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P re face
Applying WKB method we obtain multiplicative small time and semiclassical 
asymptotics for Green functions (fundamental solutions) and for the solutions 
of Cauchy problem for the stochastic heat equation driven by a Levy noise. 
The relevant theory of stochastic Hamilton systems and Hamilton-Jacobi 
equations is developed.

We also give conditions for non-explosion of solutions of Newton systems 
driven by a Levy noise and conditions for transience of solutions of such 
systems driven by a-stable noise. As a solution of particular Newton system 
we consider a-stable Ornstein-Uhlenbeck process for which we estimate the 
rate of escape. The connections between the objects studied in this theses 
are shown on the scheme at page V.
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In tro d u c tio n
Recent years saw the series of papers [Kl], [K2], [AK], [AHK1], [AHK2] de­
voted to the qualitative study of the Newton equations driven by random 
noise (see also [AHZ], [MW], [Nol], [No2] [AK1], [KuMar] and references 
therein for related results). On one hand, these equations are interesting on 
its own, for example, as models for dynamics of particles moving in random 
media (see e.g. [Ne]), in the theory of interacting particles (see e.g. [OV], 
[OVY]) and in the theory of random matrices (see e.g. [Me]). On the other 
hand, the study of this equations serve as an important tool for studying par­
tial differential equations, in particular Hamilton-Jacobi, Heat, Schroclinger 
equations, driven by random noise (see [TrZl], [TrZ2], [K4], [K5], [K6], [K7]).

The papers mentioned above were mostly concerned with the case where 
the driving noise was the standard Wiener process. It is known, however, 
that exponentially decreasing tails of normal distribution are not adequate 
for describing a variety of processes appearing in science, engineering and 
economics. The natural generalisation of normal distribution which also 
appear as the limits of sum of i.i.d. random variables but at the same time 
have fat tails (decreasing polynomially and not exponentially at infinity) is 
given by the class of stable laws. This leads to the study of random models 
given by a stable or even more general Levy noises. At the same time the 
Levy process having both a rich probabilistic structure and a clear analytic 
representation constitute a natural intermediate class of processes between 
Wiener processes and general semimartingale. The latter are also relevant for 
physical applications, see e.g. [Bali], where a general class of linear stochastic 
second order equations driven by semimartingales was found tha t preserves 
a.s. the Z/2-norm of a solution. This class describes general stochastic models 
of continuous quantum measurement.

In this thesis we give the conditions for non-explosion of the solutions of
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the Newton system

=  pdt

=  ( a i )

where =  (£*>•■•} ) is a Levy process, d ^  1, c € C2(Md, Ed), dc/dx  
is uniformly bounded, V £ C*2(Md), H ^  0. We also give conditions for 
transience of solutions of (0.1) when d ^  3, is a general o;-stable
noise.

We proceed with one particular but im portant case of Newton system. 
Position x(t) of a Newtonian particle driven by the white noise force is de­
scribed by the system of stochastic equations

dx = v dt 
dv — dw(t), (0.2)

where x  £ is the position of the particle, v £ Rd is its velocity and w 
is the standard d-dimensional Wiener process. Allowing of a linear friction 
force in this model leads to the equation

dx — v dt , s
dv =  —(3v dt + dw(t),

where /3 > 0 is some constant. Processes x(t) and v(t) satisfying (0.3) are 
called the position Ornstein-Uhlenbeck (OU) process and the velocity OU 
process respectively. Notice tha t though the pair (#(£), v(t)) is a Markov 
process, the position of the particle x(t) is already a non Markovian process. 
In [AK], [Kl], [K2] the rate of escape of the position process x(t) described 
by (0.2) or (0.3) was estimated. For the case (3 = 0 these estimates later on 
were essentially improved in [KhSh]. Here we generalise these results to the 
case of the general stable noise wa: a  £ (0, 2), instead of the normal Gaussian 
noise w =  W2 above. In particular, we prove tha t for an increasing positive 
function f ( t )  such tha t f ( t )  =  o(£1+«) and t / f ( t )  — o(l) as t co and

oo

f  dt oo

one has
Mt)\
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where {x(t), v(t)) is a solution of (0.2) with w — wa. The analogous result 
holds for the solutions of (0.3) with w — wa. These results are used to 
construct the scattering theory for the system

dx = v dt .>
dv — (K(x) — (dv) dt +  dwa{t))

where the deterministic force K  is considered as giving a perturbation of the
free motion described by equation (0.2) or (0.3). We prove, in particular, the
existence of random wave operator QWa : (o:(0),u (0)) —> (5:(0), u(0)), which 
assign to the initial conditions (a;(0),u (0)) of any solution {x, v) of equation 
(0.3) with w — wa the initial conditions (ic(O), u(0)) of some solution (x,v)  
of equation (0.4) such tha t ||(z ,u) — (a;,u)|| —>• 0 as t —» oo.

Coming back to Newton systems driven by Levy noise we study the exis­
tence of solutions for boundary value problem for the system

=  % di

=  ( 0 ' 5 )

with H  ~  (p2 / 2) — V{x). Observe tha t well-posedness of boundary value 
problem is equivalent to the statement (which we call theorem on diffeomor- 
phism) tha t the map p0 —> X(t ,  to, £0,Po) (where X( t ,  to, x 0,po) is a solution 
of (0.5) with initial conditions (x Q,p0) at time t — to) is a diffeomorphism. 
Boundary value problems for Hamilton systems of type (0.5) with {£t}^o 
being a Wiener process and their connections with the calculus of variations 
were investigated in [K4]. However, the proof of the existence and uniqueness 
of the solution of the boundary value problem was only sketched in [K4]. In 
this thesis we give complete proofs of the corresponding results for Hamilton 
systems driven by Levy noise without a Brownian part.

An important tool for the analysis of the behaviour of the solutions for 
Hamilton systems is the study of their linearised approximations (equation 
in variations). These linearised approximations turn out to be linear non- 
homogeneous Hamilton systems. Using perturbation theory we can derive 
a representation of the solutions of such linear systems as series of multiple 
stochastic integrals. In order to prove the convergence of these series, we 
are led to obtaining estimates for multiple stochastic integrals. We use these 
estimates as auxiliary tools for the study of linear stochastic Hamilton sys­
tems. However we believe that they are of independent value. Let us mention
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here the paper [Ta], where a rather general linear system driven by Brownian
motion was considered, convergence of the series from perturbations theory 
proved, and necessary estimates for multiple integrals obtained. Multiple 
stochastic integrals with respect to general semimartingales or infinitely di­
visible processes were also considered, see e.g. [KwW], [Sz] and references 
given there.

The solutions of the boundary value problem for equation (0.5) is closely 
connected to the solutions of the Cauchy problem for Hamilton-Jacobi-Bellman 
(HJB for short) equations. Over the last few years interest in stochastic HJB 
equations has increased, see e.g. the papers [R], [So], [DaPDe] and references 
given there. The HJB equations are important as they describe the evolu­
tion of optimally controlled systems with random dynamics, but they are 
also useful tools when studying various classes of stochastic models in prob­
ability theory and mathematical physics. Presently, the notion of stochastic 
HJB equation is used in two different contexts: firstly, for classical differen­
tial equations with a random Hamiltonian and, secondly, for truly stochastic 
differential equations where the Hamiltonian includes a non-homogeneous 
semimartingale term which does not allow to write down the corresponding 
equation in classical form.

In the sequel we will consider the second type of HJB equations, that is 
to say equations of the form

where H  : R2d —¥ R and c : Rd —»• Rd are smooth functions and is a 
stochastic process (driving noise) in Rd. The equation (0.6) with {£t}^o 
being a Wiener process was considered in [K2], [K4], and [TrZl], [TrZ2] for 
various classes of real H  and c. The corresponding case of complex valued 
H  and c was taken up in [K5]. Our objective is to study the case of equation 
(0.6) with o being a Levy noise without Brownian part and to develop 
a stochastic analogue of the theory of classical (i.e. smooth in x) solutions 
of the Cauchy problem for equation (0.6). Generalised solutions can then be 
constructed in the same way as they are constructed for the case of a Wiener 
process {£t}^>o in [K2], [I<4] (see also [KMa]).

We next apply theory of stochastic Hamilton systems and stochastic 
Hamilton-Jacobi equations developed above to the study of stochastic heat

x E R d, t > 0, (0.6)
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equations. More precisely, we consider the equation

h df'ipit, x ) =  (0-7)
h? d  ̂ \
~^"tr^ ~ 2  +  V(x)  4- ha(x) J ?/>(£, a;) dt +  hip(t—, x)c(x) d£t,

where a ,V  : Mrf —» R, c == (c i,. . . ,  q )  : Md —»■ Rd, h is a positive parameter, 
and assume that c(a;)2/ ^  0 for all x E Rd, y € suppzq where v is a Levy 
measure of process {£f}t^o< Applying WKB method we obtain multiplicative 
small time and semiclassical asymptotics for the Green function and for the 
solutions of the Cauchy problem for equation (0.7). The first step in this 
construction consists in solving the corresponding stochastic Hamilton-Jacobi 
equation

i /as' 2
dS  +  -  dt — V  dt — hadt  +  hcd£t = 0, (0-8)

which constitutes the “classical part” of the semiclassical approximation.
In deterministic case asymptotics for the Green function of heat and 

Schrodinger equation is well known (see e.g. [K5], [Ma], [MaF] and refer­
ences given there).

Stochastic Schrodinger and heat equations appear naturally in stochastic 
filtering [Za], quantum stochastic filtering, quantum measurement and more 
generally in the theory of open quantum systems (see e.g. [Bell], [Bel2], 
[BelHiHu], [Di], [Q]). Here we consider only heat equations. The applica­
tion of the methods developed here to the case of stochastic Schrodinger 
equations will be considered elsewhere. It seems also possible to apply the 
methods developed in this paper to the construction of asymptotics for the 
Burgers equation driven by Levy noise, since, as is well known, the (nonlin­
ear) Burgers equation can be reduced to a standard heat equation by simple 
change of the variables. The case of the Burgers equation driven by Wiener 
process was considered in [TrZ3]. The case of heat equation driven by Wiener 
process was studied in [K2], [K4], [TrZl], [TrZ2]. We generalise the known 
results on stochastic heat equations driven by Wiener noise to the case of 
Levy processes. Some statements of this thesis are valid also for general 
semimartingale noises.

One of the central features of Levy processes that distinguish them from 
diffusion processes is the possibility of jumps of their trajectories. These 
jumps complicate the analysis essentially. The formulae for the leading term 
of the asymptotics in Levy case will contain an infinite product over the



process of jumps that must be controlled when doing the relevant estimate. 
This is the reason why we can not find explicit solution even for a vanishing 
potential unlike the case of the heat equation driven by a standard Brownian 
motion (see [BelK], [K2], [TrZl]).

Let us give a brief outline how this thesis is organised. In Chapter 1 we 
estimate the rate of escape of cr-stable Ornstein-Uhlenbeck process, construct 
the scattering theory for perturbations and discuss properties of random wave 
operators. Chapter 2 is concerned with obtaining the conditions for non- 
explosion and transience for the solutions of system (0.1). In Chapter 3 we 
obtain estimates for stochastic multiple integrals. In Chapter 4 we study well- 
posedness of the boundary value problem for system (0.5) and construct the 
solutions of Cauchy problem for equation (0.6). The final Chapter focuses on 
constructing of small time and semiclassical asymptotics for Green function 
and for the solutions of Cauchy problem for equation (0.7).



P re lim in a rie s
Our standard references for Levy processes are the monographs by Bertoin 
[Berl] and Sato [Sa]. For Levy processes and stochastic calculus with jumps 
we use the books by Jacod and Shiryaev [JSh] and Protter [Pro]. We will 
collect a few definitions and results from these books.

A Levy process (on Rd) is a stochastic process on a probabil­
ity space (f2,.F, F) with stationary and independent increments which is 
also stochastically continuous. We will assume that £o — 0 a -s- The state 
space will always be Rd. We can (and will) choose a version tha t has right- 
continuous sample paths with everywhere finite left-hand limits (cadlag, for 
short); if not otherwise mentioned, we will use the augmented canonical filtra­
tion of The process is uniquely (up to stochastic equivalence)
determined through its Fourier transform,

E e«7ft =  e-*0(»7)} t  > o, v e  Rd,

where the characteristic exponent i/j : Rd C is given by the Levy-Khinchine 
representation

TP(rj) = i£.r) + r}-Qr] + J  ^1 -  eiy-7? +  v(dy). (0.9)

Here, i  is some vector in Rd, Q E M.dxd is a positive semi-definite matrix 
and v is the Levy or jump measure with support in Rd \  {0} such that 
fyj£o \v\2 A 1 u{dy) < oo. The Levy-Khinchine formula is actually a one-to- 
one correspondence between the function 0  and the Levy triplet (£,Q,v).

Stochastically, the Levy-Khinchine representation translates into a path 
decomposition of the process {&}^o- Fix some Borel set A c R d \  {0}, and 
write N t(co, A) for the Poisson point process with intensity measure v(A). It 
is known that N t(u), A) describes jumps of with sizes contained in A  and 
we get

— cx,t T  T  T  <A(cu), (0.10)

7
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where a  =  E — Jjy|>]L x dy)J is the drift coefficient, B t is a d- 
dimensional Wiener process with (possibly degenerate) covariance matrix Q,

is a martingale which is the compensated sum of all small jumps (modulus 
less than 1), and

is the sum of all big jumps (modulus greater than X). As usual, we write 
A£s =  — £s_ =  — limrfs A- for the jump at time s > 0. Note tha t Jt is
a process of bounded variation on compact time-intervals. This is the case 
since cadlag paths can have only finitely many jumps of size ^  1 on any finite 
time interval. The above decomposition of shows tha t Levy processes are 
semimartingales and, therefore, good stochastic integrators.

The following two formulae for point processes hold whenever the right- 
hand side is finite:

0<s .̂t

E
( I A ^  N t d y ^) =  1 I a  ^

and

E ( { ^ / f e ) W ( . ,< A /)  - t i / ( d y ) ) ^  j  = t  J ^ f { y ) 2 v(dy). (0.11)

In particular, we get

(0 .12)

for finite right-hand sides. It is not hard to see that

1 1-» has a.s. finite variation if and only if / \y\ v{dy) < oo
J o < \ y \ < i

and tha t

I y\
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If £t has a.s. bounded jumps, i.e., if the support of v is a bounded set, has 
absolute moments of any order.

Most of our notation should be standard or self-explanatory. All stochas­
tic integrals are Ito-integrals and our main reference texts for stochastic in­
tegrals with jumps are Jacod and Shiryaev [JSh] and Protter [Pro].

We will also need the following simple Lemma. Since we could not find a 
precise reference for it, we include a short proof.

L em m a 0 .0 .1. Let o; £ =  (£1, •■•>£«*) be a Levy process with Q — 0 
and Levy measure v satisfying f  \y\2 v(dy) < oo. For any 0 < e < \  we

bl>i
find a stopping time 7Z£(uj) < 1 such that

^  =  2 ] C  ( sup &>r l +  ([&»&]*)*] < ^ ~ ef r f  Vr€[0,t] J

holds for all t < lZe, where F(7Ze > 0) =  1. In particular, one can find a 
stopping time 7Z > 0 a.s. such that for all t <71

$t — 2 T  (  sup |£j)T| -f ([£»,&]*)3 J < 1- (0.13)
s '  )

R em ark . Lemma 0.0.1 remains valid if Q 0. Since we do not need this 
result, we settle for the case Q =  0 and the somewhat simpler proof.

Proof. As usual we write ^  = supr€j0>tj |£r |. Since Q = 0, we get from (0.10)

E (te*}2) <  3 [\a\2t2 +  E ({M t*}2) +  E ( { .

From (0.12) we see that

E ( { j ;} 2) t j  \x \2 n(dx)
\ x fe l

and Doob’s martingale inequality and (0.11) give

E ({ M t*}2) <  4E(M t)2 =  41 J  \x\2 v(dx).

1*1 <1
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Formula (0.12) implies that

E ([fif]t) = *  J  W 2 v{dx).
\x\>0

Thus, the process
Ct —  f e * } 2 +  [£> C\t

satisfies EC  < C t , where C =  C{y) > 0 is a constant and t < 1. By 
Chebyshev’s inequality

1P(7 ft)  <  <  <̂ tP ( C  >  R )  <

Choosing t — 2~k and R  — (8d)_12_ 1̂_e^  we find

oo oo

] T p { C 2-* > (8d)“ 12~(1~e)fc} <  S d C j 2 2~£k < °°-
k= 1 k = 1

The Borel-Cantelli Lemma implies that

(2~k ^  (8d)_12_ 1̂_e^  for k > k0(co) for some ko(u) G N.

Set ki(co) — ko(to) V +  1 ■ Then (1 — 2s ) ^ -  ^  1 — e for k > ki(co).
If 2” (A:+1) C t < 2~k for some k > ki(u>) we find, as r  Ct is an increasing 
function,

{Sd)Ct <  (8d)C2-* <  2~{l~£)k ^  (2- ( fc+1) ) iW i: <c (2- ( fc+1))(1“ 2̂  ^  ^(i-2e)_

Using the elementary inequality (oq +  . . .  +  a2d)2 ^  (2d) (a2 +  . . .  +  a |d) we 
get with 7Ze =  2” ^ )

^ ( 8d)C \ / t<ne,
and the lemma follows. □



C hapter 1

T h e rate o f  escap e o f stab le  
O rn stein -U h len b eck  p rocesses  
and th e  sca tter in g  th eory  for 
th e ir  p ertu rb ation s

1.1 Stable O .-U. processes and the scattering  
theory for their perturbations

General symmetric stable Levy motion with the index of stability a  G (0, 2) 
can be defined as the time homogeneous and space homogeneous stochastic 
process wa with the transition probability density pWa{x>t), whose charac­
teristic function has the form

Ci ^  A(q/\q\) ^  C2 for some C \ ,C 2 > 0 and A(-) G C 2cZ+3(RfZ\0 ). (1.3)

=  e x p { - iA “ (<7)} (1.1)

where

S d - i

H is a finite symmetric Borelian measure on S d~l (see e.g. [ST] ). We shall 
further assume that
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In order to ensure the last condition it is sufficient to suppose tha t p  has 
a smooth density with respect to Lebesgue measure. For example the case 
of the uniform spectral measure p  satisfies all the assumptions. The stable 
Ornstein- Uhlenbeck process (x,u) is the solution to the system

dx =  v dt , *
dv = ~(3vdt + dwa{t), '

where (3 ^  0 is a constant. In other words, v and x can be expressed as the 
integrals of the stable Levy motion wa by the formulae

t

v(t) = vq exp{—fit} +  J  exp{ —(3(t — r)}  dwa(r) (1.5)
o

and
t  t  T

x(t) — xq +  vq j  enp{—(3t} dr + J  J  exp{—/3(r — ri)} dwa(ri)dr. (1.6)
o o o

We shall prove that for d ^  3 and for d =  2 (for some a) almost surely 
|a; (i) | —» oo as t —>■ oo and obtain the estimate of growth of x(t).

T heorem  1.1 .1 . Suppose d ^  3, 0 < a < 2  or d = 2, 0 < a  < 3/2. Let 
(3 > 0, f ( t )  be an increasing positive function such that f ( t )  =  o(tl/a) as
t —* oo and J (f ( t ) dt~d/a)tu dt < oo, where

iv > max | l  — —} o |  . (1.7)

r  I^WIinn =  oo
Then

tTcL f ( t )
almost surely.

T h eo rem  1.1.2. Let d ^  2 , 0 < a < 2 , (3 = 0, f ( t )  be an increasing positive 
function such that f ( t )  =  o(tf1+1̂ a^), t / f ( t )  =  o(l) as t —> oo and

oo

f  ( f { t ) r il+1' a))dd t <
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Then
v M*)llim — — =  oot^OO f ( t )

almost surely.

The proofs of these theorems follow from the following technical results. 
Observe that deterministic part of (1.6) is bounded for (3 > 0 and

r  \x0 -\-v0t\ 
lim J— —-r— =  0t-> 00 f ( t )

for any function f ( t )  from Theorem 1.1.2 and so it is sufficient to prove 
Theorems 1.1.1, 1.1.2 for processes (x(t),v(t))  with a;(0) =  0,u(0) =  0. Let 
B ^ f  be the event which consists of all trajectories x(-) such th a t the set 
(rr(s) : s E [t,t +  I]} has a nonempty intersection with the ball {x  G Rd : 
|m| ^  A f ( t ) }  for some constant A  and function f( t ) .

P ro p o s itio n  1.1.1. Let A be a positive constant, d ^  2, 0 < l(t) ^  1 and 
let f ( t )  be an increasing positive function on R+ such that f ( t )  =  oft1̂ )  as 
t —> 00. Then

p {b^j} = o{f(t)dr d/a) + o(r1r+1) 0( r <1/o);2) +

P ro p o s itio n  1.1.2 . Let A  be a positive constant, (3 = 0, d >  2 , and let 
f{t)  be an increasing positive function on R+ such that f ( t ) =  o(Tl+1la')) as 
t —> 00. Then

p {b ^ }  = o ( f ( t ) r il+1/a))d +  0 ( r (1+“>) +  0 ( r (1+1/t,)) +

The proofs of Propositions 1.1.1 and 1.1.2 are given in Section 1.3.

of Theorem 1.1.1. Let us take to1 ^  u  such that it still satisfies condition 
(1.7) and 7 =  -ffpp satisfies the inequality

1 \ . 1
7 ( 2 - i ) > i - i .  (1.8)\ a /  a

In particular if a  ^  1, then one can take to' = to. Denote c.n — X)JJZ\ &~7• By 
Proposition 1.1.1

OO OO  1 - ( l / a )  - d r y

E ' W )  -
n —2 n = 2

=  0 ( 1 )  [ i +  11 +m  +  i v ;

ni d
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We are going to show that
OO

y > { B £ f 7 < o o .  (1.9)
n = 2

Since cn = 0 ( n l 7) and l / ( c n — cn_i) — (n — I )7 =  0 { l ) 6 n 1̂ ^  — 0(l)c%', 
it follows that

OO OO

1 =  E / ( C» ) '<Cn <i/a =  E  l ^ ' ) i c n “l a  ( c » -  c » - l )
^  J S  C» -  C- 1

OO o o

=  0 (1) J  dt = 0 (1) J  f ( t ) dt~d/atw dt <  oo.
2 2

The inequality (1— 7) + ( a + 1)7 =  l + a q  > 1 and the form ulae" 1 =  0 (n 7" 1) 
imply

00 -  00 ^

I I  =  E Cn I^ m = ° ( 1) En ( a + l ) 7  v J  £ — /  n 1 + a 7
n = 2  n = 2

<  OO.

Using, by (1.8), ( l / a ) ( l  — 7) +  27 =  1 /a  +  7(2 — 1 /a) > 1 we get
00

v - ( l / a )

n27I I I  =  J ] c r (1/a)—  < 00.
n = 2

Finally, the inequality (rf/a)(l — 7 ) +  <Fy > 1 yields
00 ..

i v  =  E ^ /“ ^ < ° ° -
n —2

Clearly I +  II +  III +  IV < 00. Therefore series (1.9) converges. The first 
Borel-Cantelli lemma implies tha t only a finite number of the events B cJfj 7 
can hold. It means the existence of a constant M  such that for t > Cm 
\x(t)\ ^  A f ( c m), where cm ^  t  < cm+i. This implies the statement of 
Theorem 1.1.1. □

of Theorem 1.1.2. Due to Proposition 1.1.2, X)SS=i < 00• The
Borel -  Cantelli lemma implies that only a finite number of the events B ^ j  
can hold. It means the existence of a constant M  such tha t for [t] > M, 
\x(t)\ ^  Af([t]). This implies the statement of Theorem 1.1.2. □
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When Theorems 1.1.1 and 1.1.2 are proved the following results can be ob­
tained by the usual arguments of the scattering theory (see e.g. [AK, AHK1] 
for details in the case of the Wiener stable process with a  =  2 ).

T h e o re m  1.1.3. Suppose d ^  3, 0 < a  < 2 or d = 2, 0 < a  < 3/2. Let the 
function K(x)  be Lipschitz continuous and there exist positive constants C\, 
C2 and a constant

1. || /iT(cc) || ^  Ci exp{—2C211̂ 11̂ } for all x G Kd

2. \\K(xi) -  K ( x 2)\\ ^  Ciexp{-2C2Tr}\\x1 -  x 2\\ for  ||a?i||, ||z2|| > F.

Then for any pair (vo, xq) <E W2d and for almost all wa there exists a unique 
solution fv(t),x(t)) of equation (0.4) with (5 > 0 such that

with the initial condition (u0,a;o).

The proof of Theorem 1.1.3 is given in section 5.3.

T h e o re m  1.1.4. Suppose d ^  2. Let the function K(x)  be Lipschitz contin­
uous and there exist a positive constant C and a constant

max < 1

such that

lim (v(t) — v(t)) — 0,
00

lim (x(t) — x(t)) =  0,

( 1 .10)

( 1 .11 )

where (v(t) ,x(t)) is given by formulae (1.5), (1.6) and is the solution of (0.3)

such that

1. ||AT(a;)|| ^  C\\x\\ r for all s e R d

2. \\K(xi) — K ( x2)\\ ^  CT~r \\xi — x 2\\ for |[a;2|| > T.
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Then for any pair (i>0, 2Co) £ ^ 2d and for almost all wa there exists a unique 
solution (v(t) ,x(t)) of equation (0.4) with (3 = 0 such that

lim (v(t) — vq — wa(t)) = 0, (1.12)
t —>oo

t

lim (x(t) — x Q — vQt — /  wa(r)dr) = 0. (1.13)
t~> oo J

0

In terms of the scattering theory these results state the existence of the 
random wave operator Q,Wa : (v0,xo) —> (v(0),s(0)) for system (0.4). Clearly 
QWa is an injective measure preserving random map R2d -> R2d. Note that 
unlike the case with deterministic Newton equation the Coulomb potential in 
R3 is included in the class of functions K,  satisfying the assumptions of the 
theorem 1.1.4. The question whether or not the operator QWa is surjective
(in the language of scattering theory the question of the completeness of
the random wave operator ), i.e. each solution of (0.2) or (0.3) has some 
‘free motion' limit is an interesting open problem. A partial solution to this 
question for the Wiener noise w =  wa is given in [AHK2].

1.2 Auxiliary results
In this section (x(t), v(t)) will be a solution of system (1.4) such tha t x(0) =  0, 
v(0) =  0. Let p x { ’,t), Pv{'i t), P(v,x)(', t) be probability densities of processes 
x(t), v(t), (v(t),x(t)) respectively.
L em m a 1.2.1. The following formulae give the characteristic functions of 
the transition probability densities of the (v(t),x(t)) and its projections:

t

Pv(q , t )  — exp |  — A a(q) J  exp{—/3o:r}dr|, (1-14)
o

t t

Px{q,t) = e x p | - A  a(q) J  ( J  exp{-/?(s -  r)}  ds'j d r j  (1.15)
0  T

and
t  t

P(vtx){qi,q-2, t) =  exp J  Aa ( ex p {-(3r}  qx+ J  exp{ ~ P ( s~ r ) } d s  g2) d r} ,
0 r

(1.16)



1.2 Auxiliary results 17

where A =  A(q) is given by (1.2).

C o ro lla ry  1.2 .1. The density p x (x , t )  enjoys the following scaling property

c{t)dpx {c(t)x,t) = p x {x,cr), (1.17)

where a is determined from the equation
a a

1 =  J   ̂J  exp{—fl(s — T)}ds^ dr
0 r

and t t
c(t) =  ( ^  ( J e M - P ( s - r ) } d s )  dr'j . (1.18)

0 r

In particular the last formula implies that for (I > 0,

c(t) - 1 =  o ( r 1/a) (1.19)

and for (5 — 0;
c(t)~l =  O (i_(1+1/o)). (1.20)

proof of Lemma 1.2.1. Formulae (1.14) and (1.15) are direct consequences of
formula (1.16). The latter can be obtained by the general technique devel­
oped in [ST] . For completeness we shall give a direct proof.

We denote the right-hand side of (1.16) by I. Let 0 =  t\ < . . .  <
hn < hn+i — t be a decomposition of the segment [0, t]. Take 5k —
Wa(h+i) -  wa{tk), ak =  exp{-/?(t -  tk)}, bk -  / t* exp{- /3 (r  -  tk) }dr ,

In 2 n
V2n = Z  x 2n =  Y f b k5k. The random variables 5k,k  -  1, . . . , 2n 

k- 1 k=1
are independent. Therefore the 2d-dimensional random variables A k —
{a2k- i52k-i  +  a2k82k, b2k- i52k- i  +  b2k52k), k -  1, . . . ,  n are also independent.
Hence n

P(v2n,x2n)(quq2) = Y I p a M i ’Iz)-
k- 1

Since PaH#) =  ?5f(ATa;) for any random variable £ £ Mm and any matrix 
A 6 Rmxm, it follows that

PAfe(<7i><72) =  P(<y2fc-i,52Jb)(a2fc-i^i T- b2k- iq2, a2kqi +  &2fc?2)
=  p52k_, (a2k-iqi  +  b2k„iq2)p52k(a2kqi +  b2kq2).
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Consequently

2 n

P(V2n,x2n){qu 92) =  H  exp { -  (tk+ 1  -  t k) A a (akq1 -f 6^ 2)}. 
k- 1

Therefore
P(v,x)(qi,q2 ,t) =  lim P(v2n+l,x2n+i)(qu qz) =  I-

n —> oo

□
Lem m a 1.2.2. The density p x , d G N enjoys the following estimate

Px{x,t)  = 0 ( t~ d̂ a) fo r  (3 > 0, (1.21)
Px(x ,t)  = 0 ( t~ d(l+l/a )̂ fo r  (3 — 0 (1.22)

uniformly for all x.

Proof. Let f3 > 0. Changing the variable of integration to q± = P^aq in the
right hand side of the inequality px{x , t )  ^  (l/27r)d f  |px(q, t)\dq and using

R d
formula (1.15), yields 

Px(x ,t )  ^  ( l/2 7 r)V d/a x
t t

x / e x p j - A ^ t - 1/  J  exp{—(3{s — r)}  ds'j dr^  dqx.
R d  O r

Since t t
t~l J   ̂J  exp{ —{3(s — r)}ds^J d r ^ C ( a , [ 3 )

0  T

for some C(a,  /?) > 0, we obtain

Px(x , t)  <  ( l /2 ? r )V d/a f  exp{-C(a,{3)Aa(qi)}dqi

and estimate (1.21) follows. The same method can be used to prove esti­
mate (1.22). □
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L em m a 1.2.3. For process %(•) with (3 ^  0 the following inequality is true

P{ min \x ( t ) \  ^  A f ( t )  \v(t) = v,x( t)  — x}  
r€ [t,t+ J ]

r

^  P | 2£ max |u>a (r)| >  min x +  v J  exp{—ri/3}<iri — A f ( t )  j .
o

Proof. Applying formula (1.6) with x 0 = x, v0 =  v yields

T

min ix (t )\ ^  min x A v  expf—BrA dri
r€ [ t ,i+ i]  re [o ,i] J

(1.23)
0

T  t + T \

+  min — 
re[o,z]

J  J  exp { - /I  (f +  n  -  r2)} (r2)dn
o  t

Using integration by parts we get

r i + T i

J  J  exp{ - p { t  A n -  r 2)} dwa{T2)dri
o t

T  T \

j  ( w a ( n )  -  P  J  e x p { - P { n  -  r2)}wa{r2) dry jdn

^  21 max |u u (r) |,
r e ^ ] 1 v

(1.24)

where wa(r) =  wa( t A r )  — wa(t). Formulae (1.23) and (1-24) yield

T

min \x(r) \>  min x + v / exp{—d rA  dn — 21 max |iDa (r)|. 
re i^t+ i]  r G [ 0 ,1] J  t E [ 0 , Z ]

The last inequality and the fact that u)a (r), wa(r) have the same distributions 
imply the statement of the lemma. □

In our proof of Propositions 1.1.1 and 1.1.2 we shall use the following well 
known fact (see e.g. [Berl]):
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L em m a 1.2.4. For a  G (0, 2) there exists C > 0 such that for all A

Cl
P { max |u;q;(t )| > A} < . (1.25)

l o W l J A"

L em m a 1.2.5. Let f ( t )  be a function from Proposition 1.1.1 for j3 > 0
(respectively Proposition 1.1.2 for (3 = 0), c(t) defined in Corollary 1.2.1 and 
0 < l(t) ^  1 for (3 > 0 (respectively l{t) — 1 for (3 = 0). For brevity we shall 
omit t in functions f{t) ,  c(t), l(t). Then

/  px{x ,t )  P { %l max |iuq(t) | > (l/2)|rc| — A f \  dx (1.26)
/  I  0 < T < 1  )

\ x f e A f

= Q + 0 { c - ala+l) + 0{c -H 2),

where Q = O ( f dt~d/a) for (3 > 0 (respectively Q = O ( f dt~(l+1/a)d) for 
(3 = 0).

Proof. We represent integral (1.26) as the sum of two J i + J 2, whose domain of 
integration are { A f  ^  \x\ <  2(A f+ l ) }  and {|a;| ^  2( A f  + l)}. Formula (1.21) 
for (3 > 0 (respectively (1.22) for (3 = 0 )  implies that

X s; p { A f  a|z(.)| sS 2 ( A f  +  0}  < p { w -)l < 2 +  1)} =

By Lemma 1.2.4 we see

j -  r^t-w f  la+1P x ( x , t )  j  H
2 ^  J  (\x \ - 2  A f ) a  ̂ )

\ x \^ 2( Af +l )

Changing the variable x  to x\ = c~lx  and using the scaling property (1.17) 
we rewrite expression (1.27) in the form

| a i |> 2  ( A f + l ) c - 1

la+1cdpx (cxi,t)
(|®i| -  2A f c - 1)1

o(c~a) /  a dxi

rw  -a \  f  la+1px{x l , cr )
0(c } J {M-2Afc-rdXl

[®i|^2 ( A / + p c _1

0 (c"“) I + I . (1.28)
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By (1.21) (respectively (1.22) for (3 =  0) we see f c ~ l =  o(l) when t oo. 
Hence the first integral in (1.28) equals 0(c~ala+1). The second integral 
in (1.28) is equal to

max p x ( x i ,a ) d x i

J (\Xl\ -  2A f c - y
l ^ | a r i |> 2  ( A f + l ) c - '

= 0 ( c - “r +1)[(l -  2A f c ~ 1)~a+l -  (2c-H)~a+1]

= 0 (c~ala+1) +  0 (c_IJ2).

□
Lem m a 1.2.6. Let £ G R2d, d ^ 2 be a random variable with density p^(x), 
such that

Pt={q) = exp{—AQ((/)}, A a(q) = |^|“AQ( | ^ ) .

Denote hu(q) =  (Uqu Uq2), where U G Rdxd, q =  {qi,q2), qi,q2 G Rd . 
Assume that

I<i < X{q/\q\) ^  K 2, (1.29)

for some constants K i, K 2 > 0 and

\{q(-)) G C 2d+3(R) (1.30)

for every U G Rdxd and for every integral curve q(r)  of the equation q(r) — 
hu{q{r)). Then

p( ( R , i ’) = 0 ( R - ^ + y ,  (1.31)

where R  = |a:|; if — x/\x\  and p%(R, if) =  p^(x(R, if)).

Proof. Step 1. One has

OO

P((R,ip) =  — 2d [  [exp{—r “A“ (0)} exp{*Ur < ip > } r2d_1
J  : o
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where r =  \q\, <f> = q/\q\. Using for <$> spherical coordinates (p, 9), p 6 [0, 7r], 
9 G S 2A~2 with main axis directed along 'ip and changing the variable p to 
the variable k = cos p give

2 ' 2d~ 3Pt(R,il>) =   2d /  ( 1 - k )  2 Jq(k, 9) dftdQ,
(V2^) S2d-2 _i
OO

Jq(k, 9) — J  exp{—r aA“ (^, 0)} Qxp{irRtz)r2d~l dr, 
o

where A(«, 9) — A(0). Changing the variable r to the variable r  -+ ri? we 
get

oo

Jo(«»0) =  J  ex.p{—raR~a\ a(K,,9)}exp{irK,}r2d~1 dr. 
o

We finally arrive at

P{+V>) =  E , % 7 1 =
l=l C_rU"'“ '

1 OO

x J  1 1  (1 — k2) 2 Z*exp{ir/c}exp{—
Ŝ d-2 ! l  0

=  I +  11, (1.32)

where
Z\ =  (exp{—raR~a\ a(K, 0)} — 1), Z 2 — 1.

One can show ( see e.g. [K3]) tha t II =  0. Changing the variable r to the 
variable r  -+ rA(«, 9), yields

li c r n 2̂-3 _,
p?(R}ip) = 1 =  lira  57 / /  (1 — k ) 2 A-  (K}&)J(K,0,e)dKd9,

( V 2t R )  J . , 1
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oo
J(K,e,e)  =  / ( e x p { - r ^ - n  -  l ) e xp{ir(« +  fe)A - '(* ,9 )} r^ * d r . (1.34) 

0

S7ep 2. Let D  =  {g £ : « =  0}. We now show that for each q 6 D
one can choose U € Erfxd such that

| ( M g ) , ^ ) | > l / 2 .  (1.35)

Let F ( r ,p ) , r  € M, p G 12 be a solution of the equation on S 2d~l

-~~F(r,p) = hu{F{r,p)) 
dr (1.36)

F(0,p) = p.

and

®(r ,p)= F(T’P)
i ^ r . p j r

Since /i[/(-) is a smooth vector field in some neighbourhood of q, there exist 
open neighbourhoods of q V{q) C S 2d~l , O(g) C D and T  = T(q) > 0 such 
that

V : ( - T , T ) x O ( q ) ^ V ( q )  (1.37)

is a diffeomorphism. W ithout loss of generality one can assume that for any 
q = (Wj0) e V{q)

\K\ max
d_

dr

> 1/ 2, (1.38)

< 1/ 2, (1.39)

< I<i/4, (1.40)

■ T) x 0 (9).
Since D  is a compact and D  c  Uqe£>V(q), one can choose a finite sub­

covering D  C V  = U™=1V(qn). Denote Tn = T(qn). One can choose smooth 
functions x n(«:, 0), n = 1, . . . ,  m  on 5 2d“ 1 such that

m
O < X n ( « , 0 ) ^ l ,  y ^ X n (M )  =  1 (1.41)

? i= l
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for (ft, 9) E V  and supp Xn C V(qn). Let

K 3 = inf{ |ft| : for some 6 q = (ft, 9) € S 2d~l \  V}.

Since D  C V,  it follows K 3 > 0.
Let £(ft) be a smooth function M —> [0,1] that equals one (respectively

zero) for |ft| ^  m in{l/3 , K 3/ 3 } (respectively for |ft| ^  m in{l/2 , K ^ / 2} ). We
put

/i(ft,0 ) =  AC(ft) and / 2(ft, 9) -  A {1 -  C(ft)),
„  2<i —3

where A =  (1 — ft2) 2 A~2d(ft, 0), and

1

Si =  Re lim -------— ^  f  f  fi(K,9)J(K,9,e)dK,d9. (1.42)
( v ^ R f sl 21

Recall tha t J(ft, 9, e) is given by (1.34). From (1.33) we find

=  S i +  S2.

S£ep 5. Changing the order of the integration gives
00

Si =  Re lim ---- -— /  (exp{—raR~a] — l ) r 2d~lG(r,£) dr>
^ ( ^ R )  I

where
G(r, e) = J  f i (n ,9)  exp{ir(ft +  ,ie)A“ 1(ft, 0)} d^d9.

v
We now show that G(rte) =0{r~(2d+2)) (1.43)

uniformly for all 0 ^  £ < e0 for some e0- Then (1.43) and the elementary 
estimate 1 — exp{—z} ^  z, z ^  0 imply Si =  0(i?~(2d+a)) f^° r~(3~a^dr =  
0 (R-( 2d+a)).

m
Using (1.41) we have G(r,e) = Y2 Gn(r,e), where

n —1

Gn(r,e) — J  /1  (ft, 9)xn(^7 9) exp{zr(ft +  ze)A- 1 (ft, 9)} dnd9. (1.44)
V(qn)
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Let us make the change of the variables (/c, 6) —» (r, 0O) — F ~'1(/U 0) in (1.44), 
where F ~ l \ V(qn) -> (—Tn,Tn) x 0(qn) is the inverse map of F  given 
by (1.37). Denote the amplitude of the Jacobian of this change of the vari­
ables by J n ( r ,  (90),

9n(r) =  S„(t,0o) =  •7n(’",0o) [ / l («, 0)Xn(«, 

and  A(r) =  A (F (r, S0) / |F ( r ,  0O)|) =  |F ( r .  0o) | - “ A (F (t , 0O)). Then

(1.45)

(1.46)

G„(r,s) = I J  gn(r) exp{irw(r)} drdOo,
0 (q n) ~T n

zu(r) =  («(r, 6*0) +  ze)A_1(r).

Condition (1.30) implies that A(r) G C 2ti+3([--Tn, Tn]). Therefore 
9n(r)y ro(r) G C 2d+3([-T n, T„]). By (1.38) we see

<9ft(r, d0) ( d F ( r , 9  o) A
d r V 9 r  ’U

,ip)\ = \(hu (F(r ,e0)) .^ ) | >  1/2. (1.47)

Using (1.40) we find e0 > 0 such tha t for all 0 ^  e ^  £q

max ( /  a \ ■ \® K r ) | F 1(«(t , 0o) 1 ,

where maximum is taken over all (r, 0O) € (—Tn,Tn) x 0(qn). Consequently

A~2(t)
d w { r )

d r

> (

dr  
1 „  1

w \ t • \ ^ ( r )A(t) — (k +  &e) dr

for 0 ^  e < £q. Applying integration by parts formula 2d+  2 times and using 
the fact tha t gn ( ± T n ) =  . . .  =  g {n d+2\ ± T n ) — 0, give

n

gn(r) exp{ irw (r )}dr  =  (?r)“ (2d+2) J  P 2d+2(r) exp{zra(r)}  dr, (1.48)

dzu(r) \ - 1'!

-r, 

where
Fq( t )  =  ( r ) , P m+ i( r )  =  ~  Pm {r dr )
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The estimates above imply P2d+2{j) — 0(1). Combining (1.45) and (1.48) 
we get (1.43).

Step 4• We proceed with S 2. Applying integration by parts formula 2d 
times we find from (1.34)

OO

J(/€, 9, e) = (iB)~2d J  ^ ~ ^ ^ r2d-1(exp{—raR~a} — 1)^ exp{ irB}  dr, (1.49)
0

where B  — (/•c+z£)A“ 1(ft, 0). The inequality |/cA_1(/s, 9) | ^  iC /1 ma,x{AT3/ 3 , 1/3} > 
0 for k  E supp /2  and

2d,
r 2d_1(exp{—r ai?_Q} -  1) =  ( omr tmi- 1i2"0!,n)  e x p { - r“i r a}

m=l

for some am =  am(a, 2d) imply tha t there exists J(k, 9) = linv^+o J(/c, 9,0) 
for (k, 9) E supp/2 and

d
2 \ ±̂ r L -2d(—1)“ r /' ~ 2d~3

S2 = R e ---------- j? / /  (1 — ft ) 2 k J(k ,9 ,0 ) dtvd9,
SL L

where

2d
J ( k , 8 ,0 )=  j  e x p { - r aR~a}exp{irK,\- l (K,0)}dr.

0 m=l
(1.50)

We are going to show that J(k, 9 ,0) — 0 ( R  a) uniformly for all («,0) E 
supp/2, which evidently completes the proof of Lemma 1.2.6. W ithout loss 
of generality one can assume that k > 0.

Case 1. Let a  E (0 ,1 ). The integral (1.50) along the curve r  — L exp{ir7T/2}, 
L > 0, r  E [0,1]

\  2d
/   ̂ arnL ocm~l exp $yi{am — l ) r  ^  j  R~am ĵ exp |  — I/* exp j  i ra  

0 m=1

x exp j^L exp |« r^ - |« A _1(/c, 0) j l / i — exp {^r ^ }  dr
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does not exceed in magnitude

2d
(  j  L — exp { -  L “ cos { a |  } « ““ }■

m —  1

The latter expression tends to 0 when L  —> oo. Then for an}' («, 0) E supp/2, 
k > 0 one can rotate the contour of integration in (1.50) to the imaginary 
axis. Changing the variable r to the variable r —» ir yields

f  ( Y2 a^ ex p  \ i ( a m  -  l ) | J ram D 
o m=1

x exp |  — exp j?,ajRCa j  exp{—rK,\~l (K,)}i dr = 0 ( R ~ a).

Case 2. Let a  E [1,2). Similarly, for any («, 6) € supp/2 one can rotate 
the contour of integration in (1.50) through the angle exp{m/2Q;}. Changing 
the variable r to the variable r —> exp jL r/2a}r yields

°p 2d

/ ( a?n exp {*(am _ -1-) ^
0 m==1

x exp{—iraR~a} exp jie x p  | i ^ - | r ^ A -1(^ ) |( ir  =  0 ( R ~ a).

□
L em m a 1.2.7. Denote by x(t) = t~l/ax(t), v(t) = v(t) for (3 > 0 and 
x(t) =  t~^l+l/°^x{t), v(t) — t~l/av(t) for (3 = 0. Then £ = (x(t) ,v(t)) satisfy 
the conditions (1.29), (1.30) of Lemma 1 .2 .6, where K\,  K 2 do not depend 
on t.

Proof. Step 1. Formula (1.16) implies that

1

Pt(q 1. 92) =  exp |  -  J  A a{yiqi +  72^2) ^ } ,
0

where A(-) is given by formula (1.2), 71 =  71 (s) =  t l /a exp{—fist}, 72 =  
72(s) =  t f g1 exp{ —j3(t — s)t} dr for (3 > 0 and 71 =  1, 72 =  1 — s for (3 =  0.
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Applying condition (1.3) to the formula 

i i

A (?) = jA“(7i9i +  7292) ds =  J|7i9i +  7292|aA“ )
0 0

(1.51)
q = (<?i, ^2) ? we get condition (1.29) with

1 1

Ki — Ci min /  |7i(?i +  7292!“ K 2 = C2 max / |7i<?i H- 72^2|a rfs, 
j  (/es2̂ -1 J
0 0

where we used

1 1

J  |7 i(5) |a ds = 0 (1), J  |72(s)|a ds =  0 (1).
0 0

Step 2. Let U € and q(r) be an integral curve of the equation
q(r) = hu(q{j)).  We will show that A(<?(•)) € C 2d+3(K).

Given r0 we take r  such that

0 0  \ \ n \ \ ny l i h l L . | r __roP < 1. (1.52)
n\n = 1

Since
00 (n)

/ \ / \ . y-^ Qi1 ( t 0) ,  n U n (qi(ro)) .
-  f t ( r 0) +  2 L  “ Wi— (r  ~  r ° ' =  +   LI------ (r  ~  r o) >

? i= l ' n —1

i — 1, 2, we deduce from (1.51)

A(g(r))

= f  Aa ( 710-1 (t0) +  72^2 (to) +  (T __ ro)^
0

1

n\
n = 1

J  \liQi{ro) + 7 2 0 ,2('ro) r A a ( / ( 5 , r ) ) d s ,
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where

7i9i(to) +  7292 (70) , U"(7i9i(to) +  7292(ro)) ( r  -  tq)7f (  \ -  7 i9 H 'o j 1- }2h2 0) \ - ^
I '-v . n ,  4 -  'V r . / 7 r 7  t v A  I ‘|7i9i (to)+7292(7o)| “  l7i9i(ro) +7292(7o)| n!

Using (1.52) we find

1/ (5 ,r)|  ^  > 0
n ~ \

for 5 so, where so is a solution (if it exists) of the equation

7i 0*o)9i (to) +  72(50)92(7-0) =  0.

This and (1.3) imply that for any s /  s0 the function AQ( / ( s , r ) )  is d +  2
times differentiable at r  =  tq and so A (q(r)) is d +  2 times differentiable at
T = Tq. □
L em m a 1.2.8. Let d ^  2. Denote by

T

I =  p j  min a :(t)+ u (t) J  exp{—(5s} ds ^ ^ |a ; ( t ) |J .  (1.53)
0

Then I =  0 ( t~ d̂ ald) for (3 > 0 and I =  0 ( t~ dld) for j3 — 0.

Proof. Using the notations of Lemma 1.2.7 we have

1
I =  P { min Ix(t) +  A(r)v(t)  I ^  -  \x

y re[o,q 2 1

where A(r)  =  /;_1t  for (3 — 0 and A(r) =  t -1/® JQT exp{—/?s} ds for (3 > 0.
Using the coordinates £ =  .Roost? A/, v = R  sin i3N2, R  G [0,oo), t? G [0,7r/2],
N i , N <2 G 5 d_1 we obtain

00

I  J  (cos •O sin <5)d_1Pii((),*(() (-R, JV,, N 2)R2d~1 dRtffldNidNz, (1.54)1 =
Q 0

where

Q — j(t?, Ni, N 2) : min | cost?Aff +  A (r) sin t?tV2| ^  -  cost?}
t  r€[0 ,i] 2  J
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Lemma 1.2.7 and formula (1.31) yields
oo

f  A  w1,JV2) ii2‘i- 1d£: =  0 (1)
0

uniformly with respect to t?, Aff, N 2. The inequalities

— ^  min |lVi +  A(t ) tan$Ar2| > min (1 — A(r)  tan#)2 re[CU] T€[0,i]

and r  ^  I imply that Q C Gi = {($, Ni,  N 2) : 1 — A(l) ta n #  ^  1/2}. 
Applying \G\\ = 0(A(l) )  and cost? =  0(A(l))  for (#, •, •) G Gi, we estimate 
expression (1.54) by

0(1) (  {costfsini})'1- 1 dtfdNidNi = 0{l)\g1\(A(l))d~1 =0{{A{l))d).
Qi

Observing A(l) ^  t~l/al for (3 > 0 and A(l) — t~xl for (3 = 0, we complete 
the proof. □

1.3 E stim ates for P {B t̂ j )

Let 0 < l(t) ^  1 for (3 >  0 (resp. Z(t) =  1 for (3 = 0). It is clear tha t 

P{B 1j! j}  = P{\x(t)\ ^  A f ( t ) } p  j  J  J (v , x )p (V>X)(v,x , t)  dvdx, (1.55)
\ x \ ^A f ( t )  Rd

where
J ( v ,  x) = P{ min^ |a;(r)| ^  A /M  | ^ W — v, x(t) — a:}.

Due to Lemma 1.2.2 P{|o;(£)| ^  A f ( t ) }  =  0 ( / ( t ) f _1/a) d for (3 > 0 and
P{|x(t)| ^  A f ( t ) }  = 0 ( f ( t ) t~ ( 1+1/a)) d for (3 = 0 . We represent the integral 
in expression (1.55) as the sum A +  I 2 of two integrals, whose domain of 
integration in the variable (v,x)  are

t + T

Di — |  min \x +  v J  exp{—/3s} ds\ ^  (l/2 )|:r |}
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and
t + T

D 2 = \ min |a; +  v / exp{—j3s} ds\ > (1 /2)|a;/
Lemma 1.2.8 implies that h  ^  f  P(v,:K){v , x ,t) dvdx = 0 ( t~ d/ald) for (3 > 0

Di
and I\ =  0 ( t~ dld) for (3 =  0. By Lemma 1.2.3 we see

for (v , x ) E D2 and so, integrating the estimate for I 2 over v we get

Applying Lemma 1.2.5 and formula (1.19) (respectively (1.20) for (3 = 0 ) to 
estimate (1.56) yield

I2 = o(f{t)dr {1+1/a)d) + o(r(1+a)) + o(r(1+1/a))
for (3 — 0.

Piecing together the estimates above gives the proof.

1.4 E xistence of the wave operator
The proof of Theorems 1.1.3 and 1.1.4 follows a well known pattern. 

Proof of Theorems 1.1.3, 1.1.4. The change of variables

21 max |rr!a,(r)j > -  \x\ o<r<i1 W i 2 1 '

21 max luyTr)! > — imI0<r</' W l 2
\ x \^Af ( t )

for (3 > 0 and

t  T

y
0 0

h v —
o
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transform system (0.4) into the system 

y — h
t  r

h = K ^ y  + J J  exp{-~(3{r — s)} dwa(s) dr^j — f3h. 
o o

Making the change of the second variable h =  exp{— we get the equiv­
alent system

y  =  eXp { - p t } z
t  T

z = exp{(3t}K (y  + J  J  exp{—fi(T — s)}dwa(s ) d r Sj .  (1*^)
o o

Let T  > 0. Denote by C([T, oo)) the Banach space of bounded continuous 
function from [T, oo) into M.d with the norm =  sup{|u(:r)[ : x E [T, oo)}
and by B t  the unit ball

BT = { u e C ( [ T ,o o ) ) : \ \ u \ \0 0 ^ l } .

Case 1 . Let (3 > 0. It is clear tha t if some function u 6 B t  is a fixed 
point of the map

o o  o o

(Fu)(t)  = J  exp{—/? r} | J  exp{/3s}I< +  y0
t  r

s s si

-fzo J  exp{-(3si}dsi  +  J  J  exp{—(3{si -  s2)} dwa (s2)dsi^<is j d r ,

o o o

then y — u +  yo +  zq f* exp{—/3s} ds and z = z0 4- exp{/3t}u are the solutions 
of (1.57) with the asymptotics (1.10) and (1.11) and so the existence of the 
solution of (0.4) with asymptotics (1.10), (1.11) is equivalent to the existence 
of a fixed point for the map T .

Let us choose p G (0 ,1/a. — 1/d — max{l — 1 /a , 0}/d). Then rp > 1. The 
existence of such a p is assured by the condition on r. Then the function 
f ( t )  = tv satisfies the condition of Theorem 1.1.1 and consequently, there 
exists a T0 such tha t for all T  ^  T0

T  T  si

yo +  ô J  exp{—/3s].} ds\ +  J  J  exp{-/3(si -  s2)} dwa(s2)ds} > T P + 1
o o
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with probability one and, moreover,

s: C2.

Due to condition 1 of Theorem 1.1.3, for these T  the integral

exp{(3s}K^u(s) +  yo +  z0 j  exp{—j3s\} ds\
o

S S i

+ [  [ e , P{ - 0 ( s l - S2) }dwa(s , )d s1) d s  (1.58)
0  0

is well defined for any u G B t  and does not exceed in magnitude
o o  o o

C\ J  exp{/3s — 2C2s pr} ds ^  C\ J  exp{—C2Spr}ds
T  T

o o

^  Cl J  exp{ - C 2s}ds  = ™ exp { - C 2T } .

T

Analogously, due to condition 2 of Theorem 1.1.3, the norm of the differ­
ence of two integrals of the form (1.58) corresponding to different functions 
u i ,u 2 G B t  is bounded from above by

~  exp{—C2T}||wi -  u21|.
02

This implies that the map T  is well defined on B t  for such T  and, moreover, 
if we take a T  such that

——— —  exp{ —T(P  +  C2) }  <  1, 
p  +  C2 C2

then fF maps B t  to itself and is a contraction on B t - The contraction
mapping principle implies then the existence of a (unique) fixed point to F ,
which completes the proof of theorem 1.1.3.

Case 2. We proceed with (3 =  0. Obviously, if some function u G B t  is a 
fixed point of the map

CO o o  s

(Fu)(t) = J  J  K  (u(s)  +  yo +  zqs +  J  wa(si) ds ij  dsdr, (1.59)
t  T  0
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then y = u + y0 + z0t and z ~  z0 u are the solutions of (1.57) with the 
asymptotics (1.10) and (1.11) and so the existence of the solution of (0.4) 
with asymptotics (1.12), (1.13) is equivalent to the existence of a fixed point 
for the map T . Notice tha t condition 1 of Theorem 1.1.4 implies the existence 
of the integral in (1.59).

Let us choose p G (0, (1 +  1/a  — 1/d). Then rp > 2. The existence of such 
a p is assured by the condition on r. Then the function f ( t )  = tp satisfies 
the condition of Theorem 1.1.1 and consequently, there exists a T0 such that 
for all T  ^  T0

yo + zQT  + j  wa(si)dsi > T P +  1
o

with probability one. Due to condition 1 of Theorem 1.1.3, for these T, the 
integral

oo s

J  k ( u {s ) +2/0 +  20 S +  ) (1.60)
r 0

is well defined for any u G B t and does not exceed in magnitude
OO CO

c [ f  s~pr ds dr <  — r p 2 - p rJ ]  "  ( p r - l ) ( p r - 2) ■
T  T

Analogously, due to condition 2 of Theorem 1.1.4, the norm of the differ­
ence of two integrals of the form (1.60) corresponding to different functions 
U \ , U 2 G B t  is bounded from above by

(pr — l)(p r — 2)
rjp2—p r  | U i  -  U2 .

This implies tha t the map T  is well defined on BT for such T  and, moreover,if 
we take a T  such tha t

T 2~pr < 1,
(pr — 1 )(pr — 2)

then fF maps B T to itself and is a contraction on B t - The contraction 
mapping principle implies then the existence of a (unique) fixed point to T , 
which gives the proof of theorem 1.1.4. □



C hapter 2

T ransience and N on -exp losion  
o f C ertain  S toch astic  
N ew ton ian  S ystem s

2.1 N on-explosion
Let (X( t ) ,P ( t ) )  = (X(t,xo,po),P(t,XQ,po)) be a solution of the system

{ dx ~  pd t

dP =  ~ T £ d t ~ l £ d&’

with initial condition (aanPo) £ F 2d at £ =  0, where = (£i ,t, is
a Levy process, d ^  1, c G C 2(Rd,Md), 1/ G C 2(Rd), V  >  0 and 5c/da; is 
uniformly bounded. Due to the smoothness of V  and c, this solution exists 
and is unique locally (i.e. for small times).

T h e o re m  2.1.1. We denote by Tm — inf{s ^  0 : |X (s)| V |T (s)| ^  m} o,nd 
Too — supTm the explosion time of system (2.1). Then F(Too =  oo) =  1.

m

Proof. Step 1. We write rm — inf{s ^  0 : \P(s)\ ^  m}  and r,oo =  su p rm. It
m

is clear tha t Tm ^  rm and so ^  Too- Assuming that T^  < r  < rm for 
some r  > 0, m  G N, we deduce from the first equation in (2.1) that

max |X (s)| ^  ItqI +  r  max |P (s)| ^  bo I +  rm.
s € [ 0 , r ]  s G [ 0 , r ]
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On the other hand < r  implies max |AT(s)| =  oo. The contradiction
s € [ 0 , t ]

proves — Tqo and we are done if we can show that F(too =  oo) =  1.
Step 2. We put H  =  H(x,p) = (p2/ 2) +  V(x).  An application of Ito ’s 

formula to H(t)  =  H(X(t) ,  P(t))  yields

dH{t) = P ( t - ) d P ( t )  + \  tr
Zi

dc(x(t-)) „
dx t \  dx

dx

where Z t G Rdxd, (Zt)ij = and

1

d V ^ P ( t ) dt + ^  (2.2)

E =  j  T  ( P 2 ( r)  “  ■P 2 ( r_ )  ”  2 P ( r - ) ( P ( r )  -  - ) )

-  ( P ( t ) -  P ( r - ) ) 2)  =  0.

Notice first equation in (2.1) implies tha t X(t)  is a continuous function. 
Replacing dP  in (2.2) through the expression in formula (2.1) we arrive at

dH{t) (2.3)

d c{X{ t - ) )  J<t ( d c (X ( t - ) )Sc(X(i)) 1 
_  ftr 2

S H I  ( S S H I )
ax \  ox J

Setting a stopping time o — s A rm A Qr , where =  i n f : |£t | ^  R}, 
5 > 0, m  G N we calculate from (2.3) that

W(<j-) =  i f ( 0 ) - I  +  II, (2.4)

where

II -  i f u
0

a e ( X ( t - ) )  ^  ( dc(X(t-))
dx 1 \  dx

T

Step 3. Denote by 'ijj(D) a generator of and by D ('ip(D)) its domain. We 
want to estimate |E I |. For this purpose let us take a function 4> G CQ
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such that 4>{x) =  x  if |a;| ^  1, supp <56 C {x  : |x| ^  2} and define (j)R(x) = 
Rcf>(| ) .  Clearly,

<M&) =  6  for any t < QR

and since <fiR G C£°(lRd) C /D(ip(D)) is in the domain of the generator of £t 
we find that

(2.5)

is a martingale (w.r.t. the natural filtration of Using decomposition
(2.5) we have

< t— a —

e i  =  e  f  p { t - ) ^ 2 N ) l dMp +e J P ( t - ) 22N l l ^ D ) 4,R}{(,t)d t  = r + i" .  
0 0

Applying optimal stopping time to the martingale 

J  P( t~ )(dc (X( t ) ) /dx)  d M f R we deduce from

I' =  E [  P ( t~ )  d M f R -  E P ( o ~ ) l ~ N l  / \ M p
f  L/ *Xj

that

where

I ' C m
dc
dx

dc

E | AM** | ^  2
dc

dx
max supxeRci

dx  

dci(x)
dxj

and we used
| a m **\  =  I M C )  -  < M 6 r - ) l « 2 R M I L -

To estimate I" we first estimate

(2 .6)

exp{ixC}i>(C)<t>R(C)
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where <j>R is a Fourier transform of (f)R. Since 4>R(() = R d+14>(R(), it follows

III sj (2ir )~ iR J  R d |^(C)^(HC)| d(  =  (2*N ^ R  J  ( | )  Hv) dp.

Levy-Khinchine formula implies tha t |'0('^)| ^  C i(l +  \v\2) for some constant 
C\ — C\ (ip) > 0 and so we find

dp.

Since </> G <S(Rd), we obtain

\[ip(D)<pR](x)\ <  C iR  [  ( l  +  |7?|2) 4>(p) dp — RC 2 < 00

for some constant C2 = C2(ip, (p) uniformly for all x  G Rd. Hence

dc
dx

m C 2R s .

Combining (2.6), (2.7), gives

|E l | ^  CtfnR  +  C^mRs,

where C3 =  2||dc/3ii:||0o H ^ ,  C4 =  \\dc/dx\\x C2. 
Step 4- We proceed with |E II |. Formula

||A B |U  ^  d |H U ||B ||o c , 

where imioo =  max (A)ij, implies that

pdxd

tr
dx

dc
dx

Using

\  dx

E ([C?]sÂ - )  <  s J  \V? v(d.y),

dlCPt-

(2.7)

(2 .8)
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we get

E l i  ^  C5 s J |y| (2.9)
|Z/|SC2 R

for some C5 =  (d3/ 2) ||«9c/^rr||2.
Step 5. Combining (2.4), (2.8), (2.9) we obtain

^  H(0) + C3m R  + C4m R s  + C5s J  \yfv{dy).  (2.10)
l?/K2«

On the other hand,

E (ff(c r-))  =  ) - E P 2 ( a - )  + E V  ( X ( o - ) )  ts i f i p 2(cr~) (2.11)
Ll Lj

1 TV ?
> -  E ( P 2(s A Tm A Q R - ) l { Tm<sAQR}) > (Tm < S A Qr ) .

Piecing together (2.10) and (2.11) finally gives

„ , „  211(0) 2 CSR2 2 . ,P (rm < s  A Qr)^  Y -  + - 2 -  + —1 + — Y  / t/ V dy .
m A m  m  m z J

\ y \^2R

Let first m  —» oo and then P  —» oo shows

P(Px> < s) =  0

for any fixed s, so P(r ^  =  oo) =  1, and the claim follows. □

2.2 Transience
Our proof of the transience for system

dx — pd t  
dv (2 .12)

where waj  is cx-stable process, will be based on the following statement which 
is a natural extension to general Markov processes of a criterion which is well 
known for diffusion processes (see e.g. [Pr], [Kha]).
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L em m a 2.2.1. Let {r]t}t^o be a predictable, W1 -valued, cadlag strong Markov 
process generated by (A, 51(A)). Let D CML be a relatively compact Borel set 
and assume that there exists some u E 2) (A) with the following properties:

(i) u E C 6(Rn )

(ii) inf u > a > 0 in D
' D

(Hi) 0 in D c

(iv) u(yo) < a for some y0 £  D

(v) Au  E C(M n ) and satisfies Au  <  0 in D c 

Then {r]t}t^o Is transient.

Proof. Since u E T)(A) we find that
t

M t -  u(r]t) ~  j  Au{r]s) ds 
o

is a martingale. We set

td  = inf{t > 0 : r)t E D}.

An application of optional stopping time shows tha t for any fixed T  > 0 

EyoMTDAT =  Eyo M0 =  W°u(y0) =  u(y0) < a.

On the other hand
r o  AT

EVoM TdAT = Eyo (u(r}rDAT) -  J  Au{r/S)ds)
0

^  Eyou{r)rDAT) A Eyo (u{r}rDAT)lrD<oo) ■

Since u E C& we can use Lebesgue Theorem and let T  —» oo. This gives 

a >  lim Eyo (u(?7TDAr) l TD<00) =  Eyo (u{rjTD) l TD<00)
T —>oo

^  (inf it) Pvo(td < oo) > aPyo(r£> < oo).

Therefore PVo(rD < oo) < 1, that is (see e.g [AKR]) {ry}t^o is transient. □



2.2 Transience 41

L em m a 2.2.2. Let {£t}^>o, be a Levy process with Q = 0, that is its Levy 
measure has no Brownian part. The generator of the process (X(t) ,  P(t)) = 
(X(t,Xo,po), P(t,Xo,po)) solving (2.1) is given by the formula

. . . du(x.p) du(x.p) dV(x) du(x.p) dc(x) _  .
Au{x,p) =  — --------p  ^ — 5------- -— E£x

dx dp dx dp dx
du(x,p) dc(x) 

dp dx+ J (u ( z , p + ^ p - c ) - u ( z . p ) -

(2.13)

C) "(dO-
ICÎ o

Proof. Let u(xq,pq) G C 2(Rd). Since [£,£]c =  0, an application of Ito ’s 
formula shows

fxr/ \ r-,/ \\ f  7-i 7 fu ( X ( t ) , P ( t ) ) = j  - P d T - J  -  — dr
du dc 
dp dx d^T + 1,

where

1 =  Y ,  ( u ( X ( t ) , P ( t )) -  u ( X ( t - ) , P ( t - ) )

d u ( X ( r —) ,P (T —)) dc
0 < T < t

+ dp dx A£t ) .

One readily sees, 

d
dt

E u (X ( t ) ,P ( t ) ) (2.14)
i=0
du(x0,p0) du(x0,p0) d V (x 0) du(x0,p0) d c ( x Q)
------------ T l „ ---------------------------------------------------------Itbsi

dx V o

4 = 0

dp dx dp dx

The compensation formula (see [Berl], page 7) gives
t

E l  =  E u ( X ( t —),P ( r - )  +  ) -
dx

d u ( X ( r —), P ( r —)) dc(X(r))
dp dx

v{dy) dr
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and so

d
dt

(E l) (2.15)
t ~  0

dc{x 0) 
u i x 0ypQ 4— Q ^ - y

du(x0yp0) dc(x0) u{x0ypo) H — 5r—  y
dp dx

v{dy).

Combining (2.14) and (2.15) we complete the proof. □
T h e o re m  2.2.1. Let d ^  3; V  G C 2(Mf), c G (72(E d , E d). Then the process 
solving (2.12) is transient.

Proof. We are going to apply Lemma 2.2.1. Take the function

u(x,p)  =  (H(x,p) -  V0)'
p - 7

+  V(x) - V o )  , 7 > 1

where Vo =  inf V  — 1, and

D — {(xyp) : |rr| +  \p\ ^  1} C E 2d. a — (1/2) min u(x,p).
(x ,p)€D

Conditions (i)-(iv) of Lemma 2.2.1 obviously hold. For chosen u =  u(x,p)  
we get

du
d i P

du dV
0.

dp dx
The Levy measure n(d() for a-stable process is given by the formula 
v(dQ — \C\~d~a d(. Using this and the symmetry of v y we deduce from (2.13) 
that

1 d(.[Au](x,p)= J  ( u ( x , p + ^ Q - u { x , p ) \  

ICI#o
|C|d+a

An application of Corollary A. 1 with B — (dc /dx ) with b =  2(V(x) — Vo) 
gives Au  ^  0 for any x ,p  G Erf and so condition (v) of Lemma 2.2.1 holds. 
Applying Lemma 2.2.1 we complete the proof. □



C h a p t e r  3

E s t i m a t e s  f o r  M u l t i p l e  
S t o c h a s t i c  I n t e g r a l s

Here we derive some estimates for multiple stochastic integrals which will be 
needed later on. We use the following notation. For any A  £ jjlMxN we write

PHoo =  max \{A)id\.
1= 1 . . , 1VL 
j  =  l ,. . . ,J V

We will always consider Ar-fold stochastic integrals driven by (general) 
real-valued semimartingales {Vj,t}t^o> j  — 1, . . .  ,d with cadlag paths or by 
the deterministic process r]o>t = t. We assume that all semimartingales are on 
the same probability space (f2, J7, P) and are adapted to the same filtration 
(F)tzo. The filtration is assumed to satisfy the usual conditions, i.e., it is 
right-continuous and augmented. Since the drjj>t j  — 0 , . . . ,  d may appear 
in any order we want to keep track when we deal with dr = drjoiT and dr]j)T} 
j  = 1 , . . . ,  d. To do so we introduce a sequence £n £ N in the following way: 
if

dilji,ri d'f}j2,7"2 • • • d,Tjjk)Tfc (3-1)
is the integrator in our k-fold integral, then

i x — min{s : j s ^  0}
i 2 — min{s > l \  : j s — 0} — 1

t 2n-1 =  min{5 > £2n-2 : js 7̂  0}
t 2n =  min{5 > £2n—1 : js — 0} -  1

43
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i.e., we observe runs of general semimartingale integrators between t^n-i and 
l<in (inclusive) and of d r ’s otherwise. Note tha t t^n-i ^  ^2n and l<in +  1 <
•̂2n+i• We set Aii — {1 , . . . ,  d} if fbn-i ^  i ^  ^2n for some n  and AL =  {0}
otherwise. Finally, set

m =  m (k) -  # { s  : j s ^  0}

i.e. m is the number of non-trivial integrals in (3.1).
Let Wj>T = WjtT(u ), J0)T =  /o,T(w) be RMxM-valued continuous processes, 

such tha t for 0 ^  to ^  t

sup ^ 1 ,  j  — 0 , . . .  yd, (3.2)
iô Ŝ -T

and vT be some real-valued adapted increasing process such tha t for any 
a, 6 6 R+

\\wjtb -  Wj, „ |U  ^  vb -  va, j  = (3.3)

We also assume that

2 sup ~ Vi,tol <  1, bli, Vi}° =  0, i -  1 , . . . ,  d. (3.4)
ti€[£o ,t]

Notice that the assumptions (3.2), (3.4) can always be achieved by suitable 
(pre-)stopping arguments.

For 0 ^  to ^  t  we set

T  T f c -  T 2 -

Ik,r — /  /  • ■ • /  Wjfc)Tfc . . .  Wjl)T1/ 0}Ti drjjltTi . . .  drjjk)Tk,
io to to

where Af =  A ll x . . .  x Af/c, and

Dr (3.5)

=  dM  wT - w t0 +  4 y ^  sup |^ ,ri - % t 0| +  ([%• ^
j=l \ TiG[io,r] y

We will use the abbreviation BV-•process for a process with (almost surely) 
paths of bounded variation on compact time-intervals.
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P ro p o s itio n  3.0.1. Let W j )T, rp^  be as above and assume that 

W jtTW itT =  W itrW jtT =

Then
114,t I L  «  h  D " ' { M ( t  io)}*~m||/J,T||oo, (3.6)

where ||io,r ||oo =  sup ||/o,s||oo and

h  = --------- ------------- _  (3.7)
(ln{ln{& 2}})16 

provided that at least one of the following two conditions hold:

Iq>t — E m or t \  > 1.

For the proof of Proposition 3.0.1 we need some technical lemmas. Here 
and later we assume tacitly t0 = 0.

L em m a 3.0.3. Let {UT}T̂>o, be predictable M.MxM-valued processes,
vT, tzT be real-valued semimartingales and

T  T 2 ~

Qt — J  J  bJ-j-g $7*i— djU-j-̂  dn^ • 
o o

I f  UT is a continuous B V  random process, then

T  T  7"2 '—

Qr = - f  Un $ T2-  d[v,*]„ -  X Kt)€>t1_

T

f ( K n - - K T)UT2§ r2- d v r2. (3.8)

0

R em ark s .
T2-

1. Note tha t dUT2 and f  (k T2 — kt ) 4?Ti_ dvTl are matrix-valued
o

non-commutative objects.

I
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2. All stochastic integrals, where the integrand is a vector (or a ma­
trix) and the integrator is an R-valued semimartingale will be un­
derstood coordinate-wise. In a similar way, brackets of vectors and 
R-semimartingales or matrices of R-semimartingales are understood 
coordinatewise. The bracket of two matrices A, B  is defined as a ma­
trix

M

[A, ^  i %)k 1 , . . . ,  M ,

3=1

which is compatible with the rules of stochastic calculus and matrix 
algebra.

Proof. We use the following integration by parts formula for R-valued semi­
martingales:

T  T

[  YT2.  dZn = YTZr-  Y0Z0
0 0

W ith the coordinate conventions detailed in the above remark we may choose

T2

I  T2 =  b f j - 2 J '  T - T i  — d , V T l  ,

0

and ZT2 — «T2 — k t . Clearly, Yq = Z T =  0 and therefore

T  f  T2

J n(k,t2_ kt ) d |  UT2 J  4?ri-  dvTl

=  I +  11.

An application of Ito’s formula shows

T2
d, I UT2 / TTi -  duTl (3.9)

T2-

=  dUT2 x J  4>ri_ dvTl + UT2QT2-  dvT2 +  d 
o

U* , J 4?Tl_ dvT1

r2
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Since U* is a continuous BV-process, the bracket in (3.9) vanishes. Thus
r  T 2 -  T

11= -  I  dun  x I K  -  c K  -  I -  k t ) ^ 2-  (3.10)
0 0 0 

From (3.9) we find

£/* J  d~uTl j , K,m UT2<&T2-d v r 2 , K,

T
T l

dUTl x / <f>T2„ di/T2, «.Tl J ■̂T2~ u' T2'j
Lo o j  T

Since £/, is a continuous BV-process, so is the stochastic integral driven by 
dU , and the last bracket above vanishes. So,

T

□Combining this and (3.10) completes the proof.

For the multi-index J  = {ji, ■ ■ ■, jd) C Mq and z E { l , . . . , d } ,  /c E N we 
denote by

r r2-

Q j , i , T  J  U j tT2 kFi) T l i,Ti— d 7 j i f T l d A T2 T )
o o

where

Uj,T2 = T! =  j i l  • ■

AT 2 ,T fal.r* “  Vl,r)n  • • ■ (%,r2 ~  Vd,r)3d ■

L em m a 3.0.4. For any m  E k  the stochastic integrals satisfy

d

X  X
i=l */

j jm-l
+

(3.11)

( m  — 1)! I -f/CjT2 11 oo ^T 2  + X  /
q
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where

Bm = { J  = {ji , . . . ,  j d) : j i  +  • •. +jd  =  m, j i , . . . , ^  ^  0} 

and with Dr as in (3.5).

Proof. We write for the right-hand side of (3.11) 1 +  11 +  111. An application 
of Lemma 3.0.3 with

UT2 =  UJ)T2, <3>ri =  W i)TlI k - i )Tl, nT2 — AT2)T, vTl — Vi,Ti

gives
Q j,i,r  — A j tifT +  B J%i,T +  C j ^ T (3.12)

with

A  J,i,T   J '  U j,T l ^i,Tl I k  —1,71— ^ [A »jT5 J (3.13)
0
r T2

— J  dUjyT2 x J  AT2)TW5j)T1 , (3.14)
0 0
r

^  ^T2,T^J,T2 l,T2̂ 7̂i,T2 (3.15)
0

from the right-hand side of (3.8).
From (3.5) we get

k .  -  ty,r| < (2dM )_1Dr , |At7i| < (2dM )-1Dr , I = 1 , . . . ,  d.

Using this, the elementary identity

m
A(oi • q.2 • • • +n) — ^  • • • ar - i (Aar)(ar+i Aor_|_;i) . . .  (om_)-i Ao.m^-i),

r=l

where a0 = am+i =  1, Ao0 =  Aam+i =  0, and | J\ — j x +  . . .  +  j d ~  m, we 
find

m
|A A 't | ^  "^+(2d M )~m+1 D ™-1 max |A ^ | ^  (dM )~m+1 D ™~1 max |A?y;|,

r = 1



lATfcAA^I ( 1XI
1= 1

Since 77̂ . and are pure jump semimartingales, the above estimate implies

r

J  U j ,r  11A i, r 1 Ac—1,tj — ^ [ A ,jT j Vi,*. T l

*=1 n

From condition (3.2) and the formula

HYZIU + MIIYIUHZIU 

we obtain ||Uj)T2|| ^  (A!)-1 M m_1, hence

F, F  e  RM x M (3.16)

1 -m— 1
iiatatIU « 2 ~ i r D "  J  ^

0

where we used the fact that for r  > si > S2 + 0

{v i ,mbi- fo ,V i]s2 2([?71,ijl]J1) i  (([»7i,J?i]„)* -  ( fo ,»»]«)*)

2(4 dM)~2DT (3.17)

holds. From the multinomial identity

1
E  7T =

j£Br J\ ml
(3.18)

we finally obtain
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To estimate B Jji:T, we observe tha t for the continuous BV-processes Wj>T

1 d
duj,n  = d u ih  tjd)m = -  • ■

‘ r=1

and so, by (3.3), for any integrand / ( r )  € RMxM

r  r

J  dUj)Tl x  / ( n )  ^  ~  M m J  | | / ( b ) | | o o  dvT1.
0 c» 0

Since (3.14) we have

d
E ^ w =
i=1 oo

] T  [  dUjmx (A;2,t 4 , T2_)
<=1 '

r

< ^ M "* ^ su p  |a;2iT| | |4 ,r2||o

Using (3.4) we estimate |Â 2 T| by

2 ma! « , } ■  SC 2 max { ^ p - 1 < {dM)~m+lD.
4 = 1 , . . . , a  4 = 1 , .  . . , a

m—1 
r ’

where r/?*T =  sup |?7z,s |. This and the multinomial identity (3.18) imply
’ 0 < S < T

E  7TMm S U P . K r N
dM

JeBr, T2e[0,r] ( m  —  1)!
D m— 1

and so

E  E  Bn*
i= 1 JeBr

T

<  ( ^ = 1 ) 7  D r "1 IIIWIL =  II- (3-20)

We proceed with C j^ T. Since the r]j>T are pure-jump semimartingales, a 
formal application of Ito ’s formula to the function

f L{xi , . . . ,  x d) = x lf  . . .  x lf ,  L -  (lu  . . . ,  ld) e B,m + 1 (3.21)
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and the process r]T2 -  r)T =  ((?71)T2 -  77ifT) , . . . ,  (rjd>T2 -  r}d)T)) yields

r

C Lir  - =  /  U L , r , - f / c — 1 , t 2 — T 2 , r

d T
=  E  /  E  U L n h - ^ - S

i= 1 o ^  0<T2^r

= c i iT+ cE , (3.22)

where

^r2 =  A [ / L (r?. -  ?7r)]r2 “  X J   ^ A ^ , r 2-

Notice that the last calculation is formal. It can, however, be (though 
quite laboriously) justified by considering the stochastic differential

d
^r2 J |  (Vj,T2 — Vj,r) j

3=1

after multiplying out the product. Then the usual Ito rules apply to the 
semimartingales iy)T2 and their various mixed products. The process ^ )T and 
their products are, w.r.t. r2, constants.

From the first line in (3.22) we conclude that

111 = E
LEBm+1

Since

and

U j W i  — U{ju...,jd)W i — (j i  +  l ) f f ( j i , . . . j i+ i,.. .jd)

^  V liUL,T2^T2,T ' ' d ^7?i,T2 ~  ^   ̂ (ji T 1) U(J1 1 ,jd) iT
£623m +l J  E B m

^ v ^ ,r t / j ,rA r2iT ^^i,r2j
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it follows that for the integrals C j^ T from (3.15), 

d d Z.
E  E  c w  =  E  E  /  T̂2 ,T Uj,T2 Wi,T2 Ik — 1 ,T2 ̂ 7z,T2 (3.23)
<=i J e B m i = i  J e s m £

d r
E E /  u u L m \ ^ - 1 ** ,„  =  e  c v
i—1 .Le£?m-}-i g

Combining formulae (3.22)-(3.23) we have found

Z/€:23rrc-t-l

E  E  ^ ^ H I T E
i = i  J e n m oo L eBm +l

(3.24)

We deduce from (3.12) and (3.19), (3.20), (3.24) that

d
y y
*=1 JeBr

< 1 1 +  II +  III +
Lesm+i

(3.25)

It remains to estimate the contribution of the jump terms C'[r . 
Definition (3.21) implies that

E
i»j=1

d2f L{x)
dxidxj

^  (m +  l ) 2 max |:rn|m 1
n = l, .. .,d

By Taylor’s formula and the definition of DT, r 2 ^  r,

d 'd2f L{iiT2- - 7 i T + 6Ar]T2)
\5T2\ ^  I  sup V

*  O<0<1 i,j=l 
2

dxidxj
|A?7*,T2A?73 , T ' i

^  ^ (m +  l ) 2(2dM) 171+1D™ 1 max (At7/)T2)2,
2  i = i )...,rf ’

where we used the inequality

max |?7̂ T2-  -  m,T +  1 ^  (2dM) m+lD™ \  r2 <  r.!=!,.. .,d
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Consequently, using (m + 1)2 m 1 ^  1, (3.17) and the fact tha t r)n is a pure 
jump semimartingale,

C l r

2 L\ 

by (3.18) we obtain

1 d }
< 2 E t m + i x ^ r - ^ r 1 / 11̂ 4 - 1,n - i L  %..*?»]

n=l 0
r

l i d — J  dDr ,

and so

E  a
I'SSm+l

y >  m +  1 _  J _
L\ ml

^  2m! 2

Substituting this into (3.25), completes the proof.

Corollary 3.0.1. I f  £2n < k' < £-2n+i for some n  € N or 1 ^  k' < t\ then
T  T2 —

□

^   ̂ I I UJ)T2]/V3)T i — 1 , n  clTid\T2̂  
JeBm { {

(3.26)

T  T

sS IIW JU^2+ II4',T2—lloo
0 0

Proof. An application of Lemma 3.0.3 with

b ^ T 2  —  U j ) T 2 , ^ T i    h h O j T l  A '  — l , T l  ; —  V 0 , T  —  7 "  U l l d  K T 2  ^ T 2 , T

shows tha t we can estimate the left-hand side of (3.26) by I +  II, where
r

^  ^  I T̂2 ,T  ^JyT2 V K O  ,T 2 A '  — 1 ,T 2 ^ “2

TeBm{
T  T 2 ~

'y  ̂ J* dUj T̂2 x J  X T2>TW 0,T lI k ' - i , n  d r i
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Similar calculations to the ones performed in the proof of Lemma 3.0.4 give
r

I ^  M m+l V  i  sup |A ',t | f  dr2,

T

I I  <  r V 5  sup |A£,t | [  ||4 ',r,-||oodura,
J • ^ [ M  J

and
1 Dm m Dm~l

M m V ' T . sup \XJT T\ <  ~ y ,  M ™-1 ̂  -  sup |A  ̂ | 4  T
7t 5l  d! T 2 £ [ 0 , t 1  m! (m —  1)!

Thus I (resp. II) is bounded by the first (resp. second) term in formula 
(3.26). □

Proof of Proposition 3.0.1. W ithout loss of generality we assume that t0 =  0.
We define pi, I G No, recursively by p0 =  1 and for

/  n —1 n

I £  (7n~l)7?x] := | “  &2i~l +  1)) — ^2i-l +  1) j 70 ~  0
\  i—1 i—l

by
P i = P 7 n - l « - 7 f t - l >  ( 3 ‘2 7 )

where g*, are defined by formula (B.9).
Recall that m =  m (k), Dr are defined at the beginning of this section. 

Throughout this proof we suppress the argument in m(-) if the argument is 
k, i.e. m =  m(/c). We split the proof into two steps.

Step 1 . We show by induction that

H4.rlloo < Pm D?  Ĥ O.tIIoo, K I  (3.28)

Clearly, (3.28) holds for k — 0. Assume that we have (3.28) for 0, — 1.
Case 1 . n < k < lm+i for some n  6 N or 1 ^  k < i\.  In this case

m (k) = m(k  — 1) and rjjkjT = r  in the definition of Ik>T- Therefore,

114,T|| s; M  j  114-1,,11 d s ^ M  JPmD” l|/7 ||o°
0 0

(M r)k~m <  n f ) m ____11 r* ||
^  Pm T (k — m )! ,|io>Tll°°-
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Case 2. i 2n- i  ^  k ^  £2n for some n G N. For m! € N and r' = £2n- i ,  • ■ • ,k  
we denote by

Xr = E /  Uj,slr'-l,s- d \ir.z„
J /

J£Vm' o
Note tha t z$, r = Ir\ T- Applying Lemma 3.0.4 with

T  T 2  —

Q j,i,t J  j  UjyT2 Wri n̂ Ir'—i,T\ — d'T)î Tl d \ T2 
0 0

we get
T  T

f)m ' r D m'~ l f
i K l . r l l o o ^ ^ y  JII/.--!,,-Hoc d D . +  ; _  11 /^IU dD .H -l | < T+1!

0 0

where we used
d T„

= E E « *  and Z? T =  E UL,rJr>-lm-d \
*=i L£Bml+1 J0

L
T2,T•

If k > t 2n-i  then after the change of indices m! — m  +  1, r' +  1 =  k — m, 
m  =  0, 1, . . . ,  k — i 2n~\ ~  1? we obtain

IkjKi.rlloo -  l k ^ + i ) >r||oo ^  Pm+l,T +  Pm,r, (3.29)

where
Dm f

^ m,r ~  ~m\ J  W^-m-iAoo dDs. (3.30)
0

Summing (3.29) over m  = 0 , . . . ,  (k — i 2n- \  ~  1) we get

! I ZhtT i I OO ~  ll^2n-l,T lloo ^  P o , T  +  (3k-t2n-\,T +  2 ̂   ̂ An,T ■ (3.31)
m=1

By Corollary 3.0.1, applied to t 2n~2 <k! < i 2n- i ,  k' — i 2n~i — 1 we find

up  li nk-e2n-i+i
l ^ n - i V  lloo E Pk-hn-i,r+  ^  ^  ~ ~  jyj M  J  ||A2n_1- 2,r2lloo dr2. (3.32)

0
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Here and later on in case 2 i 2n - 1 ^  k ^  £2«■ Combining (3.31), (3.32) we
arrive at

]jk—£271- 1+1 **  ̂ 2̂n_1
^ A . t I Io o   ̂^  J  ll-^2n -i-2,T2 | |oo  ^72 +  2  (3m,r- ( 3 . 3 3 )

0

Since

xn(k — m  — 1) =  m (k) — m  — 1 m  =  0 , . . . ,  k — (3.34)

we can use the induction hypothesis (3.28) and deduce from (3.30) for m  — 
0, 1, . • • , k — ^2n—1

/W  < J  D ™-™-1 J k -Z m y d D s  HJoVIU
0

<- Pm—m—1 r^m { M r )  .. .. , .
( m - m ) m !  T (jfe -  m)! ^-35)

The identity m(^2n-i — 2) =  m(£2n-i — 1) =  m(k) — (k — i 2n_i +  1) implies

r
(3.36)

0

< Pm. ik. bn_1+1)D r {k- ê +1) i]/0*Tiioo-
o

Together (3.33), (3.35) and (3.36) now show

II-J II - n , |  | |l l% rl|oc^Pm-(fc-fe«-.+l)(A;_ 4 n _i +  1)! IIVH~
k - h n - i  . T\k-m

+ E  7 r — , P m- m - i D ? {r -  + ■■■■■■ ||/oy|]oo. (3.37)(m — m )m \  (k -  m)! ’

Since m — (k—£2n - i+ l )  — 7n-i it follows from (3.27), (3.34) with I — m —m —1 
that

Pm—m —1 — P ^ n - i  Q{k—̂ 2n - i + l ) —m — 1 > ?7l — 0 , . . . , /c ^2n—1 ■
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From the definition (B.9) we conclude

k (-2n— 1 2

(A ĴT+T)\Pm- ( ^ - ^ - 1+1) +  X )  (m -  m) to!m=0
k—l2n- 1 2

^  P7”“‘ £  ((* -  ^2n -i +  1) -  m) m!

— P'f-n-iQk—̂ 2n-l+l = Pmi (3.38)

where we used k — i 2n- i  +  1- Combining (3.37) and (3.38) we arrive at 
(3.28).

Step 2. We are going to prove that

Pm ^ ------ _  . (3.39)
(k — m)! (in i)) w

If 1 ^  k < £\ then m(/c) =  0, pm =  p0 = 1, and estimate (3.39) is clear. 
From definition (3.27) we deduce

n — 1

P m  =  Q k —C 2 n - i + l  f j  Q i 2 j —£ 2 j - i + l  ^ 2 n — 1 ^  ^  ^  ̂ 2  n

j - 1

and
n

P m  1  Qd-2j  — &2j ~ i  + 1  ^ 2 n  k  <C. £ 2 n + l -

From (B.10) we know

( T ^ ) !  *  (3.40)

where

2Z =  (A -  m)! +  U )
3 =  1

Here a j  = £2j  -  £23 - 1  +  1, j  =  1, • • ■, n ~  1, and a n — k -  £2n- 1 +  1
for £2n-i <  A; ^  £2n, ~  4 n - i  +  1 for < A; < 4n+i- Clearly
/c — m ^  n  — 1. Using the estimate from Lemma H.4 with m  = k — m gives

Z ^  ^  (lnln(fc + !))& (3.41)
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ancl (3.40), (3.41) show (3.39). The assertion now follows from (3.28) and

(3.39). □



C h a p t e r  4

S t o c h a s t i c  H a m i l t o n - J a c o b i  
E q u a t i o n s

4.1 Boundary value problem s for stochastic  
H am ilton system s (theorem  on a diffeo- 
m orphism )

with initial condition (x0,Po) € K2d at t = to- We write (X, P) —
(X(t, t0, x0,po), P(t, to, xq,po)) G E2d for its solution. The coefficients 
(dV/dx)  G Rd, (dc /dx ) G Rdxd are derivatives of functions V  : Rd —>> R1 
and c — ( c i , . . . , C d )  : Rd —>• Rd which admit (at least) continuous partial 
derivatives up to order 3 such that

We consider the following Hamiltonian system

(4.1)

Q\l \V(x ) d ^ c ( x )  
dxL ’ dxL

\L\ =  2,3 (4.2)

and
(4.3)

59
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for some constant K  > 0. The driving noise & =  (£ijt, . . . ,  £d,t) is a d- 
dimensional Levy process such that

fe .f ;]c =  0 j  = l  (4.4)

i.e. it contains no Brownian component. The main result of this section is 
the following

T h e o re m  4.1.1. Under assumptions (4.2)-(4.4), there exists a stopping time 
T  such that P(T > 0) =  1 and for  0 ^  to < t < T(u),  x 0 G Rd,

(i) the systemi (4.1) has a solution (X,P),
r\ y  a t~\
i -  =  E t  + O i t - t o ) ,  =  E d + 0 ( t  -  t0), (4.5)
oxo dpo
r)X
—  =  ( t - t o ) E d + 0 ( ( t - t Q)2), (4.6)

where O(-) is uniform with respect to x 0,pQ,

(ii) the map
D : R d \ ^ R d, po -> X ( t , t Q, x 0,p0), 

is a dijfeomorphism.

R em ark . We can rewrite the system (4.1) in the following form

t t

m) =  J v ( X ( s ) , P ( s ) ) d s -  J ' f ( X (
to to

with coefficients

V(x,P) = ( dvfx)/dx ) e ®2d, t [x , p ) = ( J dcf )/dx ) e 

and the (degenerate) Levy noise

t>2dx2d •

C t =  I /  ] e  102,1

Notice tha t V and 7 are globally Lipschitz continuous; Theorem 7 of [Pro
( m
\  p( t )

p. 197/8 guarantees existence and uniqueness of a solution
t> 0
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Moreover, if the coefficients have globally Lipschitz continuous partial deriva­

tives up to order N  +  2, than we may differentiate ^ |  w.r.t.

the initial conditions up to order N , cf. [Pro], p.254, Theorem 40.

For the proof of Theorem 4.1.1 we need the following auxiliary result.

L em m a 4.1.1. There exists a constant K\ = K i(K ,d )  such that for t0 ^  
a ^  b < I Z A K f 1 (71 being the stopping time from Lemma 0.0.1 and K  being 
the constant from (4.2)^

b
J  |P ( r ) | dr  ̂ 3|X(o) -  (6 -

a

where
X{r )  =  X { r , t Q, x 0,po), P ( r)  =  P (r , £0, £o,Po)- (4-7)

Proof. Step 1. From system (4.1) we find

T («)) f
dx d£s.

Since X(t) ,  d V ( X ( t ) ) /d x  and dc(X( t ) ) /dx  are continuous BV-processes, we 
find by integration by parts

,4.8,

Here c*2c(X(s))(£s -  $r) /d x 2 =  E 3 !c ,(X (j))(fM - f , , ) / 3 i 2 e  &**.  We
i— 1

know from Lemma 0.0.1 that 2 sup |^ )S| ^  1 for i = 1 , . . . ,  d r  <71 and so
O^s^r

T

I P M K I P M I  +  Cj +  C, f \ P ( s ) \ d s ,  (4.9)
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where

C\ =  max sup [ d*
d2v
dx2

d2Ci
dx2

V d
dV
dx

+  d
dc
dx

Integrating (4.9) we have for b < 71

b t

J  \P(r) \dr  ^  \P(a)\(b — a) +  C\{b — a) +  C\ J  j  \P(s)\dsdr.  (4.10)

Since for b — a < (3Ci)

b r

- l

C\ J  J  \P(s)\dsdr = Ci(b — a) j \ P ( s ) \ d s  — C\ J  (r — a)\P(r )\dr
CL Qi Cfc CL

b

l [ \ P ( s ) \ d s ,  (4.11)
a

we deduce from (4.10) that

b

I |P ( r ) | dr< |  ( |P (a )| +  Ci)(6 -  (4.12)
a

Step 2 . Similarly, we find from (4.8)

r
|P ( r )  -  P (o)| s: Cl +  C, |P (s) | da. (4.13)

We integrate (4.13) to get

b b r

J  | P ( r ) - P ( o ) | d r  C i i b -
a a a

b

^  C l(6 — a) +  i  J  |P (s) | ds,
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where we used (4.11) and so, by (4.12)

0
1 1 P ( t ) -  P(a)\ drs: i(|J» (a)| +  3

Thus
0 0 

J  P ( r ) d r  ^  \P(a)\(b — a) — j  \P(r) — P(a)\ dr

> - ( | P ( a ) | - 3(70(6- a ) .  (4.14)

Combining (4.12) and (4.14) we arrive at

b b
J  \P(r) \ dr ^  6(7i(6 — a) +  3 J  P(r) dr
a a

The assertion follows with K\  =  6Ci. □

C o ro lla ry  4.1.1. Let /  : Rd —» R, f  E C l and

f ^ \ x )  =  0 if  |a;| > K  

(K  being the the constant from (4.2)). Then for 0 ^ t Q^ t < 7 l A  K f 1

Vant0,t]f ( X ( - ) ) ^ K 2, (4.15)

where K 2 =  K 2(K, d, f )  is some constant.

Proof. Let B =  {r G [to,t] ' |7^(r)| ^  K } .  If B — 0 then the left-hand side
of (4.15) vanishes and the assertion of the corollary is clear. Otherwise we
set a = inf{r : r  € B } ) b = sup{r : r  6 B}. Since supp C {x : |a;| ^  /<},

Var[to,t]f(X(-))  ^  dsup | / (1)(a;)| max Vars Xi(')
xm d

b
^  d sup | / (1)(a:)| f  \P{r)\dr  

J
a

and (4.15) follows from Lemma 4.1.1. □
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We introduce a new stopping time

T  =  ^ A / { 2_1A1,

where K 2 — max X 2(X, d, dq/drcj) and K 2 is defined in Corollary 4.1.1.

Proof of Theorem 4.1.1. Stepl. Since (X, P ) can be differentiated with re­
spect to the initial data {xQ,po), we find that the matrix-valued process

d (X  P ) (  d X / dx° d x / dPo

d(x0,Po)(  d

satisfies the formally differentiated system (4.1) (cf. also [Pro], proof of 
Theorem 39, p.250):

dG =  Wo,«Gdt + T Wi*G d ^ ,  G |(=fo =  G0 =  (4.16)

where

/  0 Ed \  0 0
Wo* =  . WU  =

\  d2V ( X ( t ) ) / d x 2 0 /  V - d 2Cj(X(t )) /dx2 0
(4.17)

A solution of the system (4.16) can be given by the following (formal) series 
expansion,

oo
G = J ^ G k (4.18)

k=0
with Go =  G L * andI t—CQ

ci t d *
Gl = y -  W ^ G o  dVj,T, Gk =  Y ,  /  Wi-rG*-! dVjtT (k e  N)/  J I w 'Ji' > /  J I

j = 0  to J=0 to

where r]T = (rj0)T, 771,r , . . . ,  %jT) — (r, £i,t , • • •, fd,r) is a (d +  1)-dimensional 
semimartingale. Indeed, it is immediate that



4.1 Boundary value problems 65

so (4.18) will give a solution of (4.16) whenever it converges uniformly (on 
compact intervals) in t.

Since the terms of the series (4.18) are fc-fold integrals, we get

o o  d  /  A n  A w

G  -  E 2 d  +  ^ 2  Y Z  d  +  h  ,t +  I

fc=i jfivijfc—o y A 2i A 22

where A{j G Rdxd, are suitable (series of) block-matrices and

t rk-  r2-

~  j  J  ' '  J  • ■' dVjk>Tk'
to to to

(4.19)

(4.20)

Because of the particular form of the WjtT’s in (4.IT), we know more about 
the structure of Ay in (4.19). Let

J i  =  {{ji, • • •, jk) : k G N, none of j u  . . .  , j k equals to 0}

(i.e. all integrators in (4.20) are Levy processes) and

— {(ji, ■ • •, jk) ■ 2 at most one j i , . . . ,  j k equals to 0}

(i.e. at most one dr  integration happens). If ( j i , . . . , j&)  € d7i, then the 
iterated integrals have the form

J,j i y - y j k y t

0 0 
r 0

r  G n d x d

and if ( j \ , . . .  , j k) G J 2, they are of the form

ru  0
hll y-yjk )t r2i r22

r n , r 21, r 22 G

Thus

1 1 ^ 1 1  l l o o  J I I A 22I I 00 ^

1 1 - ^ 1 2  i 100 T

E
(,3 l y ; j k ) e J \ J l

E 1)  * ■ • 5 j  k ) ̂

{ h y - y j k ) e J \ J 2

(4.21)

(4.22)
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where J  — Ujg^jO,. . . ,  d}k.
Step 2. Let us now verify the conditions needed in Proposition 3.0.1. 

Lemma 0.0.1 and condition (4.4) imply that rjt — (t, £t) satisfies (3.4) for
0 < t0 ^ t < n.

Condition (4.2) implies

H a llo o  ^  K,  j  =  0 , . . . , d

and by (4.17) we find

W jjTW itT =  0 =  W i,TW jiT i, j  =  1 , . . . ,  d.

Definition (3.5) (with M=2d) and formula (4.15) with /  =  (dci/dxj), 
i , j  =  1, . . .  ,d  give

Dt ^  2d2 (7^2 +  fit +  ^ 0)5 
where are given by formula (0.13), and Lemma 0.0.1 shows

Dt ^  2d2(I<2 +  2) =  0 (1), 0 ^  ^  t  < T. (4.23)

Step 3. An application of Proposition 3.0.1 to matrices K  1W j)T G R2dx2c/5 
j  = 1, . . . ,  d shows

/ I  I j i , - , 3 k , t
O'l

^ K % D T { 2 d ( t - t 0)} k —m

where b* are given by (3.7),

M  — M-i x . . .  x M.k and M i  = {1, . . . ,  d} or M i  = {0}. 

One readily sees

M  n  J \  — 0 = >  m ^ k — 1 and M  n  J 2 =  0 m ^  k — 2. 

Consequently we find from (4.21)

(4.24)

(4.25)

IIAnII0 0 ? 11̂ -22||oo ^  2kK kbk(Dt +  2d(t — tp))k 1(2d)(t — to), (4.26)
k=2

where we used, by (4.25),

D™{2d{t -  t0)}k~m ^  (Dt +  2d{t -  t0))k~1{2d){t -  t 0)
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and the fact that the set {0 , . . . ,  d} is the union of subsets of type (4.24); the 

number of such subsets equal to 2k. Clearly the series $i(x )  =  2kK kbkXk~1
fc~~2

converges for any x € K and, by (4.23), <E>i(Dt +  2d,(t — t0)) — 0 (1 ) .  Then 
we deduce from (4.26) that

| | | o o 5 ll î-22lloo =  0 ( t  — to), 0 ^  to ^  t <  T. (4.27)

Similarly, we have

O O

P 1 2 IU  <  ^  2kK kbk{Dt +
k=2

^  (2d)2$ 2( Dt + 2 d ( t - t o ) ) ( t - t 0)2 =  0 ( ( i  — to)2), (4.28)

O O

where $ 2(:r) =  £2 kK kbkx k~2.
k=2

Substituting estimates (4.27), (4.28) into (4.19) we arrive at (4.5), (4.6). 
Step 4■ From (4.6), we conclude (using the implicit function theorem) 

that the map D : po -> X ( t , p 0) = X ( t , t 0, x , x o) is a local diffeomorphism. 
Let us prove tha t it is injective. Since

d X
+  r{p2 -  pi)) (p2 ~  Pi) dr , 

o

we have

l i T
\ X { t , p 2) - X ( t , P i ) | 2 =  J  J  (P2 ~ P i ) T ( ^ ^ J  (pi +  s(p2 - p i ) ) x

0 0

x (1 p o )  ^Pl +  r ^ 2 _  Pl^  ~~ Pl  ̂ drds ^  C ^P2 ~ P l^2’ 4̂ '29^

for some constant C = C(t, to) > 0. The last inequality is due to (4.6). 
This shows that D is injective and so D : Rd —* 2>(Rd) C Rd is a global 
diffeomorphism. It follows from estimate (4.29) that X ( t :p0) —*■ °°  as po —» 
oo. Since 2) is open and closed, 2)(Rd) C is open and closed. As 2)(lRd) /  
0 we have 2)(Rd) =  Rd. This finishes the proof of Theorem 4.1.1. □

X ( t , p 2) - X ( t , p i )  =  J
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We assume that for any multi-index / e N o , 2 ^ | / | ^ g  +  2 the partial 
derivatives are bounded

d ^ V
dx1

q \ i \ Ci

d x 1
^  K, i — 1 , . . . ,  d (4.30)

and continuous.

L em m a 4.1.2. I f  the coefficients V,  C{ satisfy the above mentioned assump­
tions, we have for any 0 ^  t0 ^  t  < T

dp!
(4.31)

(4.32)Ŝ P ( t  to xo,po) =  0 {{ t_ to)l%  
dpQ

where 2 ^  \I\ ^  q and O(-) is uniform with respect to xq and p0.

For the proof we need the following lemma.

L em m a 4.1.3. Let YT, Yi)T, . . . ,  Yn,T be EMxM-valued locally integrable pro­
cesses, and v be a real-valued semimartingale. Then

J  y t  \ J  y 1)T1 d n  J . . .  I J  Yn,T1 dri ] du7

to \to  /  \to
s s

<  nO-v,)*Mn ( i l ? ; | | o o  +  Vor|M y )  J  | | 1 V i I U  dn ... f  dru
to to

where [y — vs)*s — sup \vT — i/s\, Y f  =  sup ||yT||oo; provided that Yr is a
t € [ £ o ,s ] t € [ £ o , s ]

continuous BV-process.

Proof. We set Ui:T =  YitTl dr\, i =  1 , . . . ,  n  and I — YTUitT . . .  Un>T dnT. 
Since Y ,  U i , . . . ,  Un are continuous BV-processes, integration by parts gives

s n s

I  =  -  J  K  -  VsW t X tll.T . . . U n,T ~ J 2 j  Vr -  v.)YTUi,r . . .Y i , r . . .  Un,T dr.
to i=1 to

The assertion of the Lemma follows now from (3.16). □
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Proof of Lemma 4.1.2. For notational convenience we set Co(JC) =  — V’(-X’).
Step 1.
Let us choose and fix a sequence (juJ/2, • • •) G {1, . . . ,  d}N. Write 

a M  9 x O ) «  9 P ( r )  9 |- ' U 0 ( r )  a l - ' lB 0 ( r )
A(r) = ^ r >  o(} = ~dy~’ Bm{T) = ~ ^ T '
Ao{r),Bo{T),Am(r),Bm(T) e R dxd, where J  -  (ju  . . .  J m) and
Po =  (po, i5--- ,Po,d) e

From equation (4.16) we get

Differentiating (4.33) with respect to p o j x, . . .  ,Po,jm we get the following sys­
tem of SDE

*(£8) -
A n ( * o )  =  B m ( t 0) =  0,

where A mji}T G R2dxd is given by the recurrence relation

7  _ n  7 _  dWm (  A n - 1  W  _  n
•^0,t,r A n , i , r  [ k ?  t  \  ) ^P̂ojm V Bm-i(r) J dp0ijm

The interchange of stochastic and ordinary differentials (with respect to the 
initial conditions) is possible since the coefficients of the system (4.33) smooth 
enough cf. Protter [Pro] p .245 Theorem 40. Using (4.17) gives

A w  = (  A °.  J . i = (4.35)

where

4 _ n  A _ d c ? \ X ( T ) )  A t „ \  , d A m - l , i , r  _  ^  n  , A o a ^A q i T 0, A m i T A m —i\T )  T   ̂ m  >  0. (4.36)
dpojm 9Po,jm

Here c f  ':(x) — (d2Ci(x)/dx2) G ]Rdxd. Prom (4.36) we find by induction

m+1 gm+1- t  ( d c f ](X{T)) dk~2Ao(r) \  ,

”AT dpoJ. ... flpoj. I $poj.-, to*-, ■ ■ ■ to* r  1 ‘ '
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A solution of (4.34) is given by the following (formal) series expansion
C O

G = y ^ G k  (4.38)
k=1

with

d r ~ d r
G\ — ^   ̂ I Am î)TQ dr)itT0, Gk — 'y  ̂ I WiiTGk—i dpi^T} k ^  2.

i-0 7 •>'—n ^i=0

This can be seen as in the proof of Theorem 4.1.1 and (4.38) gives the solution 
of (4.34) whenever it converges uniformly (on compact intervals) in t. Thus

A m{k)

Bm(t)

oo d d,
— E /  Am,i,T0 dr}i]TQ E E

i=0 to fc = l 2l,...,2fc=0 2 = 0

where
t "TA: n

r772)2 _ ^̂ ik>Tk ‘ ' ’ ,ti ̂ d.m,2,ro djT)iiTodTJii )T1 . . .  dpzk ,Tk •
to to

Since WiliTAm)i)7- — 0, A =  1, . . . ,  d, it follows that

= 0 for <i > o.

Observe that formula (3.6) still holds for / 0)t C RMxN, ViV € N. For fixed 
i =  1 , . . . ,  d an application of Proposition 3.0.1 to matrices K ~ xW j )T € R2tZx2fZ? 
j  =  1, . . . ,  d with io,t =  f t  A m)iiTQ drji,TQ e R2dxd shows

E jm ,i

(k,-,id)eM

A:—mil t *

where bk are given by (3.7), M  — M i  x . . .  x M k, M i  — {0} and M i  
{1 , . . . ,  d} or M i  = {0} for i > 1. Thus

HAnMlloo V \\Bm(t)\\oo ^  sup
to^S^t

(I rt
/  /  ^m,2,ro dr}i)TQ
2 = 0 /

<F (.D* + 1) ,
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where l>(x) =  1 +  £  2kK kb/cx h) DT and b& are given by (3.5) and (3.7)

respectively. Using, see (4.23), &(Dt +  t) ^  $(2d2(K 2 +  2) + 1 )  — 0(1) we 
arrive at

dpJQ
(4.39)

Step 2. By induction in m  we now show

to

(4.40)

where O(-) is taken uniformly with respect to s < t, i =  0 , . . . ,  d, J  € Nq, 
xq, pq 6 Then combining (4.35), (4.39), (4.40) we obtain (4.32) and, by
(4.1), get (4.31).

Let us first check (4.40) for m  =  1. Estimate (4.40) for i — 0 directly 
follows from (4.6). From (4.37) we find

A d c f ( X ( r ) ) c t Y )(t ) 9 X { t ) A

1AT =  £  ^  apoj.

For fixed i , j , j \  =  1 , . . . ,  d an application of Lemma 4.1.3 with n = 2, M  =  d,
VT V i , r )

dc,(2>(Ar (r)) _ d P j (r) _ d P ( r )
L ,r —  “ ----- ^ 5  12,r ~

shows

(T) dr]i>T = 0 (1) f a  - r } i)Sys |  j
Kt0

8 P(r)
dpo

dr

where we used that, by Corollary 4.1.1, V a r^ ^ F  =  0(1) and, by (4.30), 
IlF/iloo =  sup ||Fr ||oo — 0(1). Recall tha t rji)S is a Levy process. Therefore

T(S[£o,s]

by Lemma 0.0.1 we have (i]i — r)i,s)*s =  0(1) for 0 ^  t0 ^  s < 77. Using (4.5)
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we see that \\dP/dp0||oo =  0(1) and so || Q i j j x dpi^Woo — 0 ( ( t  -  t0)2). 
Hence

s

7̂ -1 ti,T

to

for i = 1 , . . . ,  d.
We now assume that (4.40) holds for n = 1 , . . . ,  m  — 1. Estimate (4.40) 

for i — 0 immediately follows from (4.6) and the induction assumption. From
(4.37) we find that A m)itT is a sum of the terms of the form

d ^ 4 2)( X ( T ) ) d ^ X h (T) d ^ X ir(r) M r )
dxP &Pq ' ’ ' dpQ dpQ

where
\p\ — r ^  m, |/.i| +  . . .  +  |A| +  \L\ ~  m.  (4.42)

We put Yt — ( d ^ c f ’\ x ( r ) ) / d x p). By (4.30) we see ||3^*lloo — ^(1 ). Using 
again Corollary 4.1.1 we obtain

sup V ar^t] (y )P9 =  0(1)
p,q-l,...,d

and so for vT =  pjjT, n  =  r +  1, M  =  d we have

n(Vi -  (llP/Hco +  V a r ^ ] ? )  = 0 ( 1 ) ,

where we used Lemma 0.0.1 in the form (77* — 77itS)* ^  i9s < 1 for s < 7Z. 
From equation (4.1) we find

d ^ X ( r )  f  d ^ P ( r i )
orf = J dpg Tl

to

and so for fixed = 1 , . . . ,  d and p, p , . . . ,  A, L  G N[j an application of
Lemma 4.1.3 with n — r +  1
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shows
a

j  Qi,ii,...,ir,Pr-;fJ;L{T) ^Vi,T 
to

a N p ( r )0 (1) d r . . .
I oo y

to 0̂

alAIP(r)
d'Pa

dr
to

d ^ B o jr )
dxL

(4.43)

dr.

By induction assumption and by (4.6) we have

d ^ P ( r )
dpt

= 0 ((t -
d ^ B 0{r)

dxL

where </> : N —» N such tha t <j>( 1) =  0, <j>{n) =  n for all n > 1. Hence
s

=  O ( ( t - * 0)7),

where
7  =  0 ( | / i |) +  l  +  . . .  +  0(|A|) +  l + |L| +  l .

Using tha t 1 +  <f>(n) >  n Vn € N and (4.42), give

y ^  |//| +  . . .  +  |A| +  |L| +  l  =  m  +  l .

Thus

J  Qi,ii,...,ir,p,...,fi,L('r) dr/i}
to

for i =  1 , . . . ,  d. □

4.2 The m ethod of stochastic characteristics
As before we denote by (X, P) = (X(t, i0, x 0,po): P(t, to, £‘0,Po)) the solution 
of the Hamilton system

5
n

1  - m , i , T  d p i j T

J
=  0 ( 1 )

t o CO

dx =  dtop

dp (4.44)
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with initial condition (x0,Po) £ R2d at t — t0, where H  : R'1 x I d 4  
c : R d —» Rd. We shall say that H  and c satisfy property (Dl) if

There exists a stopping time T  > 0 a.s. such tha t

(Dl)for any 0 ^  t0 < t < T, Vxq G Md the map
IDi : R —> R , pp X(t , tp,  Xo, po)
is a diffeomorphism.

Next we shall say tha t If, c and 5o : Md —> M satisfy property (D2) if

There exists a stopping time T  > 0 a.s. such tha t
for any 0 ^  t0 < t <  X the map
lZ>2 '• ~^ ) xq X (t, to, Xo, V5o(xq))
is a diffeomorphism.

R em ark . In the literature on Burgers turbulence, the map ID2 25 called La- 
grangian function, and its inverse D f 1 is called the inverse Lagrangian func­
tion [Ber2],

In the following statement we summarise the main results of the previous 
section.

T h e o re m  4.2.1. Let Sp : Rd —> R be a twice differentiable function such 
that 02 q

°\ 1 > A for some A e  Va: 6 Krf, (4.45)

H{x,p)  =  (1/2)p2-\-V(x) and the conditions of the Theorem 4.1.1 hold. Then 
(Dl), (D2) are satisfied.

Proof. Theorem 4.1.1 immediately implies (Dl).
Using formulae (4.5), (4.6) we deduce from

d X  (t, t0, x0, V 50(x0)) d X  (t, t0, x0, p0)
dxo dxc p o = V  S o(x q )

dX(t, tp,  x0, V 6 ,q ( x 0))  d2Sp(x0) 
dp0 dxl

that

d x x  vafa,)) = E d +  Q{t  _  + [{t _ + _ to)]
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and so there exist a constant C\  > 0 such that

dX(t,to,Xo,Po) 1
   ^  -  E d for 0 ^  t 0 <  t  < T  A C\.

ox0 2

Therefore the map D 2 '■ %o —> -^(£, £o»̂ Oj V5o(ro)) is a local diffeomorphism. 
Along the same lines as in the proof of Theorem 4.1.1 we conclude tha t S) 2 
is a global diffeomorphism. □

Let po = Po(t, U,  x, xo) be such that

X ( t ,  t 0, xo , po ( t , t 0, x , x 0)) =  x,  t  > t0, x e  

Moreover, we set

p ( t , t 0, x , x  o) =  P ( t , t 0, x 0, p o ( t , t o , x :xo)).  

For short we write

(4.46)

(4.47)

x ( r )  =  X ( T , t 0yx o , p o ( t , t o , x , x 0)), p( r )  =  P ( r , t o , x 0,po{ t , t o, x , xo) ) .
(4.48)

Recall that X ( r ) ,  P ( r )  are defined by (4.7). We will use this notations 
throughout this paper. To each pair (X , P ) of solutions there corresponds 
the action funct ion  defined by the formula

cr(t, to, xq,Po)
to

t

d r -  J  c(X(r))d£T.
to

(4.49)
If (D l) holds, then one can define locally (for Q ^  t Q < t  < T )  the two-point  
f unct ion

S ( t , tQ, x , x 0) = a ( t , t o , x o , p 0( t , to , x , xo) )]  (4.50)

finally we set X ( t , x 0,Pq) = X ( r , 0 , x o,po), P{r,Xo,Po)  =  P ( r ,  0, x 0,Po), 
Po(t , 0 , X o,Po) =  Po(r , x0,Po), a ( t , x 0,Po) =  cr(t, 0, x 0,po),
S( t ,  x, xq) =  S( t ,  0, x, xo) if to — 0.

The following results (and their proofs) are stochastic versions of the well 
known method of characteristics for solving the Hamilton-Jacobi equation 
(see e.g. [K3]).
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T h eo rem  4.2.2. Let H(x ,p) and c(x) satisfy (Dl). The function (t , x ) -> 
S ( t , t o , x , x 0), as a function of the variables (t,x), satisfies the Hamilton- 
Jacobi equation

dS  +  H  dt +  c(a;) =  0 (4-51)

in the domain (£0, T)  x for stopping time T  with P(T > 0) =  1. Moreover, 
we have

d S  d S
—  (t, t0, x , x 0) = p ( t , t0, x , x 0), — ( t , to , x , xo)  =  --po( t , to,x,Xo) .  (4.52)

Proof. W ithout loss of generality we assume that to =  0.
Step 1 . We start with the proof of the first relation in (4.52). This 

equality can be rewritten as

d S
—  (t)X ( t Jx 0,po),x0) =  P ( t , x 0,p0)

which is, by (4.50),

d(7 dp
^ ( t , x 0,p0) -~^ ( t ,X ( t , xo ,p o ) ,x0) =  P ( t , x 0}p0). (4.53)

Due to (4.46),
/ ̂  \ —i ^  y*
l ^ ( t , X ( t , x 0, p 0) , x 0) )  = ~ - ( t , x 0ipo). (4.54)

It follows tha t the first equation in (4.52), using (4.53), has the form 

dcr . . . d X
— ( t , x Q,po) = P( t , xo , po)  —  ( t , x 0,po).  (4.55)

Since X ( t ) ,  d X ( t ) / d p o  are continuous and of bounded variation, it follows 
from Ito’s formula that

j n d X  n j d X  d X  , n
d P ~— — P  d -  1- —— dP. (4.56)

dp0 dp0 dp0

The left-hand side of (4.55) can be expressed using (4.49). Together with 
(4.56) we calculate that its Ito differential gives:

d f n d X  TT\  , d c ( X )  „  n  , d X  d X  7Tn
a— D~rrr - H  ) d t    df t = P  d—  +  —  dP.
dpQ V dt  J dp0 dp0 dp0
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Notice that we need the fact tha t

9 f  dc(X(r))  
dp0 J  dx * - i f

i=z 1 dpodx

which is justified by a special case of Theorem 36.9 [M], p. 258. Since by 
(4.1) dP  =  (dH/dx) dt +  (dc/dx) d£t we find

dP  d X  , „  d2X  , d H  d X  1 OH dP  , 9X  5c ^
 ---- dt +  P ~ — — dt -  dt -  —  —  dt -  —  —

opo dt opodt ox opo op op0 opo Ox
„  d2X  1 OX (O H  7 9c i

=  7 T ~T 7  d t  ~  d t  +  o -  •Op0Ot Opo \  ox ox
(4.57)

As OX/dt  =  P  we find that (4.57) holds for all t < T(w), and the first part 
of (4.52) is established.

5iep Using (4.50) we get

95  9<j  9a 9p0(£, x, Xo)
9x0 9x0 9po 9x0

and so, by (4.46), we rewrite the second formula in (4.52) as

9d 9cj f  d X \ ~ l 9X

The relation 
_9_ 
da

P(r)

9x0 9p0 \9 p 0

0 X (r )

9xr Po'

dT P(r)

dr
dX{r)

H {X(r) ,  P(r)) dr — c(X(r))  d£n

9a:

where a  =  xq or a  =  p0) and definition (4.49) imply

9cr
P ( t )

3X (t )
9x0 V" V * 9x0 

Using (4.59) and the fact that 

dX{r)

da
dpo

P(r)
dX (r )

dpo

dx i
T  — 0

dX{r)
9p0

(4.58)

(4.59)

T — 0
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give (4.58).
Step 3. To prove (4.51), let us first rewrite it as

Q
dcr(t,Xo,po) +  Tjj—- dpQ +  H(x ,p ( t ,xo ,x) )d t  +  c(x) d£t — 0*

Because of (4.49) we find 

d X
P ( t , x Q,p0) - ^ - ( t ,  XOlPo) dt -  H ( X ( t t XQipo)i P ( t iXQipo)) dt

d(j
-  c (X ( t , x 0,p0)) d£t +  vr— dp0 + H(x,p(t ,  x , x 0)) dt +  c(x) d£t = 0.

Opo
By construction, X(r ,  x 0,pQ) =  x, P(t, x 0,po) —p and expressing do/dpo by 
(4.55) gives

d X  d X
P ( t , x 0,po) —  ( t ,x0,p0) dt +  P{t,xo,po)-7̂ ( t , x o , p o )  dp0 = 0. (4.60)

Differentiating (4.46) with respect to t we get

d X  d X
d X ( t , x 0:pQ{t,x0,x)) = — (t ,x0,p0) d t +  — (t,Xo,pQ)dpo =  0.

Thus (4.60) is always satisfied and (4.51) follows. □

C o ro lla ry  4.2.1. Under the assumption of the Theorem 4.2.2 we have for 
0 <  t0 < t < T

d2S ( t , t  q,x,xq) 1
dx2 t — to

d2S ( t , to ,x }x o) _  1
dx\ t —

d2S ( t , t o , x , x 0) 1

(Ed + O ( t - t 0)), (4.61)

(Ed + O ( t - t 0)), (4.62)

{Ed + O { t - t 0)), (4-63)
dxdxQ t — t0

where O(-) is uniform with respect to X q , x .

Proof. Assume again tha t t0 — 0. From (4.52) and (4.54) we deduce the 
equality

d2s ( t , x , x0) dP u y - 1

= w P X(hPo)w 0
Now (4.5), (4.6) imply the first formula in Corollary 4.2.1. The same argu­
ment can be used to prove the remaining formulae. □
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T h e o re m  4.2.3. We assume that H(x ,p),  c(x) and S0(x) satisfy conditions 
(Dl), (D2). Then for 0 < to < t < T(u)  the formula

t
S ( t , t 0,x) = SQ(x0) + J  (p(r)dx(r) -  H(x(r ),p(r ))  dr -  c(x(r)) d fT) (4.64)

to

(where the integral is taken along the trajectory x(r) — X(r,to,xo, 'VSo(x)),  
p (r ) — P(T,to,XQ,VSo(xo)) such that x(t) = x and xq — Xo(t,to,x) is the 
inverse map of T92) gives a unique classical solution of the Cauchy problem 
for the equation

dS+H(2 , <%t =  0 (4.65)

with initial function S0(x). One can rewrite formula (4.64) in the equivalent 
form

S( t , to ,x) = {S0{x0) + S{ t , tQyx , x 0)) |Xo=a.o(ttto>a;)- (4-66)

Proof. Definition of the two-point function (4.50) implies the equivalence of 
(4.64) and (4.66). From system (4.44) follows that X(t ,  to,xo,po) continuous 
in t and, using the implicit function theorem, from (D2) we obtain that 
xq — x 0(t,to,x)  is continuous in t and [m0, mo] =  0, Ito’s differentials for this 
equation give

dtS ( t , t 0,x)

= X S Q(

d S ( t , t 0, x , x  0)

v7 c I \ a (4- \ 1 dS(t,  toj j *̂ o) I. . dS(t, to, x , 3̂0) j (+4. \VSo{xQ)dtXo{t,x) +  — dt H   dtx 0{t, t0,x)
ut OX 0

dt
dt.

In the last equality we used S?Sq(xq) = po in conjunction with (4.52). From 
Theorem 4.2.2 we know that

d S ( t , t0, x , x  0) . (  dS{ t , t0, x , x 0) \  .
—    dt =  dtS ( t , t 0, x , x  0) =  —H  l a ; ,  — j  dt -  c(x) d£u

and the theorem follows. □

One can find it more convenient to have an alternative representation of the 
solution for the Cauchy problem in Theorem 4.2.3.
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C o ro lla ry  4.2.2. Let the assumptions of Theorem 4.2.3 be fulfilled. Then 
for 0 ^  to < t < T(lj) there exists a unique classical (i.e. smooth) solution 
of the Cauchy problem from Theorem 4.2.3 with initial function Sq(x ). This 
solution is given by the formula

S ( t , t0, x) =  min (50(x0) +  S(t, £0, x0) ) . (4.67)
xo

Proof. From the definition of S)2 it follows that x 0 (t,x) is a critical point of 
the function So(a;o) +  S ( t , t q , x , x o ) .  Moreover, due to (4.45) and (4.62) this 
critical point is also the (unique) minimum point. □



C hapter 5

Sm all tim e and Sem iclassica l 
A sy m p to tics  for S toch astic  
H eat E quation  D riven  by a 
L evy N o ise

5.1 Prelim inaries
We write ( X ,P )  = ( X ( r , t 0, x 0,p0)} P ( r , t Q,xo,po)) £ 
tem

dx — pd t

^  = ( f  + * £ ) * -

for solution of sys- 

(5.1)

with initial condition (x0,po) £ at t = t0. We assume that the coefficients 
V, a, c admit continuous partial derivatives up to order g, g >  3, tha t is

0(1), 1 < \L\ ^  g, (5.2)

c(x) satisfies (4.3) and the driving noise =  (^1)t, . . . ,  £djt) is a d-dimensional 
Levy process such that condition (4.4) holds. Additionally we assume that

d ^ V { x ) d\L\a(x) d ^ c (  x)
dxL dxL ? dxL

\y\2 v(dy) oo, (5.3)

Ivl l̂
where v is a Levy measure of £t.

81



5.1 Preliminari es

L em m a 5.1.1. For any x 0,x  £ Rd, 0 ^  t0 < t < T  we ha,ve

p( t , t0, x , x  0) =  p0(t , t0, x , x 0) +  0 (h),
p ( t , tQ,xo ,xQ) = 0 (h),

x (t ) = x f (r) +  0 ( r  -  t 0),

where
x f (r) = x 0 + -— (x -  x0), t — to

and

S(t, t0, xq, x0) =  [V(x0) +  ha(x0)](t -  t0) -  hc(x0)A£to +  o(l) 

as t —» to.

Proof. Step 1. From system (5.1) we get

p ( t , t o , X , X o )

=  M t ,  to, x,a o )  +  J  9- F ^ h ) l ±  _
t o  t o

=  I +  11 + III.

Since sup^^d \dV(x)/dx\ ,  supxeMd \da(x)/ dx\ =  0(1), it follows that 
Oft  — to). Integrating by parts we have

dc(x(r))
dx  

t o

.  1. K ,  - { » ) - »  /  ^ W ) f c -{ ■ ), ( . )  * ,

t o

where we used by formula (4.15) with f ( x )  =  C i ( x ) ,  i = 1 , . . . ,  d that

[c(x(.)),c(z(-))] =  0.

Since (4.3),

f  ^ M r  -  6 ) p{T) d T = r  d r ,

82

(5.4)
(5.5)
(5.6)

(5.7)

(5.8)

II  =
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where B — { t  6 [t0l t] : I^M I ^  K}.  By Lemma 0.0.1, supT€[0;i] |£r | < 1 for 
t <71  and so, by (5.2),

dc(x 0)
dx ( & - & )

92c(x(r))(^
dx2

0 (1).

It follows
III =  0(h)  + 0 (  |p(r)| dr.

By Lemma 4.1.1 we see j B \v(T) \dr  — 0(1). Hence III =  0(h).  Piecing 
together estimates for II, III we establish (5.4).
Step 2. Applying (5.4) with x =  xq we have

P ( T , t 0, x 0,po(t,  t a ,Xo , x0)) =  P o ( t ,  t 0, x o ,  x 0 )  + 0 ( h ) .  

Integrating the last estimate on the segment [ t o , t ]  and using

t
J  P(T,to,xo,Po(t,to,Xo,xo)) dr  =  x 0 -  x0 = 0
to

we get (5.5).
Step 3. From (5.4) we deduce that

r

x(r) -  x0 = J  (po + 0 (1)) =  Po(t -  to) +  0 ( t  -

(5.9)

to

Similarly x — x 0 = pQ(t — to) +  0 ( t  — t0) and so

x ( t )  —  X f ( r )  =  ( x ( r )  —  x q )
r  - t 0 
t -  t0

(x -  x 0) == 0 ( t  -  t 0).

Step 4• We now proceed with (5.8). Let x ( t )  be defined by (4.48) with 
x — x q . The same kind of argument as in step 1 shows that

c ( x ( t ) )  d £ r  = c(xo)A^ 0 4- o(l)
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for 0 ^  to < t < 7Z, t —> t0- The fact tha t x(t) =  so and (5.5) imply

t t

J  V(x( t ) )  dr -  V ( x o ) t - V ( x 0)t0- J  r  ^ p ( r ) d r  — V ( x 0) ( t - t o ) + 0 ( t - t Q).
to to

Using the estimates above we deduce from (4.50)

S( t , to ,x 0, x 0)
t

=  \  f  p2^  dT +  +  ha^  ~  to  ̂~  MsoJA&o +  0(1).
to

Using again (5.5), gives the proof. □

C o ro lla ry  5.1.1. For 0 ^  to < t < T  one has 

S ( t , t 0, x , x 0) — [U(so) +  ha(x0)]{t -  tQ) -  hc(x0)A^ 0 +  o(l)

+0 (h \x -  a;0|) +  2^  _  t l ) ^  +  ^  ~

as t —* to-

Proof. Expanding S ( t , t o , x , x 0) into Taylor’s series with respect to x  and 
applying Corollary 4.2.1, formula (4.52), yield

S ( t , t 0, x , x 0) =  S(ty to,x0,xo) -\-p(t,t0, xo ,x0){x -  s 0)

+ § S ^ < 1 + 0 <*-*•>>■

Using (5.5), (5.8) we complete the proof. □

5.2 Formal asym ptotics for the Green func­
tion  of stochastic heat equations

We shall construct WKB-type asymptotics for the stochastic differential 
equation

(  hf d  ̂ \hdip = — f —2~tr̂ —2 + ^ + ^aJ ip-dt + hen/)- d̂ t, (5.10)
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where a ,V  : Rd —> R, c =  ( c i , . . . , C d )  : Rd —> =  ?/>(£->to ,® o )-
Assume that the functions V, a, c satisfy conditions (4.3), (5.2) and the Levy 
process o satisfy (5.3), (4.4). Additionally we suppose tha t V(a;), a(a?) 
are bounded below and

c{x)y ^  0 \/x £ Ed, Vy £ suppzz C (5-11)

with v being the Levy measure of £t . One can read (5.11) as

c(x)A5,t ^  0 Vx G Vt e I + .  (5.12)

Let S(t, t0, a;, a;o) be the two point function (defined in preliminaries) for the 
Hamilton-Jacobi equation

dt — V  dt — hadt + hcd^t ~  0. (5.13)2 \ d x

In order to find S(t, to, x, xo) we consider the corresponding Hamilton system 

dx = pd t
V ( x
dx  1 dx ,v dx

As before we denote by (X, P) the solution of system (5.14) with initial 
condition (rc0,Po) at t  — t0- We set

T ( ,  . \  d X { t , t o , x 0, p 0) .
I { t , t o ,Xo,Po)  =  det    , (5.15)

opo
J ( t , t o , x , X o )  =  I { t , t o , x o , p o { t , t o , x , x o ) ) .  (5.16)

We will use both notations interchangeably according to the set of variables 
we want to consider. Formula (4.6) and definition (5.15) immediately imply

C o ro lla ry  5.2.1. For 0 ^  to <  t  <  T  one has

J~ ^ ( t , t0, x , x 0) = L = ^  (1 +  0 ( t  -  t0)) (5.17)

for all x , x 0 £

For short we write I ( r )  =  I(r, to,Xo,Po)-  Recall tha t X ( r )  is given 
by (4.7).
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L em m a 5.2.1. The function J -1/2 =  tG, x t X q )  satisfies

d J ~1/2 d J - ^ d S  1 j. i /2 f d 2S \  n
+  - 3— ^ r  +  ^ ^ 1/2 t a h ^  = 0 .  (5.18)

dt  d x  d x  2 \  d x 2 #

Proof. The identity
det M  =  exp{trlnM }, (5.19)

where M  is a positive definite matrix, and Ito ’s formula imply

I r / , f l  d X ( t )  1 d X ( t )  ( f d X ( t )  Y \ d X { t ) \
d l ( t )  =  ddet —  =  det —  tr — -------  d — - ,

dp0 dp0 \ \  dp0 /  dpo J

where we used the fact tha t ( d X( t ) / dpo )  is continuous and of bounded vari­
ation. Applying formula (4.52) we find

dl ( t )  = I ( t )  tr  (  ( ? m Y 1 B d S ( t , t o ,  X ( t ) , x 0) \  dt  
\ \  dpo J dpo d x  J

= m u

or, using that I ( t )  — J ( t }t o , X ( t ) , x o )

d J ( t yt o , X ( t ) , x 0) _  j ( t , t 0, X ( t ) , x 0) tr ( (t, £0) JY(£), rr0)̂ ) .
dt \  dx2

Hence

(5.20)
Combining (5.20) and relation

d J - ^ M p ^ Y f t ) , ^ )  =  tp,Jy(t),gr0) dX(t)
dt dt dx dt

and the equation
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gives

d J  l t 2{ t , t Q, X ( t ) , x 0) & /  L/ 2( t , t 0, ic0) d S
=  d t  +  t o

Making change of the variables pQ =  p0(t, h ,  x, a?o) we arrive at (5.18). □

We put
p{t,x) = exp{-c(a;)A£T}(l +  c(x)A^T) (5.21)

to<r^t
and p( t ,x ) — 1 if there are no jumps of on (toU]- 

L em m a 5.2.2. For an?/ to ^  t < 71 we have

p(t ,x)  = 1 +  o(l) as t —> to- 

Proof. The inequality

exp{—2/}(l +  y) < 1 for y > 0 (5.22)

implies tha t
exp{—c(o;)A£t }(1 -f c(a;)A£T) < 1.

On the other hand from

exp{—?/}(l +  y) > exp{ ~ y 2} for y > 0 (5.23)

we get
exp{—c(a:)A^T}(l + c(x)A£T) > exp{—|c(x)A^r |2}.

Using tha t by Lemma 0.0.1 Y l o < T< t  l^ £ r |2 < 1 for t < 71 and the fact that 
|c(a;)| =  0 (1), we establish the lemma. □

L em m a 5.2.3. For any 0 ^  to < r  < T  we get

A ^ p ( r ) e x p | - ^ i | ^  + ~ p (t ~) exp j -  |  A 5(r )  =

where for short we write S ( t ) = S ( r , to,x, £0), p(r) — p(r, to,x).
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Proof. We rewrite the left-hand side of (5.24) as 

p(r) exp j  -  p ( r - )  exp j  ~ ~ ~ 4

+ i p ( r - ) e xp { - ^ W }  A S(r)

(5.25)=  e x p { _ ^ 7 ~ |  P(r ) -  P (^“ ) e x p  ( i  _  1 a S ( t ))

Since, by (5.13), A S(t ) = —hc(x)A£T, it follows that

exP { ~ ~ h ^~ } ^ 1 " ^ Af5'(r ) )  “  e x p { -c ( i)A (T} (1 +  c(x)A£T) 

and so the square brackets in (5.25) vanishes. □

Let

4>{t,tn.x,xn) =  6XP  ̂ p ( t , x ) \ ( t , x , x 0)J  i ( t , t 0,x ,x 0), (5.26)
( v ® )

where
t

N f f t ,  ( nm-i^(u^W) d S ( r , t Q, x { T ) , x 0)A{ p x , x 0) =  exp j  -  J  [p{t , x {t ))\  — ----------------— ----------d r j .
to

(5.27)
Recall tha t x(r) is given by (4.48).

L em m a 5.2.4. The function A — \ ( t , x ,xo ) ,  0 ^  t0 < t < T  satisfies the 
equation

7 . d \  dS  d p d S  , \
pd tA +  p— -jr- dt +  A— —  dt — 0. (5.28)

ox ox ox ox

Proof. Making the change of the variable x  = X ( t ,  t0, xq, pq) we find from (5.27)

t
\ { t , X ( t ) , x 0) =  exp |  -  J [ p ( r )X(T))]~1^ { r , X ( T ) ) ^ { T , t o , X { T ) , x o ) d r y
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Hence
dt\( t ,X{t) ,Xo)  =  dt, (5.29)

where in the right-hand side of (5.29) we omit arguments of p, A and S.
On the other hand, using (4.52) gives

3 \  <9 S'
dt\ ( t ,X { t ) , x 0) =  dt\  + ~ d X ( t )  = dt\  + — — dt (5.30)

Combining (5.29), (5.30) and making again the change of the variables p0 — 
Po(t , to,x,Xo)  give the proof. □

L em m a 5.2.5. One can rewrite formula (5.27) in the form,

p ( t , x ( t ) )

to<T̂ -t

where
p(r, x) =  exp{—c{x) A£T}(1 +  c(x) A£T). (5.32)

Proof. We deduce from (5.21)

dp(r,x)  =  y  a i n p ^ )  
ox ox

t o < s < r

and so, by (4.52), we find

t
d In p(s, x(r))In A =  - /  £  ^ ^ l l p(T )dr .(5.33)

Changing the order of the integration and the summation in (5.33) and using 
p(r) dr — dx(r) we have

l n A  =  _  y .  f d l n p { S, x ( r ) )  y  p f r s )

Using again (5.21) we complete the proof. □

An application of Corollary 5.2.1 and Lemmas 5.2.2, 5.2.5 to (5.26) gives
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C o ro lla ry  5.2.2. For 0 ^  t0 < t < T  one has

<j>(t,to,x,Xg) = — (1 +  ° (1)) as t~ * to  
(y /2nh(t  - 10))

for all x , xq G R.d.

We put

(tjtojX.xo) = f i t . to .x .xo )  exp | -  |  . (5.34)

L em m a 5.2.6. The function <f>(t,to,x,xo), 0 ^  to <  t < T  satisfies the 
transport equation

t

/ e x p

to

where

S ( r - ) ' d<f>9S , 1 , / 3 2S \  , '
d$ + a~a~~dT+ o ^ t r  )ox ox  2 \  oxz J

+  £  =  0, (5.35)

E== 5Z (A ĝ (T) ~ exP A<j>{r)

+~</>(r) exp 11 AS(r))(.5.36)

ifere we write for short ^ g M  — '1Pg(t ^Oix ix o)> S ( t )  — S /r , t0,x ,x 0), 
0 (r ) =  < (̂r, t0, a;, x0), p(r) = p(r, x ) .

Proof. Using Ito ’s formula and the fact tha t [ j i ,  j i ]  =  0, [A, A] =  0 we have

w d(f)dS 7 U  / d 2s \  7
F ~ x ~ dr + o ^ tr WT rfr Ox ox 2 \  ax^ /

exp{-c(x0)A&o} /  _ i d J ^ d S ,  1 T i / d 2S \  , \

■ y M F r \  * )  J
. /  +  *

(V27r/i)( dx dx

exp{-c(x0)A&0} | exp{-c(x0)A ^ 0}

(v/27r/x)d (\/27r/i)d



5.2 Formal asymptotics 91

An application of Lemma 5.2.1 (resp. 5.2.4) shows 1 =  0 (resp. I I  =  A dp)) 
and so it is enough to prove that

e x p .  • • K  H  e x p  | _ s p - )  |  dp + E  =  Q ( 5  3 7 )

(V 2 m )  (o /l

Using Lemma 5.2.3 and continuity of A, we obtain

T  ( (r ) +  A ( r ) exp ~ } A5,(r ) ) =  °

and so
s  =  _ Ec p H M A U  ^  AJ_ , exp f _ S ( r - )  |  M r )  (5 38)

(\Z 2 tt /r) t o ^ T ^ . t   ̂ ^

We have

lA^(r )l =  [1 -e x p { -c (x )A ^ T}(l +  c(a;)ACT)]p ( r - )
t o ^ r ^ t  t o ^ . T ^ t

< M z) )2[A£r|2 =  O(l) lACr|2 <00 .

Corollary 5.1.1 and the condition V(x) + ha(x) ^  Cq for some constant 
Co G E  imply that, by (4.50) S  is bounded below. Consequently exp{—S/h}  
is bounded. Thus we have proved the existence of the integral

t

f  XJ~^ exp { — \  dp =  AJ_ 5ex p {  — —- 1 a p ( t ) .  (5.39)
to

h

Piecing together (5.38) and (5.39) we arrive at (5.37). □

Now we can prove that i/jq is a formal asymptotics for the Green function 
of equation (5.10). More precisely, the following result holds.

P ro p o s itio n  5.2.1. The function — V’g (U A? %■> xo), 0 ^  t0 < t < T
satisfies the equation (5.10) up to a remainder 0 ( h 2). Namely,

hdip% + ( ~ y ^ A  +  y  +  ha\  dt _  hip%_cd£t

T 4rH e x p { - f } d t  {5'40)
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Here 'ipQf_ — ipg (t—, to, x, Xo). Moreover,

^  (t, t0, a?, ^o) | t=tQ =  5 { x ~ x  o). (5.41)

Proof. Write for short S_ =  S ( r —, i0, a;, x 0). We multiply equation (5.13) by 
— exp{—S-/h}(f), integrate this equation over [to,t\, and then add equation 
(5.35) multiplied by h. This gives

exp
to

ST
h

(hdc/)- <pdS) + hH

h2
exp

exp
to

_S T

" T

ST

2d±dS_ , ( l J d S _
h dx dx \ h2 \ dx

4> (V dr  +  ha dr — he dt;T) .

1 ( d 2S dr

(5.42)

Recall tha t i/jqs =  
brackets is equal to

<̂> exp {—S'/d} and note that the expression in square

S'] d2ripQ d2(f)
exp a  r t r

— tr
dx2 ’

An application of Ito ’s formula yields
t t

C B  =  $?(*()) +  f  exp ^  f  exp

h
exp

io

s_

S_
d

d[5, S f  +  S

with E as in (5.36). Equation (5.13) and the fact that [£,£]c =  0 imply that 
[S, S]c — 0. By its definition p satisfies [p, p]c — 0. This and formula (5.26) 
imply that [f,S}° = XJ~^[p,S]c — 0. Therefore, the corresponding terms in 
Ito’s formula vanish and we get

t t

J  e x p { _ x } ^ ~ ^ / e x p  { _ T ’ }  ^dS +  s -
to to
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This, (5.42) and a lengthy but elementary calculation show (5.40).
It suffices to show (5.41). An application of Corollaries 5.1.1, 5.2.2 to 

definition (5.34) yields

iff a i t ,  t 0, x , x 0)

—  — ~ = — d exP | - r  iv (x o) +  h a ( x 0)](t -  t 0) +  o ( l ) )  x
x exp { i  0(|m -  a;0|) -  (x +  0 { t  -  i0) ) |  , (5.43)

as t  —» t0, which implies (5.41). □

5.3 M ultiplicative asym ptotics, tw o-sided es­
tim ates and a large deviation principle 
for the Green function

5.3.1 A sym p totics for th e  G reen function
We rewrite equation (5.40) in the integral form

t

hipQ(t, to,x,xo) — h5(x — xq) — J  LoipQ (s, to? x, xo) ds (5.44)
to

d t t

L i ^ s ( s , t o , x , x 0) d£i,s - h 2 J  JC{s,t0, x , x 0)ds ,

*  ̂ to to

where JC(t,to,x,x0) is given by (5.50),

/  h2 d2 \
-  ( ” y t r ^  +  y  +  H ^ s> (5.45)

~  -hci'ipQ, i =  1 , . . . ,  d (5.46)

and put

'ipG(t , t0, x , x 0) =  (1 +  h T  +  h2T 2 +  ... )ijGs(t, to,x,xo),  (5-47)

where the integral operator defined in appendix 6.3.3 by formula (C.26). We 
now prove two auxiliary results which we need later on.



5.3 Multiplicative asymptotics 94

C o ro lla ry  5.3.1. There exists a constant K 4 > 0 such that
,as

£ hkj:ka to’x'x^k=1
=  (h i t  -  t 0) ) ~ ^ O { h { t  -  t 0) t (1_e)) (1 +  |re -  xo\ ) ^ ipQ ft, to, x,  xo)

holds for 0 ^  to < t < T4i£ A K 4, \L\ = 0 , . . . ,  q with Ti>e being a stopping 
time defined in (C.15).

Proof. By Lemma C .5 d ^ ip  /  dxL has the form (C.27) with
a( t , r )  — (h( t  — r))lLi and m  = \L\. Using induction one can easily deduce
from Proposition 6.3.1

dxL

for some constant C  =  C(d, K) > 0 and 0 ^  to < t  < T i>e, where

,as. k r k u ' Mg < hkC kt ^  e)fc(l +  \x — x0|)|Li ol̂ g %o) (5.48)

t t
a k = J  J  ... J  a i t , n )  drx .. .  drk = A |L| ——  - - - - - - - -<  L | l |  (t -  i 0) ,L |+1 .

to Tfc T2

Summing inequalities (5.48) over k £ N and using that 
00
Yf hkC kfil~£̂ k — 0 { t l~e) for t < K 4 = (C'_(1“e) / 2), give the proof. □  
k=1
We set

T£ = T1)£A K 4. (5.49)

L em m a 5.3.1. Lei (t = t or ( t — for some i = 1, . . . , d .  Then for  
any predictable process bo{t) — 50(i, r, a;, £0) {w.r.t. the natural filtration of 
{Ctjt^r ) and the process
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Proof. Changing the order of the integration we have

t s t t

J  J  b0(s,l,x,7i))C(l,T,ipxQ)dld(;s = j  J  b0(s,l,x,T])K{l,T,7i,xo) d(sdl,
T  T  T  I

where

, \ I , d2(j){t1t0, x , x 0) f S ( t , t 0i x , x o) . , .
/C(t, t 0, x, Xq) = -  t r  —  exp    [> (5.50)

and so
t t s

{fFb0)(s ,T ,x ,x 0) d ( s =  J  J  J  b0(s, I, x, rj)K(l,T, rj,x0) drjdld(s
r r

t

— J  J  bi(t,l,x,p))C(l,T,rj,xo) dpdl — (tFbi)(t,r,x,xo).

□
T h e o re m  5.3.1. Let the assumptions given at the beginning of section 5.2 
hold. Series (5.47) converges and

'ipG{ t , to ,x ,x0) =  i>GS(t,to,x,Xo) (l +  0 (h ( t  -  t0)t(1_e))) (5.51)

=  (f){t,t0, x , x 0) exp | - i s ' ( t , t 0,a :,x o ) | (l 4- 0 (h(t -  t0) t(1_e))) .

Moreover, ifG( t , r , x , x 0) satisfies the equation

h'ipG(t , t0, x , x Q) (5.52)
t d t

— h5(x -  X q )  -  J  Lqi/jg (s, t0, x , x 0) ds -  J  Li'ipG(s , t0, x , x 0)d£i>s
to 4-1 to

for 0 ^  to < t < Te with Te given by (5.49).

Proof. An application of Corollary 5.3.1 with L = 0 implies the convergence 
of series (5.47) and gives asymptotic formula (5.51).
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Now we are going to show that ?/>g(L t0, x, x 0) is a Green function for 
equation (5.52). Definitions (C.26), (5.45), (5.46) imply T kLi ~  L i T k i — 
0 , . . . ,  d. It follows

o o  o o

y :  hkJrkLil/>G(t} to, X, X q )  = L i hkT k^Q (t, to, X, X q ). (5.53)
k=0 k - 0

Notice tha t Corollary 5.3.1 gives convergence in (5.53). Applying hkT k to 
the both sides of equation (5.44) and using Lemma 5.3.1 we have

hk+1[Fkipas](t,t0, x , x 0) (5.54)
t

= hk+1[Fkxi] ( t , t0, x , x 0) -  hk j ' [ f kLoiljas](s,to,x,Xo) ds
to

d j,
/  [FkLiil)as](s,tQ,x,XQ) d ^ s -  hk+2[TkX2\(t,tQ,x,XQ), 

i=11
where Xi(t, t0, a:, rr0) =  5(x -  x 0), X2{t, t0, x , x 0) = f*oJC(s,to,x,x0) ds. Since 
[?Xi] =  X2, it follows

o o  o o

y ;  hk+1 [FkXi\(ti to,x »So) -  y  fifc+2[->r/sX2](Lio, )̂ ô) = h S (x -  x0).
k= 0  k - 0

Summarising (5.54) over A; =  0, 1, . . .  we arrive at (5.52). □

5.3.2 A pplications
Now we deduce some direct important consequences of Theorem 5.3.1.

P roposition  5.3.1 (Tw o-sided estim ates for heat kernels).
Under the assumptions given in section 5.2 there exist constants K 5, h 0 > 0 
such that

K ?  e x p / _ L z f ° ) ! \  (5.55)
( s /h i t  -  to))" 1 M* “  M

sg ipa {t,t0, x , x 0) < —  exp { —A  1 j  ■
( V H t - t o ) )  1 3/x(i -  to) j

for t0 ^  t < Te, h ^  /i0.
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Proof. Corollary 5.1.1, (ii) Lemma CA  and (5.51) give the proof. □

P roposition  5.3.2 (Large deviation  principle). Under the assumptions

given in section (5.2) we have

m
limhhi'ipG(t,to,x,xo) — —S ( t , t Q,x,xo).
h-> 0

(a) I ^ |2
lim (t -  t0) In ipG(t , t0, x , x 0) = ------ — .t—>to zn

5.4 The Cauchy problem  and global asym p­
totics for stochastic heat equations

5.4.1 W ell posedness of the Cauchy problem  for heat 
equation

Theorem  5.4.1, We assume that ipo(x) £ CooCMf), i.e. tpo(x) is continuous 
and vanishing at infinity. Then the formula 

[Rtipo^x) = f j ( t , tQ,x) = 'ifG( t , to ,x ,x 0)'iJj0(xo) dx0 (5.56) 

for 0 ^  to < t < Te gives the unique solution ^ (t, to,-) £ C00(Wt) of the 
equation

1 d *
hffi tf ioix) = h'ipo(x) -  / L 0ip(s,t0,x)  ds -  / L ^ ( s ,  t 0, x) d£i)S (5.57)

i  *=i i
with Li i == 0 , . . . ,  d given by (5.45), (5.46).

Proof. Theorem 5.3.1 implies that a solution of equation (5.57) is given by 
formula (5.56). It remains to prove the uniqueness. Let 'ip(t,ta,x) be a 
solution of (5.57) such tha t R w )  — 0. For short we write tp — 'ifir, to, .t), 

=  4>(t —, t0, x), c =  c(x), V  = V ( x ), a = a(x).
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Let us first assume that

h
V  +  ha — h Ci E ^,1 +  —

i=l

d /»

Y 1 CCj /  ViVj v{dy) 
hj=l md\o

^  1 (5.58)

for any x  G Rd. An application of Ito ’s formula shows

dip2 =  2 dij) +  d[*0, *0] =  2if)_ dip -4- ip2_ d < Z r c, c > 

where (%T)i,j — Ki>£j]r? Z>T £ Kdxd, and as

L0ip2 = 2ipL0ip — (V  +  ha)ij)2 — h2
i=l

we obtain
d

d '  dip '  2
eh,'

2=1

=  2ifjr

h dip2 +  L 0ip2 dr +  Liip2_ d£ijT (5.59)
i=l

d
h dip +  L0ip dr +  L{ip_ d ^ iT — (V +  ha)ip2 dr

i=1

- h 2 ^  dr ~  'Y2 L ^ l d ^ r  +  hip2_ d < Z Tc ,c >  .
i=i V i=i

Using the fact that ip(t,to,x) is a solution of (5.57) and so the expression in 
square brackets vanishes, we rewrite (5.59) as

h d i>2 + h2 Y ^  ( H )  dr  =  y  tr ( ^ J r )
i—1 ' '  ̂ ^

d
—2 Liip2_d5,ijT +  hip2_ d < Z Tc ,c >  . (5.60)

i=l

Since ip £ CooiM!1), it follows
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Integrate (5.60) over x [£0,£] to get

h J  i(j2(t , to,x)dx + h2 J  J  f  drdx  (5.61)

t0 Rd to
t

2+h J  J  i/j_ d < Z T c, c > dx.
Kd t0

Denote the right-hand side of (5.61) by I. Since the left-hand side of (5.61) 
is non-negative it follows 1 ^ 0 .  On the other hand

t d ^

E I  =  - 2  J  j  (V + ha){¥.ip2) drdx + 2h , y ^  J  J  Ct (Eipi)  d ( E ^ , r )dx
Rd to l=:1 Rd to

t

+h J  J (Kipt) c?(E < Z T c, c >) dx.
Md to

Using assumption (5.58) and the fact that

E ^ jT =  tE & }1, E f a , £j]T = r  J  yiUj v(dy)
Rd\0

we obtain
t t

E I =  —2 J  j  CEtp2 drdx  U —2 J  J  E 'ip2 drdx  ^  0,
Rd t0 Ud to

where C — C(x) is the left-hand side of (5.58), and so E 'ifj2 = 0  tha t is ip = 0 
a.s.

We proceed with the case C(x) < 1 for some x e Rd. Recall tha t dc/dx  
has compact support and V , a are bounded below (see section 5.2), and so 
C(x)  ^  Co for some constant Co. Let

^ (r , £0, x) -  exp{(l -  C0)r} ^ (r , £0, ®),
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where C is given by (5.58). One readily sees that the function fi satisfies the 
equation (5.57) with the coefficients V  =  V  — Cq +  1, a =  a, c — c. Clearly,

As trivial consequence of formulae (5.43), (5.51), (5.56) we obtain

C o ro lla ry  5.4.1. We assume that the conditions of Theorem 5.4.1 are sat­
isfied and fio(x) ^  0. Then the solution of the Cauchy problem ip(t,to,x) is 
also nonnegative.

The results obtained on the Green function allows us to get easily the 
following qualitative properties of the solution of the Cauchy problem.

T h eo rem  5.4.2. We assume that the conditions of the Theorem 5.4.1 are 
satisfied. Then

(i) [Rtfiofix) tend to ipo(x) as t —» to for each x and any E CA^IR05); 
moreover, if  0 E Co(Rd), then [Rt'fi] tend to ip$ uniformly, as t —» to.

(ii) Rt is a continuous operator C(Rd) —» Cm(Rd) with the norm of order 
((t — to)h)~m for all m  ^  q. Here q is from (5.2).

Proof. Using the trivial fact that

and formulae (5.43), (5.51), (5.56) we have \Rtfio(x) — 'ipo(x)\ —)• 0 as t —> Iq. 
Since convergence in (5.62) is uniform in x  G K  for any compact set K  C l d, 
we establish (i).

Formula (5.56) and Corollary 5.3.1 imply

V, a , c satisfy condition (5.58) and so fi = 0 a.s. Then ^  =  0 a.s. □

1
{ ~ w r i ) } ŵ V5{x° - x) as (5-62)

d^Rtipo
dxL

0 ((h(t — to)) |L|) j  (I + \x -  x Q\yL\'ipG(t,to,x,x0)tpo(xQ) dxQ.
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By (5.43) we see

f  (1 +  \x -  xo\)^'ipQS( t , to ,x ,x0) dxo =  0 (1)

and (ii) follows. □

T h eo rem  5.4.3. We assume that the conditions of Theorem 5.4.1 are ful­
filled and V(x)  ^  —V0 with some Vq ^  0. Let

cl

a(x) ^  (Efi )  c(x) = ^  (E 6 ,i) c(x).  (5.63)
2=1

Then

ft)

E ( |[i/; (i, til, 11 Jj(,lxj 1 {1<r<}) < ||'i/>o(s)||ii(*«)exP \ T Vat r ■
V ^

In particular, i fV (x )  ^  0 then the solution of equation (5.52) is dissi­
pative, that is

E Q l ^ M o ^ l l L K d z ) 1 ^ ^ } )  <  W o ( z ) | | L ^ d x ) -

(ii) In the case of vanishing potential V(x)  = 0  we get

E (\\i){t,t0, x)\\Li{dx)l {t<T£}) = \\'Mx )\\Li(dx)

provided that
d

a(x) = -  (E £i)c(x) =  -  ^  (E£iti)ci(x).  (5.64)
2 = 1

Proof. We first assume that ipo(x) ^  0 for any x £ Rd. Then by Corol­
lary 5.4.1 ip(t,to,x) ^  0. Integrating equation (5.57) over x  gives

h i t < T s  J  i/>(t,t0i x) dx = h l t < T e J  'fo(x) dx (5.65)
Kd Rd

t d t
J  J  L 0fj(r, to, x) drdx -  l t<Ts ^  J  J  T ^ ( r ,  tQ, x) d£itTdx.- 1  t < T s

t 0  t 0
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It follows by (5.43), (5.51), (5.56) tha t for any I — 1 , . . .  ,d 
(d2'ift(t,t0,-)/dx?),(diJ>(t,t0,-) /dxi) e  L l (Rd) and

dxi
—> 0 as |xi\ +oo.

From which we see
tr

a 2^ (r , t0,x) 
dx2

dx = 0.

We deduce from this and definition (5.46)

J  Lo'ipfritoix) dx — J  V(x)'i/j(t} t0, x) dx +  h J  a(x)'i/j(r,to,x) dx. (5.66)

On the other hand, since

t
E 1 t<rE J  ip{r,t0,x)d^T = (E£m) J  [Ei>(T,t0lx) l t<re] dr,

to J to

it follows from (5.63) and the assumption ^ (r , t0,x)  ^  0 that

hE

t
r d t

r
1 t < T e / a(x)ip(r,t0,x)  dr + E E 1 t < T e / Li'ip(r,t0, x ) d ^ T (5.67)

J
to Z=1 J

to

= h f a( x )  -  y ^ E ^ i Cj(x) [ /  [E'lpiryto^x) l t<TJ  dr  ^  0.
i=1 to

Thus, taking mathematical expectation from both sides of (5.65) and using 
estimates (5.66), (5.67), yield

hE 'i/j(t,t0,x) dx l t<Te

^  h j  tpo(x) dx — J  E
to

V ( x ) ^ { r , t 0,x )  dx l t<T,

(5.68)

dr.
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Since V(x)  ^  —Vo, it follows 

hE [\\ip(t,t0, O lk H d * )  h<Te]
t

< h\\ipo{-)\\LHdx) + Vo J  E[\\ ip{rfiQr)\\Li{dx)l T<Ts] dr,
to

and an application of Gronwall Lemma gives (i).
We now proceed with a general case. Let ip0 = ip̂  — ip f , where 

tpQ , ipq ^  0. Then

\\^(t,to,^)\\L^dx) =  \\^+{tVo^)\\Li{dx) +  \\tp~(t,t0,x)\\Li{dx).

Here ip+ and ip~ are solutions of equation (5.52) with initial conditions ipf 
and 'ifjQ respectively. Since (i) is proven for ip+ and ip~, it holds for ip.

Condition (5.64) implies tha t the left-hand side of (5.67) vanishes. Con­
sequently (5.68) turns into equality. Using V(x) — 0 we establish (ii). □

C o ro lla ry  5.4.2. The Green function ipG(t,to,x,Xo) satisfies the 
non-homogeneous Chapman-Kolmogorov equation

ipG(t , tQ, x, z 0) =  J 'ipG(t , r , x, r))ipG(r, t0, rj, x 0) dip
Rn

where 0 ^  t0 ^  r  ^  t < Te.

This simple fact is important by different reasons. First of all this property 
together with the positivity of the Green function allows to interpret this 
Green function (after some normalisations if necessary) as a transition prob­
ability density of a certain stochastic process. Moreover, using Corollary 5.4.2 
we can extend the asymptotic for the Green function to large times t, i.e. to 
obtain global semiclassical asymptotics, and therefore to get a corresponding 
extension of the result of section 5.3.

5.4.2 G eneralised solutions for H am ilton-Jacobi equa­
tion

In this section we discuss briefly a construction of generalised solutions of the 
Hamilton-Jacobi equation which leads to the well-posedness theorem for the
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Cauchy problem with rather general (even discontinuous) initial data. This 
construction is quite similar to the case of deterministic Hamilton-Jacobi 
equations (see [KMa]) or to the case of stochastic equations driven by a 
Wiener process (see [Kl]) and therefore will be only sketched here.

Notice now that formula (4.67) in preliminaries still makes sense if S q is 
merely bounded below and lower semicontinuous. Therefore one can expect 
tha t a reasonable definition of a generalised solution of the Cauchy problem 
for equation (4.13) is given by

[J7f5 0](x) — inf (So (C) +  S ( t , t 0,x,C))y o (5.69)

for this solution.
One way to come to such a definition is based on the method of van­

ishing viscosity (see e.g. [Kr] and [GL] for the case of the deterministic 
Hamilton-Jacobi equations). An alternative approach comes from the ideas 
of idempotent analysis ([KMa]). This later approach is based on the simple 
observation tha t the operators R t, t >  0, are linear operators on the space of 
functions which take values in a metric semiring R U {+ 00} with the metric 
p(a, b) = \e~a — e~b\ and with the commutative binary operations © =  min 
and © =  ■+-. One can show (cf. [KMa]) that convex smooth functions form a 
basis for the semimodule of continuous functions with values in the semiring 
1 U  { + 00}. Thus formula (5.69) can be considered as the natural extension 
(by continuity and linearity) of the operator R t defined initially on convex 
smooth functions where it gives (at least for small times) a classical solution. 
In this set-up one can also introduce a notion of duality which gives the ana­
logue of the usual L2 inner product and thus define the generalised solutions 
in the sense of distributions similar to the standard Sobolev construction for 
the case of linear equations. This leads again to formula (5.69). For details 
we refer to the paper [K2]. The same formula (5.69) can be justified by the 
method of viscosity solutions. For a thorough comparison of these two ap­
proaches to the construction of generalised solution to HJB equations in the 
deterministic case see recent papers [DeMDo], [McCB].

5.4.3 A sym p totics of the so lutions of the C auchy prob­
lem  for heat equation

The next result is a direct consequence of Lemmas D. 1, D. 2 and formulae
(5.56) and (5.69).
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T h e o re m  5.4.4. Let f>(t, £0, x) be a solution of Cauchy problem for equation
(5.57) with initial condition ipo(x) = X d  at t — to, where D  C Mf, S(t , to ,x)  
be a generalised solution of Hamilton-Jacobi equation with initial condition

0 i f  x  £ D,  
+oo otherwiseSo (a) = {

at t = to. We define D t = D t(co) C by saying that

x  G Dt i f f  there exits xq G D such that x  =  X ( t ,  to, Xo, 0).

1. I f  x e D t then

ip(t,to,x) = ( V 2irh)d(j)(t,tQ,x,x0) ^det — 

xexp  { - !L h k c L ] (i + o(h))

fo r  some xq G D.

2. I f  x $  D t then

0}x) -  ( V 2t\xh)d~l —j- <f)(t, t0, x, xo) 

x (det[|6| G(2)(0) +  AJ) 2 e x p { - ^ L™ -^-}(l +  O(h))

for some x 0 G dD. Here b = (dS(t, t0, x, X o ) / d x 0 ) ,

A =  (d2S ( t , t o , x ,X o ) / d x l ) ,  Aft is given by (D.l) and dD is given by 
(D.2) with e — b/\b\ in some neighbourhood o f  xq.



C hapter 6 

A p p en d ices

6.1 A ppendix A
L em m a A .I . Let us denote by

+ 1

Is = J (1 -  S2Y d5,(A.l)
-1

s > —1, s € ®L Then
2 s H~ 3 ,. N

~  2s~-i-~2 (A'2)
for any s > — 1.

Proof. Chosen any 0 < r  < 1 and n 6 No we find from (A.l)

E  w  = [  —  (A-3)
m=0 "i

We integrate (A.3) by parts (with u =  (1 — (1 — <52)n+1)(l — 52)r and 
v =  —(1/5)) to get

J 2 i m+r = +
m=0 -1

106
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1
1 -  (1 -  S2)n+1 „  l2v._1

J-1
(1 — 6 )r~ (2r 6) dS

= 2(n +  l ) / n+r -  2r l r„i +  2r l n+r. 

Consequently we obtain the recurrent formula

In+r_ 2(n +  r) + 1' 771=0

(A.4)

Performing elementary calculations and using (A.4), we prove (A.2) for all
non-integer s > — 1. By continuity we obtain (A.2) for s € N0. □

L em m a A .2 . For o,ny u e l  \  {0}, a ^  1, d ^  3 we have
l

J(v) = / ( I -  h2) -^  ln(u2 +  2 v5 +  a) d5 > (In a) l a s . (A.5)
- l

Proof. One can calculate J(v) explicitly for d = 3 and check the statement. 
We proceed with d ^  4. Clearly J{v) =  J ( —v) and J(v)  is increasing for 
v ^  1, since i>2 +  2u5 +  a is increasing for all |5| < 1, a ^  1. Using the 
fact tha t J(0) — (In a) Id-3 . it suffices to show that J(v)  is increasing for 
0 < v < 1. Taking the derivative

J'(v)  =  2 f ( l ~ S 2) d~ r  ---------
J v “T 2uc) +  a
- i

and using the decomposition

v -j- S v +  S
v2 +  2u<?> +  a v2 + a

71=0

where

W M ) =  “ (A.6)
v2 +  a v 2 +  a ' V 2 -t- a /

771=1 N 7

and 4>2{v, 5) = —^ ( v ,  —5), we obtain
i

J »  =  2 j  ( l - 5 ‘1) ±r<j>1(v,5)dS. (A.7)
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Since

V  ( J v V - 1 ,2m< c2 , „ _Ji_V -T_
A ^ \ u 2 +  a /  u2 +  a \ u 2 +  a /  1 —h2’m —1

we find from (A.6)

v
^  o I—  u2 +  a

where

( l - A 1+ 2A2) +  (A1 - A 2) ( l - <52) - A 2 1
l - < 5 2

(A.8)

A1 =  2 5 - 4 ,  Aa =  8 ^ - 4  ( " T ^ Y -  (A'9)a +  u2 a +  u2 \  u2 +  a J
Substituting (A.8) into (A.7) and using the notations of Lemma A .l we get

J ' l y )  =  ( 1  _  A j  +  2 A 2 )  / f c .  +  -  A 2I i = i
2l) 2 2 2

=  I d- 3 —  ( A l  —  A 2 )  [ 7 ^ 3  —  J d - 1  1 —  A 9  | J d - 5  —  I d - 3 |.2 ' 2 2 2 2

An application of Lemma A .l shows

^  J > }  =  %  (1 -  i  (A.10)

From (A.9) we find

° ** d Al + d(d -  3) < 1 Â 'U ^

for 0 ^  v ^  y/a, d ^  4. Combining (A.10) and (A.11) gives J'{v) > 0 for
0 < v < 1. □

L em m a A .3. Let d ^  3, 0 < a  < 2. There exists 7 =  7 (0 , d) > 0 such that 

f  f i P ’O  Vp € Rd, A G E, (A.12)

where

f ( p ,  0 =  1 1(|p + ac |2 +  i )7 (|p |2 +  i )2
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Proof. W ithout loss of generality we prove the lemma for A =  1. Denote 
the left-hand side of (A. 12) as I ( 7). Changing the coordinates to the polar 
coordinates we get

+00 +00
/(7) = J  J  Z  r~i-~a drd Z r-1—a dr,

s<i- 2 0
where

1

-1
(r2 +  |p|2 +  2r\p \8 +  1)^ (|p |2 +  1)7_

dS,

or Z  =  W 2l Zi,

Z\ — (1 - 5 2) ^
-1

1
_(v2 +  1 +  2v5 +  \p\~2)i  (1 +  b |“2)7

v

An application of Lemma A .2 with a = 1 + \p\ 2 implies
1

dZ1
d'y 7 = 0

J (1 — 52) 2 3 [ln(u2 +  2vS 4- a) — ln(a)] dS
- 1

J(v)  — (In a) I d-3 < 0

and so
+00

/ ' ( 0) =  —|p| —a—27 J(u) — (In a) I d—3 v 1 a dv < 0.

w

This and the fact tha t 7(0) =  0 give the proof. □

C o ro lla ry  A .l .  Let d ^  3, 0 < a < 2. There exists 7 > 0 such that for any 
B  6 Rdxd, b > 0

/b (p , 0

where
f n ( p , C)

(|p +  SCI2 +  i>)7 (M 2 +  &)7 '



6.2 Appendix B 110

Proof. W ithout loss of generality we give the proof for 6 =  1. We take 
A =  A(p, B) > 0 such that

C l  1 C 1 1
= A“ /  t - j t -  (A.13)

J (|p + SCI2 + 1)7 ICI'i+“ J (b + CI2 + 1)7 \(\d+a

Then

/ / b ( p . O = / ( ( |p  + BC|* + l)7- (|p + AC|a + l)0  W ^ dC
Rd Rd

+ I  ((|p +AC|2 + 1)7 “ (|p|2 + i)v |cF ^dC 

=  I +  11.

From (A.13) we find 1 =  0. An application of Lemma A.3 shows II  ^  0, 
which gives the proof. □

6.2 A ppendix B
For the proof of Proposition 3.0.1 we used some technical estimates which 
are not directly related to the arguments of this section.

L em m a B .l .  For y i , . . . ,  yn ^  1 one has

ftto + • ■ • + m M y . )  > L r(n +1) (r (n± __ t^

Proof. Since y\ +  . . .  +  yi > I — 1 we easily see

f p i  +  - + « )  > £  f t  n ± = ± ^ ± L i l . (B .i)
Z=1 i = l

We are going to prove by induction that

Tl j it

n v i + ' " 7  > n ' n ( t t + « - i > (R 2 )
1 =  1 8 = 1
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for some . . . ,  in ^  0 such tha t A +  - . .+ in =  n. Here the product ]7f ranges 
over all 1 ^  I ^  n with ii > 0. Indeed, for n  =  1 we take i\ — 1. Assume 
that (B.2) is true for n  — 1. Let B  — min{yi +  A, • • • ,Vn- i  +  in-i,  Vn}- Then

U l  +  • • • +  y n  +  n  — 1 (z/l  +  * l )  +  • ■ ■ +  (?/n—1 +  « n - l )  +  ?/n ^  D
—  ^  -O  .

n n

If B  =  yr +  zr for some 1 ^  r  ^  n -  1 we take j r =  ?r +  1, jfs =  zs for s ^  r 
and j n = 0. Otherwise we put j n — 1, j s =  is, s =  1 , . . . ,  n — 1. Then the 
inequality (B.2) holds for ( j1}. . . ,  j n), and all n.

Combining (B.l) and (B.2) we get
n , n

TV. + i|)-
1 = 1  1 = 1  

The Lemma follows since the Gamma-function is a log-convex, cf. [A]. □

Lem m a B .2. For n = 1, . . . ,  k one has

nn~kkh > ± ( l n ( k  + l) ) \  (B.3)

Proof. For f ( x )  = (x — k) In x  +  k In k we have

f ' (x )  = ——— + In x. (B.4)

Let f ' ( x o) =  0. Clearly, 1 < xQ < k. From (B.4) we get

.Toflnxo +  1) =  k, (B.5)

so
In k = lnojQ +  ln(lnx0 +  1) ^  21nx0- (B.6)

Thus
/  k \  k

nn~hk k ^  xxQ0~kkk ^  — . (B.7)
\  x o  J

Inequalities (B.5) and (B.6) imply

— =  (lnrco +  1) ^  "  In k +  1 ^  iln(A: +  1). (B.8)
X q 2  2

Combining (B.7) and (B.8) we arrive at (B.3). □
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Lem m a B .3. We define qk by the following recursion formula

k—i ^
g o  =  1 ,  Qk =  Y ]  y i ------------ 1— 7 Q k - m - 1 ,  h £  N .' (k — m ) ml

m=0  ̂ '

Then (26\k
qk ^   _ 5 k  G  N .

(ln(/c +  1))2

Proof. W ith a,/^ =  3/[(£ +  1)(A: — i — 1)!] formula (B.9) reads

fc-i
gfc =  y Z ^ i Q b  k > l .

1=0

Clearly,
v ^ 'n , —  X  n  . n  . yin 5

where the sum ranges over all (i0, . . . ,  in) with k — io > .. . i r 
tha t

n i 3
a io,ii • ■ • a in- i , in n

5 = 0  T  l ) T ( * s  “  C  +  l )  

Lemma B.  1 implies that for b i , . . . ,  br ^  1

n—1

r ( 6„ ) n ( 6i +  --- +  M r (6i)
Z=1

> J_ ^ (n +  1) ( p  ( b\ + .. .Pbn  ^  ^
2n bi +  . . .  +  bn \  \  n

If bi — in—i ijn—i-\-3.5 I — 2 , . . . ,  ?r, b\ — in—i ^n T 1, then

b\ 4- . . .  +  bn — i$ — in T  1 =  k T lj

and it follows that
n —1

b  ■.= r ( i 0 - < i)  I N *  +  i ) r ( c  — c+ i)

112

(B.9)

(B.10)

(B .ll) 

0. Notice

(B.12)
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Recall tha t n  ^  k — 1. Since the inequalities T(b +  1) ^ 6 2  for 6 ^ 2 ,  
T(6 +  1) > 2-Hi t  for 1 <  b ^  2 and, by (B.3), n " - fcV  > 2"* (ln(fc +  1))* we 
have

s  > i X T !  0 " >  i  (rf-***)* >  On(fc + 1) ) * .

Consequently, the right-hand side of (B.12) does not exceed 3nB ~ 1 and so

k K ^ ) kqk <  2 . max m0jil.. .a ^ _ ljin ^
*=<0>...>in=o   (ln(fc +  l))*

where we used that the number of terms in (B .ll) is equal to

k 'k

7 1 = 1

>fc—i

□
L em m a B .4. For any m, k, cki, . . . ,  an € N with

a.i 4- . . .  +  an +  m = k } m  ^  n — '1 (B.13)

we /mue

(ln{aq +  I} )-2* . . .  (ln ja^ +  1} ) ^ ml >  2~k (ln{ln{& +  2}})W (B.14)

Proof. Denote the left-hand side of (B.14) by I and observe that

I ^  (Vtn~2)n > 2~k.

Since (ln{ln{& +  2}}) £ ^  1 for k ^  10, (B.14) holds for k ^  10. If k > 10 we 
get from (B.13)

ol\ +  . . .  +  olu k — m  
n ^  m  +  1 

and so, using the log-convexity of f ( x )  =  (ln{x +  l} ) 2,

,  s  m ,

,  r   ̂ k — m

> (ln{mTT + 1}) 2 m!
Applying lemma B .5, completes the proof. □
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Lem m a B .5. For 1 ^ m  < k, k ^ 10, m, k G N one has

W
 k — m
h .f i l l . j  j  r (m  +  1) ^  2~k (In (ln(/c +  2)))I° . (B.15)

Proof. We write I for the left-hand side of (B.15) and set x 0 =  (In k)~1k.
Case 1. xq < m  < k. We split the proof into three steps. Take x 0 < x < k 

i G l .
Stepl. Since (k + l ) / ( x  +  1) < k / x  < In A: we get

f k  + 1\  , f k \  . . . k
In   < In — < lnln k < -—7- < x ,

\ x  + l j  \ x  J In k

and so
f l n z  > f i n  ( in  ( ^ - ± 1 ) ) .  (B.16)

XX +  1 /  J

Step 2. Using the e lem en ta l inequality

ln(l +  a) ^  ab for 0 < b < 1 and 0 < a < — — 1 

with a = (k — x) /{x  + 1), b = 1/(2 In a;), and

k  — X  k  X q 1 n 10 < a = -------  T   < In A; — 1 < 2 In .t0 — 1 < 2 In re — 1 =  -—  1.
X  T  1 X q  T  1 b

we find that

, f  k + l \  . /  k  — x \  k  — x
2 In a; In (    I =  2 In x  In 1 4   ^    ,

\ X  +  l j  V X +  l J  x  +  1

and therefore
1 , k  — x 1 1 m
- l n x ^ ~  ------ -rxT - -. (B.17)
4 8 hr(~~) x + 1

f (x) =  h y E  ln ( in ( l ± l T  +  i  in x .

Step 3. Set

f ( x ) = ^  fin  (
x  + 1 J J 2

Clearly,

1 ,  A /̂ A; +  l \ \  A; — a; 1 1 . 1
2

/ '(x )  =  - -  In ( In ( —  j  j  -  —  _ ■  —  +  - ( I n s  1).
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Adding (B.16) and (B.17) we obtain f '{x)  ^  0 and so

I ^  exp{/(x)} ^  exp { /  Oo)} • 

Since (k +  1 ) ( xq +  l )-1 >  (3/4) In A:, we find

In

and so

k + 1 \  , /3 1 n /c \ 1 ,, . ,,^  in I -> _ (ln in (A; +  2))%  k ^  10,

1 / 1  \  1
f  (x o) ^  -  (k -  X q )  ( -  In In In (A; +  2) -  1 1 +  - x 0ln x 0

k
16

lnlnln(A; +  2) + Z,

where 
2
k

Z  =
1 in In In (A; +  2) 1 3 In In k ^  3 9 In In k ^  n^  ^  0

In A; 4 Ink  4 In A: 4 8 InA
Combining (B.18) and (B.20) gives (B.15).

Case 2. Let 1 < x  ^  {k / lnk ) .  Using (B.19) we have

k  +  1 
x +  1

k—x
2 /In  In (A; +  2)

V 2
^  2 k  ( l n l n ( A ;  +  2) )

6.3 A ppendix C

6.3.1 E stim ates for N ew ton  system s
Recall that pQ is defined by formula (4.46) and denote by
11MIL _ max M  G Rdxd.

L em m a C .l .  Under the assumptions of Lemma 4.1.2

=  O f t - t o ) ,
^  _ t j dpo(t , to ,x,x0) _

dx
d^pof t ,  t0, x }x 0)

dxL =  0 ( 1) L I  =  2,

hold for 0 ^  to < t < T.

(B.18)

(B.19)

(B.20) 

£ ^  10.

k
8

□

(C.l)

(C.2)
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Proof. Since X  and p0 are inverse functions, it implies

( < - • > - £ ) ( S D ~
oo

« IIMIU ^ ( t - t o ) - (n+1)cr||M||S0,
n —0

where (dX/dpo) = (t — to)Ed +  M. By (4.6) ||M||oo — 0 ( ( t  — to)2) and the 
first formula in Lemma C.l  follows.

Now we choose k, j i , . . . ,  j m G { l , . . . , d } ,  m  G N. Differentiating the 
identity

P0,k (ft ta,X(t ,  to, Xq,Po),Xq) =  Po,/c 

over p o ) j l , P o , jm we get

y ,  m Po,k dXj dXj  | y ,  dpo,k S T X r

i+~H=L dxL 8p°J' dp°J™ h i  dXr dp°’i™ ■ ■' 8p°J'

where the sum Y '  is taken over all is taken over all R , i , . . . ,  j,  A , . .. ,B ,  such 
tha t

i + . . . + j  — R t 1 < \R\ < m, A  +  . . .  +  B  = j i  +  . . .  +  j m. (C.4)

Note tha t here £ +  . . .  +  j  and j \  +  . . .  +  j m are understood as sums of multi­
indices.

We are going to prove (C.2) by induction in m  — \L\.  If m  = 2, then 
from (C.3) we get

d
v -"' d po,k dXi dXj  y-v upo^k

dxjdxi dpo,h dp0,h  ^
d2X,dpoj, __________

r=1 dxr dpo^dpoj,
=  0.

Using formulae (4.5), (4.31) and, by (C .l), the fact that 
dpo/dx = 0 ( ( t  — to)”1) we arrive at

^  d2pod
E dxjdxit,j~i J

((t -  ta)2k h 5i,i2 +  0({ t  - t0)3)) =  0 ( ( t  -  (C.5)
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Divide (C.5) by (t — t 0)2 to get M Y  = 0 (1), where

M  =  E d2 + 0 ( t  -  to), M  € R"*2* *  and ( Y ) {iJ} =  Y  € .

The fact tha t M _1 =  Ed2 4- 0 ( t  — £0) implies F  — 0(1) and formula (C.2) 
for \L\ = 2 follows.

Let us assume that formula (C.2) holds for all L such tha t \L\ < m. We 
denote the left-hand side of (C.3) by I -1- I I  -I- I I I  . Formulae (4.31), (C.l) 
imply I I  — 0 ( ( t  — to)171).

We proceed with I I I  . From (4.31), (C.4) we find

d ^ X j  d W X j
dpQ dp

Using the induction assumption ( d ^ p o ^ / d x 11) — 0 (1) we arrive at I I I  — 
0 ( ( t  — to)m).

Substituting the estimates above to (C.3) we have the system of dm linear 
equations with respect to (d^po}k /d x L)

E  i). (c.6)

where

Jjl =   _ E i_  . . . E T  =  S . . . A. +  O H  -  to).
- J (t  -  t0)m d p aj l  dpo,jn

We rewrite (C.6) in the form M Y  =  0(1), where

M  =  E dm +  0 ( t  -  t0), M G  xdm

and

which implies F  =  0 (1) and gives (C.2) for \L\ = m. □

C o ro lla ry  C .l .  For 0 ^  to < t < T  one has 

d\M\S
~ ^ r {t ,ta,x,xo) = 0 { l ) < |M|3=3.  (C.7)
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Proof. Using the chain rule we find from (4.47) that

d\A\p _  0 ^  dP  <9lAlpo,r j  
®xA dpo,r dxA ^

for | A| ^  2, where I is a sum of the terms of the type

d\L\p  d\B\poti
Q i, . . . , j ,B , . . . ,F  q ^ b  X . . .  X Qj*F

such tha t % +  . . .  +  j  — L, \L\ ^  2, B  +  . . .  +  F  — A. By Lemma C .l,
d\B\po/dxB — 0 ( ( t  — t0)^B^ 2̂ A0)j for any B  £ Nq. Since, by (4.32), 
d\L\p/dpQ =  0 ( ( t  — to)ILI) for \L\ ^  2, it follows that 
Q i, . . . , j ;B , . . . ,F  =  0 ( ( t  -  t0)7), where

7 =  \L\ +  [(|231 — 2) A 0] +  . . .  +  [(|F | — 2) A 0]
-  [(\B\ — 1) A 1] +  . . .  +  [(\F\ -  1) A 1] ^  0

and so I  =  0(1). Using formulae (4.5), (C.2) we obtain 
(dP/ dpotr) (d ^p o tr/ dxA) — 0(1), r — 1 , . . . ,  d. Hence

q\a \b
-g ^ ( t , to ,E > z 0) =  0(1), \A\ ^  2. (C.8)

Applying Theorem 1.1.1 we complete the proof. □

C o ro lla ry  C .2 . For 0 ^  t0 < t < T  and \A\ — 1 , . . .  ,q we have

^ AC’(r) .
- § & -  = O d  -  to)

with x (t ) given by (4.48).

Proof. Applying the chain rule to (4.48) we represent d ^ x { r ) / dxA as a sum 
of the terms of the type

d ^ X  8 |B|p0|i a |F|Po,j
 F Qpfc dxB dxF

such tha t i + . . .  + j  = L, B  + . . .  + F  = A. Applying formulae (4.6), (4.31)
and Lemma C .l give Qp..,j-,B,...,F — C ((t — t0)7), where

7 =  \L\ T 1 +  [(]-B| — 2) A 0] +  . . .  +  [{\F\ -  2) A 0] ^  2

for 2 < \L\ ^  |A| — 1 and 7 — 1 for \L\ =  1, |L| =  |A|, which gives the
proof. □
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6.3.2 E stim ates for the transport and heat equations
Lem m a C .2. Let f  = f ( t , x) : R+ x Rd —>■ be q +  1 times differentiable
in x function with bounded derivatives up to order q. Then one can find a 
constant K j  > 0 such that for 0 < t < 7ZS A K f ,  1 ^  \L\ ^  q

dA l (c.9)

where
Pf(t ’x) =  E[ P(T>f(T’x)) (C-10)

to<T̂ .t
and p(r, x ) is given by (5.32). In particular,

- ^ z r -  = o ( t '- ') P(t,x), (c.ii)

=  Oit1-*) A ( t ,x ,x0). (C.12)

hold for 0 ^  to < t < IZ£ A K\,  1 ^  |L| ^  q for some constant Ki > 0.

Proof. From (C.10) we find 

d ^ p f ( t ,  x)
dxL

=  0(1) E E

(C.13)

d lil]p(Tu f ( r u x ) )
X

dx11 dx ikk~ 1
x E[ P ( r J ( r , x ) ) -

T^n,...,Tk

Here the sum is taken over all r x, . . . ,  £ (to, t) and i \ , . . . ,  ik such that
ii +  . . .  +  ik — L.

Clearly

9  ^ Tp J j T}X^ -  =  Qa ( r ,  x) e x p { —c ( / ( t ,  a;))A£r }, \A\ =  1 , . . . ,  q,

where Qa is polynomial with respect to (d^B^c(f(r, x ) ) / d x B)A^T, \B\ — 
0 , . . . ,  \ A\. One can check that Qa — |A£T|20(1) if \A\ — 1. Using conditions
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(4.3), (5.2) and the boundedness of x ) /d x B), \B\ = 0 , . . . , g ,  it
follows that

d ^ p { r j ( r , x ) )
^  C|A£T|2ex p {-c(/(r,:r))A £ T}, (C.14)

dxA

for some constant C  =  C(q , d , I<, / )  > 0. Together (C.13), (C.14) gives

awPf(t,x) = o(i) Y ; j 3 c*\a u 2-
dxL k—1

k
x jQ  exp{—c ( /( rn, x))A£T)i} p ( r , / ( r , x ) )

n=l r^ri,...,rfc

\L\ ,
=0(1  )pf {t, * ) £ £  C * l ' I 2 - "  I A €rJ2,

k = 1

where we used that, by (5.12), 1 +  c ( f ( r , x ) )A£r ^  1 and so

k

J J e x p { - c ( / ( r n,:r))A£Tn} p ( r , / ( r , x ) )  ^  pf (t,x).
n = 1 r ^ n , . , , T ) i

Consequently, for t < 1Z6

dA 0 A  = o(iw m ) e ( c E  ia?ti2V
fc = l \  t(,<T^.t J

IU
= 0(l)p(t,a;)£(C t1-:te) \

/c=l

FI
Using ^ ( O t 1- 2')* =  0 ( i1-2£) for t  < , =  (2C)-<1- 2' ) '  , proves (C.9).

fc = l
Formula (C .ll) is a particular case of (C.9) with f { t , x )  — x. An appli­

cation of Corollary C .2, Lemma 5.2.5 and formula (C.9) with f ( r , x )  =  x(r)
give (C.12). □

We set
Tm = T A U e A K x. (C.15)
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Lem m a C.3. For 0 ^ to < t < T,  |L| =  1 , . . . ,  q we get

d\L\j~%(t,to,x,Xo) . w - i / .  . \ (n-\r\ 7—r---------- = O ( t - t 0)J  2{t,tQix , x 0), (C.16)

with J  = J(t,to>x,%o) being given by (5.16).

Proof. An application of the chain rule yields that d ^ J ~ ^ / d x L is a sum of 
the terms of the type

dpA d xB dxF

where i +  . . .  +  j  — A, B  +  . . .  4- F = L. One readily sees

d \A\/-3  f  1 , f d X \ \  dM ^  r_i

~ ^ r = « exp r  2 tr ln i  ^  /  / =  exp { 0 } = Q a  ’ ( }
where Qa a sum of the terms of the type 

dW Q d ^ Q

x . . .  x (C.17)

dpF ' ’ * dpG
E  + . . .  + G = A.

The elementary formulae (tr ln M )' =  t rM  1M7,
(M -1)' =  — wher e M is a positive definite matrix, imply

d lEl i n / u r  .01 F{M \^  tr In M  =  0 (1) £  tr ( m ~  . . M ~ j (C.19)

where the sum is taken over all S , . . . ,  such tha t We put
M -  (dX/dpo)£ K‘ix<(. Using (4.6), (4.31) give

M - ' F A E  = 0 ({t -  t0)|B|+1).

Hence

=  - 1  tr  In M  = 0 ( ( t  -  t0) |E|+1) 
d p $2  d p §

and Qa = 0 ( ( t  — to ) ^ +1)- Consequently

=  0 ( ( t  -  to)'AI+1) H  . (C.20)

Using (C.20) and Lemma C. 1, give the proof. □
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Lem m a C.4.

(i) For 0 ^  to < t < T1)£ we have

dW<f>(tyt o>x,x0) x in
 ------  =  0 ( t  )<f>{tytQyx , x o) ,  \L\ =  1 , . . . , g.

(22j  There exist constants K<i, K% > 0 suc/z that

 — — j  ^  (j)(t, t0, x, x0) < (C.21)
[ / i ( t - i o )]5 — to)]^

holds for 0 ^  to < t < Tij£, Vrc, £o £ Md.

Proof. An application of Lemmas C.2, (7.3 to definition (5.21) show (i). 
Applying (5.22) and (5.23) to (C.10) we find

C j 1 <  P f ( t , x )  ^  Cf

for some constant C f  > 0. In particular,

C f 1 ^  p(t,x)  <  Ci, < A(t,£,£o) <  C2 (C.22)

for some constants (7i, C2 > 0. Combining (5.17) and (C.22) imply (ii). □

L em m a C .5. The derivatives of the asymptotic Green function 'ipQ given 
by (5.34) satisfy

-  ^ g ( W o, x , xo) _  ( h ( t - t 0))-\L\ ( l + \ x - x 0\yLty(! ( t , t0, X,xo)Q(l) ,  (C.23)

for 0 ^  t0 < t < T,  \L\ =  1, . . . ,  q .

Proof. One readily sees that

5 'B| e x p j - A )  = Q B e x p { - i s } ,  (C.24)dxB \  ft J  ̂ h

where S  = S(t,to,x,%o) and

1 dW S{x)  1 d ^ S ( x )
Qb = 0(1) max

E + . . . + F = B h dxE "  ’ h dxF
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Using formulae (4.52), (5.4) we obtain 

dS(t , t0, x , xq)
dx -  \p(t,tQ,x,xo)\  ^  \p0(t , tQ, x , x 0)\ +  0 (1).

Expanding po( t , to,x,Xo)  info Taylor series in x  and using, by (C.2), 
dpo/dx — 0 ( ( t  -  to)-1), give

P o ( t , t Q, X , X 0 ) =  p 0 ( t , t o , X o , X 0 ) + 0 ( ( t  -  t0)~l )(x -  X q )

-  0(1) +  0 ( ( t  -  to)-1) ^  -  X q ) ,

where we used (5.5). Thus

DS(t, to, X ,  X q )

dx t - t 0
(1 4- |a; -  x 0\)O(l).

Combining this estimate, (C.7) and Corollary 4.2.1 we get 

Qb =  (h{t -  A))~|B|( 1 +  \x -  a;0|1B|)O (l). 

Applying the chain rule to (5.34) yields

(C.25)

d ^ % s(t , t0, x , x 0) ^  d ^ f i  dW f  1
- =  E

A + B = L  K
d x L

Using formulae (C.24), (C.25) and (i) Lemma 0.4  we arrive at (C.23). □

6.3.3 P roperties o f the integral operator T
Let us recall that S ( t , t Q, x , x o) is a two point function for equation (5.13) 
and (j)(t,to,x,x0) is given by formula (5.26). For a function x(t, to, x, x q )  we 
define
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P ro p o s itio n  6.3.1. Let

x { n , r 2, x , x 0) = a(ru r2)( 1 + \ x -  x 0\)m'ip%(Ti,T2, x , x 0)O(l)  (C.27)

for some function a; : M+ x K+ —>• K+, m e N o .  Then

[FX] =  0 ( t l~£) a ( t , r )  dr  ̂  (1 +  \x -  &0|)m$y ( t , t0, x, x 0) (C.28)

holds for 0 ^  to < t < Ti>e with Tii£ being given by (C.15).

Proof. Using (C.27) rewrite (C.26) in the form

t
[Tx]{t,to,x,Xo) = i  J  J  B(p, r) exp j - 1 M  |  drdp (C.29)

with =  $ (77) =  ^ (t, t ,  x, 77) +  S(r, t0, 77, rc0) and

B(p ,r )  -  a{t, r)(  1 +  |a; -  77|)m </>(£, r ,  re, 77) t r -  ^  —  0(1).

Step 1. Clearly <&(p) = m in < F ( ? 7 )  =  S(t,to, x, x q ) ,  where 77 =  x(r) is given
T ) ( l R d

by (4.48), and
1

<[>(77) >  <[>(77) +  -  ( A (77 - 7 7 ) ,  77 -  77)

provided tha t (02<3f>/O 772 ) ^  A for some A € Mfxd. One has

d2§  _  d2S ( t , r , x ,p )  d2S ( r , t0, 77, ar0) 
cb?2 dp2 dp2

By Corollary 4.2.1 we see

d2$  1 {  1 1 | „> (   1--- — \ Ed — A
5 ?72 2 \ t  — t  t  — to

and so

<f> A S ( t , t o , x , x Q) +  ~ +  ~ ) ( V - V ) 2- (C.30)
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Step 2. By (i) Lemma CA

drf
t r ^ o y ? , * o  1 = 0 ^

and so

B(ipr)  -  0 ( t l~£) a ( t , r ) (  1 +  \x -  p\)m(j){t, r, x, ??)0(r, t0, 77, x 0)

Using (ii) Lemma CA  we have

^  (l +  | ^ ” 7?|)m / n o n
£(? 7 , r )  =  0 ( t  ) 75~ 7 w  ~  “  ~T - (c -31)

(27xh) — r)  (r — £0) ] 2

An application of formula (5.6) shows that

\x — fj\ ^  \x — Xf \ +  \Xf — f j \  = \x — Xf \ +  0(1),

where a;/ =  Xf(r)  is defined by (5.7), and so, using \x — Xf \ ^  \x — x Q\, we 
get

177 — x\ ^  |re — fj\ +  |?7 — 771 ^  |a; — x 0\ +  |?7 — 771 +  C\ (C.32)

for some C\ — Ci(K,d).  Substituting (C.32) to (C.31) we arrive at

B { v , t ) =  (1 +  \x -xol +  C i)m (1 +  ^ ~ ’7l)" . (C.33)

Step 3. Substituting (C.30) and (C.33) to (C.29) and making the change of 
the variables 77 := 77 — 77 we obtain

=  —% r ^ ( l  +  \x ~  ^o|)mexp ( - i  S{ tA o ,x ,x0) \  Z(t, to),  (C.34)fid v 1 U|/ r  t h

where

Z(t,to) = f    ——iz{r)dT,
I  [(^ t ) ( t  0̂ ) ]2

*(r) = / ( 1  + W re x ,p { - i- ( ^ -  +
r  -  tr

dp.
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An application of the elementary formula

J  (1 +  | y\)m exp { - b y 2} dy — b~l ( l +  b~ ^ ) 0 (1), b > 0,

with b — (1/ 2h) ((t — r) 1 +  (r  — t0) shows

' { t - r ) ( r - t 0)z(r) = h 2

and so

Z(t,to) -

Together (C.34) and (C.35) give
t

t -  t0

h i

0 (1)

(t - 10)
a f t , r)  dr. (C.35)

t o

Ojt1- 6) 
[h{t -  t0)]l

J  a f t , r)  dr  J x
K t0

x (1 +  \x -  xo\)m exp | - i  S(£,i0,a;,a;o) j  •

By (ii) Lemma 0.4 we get

[ h ( t - t 0p
which completes the proof.

O(l)</>(£,£0,:r,:ro),
□

6.4 A ppendix D
The following two lemmas give the well-known Laplace method (see e.g. [Fe]) 
in a convenient way.
L em m a D .l .  Let D  C be an open set, f  E 0 ^ ( 0 , R ) ; <E> E 0 3 ( 0 , R ) ; 

h > 0. We assume that $  has unique global minimum at f 0 £ D,  $(^o) ^  0, 
^  M  > 0 for some M  E Rdxd. Then

J  f ( x)  exp |  — j  4>(rc)| dx
D

= (V27r/i)d/ ( f 0)(det $(2)(^0) ) - i  exp j  -  ~  $ (x 0) | ( l  +  0(h)).
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For any A E Wlxd and b E Ed we define A*, E ^ x d̂ ^ by the formula

(A by, y) = [(Ay, y ) (A b, b) -  (A b, y f ]  (A 6, 6) ~ \  VyJ_6. (D.l)

Lem m a D .2. As before D CM? is an open set, f  E Cb(D, E), <F E C 3(D , E), 
h > 0. We assume that $  has unique global minimum at xq E dD,  <&(£ 0) ^  0,

CI>(2) ^  M  > 0 for some M  E Wixd and

{x — Xq, e) =  G(x — xq — (x — xq, e)e) \fx E <9D H 0 { x o), (D.2)

where 0 ( x o) as some neighbourhood of x — x q ,  G : T$0dD  —> E+,
G E C 3(Ed); G ^  > 0. Then

J  f ( x)  exp |  — — <F(a;) j  dx (D.3)

where b — <F^b(f0); \ b is given by (D .l) with A =  <E>(2)(£0),

For completeness we give a proof of Lemma D.2.

Proof. Let us take a > 0 such that

Da = {x e  E(Z : G(x  — x o — (x — Xo, e)e) ^  x ^  a] C D  

and R  — R(a, |6|, M) > 0 such that

for some constant C  =  C(\b\,M) > 0, D a C B R(x0), where B r (x0) is the 
ball of radius R  with centre x 0. We split the left-hand side of (D.3) into the 
sum

D

(det(|&|G<2>(0) +  A*))"* x

( x - x 0,b) + ~ ( M( x  -  Xq) , X ~  Xq) >  C\ x - X q\2 \/x  E Rd \  B r (x0) (D.4)

D \ B r (x o) B j i (xo) r \ ( D\Da ) D,
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Step 1. Since /  <E C£ and using Taylor’s decomposition

1
$ (s) > $ ( x o) +  {x -  x 0, b) +  -  (M (x  -  x Q) ,x  -  x 0)

we have

I = o (ex p { - i  <I>(£0)}) x
x J  exp { -  i  (x -  x 0,b) -  (M( x  -  xu),x -  £0)} dx.

D \ B r ( x  o )

Applying (D.4) we get

I =  O^exp |  — — d>(x0) |^  /  exp |  — — |re — £o|2} dx. (D.5)
D \ B r (x o )

The elementary formula

oo
J  exp |  — — z ^ z d~l dz rsj a  exp j — i j as cy —y 0 T  .
i

gives

O O  OO

c r 2
/ exp { — ^  z2J z d 1 dz =  R d f  exp |  -  ■/} |  zd 1 dz

1
h R d~2

Combining (D.5) and (D.6) we have

1 ,1 r C R 2=  h e x p j  - - $ ( x 0) | e x p  | -----—  } o ( l ) .  (D.7)

5£ep We take e > 0 such tha t 4>(x) ^  ĉ (^o) +  £ for 
a; £ J5^(£0) n ( D \  Da). Then

II =  exp { -  i  ($ (x0) +  e )} 0 ( l) . (D.8)
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Step 3. We proceed with III. By Taylor’s formula

<3?(a;) =  <[>(£0) +  (&,£ — ^0) +  j  (A(a; — x$),x — Xq) A 0 ( \x  — £o|3) x  £ Da.

Using decomposition x — x 0 = ze A y, y £ T±QdD, e = b/\b\, z  £ M and 
definition (D.l) we get

(A(a; -  x 0), (x -  x 0)) = z2(Ae, e) A 2z(Ae,y) A {Ay,y)

= (Ae, e) (z A  (Ae, y)(Ae, e)-1) 2 +  (A6y, y).

Hence
$(x) =  $(^o) A Z\ A  Z2,

where
^1 =  ^(A by,y)  +  0{\y \3) 

and
Z2 =  |6| z +  i  (Ae, e) (2: +  (Ae, y)(Ae, e)-1) 2 +  0{\z\3).

Consequently

III
a

exp |  -  I  $(£0)} J  J  f ( y } z ) exp |  -  i  Zi |  exp |  i  Z2} dzdy ,
G(y)

(D.9)
where

f{y,z) = f ( x 0 A z e A y ) .

The formula
+00

J  g(z)  exp |  ~ Y Z ~ Y (yZ ~  +  X  ^  A 1)}  dz =  ^  ^  ^  +
0

for any <7 £ C'b(R), A i , . . . ,  A4 £ R, Ai, A2 > 0 implies

CL 2

J  7{y, z) exp |  -  i  Z2} dz = £ ( - 1 ) ^  â ) exp { “ ^  ^ + ° ( h^
G(y)
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where a\ = a, 0*2 — G(y).  From (D.9) we find

111 = exp { - ! $ ( £ < , ) } (A +  *2),

where

It = jjr (1 +  0(h))  J  f ( y , ai) exp |  |  exp { -  i  Z i j  dy.

An application of Lemma D .l shows

h = exp |  -  ^j(v/27iA)d_1-^|/(0,a) (detA6)~2 (1 + o(h)).

and

h  = (V2^h)d- 1- ^  7(0,0) (det(|6| G<2>(0) +  A „ ) p  (l +  0 (/i)).

Hence

I I I  =  (y 2 ^ h )‘i- 1l |  / ( 0 .0) (det(|6| G(2)(0) +  A6))_i  x (D.10)

x exp { -  l<J(£o)}-(l +

Combining (D.7), (D.8), (D.10) and using / (0,0)  =  / ( £ 0), we complete the 
proof. □
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