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Abstract

Some of the common operations humans take for granted, for example the human 

vision system, have been found very difficult to emulate. Although humans are 

able to perceive visual information almost instantly, this belies the complexity of 

this process.

This thesis describes a computer vision strategy that involves Artificial Neural 

Networks (ANNs) to perform accurate and efficient object identification. Face 

location is used as the primary test domain. This involves the processing of real 

world scenes to distinguish between faces of different shapes, sizes and different 

viewpoints. Object identification in a complex environment is an extremely 

difficult task and research into this area of computer vision is currently not being 

fully exploited. Many previous models for computer vision have applied 

techniques that only solve particular well-defined problems.

An efficient two-stage vision strategy is presented which removes the necessity 

to process an image at full resolution through the use of low resolution. The first 

stage uses a multi-resolution approach to identify areas of interest at an optimally 

low resolution. The focus areas are then passed to a classification stage to 

perform more accurate analysis to reject the area of interest or confirm the 

presence of the pre-determined object.



Thesis Abbreviations

AF -  Attention-Focusing.

ANN -  Artificial Neural Network.

ART -  Adaptive Resonance Theory [Carpenter and Grossberg, 1985]. 

Backprop -  Back-Error Propagation [Widrow and Hoff, I960].

ED -  Eye distance.

FA — Focus Area.

FNs -  False Negatives.

FPs -  False Positives.

MLP -  Multi-Layered Perceptron.

TNs -  True Negatives.

TPs -  True Positives.
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Chapter 1

Introduction

Over the past thirty years the computing world has seen a continued growth in the 

technological improvement of computers in terms of their processing power, 

storage, and sophistication of applications performed on them. This increase in 

computing power naturally leads to the desire to solve ever more complex 

problems. An area that continues to receive much interest are the problems 

associated with the human vision process and the ability to extract semantic 

information from what is seen [Bischof, 1995].

In order to interact with our environment, the main source of sensoiy input is 

from our visual system. Processing this information allows humans to build an 

understanding of the world around them. This task is seen to be performed 

effortlessly without being even aware of the complexities involved. Computer 

Vision is an attempt to model the same information electronically, and to form 

internal representations that allow computers to build meaningful information 

about the external surroundings.

1.1 Why is Vision So Difficult?
Some of the common operations humans take for granted, for example the human 

vision system, have been found very difficult to emulate. This is in part due to 

the fact that the whole biological process is not completely understood. Although 

humans are able to perceive visual information almost instantly, this belies the 

complexity of this process.
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For example, in order to process the visual information of any scene the brain 

deals with numerous problems. The first step is to segment the image into areas 

of interest and background information. Areas of interest may be defined from 

priori knowledge that the observer wishes/expects to identify. Areas of the 

background may be as complex as the objects that constitute the areas of interest, 

and may indeed comprise of objects themselves.

Classifying the areas of interest is also problematic and such issues include: 

different lighting conditions, partial occlusion, profiles, rotation, shape 

deformation, and size variance. It is not difficult to understand the limited 

progress made in developing robust models that can cope with all, or even the 

majority, of these problems. For this reason, algorithms have been developed to 

solve particular issues regarding the vision process.

1.2 Techniques for Computer Vision
The field of computer vision is a diverse discipline that encompasses many 

different techniques to solve particular computer related problems. These range 

from low-level image manipulation algorithms to higher level AI methods. To 

extract meaningful information from an image may require the combination of 

many different processes, which allows this understanding to take place.

A digital image at its most basic level can be regarded as a complex array of 

pixels each of which can be a discrete colour intensity. Image Processing is a 

particular area of computer vision that manipulates the image directly in order to 

improve or simplify the image. This is the first stage of the processing hierarchy, 

which then allows further representations to be built that model higher level 

information. Examples of typical image processing algorithms are: Thresholding, 

Histogram Equalisation, Convolution, Boundary Tracing, Edge Thinning, Region 

Merging, etc.



Pattern recognition, as its name suggests, is the process by which the structured 

composition of an image is identified and its form classified. This, generally, 

encompasses higher level techniques that uses the representations derived in the 

algorithms defined above. Processing methods that can be included at this stage 

are Matched Based Segmentation, Contextual Image Classification, Snake 

Growing, Texture Analysis, Artificial Neural Networks, etc.

The techniques presented are too numerous to be described in detail, but there are 

many texts (e.g. Sonka et. al, 1995) which give better explanations than can be 

provided here.

1.3 Motivations for a General Model of Computer Vision
Many previous models for computer vision have applied techniques that only

solve particular well-defined problems. It is the purpose of this investigation to 

reduce the constraints on the problem to enable a novel and flexible model to be 

developed which considers more general aspects of computer vision.

A computer vision system capable of performing the tasks of human vision even 

to some small degree would be very useful. A framework that is flexible rather 

than specific to a particular application (e.g. recognising anomalies of a product 

on a conveyer belt) is more appealing because of its re-usability for similar 

problems. There are many application areas that could incorporate such 

technology in some way, e.g. automatic video surveillance; computer guided 

robots, etc. There is much research therefore, into solutions that attempt to tackle 

the wider aspect of general vision problems.

The problem offace identification is used to test the strategy. Face identification 

should not be confused with face recognition. Face recognition is the process by 

which a system has been trained to recognise particular people and is required to 

determine whether a novel instance of a face belongs to the known identity 

database. Typically the faces and constraints used for such systems are very
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limited; i.e. the faces are usually of a fixed size and orientation against a simple 

continuous background. Research on face recognition has received much more 

attention than the earlier vision problems described above. Many systems 

[Brunelli and Poggio, 1993, Edelman et. al, 1992, Fukuda et. al, 1992, Garrison 

et. al, 1990, Marsic and Micheli-Tzanakou, 1992, Turk and Pentland, 1990], exist 

that are able to provide a high degree of recognition accuracy. The identification 

of faces in an image is a more challenging task, as generally there is no prior 

knowledge about the image and the information is less constrained than that used 

for recognition.

Face identification is the process of identifying the locale of an object where there 

are as few constraints placed upon the problem domain as possible. The 

unrestrained nature of this problem in comparison to face recognition makes this 

task more difficult. Identification is also a general problem that is not necessarily 

specific to faces whereas face recognition has a more defined goal.

1.3.1 Artificial Neural Networks
As the problems undertaken have become ever more complex, the Artificial 

Intelligence field has looked for alternative methods to help provide solutions to 

difficult areas of research. A more recent approach in the field is to use Artificial 

Neural Networks (ANNs). ANNs are not specific to computer vision and they 

have also seen a greater increase in other application areas. Perhaps the reason 

why they have received great acceptance in many fields are that they are universal 

function approximators [Masters, 1993]; they do not require a large and 

complicated rule base; and have demonstrated a proven success of outperforming 

comparable techniques.

ANNs differ significantly to other techniques by their structure and method and 

can be regarded as general learning models. They are best described as 

biologically inspired models of the brain, and although they do not work in 

exactly the same way, they nevertheless use a number of simple, highly connected
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processing elements, as do their neurological counterparts. A more detailed 

explanation about the different types of ANN, their connectivity, and how 

learning takes place can be found in Appendix A.

It was concluded by Feldman and Ballard [Feldman and Ballard, 1982] that 

massively parallel models are the only biological plausible ones, as these are the 

only models which satisfy the A100 step rule1. For this reason, an ANN approach 

has been chosen as the most suitable method for developing a framework for a 

general computer vision system.

1.4 Aims and Objectives for the Vision System
hi order for a general-purpose vision system to effectively cope with real world

scenes, it will need to distinguish between objects of different shapes, of different 

sizes, and at different viewpoints. These are basic requirements if a system is to 

function successfully [Roth and Frisby, 1986]. The aim of the research is the 

design of a general model for vision that deals with position, size, viewpoint and 

shape tolerance against any type of background. No prior knowledge about the 

scene will be known, and the only input to a system is quantised digital 

information.

Faces can be described as a suitably complex object, but distinguishing them from 

all other objects is very problematic. The nature of the information required to 

enable efficient face recognition is complicated. All faces generally contain the 

same number of primary features (eyes, nose, mouth, etc.) but all of these vary to 

some degree for different face examples. For a general introduction to the 

problems of face identification and recognition, Samal and Iyengar [Samal and 

Iyengar, 1992] give a brief survey of the difficulties involved.

1 The definition o f the 100-step rule is that most neurons compute at maximum rate of 1000 Hz. Perception 
occurs within 100 milliseconds, and therefore biological models can require more than 100 steps.
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The faces used for analysis will be directly facing the camera, and the system will |
not be expected to deal with the problem of extreme head rotation. The analysis %

is on static images only, and it is outside the bounds of this research to cover 

motion of objects in temporal sequences. A strategy is proposed to deal with the 

following:

> Position invariance. The system has no prior knowledge of where an object

may be located, and thus must deal with objects occurring anywhere in the I

image. |

> Tolerance to multiple occurrences. There is no prior knowledge of how many 

objects the scene contains.

> Background invariance. The system must be capable of locating objects with |  

any type of background, however complex.

> Size invariance. There is no prior knowledge as to the size of each object 

contained in the scene, and the objects may even be of different sizes within 

the same image.

In order for the system to be as efficient as possible it is the aim of the design to 

use the input of the digital image directly for processing. This will involve the 

investigation of the necessary pre-processing required for input to the ANN 

model(s).

An area of the image that has been classified as the target object may then be used 

for further processing, that may include more detailed visual inspection or some 

high order manipulation on the information extracted. It may be useful to some 

applications to be able to make inferences based on the number, position, size of 

the objects etc. determined. In the case of face identification, further processing 

will most likely be the recognition of the identity of the person. The type of 

further processing is less general and is more specific to the target application.

It is not the aim of this work to develop a recognition module but to develop 

strategies that address vision associated problems earlier on in the processing.

However, recognition is the natural progression for a face identification system. I
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1.5 Outline of Thesis
This thesis describes a computer vision strategy that involves ANNs to perform 

accurate and efficient object identification. This also draws to the attention of the 

reader to the problems associated with the large quantities of data used for 

analysis and processing.

The author has highlighted a particular area within computer vision that is 

currently not being fully exploited. This chapter has defined the outline of the 

problem and discussed an approach, using ANNs, as to how this might be solved. 

The following chapters describe the issues considered to derive a general 

framework to this problem, and the logical manner by which they were addressed.

Systems for Computer Vision evaluates the field of computer vision and what 

other methods are being employed in this area. An outline method is presented 

to achieve the goals of object identification and this is compared with different 

approaches to determine the feasibility of this strategy.

The computer vision task is broken down into manageable problems, the first of 

which is to identify areas of interest within a complex scene. To simplify this 

difficult task, an initial restriction is imposed that areas of interest are of one size 

only. High Speed Location of Fixed Sized Objects describes a suitable solution 

to this initial problem.

The following chapter, Size Invariant Object Location, extends the problem to 

cover areas of interest of any size. The chapter discusses how the previous 

architecture is combined with suitable algorithms that enable the method to tackle 

this problem.

Now that areas of interest have been identified, reliable techniques are required 

to discriminate between correct and incorrect focus areas. Focus Area
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Classification describes a combination of ANNs and algorithms that process the 

focus areas to give a robust means of verification.

The final chapter Conclusions and Further Work identifies what has been 

achieved by this framework and also its limitations. This naturally leads on to a 

discussion of how the work could be progressed further.
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Chapter 2

Systems for Computer Vision

The previous chapter introduced an overview of the problems associated with 

computer vision and identified the need for a general vision model, which the 

author believes, is not being fully exploited. This chapter discusses some of the 

approaches that have been investigated and developed in this area. This involves 

a critique of these methods and considers the salient points of each. The 

conclusion of this review is to formalise a possible framework for the problem 

identified. This is then investigated further in the following chapters.

2.1 Image Processing and A l Techniques
With a traditional approach to image analysis, a collection of processing tasks are 

required. ANN systems in common with other approaches require pre-processing 

to produce a form that is more suitable for subsequent operations. This may 

involve functions that improve the clarity of the image, to counter the effect of 

uneven lighting, poor contrast levels and also to remove any noise that may have 

been included during image capture.

To identify areas of interest in the image, the scene must be processed to 

differentiate between the background and the objects contained within it. This 

process is generally referred to as scene segmentation [Haralick and Shapiro, 

1985]. Different approaches can be used to achieve this. Some of these methods 

are discussed below.
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One of the most basic approaches for image segmentation is Thresholding. After 

selecting an appropriate threshold value the image is transformed into a digital 

representation. The success of this technique is reliant upon the choice of 

threshold that can be determined by analysis of the intensity range of the original 

image. The algorithm can either enhance high or low intensities but does not 

necessarily improve the clarity of any particular objects within a scene, and may 

even make distinct objects become connected to the surrounding image. 

Convolution is another segmentation method. This approach convolves a user- 

defined template with the image. The resulting effect to the transformed image 

is determined by the size of the matrix and the values within it. Such 

transformations include noise removal and edge enhancement. Typical template 

examples include the Roberts and Laplacian operators. Convolution may not 

enhance small detail within an image but distort it, and edge enhancements are 

generally directed towards linear edges. In the case of face identification, the 

image contains both detailed features and also non-linear edges.

After segmentation in a traditional image processing approach, the image is 

processed further for edge and boundary detection. This is to allow features to 

be extracted to aid object classification. Assumptions are made that the object 

can be distinguished using a contour due to some kind of contrast in intensity, 

colour or texture. In the problem defined, the objects to be identified can vary 

in size so any method must be capable of shape deformation. The fuzzy Hough 

transform [Philip, 1991] allows detection of objects whose exact shape is a little 

uncertain and finds matches that are closest to an approximate contour model.

One of the other issues of this research is to process real world images. A 

characteristic of these types of images is that the objects and the background are 

not easily segmented. To use a contour approach is therefore problematic if no 

distinct boundaries can be found.
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Statistical pattern recognition is an alternative to ANNs as a means to distinguish 

between different pattern classes. Objects are represented as numerical 

descriptors called feature vectors that are mapped onto pattern space. An initial 

problem with this method is selecting the best feature vectors, and the optimum 

number of vectors to describe the object. Too few descriptors and the object is 

insufficiently described, too many and the mapping to the feature space becomes 

more difficult.

A typical method of statistical analysis is probability density estimation 

[Fukanaga, 1990]. If the feature vectors are chosen appropriately, similar objects 

are represented as clusters in pattern space. This method produces a similar 

output to a self-organising ANN [Kohonen, 1989]. The same techniques are 

applied to discriminate the different classes in pattern space. Another particular 

problem is in the analysis of the output feature space. Ideally, the different 

classes are well-separated clusters. Alternatively, a non-linear decision boundary 

may be required to separate them.

The methods discussed previously have formed representations to extract features 

of information about an image. Further techniques can be used to combine this 

information and illicit more high level knowledge about the complex items and 

their interactions with each other within the image. The use of Al methods is 

very common at a higher processing level, and a good knowledge representation 

is required in order to complete full image understanding. Trees and graphs are 

methods [McHugh, 1990] used to construct a representation of a collection 

features, or primitives, that are related. Depending upon the position in the 

hierarchy of the tree determines the level of object complexity. Although the data 

structure assembles the information meaningfully, some further processing is 

required to parse and interrogate it. This type of methods tends to be more 

problem specific. This is only one particular approach and other methods exist 

to achieve similar goals.



ANNs are architecturally very different to other approaches. Because they are 

general models, they are suited to many different applications. There are two 

main approaches to using ANNs in computer vision.

The first and more biologically driven approach is modelling the human retina. 

Work in this area often uses artificial environments involving simple shapes for 

processing, rather than real images and the complex problems associated with 

them.

The second strategy involves systems which attempt to solve a computer vision 

problem in a way that achieves a specific goal, i.e. problem driven. This may 

mean that the system model is tightly constrained to a specific problem (e.g. 

anomaly analysis of components on a conveyer belt) but uses approaches that may 

achieve success in more general situations. Both strategies are of equal merit and 

are not mutually exclusive and there is possibly some overlap between them.

2.2 Biologically Motivated Low Level Vision
The following section discusses a small collection of ANN systems that attempt

to produce biologically plausible methods for computer vision. Much research 

is being performed in this area and a whole new field of computation 

neuroscience has evolved to cater for the biological/computing overlap. A brief 

overview of prominent works in this field are given below.

The work of Marr [Marr, 1982] has been influential to many in the field of visual 

psychology. The visual process was decomposed into three sub-processes. These 

include the Primal Sketch which is a two dimensional representation of 

significant grey-level changes in the image. The 2.5D Sketch which is a partial 

three-dimensional representation recording surface distances from the viewing 

point, and finally, the Solid Model based representation of objects in the scene. 

Watt [Watt, 1988] uses Marr’s idea of vision and extends the primal sketch to
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develop an algorithm/model to process an image and extract and inteipret the 

symbols generated from the scene.

Grossberg [Grossberg et. al, 1989] proposes a model for pre-attentive vision. 

This involves three sub-systems that include a Feature Contour System (FCS), 

Boundary Contour System (BCS), and an Object Recognition System (ORS). 

The FCS is designed to detect surface colours under variable lighting conditions. 

The BCS is designed to recognise invariantly object boundary structures, and the 

ORS is designed to recognise familiar objects in the environment. The general- 

purpose capabilities depend upon the decomposition into BCS, FCS, and ORS 

sub-systems. Both the BCS and FCS operate pre-attentively on images, even if 

they have been experienced before. The performance of both the FCS and BCS 

are interrelated and are thus combined to provide both parallel and hierarchical 

stages of neural processing. The feedback interactions between pre-attentive BCS 

and FCS and the attentive, adaptive ORS show that the systems are not 

independent modules. A definition for the whole adaptive system has been 

described as a series of algebraic equations and results are given for simple shape 

and texture analysis at a single scale.

A vision system [Sajda and Finkel, 1992] has been designed by integrating a top- 

down computation based approach with a bottom-up biologically motivated 

architecture. Its aim is to address occlusion-based object segmentation through 

the use of a hybrid ANN. It has been found to be capable of discriminating 

objects relative to their depth. To achieve this, feature extraction is applied, 

similar to that of Grossberg [Grossberg et. al, 1989] to perform simple activities 

such as edge detection, line orientation etc. The network architecture that has 

been used has included Programmable Generalised Neural units, which attempt 

to mimic properties found in the visual cortex.

Ahmad and Omohundro [Ahmad and Omohundro, 1990] discuss an 

implementation of attention-focusing. The work has been applied to simple
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geometric shapes such as equilateral triangles. To create a dynamic receptive 

field, a gating layer is constructed so that there is one gate unit per input unit. 

The action of the gate unit is to control the activity of the input unit depending 

upon whether it is within the focus of attention. Methods are also described to 

alter the size and position of the focus by determining the error of activations 

falling outside the focus of attention. Similarly, Anderson [Anderson, 1990] 

discusses the use of an attentional spotlight for visual attention. It is well known 

that selective attention mechanisms exist in the human vision system and that the 

operation is to some extent (a combination of parallel and serial processing) a 

sequential task.

The different models described briefly above are only a small selection of the 

many other authors that have developed biological representations of the 

biological process. All of the work discussed has provided different 

implementations based upon the understanding of the human visual process. The 

work has concentrated in developing coherent models to achieve a greater 

understanding of the biological process. To substantiate these theories the 

systems have been applied to problems using simple shapes. These models of 

human computer vision are currently inadequate to be applied to real world 

problems such as face identification. A common theme found in all these systems 

that can be extracted and used at a higher level is the idea of attention-focusing 

and selectively identifying areas of interest.

2.3 ANNs for Computer Vision
The systems described in this section have applied ANNs to solve particular 

problems in vision. Although the ANN models discussed have not necessarily 

addressed the specific problem of face identification, they do suggest suitable 

methods that may be applied to this problem.

Hutchinson and Welsh [Hutchinson and Welsh, 1989] describes a standard MLP 

trained on right eyes from full resolution images, in order to help detect moving
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features. A 16x16 window is passed across part of the input images to train the 

ANN. The ANN is trained with a response of 1 for the eye centre that decreases 

linearly away from this point. Using an alternative method for comparison, a 

Kohonen network is used to evaluate the performance of the first ANN. The 

Kohonen network is trained with the same input data as the first MLP, and has 

a 10x10 output layer. A further ANN is then trained to interpret the output 

produced from the Kohonen network. Neither ANN method shows a vast 

improvement over the other. Performance was generally good except for those 

images where glasses were worn.

No effective use of low resolution is employed, but Hines and Hutchinson [Hines 

and Hutchinson, 1989] use the same MLP model described above on reduced 

resolution images to reduce the quantity of data processing. An attempt at 

increasing the resolution did increase performance, but at the expense of more 

processing. The target output has been modified to a fixed output response.

The concept of using reduced resolution to reduce the amount of processing is 

investigated by Vincent [Vincent et. al, 1992]. Faces are also used for image 

analysis, but in a constrained manner, using head and shoulder images of a fixed 

size. A two-stage approach is used. Initially, a number of ANNs are trained to 

identify eyes, mouth etc. by scanning the image at coarse resolution. The output 

from these ANNs are then post-filtered and presented to further ANNs at high 

resolution. The post-filtering adopts knowledge about the relative positions of 

the micro features and is a good method of removing false activations. Using 

micro-features at coarse resolution however does not allow much scope to reduce 

the image significantly as some level of detail for these features is still required. 

[Vincent et. al, 1992] also does not propose strategies to deal with variabilities 

in the size of the head and shoulders and complexities of different backgrounds.

Allinson and Johnson [Allinson and Johnson, 1992] adopt a novel approach to 

attention-focusing by using a binary N-tuple sampling method which, although
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a very different architecture to the majority of ANN implementations, works 

similarly to the Kohonen self-organising network. Using head and shoulder 

images the system is system is trained to focus attention upon the right eye. 

Because the N-tuple method is a binary approach, the grey scale images have to 

be first converted to an appropriate form. This is achieved by using a rank 

ordering code. A supervised self-organising map is then used to produce a 

positional map of the attention window. The position is used to provide an x, y  

error of the maximum response relative to the centre of the window, and the 

amplitude of the response determines the size of the subsequent window (i.e. the 

resolution of the image). Using the N-tuple sub-space classification technique, 

although relatively efficient, does require a large amount of memory to process 

an image. The system also requires many saccadic jumps and resolution shifts 

before the correct position of the feature is found. The time taken to fiilly 

perform this operation is not given. As the system is dependant upon the 

processing of binary images this indicates that it is a less suitable method when 

considering the complexities of real world images.

A limited approach to locating right eyes is investigated by Evans [Evans et. al, 

1991], which searches for eyes across three separate resolutions using three 

separate MLPs (one for each resolution). The area of interest with the most 

values above a threshold is determined to be the location of the eye. Using three 

separate MLPs restricts the variability in face size that can be used, and to cope 

with a greater range would require further trained MLPs at different resolutions 

to process the image. This is obviously impractical. Using this method does not 

significantly reduce the amount of information processed required, as each MLP 

is required to examine the image at its associated resolution. Furthermore, the 

system does not address the problem of false positives and how they may be 

reduced to limit the number of incorrect classifications.

There are some common problems that can be identified with the majority of the 

methods discussed. These include the problem of false activations and how these
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might be reduced. None of these methods have dealt particularly with varied 

backgrounds and this is likely to be the largest source of false activity. A further 

problem related to false activations is selecting an appropriate set of training 

example in terms of quantity and balance. Finally, although reduced resolution 

has been a central theme to the different architectures, optimally selecting the 

degree of reduced resolution has not been fully investigated.

2.4 ANNs for Face Identification
Among the literature concerning computer vision, there are a selected few authors 

that have addressed the particular problem of using ANN systems for face 

identification. The following sections review some of the key papers in this area.

2.4.1 Face Identification Using Receptive Fields
The work of Rowley [Rowley et. al, 1995] is closely related to this research as

their aims are very similar. An ANN based system is used to detect frontal views 

of faces, and also allows for a slight degree ofxy head rotation. An input window 

(of size 20x20 pixels) is used to scan across an image over multiple resolutions. 

The resolution of the input window used, ensures that only the eyes, nose and 

mouth are contained within it. The input frames are pre-processed before being 

presented to the ANN. The pre-processing includes correctional lighting and 

histogram equalisation. It is discussed by Rowley [Rowley et. al, 1995] that the 

combination of these techniques does visually enhance the clarity of the image 

being presented as input to the ANN. However, metrics about the increase in 

performance with these techniques are not given. Although the effect of these 

processing methods may help the performance of the ANN system, positive trade­

off between increased recognition and computational overhead is unclear.

The ANN is a partially connected three layer paradigm. The input frame is 

connected to three separate receptive fields, which are designed to extract 

different features from the input image. The receptive fields can be regarded as 

a cluster of hidden units connected to selected areas of the input in a structured
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manner, where each hidden unit is connected to a limited number of inputs from 

the input frame. From the 20x20 input, the image is divided into 4 10x10 

receptive fields, 25 4x4 receptive fields, and 10 20x2 receptive fields. 39 hidden 

units are then connected each to a single receptive field.

Using localised hidden units that are partially connected in this fashion is a way 

of looking for features without being specific to the problem domain, i.e. not 

being defined necessarily for extracting face features. This approach allows 

position dependent information about the input object to be extracted. There 

seems to be no rule as to how many receptive fields are required. Although the 

structure of the receptive fields adopted is not particularly specific to face feature 

extraction, different input configurations may allow for better features to be 

extracted. A further problem associated with the definition of the receptive fields 

is that the input is not overlapped and a single feature may lie in more than one 

receptive field. The manner by which the structure and number and of receptive 

fields are derived is not discussed or even whether it is an optimum configuration 

specific to the problem.

A technique has been applied to broaden the range of training examples by 

applying a transformation to the input faces. This produces slight variations in 

xy rotation, scaling, translation, and mirroring ensuring that the ANN system has 

better generalisation capabilities. This seems to be a good way of creating more 

examples, but care must be taken so as not to affect the characteristics of the face.

The facial information for a positive response is tightly constrained allowing for 

little, if no, tolerance to translation invariance. Therefore, the receptive fields will 

respond only to faces in a limited region. All of the hidden units are connected 

to a single output unit. This unit indicates a two-class state of either face or 
background.
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After the ANN has been presented to the image, a number of techniques are then 

used to group and filter the multiple activations generated by the ANN. One 

technique adopted is to use multiple ANNs, trained on different data, and 

combine the output by means of AND/OR boolean operators. No benefit is found 

to be gained from using multiple expert ANNs rather than increasing the amount 

of training for a single ANN since the experts are extracting the same information 

from the image. Multiple ANNs also have the disadvantage of increasing the 

computation for each input frame. A further alternative discussed is to increase 

the number of receptive fields. This would then allow different information to 

be extracted from the input.

An approximate accuracy of up to a 93% has been quoted for size invariant 

identification of faces from a given test set provided by Sung and Poggio [Sung 

and Poggio, 1994]. Unfortunately, the criteria used to determine correct 

identification are not given. The figure for number of false positives per input 

frame is quoted to be 1 in 27,416. Again, it is not clear as to whether this figure 

relates to an incorrect identification of a face, or typically how many frames are 

examined when searching for a face. Several other performance figures are given 

which use slight variations in performance against the basic model. These 

variations have either increased or decreased the number of successful 

identifications and number of false positives.

2.4.2 Face Identification using a Shared Weight Network
The work of Vaillant, Viennet and Fogelman Soulie [Vaillant et. al, 1993,

Vaillant et. al, 1994, Viennet and Fogelman Soulie, 1992] presents another 

method for face identification. A shared weight MLP architecture is adopted and 

used to train two ANNs. The shared weight architecture contains three hidden 

layers.

The input window is sub-sampled in 5x5 blocks being connected to a single unit 

in each first hidden layer feature detector. The first hidden layer consists of a
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group of four clusters, each of which are fully connected to the input layer, but 

not to each other. The second hidden layer also contains four clusters where each 

cluster is only connected to each cluster in the previous layer. The third and final 

hidden layer, which contains four hidden units, is flilly connected to all the 

clusters in the previous layer. Finally, the ANN has a single output unit denoting 

the presence/absence of a face.

The first hidden layer has been designed to act as a low-level feature detector, 

with the second and third hidden layers extracting higher-order features. Using 

selected connectivity is similar in principle to the receptive fields paradigm 

investigated by Rowley [Rowley et. al, 1995]. Both models examine isolated 

areas of the image, and the same argument directed at Rowley [Rowley et. al, 

1995] of how the connectivity is organised is also not answered.

The ANN described is very large in comparison to other models and contains 

many network weights which makes the model processor intensive per forward 

propagation. However, the authors indicate the network uses some form of 

weight sharing, which, does not reduce the amount of weights in the ANN but 

does reduce the number of weights that can be adapted whilst being trained. How 

this weight sharing is integrated within the ANN and the justification for using 

this type of architecture is not discussed.

The vision system comprises two ANNs (both using the architecture described 

above), a shift tolerant and a shift intolerant model. The shift tolerant ANN is 

trained to give a peak response for correctly centred faces, a distance function for 

translated faces and a negative response for background data. The shift intolerant 

ANN is trained to give a peak response only for correctly centred faces, and for 

all other cases a negative response. For the shift intolerant ANN the training 

consists of translated face examples only, and no background data. How the 

ANN responds to distracter images is not clear, but having none in the training
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data would suggest an unknown response. This may be a particular issue when 

examining images, which is explained below.

Pre-processing consists of convolving each resolution image. The input window 

of the shift tolerant ANN input window is scanned across an image at seven 

different resolutions. Why the system has been limited to this number of scales, 

and whether this is a restriction of the model is not explained. The size of the 

input window is 20x20 pixels, but unlike Rowley [Rowley et. al, 1995] a full 

sized face is contained within it.

Highly activated areas are then passed to the shift intolerant ANN for further 

processing. Activations produced above a threshold by shift intolerant ANN are 

put forward as possible face candidates. If the shift tolerant ANN passes distracter 

patches to the shift intolerant ANN may produce a peaked negative response but 

may also as likely produce an unknown response. The unpredictability of the 

output of this ANN when presented distracter images passed from the shift 

tolerant ANN is the most likely source of false alarms.

Although it is quoted that there are fewer free parameters which is useful for 

training purposes, the normal mode of operation uses two large ANN 

architectures. Using the ANNs to process images is therefore slower, because of 

the number of connections they contain. Whether this particular paradigm was 

chosen to aid training or for some other reason, this is not explained. 

Unfortunately, only the methodology is described and no performance figures are 

presented. Although the approach is valid there is no means with which to 

compare the accuracy of the system against other comparable models.

2.5 ANNs for Face Recognition
Recognition is the natural successor to identification. In the problem domain of 

face identification, the next task is to perfonn recognition of the face identified. 

There is certainly more published research in this area, not only for ANN
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approaches but also for other methods. Although the problem of face 

identification is a difficult one, especially when dealing with novel instances, and 

large data sets, the problem is much more tightly constrained than that of 

identification. As such, the author believes identification to be a more difficult 

problem. However, both problems address similar issues of characterising the 

data in some manner. For this reason, some ANN approaches to recognition are 

described below.

The shared weight architecture used by Vaillant, Viennet and Fogelman Soulie 

[Vaillant et. al, 1993, Vaillant et. al, 1994, Viennet and Fogelman Soulie, 1992] 

is also adopted by Bouattour [Bouattour et. al, 1992] for face recognition. The 

system consists of a two-stage model. The first stage uses the shared weight 

architecture to provide high level features that describe a face. These feature 

descriptors are then passed to a classifier MLP ANN to perform the face 

recognition. An LVQ network was also tried as the classifier but produced very 

similar results to the MLP.

A database was created containing ten people using slightly different profiles and 

scales. Various lighting conditions were used, as well as uniform and printed 

backgrounds. The ANN was then trained with this database. Recognition of a 

face, like so many other systems, is a result of closest match. This means that a 

person not contained in the database at all, will be given an output to the person 

most similar to it.

From a 100 test images a best performance of 96% accuracy has been recorded. 

Images containing stronger head movements, in profile and rotation, gave a 

lower recognition rate of 89%. The ANN is relatively large considering only ten 

different people are used for analysis, each requiring many training examples. 

Unfortunately, the extent to which the ANN can reliably store further faces and 

what the saturation level is has not been fully explored.
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Shimada [Shimada, 1992] attempts face recognition that relies on symmetry 

operations to detect the eyes nose and mouth in an image. Using the location of 

these features, the face is normalised, using a 2D affine transformation, to a set 

size and then is presented to a set of Gaussian receptive fields. The use of the 

receptive fields aims to compress the dimensionality of the data as an aid prior to 

recognition. The activities of these fields are used by a radial based function 

classifier to interpolate the values. A different recogniser was created for each 

person.

Ganison [Garrison et. al, 1990] reduces the dimensionality of the input 

(512x512) by using an MLP trained for compression. This is performed by 

training an MLP with the same output vector as the input vector but using 

considerably fewer hidden units. The output from the hidden layer is then passed 

to a single layer classifier with two outputs signifying face and gender. The 

system has reported 100% accuracy in classifying the face against non-face 

images for the training set, but a 37% error for gender using novel faces. 

Although the compression network forces a representation of features, why this 

should perform any better than trained MLP classifier with the same input is 

doubtful. Admittedly, a different representation of features is likely, but the two 

networks should be comparable.

2.6 Summary
An overview of ANNs has been described and their applicability to vision type 

tasks. Biologically motivated paradigms have been explored which address more 

basic vision problems. In contrast, higher level oriented vision solutions have 

demonstrated similar approaches. ANN methods have been developed for 

eye/face location and recognition, but questions remain as to their generality or 

applicability to other domains. This project seeks to clarify these issues, and 

develop techniques that are robust, and transferable to other vision domains.
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Chapter 3

Location of Fixed Sized Objects

The following chapter discusses the development of an ANN approach to object 

identification. The aims are to develop an identification system tolerant to size 

variation, position, background and multiple occurrences. This is applied to faces 

as defined in the first chapter. A simplified framework is considered initially 

which addresses the problem of location of objects of a similar size. Issues 

regarding size variance are addressed in the following chapter.

3.1 The Problem Domain
This research aims to produce a general approach to object identification that uses 

“real world data”. The term real world data refers to images that are captured 

from a camera, or other digitising device, from everyday surroundings. The data 

used is not contrived in any manner and is equivalent to that which might be 

easily processed by the human visual system. This means that the lighting 

conditions may be variable, the object to be identified may appear in any kind of 

surroundings and be at any proximity from the camera. Figure 1 shows a typical 

example of the type of image that the system should be expected to process, i.e. 

an image with complex natural surroundings where there are multiple occurrences 

of faces all at various positions.
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Figure 1 - Typical Real World Image

Faces have been chosen as a suitable object exemplar because of the variety and 

variability of faces. They can be regarded as having a fuzzy2 definition and with 

no simple rules that can easily manage the degree of variety. Although faces have 

been selected and will be used to develop the techniques discussed in this thesis, 

the algorithms developed should applicable to any other real world problems that 

require similar image analysis.

The previous chapter discussed the merits for using ANNs for computer vision 

in comparison with other methods. The purpose of this research is to define a 

general framework for computer vision, which when applied to other problem 

domains (i.e. non-face identification) should only require different training data. 

The strategy will be the same.

An example where the method could be directly applied to another problem is a 

traffic monitoring system where there is a need to identify cars in a scene. Cars 

share similar properties to faces in that they contain variances in their attributes 

but also contain regularities. For example different models of cars are slightly 

different in size and shape, and are different colours, but they also contain 

characterising sub-features, i.e. wheels, wing-mirrors, lights and indicators, 

number plate etc. Obviously a car is a 3D object and one of the initial

2 Although faces can be easily categorised as they all contain a set of primary features (e.g. eyes, nose and 
mouth), it is extremely difficult to construct a description with a formal set o f rules that can cope with the 
variation in skin texture and colouration, gender, facial expression etc.
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requirements for the traffic monitoring system would be to select the processing 

orientation of the car, i.e. side, front or back profile. This would determine which 

sub-features, as mentioned above, might aid identification.

The location and classification of faces in grey-level images are good exemplars 

because they contain many difficulties that are also present in many other 

domains. These include coping with large quantities of background distracter3 

information, object variation, position and size uncertainty. These problems must 

be overcome for computer vision strategy to be deemed effective.

3.2 Scope of the Problem
It is necessary to define the fundamental requirements and limitations of the 

model of what it can be expected to process. This allows suitable data to be 

selected for the problem and also allows suitable qualifiers to be selected that 

allow the performance of the system to be measured. Defining the scope of the 

problems also determines the generality of the system and also its suitability to 

other problem domains.

The principal aim of the system design is to perform accurate object identification 

without the need to process the entire image at full resolution. This has the 

obvious benefit compared to other systems such as Kwon and Lobo [Kwon and 

Lobo, 1994], that it is more efficient in terms of information processing. As well 

as the benefit of processing less information, reducing the resolution also reduces 

the variability in the data, and depending upon the reduction process applied can 

also remove noise. Processing at too low a resolution has the disadvantage of loss 

of information. The degree of reduced resolution is investigated such that 

processing is performed at the lowest possible resolution. This is discussed 

further in section 3.7.

3 Distracters are parts o f the image not containing the object to be identified, which may lead to false alarms 
being produced.



The collection of faces used for object location are those appearing approximately 

full on to the camera. Initially, discussion will be of faces of a similar size until 

the problem of size invariance is addressed in the next chapter. Faces used will 

not be occluded, but may contain glasses, beard or moustache. Slight profiles (up 

to approximately 15 degrees, and not excluding any of the primary features of the 

face, e.g. eyes, nose, mouth) and head rotation (again up to approximately 15 

degrees) are allowed, but the system is not expected to perform in extreme cases 

of deviation from a “full-on, upright” position. The minimum size of face that can 

be successfully identified will be determined by the investigation into the minimal 

processing resolution studied in section 3.7.

The system should be able to cope with variability in the size of the objects to be 

identified without any prior knowledge about the input image. To simplify the 

initial problem faces of a fixed size are addressed initially in this chapter. The 

simplified framework is then extended in the following chapter to address the full 

problem of size invariant detection.

It is intended that the scope of this work will not address the issues defined 

below:

> Large degrees of object rotation (i.e. greater than 15 degrees in any plane).

> Partial occlusion of the object or its sub-features (except for natural partially 

occluding items such as beard and glasses).

> Object tracking in temporal sequences. The analysis is on static images only. 

Temporal analysis uses different strategies and cues not applicable to this 

computer vision approach.

> Recognition. This is a further stage in visual processing which is too large a 

task to be tackled as well as identification. Recognition is also a further task 

more appropriate to the problem of faces rather than a general task required 

by most computer vision problems.
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These elements have been excluded as essential requirements for a successful 

computer vision strategy as they do not preclude the functioning of a basic, 

generic computer vision model. However, if the functionality of the system were 

to be extended then these problems would be logical choices to be considered.

3.3 Performance Measurement
The problem domain has described an object identification system, and the scope 

of the problem has been defined as to what it can be expected to process. 

However, some criteria are required to measure the success of the identification 

process. These two criteria are for the accuracy of identification for:

> The position of the object. The centre of the identifying object (i.e. a face) 

will be specified as the mid point between the centre of the eyes and the tip 

of the nose. This xy position will indicate the centre location of the face, and 

will be called the focus point. The position of the focus point is allowed to 

deviate from the target position for a limited number of pixels in any 

direction. This will be referred to generally as the distance-error, and 

specifically for face analysis, the face distance-error. The face distance-error 

is the distance between the focus point identified and the actual face location. 

This measure is less important for faces identified within the distance 

threshold, but more importantly determine the faces unsuccessfully identified 

(i.e. those focus points that lie further away than the distance threshold 

allows). Any face identified within this distance threshold is regarded as a 

successful identification (face or true positive). How the distance threshold 

figure is derived and the reason for its value is described later in this chapter. 

(Section 3.14).

> The size of the object. The area identified within the image by the system 

shall be called the focus area. The focus point is the centre of the focus area. 

The size of the focus area with reference to the size of the face will be within 

a defined size tolerance error. This will be defined such that the principal 

components of the object identified must be within the bounds of the focus 

area. This chapter deals only with faces of a fixed size, and will therefore not
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use this metric until the topic of size variance has been introduced in the next 

chapter. This will also discuss a derived threshold value for the size tolerance 

error.

The following sections describe an approach to object identification. This chapter 

concludes with a performance assessment for fixed sized faces, and uses the 

metrics described above.

3.4 Approach to Object Identification
A particularly difficult problem that must be addressed is selecting a set of 

features that captures the information appropriate to the task. According to 

Vaillant [Vaillant et. al, 1994] this particular aspect has not been completely 

addressed. Many of the approaches discussed in chapter 2 use the sub-features of 

the face as the primary aid to identification. This is quite acceptable except that 

the lowest processing resolution remains high.

It can be argued that to identify possible faces does not initially require full detail 

of the sub-features, but a high level holistic view. The relationship between the 

sub-features is implicit as the object is processed as a whole. The research 

presented in the previous chapter did not seem to exploit this idea.

A novel approach taken by this research is to use a two stage approach to 

identification. This will comprise initially of low resolution holistic detection for 

the object(s). This method allows the useful information of the sub-features to 

be used without the necessity of a high resolution. To ensure correct and more 

robust object identification, selected focus areas are processed at a higher 

resolution as used in other approaches.

In the two-stage approach, the first stage will be referred to as attention-focusing. 

This stage is used to determine areas of interest. Only areas of interest identified 

as possible face candidates are processed by the second stage. The second stage
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of processing will be referred to as classification. Both stages comprise the 

identification process.

The benefit of a two-stage approach is that more processing can be done at lower 

resolutions, and also only selected areas identified by the attention-focusing stage 

are processed further. This enables less of the image to be processed at a higher 

resolution, which reduces the overall amount of processing required.

A lower resolution requires less information, which allows an ANN architecture 

to be smaller in size. Having less input being fed to an ANN also reduces the 

degree of variability of the pixels which benefits the training and generalisation 

capability of the ANN.

Using a holistic approach may require that other features are considered as an aid 

to image segmentation. An example of discriminating features not used in other 

systems are, the hairline or the nature of the shape of the head, where typically 

only the facial features of the head are used. It is of the opinion of the author that 

in a holistic approach to scene segmentation the features surrounding the face are 

as important as those contained within it. These ideas are investigated below.

3.5 ANN Architecture
It has been already chosen that the principal components of the computer vision 

model will consist of an ANNs. Therefore, a fundamental understanding 

regarding the concepts of ANNs are assumed. However for reference Appendix 

A provides a brief introduction to the key aspects of ANNs, how they are 

constructed, the methods of “learning”, and the different ANN architectures 

available.

There are a number of questions that need to be answered in order to choose the 

appropriate ANN architecture, learning algorithm, training data etc. To achieve 

this, it is best to analyse the problem and identify the task placed upon the ANN,
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i.e. what are its inputs, and what are its outputs. From the answers to these 

questions it is possible to develop an informed selection of the appropriate ANN 

for the task.

In order to use an ANN for scene segmentation it is necessary to teach it what is 

a face and what is not. This is an extremely good example for requiring a 

supervised learning algorithm. A multi-layered Perceptron using the backprop 

learning algorithm is the most used and successful paradigm configuration for 

most problems. It has also been established that it has the ability of solving 

image processing problems [Dayhoff, 1990]. The backprop algorithm is a 

supervised learning algorithm and has the ability to learn any function and in 

particular non-linear problems makes it the most obvious choice as the foundation 

on which the attention-focusing ANN search strategy is developed.

The process of the attention-focusing stage is to search a reduced resolution 

image, and identify areas of interest on the original image where it is likely that 

an object of interest is located. A representation is therefore necessary to 

configure the ANN to receive reduced resolution input and output areas of 

interest in an easily interpretable form. Two approaches to this problem are 

investigated. These are a feature map representation, and a moving window 

ANN.

3.5.1 Feature Map Representation ^
With this method the input layer corresponds to the maximum size of the input

image and the output layer corresponds to a feature map (where each output unit .7

is a focus area). An example model size for this is: f

37

 
i,

. *
 

 
 

a
. 

i 
> 

r 
id

 
1 

&
 

- 
- 

•



> 100 x 100 (10,000) input units. This determines the maximum reduced image 

size that can be presented to the system. The size of the input is arbitrary, but 

should be a reasonable size given that it represents the reduced image. The 

greater the reduction the more of the real world is contained within the input 

frame.

> 100 hidden units. Having a large number of input and output units requires 

a suitably large number of units for the hidden layer. Unfortunately, there are 

no reliable formulas by which (given the size of the input and output) the 

optimum number of hidden units can be calculated. Other factors include the 

quantity of training data, noise, features in the data, etc. Using a hidden layer 

size of 100 units means there is a 100:1 input to hidden ratio. This ratio may 

be too large, but increasing the number of hidden units would produce (in 

neural network terms) a particularly large ANN model. (1 further hidden unit 

would produce 10,000 extra input weights).

> 25 x 25 (625) output units. As the input is image based, the size of the output 

must correspond to the input layer dimensions. However, the output does not 

necessarily need to be at the same reduced resolution. The size of the output 

is 1/16th of input size. Therefore, each output unit represents an area of 4 x 

4 pixels of the reduced resolution input image.

This ANN topology has several disadvantages. The number of weight 

connections is relatively high (approximately 106,250) making it expensive in 

terms of computation and training. It has also been shown that models with many 

connections are poor at generalising [Atlas et. al, 1989] due to the massive 

amount of training required. A large training data set is needed in order for the 

network to activate the feature map appropriately. This is because several 

examples of faces in every location would be necessary for the network to 

generalise for position only. Many examples of faces and non-faces in every 

location would then be necessary to generalise for faces.
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Initial experiments in training the example model were extremely poor. As the 

feature map was smaller than the input layer size, this also incorporated an 

increased positional error, including the error from the reduced resolution of the 

input image. Increasing the size of the feature map to a 1 to 1 correspondence 

would have also increased the burden on training and its generalisation 

capabilities. Due to these limitations an alternative approach to attention- 

focusing is considered.

3.5.2 Window Attention-Focusing ANN
An alternative method to the feature map representation for identifying focus 

areas is to use a sliding window approach. This has been inspired by Waite 

[Waite, 1991] for eye location within faces. The input layer for the ANN can be 

regarded as a single frame where only portions of the reduced resolution image 

are presented to it. The output for the ANN is a single output that indicates the 

presence or absence of the object.

iudow

Figure 2 - Attention-Focusing ANN Window Method
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To identify any faces within the image the ANN input window is scanned4 across 

a low-resolution image and focus points are generated at positions where the input 

frame has been trained to indicate the presence of a face.

In contrast to the previous architecture, this kind of model adopted for face 

location is small:

> 10-15 x 15-25 input units. The input layer is proportional to the size and 

shape of the search object. This has the advantage that the image area that 

can be covered is unlimited.

> For an input layer of this size, only 10 to 30 hidden units are needed to give 

sufficient generalisation capability.

> There is only a single output unit, to indicate whether a face is present.

The architecture for this ANN model means that there are less connections 

(typically 4020 weights for a ANN with a window size of 10x20 pixels and a 

hidden layer of 20 hidden units) than the previous ANN which allows for easier 

training and better generalisation capacity. Although the size of the ANN is 

smaller than the feature map ANN, the sliding window ANN has to be presented 

to the whole area of the reduced resolution image. The accuracy required and the 

degree of reduced resolution determine whether it is necessary to present the 

ANN window to eveiy location within the reduced resolution image.

3.6 Sampling the Image
The input images are sampled with an eight-bit monochrome intensity resolution. 

Although the original images are in colour it has been decided that classification 

does not require colour information, and the extra information required may make 

it more difficult to train an ANN. The majority of all research regarding image

4 Although a process o f scanning the input window across the image has been described, focus points can 
instead be found by processing the entire image in parallel. This would require the ANN model to be 
replicated and each ANN input window placed at a different position on the low-resolution image.



analysis, and particularly faces have used grey level images. None of the models 

discussed by the literature in chapter 2 have used colour information.

3.7 Optimising the Spatial Resolution
The idea of processing information at a reduced resolution in order to reduce the 

quantity of input data has been considered before by Evans, Vaillant, Marsic and 

Micheli-Tzanakou [Evans et. al, 1991, Marsic and Micheli-Tzanakou, 1992, 

Vaillant et. al, 1993]. There are several advantages to using reduced resolution 

input data. These include:

> A reduced amount of input data to the ANN means that finding face 

candidates in real-time is more feasible.

> Only selected areas of interest need to be processed at a higher resolution.

> Low resolution produces a decrease in the variability of input possibilities. 

This leads to easier training for an ANN as the variety of examples becomes 

less complex.

The input images have been digitised and sampled at 100 dpi. Faces used for 

training are all reduced to approximately the same size. The faces are reduced 

such that the entire head is included within the ANN input frame. The size of the 

faces digitised vary, but are typically 2" x 3" in size. This results in a 50 x 75 

pixel area for the complete head and partial surroundings when sampled at this 

resolution.

Experiments to find the lowest possible processing resolution where reliable 

classification could be performed have been investigated. The approach taken is 

to use an incredibly high reduction that is unlikely to give any reasonable 

classification and then to gradually increase the resolution. It has been found 

from these experiments that for faces of size 2" x 3", the reduction in image size 

is optimal at l/25th of the original area. Visually, this also corresponds to the 

threshold where faces can be reliably detected from human analysis. A typical 

face at this resolution will have a width of 8 and a height of 12 pixels. The size
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of the ANN window is set to slightly larger than this (11 x 16 pixels). This is 

because this method is based upon a holistic approach and it is believed that some 

of the surrounding detail helps to classify the face, e.g. hairline, shoulder tops etc.

Figure 3 - Full Resolution Image Figure 4 - Reduced Resolution Image

As can be seen from the reduced resolution image shown in Figure 3 and 4, the 

ANN is being presented information at a resolution close to the border of human 

recognition. In comparison with Rowley, Vaillant, Viennet and Fogelman Soulie 

[Rowley et. al, 1995, Vaillant et. al, 1993, Vaillant et. al, 1994, Viennet and 

Fogelman Soulie, 1992] the input frame dimensions are smaller, and also the 

frame contains the whole head. This suggests that faces at a much lower 

resolution can be successfully identified than previously recorded. This may be 

due to the holistic approach adopted. The benefit that an initial lower processing 

resolution has been found means that less processing in an image is required at 

the classifier stage than those comparable systems.

There are various means by which the image can be reduced. Two methods for 

modifying the spatial resolution were tried: N-pixel sampling and pixel averaging. 

For fixed sized faces used in the analysis above the method used to reduce the 

image is not significant in terms of ANN classification. However, for size 

invariant object analysis this becomes important. The effects of different sample 

methods are discussed in more detail in chapter 4.
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3.8 Image Pre-Processing
It has already been identified that the first image pre-processing task performed 

by the attention-focusing module is image reduction. As well as this processing, 

there other methods which might be useful in terms of improving the quality of 

the data, especially at low resolutions, to help ANN classification. As the content 

of images vary significantly, unless particular pre-processing methods are found 

to improve the classification process, then ANN processing should use the 

reduced image directly. Other methods that may improve the image and impact 

on ANN classification are evaluated below. These include normalisation, 
histogram equalisation and scaling,

3.8.1 Histogram Equalisation
Histogram equalisation is a standard function to improve the quality of images 

captured with variable lighting. It has the effect of separating the intensity values 

more evenly throughout the intensity range, resulting in a general improvement 

in contrast.

The sample images used in training and testing all had a reasonable spread of 

levels in the intensity range. Histogram equalisation did not significantly 

improve the performance of the attention-focusing ANN. The extra computation 

could not therefore be justified. This method maybe particularly more pertinent 

for vision problems where image capture is not able to rely upon a good lighting 

environment.
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3.8.2 Normalisation
Normalisation is a particular method of non-linear scaling. It is applied to each 

window frame to ensure the same contrast across the image, as described by 

[Hutchinson and Welsh, 1989]. A fundamental property of normalisation is that 

the total magnitude of each input frame is equal to one. However, even after 

normalisation the relative difference between inputs remains constant.

Applying normalisation should ensure that areas of different pixel intensity have 

no more significance than other areas. This maybe particularly important when 

the ANN is presented with areas in the image of high intensity. The possible 

cumulative effect of high value inputs may cause the ANN to activate incorrectly.

The normalisation function is given in Equation 1.

3.8.3 Linear and Non-Linear Scaling
Scaling is similar to normalisation, where the magnitude of the input values are 

reduced by some function. Reducing the size of the input values before they are 

presented to the ANN removes the burden of scaling via the learning algorithm. 

Two different scaling methods have been evaluated, a linear and a non-linear 

method.

The linear method simply divides all inputs by the maximum intensity value 

determined by the magnitude of the intensity range (Equation 2). Using this 

scaling method for pre-processing had no effect on the learning of the ANN.

Cl i new

E  at

Equation 1 - Normalisation
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new ai =  ; : —max intesity value 

Equation 2 - Linear Scaling

The non-linear scaling function scales the input values according to the 

magnitude of the sum of the squared input. This is shown in Equation 3.

2ainew at = ~i-num  inputs

E  ai
i=0

Equation 3 - Non-Linear Scaling

This function is similar to normalisation, except that the sum magnitude for all 

inputs is not equal to one. Figure 5 shows that applying normalisation to the input 

data does not in fact improve the representation of the input data, but rather has 

the effect of making some patterns, in terms of Euclidean distance, more similar 

to each other. The has the effect of making it more difficult for the ANN separate 

particular patterns which may belong to different categories, ie. faces and 

distracters.

Non-linear scaling does not force the input vector to lie closely to other dissimilar 

input vectors, which can happen with normalisation. The performance of 

applying normalisation to the ANN input compared less favourably than with the 

non-linear scaling method. Applying non-linear scaling to the input data as 

opposed to the other methods improves training. Training the attention-focusing 

ANN, the descent of the RMS was found to be more reliable compared with no 

pre-processing and simple linear scaling (Equation 2).



N o n -L in ear ScalingN o rm alisa tio n

Figure 5 - Comparison of Transformed Input Data in 2D Space

3.9 Output Response
The previous section discussed how the image data is manipulated prior to being 

presented to the attention-focusing ANN. This section covers how the attention- 

focusing ANN is trained to respond to the target object. A supervised learning 

algorithm is adopted for the training, and ideally a response is required to indicate 

when the ANN input window passes over a face, hi order to achieve this, 

particular issues need to be considered. These are described below:

3.9.1 Determining the Output Range
Generally, most target output activations lie in a defined range, typically between 

0 and 1. The most common transfer function used is the Sigmoid function which 

squashes all input values to lie in this range, and is the one adopted within the 

backprop learning algorithm. Alternative functions such as the radial basis 

functions can be employed instead which produces an output between -1 to +1. 

Radial basis functions differ from the Sigmoid, as the output is cyclic.

The target outputs used for training are given the range 0.1 to 0.9, and these 

adjusted boundary values have been chosen because of the properties of the
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Sigmoid function. The values have been chosen because it is less likely that 

ANN learning will fall into a local minimum. The reason for this is that the 

weight update is always non-zero, even at the boundaries (0.1 and 0.9), whereas 

at boundaries 0 and 1 this can produce near zero weight updates. Therefore, it is 

much more difficult to move weights from this response, and requires many more 

iterations to do so. Highly incorrect classifications are also helped because the 

boundary values are closer to the steepest slope of the function, and hence it is 

easier to move the weights away from the incorrect weight space. Figure 6 

illustrates how the gradient at both ends of the Sigmoid curve tends to zero, 

whereas at the activations of 0.1 and 0.9 it is steeper.

l
0.9

0.1

0

Figure 6 - The Sigmoid Function

3.9.2 Target Output Activation Function
The moving window attention-focusing paradigm contains only a single output 

unit. This is designed to indicate the current state of the input frame. Ideally, 

within an image there are two distinct categories; input frames that are positioned 

exactly centred on a face and those that cover entirely a selection of background. 

Unfortunately, with a moving window approach there is a frizzy boundary where 

input frames contain a degree of both categories. For the two distinct cases the 

target response is simple, but for the other cases a different approach is required.

Some method or function is required given an input to determine the appropriate 

output response of the network. This will be referred to as the target output
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activation function, and should be confused with the transfer function discussed 

earlier. The following section describes different target output activation 

functions considered to for the different possible input scenarios.

3.9.2.1 Distance Activation
One possibility is a linear distance function Figure 7, where the value of the 

output is relative to the proportion of the face contained within the ANN input 

frame.

§
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Figure 7 - Distance Activation Function

This is expressed by Equation 4:

_ -\j(xfacepos x f  + (yfacepos y f
window size

Equation 4 - Distance Activation Function

This method not only trains the ANN to detect a face, but would also incoiporate 

the percentage of a face in the input frame into the magnitude of the output value. 

A similar technique using a Gaussian function has been investigated by Vaillant 

[Vaillant et. al, 1993].

Applying the distance activation function the attention-focusing ANN is unable 

to learn the problem because of the ambiguity of representation in the output 

between positional information and recognition uncertainty. This is due to the 

function creating a spread of activation values, with no distinct boundary between
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the two categories. It is difficult to extract meaningful information from the 

output, as a high activation might indicate either a large percentage of a face 

within the input frame or a high uncertainty as to the class of input.

3.9.2.2 Modified Distance Activation
The distance activation can be modified to try to improve the distinction between 

categories by considering an input frame that contains less than half a face as a 

distracter. This removes the difficulty of classifying those input frames 

containing veiy small parts of faces. Any pattern that gives an output of above 

0.5 is counted as a face frame.

Figure 8 -  Modified Distance Activation Function

Using the modified distance activation function is also unsuccessful at learning 

the problem producing a bias towards an output activation of 0.1. An explanation 

of failure to generalise may be because the average target value is biased towards 

distracters; i.e. the face category contains a linear range of values, whereas the 

background class contains a single value. This produces a larger number of 0.1 

values in comparison to any other target response.

Although a function to determine the target output activation was successful in 

Vaillanf s work [Vaillant et. al, 1993], the ANN architecture adopted here is not 

capable of generalising to this kind of representation. The relatively simple ANN 

architecture used makes it difficult to learn the function without increasing the 

size and complexity of the ANN as described by Vaillant [Vaillant et. al, 1993].

o
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3.9.2.3 Simple Two Category Activation
Due to the difficulty in training the ANN to give an output that combines 

recognition with distance, a simple binary activation is evaluated, i.e. an 

activation that gives outputs of only either 0.1 or 0.9. This presents a problem. 

What should the target activation be when only part of a face is present? To 

overcome the learning problem suffered by the two target activations (Figure 7 

and Figure 8), the area that contains a high proportion of both categories (i.e. 

partial faces) is ignored by the function illustrated by Figure 9.

A
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Figure 9 - Two Category Activation Function

Frames containing a mixture of face and background are excluded from training 

of the ANN as “don’t care” states, so as not to lower the boundary between the 

two classifications. When an image is searched the ANN can generalise itself to 

the closest classification category. It is not crucial whether the ANN classifies 

such images as face or distracter because either is acceptable. This approach 

reduces the requirement for a large positional tolerance to be learnt by the ANN.

Frames within 3 pixels of the best face frame have also been included where they 

also contain full facial information and these have been given a target output of 

0.9. This has a benefit of creating slight variations in training data but using the 

same face. It should also provide a slight positional tolerance to be learnt by the 

ANN.
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3.10 The Data
Probably the most important issue after deciding on the type of ANN paradigm 

is the training data. Selecting appropriate data and how this is presented effects 

how successful the ANN generalises. The issues that must be considered are:

> The quantity of examples required for the network to distinguish between 

faces and the background.

> The ratio of different types of input in the training set.

> The ordering of examples in the training set.

3.10.1 Quantity and Quality of Examples
Initially, the training set consisted of faces from passport photographs, and 

miscellaneous distracter images. Detection was found to be in excess of 95% 

accuracy for novel passport face photographs, but less than 40% accuracy for 

faces within real world images. Classifying faces within passport photographs 

is easier as the size of the input window allows for a small portion of the 

surroundings to be included. For the passport photographs the surrounding area 

of the face is a simple constant background which produces a clear separation of 

object and background. The failure of the attention focusing ANN to respond to 

faces within a natural environment is not surprising given that complex texture 

types surround the face were included within the training of the attention- 

focussing ANN.

The number of false activations on real world images was also high. This was 

attributed to the ANN being presented with too little variation in background 

data.

In response to this, the training set was modified to comprise of only real world 

images. This allows faces to be situated against natural surroundings, and also 

allows a greater number of background examples to be included.
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The type of possible backgrounds a face may appear against is almost infinite. 

Therefore it is necessary to select as much of a wide selection of varied input 

backgrounds as possible. Although faces vary, the possible variations compared 

to the background are much less. The number of examples required for the ANN 

to generalise is a difficult answer, given the number of possibilities. The larger 

the hidden layer the greater the number of patterns the ANN is able to generalise 

to. Even so, there must be a trade-off between the size of the ANN and the 

number of false alanns it produces. As the attention-focusing stage is only the 

precursor to classification it is only necessary to achieve a moderately high 

classification performance. However, the attention-focusing should achieve a 

reasonable success such that computation by the attention-focusing stage reduces 

the overall computation of object identification.

3.10.2Balance of Input Examples
A further consideration was the balance in the number of faces to distracters. A 

balance is necessary in order for each input frame to compete equally without the 

output value having a bias to one type of image category [Evans et. al, 1991]. 

Most pictures contain a greater quantity of distracter information compared to 

face infonnation. To achieve a balance, faces are repeated to give an equal face 

to distracter ratio.

3.10.3 Ordering of Examples within the Training Data
The ordering of faces and distracters within the training set was found to be very

important to the success of the ANN learning the problem. With a highly 

unordered data set that contains large numbers of one category followed by 

another, training performance was foimd to be poor. This was due to the learning 

fluctuating between the two categories without fully learning either. In order to 

overcome this, the ordering of the examples presented to the ANN follows the 

sequence of a distracter followed by a face.
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3.11 Choosing an Appropriate Step Value
Once the ANN has been trained, it can then be used to search an image to 

generate focus points. There is no prior knowledge about the position or number 

of any objects in the image, and therefore it is necessary for the ANN input 

window to search the entire image. The step size for the moving input window 

frame needs to be carefully chosen.

Having a moving input window frame that has a minimum step size of 1 produces 

multiple focus points when the frame is passed over a face. A large step value 

has the advantage of reducing the number of input frames to examine, and hence 

decreases the search time; but too large a value, and the frame may miss an 

object. A further disadvantage of any increase in step size is that the search will 

not produce clusters that can aid identification.

It is desirable to differentiate as much as possible between spurious activations 

and positive face identification before the focus points are used for classification. 

This can only be achieved by using a small step size and post processing the 

focus points created. This is because in the search, faces produce focus point 

clusters5, whereas false positives are more likely to produce single unconnected 

activations.

3.12 Focus Point Post Processing
Once the image has been searched, it contains a map of focus points. With an 

equal balance of training examples, activation below 0.5 is determined to be a 

distracter, while any value above 0.5 is considered to be a positive candidate. A 

higher threshold value may be chosen, but may eliminate faces that produce lower 

activations.

5 If the ANN is trained with a target activation function that is tolerant to positional shift, multiple 
activations will be generated in the area of the target object.
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As one object generates several focus points, these need to be grouped before the 

classification stage. The aim of focus point post processing is to reduce the 

number of focus points to a reasonable level to create focus areas, without 

removing possible focus points corresponding to faces. The following sections 

discuss possible methods for transforming the focus points to focus areas and the 

advantages and disadvantages of each.

3.12.1 Distribution of Activation Values
There are two important components that can be used to describe a cluster of 

focus points. These are the number of focus points per cluster and the total 

activation of the focus area. As stated previously, focus points are those 

activations from the ANN that are over 0.5. Focus areas could be ranked in order 

of their activation, but it is unclear whether a focus area containing a few highly 

activated focus points is more significant than a larger number of reduced value 

focus points. For example, a novel texture may be a little similar to a face at low 

resolution to sufficiently activate the ANN at multiple positions of the face. 

However, the same novel texture may be dissimilar to a face in most positions of 

the texture except at particular positions and orientations where there is a strong 

response from the ANN.

The unpredictability of the response of the ANN for all novel textures has 

determined that the information regarding the number of focus points in a cluster, 

and the some activation of the focus area is not fully utilised. It would also seem 

reasonable that there should be a maximum number of focus points that can 

describe a face. For most cases this will hold true, except for instances where 

faces are very close together, which may produce a merged cluster. The grouping 

algorithm can quite easily become very complicated when considering all 

possible eventualities. However, two reasonably simple methods are discussed 

in the following sections:
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3.12.2 Focus Area from the Mid-Point of Extremities
This is the most basic grouping algorithm. (See Figure 10). Contiguous focus

points are grouped together. A record of all extremity positions of each group is 

kept. From these values, the centre point for the focus area is calculated by taking 

the mid-point in both the x and y  directions.

P o in t  w i t h i n  e x t r e m i t i e s

F o c u s  P o in t s

W i n d o w  s i z e  a f t e r  g r o u p i n g

Figure 10 - Extremities Grouping Method

The advantage of this method is that it is easy to calculate and therefore relatively 

fast. Its main drawback however is that it is very crude in calculating the centre 

point accurately when taking into account the shape of the focus points within the 

group. It may also, in some circumstances, group together unconnected areas that 

are found within the growing window. This is very difficult to avoid without 

using the contour of the shape to determine which points should be included.

3.12.3 Focus Area using the Centre of Gravity
Assuming that each focus point is a binary value, the centre of gravity for a 2D

shape can be calculated to find the mid-point of the focus area. This method 

should produce a more accurate centre point for non-uniform shapes, i.e. those 

that are non-rectangular. It less likely that the ANN trained with a position 

tolerant target activation function will generate shapes of this kind.

The above method does not take into account the weightings of the focus points. 

It can be extended to calculate the centre of gravity for three-dimensional shapes.
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In this case, the activity of the focus points is used to describe the third 

dimension. Using this method is an even more accurate means with which to find 

the focus area centre point.

Figure 11 - 3D Plot of Focus Area used to Calculate the Centre of 
Gravity

Both centre of gravity methods add a degree of complexity to the calculation 

which may not be necessary if simpler methods produce satisfactory results. 

These methods only describe a means to calculate the centre of the cluster, and 

not how the focus points are grouped. Therefore, a method is required to obtain 

the cluster information prior to centre of gravity analysis. A technique such as the 

extremities grouping function or some other would be necessary to determine the 

points included in a cluster.

3.12.4 Focus Area using a Moving Window Grouping
A simple but alternative method to group the map of focus points is to use a

moving window across the image. This is applied in the same manner as the 

ANN input window. However, the function of it is to simply count the number 

of focus points found within the grouping window. A window that contains more 

than a single activation are transformed to a focus area.

There are two parameters that define the accuracy and number of the focus areas 

produced. These are the grouping window size, and the grouping window step.
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The values of these have no relationship with the ANN input window. To ensure 

there are no false negatives the parameters need to be chosen carefully. A 

moderately sized grouping window and small step value should ensure all 

possible face positives are found. A larger a grouping window size and step will 

reduce the number of focus areas produced, both false positives and false 

negatives. An analysis of different combinations of values is described later.

hi comparison to the extremities grouping algorithm, this is even simpler but is 

guaranteed to catch more face positives assuming that the window size and step 

value are optimal. The main drawback of the grouping algorithm is that it 

produces a general increase in the number focus areas.

3.12.5Focus Point Filtering
Due to the large possible background pattern variation, the ANN will sometimes 

indicate the presence of an object when the input is just background. Filtering is 

a method to reduce the false activations of the ANN. A basic assumption is made 

that focus areas containing a single focus point should be removed. Filtering in 

this way is empirically justified as real objects produce clusters, and it decreases 

the number of false positives [Viennet and Fogelman Soulie, 1992].

It may be possible to increase the threshold to pairs of focus points for filtering 

out false positives, but to do this may result in objects being pruned. Because the 

emphasis is ensuring that there are no false negatives, there will be some false 

positives. As a single point can be the only guarantee of false activity6 these are 

the only activations that are removed.

6 An ANN that uses a position tolerant target activation function is trained to activate at multiple positions 
of the object. Therefore if an ANN is expected to produce a response at one position, then the ANN can also 
be expected to produce a response at another. An assumption is made that no target position is greater than 
another.
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3.13 System Overview
The previous sections have described ideas and issues that have impacted on the 

resulting design of the attention-focusing ANN. This section brings together the 

solutions proposed for these problems and describes the subsequent architecture 

developed and operation of the attention-focusing ANN. The next chapter uses 

the paradigm developed, and extends it to consider the problem size invariant 

object recognition.

The system is capable of locating objects of a fixed size at a relatively high speed 

through the use of low resolution and minimal image pre-processing. An ANN 

input window is scanned across a low resolution image and focus points are 

generated at positions where the input frame has a high probability of containing 

a high percentage of the trained object (ie. a face).

The image is reduced to l/25th of its original size and a non-linear scaling 

function is applied to each input frame. The input frame size is 11x16 pixels and 

there are 15 ANN hidden units. This reduced resolution and the appropriate ANN 

size have been found to give best performance from studies performed.

As the centre of the input frame nears the centre of an object, multiple focus 

points are created within the area of the face. Focus points are grouped together 

to form focus areas. Single ungrouped focus points are filtered out as likely 

errors. Focus areas generated are then available for further processing.
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3.14 Performance Evaluation
To determine the effectiveness of the system described and the variations on this 

model, it is necessary to evaluate how well the system works on unseen data. 

Section 3.3 described the criteria by which the system, and in this particular 

instance the attention-focusing stage, is to be measured. However, appropriate 

values were not given to the error thresholds that include the face distance-error 

and size tolerance error. Numbers and justification for the values derived are 

discussed in the following section.

3.14.1 Criteria For Evaluation
The face distance-error is determined by whether the focus area encapsulates the 

main components of the object. For successful identification, the face distance- 

error should not be so great as to exclude the primary features (ie. eyes, nose and 

mouth) contained within the frame. From the author’s visual examination, it was 

determined that the face is able to receive a shift of up to 4 pixels in any direction 

at the reduced resolution and still maintain that the primary features are contained 

within the focus area frame. Re-scaling to the full resolution relates this distance 

to be equal to 18 pixels in the original image. The threshold value of 18 pixels 

determines the boundary value for successful location. As this value is 

resolution independent (assuming that the same image capture method is used), 

it is also applicable to size invariant attention-focusing and classification analysis.

Although it is desirable for the face distance-error to be zero, using reduced 

resolution introduces a quantisation error. The degree of error is dependent upon 

the amount of image reduction determined by the scaling factor (in the case of the 

attention-focusing ANN the images are reduced to l/25th of their original size) 

and will therefore usually position the focus area slightly away from the full 

resolution true centre (of up to 5 pixels in either the x or the y  axis).

Using the threshold value described above the performance of the attention- 

focusing stage is measured by:
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> The number of faces that have failed to be located within each scene (false 

negatives).

> The number of false focus areas (false positives) that are generated for each 

image. It is unrealistic to expect the system to have no false positives given 

the reduction in resolution and also the vast amount of background data that 

is inevitably unseen by the ANN.

3.14.2 Analysis of Results
All of the results discussed in this section have used an attention-focusing ANN 

trained on a set of 18 images that include a total of 30 faces. A set of 10 test 

images that include 10 faces have been used to analyse the performance of the 

trained attention-focusing ANN. The test set was chosen to be a similar 

representative of the type of images used to train the ANN, although it can be 

almost guaranteed that novel objects and textures will be subjected to the ANN 

due to the diversity of natural images. Particular novel textures can be easily 

identified as those which the attention-focusing ANN produces large numbers of 

false positives.

The images captured are all variable in size, and represent varying amounts of 

data to process per image. Using the reduction factor and input frame size 

discussed, this results in a total of 19,447 separate input frames available for 

analysis (from the 10 test images) by the attention-focusing ANN. Of these 

frames, 528 positions indicated a positive response. This shows a relatively high 

ratio of frames scanned to focus point produced. However, this figure does give 

a good measure of performance, as each image contains a face, which in turn 

comprises of several different frames. The most important aspect that is observed 

from the direct output of the attention-focusing ANN is that a focus point has 

been produced within the distance-error threshold for all the test cases. A more 

reliable measure of performance is to use the output from the grouping algorithm, 

as this is passed on to the next stage of processing.
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The table below compares the performance of the extremities and window 

grouping methods. Both use the same focus point data produced by the attention- 

focusing ANN.

Window Grouping Method

Box Size 

(Pixels)

Step

Size

FA FP FN Average

Distance-Error

3 3 243 225 2 9.97

4 2 908 849 1 10.23

5 4 293 277 2 9.53

5 5 178 168 2 9.51

6 3 648 616 0 9.85

6 5 247 236 2 10.70

6 6 160 153 3 9.14

9 3 1015 881 0 10.57

9 6 265 257 2 8.68

10 5 393 377 0 10.73

12 6 306 296 1 9.72

Extremities Grouping Method

N/A N/A 102 91 2 8.50

Key: FA -  Focus Areas, FP = False Positives, FN = False 

Negatives

Table 1 - Performance Comparison of Window and Extremities Grouping 
Methods (1)

The table shows various different configurations for the window grouping 

method. In comparison, the extremities grouping method does not rely on any
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parameters that can alter the overall performance of the algorithm. From the 

different window grouping configurations, some basic rules can be extracted. An 

approximately equal box and step size leads to less focus areas being produced, 

as there is no window overlap. This leads to the possibility of focus points falling 

between box windows. The data given in the table shows that this does have an 

effect, and most false negatives are created from this arrangement.

Both grouping methods give approximately similar average distance-errors, 

which range between 8.5 to 10.73 full resolution pixels. This equates to of 

between 1.7 to 2.1 pixels in the reduced resolution image. All frames within ~3 

pixels of the best frame were trained with an equal target activation value. 

Therefore a tolerance of ~4.7 reduced resolution pixels is built-in to the training, 

so the small positional error observed is better than expected. Although it is not 

apparent from the above results, faces that were in partial profile or were slightly 

tilted tended to produce larger although acceptable face distance-errors.



Window Grouping Method

Box

Size

(pixels)

Step

Size

(pixels)

Face 

Positive: 

Face

ANN 

Frames : 

Focus Areas

ANN Frames :

False

Positives

3 3 2:1 80:1 86:1

4 2 6:1 21:1 23:1

5 4 2:1 66:1 70:1

5 5 1:1 109:1 116:1

6 3 3:1 30:1 32:1

6 5 1:1 79:1 82:1

6 6 1:1 122:1 127:1

9 3 13:1 0.79 22:1

9 6 1:1 73:1 76:1

10 5 2:1 50:1 52:1

12 6 1:1 64:1 66:1

Extremities Grouping

N/A N/A 1:1 191:1 214:1

Table 2 - Performance Comparison of Window and Extremities Grouping 
Methods (2)

Appendix B and C show a graphical output from the analysis of the attention- 

focusing ANN on the test images. Appendix B shows focus point grouping using 

the window grouping method. Appendix C shows focus point grouping using the 

extremities grouping method. Focus point activations (derived from the output 

of the attention-focusing ANN at a particular x,y position on the image) are 

depicted as linear grey scale squares. The intensity of each square represents the 

magnitude of the activation by the ANN, i.e. some value between 0.5-1.0. Black
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rectangles are invalid focus areas; i.e. the centre point of the focus area is beyond 

the distance-error threshold. Conversely, white rectangles represent valid focus 

areas; i.e. the centre point of the focus area is within the bounds of the distance- 

error threshold.

Examining the images shows that the ANN has produced focus points in every 

area where there is a face. The ANN has therefore achieved the main objective, 

which is to produce activations for all faces. However, test images 6 and 16 do 

not produce a cluster of connected points. Applying post-processing, i.e. the 

grouping algorithms remove the face candidate from further processing. Test 

images 7 and 17 contain a cluster of points but the position of the activations are 

off-centre which obviously affects the focus distance-error.

From the list of test images presented, some of them have generated a higher 

proportion of false activations. This is due to some images containing textures 

(for these cases polka dots and stripes) that had never been presented to the ANN 

before. It is unrealistic to expect a trained ANN to cope with all patterns that can 

be taken from real world data. In a real environment if particular test images 

contained textures that caused the attention-focusing ANN to falsely activate then 

the solution would be to add an appropriate selection of these test images to the 

training set and retrain. It is difficult to predict the performance of a trained ANN 

on novel images and the training of the attention-focusing ANN should be 

regarded as an iterative training process until a required performance level is 

achieved.

Appendix B shows the focus area output for the window grouping method, and 

Appendix C shows the output for the extremities grouping method. Focus areas 

are depicted as either white or black rectangles. A white focus area means that 

it is within the face distance-error, and is labelled a face positive. A black focus 

area means that it is outside the face distance-error, and is labelled a false 

positive.
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Increasing the box overlap increases the focus areas produced, but not necessarily 

the number of false negatives. A configuration of box size 4 and step size 2 has 

an extremely high number of focus areas, but does not manage to remove all of 

the false negatives. The window grouping configurations that provide the best 

results are those with a larger window size. This has the ability to include 

unconnected focus points in a larger area. Because the grouping covers a wider 

area, the number of total focus area positions is less. The distance-error should 

also increase leading to the possibility of false negatives. A box size of 12 and 

step of 6 demonstrates the effect of having too large values. The optimal 

configurations from this set of results indicate that a box size of 6 and step size 

of 3, or a box size of 10 and step size of 5 give no false negatives and the fewest 

number of false positives.

The extremities grouping algorithm has produced considerably less focus areas 

than any window grouping configuration. The average face distance-error is also 

less than the other method. Although other grouping methods are available, of 

the two methods evaluated the extremities grouping method provides best 

performance using the data provided by the attention-focusing ANN. Although 

more time could be spent investigating whether a better grouping algorithm can 

be found, the aim is to provide a flexible computer vision framework that 

provides acceptable result which may not necessarily be optimal (if that can be 

achieved) but defines the particular components required for this approach.

3.15 ANN Weight Analysis
The main factor that governs the performance of the attention-focusing stage is 

the generalisation performance of the trained ANN. To analyse what has been 

learnt by the ANN one method is to examine the hidden unit weight connections 

leading to the input units.

Figure 12 shows graphically the weight connections of the network. The weight 

values can be unbounded in size and reflect the magnitude of the inputs. The
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weight values therefore, can contain a relatively large range of values (both 

positive and negative). To enable a visual representation of the weights, they are 

passed through the Sigmoid function to scale each weight to an appropriate grey 

level intensity. Low intensity pixels represent highly negative values and high 

intensity pixels represent large positive values.

Figure 12 - Graphical Representation of ANN Weights

Each two dimensional block represents a hidden unit of the size of the input 

frame. Figure 12 shows the ANN weights for the attention-focusing network used 

to produce the results in this chapter. Observing some of the units, some can be 

clearly seen as representing generalised low-resolution faces. These are not 

specific faces found in the training set, but rather composite faces. This 

illustrates that particular units have learnt features that are common to the trained 

object. Analysis of the output profile of these units shows a positive contribution 

to focus point activation. Conversely random (or noisy) looking units provide 

negative contribution to face type inputs. It is quite reasonable to expect this, but 

it is perhaps rather more surprising that most of the units have face like 

properties. It has been observed that none of the literature regarding the problem 

of image identification/classification/recognition has performed any visual 

analysis of the weight connections in regard to their ANN performance studies.

Examining the hidden units would seem to indicate that the quantity of training 

data has saturated the ANN. This is illustrated by the fact that the majority of 

weight values are at the extreme of the grey level range (i.e. black and white). 

Any improvement in terms of classification, i.e. increasing the training to cover 

an even broader range of faces and distracters, should require further hidden units 

to be added to the attention-focusing ANN architecture. Whether the number of 

distracters passed on to the next stage of processing is acceptable is discussed in 

the following chapters.
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3.16 Summary
This chapter has examined the problem of face identification and investigated 

various means by which this problem might be tackled. Particular problems have 

been identified that has driven the paradigm presented. This has concluded with 

performance analysis of the selected model design, which highlights the benefit, 

and also the limitations of the first stage, the ANN attention-focusing system.

From the results provided, Test image 3 is a good representative of the 

performance of the ANN system. The face distance-error values are not zero, but 

they do illustrate that having such errors still allows the whole face to be 

contained within the input frame.

The false positives generated for the image clearly do not at full resolution look 

like faces. However, at low resolution some patterns may show some general 

face qualities, given that at this resolution faces may not appear to be particularly 

“face-like”. Some other example pattern types the ANN has not been trained 

with also lead the ANN to produce a high activation. This will always be the 

case.

A two-stage computer vision strategy allows for classification error in 

compensation for speed, low resolution and reduced processing. A higher 

resolution classifier should be able to reject these patterns as false positives. Until 

the classification and then overall system performance has been evaluated it is 

difficult to specify whether more robust classification performance is required of 

the attention-focusing stage.

Firstly, the next stage in processing is to address the problem of size invariance 

and how this can be applied to the attention-focusing model already presented.
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Chapter 4

Size Invariant Object Location

The system described in the previous chapter deals only with objects of an 

approximately similar size and at an optimal resolution. This chapter describes 

the development of the attention-focusing ANN to cope with size invariant object 

location.

4.1 Requirements for Size Invariance
The type of faces and background to be used for analysis is the same as identified 

previously for fixed size face analysis. The only difference in the data set are that 

face sizes are now unconstrained in and across images. This means that a face 

can be of any physical size and can occupy anything between a small area of the 

image up to the full image frame. Also, for images that contain more than one 

face in an image these may be of different sizes. Unlike the fixed sized object 

search, the size of faces is not known prior to the search.

The amount of image reduction determines the object size. Because the face 

identified may not be at the optimum resolution, a size error may be incurred with 

the size invariant attention-focusing ANN. The classification ANN must 

therefore be tolerant to this error.
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4.2 Size Invariant Object Location
Now that an attention-focusing ANN has been established that can identify fixed 

sized faces in images efficiently and reasonably reliably, the system can be 

extended to cope with size variant faces. The following sections describe work 

that attempts to use the ANN trained for fixed sized faces to detect variable sized 

faces.

The previous chapter identified problems regarding the classification of faces at 

minimal reduced resolution. To redevelop a different architecture for size 

invariance classification without exploring means by which the fixed size 

attention-focusing ANN can be extended is wasteful. In fact, sub-sampling an 

image to reduce the object to the same resolution as expected by the fixed size 

attention-focusing ANN require no difference in ANN processing. The only 

difference is in the pre-processing necessary that enables the correct resolution 

to be presented to the ANN. Other authors [Anderson, 1990], [Evans et. al, 

1991], [Marsic, 1992] have adopted a multi-resolution approach to their ANN 

architectures for multi-resolution processing.

4.2.1 ANN Architecture
Although the fixed sized attention-focusing ANN needs to be adapted to enable 

size invariant classification, it is intended to explore techniques that enable size 

invariant classification without significant modification to the fixed size 

attention-focusing ANN architecture. This can be achieved by processing the 

image across multiple resolutions to determine position and size of the object.

Having trained at a fixed resolution, one might assume that recognising objects 

of different sizes would require several ANNs to be trained at different 

resolutions to cope with the size variance. Indeed Evans [Evans et. al, 1991] 

adopts this approach to size invariant classification, but this severely limits the 

range of resolutions that can be processed and subsequently the extent of the 

objects that can be detected.
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The variability in the images means that after image reduction there is a slight 

difference in size of faces being presented to the attention-focusing ANN for 

training. However, the size difference between objects is minimal. To 

incorporate any further size deformation into the training would burden the 

attention-focusing ANN with an added complexity requiring a larger input frame 

to ensure that the input object is not largely clipped and also a larger number units 

or connection strategy. The main objective of the attention-focusing stage is to 

identify possible areas of interest simply and allow further stages of processing 

to determine the accuracy of the focus areas presented to it.

4.2.2 Image Sampling
For single resolution analysis, the simple «-pixel method used by the attention- 

focusing ANN in the previous chapter is inadequate for multi-resolution analysis. 

The disadvantages of this method and techniques to overcome the problems 

associated with it are discussed below:

4.2.2.1 Simple TV-Pixel Sampling
The initial approach to image reduction uses a simple w-pixel sampling method. 

This reduces the image by a scale factor n, every nth pixel in both the x and y  

direction. This is one of the fastest methods for shrinking an image, but the effect 

of scaling with consecutive scale factors produces a series of non-linear 

reductions.
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n = 1 n = 2 n = 3 « = 4

Greater difference at higher resolutions than at lower resolutions 

Figure 13 - Effect of n Pixel Scaling

The consequence of processing with the rc-pixel method is that there is a bigger 

difference between adjacent resolutions closer to full resolution than at lower 

resolutions. If the image contains an object at low resolution, this method has the 

possibility of the attention-focusing ANN activating across several different 

resolutions, as the difference in sampling becomes increasingly insignificant. 

Conversely, the large differences in resolution change for small values of n may 

mean that the attention-focusing ANN fails to be presented with the appropriate 

object size expected (i.e. trained with) and therefore fails to activate at all.

4.2.2.2 Linear 7V-Pixel Sampling
An alternative method of image sampling is therefore required that allows for 

greater flexibility in the amount an image can be scaled. It also allows adjacent 

resolutions to be related and identified by a constant scaling factor.
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To decide what pixels are extracted from the full resolution image to create the 

reduced resolution image is determined by the sample interval. This is described 

by Equation 5.

sample interval -  ----- ------
reduction

Equation 5 -  Determining the Sample Interval

Where 1 > reduction > 0; and n> 0. The reduction value corresponds to an image 

scaling factor (where %reduction = (1 -  reduction) x 100), and n determines the 

number of reductions carried out (i.e. the number of resolutions processed 

disregarding full resolution). A smaller reduction value corresponds to greater 

image reductions. If a single face covers the entire image, then the maximum 

number of reductions required to shrink the image to the size of the ANN input 

window is given by Equation 6.

. .windowsize .
log« (—— —, picture sizemaximum possible n = ------------------------

log;o (reduction)

Equation 6 - Determining the Maximum Linear Steps

Where window size is the dimensions of the ANN input window, and picture size 

is the pixel dimensions of the image. The derivation of Equation 6 is given in 

Appendix G.

Although the size of the face is not known, n determines the number of 

resolutions the ANN must examine to guarantee that all possible face sizes have 

been explored. The value assigned to the reduction factor is user definable, and
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controls the degree of resolution reduction at each stage. An appropriate value 

for the reduction factor is explored later in this chapter.

The main advantage of applying this function to perform image reduction is that 

like simple w-pixel reduction it is a fast and effective means by which the image 

can be scaled. However, according to the reduction value selected this may cause 

bunching of the pixel values as the n{ pixel is rounded up or down. The simple 

alternative to this method is to use average sampling.

4.2.2.3 Average Sampling
Modal and mean sampling are two methods of average sampling. It is likely that 

both of these methods will produce a more accurate reduced pixel representation 

of the full resolution image because the surrounding pixel values are taken into 

account when determining the new pixel values.

A problem with both «-pixel and modal sampling is that important information 

may be lost in the reduction as the resulting image is not derived from all pixels. 

In comparison, mean sampling overcomes this problem but introduces blurring 

of well-defined edges.

To select the most appropriate algorithm amongst the three methods is almost an 

arbitrary decision. However, because of the amount of reduction the system has 

to perform to reach the optimum resolution (determined from experiments 

described in the previous chapter), the technique that provides the most accurate 

reduced representation has been chosen as the most suitable. Average sampling 

is the only method that takes into consideration every pixel in the reduction. This 

is the method adopted for the image reduction shown in the results presented later 

in this chapter.
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4.2.3 Multi-Resolution Search
As the system has no predetermined knowledge about the objects contained 

within an image, a strategy is required that selects the resolution to process. 

Biological methods such as those discussed by Ahmad and Omohundro [Ahmad 

and Omohundro, 1990], Leow and Miikkulainen [Leow and Miikkulainen, 1991], 

and Sajda and Finkel [Sajda and Finkel, 1992] use a random approach to fixating 

upon the desired object to direct the next focus position and resolution. This 

approach is not feasible within the framework already developed, as the output 

from the attention-focusing ANN can only indicate the presence or absence of the 

trained object. A more formalised approach is therefore necessary.

Two strategies are therefore available; either process from high resolution to low 

resolution or vice versa. The first strategy offers no benefit in the attention- 

focusing approach of reducing the information to be processed and questions 

what a two-stage classification strategy would offer compared to processing the 

image at full resolution. Processing the lowest resolution first identifies large 

objects sooner and can remove the necessity to process the same area at higher 

resolutions. The strategy to manipulate how the different resolutions are 

processed is described as follows:

In order for the system to be flexible and cope with objects of any size, the image 

is reduced to the minimum resolution a face can occur. This is determined from 

the maximum possible n given in Equation 6. From this starting'resolution the 

image is scanned to produce focus points, which are then grouped to provide 

single resolution focus areas. This is performed in exactly the same manner as 

fixed size face analysis. Any grouping method would be suitable, but the 

extremities grouping method (3.8.3) has been used initially. This is repeated for 

a number of higher resolutions using a fixed scaling factor, towards full 

resolution. It is necessary to perform this processing through the resolutions as 

there is no prior knowledge of the size of any object (face) in the scene, and it 

may be that multiple object occurrences will be of different sizes.
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Large objects are located at low resolution (large reduction) and small objects at 

high resolution. The smallest possible face that can be accurately located has 

been determined previously by the experiments to determine the optimal 

resolution that are described in chapter 3.

Each separate resolution is scanned in the same manner as the fixed sized 

resolution attention-focusing ANN, producing focus areas for that particular 

resolution. These can at this point be passed on to the next stage for further 

processing. However, adjacent resolutions may be able to provide additional 

support to the validity of the focus areas. This is wholly dependant upon the 

reduction value employed, which is investigated in the following section.

4.2.4 Determining the Best Reduction Value
One of the most important aspects of the size invariant location method is the 

choice of the reduction value. Initial investigations have revealed that an object 

may be recognised across a number of contiguous resolutions, providing the 

image reduction is not too large. A reduction that is too large may miss the object 

entirely as the computed resolutions are too far from the resolution that the ANN 

has been trained with.

It is difficult to determine the most suitable value for the reduction term. A 

smaller reduction leads to a greater number of resolutions to search and therefore 

increases the time to process an image. This in turn increases the number of false 

positives generated as more input patterns are presented to the ANN. The number 

of false positives generated is proportional to the increase in number of patterns 

examined. The benefit to having a small reduction is that a closer resolution to 

the object is processed leading to a more robust detection of the focus area and 

also more accurate calculation of the objects’ size. Analysis of different 

reduction values is given in the performance evaluation at the end of this chapter.
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It is likely that an area of interest may produce focus point activations at the same 

location across different spatial resolutions provided that the difference between 

consecutive resolutions is not beyond the tolerance of the attention-focusing 

ANN. If this does occur, then there is the possibility of grouping these points to 

create a single multi-resolution focus area. Also, areas of interest receiving focus 

point activation at a single resolution only can be rejected as an unlikely area of 

interest.

4.2.5 Focus Area Post Processing
With multi-resolution analysis, a point in an image may be active across many 

different resolutions. Assuming that contiguous resolutions are close enough to 

each other, the presence of an object produces multi-resolution activation. For 

this reason, consecutive single resolution focus areas are grouped together to form 

multi-resolution focus areas.

An area of the image may be active across many resolutions and grouping all 

activations may lead to inaccurate object size calculations. Therefore, grouping 

all similarly positioned focus areas and averaging the size is restricted. This is 

to ensure that if any activations appear across a wide spectrum of resolutions they 

are not recognised as a single item. It is not feasible that an ANN tolerant to only 

a small change in size will activate correctly across many resolutions at the same 

point in the image. For this reason a limit on the maximum number of 

consecutive resolution focus areas that can he grouped has been set to a 

maximum of three.

Because the focus areas are of different sizes, it is necessary to determine which 

overlapping focus areas can be merged. Equation 7 is used to determine the 

maximum distance allowed between the extremity focus points of the two focus 

areas. Instead of examining the overlapping area that the different resolution 

focus areas cover, the focus areas are grouped on whether the cluster of focus 

points overlap. This allows overlapping focus areas to be merged that do not

76



necessarily activate at the same point within the image. The equation determines 

the maximum distance (in integer pixels) that the cluster can be displaced to be 

considered a multi-resolution focus area. Focus areas within this distance and 

within two consecutive resolutions are grouped together to form a single multi­

resolution focus area.

maximum distance = int (--------------    )r , * minimum focus n 'reduction

Equation 7 - Maximum Distance between Focus Areas

The middle resolution of the grouped focus areas determines the estimated size 

of the object. As with single focus points at a fixed resolution, focus areas in just 

one of the multiple resolutions are also removed. Analysis of focus areas 

produced before post processing indicated that focus areas recognised at only a 

single resolution generally indicate a false positive at that spatial resolution. 

Filtering these it is possible to reduce the number of incorrect focus areas.

4.3 System Overview
The ANN system designed to locate objects of a fixed size has been extended to 

cope with size variant faces through the use of multi-resolution processing. The 

image is reduced to the smallest possible size a face can occur, and then the ANN 

input window is scanned across the low resolution image to generate any focus 

points. Any focus points produced are grouped to form single resolution focus 

areas. The resolution of the image is increased by a reduction factor, and the 

process repeated. This action is performed until a predetermined resolution is 

reached. (Currently full resolution).

Any similarly positioned consecutive single resolution focus areas are grouped, 

up to a maximum of three. Any non multi-resolution focus areas remaining after 

grouping are removed. The average size of the multi-resolution focus areas
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determines the size of the object. These are then passed to the classifier for 

further analysis.

The strategy of focus areas found at lower resolutions to eliminate processing 

parts of the image by the attention-focusing ANN at higher resolutions is 

explored later in Chapter 5.

4.4 Performance Evaluation
To determine how effective the multi-resolution search has been, similar 

experiments to that detailed in chapter 3 for single resolution have been 

performed on a collection of unseen images. The following describes the criteria 

for measuring the performance of the multi-resolution ANN system. Included 

in this chapter are results showing the success of location of size variant faces.

4.4.1 Criteria For Evaluation
The same performance criterion as for fixed resolution identification is applied 

for the multi-resolution identification. These include:

> The number of false negatives.

> The number of false positives.

To determine whether a multi-resolution focus area is a face positive, two 

measures are required. These are the face distance-error and the focus area size. 

A focus area is determined to be a face positive if the following two rules are 

met:

> The position of the focus area is within a maximum face distance-error.

> The size of the focus area is within the resolution of a single reduction step

away from the optimum resolution for the face.
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4.4.2 Analysis of Results
All of the results discussed in this section have used the same trained ANN as 

was used for analysis in the previous chapter. A similar set of 10 test images has 

been used to measure the performance of the multi-resolution search. A number 

of different reduction factors were tried, giving the total number of separate input 

frames examined by the ANN of between 284,503 and 2,323,316.

The test image outputs included in appendix C show the output of the ANN using 

a reduction value of 0.85. Focus points and focus areas are depicted in the same 

manner as previously except that different sized focus areas are shown which 

represent identification at different resolutions.

Table 3 shows the performance of the ANN across multiple resolutions using a 

range of different reduction values. As can be seen by the data and the associated 

graph, the number of false positives increases as the amount of image reduction 

decreases. This is expected as more information is being presented to the ANN.

Reduction ANN

Frames

FA Frames

:FA

FP FN Average

Distance

-Error

Average 

Size Error

.70 284,503 133 2139 : 1 126 4 9.79 -2.26

.75 453,214 172 2635 : 1 163 1 7.73 1.22

.80 733,120 312 2350 : 1 300 1 10.59 -2.35

.85 1,241,044 604 2055 : 1 590 0 8.51 -9.78

.90 2,323,316 1,031 2253 : 1 1,021 3 9.03 -5.08

Key: FA = Focus Areas, FP = False Positives, FN = False Negatives

Table 3 - ANN performance across multiple resolutions and reduction 
values
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As one might expect those images that generated a higher proportion of false 

activations at optimum resolution also generated false activity across multiple 

resolutions. Again, this is due to these images containing textures that have never 

been presented to the ANN before. This highlights the limitation of the number 

of varied examples in the training set, and how this inadequacy is propagated in 

the results for multi-resolution. A larger and more varied training set should 

overcome this problem to some extent. Although the number of possible 

background patterns is almost infinite, the number of distracters in the training 

set is relatively insignificant to the number of examples required to minimise 

false activation. For those test images that contained similar patterns to those that 

the ANN had been previously exposed to, the multi-resolution search did not 

create an inordinate number of false positives compared to the increase in the 

number of separate ANN window patches examined.

Perfo rm ance  of M u lt i -R eso lu t ion  ANN
Through Decreasing Resolutions

0.5

0.7 0.75 0.8 0.85 0.9
% Reduction

Figure 14 - Performance of Multi-Resolution ANN through 
Decreasing Resolutions

As the image reduction decreases, the number of false negatives also decreases, 

leading to the optimum reduction value for false negatives of 0.85. Image
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reductions greater than 0.75 produce resolution differences that are outside the 

bounds of the ANN size tolerance. Having a larger reduction may miss the 

optimum size of the object and therefore miss it entirely. Also, multi-resolution 

activations are required for successful identification, as single resolution 

activations are removed.

P e r fo rm a n c e  o f  M u l t i -R e s o lu t io n  AN N
Through Decreasing Reductions

1200

1000

2 800

200

0.7 0.75 0.8 0.85 0.9
% Reduction

Figure 15 - Performance of Multi-Resolution ANN through Decreasing 
Reductions

The reason that there is a sharp increase of false negatives for reduction 0.9 is that 

the output becomes saturated with activity and subsequent grouping produces 

incorrect sized focus areas. Increasing the number of image reductions also 

increases the number of multi-resolution activations. This is because a maximum 

has been set of only three consecutive resolution focus areas that can be grouped. 

Extending the number of allowable resolutions to be grouped, and the reduction 

value tolerance, would reduce the number of false negatives. With a varying 

reduction factor, the grouping algorithm should also vary the number of focus 

areas that can be merged. However, a simple linear relationship between the 

reduction value and the number of consecutive resolutions to group is difficult to 

determine. Although the effect of different reduction values has been presented,



varying the resolution grouping has not been fully explored to find the optimum 

reduction/grouping configuration.

Examining the face positive size error shows no discernible pattern through the 

different reduction factors. The results present a general bias towards smaller 

focus areas than the set size, but even with the largest size error this equates to an 

error of approximately two pixels at the reduced resolution. This amoimt of size 

error is negligible, and the results suggest on average the correct resolution for the 

object has been found.

4.5 Summary
The results presented show that a technique of multi-resolution analysis 

incorporating the ANN trained at an optimum resolution is a feasible method for 

size invariant object location. A reduction factor of 0.85 has been found that has 

enabled all faces to be found in the test data with minimum generation of false 

positives.

Even with multi-resolution analysis, a relatively small number of false positives 

have been produced in comparison to the amount of processing per image. The 

exception to this has been with pattern types unfamiliar to the trained ANN. As 

stated previously in the single resolution analysis, this highlights deficiencies in 

the amount of varied training examples.

This chapter has extended the attention-focusing model to consider objects of 

different sizes. The classification performance of the fixed sized resolution ANN 

has managed to identify all faces within the images without the need for 

retraining or a change to the ANN architecture. The following chapter 

investigates an appropriate architecture for the next stage in processing and how 

the output produced by the multi-resolution attention-focusing ANN can be 

classified more accurately.
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Chapter 5

Focus Area Classification

The previous two chapters have dealt with the first stage of a two-stage 

identification process. This first stage, the attention-focusing ANN has generated 

areas of interest, which need a more accurate classification. This chapter presents 

a model to achieve this goal.

5.1 Identification - A Two Stage Approach
Focus Area Classification establishes whether the output from multi-resolution 

analysis contains the trained object in any of the focus areas presented. The 

attention-focusing ANN uses minimal resolution to identify possible areas of 

interest. It is only a quick identifier of possible areas of interest (faces), and some 

eiTors are incurred as a compromise for the low resolution used. It is the function 

of the classifier to perform a more accurate analysis of the focus areas to resolve 

the uncertainty about which categoiy the areas of interest belongs to. More 

information is therefore necessary to perform reliable classification.

Increasing the resolution to provide more information with which to perform 

classification provides its own problems. The initial studies for the attention- 

focusing ANN architecture investigated the minimum resolution that an ANN 

could perform reasonable classification. However, the study also identified that
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increasing the resolution and also the relative size of the ANN produced poor 

classification performance. This is because the increase in information used for 

analysis requires that the ANN architecture is also larger and more complicated. 

An increase in the amount of data being presented also produces a greater 

variation that requires more examples to train the ANN.

Therefore, although more detailed information is required to perform a more 

accurate classification this has to be balanced with the necessity to keep the 

complexity of the ANN classifier architecture as simple as possible.

5.2 Requirements for Classification
The main aim of the attention-focusing stage is to detennine areas of interest as 

effectively as possible with likely candidates of the desired object. However, the 

requirements of the classification stage are to:

> Reject incorrect focus areas presented to it by the attention-focusing ANN.

> Able to correctly classify the true areas of interest as being of the pre­
determined object, e.g. a face.

5.2.1 Removing False Positives
It has been accepted that a certain degree of incorrect focus areas will be passed 

to the classification stage. As well as being able to re-affinn the presence of the 

desired object, classification must also be able to reject the false positives 

presented to it. It is possible that similar types of patterns giving rise to false 

positives at the attention-focusing stage may also cause classification to fail for 

the same reasons; i.e. the focus area has some type of pattern components which 

might confuse both ANN paradigms to activate incorrectly. The ANN classifier 

must therefore cope for this.
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5.2.2 Greater Classification Accuracy
As well as removing the false positives the second aim of classification is to 

classify the true positives with a greater degree of certainty. The classification 

stage may also be able to adjust some of the original measures given by the 

attention-focusing stage in regards to exact position and size adjustment. 

Although a focus area may have been correctly identified by the attention- 

focusing ANN, the low resolution used incurs a tolerance for error. Increasing 

the resolution for the classification process enables some of the original metrics 

to be adjusted to improve the information known about the objects contained in 

the image presented.

5.3 Increasing the Amount of Information
In order to achieve a greater accuracy in classification more information is 

required than that provided by the attention-focusing stage, otherwise a one pass 

identification process would be all that is required.

Classification is required to provide a more accurate assessment of the focus 

areas. The degree of how much extra information required is difficult to 

establish. To simply increase the amount information and then train an ANN 

classifier is not going to produce a classifier that is able to meet the requirements 

stated above, for the reasons already given.

A problem that may impact on the usability of the identification system is the 

degree of increased resolution the classification stage requires. This imposes the 

size, and detail necessary for object identification. A system that requires too 

high resolution makes it less flexible to generic problems not related to face 

identification, and typically for problems where the area of interest is small in 

relationship to rest of the scene. Therefore, the increase in resolution for 

classification does not want to be too high, in terms of functionality and also for 

ANN training.
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An increase in resolution does not necessarily demand that more information is 

required. As the focus areas have been determined to contain certain information, 

this can be used to the advantage of the design of the ANN classifier to impose 

justifiable constraints, hi the case of face classification, and probably for most 

other problem scenarios, the object contains identifiable sub-features (e.g. for 

faces sub-features include eyes, nose, mouth etc.) that support the classification 

process. This method of using sub-features to support identification is also found 

in the human vision system [Bruce, 1988], [Treisman, 1982]. Therefore it seems 

a logical approach to exploit the use of sub-features as cues for classification.

Using sub-features is a good method to reducing the amount of information. It 

has already been established that to offset the increase in resolution the amount 

of information the classification ANN has to be reduced in order to keep the ANN 

architecture relatively simple and also have the chance of generalising a solution. 

Using sub-features assumes that areas within the area of interest have particular 

well-defined classifiable attributes and it should only be necessary to process 

these to perform an accurate classification.

The positional relationship of the sub-features can aid in the discrimination of 

background distracters. Areas of interest not containing these sub-features can 

be rejected. This means that it is unnecessary to examine the whole focus area, 

and allow extraneous areas of the focus area to affect the classification.

Now that it has been established that sub-feature classification is a suitable 

mechanism for the classifier stage, the next step is to identify how, and which, 

sub-features should be selected to aid classification. How this is achieved 

impacts on the design of the ANN architecture and search strategy employed. 

This is investigated further below:
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5.4 ANN Models for Classification
Two different approaches to higher resolution classification are investigated. Both 

use the concept of sub-features to support classification. This reduces the 

quantity of information (i.e. only part of the focus area needs to be examined) and 

thus making it potentially easier for ANN classification. Although the two 

strategies examined use sub-features, how this is achieved is very different.

A detailed description of the functionality of each method is described in detail 

below. This also includes a comparison of the performance of each method 

discussing the advantages/disadvantages of each approach.

5.4.1 Sub-Feature Model
One classification method is to search for a sub-feature or sub-features belonging 

to the object within the focus area [Adams et. al, 1992]. The first step is to 

identify possible characterising features belonging to the object. For the chosen 

exemplar, faces, eyes are recognisable strong indicators that enable true positive 

classification to be asserted. Many authors, [Hutchinson and Welsh, 1989], 

[Vincent et. al, 1992], [Waite, 1991] have used ANN models to detect eyes 

successfully. Other sub-features that can be used are the nose and mouth.

The number of sub-features that may be applied to support classification is 

wholly dependent upon the type of object being identified. Unfortunately, 

selecting the appropriate sub-features is arbitrary. However, an object being 

distinct in its own right should always include at least two characterising sub­

features that should be fairly obvious indicators that belong only to the object 

being identified.

The greater the number of sub-features used to aid classification, the greater the 

flexibility and potentially the more accurate the final classification. Multi sub­

feature classification offers greater flexibility in that there is not a single reliance 

on a single sub-feature, and failure to classify a sub-feature does not necessarily
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result in the misclassification of the focus area. However, the logic required for 

the data fusion of this information is complicated and the more sub-features used 

increases the amount of processing required to perform focus area classification.

Having chosen a sub-feature such as the eyes, An ANN is trained on left eyes 

(from the viewers perspective) in a similar fashion to the attention-focusing ANN, 

except that the sampling resolution is higher. Only one eye is used to train with 

as both eyes can be regarded as separate features. The right eye is as significant 

a sub-feature as the left, and is possibly unique in that it is essentially the vertical 

mirror of the left. To reduce the burden of training, a right eye sub-feature 

classifier can be simply created by mirroring the input weights along the vertical 

axis of an ANN trained on left eyes. As with the ANN for faces, the dimensions 

of the ANN for left eyes have been chosen to fit the measurements of the feature 

including some peripheral information such as the eyebrow. The same training 

method as the attention-focusing ANN is used to train the ANN for left eyes.

Having trained the sub-feature ANNs, the classification procedure is as follows:

1. Each focus area determined from the attention-focusing stage is increased 

in resolution to match the resolution at which the ANN is trained for eyes. 

Having prior knowledge about the geometric position of the sub-features, 

this can be used to reduce the area of the search as necessary. The search 

area must also allow for the possible error of the attention-focusing stage 

to accurately position the focus area. The search must also allow for 

positional shift according to some head movement.

2. As previously discussed, the multi-resolution search may have incorrectly 

estimated the actual size of the object. Therefore, a single resolution 

search may be insufficient to locate the sub-feature successfully. To 

compensate for a size error, a multi-resolution search for the sub-feature 

is required. Because an approximate object size has been determined, the 

number of consecutive resolutions that the classifier ANN has to search 

is limited to within a single resolution step either side of the focus area.
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The identification of the sub-feature within the focus area is more evidence that 

the area of interest is the designated object (face). Those focus areas not 

containing the sub-feature can be rejected, and the others can be selected for 

further processing if necessary. This may involve searching for other sub-features 

to progressively increase the level of certainty. Alternatively, if a sub-feature is 

misclassified, as long as there are sufficient other sub-features, the classifier may 

be robust enough to cope with this and not necessarily reject the focus area.

5.4.2 Holistic Feature Extraction Model
In contrast with the sub-feature model, the holistic feature extraction model 

attempts to determine the salient features for an object automatically rather than 

choosing these manually. This is achieved by training an ART (Adaptive 

Resonance Theory) network [Carpenter and Grossberg, 1985], which is very 

suited to feature decomposition/compression problems. The trained ART 

contains a selection of nodes that comprise features common to a varying number 

of examples. Each node is then comiected to particular features that it 

characterises as being significant for the number of examples associated with that 

cluster. These feature clusters are then used within an MLP paradigm to specify 

the connectivity to the focus area, using only the ART determined features to 

determine the inputs to the focus area. Using the ART to predetermine the ANN 

connectivity is a completely novel approach. The MLP is then trained in a similar 

fashion. The method to finding the holistic features in the ART style network is 

described in the sections that follow.

5.4.2.1 The ART Network
To identify distinct sub-features automatically requires a model that uses some 

method of unsupervised learning. Chapter 2 has already identified the Kohonen 

and ART networks as being two of the most widely used models of this type. The 

ART paradigm has been chosen in preference to the Kohonen for the following
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reasons: it has an extremely fast learning period, converging in only three epochs; 

and more importantly a self evident cluster representation.

There are several advantages for using the ART to determine the weight 

connections. These are:

> Connectivity is less than full connectivity. This reduces the amount of 

processing that would be required by full connectivity.

> The ANN is only connected to the predetermined important areas of the input.

Unimportant areas of the image cannot therefore influence the final 

classification.

Two slightly different approaches to training an ART type network have been 

investigated7. Both approaches produce feature clusters that can be used as a 

connectivity matrix for an MLP classifier. The first approach is based upon the 

original ART network design as developed by [Carpenter and Grossberg, 1985], 

and uses a binary representation as input (Binary ART). The second approach 

differs mainly in that it uses grey-scaled values as inputs to the system. Although 

the development of ART2 [Carpenter, 1987] attempts to overcome the limitations 

of binary input, the second ART training method presented (grey level ART) uses 

an alternative and more sophisticated approach to achieve this.

5.4.2.2 Binary ART
The ART network deals only with binary input patterns, and therefore requires 

the 8-bit grey-level input to be passed through a threshold function before being 

presented to it. A mid-point value within the grey scale range has been selected 

as the most appropriate threshold as it is not specific to any particular image type.

It is unknown which features of the object are important, and these may either be 

areas of low or high intensity. In order to produce clusters for both of these

7 For the remaining text the name >ART network= will refer to both of the ART networks investigated 
unless otherwise explicitly specified.
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feature types it is necessary to produce positive binary inputs for patterns above 

and below the threshold. This is easiest to achieve by training two separate ART 

networks, with the second having inverted inputs of the first. To increase the 

number of examples and to produce more robust feature clusters, each face can 

be mirrored along the y-axis. This is perfectly valid, as faces are never exact 

mirrors [Bruce, 1988]. The feature clusters can then be combined together to 

produce the full set of nodes and weights that can be used as a connectivity matrix 

for a MLP type ANN. It is this partially connected ANN that is then trained for 

actual classification.

To train the ART network, requires two parameters to be set. These determine 

the number of clusters8 and size of the features. These shall be referred to as 

ADEQUACY and MARGIN.

ADEQUACY represents the uniqueness requirement for a cluster. In training 

mode, for any cluster to win it must be similar to the input pattern by a certain 

degree as set by the ADEQUACY. This parameter also sets the minimum size of 

the feature (i.e. the number of connections that describe it). Unlike the sub­

feature method the cluster feature may not be localised to a set region in the focus 

area.

To inhibit clusters converging to represent the same features, the MARGIN 

parameter requires a specified difference to be met between clusters, otherwise 

a new cluster is created. This is useful when two clusters are similar to the input 

pattern but represent different features of the input. If no single cluster is 

significantly closest than any other then a new cluster is created.

To fully train the binary ART classifier and determine the clusters used within the 

classifier MLP requires only three epochs. The speed by which the ART network 

can derive a solution enables different parameter configurations to be investigated

8 A cluster from the ART net is equivalent to a hidden unit in an MLP and exhibits partial connectivity only.
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prior to training the classifier MLP. This ensures that the clusters represent 

reasonable sized features, and also that there are a sufficient number of clusters 

to represent the number of features for an object type.

The training data to generate the feature clusters for the ART is slightly different 

to that required by the attention-focusing ANN. As the ART is concerned only 

with feature extraction, it is unnecessary to present background distracter 

information. For the attention-focusing ANN some position invariance was also 

encoded into the training, but for the ART training it is intolerant shift invariance. 

Therefore it is necessary that the object of interest be presented as near to the 

centre of the input frame as the resolution allows.

5.4.2.3 Grey Level ART
The binary ART method presented above, is quite basic in the method of dealing 

with the varying grey levels that constitute the object. The identification of 

"good" features is paramount if the classifier ANN is to produce robust 

classification. The grey level ART is an exploration in a slightly different 

approach to feature extraction, where the aim is to provide more intelligent 

processing of the grey level data.

An obvious choice to achieve this would be to examine the suitability of the 

ART2 paradigm [Carpenter and Grossberg, 1987]. This is a development upon 

the ART model to allow non-binary vectors. The ART2 processes grey-level data 

by essentially pre-processing into a binary representation. A similar training 

method is then employed to the original ART model. Although this is a move 

towards a method of processing continuous values, the underlying architecture is 

the same and does not offer any significant advantages to the binary ART 
implementation.
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For the grey-level ART method adopted, the approach by which grey-level data 

is handled is quite different to the method used by ART2. A brief description of 

the algorithm is as follows:

1. The first step is to load the grey level data into the input layer. Next, 

histogram equalisation is applied to the input values. This helps improve the 

coverage of intensities across the grey level range, which allows similar 

patterns to adopt the same grey level bands. This is useful when determining 

similarity of features in an image.

2. The next step is to calculate the sum activation of the input values for all 

clusters (Equation 8). The winning cluster is the one that has the most active 

connections (Equation 9). An active connection is determined by whether the 

connected input is within a specified grey level range. This is represented by 

the constant GREY_LEVEL_DIFF. The number of connections for the 

winning cluster must also meet the requirements as specified by the constants 

ADEQUACY and MARGIN.

i< ni

ac -  XI V “iai x Wi) -  Sld I
i - 0

where ac = active connections; ia = input activation; w = weight 
gld = grey level diff; ni = num inputs

Equation 8 - Calculating the Active Connections

winning cluster -» cluster« = max (?NE±)
ni„

Equation 9 - Determining the Winning Cluster
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3. If there is no winning unit and a cluster is to be added, then all weight values

are set to the reciprocal of the input (Equation 10). If weights are to be 

updated for a cluster, any connections falling outside the bounds of the 

GREY LEVELJDIFF parameter are removed. The values for the new 

weights are set to the sum of old weights and the reciprocal of the input 

divided by two (Equation 11). Although the structure of the feature is 

determined by its connections, its weight value determines the grey level 

range. The weight is updated in this manner to best represent both the old and 

new inputs.

new cluster n-r i -> Wi o f active input t = —
iai

new cluster n+i wt o f inactive input. = 0

Equation 10 - Determining the Weights of the New Cluster

wi+ 7“
updated cluster,, wt of active input t 

updated cluster» —> wt o f inactive input t = 0

Equation 11 - Determining the New Weight Values for the
Winning Cluster

5.4.2.4 Connectivity Matrix for the MLP Classifier
Once either the binary ART or the grey level ART has been trained, the derived

model becomes the hidden layer of the classifier ANN. Each cluster from the 

ART network becomes a hidden node in the MLP. The features represent the 

connectivity of each hidden node. Even though there may be many hidden nodes 

(typically more than that required for a fully connected MLP), the reduced 

connectivity still produces an architecture with fewer connections in total than a 

fully connected network using less hidden nodes.
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The initialisation of the weights for the classifier ANN can differ for the two 

types of ART model. For the binary ART network, each connected input is 

given a random weight. The grey level ART can adopt either the weights already 

derived or use random values. The benefit of the ART derived values are that 

they already represent positive discrimination of the object, and this may reduce 

the learning time when training the classifier. Further analysis is required to 

determine the actual effect or benefit of setting the initial weight configuration to 

any other setting than the standard random values.

In case the object exhibits some other properties not found by ART feature 

extraction, an extra hidden node is added to the architecture. This also helps 

balance the ANN so that, if required, the node can be used to represent the 

distracters. Initial experiments in training the MLP indicated an improvement in 

the speed of generalisation when an extra fully connected hidden imit was 

included in the MLP architecture.

Although the ART has determined composite features, the nature of the learning 

algorithm will have the effect that not all the feature clusters will be used for 

positive discrimination. In fact, learning may turn some clusters into negative 

clusters. The backprop learning algorithm is quite independent of the ART 

clustering and although the aim of the aim of the ART is to, in some way, force 

the learning of the MLP to the features detected the nature of the algorithm will 

determine its own importance of the ART connectivity.

5.4.2.S Training the ART-MLP Classifier
The ANN network is trained in the same fashion as the attention-focusing ANN, 

with both positive and negative examples. Having trained the ART networks at 

a fixed size and position, the ART-MLP classifier is trained in the same manner. 

The reason for this is that the connectivity of the clusters represents templates 

and should be only expected to fire when the template is in the trained position.

Therefore, the MLP classifier must be trained in the same way. Having a more
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rigid size and position along with the higher resolution allows for a greater 

accuracy to be determined about the object.

The architecture of the ART-MLP consists of hidden units with varying numbers 

of weight connections as well as a final fully connected unit. Initial experiments 

in training the ART-MLP found that the learning was biased against nodes with 

fewer connections. It was therefore necessary to modify the learning algorithm 

slightly to ensure that all nodes had an equal chance of generalisation. Equation 

12 shows the change made to the calculation that determines the new weight 

adjustment. This slight change equalises all hidden units, with the same chance 

of contributing to the classification.

A „ J u VA wji — T] Sj c u x ( —)
ic

where iu = input units; ic = input connections 

Equation 12 - Learning Rate Adjustment

5.5 Texture Analysis
Chapter 3 showed that the attention-focusing model is reasonably simple but 

suffers from having to process a large number of different pattern types. Although 

it is reasonably successful at classifying the majority of input patterns, a certain 

number of false positives are passed on to the classification stage. Classification 

must be veiy robust and cannot continue to support false positives as possible true 

positives.

To address the problem of the large feature space (i.e. the degree of variation in 

the input patterns), a method is required to, if possible, partition the feature space 

into more manageable “chunks”. This is to reduce the burden upon training and 

classification. This is especially important since an increase in resolution also 

increases the possible variation in the input patterns. The technique of texture
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analysis is explored below to determine whether the categorisation of the input 

patterns can help improve the robustness of classification. This is applicable to 

both classification (sub-feature and ART-MLP) models previously described.

The idea of applying texture analysis prior to classification is to determine which 

background category a pattern may fall into. Several classifiers are then trained 

to distinguish between the desired object and the background type. This helps 

reduce the problem and split it into more manageable parts. Training an ANN on 

a limited set of background data should improve performance in terms of being 

able to disambiguate between background and the desired object. With a small 

number of background examples, the performance of the ANN generates a high 

proportion of false positives. This is due to the limited variety of examples 

exposed to the ANN. Increasing the sample size has a beneficial effect on the 

ratio of number of false positives but can lead to the introduction of false 

negatives. This problem should be reduced with a limited domain of background 

data.

Using texture analysis allows the burden of classification to be reduced in two 

ways:

> As a filter before classification, e.g. Determine the type of texture of the focus 

area, and if not typical of a sub-feature type, i.e. background distracter texture 

type, reject frame. Although it is not possible to filter all input patterns by 

texture, a significant proportion should be able to be rejected.

> To segment the training, i.e. Select only background distracters similar to a 

sub-feature to help improve the discrimination of the classifier.

Texture analysis may be performed prior to classification or as a means of post 

processing ANN activations to remove potential false positives. To incoiporate 

texture analysis as a further means of discrimination was determined undesirable 

as this may lead to more techniques to constantly improve identification and may 

lead to a process of diminishing returns.
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5.5.1 The Co-Occurrence Matrix
The texture analysis implemented is based upon well-defined statistical 

techniques. It consists of a first stage of building a probability matrix based upon; 

the image data; and a pixel template to compare structure in the pattern. Using 

this matrix several different measures can be used to extract different key values 

that describe the pattern texture in some way. The number of vectors used is 

arbitrary. Seven different measures were described by Sonka [Sonka et. al, 1993] 

and these have been used to form a seven-dimensional vector to represent the 

texture. As long as the measures used are able to adequately represent different 

general background types, the number used is adequate. For a greater separation 

of the data more measures may be needed.

Using the ft-means clustering algorithm [Sonka et. al, 1993], the background data 

can be separated to form a number of different clusters. The value of k can be 

predefined to represent some small number in which k classifier ANNs can be 

trained. Each ANN is then trained only with background distracters that are 

closest to the particular k cluster, and all other patterns that belong to the target 

object class.

As discussed above, texture analysis comprises of a number of measures that 

form a characterising vector of the pattern being examined. To enable the metrics 

to be calculated, an intermediate stage is required. Firstly, a co-occurrence matrix 

is created which allows the statistical measures to be taken which describe the 

texture.

The co-occurrence matrix is created by defining a matrix that records the 

occurrence of some grey level configuration. With varying textures the 

configuration varies accordingly. To calculate the co-occurrence matrix requires 

a series of steps:
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1. The first step is to determine the size of the co-occurrence matrix. This is 

defined by Equation 13.

msize = constxconst; mindex = 256 ; const = 16
const

Equation 13 - Determining the Size of the Matrix

msize represents the size of the co-occurrence matrix, and mindex represents 

a quantising factor. This reduces the size of the co-occurrence matrix, and 

therefore the computation required deriving it. To represent a full 8-bit grey 

scale matrix would require 65,536 elements, which is realistically too large 

to be used extensively in the classification process. Therefore, the value of 

const is set to 16 as a computational compromise.

2. The next step is to initialise all values in the matrix to zero. This is defined 

by Equation 14.

co- occurrencevi,v2 ~ 0 

Equation 14 - Initialising the Matrix

3. To represent texture, a simple measure is used to define the type of texture. 

A diagonal pairing has been used in this case. The next step is to insert 

appropriate pairings into the matrix represented by Equation 15.

co-occur rencevi, V2 ~ co - occurrence^, V2 + 1 

Equation 15 - Inserting values into the Matrix

activationxy is the grey level value at the x,y co-ordinate of the image. This 

value is scaled to the size of co-occurrence matrix using the quantising factor. 

Each cell within the co-occurrence matrix relates to a particular grey-level

ir t  ft/in

mindex
activationx+i,y+i

mindexVi
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pairing. After determining the values for v; and V2 , the associated cell within 

the co-occurrence matrix is then incremented.

4. The final step is to convert the values contained within the matrix into 

normalised probabilities as shown in Equation 16.

x < 1 6 y < 1 6

tot - val = y ,  y  co - occurrencex, y
x=0 y - 0

co- occurrencevi, v2co-occurrencevi,v2 ~ ---------------:------tot - val

Equation 16 - Converting the Values to Normalised Probabilities

tot-val determines the sum of all values within the co-occurrence matrix. 

Each value within the co-occurrence matrix is then scaled by tot-val 

converting the values to lie between 0 and 1. After this conversion, the sum 

of all values within the matrix is equal to 1.

Using the co-occurrence matrix, measures can then be applied to it to characterise 

the input patterns.

5.5.2 Texture Measures
To characterise the textures for this classification problem, seven different 

measures have been chosen. These measures are then combined together to form 

a seven valued vector. The distribution of sub-features and distracter textures is 

then represented in a seven-vector feature space.

Any number of measures can be taken. For the purposes of classification, a fairly 

coarse method of categorisation is all that is required. Therefore, there are only 

a small number of measures applied. The measures chosen are standard texture 

analysis functions. These comprise the following:
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Equation 20 - Entropy

Equation 22 - Inverse 2 Moment

imverse- moment — 0; k — 1
co - occurrencewhere x ^ y inverse - moment = inverse - moment +

y  ~ x
Equation 23 - Inverse 1st Moment
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.  _ 1moment = 0; k = 2 .*
I

moment = moment + (y -xk x co - occurrencex,y) %

Equation 19 - 2nd Moment
4

,1
max-val — max (co-occurrence x,y)

Equation 17 - Maximum Probability

moment — 0; k — 1
moment = moment + (y-xk x co-occurrencex,y) 4

Equation 18 - 1st Moment

entropy — 0 |
i f  co - occurrence x ,y  > 0 entropy = entropy +
|(co - occurrencex,y x log 10 (co-occurrencex,y))\

uniformity = 0
uniformity = uniformity + (co - occurrence.,, y x co - occurrencex,y)

Equation 21 - Uniformity i

imverse - moment — 0;k —2 i
1 . co- occurrencewhere x & y inverse - moment — inverse - moment + ------------:------

i> *y  - x
nd

%



Having created a vector for each input pattern, a method is required to place 

divisions upon the vector in order to help categorise the texture and thus aid 

classification.

5.5.3 Texture Clustering
Clustering is a means of categorising vectors that are similar. The method chosen 

to partition the texture vectors has been based upon the k means clustering 

algorithm [MacQueen, 1967]. An alternative clustering method is to use a 

Kohonen feature map [Kohonen, 1989], which performs a similar but different 

approach to the problem, i.e. dimensionality reduction and clustering. The k 

means clustering algorithm has been chosen in preference to the Kohonen feature 

map because of its simplicity and speed. Having selected an appropriate number 

of clusters, the cluster centre points are adjusted over time to represent the 

distribution of vectors presented to them.

There are several initial decisions that need to be made prior to clustering. These 

are:

> The number of clusters that are to be used to represent the textures. The 

fewer the clusters the more crude the partitioning. The greater the number of 

clusters the more complicated, and possibly less meaningful, the partitioning. 

There is no simple rule of thumb as to how this value is chosen. If the 

number of classes is known prior to clustering, then this can sometimes be a 

good value. Ideally, in this case the number of clusters required might be 2,

i.e. object and anything else. Unfortunately, it has already been identified by 

the performance of the attention-focusing ANN that discrimination between 

features and distracters is extremely difficult and some amount of overlap 

does occur.

> How the data is to be presented to the clustering algorithm. This influences 

how the vector centres are modified, and thus how representative of the data 

the clusters become.
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> The initial cluster starting points. This may determine the meaningful 

migration of the cluster centres and the final cluster positions.

To produce the representative clusters, the following steps are performed:

1. Select the number of clusters and assign an exemplar vector to each.

2. Present a vector from the data set to all clusters. Associate the vector with 

a cluster according to the cluster with the minimum Euclidean distance.

3. Repeat from 2 for all vectors in the data set.

4. Present a vector from the data set to its associated cluster and adjust the 

cluster centre point as an average function of all vectors previously 

assigned to that cluster including the current vector.

5. Repeat from 4 for all vectors in the data set.

6. Repeat from 2 until cluster centres converge.

To examine the similarities between texture vectors, and the 

advantages/disadvantages of varying the numbers of clusters, clustering has been 

performed for a number of different configurations. A discussion follows on the 

analysis of the clustering method and what information this tells us about the 

data. Since classification is base upon sub-features, the texture analysis has used 

left eyes and a wide variety of background distracters.

5.5.4 Defining the Number of Clusters
The first problem to be addressed is what is the ideal number of clusters required 

to best represent the data? The merits of different cluster configurations are 

discussed below.
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Eye Distances for Left Eye + Distracter Clusters
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0

Figure 16 - Distribution of Eye Texture Vectors across Two Clusters

The first step is to identify whether there is a natural separation between eye and 

texture vectors. This is illustrated in Figure 16. Although, eye vectors 

predominantly occupy cluster zero, a number of eye vectors however are closer 

to cluster one. As well as fewer eye vectors being associated with cluster one, the 

distribution of these vectors is more widespread.

The diversity of the textures shows that there is not a simple and natural 

segregation of the eye and background distracter textures. This is not surprising 

given the difficulty of the attention-focusing ANN being able to discriminate 

between similar patterns.
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Eye Distances for Left Eye + Distracter Clusters
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Figure 17 - Distribution of Eye Texture Vectors across Three Clusters

Figure 17 shows the effect of increasing the number of clusters to three. Again 

the eye vectors are distributed across two clusters. The remaining cluster can be 

regarded as a distracter cluster as no eye vectors are closer to this cluster centre 

than the other clusters. Increasing the number of clusters has made a noticeable 

difference in that the eye vectors are much more concentrated around the cluster 

centre, and the distance of the outlier vectors is half than previously.
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Eye Distances for Left Eye + Distracter Clusters
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Figure 18 - Distribution of Eye Texture Vectors across Four Vectors

Similar to the properties of three clusters, clustering with four (Figure 17) still 

produces a distracter cluster. The distribution of eye vectors is now spread across 

three vectors. The two clusters with the majority of eye vectors have become 

even more concentrated around the cluster centre. The other cluster has a small 

distribution of relatively widely spaced vectors.

Eye Distances for Left Eye + Distracter Clusters
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Figure 19 - Distribution of Eye Texture Vectors across Five Clusters
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Increasing the number of clusters shows an emerging pattern. As more clusters 

are introduced (see Figure 18), the distance of the of eye vectors from a cluster 

centre reduces. Also, outliers migrate away towards other closer clusters, e.g. 2 

and 3. A single cluster still attracts distracters only, as this is sufficiently distant 

from other clusters to attract any eye textures, and is central to most of the 

distracter patterns. The other clusters contain distracter patterns, but the number 

of distracters varies with the number and proximity to the cluster centre of the eye 

texture vectors.

Eye Distances for Left Eye + Distracter Clusters
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Figure 20 - Distribution of Eye Texture Vectors across Six Clusters

Figure 20 shows a continuation of the trends described previously, particularly 

greater eye vector fragmentation. The previous distracter cluster has now 

separated into two clusters, and has passed the optimal number of clusters. A 

further increase of the number of clusters leads to greater fragmentation and 

dispersement (not shown here).
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Selecting the most appropriate number of clusters from the distributions given, 

is an arbitrary decision. Observations from varying the number of clusters is 

summarised below:

> Two Clusters. Loose clustering that contains both class categories.

> Three Clusters. Contains a distracter only cluster, but eye clusters still widely 

dispersed.

> Four Clusters. Identifies outlier eye vectors that form new a cluster.

> Five Clusters. Greater concentrations of vectors surrounding cluster centre, 

but to the expense of eye vectors becoming more disperse.

> Six Clusters. Clusters losing their logical groupings.

This investigation has shown that there are problems associated with having 

either too few or too many clusters. Unfortunately, there appears to be no 

obvious optimum number of clusters, and therefore five clusters has been chosen 

by the author as the most suitable compromise.

5.5.5 Characterisation of the Clusters
The previous section illustrated how the object feature vectors (eye texture 

patterns) was distributed amongst the clusters. Although this provides useful 

information to guide how texture clustering should be performed, it does not 

describe the size of the cluster, what the distribution of distracters per cluster, and 

how separate the clusters are from one another. This section intends to provide 

an answer to these questions in order to provide a more informed decision in the 

type of clustering adopted.
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Comparison of Vector Distribution for Left Eye + Distracter Clusters
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Figure 21 - Perimeter Distance for Clusters

Figure 21 shows the distribution of the perimeters and the furthest eye outlier of 

each cluster. The vector determines the cluster perimeter with the largest 

Euclidean distance assigned to that cluster. Unfortunately, this does not fully 

describe the distribution of vectors, primarily distracters, but only a single vector 

that may or may not be typical of the next closest vector.

The distribution is based upon 5 clusters. The fifth cluster, and not illustrated 

here, is the largest cluster and contains distracter only textures. Apart from 

cluster three, the remaining clusters are approximately the same size. A useful 

attribute of cluster 3 is that the spread of eye vectors is relatively close to the 

cluster centre as opposed to the perimeter. The distribution of eye vectors is 

known from Figure 17, which allows sensible thresholds to be applied to all 

clusters. This enables the filtering of vectors with large Euclidean distances 

which may be closest to a particular cluster but is dissimilar enough to be 

rejected, e.g. if the winning cluster is cluster 3, and the Euclidean distance is, say, 

greater than five, then this is clearly not an eye texture.
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Distances of Left Eyes + Distracter Cluster Centres
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Figure 22 - Euclidean Distances from Cluster Centres

To understand the similarity of the data and how the clusters are represented in 

the figure above feature space shows the distances of the clusters from each 

centre point (using five clusters). It can be seen that cluster four, the distracter 

cluster, is much more distant from all other clusters, implying that the vast 

majority of distracter textures are unlike eye textures. Figure 21 also shows from 

the magnitude of the perimeter that the cluster encompasses a much greater 

volume of the feature space compared to any of the other clusters.
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Distances of Left Eyes + Distracter Cluster Centres
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Figure 23 - Euclidean Distances from Cluster Centres

As the distance is so large for cluster four, it is difficult to examine the distances 

of the other clusters that contain the eye textures. Figure 23 plots the same 

information as Figure 20 but excluding cluster four.

Figure 20 shows the distance of the cluster centres from one another but not the 

distance of the cluster perimeters and whether each cluster is distinct or if 

overlapping occurs, i.e. the outlier vector determines the size of the volume of the 

cluster in all n dimensions. This is shown in Figure 24.



Perimeter Distances for Left Eyes + Distracter Clusters
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Figure 24 - Euclidean Distance from Cluster Perimeters

Like Figure 20, this illustrates further the distinct separation from all other 

clusters the distracter cluster occupies in the feature space. The negative 

distances shown in Figure 24 indicate that the perimeters overlap, which is based 

upon an equi-distant seven dimensional boundary. A vector which lies on the far 

side of a cluster may by its Euclidean distance set the perimeter of the cluster 

such that two or more clusters intersect.

Another aspect of the data for this problem is disproportionate number of 

examples for both categories. The large ratio of distracters has the possibility of 

affecting the position of the clusters to be biased towards these vectors. In the 

training of the attention-focusing ANN, replication of the class with fewer 

examples was successfully explored as a means to overcome this problem. This 

technique has been applied to clustering in order to determine the effect, if any, 

that replication has on the clustering
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Eyes Distances for Replicated Left Eye + Distracter Clusters
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Figure 25 - Distribution of Eye Vectors using Replication

Figure 25 shows the distribution of eye vectors when these are replicated to the 

same ratio as the distracters. Comparing this with Figure 17, shows a slight 

improvement for all eye vectors, i.e. all eye vectors are closer to their respective 

cluster centre. The difference in the eye vectors has meant that the distribution 

of clustering has not altered. This fact is given further support when comparing 

Figure 21 with Figure 26, which shows a very similar distribution.



Comparison of Vector Distribution for Replicated Left Eye + Distracter Clusters
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Figure 26 - Perimeter Distances for Clusters Using Replication

A different clustering approach is to generate clusters specific to eyes; i.e. to 

ignore distracter texture vectors when generating the clusters. Each cluster then 

represents a sub-set of eye texture vectors. The perimeter distance (incorporating 

a small margin for similar outlier eye vectors) can then be used as a threshold to 

reject distracter vectors that go to a particular cluster but lie outside the threshold 

distance. Using this approach allows the similarity/dissimilarity of the eye 

textures to be observed more closely and whether there are true anomaly outliers. 

These would be represented as lone vector clusters. This method also ensures 

a bias towards the eye vectors since they are the only vectors used to create the 

clusters. This results in the eye vectors being closer to the cluster centre than the 

previous cluster creation method.

114



Eyes Distances for Left Eye Clusters
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Figure 27 - Clustering with Eyes Only Textures

In comparison with Figure 25, Figure 27 shows the maximum distance of any eye 

vector is less than 1.0 compared with 1.4. Figure 27 also shows that the majority 

of eye vectors for each cluster are very similar. Typically, each cluster contains 

one or two eye outlier vectors, which on average double the perimeter distance. 

Even so, a smaller threshold (to positively reject distracter textures) can be used 

for this clustering method than for the combined eye/distracter clustering 

approach.

There are strengths to both cluster methods. Assuming the number of clusters has 

been set to five the advantages of both methods are as follows. For balanced 

object/distracter clustering, a single cluster is created that represents only 

distracter textures. This is particularly useful for rejecting distracter patterns. For 

object only clustering, more compact clusters are created which allows more 

refined discrimination between possible objects and distracters. Performance of 

both clustering methods is included in the following section.

There are two possible ways that texture analysis can be used within the 

classification process. Having trained a classifier ANN, texture analysis can be
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performed which pre-filters some of the distracter patterns. The remaining 

patterns are presented to the classifier ANN. Using texture analysis in this way 

is a simpler and alternative method of categorisation. It is also a faster method 

of categorisation, and only patterns that fall within the cluster perimeters are 

required by the ANN to classify. However, using texture analysis as a pre-filter 

does not reduce the complexity of the problem of the classifier ANN to generalise 

between the object and the distracters.

Since it has been shown that although clustering can determine the similarity of 

some distracter patterns, it can also provide an alternative to patterns that are 

clearly not the desired object. It would seem therefore a logical approach to use 

texture analysis to also help define the training for the classifier ANN as well as 

using it for categorisation in the classification process.

A method to achieve this is to direct the ANN to distinguish like object/distracter 

patterns and also provide greater coverage of the pattern space is to train multiple 

ANN classifiers. Using the object only cluster generation method allows directed 

training of the classifier ANNs so that distracters are chosen that are most similar 

to a particular subset of eye textures. This method is then able to concentrate on 

those patterns where there is greater uncertainty as to the correct classification. 

The number of ANN classifiers is equivalent to the number of clusters. For novel 

patterns presented for classification, the first step is to categorise the input pattern 

as a texture type. If the texture is sufficiently dissimilar from and of the defined 

texture clusters it is removed from further processing, i.e. the texture vector lies 

outside all of the defined cluster perimeters. If the input texture falls within the 

boundary of a particular cluster, that associated classifier ANN performs 

classification upon it.

This approach attempts to tackle two problems previously identified. By using 

multiple classifiers, greater coverage of the distracters can be included in training 

without excessively burdening the generalisation capacity of each ANN. The
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ANNs are also trained more specifically with patterns that are more similar with 

the object they are trained to distinguish. Texture analysis also has the benefit of 

being able to be used with any type of ANN classifier approach adopted.

5.6 Performance Evaluation
The previous sections in this chapter have described various possible methods for 

classification. All of these methods use differing approaches to solving the 

problem of classification leading to full identification. The following sections 

attempt to discuss, and where appropriate, present a comparative study of these 

different approaches.

To evaluate the performance of classification is more difficult than the results 

presented in other chapters. This is because the performance of the classifier 

stage is generally dependent, to a certain degree, upon the success of the 

attention-focusing stage. If the attention-focusing stage fails to find a face, 

classification is unable to recover from this. Alternatively, testing the 

performance of the classifier in isolation is difficult as a representative of input 

samples need to be collected that relate to what the attention-focusing stage is 

likely to pass on to it. This is particularly pertinent for the texture analysis 

method where the training of the classification ANNs have been directed to 

learning specific pattern types. Therefore, the most sensible way to present the 

performance of the classification stage is to use the output from the most 

successful attention-focusing ANN and use this as the basis of the input to the 

classifier . The performance of the classifier will therefore also show the overall 

performance of the identification system.

5.6.1 The Test Set
To ensure a more complete analysis of the overall performance of the ANN 

identification system the test set used for the analysis comprises of 30 test images.

9 The favoured attention-focusing ANN finds all faces.
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These are completely separate and different from the training set used for 

training both the attention-focusing ANN and the classifier ANNs. Included 

within these images are 43 faces that range in size, age and also differ in gender. 

Each image contains at least one face with some images containing two or more.

5.6.2 Criteria For Evaluation
The same performance criterion is applied to classification/identification as that 

used for other studies presented in previous chapters. These include:

> The number of false negatives.

> The number of false positives.

The same two measures (face distance-error and the focus area size) used in the 

attention-focusing analysis are also applied to determine whether an identified 

focus area is a true positive or false positive. It is possible for the classification

stage to determine new values for the size and position of focus areas. In fact

focus areas identified at the attention-focusing stage may be marginal false 

positives until classification re-adjusts the size or position of the focus area to 

become a true positive. Conversely, classification may perform the opposite. 

However, to highlight the performance of classification, none of the focus areas 

presented to it from the attention-focusing stage have been altered in any way 

other than to re-apply a new classification category.

Several different approaches to classification have been discussed in this chapter. 

The following sections describe a summary of the results from these different 

methods.

5.6.3 Binary and Grey-Level ART Classification
The binary ART method is relatively well defined and only a few modifications

have been made to the original ART algorithm in order to present images as the 

input to the ANN. These are notably, presenting positive and negative images to 

define the ANN connectivity, adding an extra a fully connected hidden unit and
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adjusting the learning algorithm in the backprop stage to ensure all hidden units 

have an equal weighting.

However, the grey-level ART paradigm has been more of an investigation into 

the feasibility of adapting the binary ART model to process the grey-level images 

directly without the need to pre-process the image, and therefore potentially lose 

characterising attributes.

The first decision in training the ART ANNs is to determine the classification 

resolution. Three separate resolutions have been investigated. These include eye 

distances of 8,12 and 16. (The attention focusing stage employing an eye distance 

of 4). An eye distance of 16 is close to the maximum resolution the images can 

be increased without going to full resolution. The size of the input layer is scaled 

according to the eye distance based upon the original attention-focusing ANN 

input size. For the eye distances mentioned the input layer sizes are 22x32, 

33x48, and 44x64.

To determine appropriate values for the adequacy and margin is dependant upon 

a number of factors:

> The adequacy determines the minimum number of connections that can be 

used to describe a feature. A reasonable value would relate to, say, 

approximately 15% of the total input area. Any value less than this threshold 

is more likely not to indicate any meaningful holistic feature. Having too 

high an adequacy value would force a representation to include further 

connections which are more specific to particular face instances than being 

general. Obviously a high adequacy value would increase the connectivity for 

each hidden unit but also increase the total the number of hidden nodes in the 

whole classifier ANN.

> The margin determines how distinct the clusters have to be with one another. 

To ensure that the clusters’ connections differ by a reasonable margin, the 

margin threshold should be between 40-80% of the adequacy value. Too low
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a margin value and there is a possibility that non-similar input patterns may 

be merged together. Too high a margin value will reduce the generalisation 

of the hidden nodes and increase the overall number of hidden nodes in the 

ANN.

> The grey-level difference is a threshold particular to the grey-level ART 

paradigm. This value clusters the grey level values into bands, so that small 

variations in intensity can be grouped together as part of the same feature. 

Whereas the margin and adequacy compare connectivity, the grey level 

difference determines how close a grey level pixel is to another. The 

parameter can be best described as acting like a moving binary threshold. The 

larger the grey level difference, the greater the range of grey level values that 

are sufficiently similar, and vice versa. To determine an appropriate value is 

more a case of trial and error. A value of 0.5 (since all grey-level values have 

a value between 0 and 1) should configure the grey-level ANN to perform in 

a similar fashion to the binary ART paradigm.

The intention for the grey-level ART has been to provide greater flexibility in 

determing the holistic features through the use of a more sophisticated algorithm 

that improves on the cluster grouping selection criteria. Unfortunately, although 

several parameter variations have been investigated the grey-level ART does not 

perform as well as expected. Meaningful clusters appear to be extracted, as can 

be seen in Figure 28, and also the ANN generalises to some extent to distinguish 

between the face and background distracters. Unfortunately, initial studies using 

the grey-level ART classifier showed that the ANN did not distinguish between 

faces and distracters successfully and showed far worse performance than the 

attention-focusing ANN classifier. In comparison, approximately 70% of faces 

were classified correctly with the grey-level ART ANN classifier compared to 

100% classification with the attention-focusing ANN.
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Figure 28 - Grey-Level Art Hidden Unit Clusters

The advantage of using a holistic approach to classification is that the level of 

detail required should not be as great as that required by the sub-feature classifier 

method as the whole feature, i.e. In this case areas throughout the whole face are 

being used rather than just a selected part of the focus area. Analysis of the ANN 

structure for the resolutions using an eye distance of 12 and 16 created large ANN 

topologies, even taking into account partial connectivity. It has already been 

established by Atlas [Atlas et. al, 1989] that large ANNs have poor generalisation 

capability and this was found in the attempts to train various ANNs with a large 

number of connections. Consequently, ANNs trained of this size could not learn 

to distinguish between faces and distracters with an accuracy for both pattern 

types of above approximately 60%.

The resolution chosen for the analysis of the binary ART ANN method uses an 

eye distance of 8 which relates to double the resolution of the attention-focusing 

ANN. This should be sufficient for accurate object classification. Using an eye 

distance of 8 provides a good balance between an increase in the amount of data 

and is still less than a classification system using full resolution analysis.
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Binary Art Classifier Performance
ANN Mean Mean Total No. Classifier Classifier Test Description

FPs Classifier of Topology RMS
Per FNs Per Classifier

Image Image FNs
1 23.1 0.0 0 22x32x56 0.0483784 Standard 1 feature face only classification 

using 3 resolution search
2 3.8 0.6 17 22x32x56 0.0431267 Higher Resolution focus areas filtered 

beneath classified low res FA
3 28.5 0.0 0 22x32x56 0.0328473 Standard 1 feature face only classification 

using 3 resolution search
4 20.8 0.0 0 22x32x56 0.0328403 Standard 1 feature face only classification 

using 3 resolution search
5 12.4 0.0 1 22x32x41 0.0585977 Standard 1 feature face only classification 

using 3 resolution search
6 20.8 0.0 0 22x32x41 0.0463396 Standard 1 feature face only classification 

using 3 resolution search
7 20.0 0.0 0 22x32x41 0.0383208 Standard 1 feature face only classification 

using 3 resolution search
8 5.0 0.1 4 22x32x41 0.0339621 Standard 1 feature face only classification 

using 3 resolution search
9 6.8 0.5 16 22x32x41 0.0339621 Higher Resolution focus areas filtered 

beneath classified low res FA
10 19.1 0.0 1 22x32x41 0.0339621 Standard 1 feature face only classification 

using 3 resolution search
11 13.9 0.0 0 22x32x41 0.0271449 Standard 1 feature face only classification 

using 3 resolution search
12 18.9 0.0 0 22x32x41 0.025171 Standard 1 feature face only classification 

using 3 resolution search
13 5.6 1.0 31 22x32x41 0.0234918 1 feature face only classification with 

hidden unit profile discrimination
14 8.4 0.1 3 22x32x41 0.0234918 Standard 1 feature face only classification 

using 3 resolution search
15 16.8 0.0 1 22x32x41 0.0219071 Standard 1 feature face only classification 

using 3 resolution search
16 4.8 0.2 5 22x32x41 0.0207085 Standard 1 feature face only classification 

using 3 resolution search
17 15.8 0.0 1 22x32x41 0.0200979 Standard 1 feature face only classification 

using 3 resolution search
18 10.0 0.1 3 22x32x41 0.0200979 1 feature face only classification using 3 

resolution search. Using 0.6 threshold
19 46.6 0.0 1 22x32x41 0.0196245 Standard 1 feature face only classification 

using 3 resolution search
20 15.9 0.0 1 22x32x41 0.0194414 Standard 1 feature face only classification 

using 3 resolution search
21 1.7 0.5 13 22x32x37 0.0113408 Higher Resolution focus areas filtered 

beneath classified low res FA
22 14.0 0.4 11 22x32x37 0.0113408 1 feature face only classification using half 

resolution
23 5.0 0.3 8 22x32x37 0.0113408 Standard 1 feature face only classification 

using 3 resolution search
24 3.3 0.5 13 22x32x37 0.0113408 1 feature face only classification using 

single resolution search
25 9.9 0.0 1 22x32x37 0.0109504 Standard 1 feature face only classification 

using 3 resolution search
26 1.9 0.5 15 22x32x37 0.0109504 Higher Resolution focus areas filtered 

beneath classified low res FA

Table 4 - Binary ART ANN Classifier Performance

Table 4 shows a number of ART ANN performance studies to determine the best 

classification approach and model. The table presents three different ART 

derived architectures, all at an eye distance resolution of eight pixels. The 

difference in ANN size is dependent upon the ART parameters used. A number
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of different results are presented that relates to a number of different changes. 

These include:

> The performance of the ANN through training, i.e. the classifier performance 

at different stages of RMS.

> The number of resolution searches performed at classification, e.g. single or 

three-resolution search.

> Using selected true positive hidden unit profiles to influence final 

classification.

> Using positive classification to filter remaining unclassified focus areas.

The results have not been ordered in terms of ANN classifier performance but 

rather in ANN connectivity and decreasing RMS. Typically the fewer 

connections the ANN contains the smaller the RMS value. However, this does 

not necessarily provide better performance. The RMS of the ANN in fact does 

not seem to correlate at all with overall performance. This is perhaps due to the 

supporting algorithms and techniques that manipulate the focus points and areas 

that provide the final performance.

The default method is to perform a three resolution search around the determined 

resolution, grouping firstly at a single resolution and then across the three 

resolutions. Other methods investigated include an attempt to classify at only a 

single increased resolution; increasing the threshold of the ANN output for what 

constitutes a focus point; and finally to use the ordering of classification to 

automatically remove focus areas that lie under a larger classified focus area.

The final method (positive discrimination of focus areas) is desired because this 

would remove the need to process many focus areas at higher resolution. Many 

focus areas overlap spatially and this method shows that a significant number of 

focus areas are removed in this way. Unfortunately, the results also show that this 

inevitably removes true positive classifications (if at a higher resolution) and 

retains a false positive focus area.
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The best overall performance is ANN 11. Firstly, it identifies all true positives 

correctly and is the ANN that identifies the fewest number of false positives. 

Unfortunately, the mean number of false positives per image is still relatively 

high. Other variations improve on the false positive performance but then 

misclassify some of the true positives.

This highlights a number of issues already discussed throughout this thesis. The 

performance of the ANN is erratic through training, but the general trend is that 

after a certain amount of training although the true negative performance will 

generally improve the true positive performance does not.

Although the holistic approach to classification, for some results presented, has 

made a general improvement on classification for the focus areas passed to it by 

the attention-focusing stage the performance is still disappointing. Post 

classification still presents an unacceptable number of false positives.

The binary ART method is only one approach to classification and the following 

sections discuss the merits of the sub-feature approach as well as investigating the 

complimentary technique of texture analysis.

5.6.4 Sub-Feature Classification
The main difference between sub-feature classification and the holistic approach 

is that sub-feature classification requires more detail to perform classification. 

However, the sub-features are limited in size, which means that the ANN 

topology is not excessively large. In fact, the size of the classifier ANN is no 

larger than that required for the attention-focusing ANN. The performance 

results presented in Table 5 use an eye distance of 12 and 16.
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Sub-Feature Classifier Performance
ANN Mean 

FPs Per 
Image

Mean 
Classifier 
FNs Per 
Image

Total No. 
of

Classifier
FNs

Eye
Distanc

e

Classifier
Topology

Classifier
Rms

No. of 
Classifiers

Test Description

1 2.3 1.0 30 12 12x8x10 0.0441249 1 Standard 1 feature 
left eye only 
classification using 3 
resolution search

2 12.8 0.1 3 12 12x10x15 0.0219234 1 Standard 1 feature 
left eye only 
classification using 3 
resolution search

3 13.7 0.2 5 12 12x10x15 0.0219234 1 Standard 1 feature 
right eye only 
classification using 3 
resolution search

4 8.7 0.3 8 12 12x10x15 0.0219234 2 Standard 2 feature 
left AND right eye 
classification using 3 
resolution search

5 7.7 0.4 10 12 12x10x15 0.0180799 1 Standard 1 feature 
left eye only 
classification using 3 
resolution search

6 9.0 0.4 11 12 12x10x15 0.0180799 2 Standard 2 feature 
left AND right eye 
classification using 3 
resolution search

7 5.0 0.1 2 16 16x13x15 0.0074871 1 Standard 1 feature 
left eye only 
classification using 3 
resolution search

8 4.4 0.1 3 16 16x13x15 0.0074871 1 Standard 1 feature 
right eye only 
classification using 3 
resolution search

9 3.6 0.3 8 16 16x13x15 0.0074871 1 Standard 1 feature 
left eye only 
classification using 
single resolution 
search. Single 
resolution focus 
areas removed.

10 4.8 0.0 1 16 16x13x15 0.0074871 2 Standard 2 feature 
left OR right eye 
classification using 3 
resolution search

Table 5 - Sub-Feature ANN Classifier Performance

Classification of the true positives at an eye distance of 12 is poor throughout. 

Classification of the false positives at this resolution is better than the holistic 

approach. ANN 1 shows good false positive classification, but extremely poor 

true positive classification and can be rejected on this basis.

Increasing the classification resolution does improve the performance for both 

true positives and false positives. However, none of the results presented in
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Table 5 have successfully classified all of the true positives. ANN method 10 

comes closest but does not classify all true positives correctly. Although false 

positive classification is better than the holistic approach none of the methods 

satisfy the primary objective that all true positives shall be classified correctly. 

This is a difficult decision since only one face focus area has been classified 

incorrectly for ANN 10.

Turning the attention to particular aspects of the performance studies highlights 

some interesting analysis. ANNs 2 and 3, and ANNs 7 and 8 show the 

comparative classification performance between two identical ANNs looking for 

the same type of feature. In this case one ANN classifying left eyes and the other 

classifying right eyes. Interestingly the classification performance is worse for 

right eye classification for both ANN studies. Examining the images, there are 

instances where hair obscures the feature of interest. This would suggest that 

classification is very much driven by the images used. Although classification is 

shown to better for left eyes, expanding the test set might provide examples 

where this is not the case.

ANN 10 combines both sub-features into the classification relying on either to 

affirm a positive classification. This improves the true positive performance, and 

false positive performance for this arrangement will always relate to the worst 

perfonning sub-feature classifier. Other results show when ANNs must both 

produce a positive classification. As can be seen, true positive classification 

suffers because both sub-features need to be identified correctly in order to affirm 

the focus area is a true positive. Obviously, this method does help to reduce the 

number of false positives.

5.6.5 Sub-Feature Classification using Textures

As described in previous sections, texture analysis is an attempt to help segment 

the feature space in order to help remove the burden upon classification. Sub­

feature classification has been used to investigate this method but there is no
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reason why it cannot also be applied to holistic classification also.

Sub-Feature Texture Classifier Performance
ANN Mean

FPs
Per

Image

Mean 
Classifier 
FNs Per 
Image

Total No. 
of

Classifier
FNs

Eye
Dist.

Classifier ANN Rms 
Topology

No. of 
Classifiers

Test Description

1 3.8 0.0 0 16 16x13x15 0.027526 1x5 Standard 1 feature left eye 
only classification using 3 
resolution search. Texture 
clusters derived from left 
eyes only.

2 28.4 0.0 0 16 16x13x15 0.018042
8

1x5 Standard 1 feature left eye 
only classification using 3 
resolution search. Texture 
clusters derived from both 
left eyes and distracters.

3 5.6 0.0 0 16 16x13x15 0.015913
2

1x5 Standard 1 feature left eye 
only classification using 3 
resolution search. Texture 
clusters derived from left 
eyes only.

4 5.0 0.1 2 16 16x13x15 0.013943
6

1x5 Standard 1 feature right eye 
only classification using 3 
resolution search. Texture 
clusters derived from both 
right eyes and distracters.

5 4.9 0.0 1 16 16x13x15 0.013943
6

1x5 Standard 1 feature left eye 
only classification using 3 
resolution search. Texture 
clusters derived from both 
left eyes and distracters.

6 4.0 0.1 3 16 16x13x15 0.013943
6

2x5 Standard 2 feature left AND 
right eye classification using 
3 resolution search. Texture 
clusters derived from both 
left eyes and distracters.

7 5.0 0.1 2 16 16x13x15 0.013943
6

2x5 Standard 2 feature left OR 
right eye classification using 
3 resolution search. Texture 
clusters derived from both 
left eyes and distracters.

8 2.4 0.2 4 16 16x13x15 0.012559
5

1x5 Standard 1 feature left eye 
only classification using 3 
resolution search. Texture 
clusters derived from both 
left eyes and distracters.

9 3.9 0.2 5 16 16x13x15 0.012559
5

1x5 Standard 1 feature right eye 
only classification using 3 
resolution search. Texture 
clusters derived from both 
right eyes and distracters.

10 9.5 0.4 11 16 16x13x15 0.012559
5

1x5 Standard 1 feature left eye 
only classification using 3 
resolution search. Texture 
clusters derived from both 
left eyes and distracters. 
Higher Resolution focus 
areas filtered beneath 
classified low res FA

11 2.6 0.2 6 16 16x13x15 0.012559
5

2x5 Standard 2 feature left AND 
right eye classification using 
3 resolution search. Texture 
clusters derived from both 
left eyes and distracters.

Table 6 - Sub-Feature Classifier Performance using Texture Clustering
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The picture that is obtained immediately from the results shown in Table 6 is that 

texture analysis is a worthwhile method and does improve the overall 

classification. Two approaches to create the initial texture clusters have been 

examined. The first method is to use only the item of interest to categorise the 

clusters, and the second method uses all pattern types. ANNs are then trained for 

each object cluster using the usual method of training. The only differences are 

that patterns are pre-selected according to their texture type. For the first method 

this means an ANN is created for each texture cluster. For the second approach 

one cluster is a distracter only cluster and there is no ANN for this. Any textures 

that are assigned to this cluster are instantly rejected as distracters.

Of the two clustering methods, ANN 1 provides the best performance of the two 

clustering methods. The ANN 1 method uses object only clustering. The results 

for this ANN method also show the best overall performance of all the 

performance studies presented.

Other similar trends are evident that are present in sub-feature classification. 

These include the performance of left and right eye classification where right eye 

classification performs slightly poorer than its counterpart. Also, although the 

combination of sub-features helps reduce false positives it also impacts on true 

positive performance.

The identification results for the best approach, i.e. ANN method 1 in Table 6 are 

included in appendix E. This includes the initial output from the attention- 

focusing stage and the final output after classification. Similar to other results 

presented, focus areas highlighted in white represent true positive classification 

and focus areas highlighted in black represent false positive classification.
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5.7 Summary
This chapter has investigated the classification stage of the identification process. 

Various approaches have been presented. Of the different models, the 

classification system that has shown best performance is the sub-feature classifier 

trained on left eyes using texture analysis as a pre-filter. Texture analysis has 

been proven to compliment the classification process and allows the number of 

ANNs performing classification to be extended and thus provide greater coverage 

in the feature space.

The sub-feature classification approach with texture analysis is able to classify all 

true positives correctly and also significantly reduce the number of false positives. 

Even so the mean number of false positives per image is approximately four. 

Other variations (such as multiple sub-feature classification, filtering of positively 

classified focus areas) that have been investigated to reduce the number of false 

positives have also affected true positive classification. The next chapter re­

evaluates the approach used for object identification and discusses problems 

associated with developing a generic solution.
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Chapter 6

Conclusions and Further Work

6.1 Summary
In the first chapter a set of requirements were outlined that it was hoped the 

research would fulfil. These are basic requirements if the intended Computer 

Vision system is to be used in a meaningM way. However, the implication of 

providing a solution to all of these problems is not trivial.

A model has been presented that does address these requirements, and does go a 

long way in succeeding to provide this functionality. However, the ultimate 

criteria for being a robust solution has not been met. The model, even though it 

is able to identify all faces it is incapable of removing all false positives. This is 

perhaps not unexpected given that comparable solutions by Sung and Poggio 

[Sung and Poggio, 1994], and Rowley [Rowley et. al, 1995] also present a degree 

of error.

The possible variation in background distracter is almost infinite and to train an 

ANN that can cope with this variation is possibly an ill posed problem. A 

method to improve the classification of particular pattern types is to include 

representative samples into the training data. However, the number of these 

examples can rapidly increase, such that it is unfeasible to continue to do so. 

Also, a point is reached where the capacity of the ANN to cope with such a large 

number of background distracters in the training set can only have a detrimental 

effect on the true positive classification performance.



Even though the system copes remarkably well, and processes the image 

efficiently, a more focused problem domain may have provided better overall 

identification performance. It is not unreasonable that, as the object of interest is 

pre-selected at the start, appropriate environments where the object may exist 

could also be selected. This is not to say the background information is any way 

less complicated but the scope of the variety that the identification system may 

examine is more constrained.

The architecture presented is flexible enough to be applied to similar problem 

domains. Even though faces have been used throughout this thesis as an example 

image analysis problem, the techniques presented are still applicable to all other 

image identification related problems. For example, an automated cancer cell 

screening system could be developed using this architecture. The object of 

interest would be an abnormal cell and distracter infonnation would be all other 

tissue on the sample image. Similarly to faces, cancer cells are hard to describe 

yet provide identifiable characteristics that identify them as being such.

An identification system that uses a two-stage strategy to identification has 

proven to be a valid approach. It is able to perform more of its processing at 

lower resolutions than any comparable system. The outcome of processing less 

information is that it is extremely efficient and allows real-time processing to be 

realised.

The following sections will concentrate upon identifying the various limitations 

of the approach and possible ways to improve the model presented.

6.2 The Attention-Focusing ANN

The attention-focusing ANN is the first stage of the identification system and the 

resulting output is fundamental to the final identification performance. Finding 

the optimum resolution is key to the ANN strategy so that it is unnecessary to 

process an image at full resolution. The degree of reduced resolution has a large
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impact on the amount of processing required. A balance must be found between 

the advantage of using a lower reduction in comparison to the error that this 

introduces. The advantage of using ANNs that comprise any processing system 

is the ability to define an architecture without being restricted by set rules and 

methods. On the downside this puts great reliance upon the quality of the ANN 

training. This was shown to be a problem for both the attention-focusing ANN 

and also the classification ANN.

6.2.1 Selecting the Training Data

The objective to deal with any real world image presents a problem for ANN 

training as the quality and number of training examples has to be carefully 

selected. Conclusive studies were made to determine the optimum resolution for 

the attention-focusing ANN, and the size of the ANN reflected the resolution 

required. Although great thought was given to the ANN training, it was in some 

respects veiy simplistic. Throughout this research, it has become apparent that 

analysis of real world data requires a substantial quantity of training data. 

Although many examples of different faces and varied background are needed, 

it is very difficult to select distracter information that is representative of all 

possible patterns.

As the variety of test images are increased some patterns are better generalised 

to than others. However, for some particular novel patterns it also does not 

generalise well to and produces a high proportion of false activity. For these 

types of patterns these were re-introduced into the training which reduced the 

false activation.

This creates a dependency upon the ANN to continue to retrain with input 

patterns that it does not generalise to. hi this respect, the ANN may never be able 

to generalise to all new patterns. This is fine for a specified domain where 

knowledge about the environment can direct the training, but less useful for 

generalised solutions that this model attempts to provide a solution to.
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Organisation of a large number of examples has a definite effect on the learning 

of the ANN. As well as collecting the training data, it needs to be ordered in a 

specific manner to enable the ANN to generalise. Replication and pattern 

ordering was found to help training of both ANNs. Before this was introduced, 

using a large number of training patterns created instability in generalising to the 

two pattern categories and, also because more background distracters were 

available, created a bias towards these pattern types. Unless this is configured 

appropriately the ANN has a tendency to fall into local minima.

Even supplying an equal number of positive examples it does not really solve the 

eventual bias that the ANN training leads to, i.e. towards background distracters. 

This could be a problem with re-enforced replication. The overall large number 

of patterns should remove any possibility of the ANN memorizing any patterns 

no matter how frequent the replication. However, to gather the number of 

example face patterns required to balance the number of distracters is unfeasibly 

large. This is an obvious problem in itself that addresses the method by which 

simple capture of the relevant input patterns is achieved, but it is pure conjecture 

whether significant gains would be seen over using replication.

6.2.2 Over-Training

In order to cope with the large variety of pattern types, the number of patterns 

presented for learning is well into the tens of thousands. The background 

distracters are reinforced with positive object pattern types. Obviously the large 

volume of training examples ensures that the ANN cannot memorize the pattern 

types. A problem however does occur that after a certain period of training, the 

ANN performance continues to improve background distracter classification at 

the expense of the positive object patterns. Unfortunately, the RMS is not a good 

metric to use as the RMS value continues to decrease. The most reliable way to 

ensure that training has not generalised at the expense of the positive 

classification is to constantly test the ANN whilst training. This obviously creates
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an added burden upon training times. Unfortunately, no alternatives have been 

found to determine the best cut-off point for ANN training. Although, rules of 

thumb are available to guide training [Swingler, 1996] no techniques were found 

in the literature survey that deals with the issue of two category problems 

encompassing extremely large data sets. None of the other methods that use 

ANNs for pattern classification discuss training issues for their ANN paradigms. 

However, it is evident from the performance results that all systems exhibit 

similar generalisation problems, i.e. general failure to classify some test pattern 

types.

6.2.3 Single Resolution Grouping of ANN Output
Although two different approaches to focus point grouping were presented and

investigated, the extremities method was the method adopted to present the 

attention-focusing and classification/identification results. However, there are 

limitations for both grouping methods. The window grouping method tends to 

produce many more focus areas than the extremities grouping algorithm. The 

extremities grouping algorithm is unable to remove all false negatives. A 

limitation of the extremities grouping algorithm could be addressed by modifying 

the criteria on how it currently creates clusters. A better method should take into 

account of:

> The contour of the cluster. Only focus points that are contiguous to another 

should be grouped.

> Limit the size of the cluster. This should help separate multiple focus clusters 

that are close together.

This is a more intelligent grouping algorithm, which should produce a slight 

increase in focus areas but to the advantage of fewer false negatives. The 

relatively high failure rate of both methods is due to the unpredictable nature of 

ANN misclassification.
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6.2.4 Multi-Resolution Grouping of ANN Output
Multi-resolution analysis is used to perform two functions. The first is to identify

the size and position of possible faces in the input image. The second is to 

provide support for this by analysing the focus point distribution across other 

resolutions. Examination of focus point output across different spatial resolutions 

does show that generally the ANN does activate for the trained object across 

small differences in spatial resolution. Single resolution activation that might be 

passed on to Classification can also be filtered. Smaller image reductions have 

been chosen exactly for this reason. Grouping of focus points are made at one 

resolution and then grouped across resolutions. This is fairly crude although any 

alternative would soon become veiy complicated. Although various other 

techniques were looked into, e.g. centre of gravity to obtain a better mid point, it 

was deemed that a lot of effort might be expended upon a better solution without 

any significant gains. This due in part to the unpredictable nature of one trained 

ANN against another. A small amount of effort has been made into the 

distribution of focus points and their values but no trends were identified that 

would the grouping and potential classification.

6.3 ANN Classification
The previous section critically analysed various aspects of the attention-focusing 

system. Some of the methods discussed are also applicable to classification, e.g. 

the ANN training and also the clustering techniques. Although there are slight 

differences to classification, these techniques are applied in essentially the same 

manner and thus the same problems are also pertinent.

6.3.1 ANN Models for Classification
Using an ART ANN to determine holistic features use this to specify the 

connectivity of the classifier ANN is a completely novel approach. Because of 

the way the features are determined automatically, this was initially the preferred 

method for the definition of the classifier. The paradigm lends itself to being a 

more generic solution than the sub-feature ANN method and could be more
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readily applied to other computer vision related problems. However, a 

combination of other techniques provided better means of classification.

Both ART ANN approaches described in this thesis differ from the original 

definition [Carpenter and Grossberg, 1985] and even the later revision [Carpenter 

and Grossberg, 1987]. The binary ART ANN presented deviates only in the 

manner in which input patterns are presented; i.e. both positive and negative 

examples are presented for training. The grey-level ART however is an attempt 

to process continuous values based upon the original ART algorithm. Even 

though the ART2 paradigm also attempts to do this, it is done in a much more 

crude fashion. Classification performance was disappointing from the grey-level 

ART ANN. The reason for this is unknown, but could be attributable to the 

configurability of the parameters. Although different configurations have been 

examined, the range of values that the parameters may hold has not been 

completely investigated, and as such there may be scope to investigate this 

further.

Using an unsupervised ANN architecture to determine connectivity is also an 

interesting idea that could be exploited further. There is no reason why the 

technique cannot be applied to other areas. It can be argued that this method is 

applicable to any problem requiring feature extraction. Either of the two topics 

discussed could form the basis of a research project in their own right.

6.3.2 Texture Analysis
To reduce the complexity of the problem and the burden of an ANN to learn 

many different background types, texture analysis has been suggested as a means 

to improve classification. This technique may have been applied before the 

attention-focusing stage but there are several reasons why this has not been 

implemented. The attention-focusing stage works reasonably well for the 

resolution the ANN examines. Applying texture analysis would require a 

significant amount of further processing. The aim of the classifier is to perform
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a more accurate analysis of possible faces. Therefore, in order to achieve this, 

analysis would be also required before classification. To perform this technique 

twice was therefore considered not to be computationally viable or promise a 

significant improvement on identification accuracy.

6.4 Further Work
This thesis has only dealt with a specific set of vision problems. Other aspects 

that the model could be adapted to consider include:

> Object profiles. This thesis only considered objects that were shown face-on 

to the camera. In true real world images it is likely that some objects would 

be shown in various degrees of profile. A full classification system would 

need to be able to identify an object from any angle.

> Object rotation. As for object profiles, objects in real world images make 

contain a degree of rotation, and therefore this would also need to be 

addressed by an identification system.

> Partial object occlusion. A particular issue that was not truly discussed in this 

thesis was if an image contained features that were not found in every 

example of the object. For example, glasses or facial hair. Although, these 

items can be said to occlude parts of the image, the face is still humanly 

recognisable.

> Moving images. This thesis has only considered static images. A natural 

progression for image analysis is to extend the problem to consider moving 

images. This is generally achieved by comparing consecutive time window 

frames and examining the difference between them to identify any changes 

that have occurred. Having identified the object of interest in one frame of 

the image, it would then be possible to track it throughout subsequent images. 

Processing temporal sequences however is computationally more expensive 

and would require sophisticated algorithms to cope with the considerable 

increase in the amount of information.

> Colour images. Grey-level images have been used within this research.
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These were chosen to simplify the amount of information presented to an 

ANN for processing. The model could be extended to consider colour images 

that might provide additional information to aid classification. The human 

visual system uses colour along with shape and texture to identify objects, and 

it would seem logical to explore the effect of using colour images with regard 

to identification performance.

> Recognition. It has already been discussed in Chapter 1 that a face 

identification system could be a useful precursor to face recognition. There 

are many applications where identification could be used along with face 

recognition. An example of this could be a crowd surveillance system. 

Recognition however, is more applicable to faces.

> Depth. The identification system developed has performed image analysis 

with what could be argued as a software emulation of a single camera. 

Employing the technique of stereoscopic imaging would allow 3D 

information to be inferred from an image. The use of this would be more 

applicable for problem domains such as robotics in which 3Dinformation is 

required for navigation.

The goal to develop a system that is capable of processing any real world images 

is extremely challenging and the literature provides many examples that attempt 

to tackle a single area of this problem, as well as some object identification 

systems that have a similar objective.

It can be said that we are still a long way off from realising a generic object 

identification system that is reliably robust, and is able to perform accurately 

using a diverse set of real world image input. However, the potential benefits that 

could be gained from automated systems that are able to perform human vision 

activities are enormous.
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Appendix A -  Overview of ANNs

This appendix is intended to provide a brief introduction to Artificial Neural 

Networks (ANNs). A brief outline on the workings of an ANN is given and 

discusses some of the main differences between ANN models.

ANN Overview
Artificial Neural Networks, or connectionist architectures, describe systems that 

use a model that is composed of a collection of simple processing elements 

(generally referred to as units), Figure 29, joined together usually by adaptive 

comiections referred to as weights. Each processing element performs some 

function, commonly on the weighted sum of inputs leading to the unit. This kind 

of architecture is typical of most ANN paradigms. The Multi Layered Perceptron 

(MLP), Figure 30, is one of the most common ANN paradigms and is a popular 

example that comprises this structure.

w,

i=0
1 Wj. a, 
i<n

W j

W,

Figure 29 - Simple Processing Unit

Of all the different types of ANN models that exist, all can be described by two 

main characteristics:



> Learning Algorithm. This describes how the connections within the model 

are adapted. The modification of these values is termed learning and this can 

be either unsupervised or supervised.

> Connectivity. This describes the topological mapping of units and 

connections in the model, whether there is a partial connection between layers 

of units, lateral connections, or a fully interconnected model.

Learning Algorithm
The learning algorithm determines how, give an input vector, weights are to be 

adapted. For the problem of face identification the input vector will be some 

representation of the input image. There are two different types of learning, 

unsupervised and supervised.

Unsupervised Learning
Unsupervised learning describes the means with which the network adapts its 

connections, from the input patterns presented in an autonomous fashion. Typical 

examples of network models in this category include the Kohonen [Kohonen, 

1988] and ART networks [Carpenter, 1985]. In comparison to supervised 

learning algorithms they do not require an input to control their output.

Being unsupervised leads to the network making its own generalisations on the 

importance of particular aspects of the input data. To derive any meaning from 

the output requires interpretation of the output values to determine what has been 

learnt, i.e. how the patterns have been grouped or transformed. Similar input 

patterns are likely to produce clusters in the output vector space.

Supervised Learning

In contrast to unsupervised learning, the type of weight modification that occurs 

is dependent upon the teacher signal used whilst training. For every training 

input example that is presented to the network, there is an appropriate desired 

output. The network generates its own output, and the difference between the
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two is often used to change the weights of connections. This learning method is 

repeated until all, or a required number of the input examples, have generated the 

correct answer to a pre-set precision.

The advantage of supervising the network is that the output representation is in 

a form that requires no interpretation, and the generalisations made on the 

network have been made to the requirements of the supervisory input. The main 

disadvantage of this learning method is that it is generally slower than 

unsupervised learning, and that it forces a solution to a complete problem, rather 

than allowing the system to find regularities in the data that may be useful later. 

One way to overcome this latter disadvantage is to decompose the problem in 

stages and use one network per stage. For example, in OCR, one network can 

split the alphabet into six subsets, and other networks (one for each subset) can 

discriminate between four or five characters.

Connectivity
The connectivity of the ANN is generally chosen to suit the problem or type of 

learning algorithm used. It may be that full connectivity is unnecessary as the 

ANN may contain redundant weight connections. Alternatively, recurrent 

connections are usually applied to problems requiring storage of temporal 

information. There are three main general types of network connectivity found 

common in ANN applications. These are:

> Fully connectivity. This generally describes feed forward only ANNs. Each 

unit in a fully connected network is connected to all other units in the layer 

below. The representations made in the ANN are distributed across 

connections.

> Partial connectivity. This can be used to form localist representations of the 

data. There is no rule as to when this should be applied, and is only chosen 

if partial connectivity has a higher probability of generalising to the data.

149



> Recurrent network architectures. These not only provide full feed forward 

connectivity, but also outputs leading from a unit back into the unit as input. 

An example of a recurrent ANN is the Hopfield network [Hopfleld, 1982]. 

Alternatively, [Gouhara et. al, 1991] discusses recurrent network learning for 

MLPs. These kind of ANNs are suited towards problems that consist of 

temporal structure.

MLPs and Back-Error Propagation
Historically it was the advent of the Adeline and Madeline [Widrow and Hoff, 

1960] that sparked the initial interest in ANNs. These early networks showed it 

was possible to use an adaptive system, consisting of only simple processing 

elements, that was able to learn solve a surprising range of problems [Widrow et. 

al, 1976], [Widrow and Stems, 1985].

Output Pattern

Output Units

Input Pattern

Hidden Units

Input Units

Figure 30 - Structure of a Multi Layer Perceptron

The Adeline is a two-layer network with a single set of adaptive weights. The 

Madeline is an extension that allows for multiple hidden layers. Only a single 

layer of weights can be modified. Unfortunately, these networks were limited in 

that they only dealt with binary input. More importantly, which caused them to 

be ignored for many years, it was proven that the Widrow-Hoff learning
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algorithm (Equation 24), which corrects the errors generated at the output, was 

unable to solve linearly inseparable problems, e.g. xor.

wji= wji + rj(tj~o j) cn 

Equation 24 - W idrow-Hoff Weight Udate Rule

It was only with the development of the back-error propagation10 learning 

algorithm that this limitation was eventually overcome. The algorithm allows for 

multiple adaptive layers to be used, and a means by which the weights leading to 

each unit are modified according to the error it generates. The learning can be 

described as a two stage process that consists of a forward pass and then a 

backwards pass.

Learning

The forward pass consists of the propagation of the unit activations of all units 

from the first hidden layer to the output layer. This calculation consists of the 

weighted sum. This is then passed through a function to compute the unit's 

activation as shown in Figure 29. This activation function is generally the 

Sigmoid function, and could be described as acting like a soft threshold.

The backward pass consists of two actions, to calculate the full error of the 

network, and to update all weight corrections using this error. To calculate the 

error for both the output and hidden layer units two equations are needed. Firstly, 

the error at the output, which is determined from the target values (Equation 25). 

Secondly, to calculate the error for all hidden units (Equation 26). The error at 

an output unit is determined by all the hidden units leading to it. Therefore, each 

hidden unit has a contributory factor to the final error. All of the weights are then 

updated using the same weight update rule (Equation 27).

10 This learning algorithm is simply referred to as backprop, and this name will be used throughout the rest 
of this report.
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S j =  ( t j - o j ) f

Equation 25 - Output-Hidden Unit Error

k < i tSj= rz stwvjfrsj)
k = 0

Equation 26 - Hidden-Input Unit Error

A wji= rj Sj a t 

Equation 27 -  Unit Weight Change

The value of the learning rate determines the amount the weights are adapted. 

Generally, this lies in the range between zero and one. A low value signifies a 

small weight change, and a high value greater modification. Too large a value for 

the learning rate may cause instabilities during the progress of the learning. 

Ultimately, the choice of learning rate often determines how quickly the network 

converges to the solution but also the reliability of the learning.

Key

Aw is the weight change 

r| is the learning rate 

6j is the error for unit j  

a is the input activation

f=  is the first derivative of the Sigmoid function 

Sj is the weighted sum for unit j  

tj is the target output of they'th unit 

Oj is the actual output of the /th unit 

is the z'th weight leading to they'th unit 

at is the activation of the z'th input
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A way to determine the progress of the learning is to compute the Root Mean 

Squared (RMS) error using all patterns in an epoch. The RMS value is always 

in the range of between zero and one. The closer to zero, the more accurate the 

general performance of the network. Judging the performance of an ANN on the 

RMS alone can be misleading, e.g. A large error for one pattern will produce the 

same RMS as several small errors on a number of patterns.

Optimisations

Much research has gone into modification of the basic backprop algorithm in 

order to improve the convergence times of the network. These range from simple 

adjustments to complex algorithm extensions. Although the optimisations require 

more memory and computation per epoch, the aim is to significantly reduce the 

total number of epochs required.

The most basic addition to the backprop learning algorithm is to add a 

momentum term to the weight adjustment. This helps increase the weight change 

if the modification is proceeding in the same direction as the last update. An 

offline modification to backprop is to accumulate the error generated by all the 

patterns in the training set and adjust the weights after each epoch only.

The methods discussed so far are first order, and gradient descent is performed 

by making a linear approximation. Second order methods make no assumption 

that the problem space has a simple form and determine the weight adjustment 

by the use of a local quadratic model [Jervis, 1994]. Conjugate gradient descent 

and scaled conjugate gradient descent are second order methods. From the 

quadratic model the methods attempt to select the best direction without undoing 

the minimisation of previous iterations. The disadvantage of these algorithms is 

the time taken to perform the search for the optimum direction and how 

appropriate the quadratic model is.
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Local methods for learning optimisation do not use global gradient descent to 

determine the weight adjustment. These methods consider local changes for each 

weight only. Delta-bar-delta, Rprop, and Quickprop are local optimisation 

methods.

In general, either second order or local optimisation methods will find a solution 

in fewer epochs than backprop using momentum only. Unfortunately, all of the 

optimisation methods mentioned have a limitation of some kind. Different 

methods will perform better on different data, and there is no set criteria for 

selecting the most appropriate method for the problem. A more complete analysis 

of the different methods discussed is included in [Jervis, 1994].
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Appendix B -  Results for Window Grouping Method

Test results from single resolution search using window grouping method.

> Window size: 6x6 reduced resolution pixels.

> Window step: 3 reduced resolution pixels.
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Appendix C - Results for Extremities Grouping Method

Test results from a single resolution search using extremities grouping method.
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Appendix D - Results for Multi-Resolution Analysis

Test results from a multi-resolution search using a reduction factor of 0.85.
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Appendix E - Results for Identification Analysis

Final identification results using left eye classification and texture segmentation 

and filtering. Left side output from attention-focusing; right side classification.
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Appendix F -  Miscellaneous

Derivation of Equation 6 - Determining the Maximum Linear 

Steps
To establish the maximum reduction necessary to reduce the image size down to 

the input frame size (because this is the minimum size at which an object can be 

identified) the following is applied:

1. The reduction ratio determines the scaling factor to reduce the image to the

size of the input frame.

, . . window sizereduction ratio = --------------
picture size

2. The maximum number of reductions can also be expressed as requiring n 

reductions.

maximum possible n =reduction" = reduction ratio

3. To deal with the n power term requires both expressions being converted to 

logs.

log10 (/reduction") = log10 {reduction ratio)

4. Using the mathematical rule for logs the power term can be re-arranged. 

wlog10 {reduction) = log 1Q {reduction ratio)

5. This finally allows the number of reductions to be determined.

_ log10 {reduction ratio) 
logjo {reduction)
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6. Replacing the original notation provides the final equation given in Equation 

6.

.windowsize .
log  — ).j T picture sizemaximum possible n =-----------------------

log/0 (reduction)

window size refers to the maximum dimension of the input frame in either 

direction, picture size refers to the maximum dimension of the input image in 

either direction.


