is already very heavily represented and researched in the 
literature. Further it is somewhat tangential to the main thrust of this thesis.

The issue of knowledge base sophistication and especially the research of methods of 
automatically inducing knowledge base models are believed to be a more natural extension of 
the work presented so far. These, learning algorithms if successful will either improve the 
robustness of the matches, or better capture the variability of language use. Such learning 
algorithms will also address the problem that, at present, there is considerable overhead and 
expert knowledge implied in the knowledge acquisition phase. More specifically, as has been 
described earlier in this thesis, the aim will be to induce network structures from the 
statistical properties of the student text, and that these structures will provide a perceptual 
augmentation function which lead to increased performance of an automated sentence 
judgement process.

It is these areas that shall be addressed in the final section of this thesis.
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5.2. Algorithm Evaluation

5.2.1. Introduction

The nature of the networks that are produced by learning algorithms differs considerably to 
that of hand-crafted networks. The algorithmically produced networks are incapable of 
discriminating between correct and incorrect student responses on their own. This is because 
the algorithms used are unsupervised and therefore have no knowledge of the correctness of 
specific responses. This raises the thorny issue of how to evaluate the effectiveness of the 
produced networks.

The approach that has been taken is to pursue the perceptual information-enriching 
metaphor alluded to in both the previous section 5.1 and Chapter 3. What is required is a 
decision procedure that is capable of automating the sentence-judgement operation. This 
decision procedure obviously needs input in order to make its judgement. Ideally the 
procedure needs to be able to take this input in both a raw atomic form (for this application 
the list of words occurring in the sentence is a good approximation to this) and a perceptually 
enhanced information source (which will be provided by the activation passing network). On 
the assumption that the perceptually enhanced information will contain new and “useful” 
information, the hypothesis is that the decision procedure will perform better using the 
perceptually augmented information source containing information at different granularities.

The decision procedure chosen to perform this function is Latent Semantic Analysis. In the 
next section the necessary background is presented to understand how LSA is to be applied.

5.2.2. Latent Semantic Analysis

5.2.2.1. Introduction

Latent Semantic Analysis (henceforth LSA) is an extension of another text analysis 
technique, Latent Semantic Indexing (LSI). Both are rooted in the complex and powerful 
mathematical technique of Singular Value Decomposition (SVD).

LSA is a novel technique that has come to the forefront over the past few years. The 
application for which it is best known is the automated assessment of student essays 
(Landauer et al (1997)). It would therefore be impossible to properly conclude this thesis 
without an investigation into its effectiveness within this specific problem domain, i.e. the
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automated assessment of single sentence/paragraph responses. The fact that it satisfies the 
criteria defined above, that is to automate the decision procedure for sentence judgement and 
to accept and compare input data at different perceptual granularities, is an added bonus.

5.2.2.2. Theory

Latent Semantic Analysis is summarised by Landauer et al (1997) as a

“corpus-based statistical method, for inducing and representing aspects of the 
meaning of words and passages reflected in their usage”.

It is basically a method deriving an N-dimensional vector representation for both "words” 
and “documents”. The point of this being that words and documents can then be compared 
and constructed using standard techniques from linear algebra. LSA is unusual in that the 
N-dimensional vector representation of both words and documents takes place within the 
same hyper-dimensional space. This means that rather than just words being compared 
against words and documents being compared against documents, words can be compared 
against documents.

Let us start by looking at the mathematical technique that underpins LSA, that is Singular 
Value Decomposition.

Weisstein (1998) defines SVD as:

An expansion of a real M x N matrix by orthogonal outer products, according to:
K

k=i

where si > si > ... > 0 

and

Here 8y is the Kronecker delta and AT is the matrix transpose.

K =  m i n { M ,  N }

uI vr=
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What does this mean? Basically, any MxN matrix A whose number of rows M is greater than 
its number of columns N, can be written as a product of an MxN column-orthogonal matrix 
U, an NxN diagonal matrix W with positive or zero elements (the singular values) and the 
transpose of an NxN orthogonal matrix V.

The following diagram should make this clearer:

wl
w2 • V r

w3

There are several useful applications of this technique. The most common as quoted by Press 
et al (1996) is as a method for solving least-squares problems. As such it can be used to 
optimally solve both overdetermined and underdetermined sets of linear equations. It can 
also be used to construct an orthonormal basis and to approximate matrices. It is in this 
manner that the technique is applied to Latent Semantic Analysis.

Consider the following. Construct a matrix A as a document term matrix where each row 
represents individual word types and each column represents individual documents/passages 
etc. Perform SVD upon this matrix, which produces U, V and W matrices. Under this 
interpretation:

U -  is an orthonormal basis which spans the same subspace as the column vectors in 
A.
W — is a diagonal matrix, the elements of which essentially gives a weighted 
importance to their respective basis vectors in U.

— is a matrix of row vectors, which when interpreted in the weighed subspace of 
UW can reconstruct the original column vectors of A. (Note row vectors of V1 are 
column vectors of V.)

An important quality of the decomposition is that if a particular diagonal element of W is 
small, i.e. w~0, then this term may be removed from the W matrix, which in turn means that 
the appropriate column terms from U and V can also be removed. So if:
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A U
wl

w2 • V T
w3

and w3=0

then

U
wl

w2

Where w3=0 then the equality is preserved, where w3~0 then the above is an approximation. 
This is the application of approximating matrices as discussed above.

5.2.2.3. Application

In all applications of applying SVD to document analysis (this means LSA and LSI) the 
starting data is a document term matrix. Commonly, the rows of this matrix will correspond 
to terms, which in the simplest case could be simple instances of word type, or could be a 
more abstract notion of word group. The columns of this matrix will correspond to 
documents. Depending on the application this could be single sentences, paragraphs or entire 
essays.

Two principle properties of the above decomposition mechanism are utilised in these 
applications:

5.2.2.3.1. The reduction of document and term to common dimensionality.

Where every document was originally an M-dimensional vector and every term was an N- 
dimensional vector, after decomposition and then the removal of low w values, it is possible 
to represent both terms and documents and terms as K-dimensional vectors. This means that
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not only can terms be compared directly against documents, but by simple algebraic 
operations psuedo-documents can be constructed from a collection of terms.

5.2.2.3.2. The reduction of dimensionality.

By removing small w terms the original A matrix is slowly being approximated to. This is 
because we are trying to span the same subspace with a set of basis vectors of lower 
dimensionality. There will inevitably be points in the original A subspace that are 
unreachable by the decomposed approximation. SVD assures us, if we remove the smallest w 
values first, then the area in A, that is now unreachable, is of the smallest volume. In terms 
of the application to document analysis there is an implicit assumption or expectation here. 
That is, it is the semantically coherent attributes that are being preserved in the reduced 
basis vectors and that it is noise and non-useful information that is being discarded in the 
now unreachable subspaces of A.

5.2.2.3.3. Text Searching -  LSI

LSI is an effective way of finding best matching documents from a given user query. 
According to Dumais (1991) Latent Semantic Indexing is characterised as:

“The LSI approach partially overcomes the problem of variability in human word 
choice by automatically organising objects into a "semantic” structure more 
appropriate for information retrieval. This is done by modelling the implicit 
higher-order structure in the association of terms with objects.”

This “semantic” structure is the reduced, decomposed orthogonal basis discussed above. Once 
the mechanics of SVD are understood the implementation is trivial:

1. Construct an “indexing” document-term matrix, using documents available.
2. Decompose this matrix using SVD.
3. Reduce the dimensionality to K by removing w terms, smallest first. Documents and 

terms can now be represented by a K-dimensional vector.
4. An incoming query is specified by a user as a series of terms (ie a sentence, several 

words in a row), possibly a single term. These terms can be combined to produce psuedo- 
document which represents that query.

5. Best matching documents can be found by comparing the pseudo document to actual 
documents and finding closest matches.
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6. New documents can be added later by “folding” them into the matrix. This is a technique 
that shall not be discussed here.

There are two terms in the above description that were left deliberately ambiguous; these are 
“combined” and “compared”. These processes shall now be considered in greater detail.

5.2.2.3.3.1. Combining term s into a psuedo document

Given that a K-dimensional vector can represent documents and terms, a pseudo-document, 
which is derived from a set of terms, is constructed as the average of the vectors for all its 
constituent terms.

n

5.2.2.3.3.2. Comparing documents and te rm s.

There are various mechanisms for comparing two documents (or terms). In fact virtually all 
of the methods discussed in the section on syntactic clustering would be appropriate. 
Specifically all the similarity measures discussed in the section on clustering measures are 
appropriate. But within the literature Foltz et al (1998), Landauer et al (1997), Landauer et 
al (1998a) Landauer et al (1998b), it is the cosine measure that seems to be the most 
commonly used.

5.2,2.3.4. Text Evaluation - LSA

Now that the groundwork has been laid, it should be fairly easy to see how these techniques 
can be applied to automated assessment. The most frequently cited application (Landauer et 
al 1997) is the automated assessment of essays. Typically the described procedure is as 
follows

1. Construct a term-document matrix from all the student essays available using
essays as individual documents and individual word types as term entities
(optionally apply a stop list first, and optionally apply term-weighting)

2. Normalise the columns.
3. Decompose the matrix using SVD
4. Reduce to K-dimensions.
5. Generate a “correct” target essay.
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6. From the words in the target essay generate its pseudo-document; this is simply 
another K-dimensional vector.

7. Using a few marked essays “calibrate” the marking zone
8. For new unmarked essays -  compute the pseudo-document
9. Compare the new essay’s vector to the target vector and use the empirically 

derived calibration to assign a mark.

Landauer et al (1997) have reported considerable success with these techniques. In studies in 
which short student essays on scientific subjects were analysed, they reported that the 
correlation of approx 80% between LSA analysis and tutor marking, which proved as 
accurate as the inter tutor correlation figures.

5.2.2.4. The Issue o f Word Order

It is interesting to note that this technique takes no account of word order. The Landauer et 
al (1997) paper, specifically titled “How Well Can Passage Meaning be Derived without Using 
Word Order?” concludes:

“This paper' presents new evidence that a great deal o f information about the 
meaning of passages may be carried independently of word order”

This contrasts interestingly with Lou & Foxley’s (1993) investigations where they also 
consider a semantic analysis system that does not use a strict syntactic model. In fact they 
conclude:

“The requirement for strict grammatical correctness would form a barrier to 
success. *

Obviously this is not to say that word order is irrelevant. Clearly the introduction word order 
into input information would add a new dimension to the input data and would help clarify 
and disambiguate sentences that would not be fully analysable without it. But given the 
difficulties that previous researchers have had in introducing this element to LSA and fuzzy 
logic respectively, it is interesting to note what is possible without it.

5.2.2.5. The Issue o f M ultiple Senses

It is worth pointing out that the LSA system as it stands is incapable of handling polysemy. 
As Landau et al(1998b) remark:
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A  dynamic contextual disambiguation process can be mimicked in LSA, but the 
acquisition and representation o f multiple meanings cannot”

This is another way of saying that it may be possible to use the output of LSA to 
disambiguate identified polysemous words but the modelling of polysemy within the model 
itself it not possible.

5.2.3. Experiment 3 -  Simple LSA, The Control

LSA has been identified as the ideal mechanism for evaluating the usefulness of the 
algorithmically generated networks. In order to perform this evaluation of “effectiveness” a 
control is needed. The control is to be produced by analysing the performance of LSA when 
applied to the atomic presentation of data. A simple document-term matrix, where each 
document corresponds to a single student’s response to a question and each term corresponds 
to a uniquely occurring string, is the basis of the atomic presentation of data.

This experiment has a further justification in that it will be interesting to see how this 
alternative implementation of an automated assessment procedure performs on the target 
application of the automated assessment of single sentence student responses.

5.2.3.1. Method

The procedure will closely resemble the technique for automated essay marking described 
above. The data to be used is the aggregate of the data sets from the two previous 
experiments, which is approx 120 students answering 20 questions on computer science 
related questions, all answers between 1 and 3 sentences in length.

1. Construct for each question a term-document matrix from all the student 
responses available, using individual paragraphs (the entirety of the response for 
that question) as individual documents and individual word types as term entities. 
A simple stop list was applied (the, to, which, for, when etc)

2. Normalise the columns.
3. Decompose the matrix using SVD
4. Reduce to K-dimensions, the value of K was derived empirically, i.e. the best

performing, in practice this proved to be a dimension of about 20.
5. A small set of pre-marked answers were selected, in this instance 10 were 

selected.
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6. From this set, all correctly marked responses were summed and averaged. This 
was used as the correct target.

7. Using, from the small sample set, the incorrectly marked responses as well as the
correctly marked responses, a similarity threshold was identified. This was the 
least mean squared separator between all correct and all incorrect responses when 
using the cosine measure of similarity with reference to the identified target 
vector.

8. For new unmarked responses -  compute the pseudo-document
9. Compare the unmarked responses vector to the target vector. In the cosine

measure of similarity falls within the threshold identified in stage (6) then the 
response is deemed correct. If outside the threshold it is deemed incorrect.

5.2.3.2. Results

The effectiveness of the above procedure was analysed using the standard set of black-box 
measures researched and defined earlier.
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5.2.3.2.1. Averages

Question
Number

Mean Human Mean Simple- 
LSA

q l 0.77 0.63

q2 0.72 0.56

q3 0.97 0.97

q4 0.95 0.92

q5 0.47 0.33

q6 0.85 0.89

q7 0.91 0.86

q8 0.80 0.63

q9 0.53 0.7

qlO 0.08 0.05

q ll 0.88 0.51

ql2 0.47 0.43

ql3 0.41 0.38

ql4 0.37 0.41

ql5 0.37 0.04

ql6 0.25 0.4

ql7 0.40 0.67

ql8 0.46 0.43

ql9 0.46 0.38

q20 0.04 0.02

Average 0.55 0.48

Figure 5-14 Averages Experiment 3

As with the network based automatic marker it is notable that the average score for LSA is 
slightly lower than the tutor’s, perhaps suggesting that it misses more than it incorrectly 
attributes a correct score. On simple inspection there appears to be a fair distribution of
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scores with the LSA marker scoring within the same general range as the human ascribed 
score, excepting question 15.

5.2.3.2.2. Correlation

Question Number Correlation %

ql 0.15

q2 0.2

q3 0.22

q4 0.09

q5 0.08

q6 0.6

q7 0.47

q8 0.14

q9 0.47

qlO 0.28

q ll 0.28

qi2 0.93

ql3 0.79

ql4 0.64

ql5 0.46

ql6 0.24

ql7 0.64

ql8 0.6

ql9 0.35

q20 0

Average 0.36

Figure 5-15 Correlation Measure Experiment 3

From the correlation figures it is obvious that the LSA system performs considerably worse 
than both the blind (Experiment 1) and retrospective experiments (Experiment 2) from the 
activation passing networks system. However a correlation of .37 is still significantly above 
the zero correlation that we would expect if marks were being assigned randomly. Also it 
must be remembered that this an automated marking system that is largely un-supervised
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requiring little input on the part of the tutor, just the provision of a few marked responses in 
order to calibrate the system. Contrast this with the laborious process of generating 
activation passing networks by hand.

5.2.3.2.3. Error Analysis

Question Number False
Positive

False Negative Correct Estimator Incorrect
Estimator

ql 0.18 0.67 0.82 0.33

q2 0.16 0.67 0.73 0.5

q3 0.04 0 1 o I

q4 0 1 0.89 0

q5 0.47 0.44 0.71 0.36

q6 0 0 1 1

q7 0.05 0.57 0.83 0.75

q8 0.16 0.67 0.91 0.2

q9 0.18 0.36 0.78 0.7

qlO 0.75 0.04 0.5 0.88

q l l 0.12 0.5 0.96 0.25

ql2 0.06 0 1 0.91

ql3 0.13 0.08 0.93 0.86

ql4 0 0.32 0.6 1

ql5 0.38 0.17 0.83 0.63

ql6 0.5 0.21 0.29 0.9

ql7 0.21 0.14 0.85 0.8

ql8 0.31 0.08 0.92 0.69

ql9 0.38 0.27 0.67 0.69

q20 0.96 0 1 0

Average 0.24 0.29 0.77 0.55

Figure 5-16 Error Analysis Experiment 3

In general the in depth error metrics demonstrate the tendency that should be expected, that 
is false positives and negatives should be below 0.5 and estimators should be above 0.5. 
However, it is notable that the extremes of the previous section are not reached. Specifically
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the extremely low false positive metric that seemed to characterise the performance of the 
hand crafted networks is not present.

5.2.3.3. Conclusions

In general the results are low, certainly lower than the figures obtained by the two previous 
experiments. Also, it is significantly lower than the results that have been published in 
previous LSA experiments, where tutor correlation rates of 0.80 were reported. This is 
speculation, but a probable reason for this is the inherently lower dimensionality of the 
problem domain. The LSA experimental results that have been published come from essay 
studies. The resulting document-term matrix, before dimensional reduction, is far larger.

Despite this, they are still considerably better than that which would be expected by chance. 
It must not be forgotten that the automatic assessment model is generated with far less tutor 
intervention. Only a handful of pre-marked questions are required in order for the Simple- 
LSA system to extrapolate to a global model of correctness.

5.2.4. Experiment 4 -  Perceptually Augmented LSA -  The Algorithm Evaluation

Experiment 4 uses the same procedure as the last experiment but on a different input 
matrix. The input matrix is however calculated from the same input data. The documents for 
this matrix are, as before, the individual student responses for each question. The term 
elements, however, now correspond to individual nodes within a network that is generated 
from the student responses, using the network growth algorithms outlined in the previous 
chapter.

It is intended as an evaluation of usefulness of the information added by learning algorithms, 
and therefore compares the “quality” of raw atomic data to that produced by the perceptual 
augmentation process that the algorithmically produced networks supply. We use the term 
Perceptually Augmented LSA (PA-LSA) to distinguish this system from the system from the 
previous experiment.

The input data is again the same as for Experiment 3.

5.2.4.1. Method

1. Each student response is presented to the clustering/compositioning
algorithm one at a time.
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2. The network is allowed to grow in the manner determined by the 
configuration of the various heuristics.

3. A blank document-term matrix is generated which has as many term 
elements, as there are nodes within the network.

4. A single response is then presented to the network where each of the 
atomic words occurring leads to the activation of the appropriate 
“primitive” node in the network.

5. Activation is allowed to propagate up the network thus activating the 
appropriate clustered and composite nodes.

6. The activation of each node is then transcribed onto its respective cell in 
the document term matrix.

7. Singular value decomposition, dimensional reduction etc. performed as in 
the previous experiments.

5.2.4.1.1. Algorithm Configuration

A  compositioning linkage heuristic was used which was a 2 window right-left adjacency 
A clustering heuristic was used which was based on the cosine metric of similarity and 
required a similarity measure of 0.65 or greater, but also used node count as a alpha-cut to 
approximate to a test for statistical significance.

5.2.4.2. Results

Again the results are generated by comparing a tutor’s evaluation of correctness against the 
PA-LSA system using the black-box metrics.
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5.2.4.2.I. Averages

Question
Number

Mean Human Mean
Perceptually
Augmented

LSA

qi 0.77 0.72

q2 0.72 0.65

q3 0.97 0.88

q4 0.95 0.81

q5 0.47 0.38

q6 0.85 0.81

q? 0.91 0.83

q8 0.80 0.79

q9 0.53 0.6

qlO 0.08 0.02

q ll 0.88 0.79 j
ql2 0.47 0.6

ql3 0.41 0.39
ql4 0.37 0.37
ql5 0.37 0.46
ql6 0.25 0.3
ql7 0.40 0.41
ql8 0.46 0.48

ql9 0.46 0.51
q20 0.04 1

Average 0.53 0.56

Figure 5-17 Averages Experiment 4

Interestingly this is the first experiment that has been run for which the automatic marker 
has attributed a higher average mark to student responses than the tutor did.
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5.2.4.2.2. Correlation

Question Number Correlation

qi 0.5

q2 0.7

q3 0.7

q4 0.46

q5 0.36

q6 0.7

q7 0.48

q8 0.68

q9 0.62

qlO 0.57

q ll 0.35

ql2 0.88

ql3 0.75

ql4 0.86

ql5 0.62

ql6 0.53

ql7 0.71

ql8 0.65

qi9 0.7

q20 0

Average 0.55

Figure 5-18 Correlation Measures Experiment 4

The correlation figure is again still less than the results from the activation passing network 
experiment, but significantly above the correlation figure is results from the third 
experiment. Specifically, it represents an improvement of 48% over the non perceptually 
augmented input matrix.
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5.2.4.2.3. Error Analysis

Q uestion N um ber False
Positive

False Negative Correct E stim ator Incorrect
Estim ator

q l 0.13 0.38 0.87 0.63

q2 0 0.41 0.82 1

q3 0.02 0 1 0.5

q4 0.75 0.0 0.85 1

q5 0.25 0.38 0.55 0.8

q6 0 0.5 0.97 1

1 q7 0.08 0.33 0.86 0.43

q8 0.07 0.14 0.98 0.6

q9 0.21 0.16 0.88 0.72

qlO 0 0.03 0.33 1

q ll 0.08 0.22 0.85 0.56

ql2 0.11 0 1 0.86 |

ql3 0.19 0.06 0.93 0.83

ql4 0.09 0.05 0.91 0.95

ql5 0.28 0.12 0.84 0.79

ql6 0.32 0.09 0.73 0.83

ql7 0.16 0.13 0.87 0.85

ql8 0.2 0.15 0.83 0.82

ql9 0.25 0.06 0.92 0.78

q20 0.98 0 1 0

Average 0.2 0.15 0.81 0.71

Figure 5-19 E rro r Analysis Experim ent 4

Again the characteristic low false positive metric from the activation passing networks 
experiment is not present. The figures do however represent a considerable improvement 
over the last experiment.
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5.2.4.3. A Q ualitative and Quantative Analysis o f the Grown Networks

It was noted in Section 3.2.3 that the anticipated form and structure of the automatically 
grown networks would be considerably different to the form and structure of the hand­
crafted networks. We are now in a position to be more specific as to what these differences 

are.

Firstly there is the issue of size. The average HCN was 30.55 nodes in size. Not surprisingly 
the average AGN was much larger than this, an average of 248.40 nodes. To put this figure 
in context, the average starting size of the network (i.e. the number of primitive nodes) is 
approximately 74 nodes. What this means that if the words are aggregated over each 
question, then a stop list is applied and then primitive spelling correction applied, we end up 
with about 74 unique nodes to represent the different word types in the input strings. This 
growth represents a three-fold increase.

The second most obvious difference is the topology of the network. All the HCN are singly 
rooted hierarchical structures, where the node, which is the tree’s root, is the node that is 
intended to represent, by its activation state, the truth-state of the question. The AGNs are 
multiply rooted hierarchical structures. Those nodes that are higher up the tree simply 
represent a higher-level perception of the data that is available in the input string. There are 
many terminal roots to the tree, on average 57.

Some further comments can be made on the constitution of the AGNs. It has already been 
mentioned that the average AGN consisted of 248 nodes whilst 74 for of those were primitive 
nodes. This means, on average, 174 nodes were added to the initial network and these must 
necessarily be either composite or clustered nodes. In actual fact the average distribution was 
112 composite nodes compared to 62 clustered nodes. These results can therefore be 
summarised as:
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Node Type Percentage
Constitution

Primitive 29%

Composite 45%

Clustered 26%

Figure 5-20 AGN Constituents

It must be remembered that the specific constitution of AGN network is heavily determined 
by the precise heuristics used in the algorithmic configuration. A different set of heuristics 
could give an entirely different shape, structure and size to the network. In this case the 
heuristics used were determined empirically, in that they were those that led to a better 
system performance (see Section 5.2.4.1.1 for precise configuration).

On the whole specific comment on the idiosyncratic content of a trained network has been 
avoided, instead a focus has been kept on the proven utilitarian benefit of the net in 
performing the task of automated assessment and the black box metrics that characterise its 
functional performance. In essence this is much the same approach that is taken by the 
experimenter who applies a neural net to a specified task and who cares little for the specific 
weight configurations that give rise to the best performance, but cares more for the training 
and net topology configurations that allow them to efficiently and repeatably reach the 
specific weight configurations that give rise to optimum performance. However, as the nodes 
created by learning algorithms do maintain a local and transparent mapping onto the strings 
from the problem domain, the process is perhaps not as “black-box” as the typical neural 
network-training algorithm. It is perhaps worth a surface inspection of the net creation 
process to reassure ourselves that the grown nets are indeed modelling sensible and coherent 
semantic properties. The nets themselves are however very large complex and heavily 
interconnected; it is difficult to establish an informed opinion from a surface inspection. It is 
easier to look at the program logs in order to get an insight as to what is going on. Taking the
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networks trained on the first question, for purposes of illustration, and considering the 
clustering process first we note that the program logs15 report:

N o d e  [ c l o s e r ]  i s  l i k e  [ c l o s e ]  b y = 0 . 7 7 2 3 4 8  

N o d e  [ c l o s e ]  i s  l i k e  [ c l o s e s t ]  b y = 0 . 8 2 8 1 9 8

These are obviously terms that are highly correlated semantically, being merely mild 
morphological variations on one another. Interestingly, within the handcrafted networks this 
same set can be found within the evidence list for the close node, the only difference being 
“closely” is a member of this set, yet does not seem to have been induced as a member of this 
set by the algorithm on pure statistical grounds. (In fact on closer inspection it is noted that 
“closely” only occurs once in the entire data set, hence would not survive the alpha-cut 
implemented within the clustering algorithm). Similarly:

N o d e  [ a s s e m b l e r ]  i s  l i k e  [ a s s e m b l y ]  b y = 0 . 6 8 6 8 4 4  

have been identified as similar.

The core phrase within the answer to question one, which constitutes an acceptable answer, 
is “machine-code”, which can variously be phrased as “machine-language”, “assembly-code” 
and “assembly-language”. The handcrafted network models this potential interchange and 
combination of phrases explicitly. To parallel this we find that within the algorithmically 
grown network:

N o d e  [ a s s e m b l e r ]  i s  l i k e  [ m a c h i n e ]  b y = 0 . 7 3 9 4 4 2  

N o d e  [ a s s e m b l y ]  i s  l i k e  [ m a c h i n e ]  b y = 0 . 7 6 8 9 0 9

also:

N o d e  [ c o d e ]  i s  l i k e  [ l a n g u a g e ]  b y = 0 . 7 1 1 5 1 2

The other major cluster to be found in the handcrafted network is the “near or use” cluster. 
Within the statistically induced network the following are found which closely parallel this 
cluster:

15 For purposes of clarity the following logs do not reflect the recursed clusters that are to be 
found in the nodes, but simply the core similarities between words that are identified from 
the corpus and upon which the recursed node hierarchies are based.
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N o d e  [ c l o s e ]  i s  l i k e  [ d i r e c t l y ]  b y = 0 . 7 2 6 2 5 2  

N o d e  [ c l o s e ]  i s  l i k e  [ l i k e ]  b y = 0 . 7 7 5 0 5 8  

N o d e  [ c l o s e ]  i s  l i k e  [ u s e s ]  b y = 0 . 7 6 0 6 3 9  

N o d e  [ c l o s e s t ]  i s  l i k e  [ u s e s ]  b y = 0 . 6 8 5 1 2 5

Not all of the derived associations are as semantically coherent. The following exemplify 
some of the more incoherent clusters found:

N o d e  [ a s s e m b l e r ]  i s  l i k e  [ c o d e ]  b y = 0 . 6 5 1 7 5 7  

N o d e  [ a s s e m b l y ]  i s  l i k e  [ c l o s e ]  b y = 0 . 8 4 1 3 0 6  

N o d e  [ a s s e m b l y ]  i s  l i k e  [ l e v e l ]  b y = 0 . 6 5 0 6 6 9  

N o d e  [ m a c h i n e ]  i s  l i k e  [ c l o s e ]  b y = 0 . 6 6 1 2 9 3  

N o d e  [ l i k e ]  i s  l i k e  [ c o d e ]  b y = 0 . 6 9 1 0 3 6

Some (but by no means all) of these incoherent clusters can be explained away by the
following reasoning. When there is a compositioning heuristic defined which is anything
greater than simple adjacency, and there do exist composites that by definition are close to 
one another, it stands to reason that the composite terms will share, or have similar, context 
histories. There are therefore instances where composites will be miss-classified as clusters.

This probably embodies a fundamental antagonism within the definitions of the heuristics, 
that is: the wider the window in the compositioning heuristic (which is necessary to capture 
composites that are more than simple adjacent words) the more imprecise the data is for 
inducing potential clustering. Empirically, the right-left compositioning heuristic of two 
seemed to optimally trade-off these antagonistic constraints.

Turning our attention now to the identified composites we find that at a simple lexical level:

c o m p o s i t e s  a s s e m b l e r  && c o d e

c o m p o s i t e s  a s s e m b l e r  && m a c h i n e

c o m p o s i t e =  a s s e m b l y  && c o d e  

c o m p o s i t e =  a s s e m b l y  && l a n g u a g e

also

c o m p o s i t e =  m a c h i n e  && c o d e  

c o m p o s i t e =  m a c h i n e  && l a n g u a g e  

c o m p o s i t e =  m a c h i n e s  && c o d e  

c o m p o s i t e =  m a c h i n e s  && l a n g u a g e
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which again parallels the core “machine-code” phrase to be found in the hand crafted 
network.

Some further identified simple composites, which are worthy of note, are:

c o m p o s i t e =  i n s t r u c t i o n  && s e t  

c o m p o s i t e =  l o w  && l e v e l  

c o m p o s i t e =  o p e r a t i n g  && s y s t e m  

c o m p o s i t e =  p r o c e s s o r  && l e v e l  

c o m p o s i t e =  r e s e r v e d  && w o r d s

More importantly however are the composites of clusters that were identified. Again the 
focus is on the core phrase “machine-code”, and the critical composite being:

c o m p o s i t e s  ( a s s e m b l e r  , a s s e m b l y  , m a c h i n e ,  m a c h i n e s )  && ( c o d e ,  

l a n g u a g e )

Note that although there is no precise16 test for statistical significance of composites (or 
indeed clusters) in the outlined algorithms, it is worth noting that composites of clusters do 
have better statistical grounds for creation than their associated composites of simple 
lexemes. This is for the simple reason that the context histories for clusters are aggregates 
over the cluster’s constituent parts. The statistical sample upon which the composite is based 
is therefore, simply, greater.

The above does not constitute a complete examination of all identified associations for the 
question under investigation, it is simply a subset intended to exemplify some of the 
recognisable, semantically coherent structures that are identified by the algorithms. As 
pointed out there are some identified structures, which although having a sound statistical 
basis for creation, as identified by the algorithms, on inspection do not appear to model 
anything of particular usefulness. This should be of no great concern. Firstly, the empirical 
utility of the grown structures has been proven which is justification enough. Secondly, the 
experimental design and especially the application of LSA are specifically intended to remove

16 The crude approximation to a test for statistical significance is the implementation of the 
alpha-cut in the clustering and compositioning heuristics.
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incoherent dimensions from the resulting multidimensional space. And where each node is 
represented by a dimension, this means the removal of incoherent nodes.

On surface inspection the nets trained on answers from the other questions exhibit similar 
qualities. That is sets of clusters can be found that seem to correspond to either 
morphological variants or synonymous groupings and sets of composites can be found which 
correspond to frequently used and/or idiomatic phrases. Generally, there are a further set of 
composites which composite the largest clustered groups. There are relatively few instances 
of clustered composites.

5.2.4.4. Conclusions

False
Positive

False
Negative

Correct
Estimator

Incorrect
Estimator

Correlation

Simple LSA 0.24 0.29 0.77 0.55 0.36

Perceptually
Augmented
LSA

0.2 0.15 0.81 0.71 0.55

Figure 5-21 Results Summary

C om paring P ercep tu a lly  A u gm en ted  and Control 
LSA Q u estio n  S e ts

0.8

0.6 Control 
Pre Filtered0.4 / i

0.2

co 05 co in 05

Question No

Figure 5-22 Graph to Compare Perceptually Augmented and Raw LSA 
Performance
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The principle conclusion to be drawn is that the networks produced from the compositioning 
and clustering algorithms do seem to form an effective perceptual enhancer when 
considering an automated assessment application that utilises latent semantic analysis.

It was speculated that relatively low correlation measures of Experiment 3 was attributable 
to inherently lower dimensionality of the starting matrix (certainly as compared to essay 
evaluation applications). This is not a hypothesis that can be easily investigated directly, 
however the results from this experiment do seem to support it, for the document-term 
matrix that was generated for the perceptual network represents vectors of a significantly 
higher dimensionality. It is highly probable that a considerable number of these added 
dimensions proved useless, and consequently would have been discarded into the subspace 
that is unreachable by the orthogonal basis vectors that are produced after dimensional 
reduction. However the empirical evidence seems to suggest that a significant number of 
them were preserved within the basis vectors and that these dimensions served to aid the 
successful discrimination of correct and incorrect pseudo document vectors.

The hypothesis that activation passing networks can be “grown” by identifying statistical 
regularities within a problem domain, and that these networks can serve to perceptually 
augment incoming data providing higher-order derived descriptions of the same information, 
appears to be supported. The hypothesis that these higher-order descriptions can be utilised 
to “reasonable effect” within the application domain of automated assessment has been 
supported empirically by the above experiments.

These results do give rise to some further questions. The most important of which is: Given 
that LSA can be seen as a “perceptual re-alignment” of a particular feature space, what is it 
that the network growth algorithms are capable of identifying that the LSA process is not?

From the descriptions given of the data structures and algorithms in Chapter 3 the answers 
to this question may be quite obvious. However, this may be an appropriate point to re-visit 
some of these issues and to at least speculate what is going on behind the scenes.

First, let us examine the nature of LSA’s perceptual realignment. Note initially that the 
simple document term matrix is insensitive to word order. It is however sensitive to the 
number of terms appearing in a document. After the application of SVD the input space has 
been realigned, to a set of ordered, maximally coherent basis vectors. These vectors are in
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fact a form of clustering upon the initial input. After the dimensional reduction we have in a 
sense chosen to retain an arbitrary number of the best clusters.

Compare this to the perceptual refinement of the network growth algorithms. The first thing 
to note is that the whole notion of composition relates to word order. Whether it is "windowed 
composition or simple adjacency, the fact that a composite node has been identified means 
that a contextual regularity has been identified and this context relates to the relative word 
order of its items. On the counter side, note that the network is relatively insensitive to 
number of terms per document17, as it is a simple Boolean activation network. The term 
“relatively insensitive” is used because there is a small exclusion clause to this statement. 
Where a particular term occurs twice, and each time in a different context, and this context 
maps onto a specific composite node, then there is an implicit record of the term occurring 
twice.

The second thing to note is that the clustering that occurs within the network is significantly 
different to both the implicit clustering that happens after the dimensional reduction of an 
SVD produced matrix, and the recursive clustering that occurs within both the syntactic 
clustering applications discussed earlier in this chapter. Both of these methods of clustering 
are essentially best match first recursive procedures that reduce to an arbitrary final cluster 
size. The network clustering is different; clustering criteria is dynamic and local. Clustering 
does not occur on a best match first basis, there are absolute criteria to identify potential 
clusters. Also clustering does not reduce to an arbitrary cluster size, clustering simply stops 
when the local absolute criteria at each node are satisfied.

The third essential difference is the recursive complexity due to the two differing node 
constructs. We have seen that although LSA has an analogous process to clustering it has no 
analogy to the representation of composition. Considering, a cluster of composites would 
simply be impossible.

It is for these reasons that the perceptually augmented LSA process performs significantly 
better than the LSA process fed with simple words. Quite simply new, higher order, “useful” 
information is presented to the process, which the LSA process itself is incapable of deriving.

17 Note this does not matter over much for single sentence answers as the only terms that are 
likely to be repeated are common words which are likely to be removed by the stop list 
anyway.
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6. Conclusions
The subject matter for this thesis has been the development of a natural language processing 
framework for application in the field of automated assessment. This has been approached in 
the following chronological order (this is not necessarily the same as the order that it appears 

in this thesis):

1. Analyse the requirements of natural language processing in the context of 
automated assessment and develop a custom knowledge schema to specifically 
address these issues.

2. Formulate an evaluative strategy within which the performance of the activation 
passing networks can be empirically investigated

3. Perform two experiments. The first to demonstrate that it is possible to construct 
a network that is capable of effectively discriminating between correct and 
incorrect student responses. The second that demonstrates this networks ability 
to generalise to new unseen data.

4. Develop novel algorithms for growing “perceptual” networks consisting of both 
compositioning and clustering node-types.

5. Develop and evaluative strategy for the empirical investigation of these 
“perceptual” networks.

6. Perform a further two experiments the first of which uses an automated 
evaluative procedure to discriminate between correct and incorrect responses but 
uses as its input a raw-atomic description of the input feature space. The second 
of which uses a perceptually enhanced description of this same input.

It is interesting to note that for each of the two main stages (the development of the network 
schema and the development of the algorithms) as much investigative and development 
effort was required to define and implement the evaluative mechanisms as was required to 
do the primary implementation of the novel representational structure and algorithms 
respectively.

The main conclusions to be derived from each of these stages will be briefly summarised here 
(along with the references to the refereed publications in which this work has been 
published).
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Firstly, the development of the custom knowledge representation network for application to 
automated assessment resulted in the definition of knowledge schema that strongly 
resembles a localist connectionist network, and consequently has combined representational 
and computational properties. (Allott et al 1994a)

An evaluative framework was defined, which drew heavily on the published academic works 
stressing the importance of detailed evaluation metrics for natural language processing 
systems. The aim was to produce a robust set of measures that not only gave a good global 
indicator of the system’s performance, but whose fine grained metrics would point towards 
specific causes of problems within the system. (Allott et al 1994c)

Experiment 1 proved successful in that it was possible to produce a network within the 
custom knowledge schema that could effectively discriminate between correct and incorrect 
responses such that the results correlated 85% with tutor marked responses. Experiment 2, 
which was a measure of the systems ability to generalise to new unseen data, proved 
successful producing a tutor correlation of 65%. (Allott et al 1994b)

To address the principal problem of the human effort required to generate these networks, 
algorithms were developed which would, by identifying statistical regularities within the 
input data, generate complex networks consisting of composite and clustering nodes. These 
networks preserved the activation passing ability of the handcrafted networks and therefore 
have consequent computational properties in their own right. (Allott et al 1995, 1997a, 
1997b, 1997c 1997d)

These networks are produced by unsupervised learning algorithms and therefore are not 
capable of discriminating between correct and incorrect responses on their own; they simply 
produce a higher order description of the input data. Consequently evaluation of these 
networks is a complex issue. To address this problem the technique of Latent Semantic 
Analysis was introduced. This is a mathematical technique that is capable of automating the 
correct/incorrect decision procedure with a little tutor input to calibrate the system. Further 
it can be fed with differing input data granularities.

Experiment 3 automated the decision procedure using a simple document term matrix as 
input data to the LSA process, where each term mapped to a simple word type. This met with 
a fair degree of success correlation (37%) with tutor marks. Although this is substantially
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lower than the figures from Experiment 1 and Experiment 2 it is a technique that requires 
far less human input.

Experiment 4 used the same LSA process but started with differing input data. The input 
was a document term matrix of higher dimensionality where each term mapped onto the 
activation of a unique node on a network grown from the student data using the 
compositioning and clustering algorithms. This resulted in a tutor correlation of 55%, an 
improvement of 48% over the basic input matrix. This proves the effectiveness of perceptual 
networks in contributing significantly useful information to the automated assessment 
application.

6.1. Conneetionism and Symbolism in Symbiosis

Both Hughes (1993) and Finches (1992) PhD theses concluded with some comments on the 
implication their work has for some of the biological theories of language development and 
processing. Some similar conclusions are possible within this thesis.

Specifically, in Allott et al (1997c) a high order analysis of the implementation of the 
compositioning algorithms was made, specifically those aspects that pertain to the processing 
of temporal data. The main point of this paper was to show that the algorithm and data 
structure combined could be analysed as collaborating symbolic and connectionist modules. 
Also when analysed as such there are certain aspects of its performance that correlate well 
with what is known of human cognitive behaviour. It is appropriate to repeat some of these 
comments here.

The architecture described in summary consists of a symbiotic connectionist and symbolic 
process. The connectionist process both provides a permanent store for the associations found 
between units and the perceptual framework for the overall process (i.e. identified units 
within data). The symbolic process (the saliency module) provides a type of working memory 
for our network. Let us consider each of these processes in greater detail.

A symbolic process by definition operates on symbols. The question of “what do these symbols 
represent?” is usually defined prior to the instigation of the process. However in the outlined 
architecture we circumvent the need to do this. We define only the lowest levels symbols - 
those at atomic level. The interaction between the connectionist and symbolic processes 
serves to identify new symbols that are hopefully more appropriate for the task in hand.
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The connectionist layer represents the relationship between identified clusters/composites 
within the problem domain. This could well map out the hierarchical description of the 
problem domain, or by the use of excitatory and inhibitory links describe a causal link 
between nodes. However in the outlined design the exact nature of the relationship is 
embodied in the symbolic layer. By extracting this information from the network itself we 
allow for specialisation of the network.

There are certain aspects of the outlined model which correlate well with what has been 
observed of our own human problem solving behaviour. We comment on the similarities in 
idle speculation only and do not consider the similarities to constitute any form of proof of the 
validity of the proposed model.

6.1.1. Memory Types

Psychologists have for some time maintained distinctions between Short Term Memory 
(STM) and Long Term Memory (LTM) (Atkinson et al 1977). The three major distinctions 
being: duration, capacity and coding (described by Wicklegren 1991). Within the two modules 
discussed here there are similar distinction to be made. Items instantiated within the 
symbolic layer have a short life span (the length of the current input pattern) whilst the 
connectionist links are permanent. The coding of the nodes within the connectionist layer is 
contextual; all that is known about that node is inherent within the links attached to it. The 
tokens used within the symbolic layer are arbitrary representations. However, the capacity of 
the symbolic layer does not seem to be limited in the same way that STM seems to be. This 
could be due to their differing implementations (see 6.1.2.)

Note, also, in overall function the symbolic layer is similar to Klatzky’s (1980) description of 
STM as a “mental workbench”.

6.1.2. Symbolic Whilst Learning

It seems a feature of learning that, when presented with learning a new task or skill, the 
processing tends to be symbolic and procedural in the initial phases, less so in the latter 
phases. For example, consider learning to type, to drive a car or learning to read. Again we 
see similarities with the symbiotic design. Consider the clustering problem discussed above. 
In the initial phases the identification of new features is performed entirely within the 
symbolic layer. Once identified the apparatus necessary to perceive the feature is
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incorporated within the nodes and links of the connectionist layer, so this is where the 
processing now takes place.

6.1.3. Speed and Implementation

The architectural implementation of the modern computer is in most cases a serial, symbolic, 
Von Neumann process. Whereas there is no doubt that the brain is made up from nerves, 
which can operate in parallel.

People seem to have two modes of operation, to quote Norman (1986) “one rapid, efficient, 
subconscious, the other slow, serial and conscious”. The proposed architecture also seems to 
perform in two modes: a fast serial symbolic process, a slow connectionist process. A 
distinction between processes is preserved, although the performance ratios disagree with 
one another. It seems possible, however, that the juxtaposition of performance ratios is 
attributable to the differing implementations. Certainly the connectionist network discussed 
above is in reality a serial emulation of a connectionist process and so it would be reasonable 
to expect a performance drop.

The issue of emulating a serial process within a connectionist architecture is more complex. 
Clark (1987) has speculated for some time that “the human mind might effectively simulate a 
serial, symbol processing Von Neumann architecture.” And it is interesting to note that in his 
book (Clark 1990) he notes two shortfalls of connectionist networks in explaining human 
capacity:

1) To be able to perform serial reasoning in which the ordering of operations is vital.
2) To be able to utilise a control structure in order to specify salient micro features for 

inductive generalisation.

This is interesting as this is precisely the type of functionality being satisfied here by the 
symbolic layer.

Rumelhart and Smolensky (1986) have also pondered on the human capacity to engage in 
conscious, symbolic reasoning, and Touretsky (1990) has contributed to the debate with his 
proof that neural nets can be used as Turing Machines. All we can do here is to leave the 
open ended question: would a neural implementation of a symbolic process have a limited
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capacity and be relatively slow to process? If so, this would fall in line with the arguments 
presented above.

6.2. Further Work

The number of ways that the current work could be extended is varied. Some of the best 
contenders are considered below.

6.2.1. Improvements to the LSA procedure

There are a number of ways that improvements to the LSA procedure may be explored, 
especially in relation in to how the LSA procedure interfaces with the clustering and 
compositioning algorithms.

6.2.1.1. Neural Net Decision Procedure

Latent semantic analysis maps both terms and documents into a N-dimensional space. 
Within this spatial interpretation the correctness judgment is usually implemented as a 
simple linear algebra operation (usually dot product, sometimes simple Euclidean distance). 
This assumption of linearity may be incorrect. It is possible that a better estimate of a 
sentence’s correctness would be the definition of some non-linear subspace of the N- 
dimensional space in which all documents and terms are represented. A neural network is a 
way of inducing the optimum non-linear subspace that best distinguished between correct 
and incorrect responses. The procedure would be quite simple:

1. Construct a 3-layer net with N input nodes, arbitrary hidden nodes and single 
output node.

2. With marked responses train the net with the documents input vectors (where size of 
the input vector determines N) and output vector trained to {0,1} - the correctness 
judgement.

3. Reconfigure net with different number hidden nodes until adequate trade-off is 
reached between over-fitting and accuracy.

4. Now compare the neural net judgement to that of the simple dot product measure.

This technique is not practical for applying to real data as it would require too much human 
input (i.e. all documents pre-marked) but it would be an interesting experiment to test the 
linearity assumption.
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6.2.1.2. Term Weighting

As was mentioned in Section 5.2.4.3 there is no precise test for statistical significance in the 
network growth algorithms, but more importantly no marking-up or strengthening of nodes 
or links to reflect the importance of a node in terms of the frequency that it appears or the 
weight of the corroborating evidence that supports a nodes instantiation. If this were 
implemented we would have the ideal grounds upon which we could implement term 
weighting on the document/term matrix that is presented to the LSA procedure. Term 
weighting has been shown by Landauer et al (1997b) to significantly improve the 

performance of the LSA procedure.

6.2.1.3. Dynamic Dimensional Reduction

Within the LSA process, the decision of the number of dimensions to reduce the document 
term/matrix to is a fairly ad hoc procedure. To illustrate just how ad hoc this procedure is, 
consider the following:

Imagine that a handcrafted network is used as the perceptual augmentation process on the 
LSA procedure for a simple question. It should be fairly apparent (and indeed Experiment 1 
and 2 prove) that one of these nodes (i.e. input terms on the document term matrix) would be 
statistically significant in predicting a specific answers “correctness”. This will simply be the 
node that is intended to model the answers “truth” value. However when the LSA procedure 
is applied this document term matrix will be reduced to an arbitrary number of dimensions, 
of which this “effective” dimension will just be a part. The LSA implemented correctness 
judgement will simply be a similarity measure of vectors within this dimensional space. The 
noise to signal ratio is high: as has been shown there is a single dimension which is effective 
at predicting “correctness”, but this could be one of twenty un-weighted dimensions. A 
sentence could be judged incorrect even if the effective dimension is in alignment, but two 
other arbitrary dimensions are giving contrary indications.

A possible way to avoid this problem is to implement a procedure that is capable of 
estimating a dimensions contribution to or ability to estimate the sentences truth state. This 
procedure would necessarily be a supervised procedure requiring knowledge of the mark that 
an answer has been given. But if implemented this information could be fed back in order to 
dynamically and knowledgably reduce the matrix to an optimally effective set of dimensions. 
(Note the neural net decision procedure from Section 6.2.1.1 is a procedure capable of making 
such judgements.)
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6.2.2. ClusteringlCompositioning Algorithm Enhancements

There is virtually no end to the ways in which the core algorithms can be enhanced. Not only 
is it possible to make adjustments and optimisations to the algorithms themselves, but the 
various configurable heuristics can be tuned in various dimensions. Within this thesis a 
simple consistent line of argument has been taken to prove that the “grown” networks are 
effective within this problem domain, however there is plenty of scope for further 
investigation in identifying the precise configurations that lead to the most effective 
networks.

6.2.3. Network Visualisation Tools

Unlike the networks hand generated by the tutor the networks generated by the algorithms 
are extremely dense and complicated. Specifically, rather than a single rooted hierarchy; 
most of the algorithmically produced networks are many rooted and somewhat tangled in 
nature. Further, the networks do not necessarily form bottom heavy hierarchies, for the 
simple reason that the number of parents of a single child node is in no way restricted. It is 
quite possible for the sum of the parents of a discrete subset of child nodes to outnumber the 
number of child nodes themselves. In fact rather conforming to the restrictive tree type 
hierarchy, the AGN’s conform to the more general description of a directed a-cyclic graph, 
and conceivably even to a directed cyclic graph. Consequently, in their raw form they are 
virtually impossible to present in 2D. The obvious constraint that links do not cross on the 2D 
representation in order for the graph to be readable is impossible to satisfy. However, if some 
useful visualisation tools could be produced, or maybe simple structured queries devised that 
would expose the network in fragments, they may deliver some useful insights that would aid 
in the refinement of the algorithms.

6.2.4. Non Discretisation o f  the Activation Network

An obvious enhancement would be to relax the constraint that all activations be Boolean. 
This would make the algorithms applicable to a much wider range of problem domains, 
though possibly not bring that many benefits to this particular automated assessment 
application. The algorithms would need redesigning if this were done, primarily it is the 
issue of composition and the identification of true instances of the occurrence of a composite 
that would prove problematic. Associated with this point and Section 6.2.1.2 above, is the 
ability to mark-up or strengthen the composite and clustered nodes that have a stronger 
statistical grounds for creation.
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6.2.5. Parallel Implementation

A major limitation of the algorithms as they stand is that the algorithms are inherently 
parallel in nature. Implementing them on a serial machine obviously limits the 
dimensionality of the problem domain due to the consequent combinatorial explosion. 
Implementing the algorithms on a truly parallel machine would open up interesting new 
possibilities in applying the algorithms to new applications.

6.2.6. Application o f Algorithms to Different Domains.

Probably the most interesting piece of research is identifying the applicability of the core 
algorithms to different domains. Obvious contenders within the natural language processing 
field are grapheme analysis, phoneme analysis and syntactic analysis. Each of course would 
need the development of an evaluative framework or application that would be capable of 
accepting input at the perceptually enhanced description. Another potential application is 
within the generic domain of data mining. In fact some progress has already been made in 
investigating this route (Allott et al 1997d).

6.3. Concluding Remarks

Automated Assessment is an attractive application to study both because of its obvious 
benefits in the real world and as a formal framework in which to analyse the performance of 
natural language understanding systems.

However, despite the limited successes that have been reported both here and in the latent 
semantic analysis work, we should be sceptical of any of the approaches in their present form 
being applicable on large scale in the field. Consider for a minute the cynical teacher who 
marks his/her student reports by first looking at the thickness of the report and then at the 
neatness of the handwriting. The teacher is by no means analysing the content, but they are 
making judgements on indicators, which in their experience correlate sufficiently well with 
content. This is quite possibly what is being uncovered by techniques such as LSA, i.e. it is 
identifying and making judgement on features which happened to correlate with the quality 
of the work. This is not a criticism of the approach as this form of empirical, Turing Test type 
approach is precisely what is needed when dealing with such difficult to define problems as 
understanding. Nor does it invalidate the results, as the metrics outlined will identify any 
major statistical irregularity in a given student result base. No, the problem is entirely 
practical. Given any marking scheme, if the mechanics of the operation are public knowledge, 
is it possible to satisfy the mechanics of the evaluative mechanism without satisfying the 
“proper” criteria for correctness? Unfortunately this is probably the case. Take LSA: a target
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document is defined as a vector in N-dimensional space. If the vectors for individual terms 
are known it would be fairly easy to approximate to the target vector with just a few well 
chosen terms. Although improbable, the resourcefulness of students, especially when it comes 
to finding ways of avoiding doing work, should not be underestimated. Note the critical 
distinction here is: although the error metrics developed will check statistically for 
refutations of the given model of correctness within a particular student base, in order to be 
genuinely applicable in the real world the model really needs to be able to stand up to 
deliberate attempts to produce counter-examples.

Despite this, automated assessment remains a useful framework within which natural 
language theories may be developed and tested. It is within this framework that two pieces of 
work have been completed. Firstly the development of a network schema with combined 
representational and computational properties. Secondly, the development of algorithms for 
producing such networks. Both have met with limited success within this domain. What 
remains to be seen is whether the core technologies may have any practical application 
within any other domain. This is an avenue of investigation (Allot et al 1997d) that has 
already started by analysing the algorithms within the more generic application of data 
mining.
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AppendixA. Sam ple Q uestions and A nsw ers

Q uestions

This test checks whether you have grasped the meaning of certain key oncepts presented 

in the course so far. The questions are not marked as you sit the test but will be recorded 

for your tutor to mark and will be returned to you shortly.

Question number 1
Define the term ’low-level language’ by completing the sentence ’A low level language is

y

Question number 2
Define the term ’high level language’ by completing the sentence ’A high level language 

is...’.

Question number 3
Is COBOL a high or low level language ? State which and explain the reasons for your 

choice.

Question number 4
Describe the SELECTION JSP structure item given that the other two are SEQUENCE 
(different types of items following each other in a known order each of which must be 
processed in a different way by different sections of code in the program) and 

ITERATION (many items, each of the same type and thus processed by exactly the same 
piece of code in the program).

Question number 5

"One to One correspondence i s  " : complete this sentence.

Question number 6

Define the term SEQUENTIAL in Jackson Structured Programming (JSP) by completing 
the sentence "Sequential items are....".

Question number 7
What is an iteration item in terms of Jackson Structured Programming ?
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Question number 8
JSP’s SELECTION type applies to data/operations that are ....

Question number 9
Leaf items exist on JSP program structure diagrams. Explain what these are be 

completing the sentence "Leaf items are ....".

Question number 10
List the extra 3 schematic titles resulting from a JSP selection item ALPHA that has 
three options BETA, GAMMA and DELTA. The schematic logic item ALPHA-SEL would 
be followed by these three matching ’ALPHA-xxxxx’ items. List the three in the correct 

order.

Question number 11

Read-ahead is a programming technique that allows the program to...what?

Question number 12
A PROCESS item on a program structure diagram infers several processes, list these 
processes in the correct order of appearance.

Question number 13

Define ’RESIDENT’ in COBOL terms by completing the sentence ’A SEGMENT of 
COBOL code is resident if....’.

Question number 14

Define ’NON-RESIDENT’ in COBOL terms by completing the sentence ’NON-RESIDENT 
segments of COBOL code are ’.

Question number 15
Subroutines in COBOL are not PERFORM’ed paragraphs or SECTIONS of the main 

program. Define them by completing the sentence ’Subroutines in COBOL are....’.

Question number 16

Variables inside a COBOL subroutine are unlike variables inside subroutines/procedures 
in other languages, why?

Question number 17

A flow schema is a diagrammatic representation of what ?
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Question number 18
In a flow schema, complex conditions containing sub-conditions OR’ed with each other 
must be considered as separate sub-conditions. Explain why this is so by completing the 

sentence "OR’ed expressions must be broken down into their components because "

Question number 19
Define the term ’condition list’ by providing the remainder of the sentence ’A condition 

list is...’.

Question number 20
Four ways to reduce the number of test paths resulting from flow schema analysis are 

often quoted. One relies on eliminating a zero iteration path because of count 

initialization, two others rely on paths not existing because of nested iterations sharing 

the same conditions. What does the fourth way of reducing the number of test paths rely 

on ?

A nsw ers
Q uestionl
Student 1: ONE ones WHICH ALLOWS LOW LEVEL CALLS AND THE USE USE OF 

REGISTERS AND INTERUPTS
Student 2: A LANGUAGE THAT OPERATES AT PROCESSOR LEVEL
Student 3: a language that translates into machine code at a ratio 1:1

Student 4: one that uses commands at cpu and register level, with non-english commands
Student 5: a language which translates instructions in to code at a ratio of 1:1
Student 6: one in which ONE instruction translates to ONE machine code instruction
Student 7: AN ASSEMBLY LANGUAGE

Student 8: A low level language is asembler.
Student 9: machine orientated rather then user orientated 

Student 10: a machine and assemlby code orientated langauge.

Student 11: a language that is easily used by the pc, eg assembler or machine code 
Student 12: .... a language which falls closest to machine code type commands.
Student 13: is a one that is closly related to the machine eg Assembler 

Student 14: a language which is closely linked to the machines OS & architechture. 
Student 15: ASSEMBLY CODE 
Student 16:
Student 17: A language written directly to register addresses, i.e Assembler languages. 
Student 18: a language that operates directly on the cpu, e.g assembler, machine code
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Student 19: A LANGUAGE THAT IS EXTREMELY CLOSE TO THE ACTUAL 

MACHINE INSTRUCTION.

Student 20: code closest to the machines architecture.
Student 21: a language which relates closely to the computers own language (binary) 
Student 22: a language whose syntax is close to the machines instruction set 
Student 23: a language that is close to the operating system.
Student 24: one that contains instructions understood by the machine 

Student 25: a language that is closer to the computers object code, eg assembler.

Student 26:
Student 27: one which communicates more directly with the machine 
Student 28: closer to the actual machine code, such as Assembler for example!!

Student 29: CLOSER TO THE LANGUAGE OF THE OPERATING SYSTEM 
Student 30: A low level language is a language using assembly code type commands 
Student 31: a machine orientated language that does not require a compiler/translater 

Student 32: machine dependant,or machine code, or assembly language 
Student 33: close to the machine code as possible and 
Student 34: A low level language is a machine set of instruction.

Student 35: a language that talks closely to the computers architecture.

Student 36: one that relates more to what the computer understands rather than 
humans.

Student 37: a language based on the processors instruction set, eg assembly language. 

Student 38: is related closer to the level of machine languages,less user orientated. 

Student 39: A low level language is a language like Machine code 
Student 40: a language which is closest to real machine code.

Student 41: a set of instructions used to handle files.
Student 42: where instructions are at a low level, close to machine code.
Student 43: on that resembles the computers architecture at a hardware level 
Student 44: A low level language is written without the use of mnemonic commands 

Student 45: A language thats bears a closely resembles the language the machines uses 
Student 46: a language that uses commands native to the machine, for example, 
Assembler

Student 47: a programming language that uses assembly code (mnemonics) e.g INT 21H 
Student 48: a language at a machine code level, eg assembler.
Student 49: one that is closest in syntax to the machines own language eg assembler 

Student 50: one that is close to the actual machine language used by the computer 
Student 51: a language similar to machine code.

Student 52: A low level lanugage is a language which is closest to the operating system 
Student 53: which is like machine code
Student 54: a language that works from the operating system such as assembler
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Student 55: an operating system language (assembler) converts into machine code. 

Student 56: A LANGUAGE THAT IS, OR IS CLOSE TO THE MACHINES OWN CODE 

EG BINARY OR ASSEM

Student 57: IS A LANGUAGE THAT USE ASSEMBLY CODE
Student 58: one that uses mneumonics that the programmer and the machine understand 
Student 59: 1 that is hard to understand but is faster as the comp can trslte it easier 

Student 60: a language that resembles the machines actually machine-code instructions. 
Student 61: A LANGUAGE THAT RELIES ON DIRECT CALLS TO THE COMPUTER 

ARCHITECTURE
Student 62: Machine Code. It is of more meaning to the computer than to a person. 
Student 63: nearer to a computers understanding - nearer to machine code 
Student 64: A LANGUAGE THAT OPERATES AT PROCESSOR LEVEL

Question2
Student 1: PASCAL, ALLOWS USE OF DATA STRUCTURES BUT NOT INTERRUPT 

HANDLING
Student 2: A HIGH LEVEL LANGUAGE IS ONE THAT HAS PRE-WRITTEN 

ROUTINES
Student 3: a langauage that translates in machine code with a ratio 1: Many 
Student 4: one that uses english type commands and has functions to handle cpu calls. 

Student 5: a language containing functions relating to English, easier to understand. 
Student 6: one in which ONE instruction translates to MANY machine code instrutions 

Student 7: COBOL
Student 8: A high level language is cobol.
Student 9: user orientated - easier for the programmer to use.

Student 10: similar to the user’s own language (in that its command works are verbs). 
Student 11: a language that requires translating into a low level set of code 

Student 12:.... a language which is similar to English.

Student 13: one that is in easy to under stand in an english type form, eg COBOL 

Student 14: one which is verbose in its instructions, i.e ADD 1 TO G GIVING X 
Student 15: A LANGUAGE WHICH IS SIMILIAR TO WRITTEN ENGLISH I.E. PASCAL 
Student 16: njk

Student 17: programmer coded language such as COBOL, PASCAL, BASIC etc.

Student 18: a language that converts understandable instructions to machine code 
Student 19: CLOSE TO THE HUMAN LANGUAGE, EASY TO READ BY A HUMAN. 

Student 20: code nearer to the English language and mathematic expressions.
Student 21: a language which is easily readable by the user no knowledge of cpu needed 
Student 22: a language with statements unlike the machines instructions (english like)
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Student 23: a language made up of ’English’ like statements to make it easier to use. 

Student 24: one that needs to be translated to machine (low-level) language 
Student 25: a language that is more like standard English, words rather than codes. 
Student 26: one that uses english keywords eg read goto etc rather than JMP.
Student 27: one which is interpreted by the machine rather than directly communicating 

Student 28: related to english type sentances or words that require further compilation 

Student 29: A LANGUAGE THAT REQUIRES COMPILING BEFORE THE O.S. CAN 

RUN IT
Student 30: a language such as cobol which gives a set of high level commands to use 
Student 31: a user orientated language that needs to be compiled to obj code before run 
Student 32: a language which is compiled or interpreted before it can be executed 

Student 33: where source code is converted into opcode 
Student 34: A language which is easily reconized by human and machine.

Student 35: a language which is close to English, eg Pascal.

Student 36: one which relates more to the Human language rather than the machine 

lang.
Student 37: a verbose language, using words that are english(natural) language 

Student 38: more user orientated and user friendly easier to use and programme 

Student 39: A high level language is
Student 40: a language that is similar to english, and thus furthest away from M/Code. 

Student 41:
Student 42: a language where an instruction represents many machine code instructions 

Student 43: one that does not resemble computer architecture
Student 44: one which uses more abstract commands while must be compiled or 

translated
Student 45: A language that has a structure tailored towards the user and not the comp. 
Student 46: a language that uses english words to carry out specific functions 
Student 47: a language that has to be converted into machine code before processing. 

Student 48: is constructed with easy to read english type statements.
Student 49: one that allows commands that are closer to a human language eg COBOL 

Student 50: close to the english language in readablity and grammar 

Student 51: similar to english
Student 52: used to create applications to be used on a computer.
Student 53: which is like english,one command has many machine code commands 
Student 54: when the language is structured towards a user (PASCAL)
Student 55: one that is highly structured to do certain things when it is run.
Student 56: A LANGUAGE THAT IS ENGLISH LIKE AND EASY TO UNDERSTAND 
EG PASCAL,COBOL
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Student 57: LANGUAGE THAT HAS TO BE CONVERTED TO MACHINE CODE 
BEFORE PROCESSING
Student 58: one that has to be tokenised by the machine, but is more like english text 

Student 59: easy to follow as it uses nearer english comms but must be translated to me 

Student 60: a language that resemble spoken english unlike low lev ones, easier to use 

Student 61: A LANGUAGE THAT TRANSLATES ’ENGLISH’ WORDS INTO MACHINE 
CODE
Student 62: of more meaning to a human by using syntax which can easily be understood. 
Student 63: one which is near to written english - cobol, pascal
Student 64: A LANGUAGE THAT CAN HAVE OTHER ROUTINES DESIGNED IN IT
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AppendixB. Sam ple M aster D ocum ent
Full report on answers (set number 1) in file "Allhnd". 

Student: "ANGUS LORIMER".

Question file "P2wk8" (last edited at 11:01 25.11.92). 

Title : Prog 2 - wk8 test. 20 questions asked.

Test occurred at 13:53 26.11.92 and took 36 mins,39 secs.

Questions
1: answer is : Mark : 0

"ONE ones WHICH ALLOWS LOW LEVEL CALLS AND THE USE USE OF

REGISTERS AND INTERUPTS"
2 : answer is : Mark : 0

"PASCAL, ALLOWS USE OF DATA STRUCTURES BUT NOT INTERRUPT 

HANDLING"
3 : answer is : Mark : 0

"HIGH,DOES NOT ALLOW LOW LEVEL CALLS OR VIEWING AND USE OF 

REGISTERS"
4 : answer is : M ark: 0

"SELECTION COULD BE AN IF ' STRUCTURE IF NOT THIS THEN DO THE 

OTHER.ITERATIO
N COLULD WHILE NOT EOF DO.I.E. KEEP LOOPING AND PROCESS ITEMS 

UNTIL END OF 
FILE IS REACHED."
5 : answer is : Mark : 0

"WHERE THERE IS A LINK BETWEEN TWO ITEMS OR FILES. E.E. MERGING 
WILL INVOLVE

A ONO TO ONE CORRESPONDENCE WHERE THERE IS TRANSACTION FILE 

AND A MASTER F
ILE THERE WILL BE A ONO TO CORRESPONDENCE BETWEEN THE DATA IN 

BOTH FILES."
6 : answer is : Mark : 0

"ITEMS WHICH FOLLOW ONE ANOTHER IN A GIVEN ORDER"

7 : answer is : M ark : 0
"A LOOP STRUCTURE,WHILE NOT EOF DO.DO PROCCESES UNTIL EOF"
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8 : answer is : Mark : 0
"A SELECTION COULD BE AN IF THEN ELSE STRUCTURE. A SELECTION IS ONE 

WHEN EIT
HER ONE LOT OF INSTUCTIONS ARE CARRIED OUT OR ANOTHER SET OF 

INSTRUCTIONS A
RE CARRIED OUT.E.G. IF S=1 DO START ELSE DO END. THIS IS A SELECTION 

STRUCT
URE WHERE START IS PROCESSED IF S =1 ELSE END IS PROCESSED."

9 : answer is : Mark : 0
"THESE ARE ITEMS WHICH ARE USED TO SHOW PROCESSES LIKE OPEN 

FILES,CLOSE FILE
S ETC THEY FOLLOW A PARTICULAR ORDER AND ARE USED TO SHOW THE 

ABOVE."
10 : answer is : Mark : 0

"ALPHA-BETA,ALPHA-GAMMA,ALPHA-DELTA"
11: answer is : Mark : 0

"THIS ALLOWS THE PROGRAM TO READ THE FIRST THE RECORD BEFORE ANY 
PROCESSING

IS PERFORMED ON THE FIRST RECORD. IT IS USED SO THAT EOF IS NOT 
REACHED BEF

ORE ALL THE RECOPRDS IN A FILE HAVE BEEN READ. e.G. READ AHEAD THEN 
DO PROC

ESSING ETC. IN COBOL THE READ AHEAD IS USED FOR THIS PARTICULAR 
REASON AS O

THERWISE THE EOF FLAG WOULD BE SET BEFORE THE LAST RECORD HAD 
BEEN PROCESSE 

D."

12 : answer is : Mark : 0
"ITERATION,SELECTION"
13 : answer is : Mark : 0

"IT IS PRESENT IN MEMORY/BUFFER.IF IT IS NOT RESIDENT IT HAS TO 
BROUGHT IN."

14 : answer is : Mark : 0

"WHICH ARE NOT RESIDENT IN THE BUFFER/MEMORY,I.E.DATA/CODE NOT 
AVAILABLE"

15 : answer is : M ark: 0

"CALLS TO OTHER PARTS OF THE PROGRAM.I.E.IF EOF GO TO END-PARA."
16 : answer is : Mark : 0
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"BECAUSE THEY ARE GLOBAL VARIABLES AND NOT ARE NOT JUST WITHIN A 

PROCEDURE"
17 : answer is : Mark : 0

"THE FLOW OF DATA AROUND A PROGRAM I.E. A PROGRAM TEST SCHEMA"

18 : answer is : Mark : 0
"OTHERWISE IT WILL INVOLVE ALOT OF UNNESSARY TESTS. IF THEY ARE 

ORED THEN TH
EN THE EXPRESSION AND THE TEST BECOME ALOT SIMPLER AND THE 

AMOUNT OF DIFFER 
ENT PATHS REQUIRING TESTING BECOME LESS AND MORE CLEARER"

19 : answer is : Mark : 0
"IS A LIST OF CONDITIONS AND TESTS THAT HAVE BEEN TESTED OR WILL BE"

20 : answer is : Mark : 0
"IT RELIES ON EOF BEING TRUE THUS NOT HAVING TO TESTED."

0

Total score is 0% (0 out of 0 points).

Full report on answers (set number 2) in file "Allhnd".
Student: "NEILS AJ".

Student name has changed. Original name was: "Neils AJ".

Question file "p2wk8" (last edited at 11:01 25.11.92).

Title : Prog 2 - wkS test. 20 questions asked.

Test occurred at 17:51 26.11.92 and took 39 mins,5 secs.

Answer data edited at 12:21 27.11.92.

Questions

1 : answer is : Mark : 0
"A LANGUAGE THAT OPERATES AT PROCESSOR LEVEL"

2 : answer is : Mark : 0
"A HIGH LEVEL LANGUAGE IS ONE THAT HAS PRE-WRITTEN ROUTINES"

3 : answer is : Mark : 0
"HIGH. YOU DON’T COMMUNICATE DIRECTLY WITH THE PROCESSOR / OS"
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4 : answer is : Mark : 0
"MANY ITEMS EACH OF A DIFFERENT TYPE PROCESSED BY THE PROGRAM 

DEPENDANT ON 

CERTAIN CONDITIONS BEING MET."

5 : answer is : M ark : 0
"WHERE A DATA ITEM FROM ONE FILE MAPS DIRECTLY TO ONE ITEM IN 

ANOTHER DATA 

FILE."
6 : answer is : M ark: 0

"PROCESSED ONE AFTER THE OTHER IN A KNOWN ORDER"

7 : answer is : Mark : 0

"AN ITEM THAT IS REPEATED UNTIL A CONDITION BECOMES TRUE"
8 : answer is : Mark : 0

"DIFFERENT AND DEPENDANT ON CONDITIONS BEING MET"
9 : answer is : Mark : 0

fl II

10 : answer is : Mark : 0
"ALPHA-BETA, ALPHA-GAMMA, ALPHA-DELTA"

11 : answer is : Mark : 0

"DETERMINE WHEN THE END OF A FILE IS REACHED BEFORE IT STARTS TO 
CARRY OUT
THE OPERATIONS ON THAT PIECE OF DATA"
12 : answer is : Mark : 0

"READFILE, DO WHATS TO BE DONE WITH IT, WRITE THE OUTPUT."
13 : answer is : Mark : 0

"IT IS BEING USED AT THE TIME"

14 : answer is : M ark: 0
"SEGMENTS THAT ARE MADE RESIDENT WHEN A CALL GOES TO THEM."
15 : answer is : Mark : 0

"PROCESS es THAT GET CALLED UPON FROM DIFFERENT AREAS OF THE MAIN 
PROGRAM"

16 : answer is : M ark : 0

"BECAUSE THE STATUS OR VALUE OF THAT VARIABLE IS RETAINED UNTIL 
THE NEXT AxS"

17 : answer is : Mark : 0
"THE DIFFERENT PATHS A PROGRAM CAN TAKE TO REACH THE END."
18 : answer is : M ark: 0

"EACH OR’ed CONDITION ALLOWS THE PROGRAM TO EXIT VIA A DIFFERENT 
ROUTE..."
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19 : answer is : Mark : 0
"A LIST OF COND’S THAT MUST BE MET IN ORDER FOR THE PROG TO TAKE 

THAT PATH..”
20 : answer is : Mark : 0 
"THE NUMBER OF DAYS LEFT UNTIL XMAS"

0

Total score is 0% (0 out of 0 points).
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AppendixC. Sam ple K now ledge B ase F ile
NextConcept: c_0

Name: q9 

Type: BAS 
Threshold: 1

Name: CJbrach 

Type: ABS 
Threshold: 1 
Association: q9

Name: C_notbelow 

Type: ABS 
Threshold: 2 
Association: q9 

Association: not

Name: not 

Type: BAS 
Threshold: 1 
Evidence: not 
Association: C_notbelow

Name: below 

Type: BAS 
Threshold: 1 
Evidence: below 
Association: C_notbelow

Name: branch 
Type: BAS 
Threshold: 1 
Evidence: branch 
Evidence: branches 
Association: CJbrach

Name: q8

Type: SAT 

Threshold: 1

Name: loop 
Type: BAS 
Threshold: 1 
Evidence: loops 

Evidence: loop 
Association: C_repeat

Name: C_repeat 

Type: BAS 

Threshold: 1 
Association: q7

Name: control 
Type: BAS 
Threshold: 1 

Evidence: control 

Association: C_stop

Name: C_stop 
Type: ABS 
Threshold: 1 
Association: q8 

Association: q7

Name: q7 

Type: SAT 
Threshold: 1

Name: condition 
Type: BAS 
Threshold: 1 
Evidence: conditional 
Evidence: conditions 
Evidence: condition



Association: q4 

Association: q8 
Association: C_stop 
Association: q7

Name: repeat 

Type: BAS 

Threshold: 1 
Evidence: repeadted 

Evidence: repeats 
Evidence: repeated 
Evidence: repeat 
Association: C_repeat 
Association: q7

Name: process 
Type: BAS 
Threshold: 1 
Evidence: processed 
Evidence: process 
Evidence: processes 
Association: C_other

Name: turn 
Type: BAS 
Threshold: 1 
Evidence: turn 
Association: C_after

Name: serially 
Type: BAS 

Threshold: 1 
Evidence: serial 
Evidence: serially 
Association: C_after

Name: order 
Type: BAS 
Threshold: 1

Evidence: order 
Association: C_other

Name: item 
Type: BAS 
Threshold: 1 
Evidence: items 

Evidence: item 

Association: CJbrach 

Association: C_after 
Association: C_itemfile

Name: q6 
Type: SAT 
Threshold: 2

Name: C_other 
Type: ABS 
Threshold: 1 

Association: q6

Name: C„after 

Type: ABS 
Threshold: 1 
Association: q6

Name: after 
Type: BAS 

Threshold: 1 

Evidence: ofter 
Evidence: after 

Association: C_after

Name: follow 
Type: BAS 

Threshold: 1 
Evidence: follows 
Evidence: following 

Evidence: follow



Association: C_after

Name: another 

Type: BAS 

Threshold: 1 
Evidence: another 
Association: C_other

Name: other 
Type: BAS 

Threshold: 1 
Evidence: other 
Association: C_other

Name: human 
Type: BAS 

Threshold: 1 
Evidence: human 
Association: C_useown

Name: q2 
Type: SAT 
Threshold: 1

Name: english 

Type: BAS 
Threshold: 1 
Evidence: english 
Association: C_useown

Name: user 
Type: BAS 

Threshold: 1 

Evidence: users 
Evidence: user 
Association: C_useown

Name: C_useown 

Type: ABS

Threshold: 1 
Association: q2

Name: assembly 
Type: BAS 
Threshold: 1 

Evidence: assembler 
Evidence: assemlby 
Evidence: assembly 
Association: C_langtype

Name: machine 

Type: BAS 
Threshold: 1 
Evidence: machine 
Evidence: machines 
Association: C_langtype

Name: computer 
Type: BAS 

Threshold: 1 
Evidence: computer 
Evidence: computers 
Association: CJangtype

Name: language 
Type: BAS 

Threshold: 1 
Evidence: language 

Evidence: langauge 

Evidence: languages 
Association: C_lang

Name: code 
Type: BAS 
Threshold: 1 
Evidence: code 
Association: C_lang
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Name: instruction 

Type: BAS 
Threshold: 1 
Evidence: instruction 

Evidence: instructions 

Association: C_lang

Name: C_langtype 
Type: ABS 
Threshold: 1 
Association: C_lowlang

Name: C_lang 
Type: ABS 
Threshold: 1 
Association: C_lowlang 

Association: C_transl:l

Name: CJowlang 

Type: ABS 

Threshold: 2 
Evidence: assembler 

Association: C_langORarc

Name: C_langORarc 

Type: ABS 
Threshold: 1 
Association: aa

Name: C_nearORuse 
Type: ABS 
Threshold: 1 
Association: aa

Name: C_near 

Type: ABS 
Threshold: 1
Association: C_nearORuse

Name: C_use 

Type: ABS 

Threshold: 1
Association: C_nearORuse

Name: C_arc 

Type: ABS 

Threshold: 1
Association: C_langORarc

Name: register 
Type: BAS 

Threshold: 1 
Evidence: register 
Evidence: registers 
Association: C_arc

Name: interupts 
Type: BAS 

Threshold: 1 

Evidence: interupts 
Evidence: interrupts 
Association: C_arc

Name: cpu 
Type: BAS 
Threshold: 1 
Evidence: cpu 
Association: C_arc

Name: processor 
Type: BAS 

Threshold: 1 
Evidence: processor 
Evidence: processer 
Evidence: processer 
Evidence: proceser 
Association: C_arc



Name: use 

Type: BAS 
Threshold: 1 

Evidence: used 

Evidence: using 
Evidence: uses 

Evidence: use 
Association: C_use

Name: operate 

Type: BAS 
Threshold: 1 
Evidence: operate 
Evidence: operates 
Evidence: uses 
Evidence: use 
Association: C_use

Name: based 
Type: BAS 
Threshold: 1 

Evidence: base 
Evidence: based 
Evidence: bases 

Association: C_use

Name: allow 

Type: BAS 
Threshold: 1 
Evidence: allow 
Evidence: allows 

Association: C_use

Name: rely 
Type: BAS 
Threshold: 1 
Evidence: rely 
Evidence: relies 
Evidence: relys

Association: C_use

Name: depends 
Type: BAS 

Threshold: 1 
Evidence: depend 
Evidence: depends 

Evidence: dependant 
Association: C_use

Name: close 

Type: BAS 
Threshold: 1 
Evidence: closest 
Evidence: closely 

Evidence: closer 
Evidence: close 
Association: C_near

Name: similar 
Type: BAS 

Threshold: 1 
Evidence: similar 
Association: C_near

Name: at 
Type: BAS 

Threshold: 1 
Evidence: at 
Association: C_near

Name: like 
Type: BAS 
Threshold: 1 

Evidence: like 
Association: C_near

Name: near 
Type: BAS



Threshold: 1 

Evidence: near 

Evidence: nearly 
Evidence: nearer 
Association: C_near

Name: type 

Type: BAS 
Threshold: 1 

Evidence: type 
Association: C_near

Name: orient 

Type: BAS 
Threshold: 1 

Evidence: orientated 

Evidence: oriented 
Association: C_near

Name: resemble 

Type: BAS 
Threshold: 1 

Evidence: resemble 
Evidence: resembles 
Association: C_near

Name: translate 
Type: BAS 

Threshold: 1 

Evidence: translate 
Evidence: translates 
Association: C_eonvert

Name: convert 
Type: BAS 

Threshold: 1 
Evidence: convert 
Evidence: converts 
Association: C_convert

Name: C_convert 
Type: ABS 
Threshold: 1 
Association: C_transl:l

Name: 1:1 
Type: BAS 

Threshold: 1 
Evidence: 11 

Evidence: 1 
Evidence: one 

Association: C_trans 1:1

Name: aa 
Type: ABS 
Threshold: 2 
Association: ql 
Association: q3

Name: C_transl:l 
Type: ABS 

Threshold: 3 

Association: q l

Name: q l 

Type: SAT 
Threshold: 1

Name: q3 
Type: SAT 

Threshold: 1

Name: high 
Type: BAS 
Threshold: 1 
Evidence: high 
Association: q3



Name: q4 
Type: SAT 
Threshold: 1

Name: option 

Type: BAS 
Threshold: 1 
Evidence: option 
Association: q4

Name: choice 
Type: BAS 
Threshold: 1 
Evidence: choice 
Evidence: choices 
Association: q4

Name: one 

Type: BAS 
Threshold: 1 
Evidence: one 
Association: q4

Name: if 
Type: BAS 
Threshold: 1 

Evidence: if 
Association: q4

Name: CJtemfile 
Type: ABS 

Threshold: 1 
Association: q5

Name: file 
Type: BAS 
Threshold: 1 

Evidence: file 

Evidence: files

Association: Cjitemfile

Name: C„map 

Type: ABS 

Threshold: 1 
Association: q5

Name: map 
Type: BAS 
Threshold: 1 
Evidence: map 

Evidence: mapping 

Evidence: maps 
Association: C_map

Name: link 
Type: BAS 

Threshold: 1 

Evidence: link 
Association: C_map

Name: q5 
Type: SAT 
Threshold: 2

Name: match 

Type: BAS 
Threshold: 1 
Evidence: match 
Evidence: matches 

Evidence: matching 

Association: C_map

Name: compatible 
Type: BAS 
Threshold: 1 
Evidence: compatible 

Evidence: compatiable 
Association: C_map



Name: relates 

Type: BAS 
Threshold: 1 

Evidence: relate 
Evidence: relates 

Evidence: relationship 
Association: C_map

Evidence: input 
Association: CJtemfile

Name: correspond 
Type: BAS 

Threshold: 1 

Evidence: corresponds 
Evidence: correspond 
Association: C_map

Name: input 
Type: BAS 
Threshold: 1

x
x



AppendixD. Publications

MPhil to PhD Transfer Publications

From the first part of this thesis where the knowledge schema itself was developed, justified
and empirically investigated there have been four resulting publications:

• “Knowledge for Language”, poster presented at the AISB94 Workshop. This paper gave an 
initial analysis of the problems arising from creating a knowledge schema specifically for 
natural language processing and outlined a general approach.

• “A Knowledge Driven Aid to the Automated Assessment of Free Text”, the full paper 
based on the work above published in the AISBQ Journal. This paper gives gave a more 
formal specification of the schema under discussion.

• “Automated Assessment: Evaluating a Knowledge Architecture for Natural Language 
Processing” published in Applications and Innovation in Expert Systems II (1994). This 
paper develops the argument for using Automated Assessment and an Evaluative 
Mechanism.

• “Connectionist Pattern Matching for Information Extraction” further develops the 
knowledge schema and applies it to the problem of information extraction. This was 
published in the NLP stream of the AI and Soft Computing Series (1997).

PhD Publications

From the latter half of this thesis where the network growth algorithms have been developed
and investigated there have been another four resulting publications:

• “A Clustering Algorithm to Produce Context Rich Networks” presented at the Advanced 
Decision Technologies Conference (1995) in the Neural Networks Stream and later 
published in the book: “Neural Networks and Their Applications”. This paper presented 
an algorithm for generating network consisting of composite nodes using the statistical 
regularity found in corpora.

• “Sequence Clustering Using Time Delay Networks” given at the ICANNGA (1997) 
conference. Develops the work above concentrating on the representation and processing 
of time based information, and outlines an improved algorithm for the construction of 
such networks.



• “Connectionism and Symbolism in Symbiosis”, given at the ICANNGA (1997) conference. 
Gives a more abstract analysis of the approach taken to the processing of time based data 
and considers the manner in which the distinct components interact.

• “Composition, Clustering and Predictor Pruning in Hierarchical Networks” published in 
the Data Mining stream of the AI and Soft Computing Series (1997). Builds upon the 
algorithm for identifying composite nodes, by adding an algorithm for identifying 
clustered nodes and outlining a strategy for tree pruning.

Full paper list

1. Allott N, Fazackerley P, Halstead P(1995),‘A Clustering Algorithm to Produce Context 
Rich Networks’ Neural Networks and their Applications, ed Taylor J.G., p265-269., John 
Wiley & Sons, Chichester.

2. Allott N, Fazackerley P, Halstead P(1994),“Knowledge for Language”, Postgraduate 
Workshop AISB94, Leeds.

3. Allott N, Fazackerley P, Halstead P(1994), “A Knowledge Driven Aid to the Automated 
Assessment of Free Text”, AISB Quarterly Journal, Vol 88, pl9-24

4. Allott N, Fazackerley P, Halstead P(1994), “Automated Assessment: Evaluating a 
Knowledge Architecture for Natural Language Processing” Applications and Innovation in 
Expert Systems II, eds Milne, R. and Montgomery, A., p319-332..

5. Allott N, Fazackerley P, Halstead P(1997),“Connectionist Pattern Matching for 
Information Extraction”, Natural Language Processing for Business Use, AI and Soft 
Computing Series.

6. Allott N, Fazackerley P, Halstead P (1997), “Sequence Clustering Using Time Delay 
Networks” accepted ICANNGA97 - International Conference on Artificial Neural 
Networks and Genetic Algorithms, University of East Anglia, in Artificial Neural Nets 
and Genetic Algorithms, Ed. Smith, G. Springer, New York

7. Allott N, Fazackerley P, Halstead P (1997), “Connectionism and Symbolism in Symbiosis”, 
accepted ICANNGA97 - International Conference on Artificial Neural Networks and 
Genetic Algorithms, University of East Anglia. Also published in Artificial Neural Nets 
and Genetic Algorithms, Ed. Smith, G. Springer, New York



8. Allott N, Fazackerley P, Halstead P (1997), “Composition, Clustering and Predictor 
Pruning in Hierarchical Networks” Neural Networks for Data Mining, AI and Soft 
Computing Series, pl81-207.
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A KNOWLEDGE DRIVEN AID TO THE AUTOMATED

ASSESSMENT OF FREE TEXT

N. Allott, P. Fazackerley and P. Halstead

Computing Department,
The Nottingham Trent University, 

Burton St,
Nottingham,

NG1 4BU.

ABSTRACT

This paper documents an attempt to produce an automated aid to the 
assessment and evaluation of student’s free text responses to simple 
questions. The chosen solution involves a comparison of tutor’s 
expectations against student’s sentence content. To this end, a nodal 
based, message passing, hierarchical knowledge representation 
scheme has been developed in which to embody these expectations. 
Hand crafted knowledge bases have been applied to real student data. 
Using scripts that have been hand marked, through a series of 
stepwise refinements it proved possible to produce knowledge bases 
which correlated with human marked scripts upwards of 85%. By 
applying knowledge bases produced this way to unseen scripts 
correlation rates of 65% were achieved.

1 - INTRODUCTION
What is the need for automated marking? Firstly, speed: in today’s climate of reducing 
staff/student ratios automated marking frees up staff time for more all important student 
contact time. Also marking turnaround is greatly reduced giving the students feedback 
quicker. Secondly, objectivity: by marking all scripts with a single machine, a standard is 
introduced where formerly marker variability (both between different markers and the 
same marker at different times) is notoriously high. Thirdly, focus: it enforces a stricter 
definition of the syllabus which must be advantageous to staff and student alike. 
Students are more aware of what they are expected to learn, and tutors aware of the 
knowledge they are supposed to impart.

The automated marking of multiple choice scripts using graphite sensitive machines is 
now widely used, even in many formal examinations. The question style however is 
limited in the type of knowledge it can be used to test and is somewhat at odds with the 
more traditional free text type questions [5],[6] and [7].

Marshall’s Intelligent Marking Assistant [1] documents a system to aid in the marking of 
student’s essay style questions. The broad outline is to break down the problem of

Published in: AISB Quarterly Journal (1994)
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assessment into a series of problems: in effect qualitative judgements made by a human 
on various aspects of the text. These low level judgements are combined by sets of rules 
into a quantitative evaluation of the text’s worth, often with attached canned comments. 
There are now several commercial systems on the market which work along similar lines

We set ourselves the same broad aim as the above, that is removing the human 
bottleneck from the marking process. Our emphasis, however, is something of a 
compromise between multiple-choice and essay marking. We wish for an objective 
evaluation of the content of the student response but we wish these responses to be of the 
more traditional unconstrained free text form. For simplicity we have constrained 
ourselves initially to single sentence answers only.

Implicit in any solution to the proposed problem is that aspects of the language 
processing and knowledge representation tasks previously performed by the marker must 
be transplanted into the computer. It is our view that with the right knowledge 
architecture such processes may be embodied within the computer and can model the 
marking process to a statistically significant degree.

2 - ANALYSIS OF PROBLEM: KNOWLEDGE FOR LANGUAGE
To clarify the problem and to provide data on which various theories could be tested, a 
series of short questions were given to second year HNC students on a general 
programming nature. Some typical questions:

Define a low level language?

One to one correspondence is...?

Define the term sequential in Jackson structured programming? 

Read-ahead is a programming technique that allows the program to ... ? 

Define non-resident in COBOL terms?

A sample of typical replies to the first of these questions (correct and incorrect): 

A language that translates into machine code at a ratio 1:1 

One that uses commands at the cpu and register level with non english commands 

A language which falls closest to the machine code type commands 

A language that operates directly on the cpu eg. assembler and machine code 

An assembly language.

Machine orientated rather than human orientated.

A language that is easily used by the pc.

A language that is closely related to the machine OS.

Published in: AISB Quarterly Journal (1994)
Vol 88, pl9-24



APPENDIX E

A careful study of the form and quality of our incoming data uncovered several features of 
language that our knowledge architecture must be capable of handling. These features 
are:

2.1 - Svnonvmv
The representation of alternatives is essential not only on the word level (i.e. synonyms: 
many words mean the same thing) but at the clause level also. To reformulate our 
problem in linguistic terminology, we are attempting to produce a mapping from the 
surface structure to deep structure. In this context our architecture must be able to model 
a many-to-one relationship.

2.2 - Polvsemv/Homonvmv
Some words have multiple meanings. The knowledge architecture must not only be able 
to represent this multiplicity but also provide a mechanism for disambiguation. In the 
context of a surface to deep mapping it is a one-to-many relationship.

2.3 - Idioms
At many levels natural language resists a compositional analysis, where the implication 
is the whole is the sum of its parts. An idiom is an example of this where the meaning of a 
phrase can not be built up from the meaning of the component words.

2.4 - Reasoning
Our knowledge architecture must have the capacity to reason. To reiterate our aim we 
wish to reason from the evidence of student’s sentence whether it belongs to the set of 
sentences that mean the same as the tutor’s definition of a correct answer. We must make 
an implementation decision whether this reasoning capacity is to be embodied in an 
external module which is applied to the knowledge or whether it become an implicit 
aspect of the architecture itself.

2.5 - Intuitive interaction
Although later research may produce more sophisticated methods for building our 
knowledge bases for the sake of simplicity the K-Base for initial systems will necessarily 
be hand edited. It is essential therefore that it be possible to represent the knowledge 
base in a clear intuitive manner, preferably graphically.

3 - OVERRIDING DESIGN PROBLEMS
In order to produce a system that both encourages data exchange from marker to 
marking system and that can reasonably model the marking process certain design issues 
need to be resolved before an implementation can proceeded. These are:

3.1 - Segm entation of KR and NLP p rocesses

Published in: AISB Quarterly Journal (1994)
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Knowledge Representation and Natural Language Processing are traditionally thought of 
as two distinct but closely associated disciplines. In this application they prove difficult to 
separate. Not only is the natural script is being used to build and test the knowledge 
structures, but the language processing, itself, is a knowledge intensive process.

In fact here the two have been embodied in the same simple but powerful underlying 
tree-like architecture. The distinction, if one is to be made, is one of degree rather than 
absolute. Knowledge pertinent to language processing, to do with the status and category 
of a word, is held low down in the tree structure. Knowledge of a higher level which 
embodies facts etc. is held high up in the tree.

3.2- Contribution of Syntax
To illuminate our problem look at the following example. All sentences below have similar 
meanings however the key concept love occurs as noun, verb, adverb and adjective.

Romeo loved Juliet

Romeo felt great love for Juliet

Romeo felt lovingly towards Juliet

Romeo had a loving feeling for Juliet

It is widely assumed that syntactic parse is a necessary precursor to any semantic 
analysis that is to take place. It is not deemed necessary in this case for the following 
reasons. Firstly, we are dealing with sentences in a highly constrained context, in that 
they all answer the same question. Any meaning to be usefully extracted from the 
grammatical status of a word may be safely inferred from context. Secondly, grammatical 
analysis is an extremely difficult problem in its own right. Finally, real world, untidy data 
is being handled; replies are ungrammatical and badly spelt - a reliable parse would be 
impossible.

When we are attempting to crudely match the meaning of one sentence against another 
where the context of the sentence is heavily constrained, syntax and the issues it raises 
seem best ignored, with little apparent effect on the eventual performance of the system.

3.3 - Understanding v s  Evidential Reasoning
It is our aim simply to discriminate between correct and incorrect responses to a question. 
To achieve this true understanding is not, we believe, necessary. In this NLP problem 
where the context of the responses is highly constrained, it is possible to generate a 
strong expectation of what will be submitted. The underlying strategy then is to explicitly 
set down these expectations within the representational scheme offered by the chosen 
knowledge architecture. The submitted student sentence is then proffered as a set of 
evidence that either confirms or refutes this expectation.

The strategy then serves to focus information on the pertinent information only. It carries 
with it, however, the disadvantage of being unable to perceive what it can not expect.

3.4 - Relation - Object Distinction

Published in: AISB Quarterly Journal (1994)
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Careful consideration must be taken of the respective epistemological status of the 
knowledge architecture and the knowledge base. (Here I use the term knowledge base to 
mean the information that is entered following the rules prescribed by the architecture). 
Common within many knowledge formalisms is an implicit Relation - Object distinction 
at the architectural level. This is undesirable for our purposes for the following reasons.

Firstly, it is difficult to express knowledge about relationships in the same way 
knowledge that we express knowledge about objects. Similarly complications arise if we 
try to represent knowledge about facts. With an implicit object relation distinction a fact 
becomes a relation between n-objects. To then represent knowledge about facts we either 
give our (relation,object,object,..) the status of an object or introduce a new entity type a 
fact and enhance the syntax (rules for combing entities) to allow facts into the 
(relation,object,object,..) construct. Either way it becomes the structure becomes untidy. 
Thirdly we may wish to make a type/token distinction between relationships as we almost 
certainly do with objects. By removing the distinction we acquire a greater consistency.

By such a move nothing need by lost, should it become essential to make such a 
distinction it is always possible to make this at the knowledge base level as opposed to the 
architectural.

4 - ALTERNATIVE TECHNIQUES
From the various literature on natural language processing ([2] [10] among others) 
knowledge formalisms applicable to our task were identified. The subject area is 
enormous, we therefore restricted our considerations to the major different breeds. Logics 
are a popular approach. In their favour they are highly formalised and have powerful 
well established reasoning mechanisms. However they are hard to understand and 
difficult to visualise by the layperson. Frames [9] are easier to visualise and are suited for 
the representation of high level knowledge. But as with the various forms of semantic 
nets [5] [3], their many sub-types are frequently inconsistent, and do not possess the 
formal qualities of logics which make it easy to spot the principal components and their 
status (slot, filler, node, arc, event etc.) from within a sentence. Further, these slot and 
filler techniques do not have well established reasoning techniques. The work of Collins 
and Loftus [8] on spreading activation and work from the connectionism field as a whole 
[11] have strongly influenced our solution to this reasoning problem.

5 - KNOWLEDGE ARCHITECTURE
The knowledge architecture opted for is similar in many ways to a semantic net, but has 
borrowed heavily from all the above. An emphasis has been put on simplicity, as the user 
has to interact directly with it. The fundamental distinction between semantic nets and 
the chosen architecture is that links are not labelled. A relationship between two objects 
is instead represented by the two objects along with a third object, representing the 
relationship, all linking to a higher abstract node. This higher node serves to group the 
constituents together and provide an abstract representation of (or a shorthand for) the 
fact itself.

5.1 - Node Characteristics
Each node has the following characteristics:
• Name (identifier)
• Activation value
• Threshold value
• List of parents (to which activation passed)
• List of children(from whom activation sent)

Published in: AISB Quarterly Journal (1994)
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• L ist o f ev idence (words w hich  trigger activation  of ev id en ce nodes)

5.2 - Node's Functional Capacities
Each unit is incorporated into a hierarchical tree type structure. Within nodes tend to 
operate in one of three capacities:

5.2.1 - Evidential
Evidential nodes are used to represent the low word level knowledge. Each has associated 
with it a list of words (evidence list) whose presence in the sentence will lead to the 
activation of the node. An evidential node is analogous to a lexeme.

5.2.2 - Abstract
An abstract node can be used to represent the abstract sense of several different nodes. It 
is then a disjunction of nodes and will become active if ANY of its children become active. 
In its simplest sense can be used to represent synonyms. (Logical OR).

5.2.3 - Compound
A compound node is used to represent the compound sense of several nodes. It is a 
conjunction of nodes and becomes active only if ALL of its children become active. A fact 
is represented with a compound type as a conjunction of abstract types. (Logical AND).

A toW  Exgmplq Q q rn p w f l  Nq<te S a m p le

FACT.23all 
children 
needed 

to trigger 
parent

either j ^ A B S J J K I N G
children  j
digger s / X \
parent / /  ^

Z ’iike'Z.i.v, 1

5.3 - Overall Structure
The knowledge is embodied in a nodal based, hierarchically structured message passing 
structure. The reasoning strategy has becomes implicit in the message passing aspect of 
the structure. So to judge a sentence each component word is presented to each evidence 
node. If the resulting flow of activation ends with the top level compound node becoming 
active the answer is deemed correct.

The abstract node and complex node are respectively responsible for representing 
synonyms and facts. A complex node can however also be used to tackle the problem of 
polysemy mentioned above.
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BANK1 BANK2

BANK

C o n tex t E xam ple
T his d e m o n s t ra te s  th e  u s e  of c o n tex t to  d isam b ig u a te  
b e tw e e n  tw o s e n s e s  of th e  w ord bank . A s e n s e  only 
b e c o m e s  ac tiv e  if th e  in s ta n c e  of th e  w ord o c c u rs  in th e  
a p p ro p ra ite  c o n te x t ie. th ey  a re  c o m p o u n d  n o d e s  
requiring  bo th  ch ild ren  active .

■

Here the topology of the nodes and the required threshold levels allow us to insist on 
context for a node to become active. Precisely the same principles may be used to model 
idiomatic phrases.

5.4 - Sample K-Base

Auto A ssessm en t

Concept Map

Files K-Base S tatistics T h esau ru s  M arks K-Edit

ttocessq j

resem bli

nearO Rusj

Iran slconvei

6 - TESTING
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In order to test the various theories put forward and to test the sophistication of the 
knowledge architecture a complete trial was performed. This involved generation of the 
knowledge base from scratch, then applying this to real student responses.

The generation of this knowledge base was facilitated by a fully integrated graphical 
editor. The knowledge base has all the qualities described earlier. Characteristics of 
individual nodes are edited with a double click of the mouse, and the overall network 
topology is edited using drag and drop techniques. A thesaurus has also been added to the 
system to help the user develop the knowledge base.

Two experiments were performed on the system:

6.1 - Experiment 1 - Retrospective
The first set of data (replies to the 20 short questions on programming) were initially 
hand marked. A knowledge base was then constructed which embodied all the qualities 
that the correct answers had in common. The answers were then applied to the network. 
Since we had the hand marked results also, we could correlate the automatic judgements 
against the manual and identify exceptions. With a series of stepwise refinements the 
knowledge base could be modified until a good model of the human marker’s performance 
was reached.

Using this technique a good model (average correlation 85%) could be produced for each 
question in less than 5 minutes. With slightly longer construction time correlation rates 
approaching 100% could be achieved in almost all cases. In order to approach these 
higher correlation rates, many of the fringe answers need to be incorporated into K-base. 
Interestingly many of the problems in incorporating the last few answers were 
attributable to spurious decisions on the part of the marker rather than genuine 
difficulties in extending the K-base.

The first experiment was essentially a test of the expressive sophistication of the 
knowledge architecture. That is, was it possible to construct a structure which could 
discriminate between right and wrong answers? The above results seem to confirm that 
this is possible. However, an obvious danger when constructing these knowledge bases is 
that we are arbitrarily discriminating between right and wrong answers, whereas we 
hope we are synthesising a K-base which truly embodies generalised elements of the 
problem domain. Further, this experiment does not prove the system is usable as in 
normal scenarios we would not have the answers pre-hand marked.

6.2 - Experiment 2 - Blind
There is no obvious method for determining the arbitrariness of a constructed knowledge 
base at face value. However to get some measure of the generality of the K-base we could 
apply constructed bases against new unseen data and compare correlation rates. This is 
what has been done here. Knowledge bases constructed in Experiment 1 were applied to 
new data (actually the responses of the following years students). This data set was then 
hand marked and coverage rates compared.

When the knowledge base created in the previous phase was applied to a blind set of data 
an average coverage rate of 65% was obtained. Considering the present limitations of the 
system this is considered very encouraging.
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6.3 - Comments
The automatic marker systematically marked fewer answers correct than the manual 
mark. It is also noticeable that very rarely does the system mark an incorrect response 
correct. In a real application we can be reasonably certain (in our tests 98%) that a reply 
marked correct will indeed be correct. We can legitimately focus future efforts on 
capturing those unexpected correct replies.

When constructing knowledge bases our major problem is anticipating the variety of 
language which can be used to reply to a question. We have partially overcome that here 
by insisting on two runs of system. One on a set of prototype information to help generate 
these anticipations and a second true run. The next logical step in reducing the time 
required to generate the knowledge base and to improve coverage rates is to introduce 
secondary knowledge sources.

7 - FURTHER DEVELOPMENT
The following have been identified as possible areas for further development:

7.1 - Running Parallel NLP Tasks Under the Same Architecture
Within the same underlying architecture it may be possible to implement many of the 
other natural language processing tasks, allowing techniques to be run in parallel: 
sharing the same information, and providing a mechanism for combing results.
• Syntactical analysis: a bottom up parse would be ideal for such an architecture. 
Further, contextual information is easily added (as in semantic processing) to augment its 
power. Variable node activation and mutually inhibitory connections would provide 
ambiguity resolution.
• Spelling correction and word recognition: by producing a similar architecture for 
the sub word level (i.e. dissolving words into hierarchically structured letter clusters) an 
information rich, context sensitive mechanism for word recovery may be provided. An 
algorithm for producing such sub-word structures has already been developed.
• Semantic analysis: more theoretical semantic methods such as componential 
analysis may also be implemented within the same architecture.

7.2 - Introducing Secondary Information Sources
In order to reduce the considerable overhead involved in generating the knowledge base 
and to improve the performance by utilising information about language variability 
secondary information sources need be integrated into the system. There are two 
immediate sources that have been identified:

Most immediately thesauri: these essentially give us synonyms i.e. words that mean the 
same thing. This is what abstract nodes within the knowledge base most frequently 
embody. A thesaurus has already been implemented within the GUI as an aid to the
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marker. It is a relatively simple step to embed the information produced this way 
automatically into the network. WordNet has also been identified as a possible supplier of 
such information. It has a richer hierarchical description of word meanings than 
conventional thesauri

Associated work within the department has produced extensive word-lexeme maps. This 
is precisely what is needed to produce the evidence lists required by the evidence nodes. 
This will reduce the Knowledge Base construction phase by another order of magnitude.

7.3 ■ Enhancing the architecture
Finally, the present system is limited in that node activation and message passing is a 
Boolean all or nothing event. Fuzzy data would be better processed by introducing some 
variability to the activation and hence the decision making processes. Also message 
passing may be enhanced by allowing messages to be passed down and across the 
network. This would give stronger ambiguity resolution via a winner take all strategy 
implemented by mutually inhibitory connections between sibling nodes.

8.0 - C onclusions
Automatic marking is a problem that serves as an ideal testbed for integrated knowledge 
representation and natural language processing theories. This is because (a) the domain 
is highly constrained, and (b) we have a large sample of possible sentences which when 
processed may then be correlated against a human decision to give a good statistical 
measure of the systems reliability.

Our solution to the problem has required the development of combined NLP and KR 
architecture, which has borrowed heavily from existing techniques. Any success achieved 
is attributable largely to our refusal to consider the problems of grammar, justified we 
believe by the constrained nature of expected responses. Our results at this stage are very 
encouraging and seem to confirm many of the assumptions we have made in our approach 
to the problem.

We have identified areas for future work which can be summarised briefly as (a) improve 
the reasoning mechanism of the architecture and (b) reduce the time and effort required 
to produce the knowledge bases. Our meter of success (i.e. correlation rates) is in place.
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ABSTRACT

This paper describes a novel knowledge architecture 
for the representation of semantic knowledge for 
natural language processing. This architecture is not 
only a powerful knowledge description language but 
offers integrated processing capabilities along either 
symbolic or connectionist paradigms. We attempt to 
evaluate the architecture by applying it to the real world 
problem of the automated assessment of student’s free 
text responses to simple questions. Using scripts that 
have been hand marked, through a series of stepwise 
refinements it proved possible to produce knowledge 
bases under this architecture which correlated with 
human marked scripts upwards of 85%. By applying 
knowledge bases produced this way to unseen scripts 
correlation rates of 65% were achieved. To facilitate 
the rapid development of such knowledge bases we 
describe a method of interfacing to a version of Roget’s 
thesaurus.

1 - INTRODUCTION

The automated assessment of multiple choice style questions and more 
recently the style and correctness computer programs are well researched 
fields that are now mature enough to be incorporated in numerous 
commercial packages. The assessment of free text style questions is a 
natural extension to this but notoriously difficult due to variability of natural 
language and its resistance to formal analysis. However, this problem of 
evaluating free text, we believe, forms the ideal testbed for integrated Natural 
Language Processing(NLP)/ Knowledge Representation(KR) theories.

To illustrate: by presenting a question to group of students we can produce a 
large sample of simple sentences in a highly constrained domain and of 
which a fair percentage will have identical meanings. If we then present these
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student replies to both human and automatic markers, and compare results, 
we have an elegant controlled experiment which gives an empirical measure 
of the sophistication of the knowledge base.

It is implicit in any attempt to construct an automatic marker that aspects of 
the language processing and knowledge representation tasks previously 
performed by the marker must be transplanted into the computer. In order to 
anticipate the quality and form of the language we require our KR/NLP 
modules to handle, a series of short questions were given to second year 
HNC and HND students on a general programming nature. Some typical 
questions used for this purpose:

Define a low level language?
One to one correspondence is...?
Define the term sequential in Jackson structured programming?
Head-ahead is a programming technique that allows the program to ... ?
Define non-resident in COBOL terms?

A sample of typical replies to the first of these questions (correct and 
incorrect):

A language that translates into machine code at a ratio 1:1
One that uses commands at the cpu and register level with non english 

commands
A language which falls closest to the machine code type commands
A language that operates directly on the cpu eg. assembler and machine 

code
An assembly language.
Machine orientated rather than human orientated.
A language that is easily used by the pc.
A language that is closely related to the machine OS.

Our first step in finding a solution to the problem was a survey of the various 
literature on natural language processing ([1][13j[14][2][10]) in order to 
identify knowledge formalisms applicable to our task. The subject area is 
enormous, we therefore restricted our considerations to the major different 
breeds. Logics are a popular approach. In their favour they are highly 
formalised and have powerful, well established reasoning mechanisms. 
However they are hard to understand and difficult to visualise by the 
layperson. As in initial versions it is anticipated that the tutor will have to
interact directly with the knowledge base this is considered an important
feature. Frames [9] are easier to visualise and are suited to the representation 
of high level knowledge. But as with the various forms of semantic nets [5] [3], 
their many sub-types are frequently inconsistent, and do not possess the 
formal qualities of logics which make it easy to spot the principal components 
and their status (slot, filler, node, arc, event etc.) from within a sentence. 
Further, these slot and filler techniques do not have well established 
reasoning techniques. The work of Collins and Loftus [8] on spreading 
activation and work from the connectionism field as a whole [11] have strongly 
influenced our solution to this reasoning problem.
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2 ■ DESIGN ISSUES

Before implementation could proceed, in order to produce a system that both 
encourages data exchange from marker to marking system and that can 
reasonably model the marking process certain design issues need to be 
resolved. These are:

2.1 - Segmentation of KR and NLP processes
Knowledge Representation and Natural Language Processing are traditionally 
thought of as two distinct but closely associated disciplines. In this application 
they prove difficult to separate. Not only is the natural script being used to 
build and test the knowledge structures, but the language processing, itself, is 
a knowledge intensive process.

2.2- Contribution of Syntax
To illuminate our problem look at the following example. All sentences below 
have similar meanings however the key concept love occurs as noun, verb, 
adverb and adjective.

Romeo loved Juliet 
Romeo felt great love for Juliet 
Romeo felt lovingly towards Juliet 
Romeo had a loving feeling for Juliet

It is widely assumed that a syntactic parse is a necessary precursor to any 
semantic analysis that is to take place. It is not deemed necessary in this 
case for the following reasons. Firstly, we are dealing with sentences in a 
highly constrained context, in that they all answer the same question. Any 
meaning to be usefully extracted from the grammatical status of a word may 
be safely inferred from context. Secondly, grammatical analysis is an 
extremely difficult problem in its own right. Finally, real world, untidy data is 
being handled; replies are ungrammatical and badly spelt - a reliable parse 
would be impossible.

2.3 - Understanding vs. Evidential Reasoning
It is our aim simply to discriminate between correct and incorrect responses to 
a question. To achieve this true understanding is not, we believe, necessary. 
In this NLP problem where the context of the responses is highly constrained, 
it is possible to generate a strong expectation of what will be submitted. The 
underlying strategy then is to explicitly set down these expectations within the 
representational scheme offered by the chosen knowledge architecture. The 
submitted student sentence is then proffered as a set of evidence that either 
confirms or refutes this expectation.

The strategy then serves to focus information on the pertinent information 
only. It carries with it, however, the disadvantage of being unable to perceive 
what it can not expect.
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2.4 - Relation - Object Distinction
Careful consideration must be taken of the respective epistemological status 
of the knowledge architecture and the knowledge base. (Here I use the term 
knowledge base to mean the information that is entered following the rules 
prescribed by the architecture). Common within many knowledge formalisms 
is an implicit Relation - Object distinction at the architectural level. This is 
undesirable for our purposes for the following reasons.

Firstly, it is difficult to express knowledge about relationships in the same way 
that we express knowledge about objects. Similarly complications arise if we 
try to represent knowledge about facts. With an implicit object-relation 
distinction a fact becomes a relation between n-objects. To then represent 
knowledge about facts we either give our (relation,object,object,..) the status 
of an object, or introduce a new entity type a fact and enhance the syntax 
(rules for combing entities) to allow facts into the (relation,object,object,..) 
construct. Either way it becomes the structure becomes untidy. Thirdly we 
may wish to make a type/token distinction between relationships as we almost 
certainly do with objects. By removing the distinction we acquire a greater 
consistency.

By such a move nothing need by lost, should it become essential to make 
such a distinction it is always possible to make this at the knowledge base 
level as opposed to the architectural.

3 - KNOWLEDGE ARCHITECTURE

The knowledge architecture opted for is similar in many ways to a semantic 
net, but has borrowed heavily from all the mainstream KR schemes. As the 
user has to interact directly with it, an emphasis has been put on simplicity. 
The architecture is essentially a hierarchically structured activation passing 
network. Such an architecture was chosen because it seems to model well 
the aspects of natural language which seem most important.

As was outlined in the design issues section no distinction has been made 
between the KR and NLP levels. Also the architecture departs from the 
symbolic paradigm where a distinction is conventionally made between data 
representation and an engine used to process it. The architecture 
corresponds more closely the connectionist paradigm where the reasoning 
capacity is embodied within the activation passing aspect of the network 
itself.

The following have been identified as properties of an activation passing 
network which make it particularly appropriate for natural language 
processing (see figure 1).

3.1 - Abstraction: many words in certain contexts have similar meanings (i.e. 
synonyms). This abstract similarity may be adequately modelled by an 
interconnected network in which any ONE of a number of child nodes
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(synonymous words) may trigger the activation of a parent node (synonymous 
group/ abstract type).

3.2 - Composition: certain words have a composite sense which is distinct 
from the conjugate sense of its parts, for example idioms. (Not as much the 
whole is greater that the sum of its parts but the whole is different.) This 
phenomena may be modelled by a network where a single parent node 
requires ALL of its children nodes to become active before it itself activates.

3.3 - Decomposition: some words have a composite structure where its 
parts contribute different senses to the meaning of the word as a whole. For 
example, at the morphological level consider the word walk-ed: ’walk’ tells us 
the action, ’ed’ tells us it happened in the past. Or at the semantic level, the 
word husband, where we may infer that the entity referenced is (male), 
(human) and (married). Both these cases could be represented by a child 
node which passes its activation to several parent nodes.

3.4 - Parallelism: closely associated with decomposition is the concept of 
parallelism whereby the separate implications (modelled by spreading 
activation) of the separate items may be computed concurrently.

3.5 - Context: there are many words that have multiple meanings. In a 
particular case it is only possible to identify which meaning is applicable by 
looking at the context. This is the linguistic phenomena of polysemy or 
homonymy. We may model this in a network by a single child node linking to 
two parent nodes in parallel. Both of these parents will require input from a 
node representing the correct context also before it, itself, becomes active. 
Take the classic example of ’bank’, in a financial context it has a completely 
different meaning to a water/countryside context.

3.6 - Disambiguation: the mutual exclusivity of two hypothesis or perhaps 
two word meanings may also be modelled by an activation passing network. 
Using the bank example again it will mean either a ’commercial building’ or 
the ’side of a river’ not both. Mutually inhibitory links between sibling nodes 
ensure that only the node receiving most supporting evidence remains active.

3.7 - Feedback: sometimes the information necessary to disambiguate two 
hypothesis is only available at a higher level process, in order to make use of 
this information it is necessary to implement feedback links whereby a parent 
node can affect the activation of a child.

3.8 - Arbitrary Mapping: as has been demonstrated in numerous 
connectionist papers a three layer activation passing network is capable of 
embodying an arbitrary mapping between any two sets of patterns provided 
there are enough nodes. Further, the Universal Approximation Theorem 
demonstrates that a three layer network with one input, one output and 
sufficient nodes in the hidden layers can learn any function. This adds 
powerful computational power to our simple knowledge architecture.
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3.9 ■ Logical Composition: by virtue of the fact that all logical gates (OR, 
AND, NOT etc.) can be modelled by an interconnected network, and a 
standard vonNeuman architecture computer can be implemented entirely with 
such gates it should be possible to emulate any formal computation within the 
resource constraints.

The above points demonstrate that our chosen knowledge architecture has 
not only powerful representational flexibility but is capable of performing 
computation under both connectionist and symbolic processing paradigms.

3.2 - Compostion 3.3 - Decomposition3.1 - Abstraction

c_married

cjium an
' "v*k„

husbandsimilar near

3.5 - Context3.4 - Parallelism 3.6 - Disambiguation
syntax 'semantics

c_bank(1 )_jj^c_bank(2)
VERB c_motion

c_bank(1)J) Qc_bank(2)
c jln a n c ec_water

3.8 - Arbitarv Mappings3.7 - Feedback 3.9 - Logical Composition

Figure 1: Network Qualities

4 - NODE CHARACTERISTICS

The prototype implementation of the knowledge architecture has most but not 
quite all of the above specified features. The file description of the individual 
nodes specify the minimal time-invariant properties.
• Name: this is a unique key used to identify a particular node.
• Threshold value: is the value a node’s input must exceed before the node

itself becomes active.
• List of parents: a list of nodes to which activation is passed when the node 

itself becomes active (referenced by name).
• List of evidence: a list of words which if presented to the KR module will 

lead to the activation of that node.

Upon loading a knowledge base into memory all references are resolved into 
memory pointers. Also two further node attributes are created.

• Activation: the nodes activation, at present calculated as the sum of all
inputs.
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• List of children: essentially the mirror image of list of parents i.e. all nodes 
from which input is received. This redundancy was introduced at the data 
level for reasons of procedural efficiency.

4.1 - Node's Functional Capacities
In typical usage nodes tend to operate in one of three capacities (see 
figure2):

4.2 - Evidential: Evidential nodes are used to represent the low word level 
knowledge. Each has associated with it a list of words (evidence list) whose 
presence in the sentence will lead to the activation of the node. An evidential 
node is analogous to a lexeme.

4.3 - Abstract: An abstract node can be used to represent the abstract sense 
of several different nodes. It is then a disjunction of nodes and will become 
active if ANY of its children become active. In its simplest sense can be used 
to represent synonyms. (Logical OR).

4.4 - Compound: A compound node is used to represent the compound 
sense of several nodes. It is a conjunction of nodes and becomes active only 
if ALL of its children become active. A fact is represented with a compound 
type as a conjunction of abstract types. (Logical AND).

ABS_LIKING FACT.23
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evidence 
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either
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all 
children 
needed 

to trigger 
parent

Figure 2: Node’s Functional Capacities

5 - IMPLEMENTATION:

The following outlines the final implementation and how the modules which 
comprise the system interact with each other (see figure 3).
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Figure 3: Implementation

The entire system was implemented on a 486 66Mhz DX2 PC. The system 
consists of four distinct modules, all of which are written in portable C++, 
except the user interface which requires version 3.1 of the Windows™ SDK:

5.1 - Core KR base: contains the functions needed to load, save and edit the 
knowledge base. Also functions that control the flow of activation between 
nodes. The module interfaces at three points: (a) where individual words are 
presented to the network to trigger activation from the evidence lists (b) where 
the network reports its internal state to the outside world (i.e. what 
facts/hypothesis have been triggered), (c) at the user interface which allows 
reconfiguration of the network.

5.2 - Submission module: essentially a text processing module which 
operates on the central database file presenting student replies to questions, 
word by word to the knowledge base.

5.3 - User Interface: is a graphical interface which allows viewing, editing and 
processing of student replies, thesaurus, and knowledge base.

5.4 - Thesaurus: provides processing functions to a text based version of the 
thesaurus. This provides access in one of two ways: (a) produces a list of 
synonyms for a words and list of links to other thesaurus entries (b) a more 
sophisticated interface looks up the entry number for every word for every 
student for a particular question. By printing the most frequent entry numbers 
we can isolate the word senses used most frequently by students for a 
particular question. This cuts down on the knowledge base production time 
considerably.
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5.5 - Sample K-Base
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Figure 4: Sample Knowledge Base

6 - TESTING
Using the system as described two experiments were performed upon the
system:

6.1 - Experiment 1 - Retrospective
1) The tutor set 20 questions on a general programming nature which in 

the tutor’s opinion could be answered satisfactorily with a single sentence 
reply.

2) The questions were presented over the network to the students and 
the responses were concatenated into a central database file.

3) Replies were hand marked by the tutor and the marks recorded.
4) Using the tutors own intuition a knowledge base is constructed which 

attempts to capture the sense and the variety of language which can be 
used to express a valid reply. At this stage the interfaced Roget’s 
thesaurus can be used to help anticipate the variety of language that could 
be used.

5) Each student reply is presented to the knowledge base one at a time 
and the automatic marker’s decision is recorded.

6) For each student reply, the tutors mark is compared with the 
knowledge base decision. The two are correlated with each other to give a 
measure of similarity, and exceptions recorded.
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7) The knowledge base may then be edited by the tutor in order to better 
capture the exceptions and so increase the correlation rates. Return to 
step 5 until acceptable model of the human marker’s performance 
achieved.

Using this technique a good model (average correlation 85%) could be 
produced for each question in less than 5 minutes. With slightly longer 
construction time correlation rates approaching 100% could be achieved in 
almost all cases. In order to approach these higher correlation rates, many of 
the fringe answers need to be incorporated into K-base. Interestingly many of 
the problems in incorporating the last few answers were attributable to 
spurious decisions on the part of the marker rather than genuine difficulties in 
extending the K-base.

The first experiment was essentially a test of the expressive sophistication of 
the knowledge architecture. That is, was it possible to construct a structure 
which could discriminate between right and wrong answers? The above 
results seem to confirm that this is possible. However, an obvious danger 
when constructing these knowledge bases is that we are arbitrarily 
discriminating between right and wrong answers, whereas we hope we are 
synthesising a K-base which truly embodies generalised elements of the 
problem domain. Further, this experiment does not prove the system is 
usable as in normal scenarios we would not have the answers pre-hand 
marked.

6.2 ■ Experiment 2 - Blind
There is no obvious method for determining the arbitrariness of a constructed 
knowledge base at face value. However to get some measure of the 
generality of the K-base we could apply constructed bases against new 
unseen data and compare correlation rates. This is what has been done here. 
Knowledge bases constructed in Experiment 1 were applied to new data 
(actually the responses of the following years students). This data set was 
then hand marked and coverage rates compared.

When the knowledge base created in the previous phase was applied to a 
blind set of data an average coverage rate of 65% was obtained. Considering 
the present limitations of the system this is considered very encouraging.
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RESULTS
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Figure 5: Graphed Results
6.3 - Comments
A knowledge construct which provides an approx. 85% coverage will typically 
be about 30 nodes in size. The time needed to mark is negligible: a single 
question answered by 64 students takes approx. 1 second to mark. At this 
stage the time required to both construct and mark a set of student sentences 
is slightly greater than that required by the tutor to do so by hand. However it 
anticipated that long term benefits (in terms of man hours) would accrue from 
the reuse of questions over different students. Probably the best mode of use 
would be the random selection of questions from a stable pre-configured bank 
of questions and knowledge bases.

The knowledge constructs generated necessarily embody information for both 
the KR and NLP processes in the one tree-like structure. A distinction, if one 
is to be made, is one of degree rather than absolute. Knowledge pertinent to 
language processing, to do with the status and category of a word, is held low 
down in the tree structure. Knowledge of a higher level which embodies facts 
etc. is held high up in the tree. As such it is expected that the low level nodes 
will be reusable across questions especially within the same domain. A level 
of cross domain reusability is provided through the thesaurus.

The automatic marker systematically marked fewer answers correct than the 
tutor. It is also noticeable that very rarely does the system mark an incorrect 
response correct. In a real application we can be reasonably certain (in our 
tests 98%) that a reply marked correct will indeed be correct. We can 
legitimately focus future efforts on capturing those unexpected correct replies.

When constructing knowledge bases our major problem is anticipating the 
variety of language which can be used to reply to a question. We have 
partially overcome that here by insisting on two runs of system. The first on a 
set of prototype information to help generate these anticipation’s and a 
second true run. The next logical step in reducing the time required to 
generate the knowledge base and to improve coverage rates is to introduce 
secondary knowledge sources.
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7 - FURTHER DEVELOPMENT

The following have been identified as possible areas for further development:

7.1 - Running Parallel NLP Tasks Under the Same Architecture
Within the same underlying architecture it may be possible to implement 
many of the other natural language processing tasks, allowing techniques to 
be run in parallel: sharing the same information, and providing a mechanism 
for combing results. These other tasks (syntactic analysis in particular) may 
well prove essential to boost the correlation rates to the near 100% that would 
be necessary for the system to be adapted by staff and student alike.
• Syntactical analysis: a bottom up parse would be ideal for such an 

architecture. Further, contextual information is easily added (as in semantic 
processing) to augment its power. Variable node activation and mutually 
inhibitory connections would provide ambiguity resolution.

• Spelling correction and word recognition: by producing a similar architecture 
for the sub word level (i.e. dissolving words into hierarchically structured 
letter clusters) an information rich, context sensitive mechanism for word 
recovery may be provided. An algorithm for producing such sub-word 
structures has already been developed [15].

• Semantic analysis: more theoretical semantic methods such as
componential analysis may also be implemented within the same 
architecture.

7.2 - Introducing Secondary Information Sources
In order to reduce the considerable overhead involved in generating the 
knowledge base and to improve the performance by utilising information 
about language variability secondary information sources need be integrated 
into the system. There are two immediate sources that have been identified:

Most immediately thesauri: we have already demonstrated two modes of 
interaction with a thesaurus. The next stage will be to integrate the thesaurus 
seamlessly into knowledge representation module. WordNet has also been 
identified as a possible supplier of such information. It has a richer 
hierarchical description of word meanings than conventional thesauri

Associated work within the department has produced extensive word-lexeme 
maps. This is precisely what is needed to produce the evidence lists required 
by the evidence nodes. This will reduce the Knowledge Base construction 
phase by another order of magnitude.

7.3 - Enhancing the architecture
Finally, the present system is limited in that node activation and message 
passing is a Boolean all or nothing event. Fuzzy data would be better 
processed by introducing some variability to the activation and hence the 
decision making processes. Also message passing may be enhanced by 
allowing messages to be passed down and across the network. This would
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give stronger ambiguity resolution via a winner take all strategy implemented 
by mutually inhibitory connections between sibling nodes.

8 ■ CONCLUSIONS

Automatic marking is a problem that serves as an ideal testbed for integrated 
knowledge representation and natural language processing theories. This is 
because (a) the domain is highly constrained, and (b) we have a large sample 
of possible sentences which when processed may then be correlated against 
a human decision to give a good statistical measure of the systems reliability.

Our solution to the problem has required the development of combined NLP 
and KR architecture, which has borrowed heavily from existing techniques. 
The major advantage of our chosen architecture is that not only does it 
provide a powerful representational scheme, but offers computational power 
along symbolic and/or connectionist processing paradigms. Any success 
achieved is attributable largely to our refusal to consider the problems of 
grammar, justified we believe by the constrained nature of expected 
responses. Our results at this stage are very encouraging and seem to 
confirm many of the assumptions we have made in our approach to the 
problem.

We have identified areas for future work which can be summarised briefly as
(a) improve the reasoning mechanism of the architecture and (b) reduce the 
time and effort required to produce the knowledge bases. Our meter of 
success (i.e. correlation rates) is in place.
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Abstract

This paper describes a formal symbolic algorithm for producing context rich 
networks by processing corpora of linear strings of discrete units, identifying 
from the statistical co-occurance of elements’ probable compound units and 
the transition probabilities between the same. The networks produced this 
way are essentially connectionist in nature, in that the network comprises 
multiple inter-linked nodes each of which has a distinct activation level. 
However the individual nodes are symbolic in that each node represents a 
unique discrete phenomena within the problem domain. The produced 
networks are deeply structured embodying useful contextual information from 
the problem domain which is ideal for applying to recognition type tasks.

The outlined process closely parallels other statistical techniques that infer 
transition probabilities from statistical co-occurrence such as Markov models 
or N-Gram analysis [1], [2] and [3]. With these techniques, however, when an 
attempt is made to analyze context over a wide field (ie. large N) the size of 
the corpus necessary to provide a good esimate of the transition probability 
rises exponentially [4]. This problem is attributable to the need to specify N 
globally. The tree producing algorithm outlined here, by the use of some 
modifiable heuristics, estimates a unique value of N dynamically and locally. 
That is, we estimate the transition probabilities to and from a node if and only 
if our heuristic identifies the node as a suitable candidate.

Algorithm

A standard statistical procedure attempts to identify a relationship between N 
variables. The algorithm outlined here does this with a set of primitive nodes, 
however when a strong relationship is found between two or more nodes they
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are concatenated into a new node and the procedure will then look for 
relationships with this node also. The number of variables is therefore 
constantly growing.

Relationships between nodes are identified using a context history which 
records the context for each node. Conversely a node can be defined as 
something for which a context history is recorded. Take the example where 
we are analyzing written language, we will start with a set of 26 primitive 
nodes for which we will record the context history. When, for example, the 
letter ft'has been found in the context of ft many times ft?' become a node in 
itself. After some time we may identify f t ’ as a candidate link for creating the 
ithe' node. The nature and depth of the produced networks may be modified 

through the use of two re-definable heuristics: the linkage heuristic and the 
clustering heuristic.

In outline, a new unconnected primitive node is instantiated for each primitive 
unit encountered in a string. Whenever this node is subsequently 
encountered within a string this node is made salient, and remains salient for 
a specified lifespan. That is, instance information is recorded temporarily for it 
on a list. The salient list is monitored at all times, so should two nodes be 
discovered which satisfy the linkage heuristic the appropriate context history 
is immediately attached to the concerned nodes.

When the link/context history combining two (or more) nodes exceeds a value 
specified by the clustering heuristic a new compound unit is instantiated 
which describes the conjunction of the children nodes.

Certain metrics are attached to the various entities in the tree. It is with 
respect to these metrics that the clustering and linkage heuristic are defined. 
Of significance is the measure of frequency (attached to nodes, links and 
global measures). An absolute measure of frequency would be inadequate for 
inter-node comparisons as new nodes are being created all the time and the 
new nodes are unaware of how often they occurred before they were created. 
More suitable would be a measure of acquisition velocity, that is to take an 
estimate of the differential of frequency over time. It was found that the 
regular resetting of all frequency values served as a satisfactory 
approximation to this.

The algorithm as discussed may be defined in pseudo code as follows:

LOOP (for all strings)
{LOOP (for all units)

{IF (node not previously seen)
{DO Instantiate_Node 
}ELSE (node already seen)
{
DO Activate_This_Node 
DO Pass_Activation_To_Parents
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DO Make_Node_Salient 
LOOP (all salient nodes)

{IF (Nodes match LINKAGE HEURISTIC)
{DO Add_Link_To_History 
IF (Link > THRESHOLD HEURISTIC)

{DO Make_Nodes_Into_Compound 
DO Link__Children_To_Parent 
}

}
}

}DO Delete_Salient_Nodes 
}

}

The nature of the parent or compound nodes needs some clarification. Firstly, 
note that a parent node receives activation from all its child nodes. The parent 
itself though, will not become active until it receives activation from all child 
nodes such that the combination satisfies the linkage heuristic. The linkage 
heuristic is therfore defining the nature of the network i.e. the conditions that 
two nodes must satisfy for the two to be considered a compound node.

Secondly we need to make a distinction between the type and token instance 
of a compound node. This is because unlike primitive nodes a compound can 
exist in overlapping positions within a string. Take the example of ‘banana': 
the cluster ‘ana’ exists twice in non-distinct positions.

Saliencv

The distinction between the type and token instance of a node relates to the 
principle of saliency mentioned earlier, this probably needs a few words of 
explanation.

Within a standard neural net architecture it is difficult to pass on the postional 
information of a node explicitly within the activation it passes to its linked 
nodes This is because an individual node is not computationally powerful 
enough to discriminate its input and effect the functional changes that a new 
node position would imply. It would be easier to pass on the postional 
information implicitly by only letting nodes in position 1 pass on their 
activation to nodes in position 2 etc., however the number of nodes necessary 
to encode the input sting and model the relationship between clusters in their 
various positions would rise exponentially with the string length.

The network discussed in the previous section is in essence only recording 
the relationship between nodes of a particular type. However in order to both 
build and use the net we need to be able to identify instances of a node within 
an input sting and be able to propagate this instance information through the
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network. The principle of saliency is a mechanism by which this information 
may be stored and passed throughout the network. It is in many ways a type 
of working memory. The type of instance information that is stored with the 
node identifier on the salient list is dependent upon what is required by the 
linkage heuristic. In most simple cases this will simply be the position of the 
node within the string.

Modifying the Network

As mentioned the nature and quality of the network is modifiable through two 
heuristics, to illustrate this consider the following examples. Firstly the linkage 
heuristic which effects the quality of the network. In the simplest cases the 
metrics passed to salient nodes on instantiation will be node identifier and 
position found in the string. From this we could define linkage as simple left or 
right adjacency giving immediate left or right context. Alternatively we could 
extend this to give context within a pre-specified window i.e. found within 5 
units.

Secondly the clustering heuristic which determines the depth. The simplest 
definition is a measure of the absolute frequency for a node divided by the 
total number of primitive units encountered. The next probable extension to 
this would be to modify this value with respect of the length of the compound, 
on the legitimate assumption that smaller compounds are likely to occur more 
frequently. This will stop trees becoming bottom heavy.

The second level of sophistication is to introduce a measure of a node’s 
suitability for a task into the network modification procedure. When the 
information necessary to do this is available at node creation this measure 
may be readily incorporated into the linkage heuristic. However, this is not 
always practical. Take the recognition task: a good measure of a node’s 
usefulness is whether the distribution of transition probabilities to new nodes 
is flat or not. A flat distribution can be used to no predictive effect. This 
information is available only after the node has existed for some time. In such 
cases we should consider tree generation as a two stage process. The first to 
generate a bushy, deep tree on pure statistical grounds, a second to prune 
the tree on functional grounds.

Formal Specification of Data Structure and Heuristics

Where N the nodelist is a set of s nodes.

N  = K«!0ns9ns0 9n.$

Here each component n is a composite of the with the following attributes:

n = ^W ordlD  0 Frequency 0 Children aParents 0Linkage J
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WordID is a string to identify the node, Frequency is an integer in which we 
record the number of times the node has been found. Children, Parents and 
Linkage are all lists and defined as follows:

Children -  {ci,,C2 ,,c3*,...,c«} 

where each member is of type c comprising the single attribute:

c = { W ordID  5

Similarly

and:

Finally

p =  {W ordID  J

Linkage, — {I ix,l2 x,Lx,'.. ,1*} 

where I is a composite type with two attributes

/ = {W ordID  a Frequency J

If we use the syntax where a function of the same name as an attribute 
performed on an appropriate composite extracts the value of that attribute. It 
follows that:

Freq{nx)=-Y^L

In other words the frequency of a node is equal to the sum of the frequency of 
the distinct contexts it has been found in. A useful variable is the total number 
of primitive nodes encountered

where

Global — ^  freqprimsii)

. \word{n)\ = l\
freqprimsii) -  f l k* *  \word(n,)\*l

and

\word(ni)\ =  l e n g t h  o f  s t r i n g  
The input string we may interpret mathematically as a set of ordered pairs.
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String - {ki,ki,k3,kz}
Each element is a composite with the first attribute the letterlD the second is 
the position in the string.

Given this the linkage heuristic may be defined as a Boolean returning 
function. The simple right adjacency heuristic then becomes

c
*±Jposition(kx) = position{ky) + 1  j

L i n k ( x , y ) = w k 3>t$fiposition(kx) ^  position(ky) + 1  “
And left adjacency

\Jposition(kx) =  position{ky) - 1  5  Link{x,y)~mL j>$pposition{kx) & position{ky) - 1  “
A windowed left right adjacency may be

k \position{kx) ~ position(ky)\ <  3Link(x,y)  = position(kx) -  position(ky)\ > 3 1
Clustering heuristics are also Boolean returning functions. Below we list three 
simple useful ones.

An heuristic relying on absolute frequency

p3M> 0.01. , s ^GlobalClusterix, y )  =  WL
M > < o . o 1,Global

An heuristic which is dependent upon the frequency of the parent node:

psM> o.oi
Cluster(x,y)= f£ req<n) 

ffreqinx)
Or perhaps an heuristic which makes an adjustment for the proposed length 
of the compound node (on the assumption that longer clusters are less 
frequent):

P^ ^x(\w ord(nx)\ + \word(ny)\)p > 0.01
C l u s t e r y )
W — y-( L ,)  x  <\word(n.)I +  \word(n,)\Y <  0 .0 1  i “T freq{nx)
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where

p =  c o n s t a n t  t o  o f f s e t  d e c r e a s i n g  f r e q u e n c y

Application of Produced Trees

As discussed it was originally envisaged that these trees be applied to 
recognition type tasks. In their simplest they can be shown to produce 
identical information to that produced by N-Gram analysis or the transition 
matrix of a Markov model. However, we do not have to specify our grain of 
analysis (bigram - trigram etc.) before processing takes place nor must the 
grain be unique throughout the analysis. If the heuristics are set up correctly 
the algorithm dynamically and locally determines these for each node. We 
can therefore use the trees in the same way as we would with N-gram or 
Markov i.e. produce estimates of word probability from supplied evidence, as 
a multiple of transition probabilities between primitives. But using the context 
tree we may augment these estimates by describing our units in higher level 
terms and using transition probabilities between these to modify our original 
figure.

A second tangential application of the algorithm is identifying the ideal grain of 
analysis for a problem. For both formal algorithms which must specify 
processes between sets of primitive units and connectionist networks which 
must specify a set of input units, a process which can produce higher level 
more compact descriptions of the data could prove very useful. Further by 
defining the qualities we require of our units in the linkage heuristic we can 
ensure the nodes are appropriate to our needs. Along a similar vain, the 
networks can be used to identify repeating features in the problem domain 
which is useful for compression algorithms.

Most of the explanations so far have referenced the problem of text 
recognition and consequently refer to letters as primitive nodes. Note it is 
equally feasible to operate on phonemes, syntax or possibly on words or 
semantic category.

Further Work

The above describes a method by which a symbolic algorithm queries the 
essentially connectionist tree to produce probability estimates for a 
recognition task. What is seen as a far more attractive solution to this problem 
is to use the network in a more native connectionist manner, whereby on the 
presentation of activation to the primitive nodes, the tree, through interactive 
activation and competition, resolves the best fitting highest level nodes. This 
has the advantage of producing a far more sophisticated method of 
implementing feedback and disambiguation.
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In such an implementation the interconnected network becomes a dynamic 
system with N stable states where N is the number of words that can be 
recognized. The primitive node could be activated wholly or partially 
according to the certainty with which they exist in the input string. The internal 
dynamics of the system can be adjusted to inhibit multiple states becoming 
active. The constraints within the problem domain can be absolute or 
probabilistic. For example in written text there is an absolute constraint that ‘u’ 
must follow ‘q’, but a probabilistic constraint that ‘h’ frequently follows ‘t’. 
However constraints also exist between the higher level elements (e.g. ‘e’ 
frequently follows ‘qu’). The network produced provides both the clusters and 
the contextual information from which we may derive likely internode weights. 
Specifically the type of weights for which estimates must be provided are: 
excitatory links between child and parent nodes, feedback links between 
parent and child and inhibitory links between competing sibling nodes.

The second extension is to enhance the algorithm to identify abstracted as 
well as compound nodes (e.g. cluster letters into vowels and consonants or 
by phonetic characteristics etc.). To be able to automatically cluster units from 
simple statistical distribution would add important flexibility to our higher level 
description, not to mention improve the estimates of transition probabilities.

References:

[1] Jelinek F, Mercer R and Bahi (1983), ‘Continuous Speech Recognition: 
Statistical Methods’, IEEE Transactions on Pattern Analysis and Machine 
Intelligence, Vol PAM-5.

[2] Brown P, Lee H and Spohrer, ‘Bayesian Adaptation in Speech 
Recognition’, Proceeding of the ICCASP, Boston, 761-764.

[3] Riseman E and Hanson A (1974), ‘A Contextual Postprocessing System 
for Error Correction Using Binary N-Grams’, IEEE Transactions on 
Computers, Vol C-23, 490-493.

[4] Keenan F (1992), ‘Large Vocabulary Syntactic Analysis for Text 
Recognition’, PhD Thesis, The Nottingham Trent University.

Published in: N e u r a l  N e t w o r k s  a n d  th eir  a ppl ic a t io n s  (1997)
Eds. Taylor, G. p265-269.



AppendixH.



APPENDIX H

Connectionism and Symbolism in Symbiosis

N. Allott, P. Fazackerley and P. Halstead

Computing Department,
The Nottingham Trent University, 

Burton St,
Nottingham,
NG1 4BU.

England 
email: nma@uk.ac.ntu.doc

Abstract
In this paper we examine a previously published algorithm which addresses the problem of 
network growth by implementing a clustering algorithm to operate on time dependant data. 
The computational constraints of the problem forced the development of an architecture, 
which in retrospect can be analysed in terms of a computational and symbolic module 
operating symbiotically. Here we attempt to identify the computational constraints that 
necessitate the use of this architecture, and any further merits it has. Further we analyse the 
nature of the interaction between the two modules and highlight the manner in which the 
behaviour the symbiotic modules correlates with what is known of human problem solving 
behaviour.

1. Introduction
This paper both develops and outlines the 
computational merits of a symbiotic symbolic and 
connectionist network used within previously published 
clustering algorithm [1]. Within this algorithm a 
connectionist network was used to embody the 
relationship between discrete observable elements, for 
example letters of the alphabet. In the simplest case the 
relationship modelled is the relative statistical 
distribution, or context, of the letters. As such the 
network can be shown to be very similar to N-gram 
analysis [4] [5] [6] or the transition network of a Markov 
model [3]. However it is superior in that the scope of 
analysis to be considered to does not have to be 
specified globally, but is dynamically and locally 
determined for each node.

An algorithm was required to produce these 
’connectionist trees from empirical data. It was the 
original intention that the algorithm be developed 
within the context of the connectionist paradigm. By 
this we mean capable of being implemented in a 
parallel manner such that, the functions used to 
compute the working parameters for each node have 
access only to those items to which the node is 
architecturally linked (such as the back propagation 
algorithm or simple Hebbian learning). However the 
fact that (a) the algorithm attempts to grow the network 
(b) time dependant data was being handled, made this

design goal difficult to satisfy. In the next section we 
attempt to formalise the source of the difficulty.

2. Formal Definition of Problem
The network can be characterised as an n-tuple:

(P,N, . Where
P is the set of primitive nodes,
N is the set of all nodes, initially N=P 
L is the set of links between nodes, initially L = 0, and

each element of L is a 3-tuple {/?,<?,$), parent, child, 
strength, where s=l.
a is the activation function, a: —> {0 ,1}
X is the set of possible primitve evidence

Derived from this we have
X* the set of sentences possible from X.
P(N) the power set of all nodes 
A the set of abstract nodes, defined A=NnP’ 
c is the set of children of a node, c: A —> P(N) and 
can be defined in terms of L and N.

To simplify the problem, in the initial case the strength 
of all links is assumed to be 1, and the activation 
function is Boolean returning {0,1}.

If SeX* then S [l]e  X and is the first element of S. It 
follows for simple sequence analysis (such as the text 
string discussed above) where there is a 1:1 mapping 
between P and X, the activation function for a node n, 
where ne P

1

1 We would like to acknowledge the original flash of 
insight from Nick Porter, which lead to the analysis 
presented in this paper.
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a (n , t ,S ) =
[1, S[t] = n 
|0, S[ t ]*n

And for node n where ncA, the activation is some 
function f() of the activation of the children of n, 
a(n, t ,S)  = f ( c ( n ) , S , t ) .

To illustrate, take the simple problem of clustering with 
the node immediately adjacent on the right. If c(n)[x] is 
the X th child of node n, the activation function for a 
parent with two children becomes:
a{ n , t , S )  =  a(c(?t)[l],r, 5) a  a(c(n)[2],/ + 1,5)

If it is our aim to grow the network, the process of 
growth is to identify a new node x such that N=Nux

and to add links such that L =  LkJ  UK*.'M )}. u
iec(x)

is hoped that each new identified node x should capture 
some abstract feature of the input domain thus giving 
the network greater depth of perception.

When it comes to implementing the above procedure on 
a connectionist network there are essentially two 
problems to be solved:

2.1. Type token distinction
In a network where there is localist representation (one 
node represents one feature in the problem domain) it is 
conceivable that a single feature occurs twice in the 
input pattern. This feature could occur in distinct 
positions within the input sting, in  ̂overlapping 
positions, or the most difficult: in recursively embedded 
positions. (The string “ana” as it occurs in the input 
string “banana” is an example of an overlapped 
position) The problem is how does a single node within 
the network simultaneously take on two distinct 
activations to reflect the two instances of the feature 
within the input string?

2.2. New nodes, new links
Most mainstream connectionist learning algorithms 
have a predefined set of nodes and a predefined set of 
links (often all nodes fully interconnected). The 
learning algorithm then adjusts the strength of the 
existing links to reflect the relationship between the 
nodes. This algorithm addresses the problem of 
network growth, all nodes are therefore initially 
unconnected and there are no links. The aim is to 
identify new nodes and new links that represent 
relationships between the existing nodes. However if 
we are to implement the algorithm to identify these 
relationships in a truly parallel, connectionist manner 
we have a problem, each node has no direct 
architectural link to any other node from which 
parameters could be computed which could lead to the 
instantiatation of a new node.

2.3. Solution
To solve these both problems a symbolic processing 
module was added to the connectionist network. Within 
this symbolic layer nodes are instantiated when they 
become active within the network. It therefore identifies 
and records salient nodes. Each of these instances can 
be regarded as a token of the particular node type. 
Further, the symbolic layer provides a local area where 
the parameters of an instanced object may be compared 
against one another, in order to identify relationships.

3. Architecture
The architecture described in summary consists of a 
symbiotic connectionist and symbolic process. The 
connectionist process both provides a permanent store 
for the associations found between units and the 
perceptual framework for the overall process (i.e. 
identified units within data). The symbolic process 
provides a type of working memory for our network. 
Let us consider each of these processes in greater detail.

3.1. Symbolic Process
A symbolic process by definition operates on symbols. 
The question of what do these symbols represent is 
usually defined prior to the instigation of the process. 
However in the outlined architecture we circumvent the 
need to do this. We define only the lowest levels 
symbols - those at atomic level. The interaction 
between the connectionist and symbolic processes 
serves to identify new symbols that are hopefully more 
appropriate for the task in hand.

It is part of the function of the symbolic process to 
identify the relationship between active units. In the 
example outlined above this association is simple 
adjacency. There is no reason why this association may 
be considerably more complex than this.

3.2. Connectionist Process
The connectionist layer represents the relationship 
between identified clusters within the problem domain. 
This could well map out the hierarchical description of 
the problem domain, or by the use of excitatory and 
inhibitory links describe a causal link between nodes. 
However in the outlined design the exact nature of the 
relationship is embodied in the symbolic layer. By 
extracting this information from the network itself we 
allow for specialisation of the network.

4. Advantages

4.1. Type-Token Distinction
To maintain a type/token distinction between nodes 
within a connectionist architecture is a far from trivial 
task. Further we must ask ourselves the question when 
is it necessary to make the distinction. Using the letters 
example from above we need to distinguish between
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two instances of the node “ana” only within working 
memory i.e. within the symbolic phase. Should we later 
need to create a more permanent distinction of the 
individual tokens of the “ana” type we must ask 
ourselves what is going the be the discriminating aspect 
of the tokens. Necessarily this will have to be context, 
and a cluster contextually discriminated is a longer 
cluster, which would naturally be incorporated into the 
connectionist layer.

We have therefore made a distinction between node 
tokens which only need to be discriminated in the 
learning phase of the network and those which are to 
become part of the network structure itself. Symbolic 
memory, which is needed to make the token distinction, 
is therefore needed in the learning phase only.

4.2. Functional normalisation
One of the prime differences between a symbolic and a 
connectionist system is the clarity of the distinction 
between data and process. Within a symbolic process 
the distinction is clear cut whilst one of the key reasons 
for the flexibility of the connectionist model is that 
there may be no such distinction. Data may be 
represented locally (the activation of one node 
represents one atom of data) or data may represented in 
a distributed manner (there is no one to one relationship 
between the activation of any set of nodes and a piece 

. of data). A process is modelled by the entire spread of 
activation through a set of nodes.

Take the situation where we wish to model complex 
functional relationship between many pieces of data 
(this is the function f() in the above formalisation). That 
functional relationship must be modelled itself by a set 
of nodes and its interconnecting links. If this is to hold 
between several pieces of data the nodes necessary to 
model the functional relationship must be repeated 
throughout the network many times, an obvious 
redundancy. In the design outlined above the functional 
relationship desired can be modelled outside of the 
connectionist network, eliminating this redundancy. 
This analogous to the process of data normalisation as 
used in databases, for this reason we call the process 
functional normalisation.

4.3. Specialisation of Networks
To follow on from this point, by encapsulating the 
relationship that holds between items in a central place 
(in this case the symbolic layer) we allow for greater 
specialisation of networks. Where the connectionist 
layer models the hierarchical structure of, or the causal 
relationships that are to hold between, many items, and 
the symbolic layer models the relationship itself, we can 
use essentially the same type of network to model all 
types of things. For example, referring back to the 
clustering example, it is possible to use essentially the 
same network to represent left adjacency and right

adjacency of clusters by just changing the function f() 
the symbolic process.

4.4. New data
If we are producing a network which is to reflect the 
structure of items between which a particular 
relationship holds, by maintaining this relationship 
outside of the network we have the means by which to 
test new, unseen and hence unrecorded items against 
each other.

5. Cognitive Correlations
There are certain aspects of the outlined model which 
correlate well with the what has been observed of our 
own human problem solving behaviour. We comment 
on the similarities in idle speculation only and do not 
consider the similarities to constitute any form of proof 
of the validity of the proposed model.

5.1. Memory Types
Psychologists have for some time maintained a 
distinction between Short Term Memory (STM) and 
Long Term Memory (LTM) [7], The three major 
distinctions being: duration, capacity and coding [8]. 
Within the two modules discussed here there are similar 
distinction to be made. Items instantiated within the 
symbolic layer have a short life span (the length of the 
current input pattern) whilst the connectionist links are 
permanent. The coding of the nodes within the 
connectionist layer is contextual; all that is known 
about that node is inherent within the links attached to 
it. The tokens used within the symbolic layer are 
arbitrary representations. However, the capacity of the 
symbolic layer does not seem to be limited in the same 
way that STM seems to be. This could be due to their 
differing implementations (see later.)

Note, also, in overall function the symbolic layer is 
similar to Klatzky’s [9] description of STM as a 
“mental workbench”.

5.2. Symbolic Whilst Learning
It seems a feature of learning that, when presented with 
learning a new task or skill, the processing tends to be 
symbolic and procedural in the initial phases, less so in 
the latter phases. For, example consider learning to 
type, to drive a car or learning to read. Again we see 
similarities with the symbiotic design. Consider the 
clustering problem discussed above. In the initial 
phases the identification of new features is performed 
entirely within the symbolic layer. Once identified the 
apparatus necessary to perceive the feature is 
incorporated within the nodes and links of the 
connectionist layer, so this is where the processing now 
takes place.
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5.3. Speed and Implementation
The architectural implementation of the modern 
computer is in most cases a serial, symbolic, Von 
Neumann process. Whereas there is no doubt that the 
brain is made up from nerves which can operate in 
parallel.

People seem to have two modes of operation, to quote 
Norman [10] “one rapid, efficient, subconscious, the 
other slow, serial and conscious”. The proposed 
architecture also seem to perform in two modes: a fast 
serial symbolic process, a slow connectionist process. A 
distinction between processes is preserved, although the 
performance ratios disagree with one another. It seems 
possible, however, that the juxtaposition of 
performance ratios is attributable to the differing 
implementations. Certainly the connectionist network 
discussed above is in reality a serial emulation of a 
connectionist process and so it would be reasonable to 
expect a performance drop.

The issue of emulating a serial process within a 
connectionist architecture is more complex. Clark [2] 
has speculated for some time that “the human mind 
might effectively simulate a serial, symbol processing 
Von Neumann architecture.” And it is interesting to 
note that in his book [11] he notes two shortfalls of 
connectionist networks in explaining human capacity:

1) to be able to perform serial reasoning in which the 
ordering of operations is vital.

2) to be able to utilise a control structure in order 
specify salient micro features for inductive 
generalisation.

As this is precisely the type of functionality being 
satisfied here by the symbolic layer.

Rumelhart and Smolensky [12] have also pondered on 
the human capacity to engage in conscious, symbolic 
reasoning, and Touretsky [13] has contributed to the 
debate with his proof that neural nets can be used as 
Turing Machines. All we can do here is to leave the 
open ended question: would a neural implementation of 
a symbolic process have a limited capacity and be 
relatively slow to process? If so, this would fall in line 
with the arguments presented above.

6. CONCLUSIONS
In the above we outline a symbiotic architecture 
encapsulating both a symbolic and connectionist 
process. The architecture was conceived initially as the 
solution to a clustering problem which could not easily 
be solved using solely connectionist techniques. 
However the combined model has several interesting 
architectural properties some of which seem to reflect 
observations of the brain’s own problem solving 
behaviour.

Within the model the symbolic layer provides a form of 
working memory for the network as it learns from new 
data. The connectionist layer in return provides the 
perceptual framework for the symbolic layer: supplying 
the symbols upon which the symbolic process is to 
operate. The two are symbiotic in that they modify each 
other’s data. The model as a whole is providing a 
learning schema where data is initially analysed 
symbolically, and the trace of this data later imprints 
itself onto the connectionist network.
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Abstract
A connectionist schema is presented for performing robust matches 
on natural language which can be applied to information extraction 
tasks. Out of primitive connectionist components (nodes and links) 
macro nodes are created which have representational and 
computational properties which closely reflect the specific 
requirements o f natural language. In particular the problem of 
bootstrapped contextual disambiguation is raised and a network 
structure, built from macro nodes is presented which addresses this 
problem. Such networks represent a theoretical advance upon the 
conventional Boolean search strings typically used for text searching.

1. INTRODUCTION
One of the advantages of storing text on computer is that 
documents may be searched extremely quickly. The typical 
search interface, for example those used on an application’s 
help and web search engines, comprises a search string, 
which is usually a list of relevant words. Optionally these 
words may be combined with the Boolean connectives 
AND and OR in order to further refine the search criteria. 
Although largely successful this approach is limited in at 
least two senses:

• Natural language is incredibly diverse; the same thing 
may be said many different ways.

• The searches performed are exact string matches which 
take no account of polysemy or homonymy [1] (in 
other words the opposite of above: one thing may mean 
many different things).

We present in this paper a connectionist formalism which 
specifically models those aspects of the sense of natural 
language which can prove difficult to capture within 
conventional logical expressions. The formalism was 
originally developed to tackle the problem of automated 
assessment [2] [3] [4][5] which attempts to discern from a 
database of single sentence student responses the sentences 
that most closely match the tutor defined criteria. However 
the core problems being tackled: (a) the robust definition of 
semantic criteria and (b) a process of matching natural 
language sentences against such criteria, are highly relevant 
to the more general problem of text searching and 
information extraction.

2. PROBLEMS OF NATURAL 
LANGAUGE MATCHING

Natural language is an evolved form of communication 
which has a complex composition that strongly resists 
reductive analysis. There are a number of features of 
natural language that can be identified which pose 
particular problems for the information extractor.

Synonymity: words are equivalent in meaning and 
therefore interchangeable in usage. Note few words are 
entirely interchangeable with another and depending upon 
context synonymity is largely a matter of degree. 
Hyponymy: one word represents a subset of another, for 
example car is a hyponym of vehicle. Words are therefore 
interchangeable in one direction only.
Idioms: the meaning of two or more words combined is 
different to that implied by its constituent parts. This is a 
perfect example of non-reductivity.
Polysemy/Homonymy: where a single word has more than 
one possible meaning, thus giving rise to ambiguity. 
Anaphora: the use of pronouns etc. which can be used as 
shorthand for previously encountered concepts within the 
text.
Metaphor: a flexible use of language whereby words or 
groups of words can be used outside of their normal 
context, and take on a meaning which implies some but not 
all of its defining characteristics.
Inference: the meaning of a phrase is not only the literal 
interpretation of the word definitions but all consequences 
that naturally follow from it. For example, water is heavier 
than air implies air is lighter than water.
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These are all well documented features of natural language 
and their relationship to the task of natural language 
processing is discussed in depth in [6], amongst other 
sources.

The problem of ambiguity (resolving the meaning of an 
individual word with two or more distinct meanings) 
however poses a problem of exceptional complexity and we 
shall briefly outline the extent of the problem below. 
Ambiguity is not an isolated problem that exists for a few 
words in every sentence. If we are to take a dictionary as 
the authority on the number of words senses, it is a fact that

most words have more than one meaning. (Note there is 
considerable variation between dictionaries.)

To demonstrate the enormity of the problem look at the 
prototypically simple sentence.

The cat sat on the mat.
Using the relatively small Concise Oxford Dictionary as a 
the source for identifying distinct senses of a word, the 
following table is produced:

Word THE CAT SAT ON THE MAT
Part of 
Speech

adjective
adverb

noun verb preposition
adverb

adjective
adverb

noun
verb

Meanings definite
article

small furry 
quadruped

supported 
by buttocks

supported by 
or covering

definite
article

course fabric 
or floor 
covering

spiteful or
malicious
women

rested with 
hind legs 
bent

close to small rug

person(Jazz
fan)

pose for 
portrait

concerning piece of 
material laid 
on table

whip (cat of 
nine tails)

to be an MP 
for a 
constituency

added to to bring into a 
thickly 
tangled state

any wild 
feline animal

remain on 
nest to hatch 
eggs

forward

abv for
caterpillar
vehicle

be member 
of
committee

movement of 
operation 
being shown 
or performed

abv for
catalytic
converter

to be in 
session

to cause to 
be seated
remain in 
the same 
position

Number of 
Meanings

1 7 9 6 I 4

Figure 2-1 Ambiguity in “the cat sat on the mat”

Assuming meaning independence of individual word this 
produces a possible (Ix7x9x6xlx4=) 1512 different 
possible interpretations of this sentence and this was using 
a very small primitive dictionary. If a larger dictionary is 
used and even greater number of permutations are 
generated.

If we have no a priori reason for preferring one 
interpretation over another.

"The spiteful lady posed for a portrait close to 
the table covering. "

Is as valid an interpretation as.

“The small furry quadruped rested with its 
hind legs bent supported by the small rug ”

This presents a problem: if context is them means by which 
ambiguity is to be resolved (as is commonly thought), what 
do we do when this context is itself ambiguous?

A solution to this problem is particularly relevant to text 
searching. As any regular user of text searchers will testify, 
most search mismatches are attributable to incorrect senses 
in the target documents incorrectly matching against the 
search criteria.

Within this paper we shall present a connectionist 
representation which closely parallels Rumelhart and
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McClelland’s [7] multiple constraint satisfaction models. 
The schema, then, by virtue of its structure allows for a 
bootstrapped mechanism of sense disambiguation which 
address the above problem.

3. REPRESENTATION SCHEMA

3.1.1. Node
The architecture proposed consists of a set of nodes. Each 
of these nodes has a unique identifier. Nodes can be further 
subdivided into nodes that receive input from the external 
world (evidence nodes), those that receive input only from 
each other (hidden nodes) and output nodes, thus following 
the conventional neural network paradigm.

3.1.2. Link
Any pair of nodes may be bound together with a link, 
which reflects the strength of relationship between two 
nodes. This link is the means by which nodes pass 
activation between one another and is unidirectional in 
nature. Therefore with respect to a link there is a child node 
(the node from which activation is passed) and a parent 
node (the node that receives activation.) A particular node 
can therefore be both a child and a parent node, but with 
respect to two distinct links.

3.1.3. Activation
Every node has an activation value, this represents the 
extent to which this feature exists within the input pattern, 
a value between 0 and 1. Evidence nodes assume an 
activation of 1 if their feature is identified within the input 
pattern. If a node does becomes active, activation is 
propagated through its output links.

close

c lo s e
c lo s e ly

c lo s e r

evidence
nodes

associated
evidence

Figure 3-1 Evidence Node Example

3.2. MacroNodes
Depending upon the configuration of the network, in other 
words the topology of the links and nodes, and the 
threshold value of a particular node, groups of nodes can 
have distinct but useful functional and representational 
properties. A set of these has been devised so as to reflect 
the representational and computational requirements of 
natural language.

3.2.1. Abstraction:
Many words in certain contexts have similar meanings (i.e. 
synonyms). This abstract similarity may be adequately 
modelled by an interconnected network in which any ONE 
of a number of child nodes (synonymous words) may 
trigger the activation of a parent node (synonymous group/ 
abstract type). The same mechanism staggered onto two 
hierarchical levels can model hyponymy. Logically an 
abstracted node is equivalent to an OR gate.

3.1.4. Threshold
Each node also posses a threshold value. This is the value 
that the sum of the activation, which is attributable to the 
input links, must exceed if a node is to be activated.

3.1.5. Evidence Nodes
As mentioned above nodes are primarily divided into 
evidence nodes and hidden nodes. An evidence node 
receives input from somewhere other than the network 
itself. The mechanism by which a particular evidence node 
is activated is largely unimportant. It could be an external 
filtering mechanism which activates the nodes manually or 
the perceptual intelligence may be programmed into the 
node itself

Within the system to be used here, evidential nodes are 
used to represent the low word level knowledge. Each has 
associated with it a list of words (evidence list) whose 
presence in the sentence will lead to the activation of the 
node. This evidence list may contain all the morphological 
variations of a word, common spelling variations on a word 
or even abbreviations. In this case the evidential node is 
analogous to a lexeme.

For example

c_alike

similar near

Figure 3-2 Abstraction

3.2.2. Composition:
Certain words have a composite sense which is distinct 
from the conjugate sense of its parts, for example idioms. 
(Not as much the whole is greater that the sum of its parts 
but the whole is different.) This phenomena may be 
modelled by a network where a single parent node requires 
ALL of its children nodes to become active before it itself 
activates. Similarly simple facts may be modelled this way 
as a composite of parts. Logically an abstracted node is 
equivalent to an AND gate.
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all
children 

n eed ed  to 
trigger 
paren t

FACT_23

catsdogs

hate

Figure 3-3 Composition fact

life long

longlife

Figure 3-4 Composition idiom

3.2.3. Decomposition
Some words have a composite structure where its parts 
contribute different senses to the meaning of the word as a 
whole. For example, at the morphological level consider 
the word walk-ed: ’walk’ informs us of the action, ’ed’ 
informs us that it happened in the past. Or at the semantic 
level, the word husband, where we may infer that the entity 
referenced is (male), (human) and (married). Both these 
cases could be represented by a child node which passes its 
activation to several parent nodes.

c_married

c_male cjiuman

husband

Figure 3-5 Decomposition

3.2.4. Parallelism
Closely associated with decomposition is the concept of 
parallelism whereby the separate implications (modelled by 
spreading activation) of the separate items may be 
computed concurrently.

syntax semantics

c_motionVERB

walk

Figure 3-6 Parallelism

3.2.5. Context
Polysemy or homonymy may be modelled in a network by 
a single child node linking to two parent nodes in parallel. 
Both of these parents will require input from a node 
representing the correct context also before it, itself, 
becomes active. Take the classic example of bank’, in a 
financial context it has a completely different meaning to a 
water/countryside context.

c_bank(2)c_bank(1)

c_financec_water

bank

Figure 3-7 Context

3.2.6. Disambiguation
The mutual exclusivity of two hypothesis or perhaps two 
word meanings may also be modelled by an activation 
passing network. Using the bank example again it will 
mean either a ’commercial building’ or the ’side of a river’ 
not both. Mutually inhibitory links between sibling nodes 
ensure that only the node receiving most supporting 
evidence remains active.

-1

c_bank(2)c_bank(1)

•1

Figure 3-8 Disambiguation
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3.2.7. Feedback
Sometimes the information necessary to disambiguate two 
hypothesis is only available from a higher level process, in 
order to make use of this information it is necessary to 
implement feedback links whereby a parent node can affect 
the activation of a child.

c_bigcat

lion

Figure 3-9 Feedback

threshold =2

AND

AND

OR

threshold =1

e=(a&b)&{cAd )

Figure 3-11 Logical Composition

The above points demonstrate that our chosen knowledge 
architecture has not only powerful representational 
flexibility but is capable of performing computation under 
both connectionist and symbolic processing paradigms.

3.2.8. Connectionist process
As has been demonstrated in numerous connectionist 
papers a three layer activation passing network is capable 
of embodying an arbitrary mapping between any two sets 
of patterns provided there are enough hidden nodes. 
Further, the Universal Approximation Theorem 
demonstrates that a three layer network with one input, one 
output and sufficient nodes in the hidden layers can learn 
any function. This adds powerful computational power to 
our simple knowledge architecture.

F eed  forward activation J

learning

Figure 3-10 Connectionist Process

3.2.9. Logical Process
By virtue of the fact that all logical gates (OR, AND, NOT 
etc.) can be modelled by an interconnected network, and a 
standard vonNeuman architecture computer can be 
implemented entirely with such gates it should be possible 
to emulate any formal computation within the resource 
constraints.

4. FORMALISATION

4.1. Mathematical Formalisation
A particular knowledge base can be characterised by a n- 
tuple K.

K  =< C, P(C), p, t , Z, P(X), e >

where briefly 
C set of concepts
P(C) power set of concepts
p function that returns parents of a concept
t function that returns the threshold of a concept
2  the set of potential evidence strings
P(2 ) the power set of strings
e function that returns the evidence strings

and more fully: C is a set of concepts and n is the number 
of concepts in C, C =  { c i ,C 2 , C 3 , . . .  ,Cn) . P(C) is the 
power set (the set of all sets of) C,
i.e. C =  { { } { C 1},{C1,C2},{C2} , . . . }  .

p is function that returns parents of a concept the range of 
which defined on the power set of C and the domain of 
which is defined on C, p'.C  E C —> q E P (C ) .

t is function that returns threshold of a concept; the range 
of which defined on the set of real numbers and the domain 
of which is defined on C, t'.C E C  —> 91

2  is a finite set of string (say taken from a dictionary)
where m is the number of strings,
Z  =  {(7i,(72,(73,... ,(Tm} and P(2) is the power set 
(the set of all sets of) 2 , 
2  = {{}{CTi},{flrit<72},{<72},...}

Optional b ack  prop 
algorithm
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e is a function that returns the evidence list for a concept; 
the range of which is defined on the power set of 2  and the 
domain of which is defined on C,
e : c e  C-> q  e  P(X)

Of use also is the function h which returns the children of a 
particular node and like the parent function the range of 
which is defined on the power set of C and the domain of 
which is defined on C. This need not be represented 
explicitly as it is redundant information. (However it is to 
be found in the implementation as redundant data for 
performance reasons. So h is h'.C 6  C —> q £  P ( C )

and defined in terms of p as:

where obviously xe C.

Further an activation function a is defined for each node c. 
Again the domain of this function is defined on the set of 
real numbers. Thus this activation function can be defined 
in abstract as: Cl'. C £  C  —> 5R

But specifically in the simple model discussed above where 
activation is Boolean and all weights are unitary, activation 
can be defined recursively as.

a (°) = r  
I o ,2 L ,1(c)

Using this formalism to firm up the definition of some of 
the node types discussed above.

An evidence node has a non empty evidence list 

|^ (c )j   ̂0  , A compound node has a threshold value

equal to the sum of its children |/l(c)| =  i f(c) . An 
abstract node has a non zero threshold value less than the 

sum of its children 0  <  |/l(c)| <  t(c ) .

5. EXAMPLES

5.1. Examples
To demonstrate how the above components can be bolted 
together into more complex functional units with 
interesting and useful computational and representational 
properties, two example models are presented.

5.1.1. Disambiguation Model
This example demonstrates how a search may implemented 
which attempts to match word senses (as opposed to exact 
strings) using context to identity sense. Further, the sense 
disambiguation process is bootstrapped in order to deal

with the common real world case, outlined above, where 
the context itself can be ambiguous.

the problem of bootstrapped contextual disambiguation 
may be solved with an appropriately configured network.

Take the phrase:

“get the train off the tracks”

Let us concentrate on the two words: train and tracks. 
Further let us take just two senses of each of these words. 
The source used is Collins Concise Dictionary (1989)1.

a) Train (n): a line of coaches or wagons coupled together 
and drawn by a railway locomotive.

b) Train (n): something drawn along, such as the long 
back section of a dress that trails across the floor.

a) Track (n): a rail or a pair of parallel rails on which a 
vehicle such as a locomotive runs.

b) Track (n): a course for running of racing.

If train and track are free to take on each of these senses 
there are four distinct possible interpretations of the above 
sentence.

The diagram below demonstrates a network with 
appropriate excitatory and inhibitory links that can 

bootstrap this disambiguation with not further information.

Clothing

O lym pics

Railway Transport

Track [rails](vehicle] [running]

Figure 5-12 Disambiguation model

The network is arranged hierarchically. Those items at the 
lowest level correspond to the lexical items ‘train’ and 
‘track’ respectively. Both these items have excitatory links 
to both their respective senses. Each pair of senses are 
linked with mutually inhibitory weights to model that fact 
that a single lexical item can not simultaneously take on 
two senses. Each sense has excitatory links to its 
decomposed sense primitives. Each sense primitive has a 
mild excitatory feedback link to its child sense.

1 Note in actual fact the above dictionary gives 20 distinct 
definitions for track and 12 definitions for train. This gives 
240 possible interpretations of the sentence if only train 
and track are ambiguous. To complicate matters further the 
item “tracks” has four senses in its own right which are 
distinct from the pluralisation of the noun track.
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If train and track are simultaneously activated all fours 
sense will receive equal activation. Because of the mutually 
inhibitory links if either of a pair was slightly more active 
than the other, this differential would be exacerbated and 
that node would emerge as a definite winner. However at ’ 
this stage they are perfectly balanced. This activation will 
spread to the sense primitives and these primitives will 
feedback a proportion of this activation to their children 
nodes. Note that due to the semantic overlap the railway 
and transport primitives receive a greater input activation 
than the others. In turn, through the feedback links, the 
Trackfrailway] and Train [vehicle] sense node receive a 
disproportionately higher activation. Thus two clear 
winners will emerge.

5.1.2. Addition Model
To demonstrate the possible computational properties of 
the network the following model shows how a composite 
macro-node architecture can be used to search for correct 
statements of arithmetic. In this case matches can be made 
against procedurally defined states or truths.

bjnajy encoding o(_oulput

Adder Module

bolh inputs must, 
be Identical |

ŜumN
Correct

binary I 
encoding 1 
ol output 1

l text encoding ol 
I number input

Arg1

Answer
Arg2

Figure 5-13 Arithmetic

The above network is intended to identify only correct 
statements of simple addition, for example:

one plus one equals two tX
three plus three equals seven X
4 plus 2 equals siz tX
2 plus 5 equals six X

For reasons of diagrammatic simplicity the macro node 
units required to validate the operator and equivalence sign 
(i.e. plus and equal) have been omitted, however it should 
be easy to see how these would be integrated into the 
system.

There are three inputs to the system (Argl,Arg2,Answer) 
and a single output which validates “sum correct”. The

three inputs are encoded within in the same form on a fixed 
string length encoding. If a variable activation node model 
is used which has biased inputs the characters may be 
encoded as partial activations on the node: (1/26 = ‘a’ 2/26 
= b for example). This is the model demonstrated here, 
however the same is possible on a Boolean activation 
model, however more nodes have to used for each 
character position and each character would have to be 
either distributed or bucket encoded.

Each input maps to a series of three nodes upon which the 
number is binary encoded (allowing the numbers 0-7 to be 
represented). Two fully interconnected layers are used to 
perform this mapping, for it is considered a fairly simple 
mapping. If the mapping were to be more complex, for 
example if not only the text string “one” were to map to 
001 but the text string “1” then hidden layers could be 
used. (This would be necessary when the features in the 
input domain were not linearly separable Rumelhart 
McClelland 1996)

Figure 5-14 Text-binary mapping

The weightings of the networks necessary to perform this 
mapping could be learned by any of a number of learning 
algorithms (back propagation for example).

The binary encoding resulting from the two arg values flow 
into the outputs of the adder module whilst the binary 
encoding of the result is indirectly validated against the 
output of the adder module.

The adder module is itself a network, with six input nodes 
and three output nodes. The internal are not represented in 
the above diagram since by treating it as a modular 
component it is possible to see two distinct 
implementations of the function.

Firstly it may be implemented as an adder circuit using 
nodes to replicate the functionality of AND and OR gates. 
Alternatively it may be implemented as a feed forward 
neural network where addition is solved by a simple pattern 
match process. Either way the end result is the same.

Using another network the output of the adder module can 
be compared against the binary encoded translation of the 
result string.

The end result is a network implemented purely from nodes 
and weights that is capable identifying procedurally defined 
statements (in this case correct statements of arithmetic) 
from a data set. Further a high degree of robustness is 
inherent within the system due to the network mapping 
between text sting and binary encoding.

This is a network capable of representation and transforms 
between representations. Representations are chosen in 
accord with the functionality required and how it effects 
the desired process. It is capable of and uses both 
connectionist and logical processes.
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6. CONCLUSIONS
Above we present a representational schema which is 
based upon the primitive components of the connectionist 
model. Upon this it is possible to build macro-nodes which 
specifically reflect the peculiar representational and 
computational requirements of natural language. Two 
examples are presented: the first tackling the problem of 
bootstrapped sense disambiguation; the second 
demonstrating the how the computational properties of the 
network may be used to match truths that are defined 
procedurally as opposed to declaratively.

Within such a network it is possible to specify search 
criteria in a far more sophisticated manner than Boolean 
search strings. It is possible to specify searches which are 
not solely dependant upon exact string matches but can 
approximate to the intended sense of that string, by the use 
of contextual disambiguation. To speculate, a mode of 
operation is possible whereby domain specific networks 
could be shared between users, which would map out the 
meanings of commonly searched for elements. These would 
form the foundation upon which specific searches would be 
built.
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Abstract

This paper outlines the form and structure of an activation passing context rich 
network ideally suited to tasks such as; recovering from noisy or damaged data, 
recognition or spelling correction. Such a network has been shown to be in many 
ways similar to N-Gram analysis or the transition matrix of Markov Models. 
However it is superior in that the scope of context (N) to be considered is 
dynamically and locally identified for each node. A pair of algorithms are presented 
which can be used to produce such networks. The first uses global working memory 
to deal with the time dependant nature of the input data, the second uses time delay 
nodes within the network. The latter, however, is considered superior as it reduces 
algorithmic complexity and increases computational efficiency.

1. Introduction
One of the keys to successfully recovering from noisy, 
damaged or incomplete data within the fields of 
spelling correction or recognition is to maintain and 
apply an accurate model of the orthographic regularity 
of sub-word components and using this to modify the 
probability estimates from a user error module. N-gram 
analysis and Markov Models have both been used 
successfully to perform this task [1][2][3], statistically 
deriving their information from a corpus. However both 
are limited in that the depth of context (the value of N) 
must be specified before the corpus analysis 
commences: low values of N mean corpora need only 
be small however transition estimates are of limited 
value due to the narrow context; high values require 
ridiculously large corpora for reliable probability 
estimates [4]. In this paper we look at several 
algorithms that produce context rich networks from 
corpus analysis. The network production processes 
differ from above in that the value for N is locally and 
dynamically determined for each node.

For convenience, hereon, we use the term CDC 
(Composition-DeComposition) network to identify a 
particular type of connectionist network originally 
developed in [5]. This network was developed initially 
in order to represent high level semantic information for 
application to an automated assessment task. However, 
it was the intention of the authors as stated in [5] that 
the same representational and problem solving scheme 
could be applied to more primitive natural language 
processing tasks. Such tasks as spelling correction or 
error detection, where a sophisticated models of

orthographic or phonetic regularity could improve 
performance.

We shall in this paper consider firstly the format and 
specification of the proposed network. Secondly, we 
shall consider two alternative algorithms for the 
production of these networks. Finally shall consider a 
fuzzy element retrieval from the network using the 
second of these algorithms.

2. Formal Specification of Data 
Structure and Heuristics
All the algorithms considered below generate a network 
of the same general form and structure [9] and are 
modifiable by two configurable heuristics. Each 
network initially consists of a set of non-connected 
primitive nodes. In the case of spelling correction these 
primitive nodes are the 26 letters of the alphabet. When 
a string is presented to the network the appropriate 
primitive nodes are activated. A linkage heuristic must 
be defined which specifies a relationship that must hold 
between two activated nodes. If the linkage heuristic 
holds for any two nodes, a context history is recorded 
for those nodes. These context histories are constantly 
updated as new strings are processed. When the context 
history exceeds a threshold defined by the clustering 
heuristic the two nodes found within each other’s 
context are made into a new parent node and child links 
are created and maintained. If in the future, the two 
child nodes become active in the correct order, the 
parent node becomes active also.
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Formerly this is specified as: N the nodelist is a set of s 
nodes, N — .Here each component
n is a composite of the with the following attributes: n = (WordID, Fequncy, Children, Linkage) .  
WordID is a string to identify the node, Frequency is an 
integer in which we record the number of times the 
node has been found. Children, Parents and Linkage are 
all lists and defined as follows: 
Childrenx = {cix,C2x,cix,...c<ix}, where each member 
is of type c comprising the single attribute: 
c =  (WordID).

Similarly Parentsx = {pix,p2x,P3x,... p™} and: 
p= {WordID).

Finally Linkagex = {lix,hx,hx,...ltx} where 1 is a 
composite type with two attributes 
I = (WordID, Frequency)

If we use the syntax where a function of the same name 
as an attribute performed on an appropriate composite 
extracts the value of that attribute, it follows that:

Freq(nx) = 'i£fifrequecny(lix). In other words the

frequency of a node is equal to the sum of the frequency 
of the distinct contexts it has been found in. A useful 
variable is the total number of primitive nodes

encountered Global -  freqprims(i) where:

freqprims{i) = ( freq{m), = lj

0 , jvwra?(rci)| 56 lj

and Word(m) = length o f string

The input string we may interpret mathematically as a 
set of ordered pairs. String = {ki,k 2 ,k i,.. .,fe} . Each 
element is a composite with the first attribute the 
letterlD the second is the position in the string, i.e. 
k = {letterlD, position) .

Given this the linkage heuristic may be defined as a 
Boolean returning function. Simple right adjacency 
heuristic could be defined as:

Link{x, y) =
1, position(kx) = position{ky) + 1  

0 , position(kx) ^  position{ky) + 1

Clustering heuristics are also Boolean returning 
functions. A simple heuristic relying on absolute 
frequency could be defined as

Cluster{x, y) =

freqClxA
1, -> o .o i

0,

Global 
freqjlxy)
Global

< 0.01

As a general note the linkage heuristic defines the form 
or nature of the network, i.e. what the network actually 
represents. In the simplest case this is right adjacency. 
The clustering heuristic determines the breath and depth 
of the network, and is usually a statistical threshold. A 
low threshold will produce a deep tree that will have 
nodes that correspond to full lexical items.

3. Time Series Through Global 
Working Memory

A standard statistical procedure attempts to identify a 
relationship between N variables. The algorithm 
outlined does this with a set of primitive nodes, 
however when a strong relationship is found between 
two or more nodes they are concatenated into a new 
node and the procedure will then look for relationships 
with this node also. The number of variables is 
therefore constantly growing as the data is recursively 
applied to itself.

If we are to implement this as an adaptive network there 
are two problems that have to be overcome:

1) With strings we are dealing with time dependent 
data. Within a standard connectionist network it is 
difficult to come up within an encoding where a 
nodes position within the string (the time dependant 
data) is preserved.

2) Within the learning phase we have the problem of 
making the distinction between the type and token 
of a node. This is best exemplified in the word 
banana. Here there are two instances of the cluster 
‘ana’ that occupy non unique positions within the 
string. If there is a single node to represent the type 
‘ana’ we must at least temporarily be able to 
discriminate two distinct instances of the token 
‘ana’ at different but overlapping positions.

One solution to this problem is to couple a working 
memory onto the connectionist network. Working 
memory becomes the blackboard upon which all 
instances of nodes are recorded as they are activated. A 
node instance is created within working memory as 
soon as it receives input from its first child node and the 
time at which it was first activated is bound to this 
instance. When the node receives input from its final 
child node the node itself is activated and this time is 
also recorded.

In outline, a new unconnected primitive node is 
instantiated for each primitive unit encountered in a 
string. Whenever this node is subsequently encountered
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within a string this node is instanced in working 
memory, and remains there for a specified lifespan. The 
linkage heuristic is constantly applied to working 
memory and contextual information is recorded for any 
node instances satisfying the criteria.

When the context history combining two (or more) 
nodes exceeds a value specified by the clustering 
heuristic a new compound unit is instantiated which 
describes the conjunction of the children nodes.

Certain metrics are attached to the various entities in 
the tree. It is with respect to these metrics that the 
clustering and linkage heuristic are defined. Of 
significance is the measure of frequency (attached to 
nodes, links and global measures). An absolute measure 
of frequency would be inadequate for inter-node 
comparisons as new nodes are being created all the time 
and the new nodes are unaware of how often they 
occurred before they were created. More suitable would 
be a measure of acquisition velocity, that is to take an 
estimate of the differential of frequency over time. It 
was found that the regular resetting of all frequency 
values served as a satisfactory approximation to this.

The algorithm as discussed may be defined in pseudo 
code as follows:

LOOP ( f o r  a l l  s t r i n g s )
{

LOOP ( f o r  a l l  u n i t s )
{

I F  ( n o d e  n o t  p r e v i o u s l y  s e e n )
DO I n s t a n t i a t e _ N o d e  

E L S E  ( n o d e  a l r e a d y  s e e n )
{

DO A c t i v a t e _ T h i s _ N o d e  
DO P a s s _ A c t i v a t i o n _ P a r e n t s  
DO I n s t a n c e _ N o d e _ I n _ M e m o r y  
LOOP ( a l l  i n s t a n c e d  n o d e s )
{

I F  (L IN K A G E  H E U R IS T I C )
{

DO A d d _ L i n k _ T o _ H i s t o r y  
I F  (TH RESH O LD H E U R IS T I C )
{

DO M a k e _ N o d e s _ C o m p o u n d s  
DO L i n k _ C h i l d r e n + P a r e n t

}
}

}
}
DO C l e a r _ W o r k i n g _ M e m o r y

}
}

Although there are several inefficiencies in this 
procedure it does work and rapidly produces networks 
of considerable complexity embodying deep contextual 
information from the problem domain. Training time is 
roughly proportional to the square of the current 
number of identified nodes and therefore assuming a 
constant rate of node acquisition increases 
exponentially over time. The rate of node acquisition is

however completely determined by the clustering 
heuristic and therefore further generalisation is difficult.

In summary global working global working memory is 
being used to perform two distinct activities.

1) Sequence Processing: to allow time dependant 
information to propagate up the network so that the 
‘th’ node only becomes active when the ‘t’ node and 
the ‘h’ node are activated immediately after one 
another.

2) Learning: to provide a blackboard on which 
activated nodes can be recorded and upon which the 
linkage heuristic can be applied.

4. Time Series Through The 
Synchronous Activation Update Of 
Gateway Nodes

With a more sophisticated activation model it is 
possible to remove the need for working memory to 
model the propagation of time dependant data. A 
stricter activation model must be applied where each 
single unit evidence node is activated at distinct phases. 
Consider the example of ‘banana’: ‘b’ must be activated 
on phase 1, ‘a’ activated on phase 2, ‘n’ activated on 
phase 3 etc.

A composite when identified must be gatewayed with 
activation delay nodes to offset the activation latency of 
primary and secondary child nodes. For example if ‘ba’ 
was identified as a composite node ‘b’ and ‘a’ would 
both be recorded as child nodes, but a delay node 
would be inserted between ‘b’ and its parent ‘ba’. This 
would give an activation schedule as follows:

Phase 1: ‘b’ becomes active.
Phase 2: ‘b’ passes activation to delay node, ‘a’ 
becomes active.
Phase 3: delay node passes activation to ‘ba’, a passes 
activation to ‘ba’

KEY
/TEN Delay
S #  Node 

(||),, Active

Q . Inactive

PHASE
2

PHASE
1

PHASE

This way ‘ba’ receives its activation from both its child 
nodes at the same time even though the respective child 
nodes themselves were active at different times.
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Not only is this computationally more efficient but its is 
architecturally more consistent with the connectionist 
model. Working memory is now only necessary for the 
application of the learning phase , i.e. the application of 
the linkage heuristic.

Further, as we shall see below, such a model makes it 
easier to introduce a notion of variable activation which 
will be necessary for the recovery of damaged data.

5. Application of Network
As discussed such context rich trees are ideally 
applicable to recognition type tasks. In their simplest 
they can be shown to produce identical information to 
that produced by N-Gram analysis or the transition 
matrix of a Markov model. However, we do not have to 
specify our grain of analysis (bigram - trigram etc.) 
before processing takes place nor must the grain be 
unique throughout the analysis. If the heuristics are set 
up correctly the algorithm dynamically and locally 
determines these for each node. We can therefore use 
the trees in the same way as we would with N-gram or 
Markov Models i.e. produce estimates of word 
probability from supplied evidence, as a multiple of 
transition probabilities between primitives. But using 
the context tree we may augment these estimates by 
describing our units in higher level terms and using 
transition probabilities between these to modify our 
original figure. Similarly we could use the identified 
tokens as the principal resource for Ngram [8] [10] 
indexing as used for spelling correction, with parallel 
benefits.

But, by extending the synchronous activation model 
discussed in the final algorithm we could introduce the 
notion of partial activation into the network. By 
applying a time decay function to each node we can see 
how two perfectly timed child nodes will lead to full 
activation of a parent node, whereas if the child nodes 
are slightly misplaced the parent node will only be 
partially activated. If the clustering heuristic was 
adjusted such that the tree was built to the deepest level 
ie full lexical items, the lexical items that most closely 
matched the supplied evidence would become most 
active. Further by implementing mutually inhibitory 
nodes between all full lexical items through interactive 
activation and competition [7] the network itself could 
resolve the best fitting match.

6. Further Work
The learning algorithms presented above consider only 
the composition element of CDC networks. No 
algorithm has yet been developed which attempts to 
automatically identify the decomposition element and 
hence the various subtypes of nodes. This is an area 
within the problem domain ripe for exploitation. For 
example constants and vowels are the two crudest

subtypes within the domain each of which has a 
completely distinct contextual distribution which could 
be used to great effect in modifying probability 
estimates for data recovery. This is seen as the next 
phase for development.
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Abstract
This paper develops some previously published ideas on 
clustering within connectionist networks. Networks are 
grown from individual unattached nodes which represent 
the attributes within the un-mined data base. Three 
distinct algorithms are iteratively applied to unattached 
nodes. The first recursively identifies composite nodes 
which model conjunctions of attributes; the second 
identifies clustered nodes which model disjunctions of 
attributes and the third prunes the network, stripping out 
identified nodes which have no predictive value. A 
developed network can serves a perceptual framework 
which simplifies a complex database, and through the 
sensible choice of pruning criteria can be tuned for 
application to specified predictive tasks.

1. Introduction
We address in this paper the issue of growth in 
connectionist networks [1] [2], A process is described 
which consists of three distinct processing components. 
Each of these components is a applied iteratively to a 
primitive node set, in order to identify new nodes and the 
appropriate linkages between them. Each of these new 
nodes is derived statistically from the input domain and 
therefore represents the regularities implicit within the data. 
The network is also subjected to a pruning process so that 
identified nodes also serve some functional value. The 
produced network is therefore a sophisticated reflection of 
the distribution of the units to be found within the input 
domain.

Let us examine the process of data mining in abstract. 
Typically we have at our disposal a data set consisting of a 
series of entities. Each of theses entities is characterised by 
a set of attributes. This set of attributes we shall call the 
atomic description, for it is the most detailed description of 
the data for which there is empirical support. A typical data 
mining application will want to do one of several thing 
with this data:

1) predict the behaviour of unseen entities on the basis the 
data available in the set.

2) segment the data set (and new entities) into one of 
several predetermined categories that have known 
behaviour.

3) identify any regularities within the data set that could 
be used to competitive advantage.

Obviously the computational processes to perform these 
prediction or segmentation tasks must be a function of the 
atomic description. However there is a problem, learning 
algorithms such as back propagation do not perform well 
with large data sets. A large atomic description can lead to 
a combinatorial explosion of linkages between nodes and 
consequently exponentially increasing processing times.

The algorithms we present here are an attempt to produce a 
representation of the atomic description which is both 
efficient, economical and tuned towards the desired 
application. However the processes used to identify such 
descriptions have some interesting side effects. We find 
that in order to produce optimal and tuned descriptions it is 
necessary to record the contextual history of each node. An 
evolved network therefore contains rich information 
concerning the distribution of the respective attributes, 
information that can be utilised for predictive purposes.

Typically what do we want from the data?

1) pertinent statistical relationships between data
elements that can be monopolised on.
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2) high order elements that mat be identified within 
the data set which expose the internal regularity 
of the data.

3) most importantly: a simplification of the data set
(only possible after (2)) which can be used for 
descriptive, computational and modelling 
applications.

What precisely is meant by higher order elements? Imagine 
each entity within the data base is described by just two 
variables, height and weight for example. Further imagine 
each of these variables is segmented into seven categories: 
([very low] [low] [below average] [average][above average] 
[high][very high]). If this is to be the atomic description 
what high order characteristics can be derived from this 
which simplify the description for use in processing tasks?

We identify two such high order elements: composite 
elements and clustered elements.

A composite element requires two or more atomic 
attributes to be active within the data set. Within the above 
data set this could be [very tall] and [very heavy] 
simultaneously, for example. In many ways this is similar 
to a logical AND node.

A compound node requires any one of a group of atomic 
attributes to be active within the data set. Within the above 
data set this could be any weight above average [above 
average] [heavy][very heavy], for example. In many ways 
this is similar to a logical OR node.

Interestingly both these high order types can be easily 
modelled with primitive connectionist units.

A composite node can model a composite attribute by 
having a single parent node that has a threshold value equal 
to the number of children it has. Both children will 
therefore have to be active before the p'arent node itself 
becomes active.

tall+heavy

tall heavy

A clustered node can model a clustered attribute by having 
a single parent node that has a threshold value equal one. 
Any of the children will therefore lead to the activation of 
the parent node.

generally
heavy

heavy very heavy

By applying algorithms to identify composite and clustered 
nodes iteratively interesting recursive relationships build 
up between the nodes themselves.

For composite nodes we can see how that once identified 
the [[very tall] [very heavy]] composite could be further 
bound to a further variable [very young] for example to 
identify an even more tightly defined subset of the data. 
Similarly clustered nodes may be clustered: the [generally 
heavy] cluster could be further clustered with [very small] 
to define the set of people that were above average weight 
or small.

But also we can have composites of clusters and clusters of 
composites, [generally heavy] and [generally tall] is a 
potentially useful composite of clusters, [[very tall][average 
weight]] or [[tall][below average weight]] identifies a 
cluster of composites which describes tall people that are 
an equivalent amount underweight.

The use of the phrase potentially useful brings us to 
another issue. The nodes that are identified by the above 
algorithms are identified on a purely statistical basis. How 
are we to ensure that these nodes are actually useful for a 
specific purpose? This is where the pruning phase comes 
in. Within the pruning phase we objectify the purpose of 
our network and use this as the functional criteria by which 
by prune (or don’t prune) a particular node.

Now to discuss each of these processes in more detail.

2. Composition
The aim is to identify nodes that represent composite 
attributes within the data set. If a composite attribute is to 
be defined in statistical terms it is those attributes that are 
found to frequently co-occur. This is done as follows.

An unattached node is instantiated for each atomic attribute 
within the data set. The attributes of a particular entity 
within the data set are presented to the network and the 
appropriate nodes are activated. Each node is aware of the 
others activation and their mutual co-occurrence is 
recorded in their respective history links. A new entity is 
presented and the process is repeated. The history links 
between certain nodes will slowly strengthen, reflecting the 
respective distributions of the nodes. Once a history link 
surpasses a predetermined critical strength a new node is 
instantiated which is to represent the composition of the 
two relevant children nodes and two activation links are 
created which will pass activation from children to parents.
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If in the future both children nodes are to become active the 
parent node will be activated also.

In this manner a network will slowly grow from the 
primitive seeds. Also the entire statistical process is 
recursive in that new identified nodes are also recorded in 
the history lists and so can be used in the formation of yet 
further, more complex nodes.

2.1. Formalisation
A particular network can be characterised by a 5-tuple 

( P , N ,t,l,h). Where P is the initial set of primitive 
nodes and N is the entire list of nodes, initially N=P. t is a 
function that represents the activation threshold of each 
node. 1 is a function which models the linkages that hold 
between nodes and is thus defined: I'. N,  N  —> {0,1} if 
linkages are to be Boolean in nature, and 
I’. N , N  —> [0,1] if the interval is to be continuous, h is 
a function that models the contextual history of a nodes and 
so is defined h\ N  , N  —> W, where W is the set of 
whole numbers. The frequency with which a particular 
node has been observed f(N) can therefore be calculated

from its history: f  ( N)  — ^ j ieph (N ,i) . The global 
frequency g(), which is the total number of nodes processed 

can then be defined: g ( )  =  ZjiGPf  ( 0  •

The process of clustering is to identify new node x such 
that N=Nux, and x is to represent the cluster of two nodes 
ni and n2. The threshold between of this new node is two, 
t(x)=2. And two linkages must hold between the children 
and the parent composite: l(ni,x)=I and l(n2,x)=l.

The criteria that must be satisfied if a new x is to be 
identified, as mentioned above, is entirely adaptable, but 
is most simply be defined on a statistical basis. For 
example the criteria

f(ni) > K A N D f ( m )  > A

Where K is a statistical threshold and A is a constant to 
ensure statistical significance.

3. Clustering
The aim is to identify nodes that represent clustered 
attributes within the data set. If tills cluster is to be 
identified from the data available, that is the other 
attributes, the only criteria by which this cluster may be 
made is commonality of contextual frequency. Fortunately 
the history links required by the former algorithm is the 
ideal resource with which to evaluate contextual history.

In order to identify the best two nodes to be clustered a 
process of what we call bounce back activation is used. 
This is done as follows. Select a node at random and 
activate this node fully. Pass the activation out through the 
“history links” to the others and let these other nodes take 
on an activation proportional to the strength of the history

link. Once received bounce back this activation, again 
down the history nodes but this time let the strength of this 
activation be proportional to the difference between the 
strength of the activation of the node and the strength of 
the history link. The emitting node, should of course be 
fully activated. But the most similar nodes will also take on 
a high activation.

3.1. Formalisation
Take the same network formalisation given preciously. 
Further assume the existence of a distance function 8 which 
returns a measure of the similarity between two nodes,. S‘.N,N —> [0,1] If N! and N2 are to be identified as a 
cluster then N[ should be closest to N2:

VxeN\{Ni} 5(Ni )
The distance function 8 itself is best defined in terms of the 
intermediate bounce back function b(). The bounce back 
function is determined for each node in respect of the 
specific node c which is being clustered, and is simply a 
function of the strength of the link between the two thus b(c,ri) — h(c,ri) . The distance function is then:

S(c,n) =
M

Where sim() is a measure of the similarity between 
activation and link strength. And Qn is the set of nodes 
which are attached by history links to n.

4. Predictor Pruning
The above two algorithms identify high order nodes from 
the primitive data set on purely statistical grounds. If we 
wish to tune the network towards a particular application, 
the statistical grounds on their own a insufficient to justify 
the nodes existence within the network. For this reason the 
network is regularly pruned. That is nodes that do not 
satisfy some predefined functional criteria are taken out of 
the network. The pruning function itself should be the 
formalisation of the purpose of the network.

There is an important issue here to do with the regularity of 
the pruning. It does not pay to prune too often. Much as in 
a game of chess where the fruits of a particular strategy are 
not apparent until several moves into the game, it 
frequently pays to let several layers of non-performing 
nodes build up before the entire branch is stripped.

4.1. Formalisation
The process of the removal of node x is 
simply: N = N \ {x}  .
All connected activation links must be nulled.

Vn e N 1(X, TI )  =  0  A  l ( t l ,  x )  =  0

And similarly history links:
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V « e n  h(x, n)~ 0 a h(n, x) =  0
The criteria under which this node removal takes place is 
varied and functionally dependant. If the network is being 
used for variable prediction, such a criteria may be the 
Bayesian probability of a variable v given a node x being 
less than some predetermined threshold 0. For example 
p(v \x ) < 0  .

5. Application - How could the data be 
used?

We have described how the above procedures can be used 
to generate networks of considerable complexity that model 
any deep statistical regularity within the data., and simplify 
the data through the identification of higher order 
elements. But how can these networks be used?

5.1.1. Net input
Using a back propagation type algorithm for training neural 
networks to segment or predict the behaviour of a 
population is an obvious application of neural network 
technology. However the size of the databases frequently 
prohibits this due to combinatorial explosion of linkages 
and consequent exponentially rising processing times. The 
above process can be used to alleviate this problem. If 
successful a network will be produced consisting of high 
order nodes from the data set. A particular member of the 
population can be characterised with these higher order 
nodes more economically and efficiently. Further by 
choosing an appropriate pruning function we can tune the 
data to the task in hand essentially performing useful pre­
processing on the data.

5.1.2. Predictor
The generated node itself can be used as a source from 
which to predict the value of an independent variable, 
particularly if this variable is used within the pruning 
heuristic. We can of course analyse the Bayesian 
probability of this independent variable given the presence 
of the various atomic attributes. With a fully evolved 
network this initial estimate can be greatly enhanced.

5.1.3. Query for logical composition
The network discussed is localist, consequently the nodes 
may be interpreted symbolically. Also due to the similarity 
between composite and clustered nodes, and the logical 
notions of AND and OR respectively, the grown network 
may be interpreted in terms of logical rules. This means if a 
node has been identified which is particularly useful, as a 
criteria for classification for example, it is very easy to 
translate this network into a set of production rules.

5.1.4. Query for statistical distribution
Similarly, the symbolic nature of the network renders it 
ripe for statistical exploitation. The history linkages of the 
network contains detailed information concerning the 
contextual distribution of the individual nodes, in much the

same way as Markov model [3] or N-gram analysis [4] [5] 
would. However unlike these and similar statistical 
techniques were the scope of analysis is predetermined 
before processing takes place, the scope on analysis is 
dynamically and locally determined at each node.

A grown network serves as a rich source of statistical 
information. As a general rule if die existence of a 
particular node/attribute is an independent random event 
then the contextual history of that node will have a random 
distribution. Where the contextual history is not random 
there is useful information ready to exploit.

6. Conclusions
In general the three algorithms discussed above provide an 
evolutionary procedure for synthesising the optimum 
description of a data set, for use in a specified application. 
The two relationships presented, composition and 
clustering, although somewhat arbitrary are easy to model 
in a connectionist network and have a solid logical 
foundation. The iterative application of the network 
therefore leads to sophisticated models of considerable 
complexity. The third algorithm, the pruning process, 
provides the evolutionary forcing factor to ensure that the 
network has relevance to the application in hand.

A produced network and the activation links that exist 
between nodes therefore provides a perceptual framework 
for the original data set, both simplifying and tuning the 
data.

Specifically, however, the implementation of the above 
algorithms necessitates the use to the history linkages, 
which prove to be useful items in their own right. They 
provide a deep contextual history of each node, which can 
be used to divine the relationships that exist, not only 
between the original atomic attributes, but any clustered 
and composite attributes subsequently identified.
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Abstract
This paper develops some previously published ideas on 
clustering within connectionist networks. Networks are 
grown from individual unattached nodes which represent 
the attributes within the un-mined data base. Three 
distinct algorithms are iteratively applied to unattached 
nodes. The first recursively identifies composite nodes 
which model conjunctions of attributes; the second 
identifies clustered nodes which model disjunctions of 
attributes and the third prunes the network, stripping out 
identified nodes which have no predictive value. A 
developed network can serves a perceptual framework 
which simplifies a complex database, and through the 
sensible choice of pruning criteria can be tuned for 
application to specified predictive tasks.

1. Introduction
We address in this paper the issue of growth in 
connectionist networks [1] [2], A process is described 
which consists of three distinct processing components. 
Each of these components is a applied iteratively to a 
primitive node set, in order to identify new nodes and the 
appropriate linkages between them. Each of these new 
nodes is derived statistically from the input domain and 
therefore represents the regularities implicit within the data. 
The network is also subjected to a pruning process so that 
identified nodes also serve some functional value. The 
produced network is therefore a sophisticated reflection of 
the distribution of the units to be found within the input 
domain.

Let us examine the process of data mining in abstract. 
Typically we have at our disposal a data set consisting of a 
series of entities. Each of theses entities is characterised by 
a set of attributes. This set of attributes we shall call the 
atomic description, for it is the most detailed description of 
the data for which there is empirical support. A typical data 
mining application will want to do one of several thing 
with this data:

1) predict the behaviour of unseen entities on the basis the 
data available in the set.

2) segment the data set (and new entities) into one of 
several predetermined categories that have known 
behaviour.

3) identify any regularities within the data set that could 
be used to competitive advantage.

Obviously the computational processes to perform these 
prediction or segmentation tasks must be a function of the 
atomic description. However there is a problem, learning 
algorithms such as back propagation do not perform well 
with large data sets. A large atomic description can lead to 
a combinatorial explosion of linkages between nodes and 
consequently exponentially increasing processing times.

The algorithms we present here are an attempt to produce a 
representation of the atomic description which is both 
efficient, economical and tuned towards the desired 
application. However the processes used to identify such 
descriptions have some interesting side effects. We find 
that in order to produce optimal and tuned descriptions it is 
necessary to record the contextual history of each node. An 
evolved network therefore contains rich information 
concerning the distribution of the respective attributes, 
information that can be utilised for predictive purposes.

Typically what do we want from the data?

1) pertinent statistical relationships between data 
elements that can be monopolised on.
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2) high order elements that mat be identified within 
the data set which expose the internal regularity 
of the data.

3) most importantly: a simplification of the data set
(only possible after (2)) which can be used for 
descriptive, computational and modelling 
applications.

What precisely is meant by higher order elements? Imagine 
each entity within the data base is described by just two 
variables, height and weight for example. Further imagine 
each of these variables is segmented into seven categories: 
([very low][low][below average][average][above average] 
[high] [very high]). If this is to be the atomic description 
what high order characteristics can be derived from this 
which simplify the description for use in processing tasks?

We identify two such high order elements: composite 
elements and clustered elements.

A composite element requires two or more atomic 
attributes to be active within the data set. Within the above 
data set this could be [very tall] and [very heavy] 
simultaneously, for example. In many ways this is similar 
to a logical AND node.

A compound node requires any one of a group of atomic 
attributes to be active within the data set. Within the above 
data set this could be any weight above average [above 
average] [heavy][very heavy], for example. In many ways 
this is similar to a logical OR node.

Interestingly both these high order types can be easily 
modelled with primitive connectionist units.

A composite node can model a composite attribute by 
having a single parent node that has a threshold value equal 
to the number of children it has. Both children will 
therefore have to be active before the parent node itself 
becomes active.

tall+heavy

tall heavy

A clustered node can model a clustered attribute by having 
a single parent node that has a threshold value equal one. 
Any of the children will therefore lead to the activation of 
the parent node.

generally
heavy

heavy very heavy

By applying algorithms to identify composite and clustered 
nodes iteratively interesting recursive relationships build 
up between the nodes themselves.

For composite nodes we can see how that once identified 
the [[very tall] [very heavy]] composite could be further 
bound to a further variable [very young] for example to 
identify an even more tightly defined subset of the data. 
Similarly clustered nodes may be clustered: the [generally 
heavy] cluster could be further clustered with [very small] 
to define the set of people that were above average weight 
or small.

But also we can have composites of clusters and clusters of 
composites, [generally heavy] and [generally tall] is a 
potentially useful composite of clusters, [[very tall][average 
weight]] or [[tall] [below average weight]] identifies a 
cluster of composites which describes tall people that are 
an equivalent amount underweight.

The use of the phrase potentially useful brings us to 
another issue. The nodes that are identified by the above 
algorithms are identified on a purely statistical basis. How 
are we to ensure that these nodes are actually useful for a 
specific purpose? This is where the pruning phase comes 
in. Within the pinning phase we objectify the purpose of 
our network and use this as the functional criteria by which 
by prune (or don’t prune) a particular node.

Now to discuss each of these processes in more detail.

2. Composition
Tire aim is to identify nodes that represent composite 
attributes within the data set. If a composite attribute is to 
be defined in statistical terms it is those attributes that are 
found to frequently co-occur. This is done as follows.

An unattached node is instantiated for each atomic attribute 
within the data set. The attributes of a particular entity 
within the data set are presented to the network and the 
appropriate nodes are activated. Each node is aware of the 
others activation and their mutual co-occurrence is 
recorded in their respective history links. A new entity is 
presented and the process is repeated. The history links 
between certain nodes will slowly strengthen, reflecting the 
respective distributions of the nodes. Once a history link 
surpasses a predetermined critical strength a new node is 
instantiated which is to represent the composition of the 
two relevant children nodes and two activation links are 
created which will pass activation from children to parents.
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If in the future both children nodes are to become active the 
parent node will be activated also.

In this manner a network will slowly grow from the 
primitive seeds. Also the entire statistical process is 
recursive in that new identified nodes are also recorded in 
the history lists and so can be used in the formation of yet 
further, more complex nodes.

2.1. Formalisation
A particular network can be characterised by a 5-tuple 

(P , N , t , l , f l ) . Where P is the initial set of primitive
nodes and N is the entire list of nodes, initially N=P. t is a 
function that represents the activation threshold of each 
node. 1 is a function which models the linkages that hold 
between nodes and is thus defined: l‘.N,N —> {0,1} if 
linkages are to be Boolean in nature, and 
I: N,N —> [0,1] if the interval is to be continuous, h is 
a function that models the contextual history of a nodes and 
so is defined h\ N ,N —> W, where W is the set of 
whole numbers. The frequency with which a particular 
node has been observed f(N) can therefore be calculated

from its history: f  ( N)  =  ^jjepb(N ,i) . The global 
frequency g(), which is the total number of nodes processed 

can then be defined: gQ = / ( / )  .

The process of clustering is to identify new node x such 
that N=Nux, and x is to represent the cluster of two nodes 
nj and n2. The threshold between of this new node is two, 
t(x)=2. And two linkages must hold between the children 
and the parent composite: l(nj,x)=l and l(n2,x)=l.

The criteria that must be satisfied if a new x is to be 
identified, as mentioned above, is entirely adaptable, but 
is most simply be defined on a statistical basis. For 
example the criteria

h (m ,m )

Where K is a statistical threshold and X is a constant to 
ensure statistical significance.

3. Clustering
The aim is to identify nodes that represent clustered 
attributes within the data set. If this cluster is to be 
identified from the data available, that is the other 
attributes, the only criteria by which this cluster may be 
made is commonality of contextual frequency. Fortunately 
the history links required by the former algorithm is the 
ideal resource with which to evaluate contextual history.

In order to identify the best two nodes to be clustered a 
process of what we call bounce back activation is used. 
This is done as follows. Select a node at random and 
activate this node fully. Pass the activation out through the 
“history links” to the others and let these other nodes take 
on an activation proportional to the strength of the history

link. Once received bounce back this activation, again 
down the history nodes but this time let the strength of this 
activation be proportional to the difference between the 
strength of the activation of the node and the strength of 
the history link. The emitting node, should of course be 
fully activated. But the most similar nodes will also take on 
a high activation.

3.1. Formalisation
Take the same network formalisation given preciously. 
Further assume the existence of a distance function 8 which 
returns a measure of the similarity between two nodes,. 
S '.N ,N  —> [0,1] If Nt and N2 are to be identified as a 
cluster then Nj should be closest to N2:

yxeN\{Ni} S(N,)
The distance function 8 itself is best defined in terms of the 
intermediate bounce back function b(). The bounce back 
function is determined for each node in respect of the 
specific node c which is being clustered, and is simply a 
function of the strength of the link between the two thus 
b(c,n) =  h(c,ri) . The distance function is then:

5(c,ri) —
^ieQn sim(b(C’ i)M n ,  0 )

\Qn\

Where sim() is a measure of the similarity between 
activation and link strength. And Qn is the set of nodes 
which are attached by history links to n.

4. Predictor Pruning
The above two algorithms identify high order nodes from 
the primitive data set on purely statistical grounds. If we 
wish to tune the network towards a particular application, 
the statistical grounds on their own a insufficient to justify 
the nodes existence within the network. For this reason the 
network is regularly pruned. That is nodes that do not 
satisfy some predefined functional criteria are taken out of 
the network. The pruning function itself should be the 
formalisation of the purpose of the network.

There is an important issue here to do with the regularity of 
the pruning. It does not pay to prune too often. Much as in 
a game of chess where the fruits of a particular strategy are 
not apparent until several moves into the game, it 
frequently pays to let several layers of non-performing 
nodes build up before the entire branch is stripped.

4.1. Formalisation
The process of the removal of node x is 
simply: N  =  N  \  {jf} .

All connected activation links must be nulled.

V/i e n I(x ,h) =  0 a  l (n,x)  =  0

And similarly history links:
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V/i e Nh(x,n) =  0  a  h(n,x) =  0

The criteria under which this node removal takes place is 
varied and functionally dependant. If the network is being 
used for variable prediction, such a criteria may be the 
Bayesian probability of a variable v given a node x being 
less than some predetermined threshold 0. For example 
p(v\x) < 6 .

5. Application - How could the data be 
used?

We have described how the above procedures can be used 
to generate networks of considerable complexity that model 
any deep statistical regularity within the data., and simplify 
the data through the identification of higher order 
elements. But how can these networks be used?

5.1.1. Net input
Using a back propagation type algorithm for training neural 
networks to segment or predict the behaviour of a 
population is an obvious application of neural network 
technology. However the size of the databases frequently 
prohibits this due to combinatorial explosion of linkages 
and consequent exponentially rising processing times. The 
above process can be used to alleviate this problem. If 
successful a network will be produced consisting of high 
order nodes from the data set. A particular member of the 
population can be characterised with these higher order 
nodes more economically and efficiently. Further by 
choosing an appropriate pruning function we can tune the 
data to the task in hand essentially performing useful pre­
processing on the data.

5.1.2. Predictor
The generated node itself can be used as a source from 
which to predict the value of an independent variable, 
particularly if this variable is used within the pruning 
heuristic. We can of course analyse the Bayesian 
probability of this independent variable given the presence 
of the various atomic attributes. With a fully evolved 
network this initial estimate can be greatly enhanced.

5.1.3. Query for logical composition
The network discussed is localist, consequently the nodes 
may be interpreted symbolically. Also due to the similarity 
between composite and clustered nodes, and the logical 
notions of AND and OR respectively, the grown network 
may be interpreted in terms of logical rules. This means if a 
node has been identified which is particularly useful, as a 
criteria for classification for example, it is very easy to 
translate this network into a set of production rules.

5.1.4. Query for statistical distribution
Similarly, the symbolic nature of the network renders it 
ripe for statistical exploitation. The history linkages of the 
network contains detailed information concerning the 
contextual distribution of the individual nodes, in much the

same way as Markov model [3] or N-gram analysis [4] [5] 
would. However unlike these and similar statistical 
techniques were the scope of analysis is predetermined 
before processing takes place, the scope on analysis is 
dynamically and locally determined at each node.

A grown network serves as a rich source of statistical 
information. As a general rule if the existence of a 
particular node/attribute is an independent random event 
then the contextual history of that node will have a random 
distribution. Where the contextual history is not random 
there is useful information ready to exploit.

6. Conclusions
In general the three algorithms discussed above provide an 
evolutionary procedure for synthesising the optimum 
description of a data set, for use in a specified application. 
The two relationships presented, composition and 
clustering, although somewhat arbitrary are easy to model 
in a connectionist network and have a solid logical 
foundation. The iterative application of the network 
therefore leads to sophisticated models of considerable 
complexity. The third algorithm, the pruning process, 
provides the evolutionary forcing factor to ensure that the 
network has relevance to the application in hand.

A produced network and the activation links that exist 
between nodes therefore provides a perceptual framework 
for the original data set, both simplifying and tuning the 
data.

Specifically, however, the implementation of the above 
algorithms necessitates the use to the history linkages, 
which prove to be useful items in their own right. They 
provide a deep contextual history of each node, which can 
be used to divine the relationships that exist, not only 
between the original atomic attributes, but any clustered 
and composite attributes subsequently identified.
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Gn~Dhlcat U....lm.rt.ce 
To facilitate mandng and viewing of 
questions and answers a Windows 
based GUI has been developed. A 
graphically based knowledge base 
editor has also been provided. 

\ . 

Manual mar1< 

I Menu bar 

GU 
Contra panel moving through 
questions and answers and 
maoong single answers 

Graphical 
representation of 
Knowledge Base for 
display and editting 

Node edit box: displays 
and allows editting of 
each node's 
charactenstics 
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