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Preface

Applying WKB method we obtain multiplicative small time and semiclassical
asymptotics for Green functions (fundamental solutions) and for the solutions
of Cauchy problem for the stochastic heat equation driven by a Levy noise.
The relevant theory of stochastic Hamilton systems and Hamilton-Jacobi
equations is developed.

We also give conditions for non-explosion of solutions of Newton systems
driven by a Levy noise and conditions for transience of solutions of such
systems driven by a-stable noise. As a solution of particular Newton system
we consider a-stable Ornstein-Uhlenbeck process for which we estimate the
rate of escape. The connections between the objects studied in this theses
are shown on the scheme at page V.

It is a great pleasure to thank my supervisor, V. N. Kolokol’tsov, who
encouraged and helped me to prepare this thesis. I am grateful to D. B. Ap-
plebaum, N. Jacob, R.L. Schilling and A. Truman for valuable discussions.
Let me mention with special gratitude R.L. Schilling for reading most of the
thesis and making a lot of useful comments. Finally I acknowledge financial
support through the NTU Research Enhancement Grant RF 175.
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Introduction

Recent years saw the series of papers [KI], [K2], [AK], [AHK1], [AHK2] de-
voted to the qualitative study of the Newton equations driven by random
noise (see also [AHZ], [MW], [Nol], [No2] [AKI], [KuMar] and references
therein for related results). On one hand, these equations are interesting on
its own, for example, as models for dynamics of particles moving in random
media (see e.g. [Ne]), in the theory of interacting particles (see e.g. [OV],
[OVY]) and in the theory of random matrices (see e.g. [Me]). On the other
hand, the study ofthis equations serve as an important tool for studying par-
tial differential equations, in particular Hamilton-Jacobi, Heat, Schroclinger
equations, driven by random noise (see [TrZl], [TrZ2], [K4], [K5], [K6], [K7]).

The papers mentioned above were mostly concerned with the case where
the driving noise was the standard Wiener process. It is known, however,
that exponentially decreasing tails of normal distribution are not adequate
for describing a variety of processes appearing in science, engineering and
economics. The natural generalisation of normal distribution which also
appear as the limits of sum of i.i.d. random variables but at the same time
have fat tails (decreasing polynomially and not exponentially at infinity) is
given by the class of stable laws. This leads to the study of random models
given by a stable or even more general Levy noises. At the same time the
Levy process having both a rich probabilistic structure and a clear analytic
representation constitute a natural intermediate class of processes between
Wiener processes and general semimartingale. The latter are also relevant for
physical applications, see e.g. [Bali], where a general class of linear stochastic
second order equations driven by semimartingales was found that preserves
a.s. the Z2-norm of a solution. This class describes general stochastic models
of continuous quantum measurement.

In this thesis we give the conditions for non-explosion of the solutions of



the Newton system

= pdt

= (ai)
where = (£*>em} ) is a Levy process, d ~ 1, c € C2(Md,Ed), dc/dx
is uniformly bounded, V £ C2Md), H ~ 0. We also give conditions for
transience of solutions of (0.1) when d ~ 3, is a general o;-stable

noise.

We proceed with one particular but important case of Newton system.
Position x(?) of a Newtonian particle driven by the white noise force is de-
scribed by the system of stochastic equations

dx = vdt
dv — dw(t), 0.2)
where x £ is the position of the particle, v £ Rd is its velocity and w

is the standard d-dimensional Wiener process. Allowing of a linear friction
force in this model leads to the equation

dx — vdt , S
dv = —Qvdt+ dw(t),

where /3 > 0 is some constant. Processes x(z) and v(?) satisfying (0.3) are
called the position Ornstein-Uhlenbeck (OU) process and the velocity OU
process respectively. Notice that though the pair (#(£), v(z)) is a Markov
process, the position of the particle x(z) is already a non Markovian process.
In [AK], [KI], [K2] the rate of escape of the position process x(?) described
by (0.2) or (0.3) was estimated. For the case (3 = 0 these estimates later on
were essentially improved in [KhSh]. Here we generalise these results to the
case of the general stable noise wa: a £ (0, 2), instead of the normal Gaussian
noise w = W2 above. In particular, we prove that for an increasing positive
function f(t) such that f(t) = o(£1+«) and ¢/f(t) —o(l) as ¢t co and

00

f dt oo

one has
Mt))\



where {x(?), v(t)) is a solution of (0.2) with w — wa. The analogous result
holds for the solutions of (0.3) with w — wa. These results are used to
construct the scattering theory for the system

dx = vdt >
dv — (K(x) —(dv) dt + dwa{t))

where the deterministic force K isconsidered asgivinga perturbation of the
free motion described by equation (0.2)or (0.3). Weprove, in particular, the
existence of random wave operator QWa : (0:(0),u(0)) — (5:(0), u(0)), which
assign to the initial conditions (a;(0),u(0)) of any solution {x, v) of equation
(0.3) with w — wa the initial conditions (ic(O), u(0)) of some solution (x,v)
of equation (0.4) such that ||[(z,u) —(a;,u)]] =0 as ¢t —» oo.

Coming back to Newton systems driven by Levy noise we study the exis-
tence of solutions for boundary value problem for the system

= % di

with H ~ (p2/2) —V{x). Observe that well-posedness of boundary value
problem is equivalent to the statement (which we call theorem on diffeomor-
phism) that the map p0 — X(t, to, £0,Po) (where X(¢, to, x0,po) is a solution
of (0.5) with initial conditions (xQp0) at time ¢t — to) is a diffeomorphism.
Boundary value problems for Hamilton systems of type (0.5) with {£t}"o
being a Wiener process and their connections with the calculus of variations
were investigated in [K4]. However, the proof of the existence and uniqueness
of the solution of the boundary value problem was only sketched in [K4]. In
this thesis we give complete proofs of the corresponding results for Hamilton
systems driven by Levy noise without a Brownian part.

An important tool for the analysis of the behaviour of the solutions for
Hamilton systems is the study of their linearised approximations (equation
in variations). These linearised approximations turn out to be linear non-
homogeneous Hamilton systems. Using perturbation theory we can derive
a representation of the solutions of such linear systems as series of multiple
stochastic integrals. In order to prove the convergence of these series, we
are led to obtaining estimates for multiple stochastic integrals. We use these
estimates as auxiliary tools for the study of linear stochastic Hamilton sys-
tems. However we believe that they are of independent value. Let us mention



here the paper [Ta], where a rather general linear system driven by Brownian
motion was considered, convergence of the series from perturbations theory
proved, and necessary estimates for multiple integrals obtained. Multiple
stochastic integrals with respect to general semimartingales or infinitely di-
visible processes were also considered, see e.g. [KwW], [Sz] and references
given there.

The solutions of the boundary value problem for equation (0.5) is closely
connected to the solutions of the Cauchy problem for Hamilton-Jacobi-Bellman
(HJB for short) equations. Over the last few years interest in stochastic HIB
equations has increased, see e.g. the papers [R], [So], [DaPDe] and references
given there. The HJB equations are important as they describe the evolu-
tion of optimally controlled systems with random dynamics, but they are
also useful tools when studying various classes of stochastic models in prob-
ability theory and mathematical physics. Presently, the notion of stochastic
HJB equation is used in two different contexts: firstly, for classical differen-
tial equations with a random Hamiltonian and, secondly, for truly stochastic
differential equations where the Hamiltonian includes a non-homogeneous
semimartingale term which does not allow to write down the corresponding
equation in classical form.

In the sequel we will consider the second type of HIB equations, that is
to say equations of the form

xERd, >0, (0.6)

where H : R2d ¥ R and ¢ : Rd — Rd are smooth functions and is a
stochastic process (driving noise) in Rd. The equation (0.6) with {£t}"o
being a Wiener process was considered in [K2], [K4], and [TrZl], [TrZ2] for
various classes of real H and c. The corresponding case of complex valued
H and c was taken up in [K5]. Our objective is to study the case of equation
(0.6) with o being a Levy noise without Brownian part and to develop
a stochastic analogue of the theory of classical (i.e. smooth in x) solutions
of the Cauchy problem for equation (0.6). Generalised solutions can then be
constructed in the same way as they are constructed for the case of a Wiener
process {£t}”>o0 in [K2], [[<4] (see also [KMa]).

We next apply theory of stochastic Hamilton systems and stochastic
Hamilton-Jacobi equations developed above to the study of stochastic heat



equations. More precisely, we consider the equation

h df'ipit, x) = (0-7)
h? o dn \ .
~Arala 4 V(x) 4- ha(x) J UHE a;) dt + hip(t—x)c(x) dft,

where a,V : Mf » R, ¢ = (ci,..., q) : Md —mRd, % is a positive parameter,
and assume that c(a;)2 ~ 0 for all x E Rd, y € suppzq where v is a Levy
measure of process {£f}t"o< Applying WKB method we obtain multiplicative
small time and semiclassical asymptotics for the Green function and for the
solutions of the Cauchy problem for equation (0.7). The first step in this
construction consists in solving the corresponding stochastic Hamilton-Jacobi
equation .

1/as'2

ds + - t —V dt —hadt + hedft = 0, (0-8)

which constitutes the “classical part” of the semiclassical approximation.

In deterministic case asymptotics for the Green function of heat and
Schrodinger equation is well known (see e.g. [KS5], [Ma], [MaF] and refer-
ences given there).

Stochastic Schrodinger and heat equations appear naturally in stochastic
filtering [Za], quantum stochastic filtering, quantum measurement and more
generally in the theory of open quantum systems (see e.g. [Bell], [Bel2],
[BelHiHu], [Di], [Q]). Here we consider only heat equations. The applica-
tion of the methods developed here to the case of stochastic Schrodinger
equations will be considered elsewhere. It seems also possible to apply the
methods developed in this paper to the construction of asymptotics for the
Burgers equation driven by Levy noise, since, as is well known, the (nonlin-
ear) Burgers equation can be reduced to a standard heat equation by simple
change of the variables. The case of the Burgers equation driven by Wiener
process was considered in [TrZ3]. The case of heat equation driven by Wiener
process was studied in [K2], [K4], [TrZl], [TrZ2]. We generalise the known
results on stochastic heat equations driven by Wiener noise to the case of
Levy processes. Some statements of this thesis are valid also for general
semimartingale noises.

One of the central features of Levy processes that distinguish them from
diffusion processes is the possibility of jumps of their trajectories. These
jumps complicate the analysis essentially. The formulae for the leading term
of the asymptotics in Levy case will contain an infinite product over the



process of jumps that must be controlled when doing the relevant estimate.
This is the reason why we can not find explicit solution even for a vanishing
potential unlike the case of the heat equation driven by a standard Brownian
motion (see [BelK], [K2], [TrZl]).

Let us give a brief outline how this thesis is organised. In Chapter 1 we
estimate the rate of escape of cr-stable Ornstein-Uhlenbeck process, construct
the scattering theory for perturbations and discuss properties of random wave
operators. Chapter 2 is concerned with obtaining the conditions for non-
explosion and transience for the solutions of system (0.1). In Chapter 3 we
obtain estimates for stochastic multiple integrals. In Chapter 4 we study well-
posedness of the boundary value problem for system (0.5) and construct the
solutions of Cauchy problem for equation (0.6). The final Chapter focuses on
constructing of small time and semiclassical asymptotics for Green function
and for the solutions of Cauchy problem for equation (0.7).



Preliminaries

Our standard references for Levy processes are the monographs by Bertoin
[Berl] and Sato [Sa]. For Levy processes and stochastic calculus with jumps
we use the books by Jacod and Shiryaev [JSh] and Protter [Pro]. We will
collect a few definitions and results from these books.

A Levy process (on Rd) is a stochastic process on a probabil-
ity space (f2,.F,F) with stationary and independent increments which is
also stochastically continuous. We will assume that fo — 0 as- The state
space will always be Rd. We can (and will) choose a version that has right-
continuous sample paths with everywhere finite left-hand limits (cadlag, for
short); ifnot otherwise mentioned, we will use the augmented canonical filtra-
tion of The process is uniquely (up to stochastic equivalence)
determined through its Fourier transform,

Eedt = e-*0(»7)} t> o, veRd,

where the characteristic exponent 7/ : Rd  C is given by the Levy-Khinchine
representation

TPm) = it.r) + r}-0Or] +J Ao ety + v(dy). (0.9)

Here, i is some vector in Rd, Q E Mdxd is a positive semi-definite matrix
and v is the Levy or jump measure with support in Rd\ {0} such that
fjfo w2 A lufdy) < oo. The Levy-Khinchine formula is actually a one-to-
one correspondence between the function 0 and the Levy triplet (£,0,v).
Stochastically, the Levy-Khinchine representation translates into a path
decomposition of the process {&}”o- Fix some Borel set A ¢ R d\ {0}, and
write Nt(co, A) for the Poisson point process with intensity measure v(4). It
is known that Nt(), 4) describes jumps of with sizes contained in 4 and
we get
— ot T T T <A(cu), (0.10)



where a = E —JjyPlLx dy)J is the drift coefficient, Bt is a d-
dimensional Wiener process with (possibly degenerate) covariance matrix Q,

is a martingale which is the compensated sum of all small jumps (modulus
less than 1), and

0<s"t

is the sum of all big jumps (modulus greater than X). As usual, we write
Afs= —f£s =  —limrfs A for the jump at time s > 0. Note that Jt is
a process of bounded variation on compact time-intervals. This is the case
since cadlag paths can have only finitely many jumps of size ~ 1 on any finite
time interval. The above decomposition of shows that Levy processes are
semimartingales and, therefore, good stochastic integrators.

The following two formulae for point processes hold whenever the right-
hand side is finite:

E
(1A Nitdy?) = 11Ia”
and
E ({"/fe)W (.,<A/) -ti/(dy))" j =t JI"f{y)2v(dy). (0.11)
In particular, we get

0.12)

for finite right-hand sides. It is not hard to see that

1t has a.s. finite variation if and only if / Wl v{dy) < oo
Jo<lyl<i

and that



If £t has a.s. bounded jumps, i.e., if the support of v is a bounded set, has
absolute moments of any order.

Most of our notation should be standard or self-explanatory. All stochas-
tic integrals are Ito-integrals and our main reference texts for stochastic in-
tegrals with jumps are Jacod and Shiryaev [JSh] and Protter [Pro].

We will also need the following simple Lemma. Since we could not find a
precise reference for it, we include a short proof.

Lemma 0.0.1. Let 0, £ = (£1, ‘m>£«*) be a Levy process with Q — 0

and Levy measure v satisfying [ \y2v(dy) < oo. For any 0 < e < | we
bl>i

find a stopping time 7Z£(W) < 1 such that

B ) Gty &t 1+ ([&or&])7) < A~e

holds for all t < [Ze, where F(7Ze > 0) = 1. In particular, one can find a
stopping time 7Z > 0 a.s. such that for all t <71

St —2 T (sup [T -f ([E»&]*)3 T < 1- (0.13)
s ' )

Remark. Lemma 0.0.1 remains valid if 9 0. Since we do not need this
result, we settle for the case Q = 0 and the somewhat simpler proof.
Proof. As usual we write * = supr€j04 [£r|. Since Q = 0, we get from (0.10)
E (te*}2) < 3 [la\2t2+ E({M#}2) + E( {
From (0.12) we see that

E({j:}D ¢ ] \x2n(dy)

\xfel

and Doob’s martingale inequality and (0.11) give

E({M#}2) < 4E(Mt)2= 41 J \x\2v(dx).
<1
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Formula (0.12) implies that
E([fif]t) =* J WZV{dX)
1x1>0

Thus, the process
Ct — fe*}2+ [£>Clt

satisfies EC < Ct¢, where C = C{y) > 0 is a constant and ¢ < 1. By
Chebyshev’s inequality

P@ - ) < < &t

Choosing t — 2~k and R — (8d) 12 "N e" we find

]Tp{C2* > (8d)“ 2~(l~)fc} < SACj2 2~k < °°-
k=1 k=1

The Borel-Cantelli Lemma implies that

(24~ (8d) 12 M e~ for k > kO(co) for some Fko(u) GN.

Set ki(co) —ko(to) V + 1 mThen (1 —25)"- ~ 1 —e for k > ki(co).

If 2”7 (AH) C t < 2~k for some k > ki(u>) we find, as r Ct is an increasing
function,

[Sd)Ct < (8d)C2* < 2~fI~Bk ~ (2-(£F1))IW & << (2-(£FD)) (1920 A A(i-2¢)

Using the elementary inequality (oq + ... + a2d)2 ~ (2d)(a2+ ... + a|d) we
get with 7Ze = 27" )

A 8d)C \/t<ne,

and the lemma follows. O



Chapter 1

The rate of escape of stable
Ornstein-Uhlenbeck processes
and the scattering theory for
their perturbations

1.1 Stable O.-U. processes and the scattering
theory for their perturbations

General symmetric stable Levy motion with the index of stability a G (0, 2)
can be defined as the time homogeneous and space homogeneous stochastic
process wa with the transition probability density p Wa{x>t), whose charac-
teristic function has the form

= exp {-iA“ ) (1.1)

where

Sd-i

H is a finite symmetric Borelian measure on Sd~/ (see e.g. [ST] ). We shall
further assume that

Ci ~ A(q/\q\) ~ C2 forsome C\|,C2>0 and A(-) G C2Z3(R1A0). (1.3)



1.1 Stable O.-U. processes and the scattering theory 12

In order to ensure the last condition it is sufficient to suppose that p has
a smooth density with respect to Lebesgue measure. For example the case
of the uniform spectral measure p satisfies all the assumptions. The stable
Ornstein- Uhlenbeck process (x,u) is the solution to the system

dx = vdt *
dv = ~(3vdt + dwalt), !

where 37 0 is a constant. In other words, v and x can be expressed as the
integrals of the stable Levy motion wa by the formulae

v(t) = vgexp{—fit} + J exp{—(3(t —r)} dwa(r) (1.5)

0

and

x(t) —xq + vqj enp{—(3t} dr +J J exp{—A3(r —ri)} dwa(ri)dr. (1.6)
0 00

We shall prove that for d ~ 3 and for d = 2 (for some a) almost surely
|a;(1)| — oo as ¢ —moo and obtain the estimate of growth of x(7).

Theorem 1.1.1. Suppose d ™ 3, 0<a<2 ord=2 0<a < 3/2. Let
3 >0,f(t) bean increasing positive function such thatf(t) = o(tl/a) as
—*o00and J (f(t)di~da)tudt < oo, where

iv>max |l —Jo]| . (1.7)

Then

I"WI _
Iy iy

almost surely.

Theorem 1.1.2. Letd”™ 2,0<a <2, (3=0, f(t) be an increasing positive
function such that f(t) = o(tfl+1"a”), t/f(t) = o(l) as t —>o00 and

00

S (fiyril+l'a)ddt<



1.1 Stable O.-U. processes and the scattering theory 13

Then
M*)I _
z‘%?(t) o0
almost surely.

The proofs of these theorems follow from the following technical results.
Observe that deterministic part of (1.6) is bounded for 3> 0 and

f‘ J\i()—\—vOt\ _ 0
=0 f()"
for any function f(¢#) from Theorem 1.1.2 and so it is sufficient to prove

Theorems 1.1.1, 1.1.2 for processes (x(?),v(t)) with a;(0) = 0,u(0) = 0. Let
B"f be the event which consists of all trajectories x(-) such that the set

(rr(s) : s E [t,t + I]} has a nonempty intersection with the ball {x G Rd :
Im ~ Af(t)} for some constant 4 and function f(?).

Proposition 1.1.1. Let A be a positive constant, d ~ 2, 0 < [(t) ~ 1 and
let f(t) be an increasing positive function on R+ such that f(t) = oftl") as
t —=00. Then

p (b} = off()d g+ O (7 I ) o(r <i/o2) +

Proposition 1.1.2. Let A be a positive constant, 3 = 0, d > 2, and let
f{t) be an increasing positive function on R+ such that f(t) = o(Tl+1la)) as
t =00. Then

p {B"} = o(f(t)ril+l/a))dt 0 (r (1+>+ 0 (r (1+1t)) +
The proofs of Propositions 1.1.1 and 1.1.2 are given in Section 1.3.

of Theorem 1.1.1. Let us take tol/ » u such that it still satisfies condition
(1.7) and 7 = -ffpp satisfies the inequality

7&2- il)\> i-i 1 (1.8)
a’/ a

In particular ifa ~ 1, then one can take fo' = to. Denote cn —X)JJZ| &~7+ By
Proposition 1.1.1

00 00 1 -(1/a) -dry

E ' W ) - nid
n—2 n=2

= 0(1) [i+ 11 +M + iv;



1,1 Stable O.-U. processes and the scattering theory 14

We are going to show that

®
y>{B£f7<oo0. (1.9)

n=2

Since cn = 0(nl 7) and 1/(cn—cn_i) —(n —1)7= 0{1)6n" ~ —0(l)c%/,
it follows that

00 00
1 = E /( O»)'<tnh<i/a = E I~ ")icn “la (c» - ¢c»-1)
A J G- Gl
00 00
- 0 (1).] dt = 0 (I)Jf(t)dt~d/atwdt< 0o0.
2 2

The inequality (1—7)+ (a+ 1)7 = 1+aq > 1 and the formulae"1= 0(n7"1)
imply

00 - 00

IH=E GItm,=°()E,,, ..., =%
n=2

Using, by (1.8), (1/a)(1 —7)+ 27 = 1/a + 7(2 —1/a) > 1 we get

11 =171 ] cvr"('ffzi)n—y < 00.

n=2
Finally, the inequality (rf/a)(1 —7)+ ¥y > 1 yields

iv=E " /r"<°°.
n—2
Clearly I + II + III + IV < 00. Therefore series (1.9) converges. The first
Borel-Cantelli lemma implies that only a finite number of the events Bdfj 7
can hold. It means the existence of a constant M such that for + > Cm
x()\ ~ Af(cm), where cm ~ t < cm+i. This implies the statement of
Theorem 1.1.1. O

of Theorem 1.1.2. Due to Proposition 1.1.2, X)SSH < 00+ The
Borel - Cantelli lemma implies that only a finite number of the events B ")

can hold. It means the existence of a constant M such that for [ > M,
Wx()\ ~ Af([t]). This implies the statement of Theorem 1.1.2. o
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When Theorems 1.1.1 and 1.1.2 are proved the following results can be ob-
tained by the usual arguments of the scattering theory (see e.g. [AK, AHKI]
for details in the case of the Wiener stable process with a = 2).

Theorem 1.1.3. Suppose d”™ 3, 0 <a <2ord=2 0<a <3/2. Let the
function K(x) be Lipschitz continuous and there exist positive constants C\,
2 and a constant

max <1

such that
l. [/iTco)| ~ Ciexp{—2CAI" 1"} for all x GKd
2. UWK(xi) - K(x2\ » Ciexp{-2C2Tr}\\x1- x2\ for |[ja%|, ||z2|| > F.

Then for any pair (vo, x0) €EW2 and for almost all wa there exists a unique
solution fv(t),x(t)) of equation (0.4) with (5> 0 such that

lim (v()) —v(1)) — 0, (1.10)
lim (x(t) —x()) = 0, (1.11)

where (v(t),x(t)) is given by formulae (1.5), (1.6) and is the solution of (0.3)
with the initial condition (u0,a;0).

The proof of Theorem 1.1.3 is given in section 5.3.

Theorem 1.1.4. Suppose d ™ 2. Let the function K(x) be Lipschitz contin-
uous and there exist a positive constant C and a constant

such that
1. |AT@)| ~ QWw\\ » for all seR d

2. WK(xi) —K(x2\ ~ CT~r\\xi —x2\l for a2 > T.
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Then for any pair 0,X0) £ * 2d and for almost all wa there exists a unique
solution (v(t),x(t)) of equation (0.4) with 3= 0 such that

tle v(t) —ro—wa(t))= 0, (1.12)
th1>m (x(t) —xQ—vQ@ —J/ wa(r)dr) = Q. (1.13)

0

In terms of the scattering theory these results state the existence of the
random wave operator QWa : (v0,xo0) — (v(0),s(0)) for system (0.4). Clearly
OWa is an injective measure preserving random map R2d -> R2d. Note that
unlike the case with deterministic Newton equation the Coulomb potential in
R3 is included in the class of functions K, satisfying the assumptions of the
theorem 1.1.4. The question whether or not the operator QWa is surjective
(in thelanguage of scattering theory the question of thecompleteness of
the random wave operator ), i.e. each solution of (0.2) or (0.3) has some
‘free motion' limit is an interesting open problem. A partial solution to this
question for the Wiener noise w = wa is given in [AHK2].

1.2 Auxiliary results

In this section (x(?), v(¢)) will be a solution ofsystem (1.4) such that x(0) = 0,
v(0) = 0. Let px{’t), Pv{'it), P(v,x)(', t) be probability densities of processes
x(t), v(t), (v(t),x(t)) respectively.

Lemma 1.2.1. The following formulae give the characteristic functions of
the transition probability densities of the (v(t),x(t)) and its projections:

t
Pv(q,t) — exp | —Aa(q)J exp{—3o:r}dr|, (1-14)
0

Px{q,t) = exp|-A a(q).] (J exp{-/?7(s - r)} dsj drj (1.15)

and
t t

P(vix){qi,q-2,t) = exp J Aa(exp{-(3r} gx+ J exp{~P(s~r)}ds g2) dr},

0 r
(1.16)
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where A = A(q) is given by (1.2).
Corollary 1.2.1. The density px(x,t) enjoys the following scaling property
c{t)dpx {c(t)x,t) =px {x,cr), (1.17)

where a is determined from the equation

1=J ’\J exp{—fl(s —T)}ds™ dr

0 r
and
t t
ct) =(~ (JeM-P(s-r)}ds) drj . (1.18)
0 r

In particular the last formula implies that for (I > 0,

c(t)-1=o0 (rl/a) (1.19)
and for (5 —0;
c(t)~1 = O(i_(1+1/0)). (1.20)
proof of Lemma 1.2.1. Formulae (1.14) and (1.15) are direct consequences of
formula (1.16). The latter can be obtained by the general techniquedevel-
oped in [ST] . For completeness we shall give a direct proof.
We denotethe right-hand side of (1.16) by LLet 0 = 1l <... <

hn < hn+i —t be adecomposition of the segment [0, t].Take 5k —
Wa(h+i1) - wa{tk), ak = exp{-/?2(t - tk)}, bk - /tYexp{-/3(r - tk)}dr,
In 2n

Von = kZI x2n = k):flbldk. The random wvariables 5k, k - 1,...,2n
are independent. Therefore the 2d-dimensional random variables 4k —

{a2k-i52k-i + a2k82k b2k-i52k-i + b2k52k), k - 1,..., n are also independent.

Hen
ence .

Povon,xxn)(quq2) = Yipa M i 'lz)-
k1

Since PaH#) = 75f(ATa;) for any random variable £ £ Mm and any matrix
A 6 Rmxm, it follows that

PAR<A<P) = R<2fe-i,2b)a2fc-ii T- b2k-iq 2, alkqi + &6c72)
= p5k, (a2k-iqi + b2k, iq2)p52%k(alkqi + b2kq2).
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Consequently
2n
P(Von,x2n){qu 92) = H exp { - (tk+1 - tk)Aa(akql-f 6" 2)}.
k-1
Therefore

P(v,x)(qi,q2,t) = nliggﬂP(vZnH,xZHi)(qu qz) = 1I-

O

Lemma 1.2.2. The density px, d GN enjoys the following estimate
Px{x,t) = 0(t~da) for (>0, (1.21)
Px(x,t) = 0(t~dl+l/a") for (3—0 (1.22)

uniformly for all x.

Proof. Letf3>0. Changing the variable of integration to ¢t =P”ag in the
right handside ofthe inequality px{x,t) ~ (1/27r)df |px(q,t)\dg and using

Rd

formula (1.15), yields

Px(x,t) ~ (1/27r)Vd/a x
t

t
x/expj-A~Nt-1/ J exp{—3{s —r)} ds'j dr” dgx.

Rd O r

Since

t t
1) ~J exp{—{3(s —r)}ds"S dr~C(a,[3)

for some C(a, /?7) > 0, we obtain

Px(x,t) < (1/2?r)Vd/a f exp{-C(a,{3)Aa(qi)}dqi

and estimate (1.21) follows. The same method can be used to prove esti-
mate (1.22). ]
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Lemma 1.2.3. For process %) with (3" 0 the following inequality is true

P{ min w i) ™ Af(t) \v(t) = v,x(t) —x}
r€[t,t+]]
r
A P | 2£max [va(r)|] > min x + vJ exp{—¥i/3}<iri —Af(t)].
)
Proof. Applying formula (1.6) with x0 = x, v0= v yields
T

min X(7)\ ~ min x4v  expf—BrA dri (1.23)
r€[t,it+i] refo,i] 6

+rg[lg’ré].] J exp{-/I(f+ n - r2)} (r2)dn

o t

Using integration by parts we get
r i+Ti

exp{-p{t A n - r2)} dwa{T2)dri
ot

T
0

] (wa(n) - PJ exp{-P{n - r2)}wa{r2) dryjdn

A 21 max \luu(r)|, (1.24)
re’ | \%

where wa(r) = wa(tAr) —wa(t). Formulae (1.23) and (1-24) yield

min \x(r) |> min] x + vJ/ exp{—drd dn —2I max |iDa(r)|.

rei™t+if G [0,1] tE[0,2]
The last inequality and the fact that u)a(r), wa(r) have the same distributions
imply the statement of the lemma. ]

In our proof of Propositions 1.1.1 and 1.1.2 we shall use the following well
known fact (see e.g. [Berl]):
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Lemma 1.2.4. For a G (0,2) there exists C > 0 such that for all A

P : > Al < cl 1.25

s loay = A < G- 1.9

Lemma 1.2.5. Letf(t) be a function from Propositionl.1.1 for j3 > 0
(respectively Proposition 1.1.2 for (3= 0), c(t) defined in Corollary 1.2.1 and
0<Ilt) » 1for 3> 0 (respectively l{t) — 1 for 3= 0). For brevity we shall
omit t in functions f{t), c(t), I(t). Then

Ipx{x,t) P{%m_ax [lug(t)| > (1/2)|rc|—A4 f\ dx (1.26)

\xfedf
= Q-+ 0{c-ala+l) + 0{c-H2),

where Q = O (fdt~d/a) for 3 > 0 (respectively Q = O (fdt~(l+1/a)d) for
3= 0).
Proof. We represent integral (1.26) as the sum oftwo Ji+ J 2, whose domain of

integration are {Af ~ \x\ < 2(Af+1[)} and {|a;| » 2(Af+/)}. Formula (1.21)
for 3> 0 (respectively (1.22) for 3 = 0) implies that

Xsp {Af ()| S2 (Af+ 0} <p{w-)l <2
By Lemma 1.2.4 we see
j - r’t-w f la+IPx(x,t) j H
2 A (\x\-2 Af)a A
|xX\A2(Af+I)

Changing the variable x to x| = c~/x and using the scaling property (1.17)
we rewrite expression (1.27) in the form

lat+lcgpx (cxi, t)a i

o(c~a) (I®i] - 24 fc-1)I

lai|>2 (Af+1)c !

la+Ipx{xl,cr)

W -al f
Oc } J {M-2Afc-rdXd

[®i|*2(A/+pc_1

0(c") I + I . (1.28)
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By (1.21) (respectively (1.22) for 3 = 0) we see fc~! = o(l) when ¢ 00.
Hence the first integral in (1.28) equals O(c~ala+l). The second integral
in (1.28) is equal to

max px(xi,a)dxi

J (\XI\- 24 fc-y

1M ari|>2 (Af+1)c-'
= 0(c-“r *D)[(1 - 24fc~D~atl - (2c-H)~a+1]

= 0 (c~ala+l) + 0 (c_IR2).
O

Lemma 1.2.6. Let £ GR2d, d * 2 be a random variable with density p™(x),
such that

A=g = exp{—AQ()}, Aa(q) = |""AQ(I").

Denote hu(q) = (Uqu Uq2), where U G Rdxd, q = {qi,q2), qi,q2 G Rd.
Assume that
I<i < X{q/\q\) ™~ K2, (1.29)

for some constants Ki, K2 > 0 and

\fq(-)) G C2d+3(R) (1.30)

for every U G Rdxd and for every integral curve q(r) of the equation q(r) —

hu{q{r)). Then
P((R,i")=0(R-"+y, (1.31)

where R = |a:|; if —x/\x\ and p2«R, if) = p~(x(R, if)).

Proof. Step 1. One has

00

P((Rip) = — 2d [ Exp{—F“A“(0)} exp{*Ur <

J ‘o

ip>ir2d 1
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where r = g\, = ¢/\q\. Using for $¥spherical coordinates (p, 9), p 6 [0,%],
9 G S§24~2 with main axis directed along p and changing the variable p to
the variable k& = cos p give

PiRil>) = A/ (1-k3"%Jq(k, 9) dfidO
(V2M) Sad2 i

Jqk, 9 — J exp{—¥aA“(", 0)} OQxp{irRtz)r2d~I dr,
0
where A(«, 9 — A(0). Changing the variable  to the variable r -+ ri? we
get

00

Jo(«»0) = J ex.p{—raR~a\ a(K,,9)}exp{irK, }r2d~1dr.
0

We finally arrive at

P{+V>) = E % =
(=l CU™'
X J 11(1—k2) 2 Z*exp{ir/c}exp{—
Sd211 0
= I+ 11, (1.32)
where

Z\ = (exp{—+aR~a\a(K 0)} —1), Z2—1.
One can show ( see e.g. [K3]) that II = 0. Changing the variable r to the
variable r -+ rA(«, 9), yields
1

_ 1 c r n2>3
p?(Rjip) = 1= lira 511 (1 —k) 2 A (KI&)JI(K,0,e)dKdI,
(V2tR) J ., 1
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00
J(K,e,e) = /(exp {-r"-n - Dexp{ir(« + fe)A-'(*,9)}r"*dr. (1.34)
0
S7ep 2 Let D = {g £ :« = 0}. We now show that for each ¢ 6 D

one can chooseU € Erfxd such that
[(Mg),")[>1/2. (1.35)

Let F(r,p), r € M p G 12 be a solution of the equation on S 2¢~/

—~~F(r,p) = hu{F{r,p))
dr (1.36)

E(0.p) = p.

and
®(r,p)= F(T’P)
i‘r.pjr
Since /i[/(-) is a smooth vector field in some neighbourhood of ¢, there exist
open neighbourhoods of ¢ V{gq) C S2d~1, O(g) C D and T = T(q) > 0 such
that
V:o(-T, T)xO (qg)"V(q) (1.37)

is a diffeomorphism. Without loss of generality one can assume that for any
q = (W0) e V{q)

> /2, (1.38)
< 12, (1.39)
d
\Kl max — < [<i/4, (1.40)
dr
o) x 0 (9).

Since D is a compact and D ¢ Ugef>V(g), one can choose a finite sub-
covering D C V = U™}V (gn). Denote Tn = T(gqn). One can choose smooth
functions xn(«,0), n = 1,..., m on 5 2d“1such that

m
0<Xn(«,0)",  y*XnM) = 1 (1.41)

?i=1
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for (ft, 9) E V and supp Xn C V(gn). Let
K3 = inf{|ff :forsome 6 ¢ = (ft,9) €S2\ V}.

Since D C V, it follows K3 > 0.

Let £(ft) be a smooth function M — [0,1] that equals one(respectively
zero) for [ff| » min{l/3, K3/3} (respectively for |ff » min{l/2, K*/2}). We
put

/i(ft,0) = AC(ft) and /2(f,9) - A{I - C(ft)),
where A = (1 —ft2) 2 A-2d(f, 0), and
1

Si = Re lim - A fffi(K,9)J(K,9,e)dK,d9. (1.42)
(VAR fsl 21

Recall that J(ft, 9, e) is given by (1.34). From (1.33) we find
= Si + S2.

Sfep 5. Changing the order of the integration gives
00

Si = Re lim —-— / (exp{—+aR~a] —1)r2d~1G(r,£) d>
A ( A R ) ]

where
G(r, e) = J fi(n,9) exp{ir(ft + je)A“1(ft, 0)} d"d9.
)

We now show that G(I’lé) :O{FN(Zd-I-Z)) (1.43)

uniformly for all 0 A} £/\< e0 f(}\r some e0- Then (1.43) andf*]@ el epjary
N

estimate 1 —exp{—Z( Z, Z 0 imply Si = 0(i?~(2d+a))
0 (R-(2d+a)).

Using (1.41) we have G(V,e) = }ZGH(W), where
GH(F,(?) — J /1 (R, Q)XH(A79) exp {zr(ft + ze)A- 1(f, 9)} dnd9 (1.44)

Vgn)
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Let us make the change of the variables (/c, 6) —» (r, 00 —F ~1(/U0) in (1.44),
where F~I \ V(gn) -=> (—In,Tn) x 0(gn) is the inverse map of F given
by (1.37). Denote the amplitude of the Jacobian of this change of the vari-
ables by JIn(r, D),

9n(r) = S,,(t,00) = *7n(’",00) [/1(«, 0)Xn(«,

and A(r) = A(F(r, S0)/|F (r, 00) = |F(r. 00)|-“A(F(T,00). Then

G,(rs) = 1 J gn(r) exp{irw(r)} drdQOo, (1.45)
O(qn) ~Tn
zu(r) = («(r, 60) + ze)A 1(r). (1.46)

Condition (1.30) implies that A(r) G C2ti+3([--Tn, Tn]). Therefore
9n(r)y ro(r) GC2d+3([-Tn,T,]). By (1.38) we see

<Oft(r, d0) (dF(r,90) A X
dr v oy P\ = (hu(F(r.e0). )| > 1/2. (1.47)

Using (1.40) we find e0 > 0 such that for all 0 * e * £0
max («/(T,605 mi®Kr) |1 FJ,

where maximum is taken over all (r, 00 € (—n,Tn) x 0(gn). Consequently

dw{r) A(r)
—{K+ A~2(T
dr dr X(TB KK &é dr (T)
1, 1
> (
for 0 * e < £0 Applying integration by parts formula 2d+ 2 times and using
the fact that gn(+7Tn) = ... = g d+2\+ T n) —0, give

gn(r) exp{irw(r)}dr = (71)“Q2d+2) J P2d+2(r) exp {zra(r)} dr, (1.48)
-r,
where
dzu(r) \ - 1!

Fq(t) = (r), Pmti(r) = ~ Pm{r dr )
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The estimates above imply P2d+2{j) — 0(1). Combining (1.45) and (1.48)
we get (1.43).

Step 4+ We proceed with S2. Applying integration by parts formula 2d
times we find from (1.34)

J(/E, 9 ¢) = (iB)~2dJ Amnr2d-1(exp{—+aR~a} —1)" exp{irB} dr, (1.49)
0

where B — (/sctz£)A“ 1(ft, 0). The inequality |/cA 1(/s, 9)| ~ iC/1max{AT3/3,1/3} >
0 for k E supp /2 and

2
r2d l(exp{—+ai? Q} - 1) = ( omr tmi- 112"0Ln) exp {-r“ir a}

m=I

for some am = am(a, 2d) imply that there exists J(k, 9 = linv*+o J(/c, 9,0)
for (k, 9) E supp/2 and

SL L

where

2d
J(K,8,0)= ] exp{-raR~atexp{irK,\-1(K,0)}dr.
0 m=l
(1.50)
We are going to show that J(k, 9,0) — O0(R a) uniformly for all («,0) E
supp/2, which evidently completes the proof of Lemma 1.2.6. Without loss
of generality one can assume that £ > 0.
Case 1. Leta E (0,1). The integral (1.50) along the curve r — L exp{ir71/2},
L>0,r E[01]

| 2d
/A amL oom~-1 exp Syifam —1)r ~ j R~amjexp | —1/*expjira

0 nrl

x exp jALexp |«r"-|«A 1(k, 0)jl/i—exp {"r "~} dr
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does not exceed in magnitude

2d

( jL—exp {- L"cos {a]|}«““m
w1

The latter expression tends to 0 when L —o00. Then for an}' («, 0) E supp/2,
K > 0 one can rotate the contour of integration in (1.50) to the imaginary
axis. Changing the variable  to the variable » —» ir yields

f(YZaAexp lifam - l)uram D

0
X exp | —exp j?,ajRCaj exp{—K \~I(K)}idr = O0(R~a).

Case 2. Let a E [1,2). Similarly, for any («, 6) € supp/2 one can rotate
the contour of integration in (1.50) through the angle exp{m/2Q;}. Changing
the variable r to the variable [ —>expjLr/2a}1 yields

2d

P
J(_ dhep fam_H”

n=l

X exp{—iraR~a} exp jiexp [i"-|t" A -1(M)|(ir = O(R~a).

|

Lemma 1.2.7. Denote by x(t) = t~l/ax(t), v(t) = v(t) for 3 > 0 and
x(t) = t~"NH/"xH{t), v(t) —t~l/av(t) for 3= 0. Then £ = (x(t),v(t)) satisfy
the conditions (1.29), (1.30) of Lemma 1.2.6, where K\, K2 do not depend
on t.

Proof. Step 1. Formula (1.16) implies that

1
Pt(ql.92) = exp | - J Aafyiqi + 72"2)" } ,
0

where A(-) is given by formula (1.2), 71 = 71(s) = tl/aexp{—fist}, T2 =
72(s) = tfdexp{—B(T —s)t}dr for 3> 0and 71 = 1,72= 1—s for 3= 0.
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Applying condition (1.3) to the formula

I 1
AQ) = JA(7i9i + 7292) ds = Ji9i + 72922 A%

0 0
(1.51)

q = (<4,"2)?we get condition (1.29) with
1 1
T o e _ o A
Ki —Ci min j/ [7i(?1 + 7292! K2 CZ(/teg%g;_I/ [7i<i H 7272|a rfs,
0 0
where we used
1 1
J |7i(5)|ads = 0 (1), J 172(s)lads = 0 (1).
0 0
Step 2. Let U € and ¢(r) be an integral curve of the equation

q(r) = hu(q{j)). We will show that A(<X*) € C2d+3(K).
Given r0 we take r such that

y1ihIL".|r _roP < I. (1.52)
. n
n=1
Since
00 (n[)
/\ /N L y-N Qil (t0), n Un(qi(ro)) .
- ft(r0) + 2L “ Wi— (r ~ r®' = + LI-——-- (r ~ro) >
?i=1 ' n—I

i —1,2, we deduce from (1.51)
A(g(r))

= £ Aa(7101(t0) + 7272 (to) + (T_ro*

0 n=1
1

J \liQi{ro) +7202(ro)rA a(/(5,r))ds,
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where

£\ - 7i9ite) + 7292(70) ,\-~ U"(7i9i(te) + 7292(r0)) (r - tq)7
[7191 (TO)+7292(TO)p ' 1719i(ro) +7292(70)| n!

Using (1.52) we find

1/(5,r)| * >0

n~\
for 5 so, where so is a solution (if it exists) of the equation
710%0)9i (to) + 72(50)92(70) = 0.

This and (1.3) imply thatfor any s / sO the function AQ(/(s,r)) is d + 2
times differentiable at r =g and so A(q(r)) is d + 2 times differentiable at
T=1T1o O

Lemma 1.2.8. Let d ™ 2. Denote by

I =pj min a:(t)+u(t)J exp{—3s} ds""|a;(t)|J. (1.53)
0

Then 1 = 0(t~dald) for 3> 0 and 1 = 0(t~dld) for j3—O0.

Proof. Using the notations of Lemma 1.2.7 we have

—_—

I=P in k(z) + 4 t) 1"

{yrgﬂé?q (1) + A(r)v(1) b
where A(r) =/_1t for 3—0 and A(r) = t-1/® JQexp{—?s} dsfor 3 > 0.
Using the coordinates £ = .Roost?A/, v = R sin BN2, R G[0,00), t? (0,71/2],
Ni,N2G5d 1 we obtain

[N}

1= 1 J (cos Osin<5d IPi(O,*(O(-R, IV, N2)R2d1dRtffldNidNz, (1.54)
00

where

O—j(t?, Ni, N2) : 1€r[13n] | cost?Aff + A (1) sin t2%V2] ~ ; cost?}
t r€[0,i
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Lemma 1.2.7 and formula (1.31) yields
f A w1,JV2)ii2i- 1d£: = 0(1)
0

uniformly with respect to t?, Aff, N2. The inequalities
—" mip [IVi+ A(7) tan$Ar2| > min (1 —A(7r) tan#
5 &Eﬁ]' (1) | féﬂﬁ]( (r) )
and » ~ [ imply that Q C Gi = {(8, Ni, N2) : 1 —A(l) tan# ~ 1/2}.

Applying \G\\ = 0(A4(l)) and cost? = 0(A(l)) for (#, ) G Gi, we estimate
expression (1.54) by

0(1) ( {costfsini})'L 1dtfdNidNi = 0{1)\g I\(A(D))d~1 =0{{A{]))d.

a
Observing A(l) ~ t~I/al for 3 > 0 and A(l) — t~xl for (3 = 0, we complete
the proof. ]

1.3 Estimates for P{B#tj)
Let 0 < [(t) ~ 1 for (3> 0 (resp. Z(t) = 1 for (3= 0). It is clear that

P{BIfj} = P{\x()\ ~ Af(t)}p j J Jv,x)p (V=X (v,x,t) dvdx, (1.55)
X\ Af(1) Rd

where
J(v, x) = P{ min” |ay(r)] * A/M |*"W —v, x(t) —a:}.

Due to Lemma 1.2.2 P{lo;(£)| » 4f(t)} = 0(/(t)f 1/a)d for (3 > 0 and

P{|x(t)] ~ Af(t)} = 0(f(t)t~(1+l/a))d for (3 = 0. We represent the integral
in expression (1.55) as the sum A + /2 of two integrals, whose domain of
integration in the variable (v,x) are

t+ T

Di —| min \x + vJ exp{—3s} ds\ ~ (1/2)|:r|}
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and

t+ T

D2= | min |a+ v/exp{ﬁi.?s} ds\ > (1/2)|a

Lemma 1.2.8 implies that # ~ f PWv,:K){v,x,t) dvdx = 0(t~d/ald) for 3> 0
Di

and I\ = 0(t~dld) for 3= 0. By Lemma 1.2.3 we see

| ] > -
2 e ra] = 5
for (v,x) E D2 and so, integrating the estimate for /2 over v we get
21 \ I'> —nl
e
1xX\AAf (1)

Applying Lemma 1.2.5 and formula (1.19) (respectively (1.20) for 3= 0) to
estimate (1.56) yield

for 3> 0 and
2=o(f{t)d {IHigg+o (r(Ha)+o (r(Ha)
for 3—0.
Piecing together the estimates above gives the proof.
1.4 Existence of the wave operator

The proof of Theorems 1.1.3 and 1.1.4 follows a well known pattern.

Proof of Theorems 1.1.3, 1.1.4. The change of variables
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transform system (0.4) into the system

y — h

h = K"y +JJ exp{-~(3{r —s)} dwa(s) dr'j —f3h.

0 o0
Making the change of the second variable & = exp{— we get the equiv-
alent system

y = eXp{-pt}z

z = exp{(3t}K (y +J J exp{—i(T —s)}dwa(s)drp. (1*7)

00
Let T > 0. Denote by C(|T, 00)) the Banach space of bounded continuous
function from [T, oo) into Md with the norm = sup{|uC:r)[ : x E [T, 00)}

and by BT the unit ball
BT = {ueC([T,00)):\\ul\00™1}.

Case 1. Let 3 > 0. It is clear that if some function u 6 Bt is a fixed
point of the map

(Fu)(t) = J exp{—?r}| J exp{/3s}< + 0
t s ' s i
—fzoJ exp{-(3si}dsi +J J exp{—3{si - s2)} dwa(s2)dsi"<isjdr,
0 00

then y —u+ yo+ zq f* exp{—3s} ds and z = z04-exp{/3t}u are the solutions
of (1.57) with the asymptotics (1.10) and (1.11) and so the existence of the
solution of (0.4) with asymptotics (1.10), (1.11) is equivalent to the existence
of a fixed point for the map T .

Let us choose p G (0,7/a. —1/d —max{l —1/a, 0}/d). Then rp > 1. The
existence of such a p is assured by the condition on r. Then the function
f(t) = tv satisfies the condition of Theorem 1.1.1 and consequently, there
exists a TO such that for all 7 ~ TO

T si

T
yo + AoJ exp{—3s].} ds| +J J exp{-/3(si - s2)} dwa(s2)ds} > TP+ 1
00
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with probability one and, moreover,
s: C2.

Due to condition 1 of Theorem 1.1.3, for these 7 the integral

exp{(3s}K™u(s) + yo + zO] exp {—3s\} ds)
0

+ [ [e,P{-0(sl- S2)}dwa(s,)ds)ds (1.58)

is well defined for any u G B¢ and does not exceed in magnitude

C\J exp{/3s —2Qspr}ds * C\J exp{—QC2Spr}ds

T T

A CIJ exp{-C2s}ds = ™exp{-C2T}.
T

Analogously, due to condition 2 of Theorem 1.1.3, the norm of the differ-
ence of two integrals of the form (1.58) corresponding to different functions
ui,u2 G Bt is bounded from above by

5, exp{—EZT}|W - u21,

This implies that the map T is well defined on B 7 for such 7 and, moreover,
if we take a 7 such that

—exp{—T(P+ C2} < 1,
TYe, P ( )}

then fF maps BT to itself and isa contraction on BT- The contraction
mapping principle implies then the existence of a (unique) fixed point to F,
which completes the proof of theorem 1.1.3.

Case 2. We proceed with (3= 0. Obviously, if some function u G Bt is a
fixed point of the map

(Fu)(t) = J J K (u(s) + yotzqs + J wa(si) dsij dsdr, (1.59)

t T 0
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then y = u + 0+ z0t and z ~ z0 u are the solutions of (1.57) with the
asymptotics (1.10) and (1.11) and so the existence of the solution of (0.4)
with asymptotics (1.12), (1.13) is equivalent to the existence of a fixed point
for the map 7. Notice that condition 1 of Theorem 1.1.4 implies the existence
of the integral in (1.59).

Let us choose p G (0, (1+ //a —1/d). Then rp > 2. The existence of such
a p is assured by the condition on r. Then the function f(#) = tp satisfies
the condition of Theorem 1.1.1 and consequently, there exists a TO such that
for all T ~ TO

yo +z(l' +j wa(si)dsi >TP+ 1
0
with probability one. Due to condition 1 of Theorem 1.1.3, for these T, the
integral

00 N

J K (U{fs) /0 + 20S+) (1.60)
r 0

is well defined for any ¥ G BT and does not exceed in magnitude

00 Co

CJ[]fs~prdsdr < — 2.5,
T T

(pr-1)(pr-2) =

Analogously, due to condition 2 of Theorem 1.1.4, the norm of the differ-
ence of two integrals of the form (1.60) corresponding to different functions
vi,02 GBt is bounded from above by

rjp2—pr| ..
Ui - U2 .
(pr —(pr —2)
This implies that the map 7 is well defined on BT for such 7 and, moreover,if
we take a T such that

T2pr <1,
(pr — 1) (pr —2)
then fF maps BT to itself and is a contraction on BT- The contraction
mapping principle implies then the existence of a (unique) fixed point to T,
which gives the proof of theorem 1.1.4. |



Chapter 2

Transience and Non-explosion
of Certain Stochastic
Newtonian Systems

2.1 Non-explosion

Let (X(t),P(t)) = (X(t,x0,po),P(t,X0,po)) be a solution of the system

{ dx ~ pdt
dP = ~Tfdt~1£d&’
with initial condition (aanPo) £ F2d at £ = 0, where = (£it, is

a Levy process, d » 1, ¢ G C2(Rd,Md), 1/ G C2(Rd), V > 0 and 5c/da; is
uniformly bounded. Due to the smoothness of V' and ¢ this solution exists
and is unique locally (i.e. for small times).

Theorem 2.1.1. We denote by Tm —inf{s ~ 0 : |X(s)| V|T(s)] » m} ond
Too —supTm the explosion time of system (2.1). Then F(Too = o00) = 1.
m

Proof. Step 1. We write rm —inf{s ~ 0 : \P(s)| ~ m} and o0 = suprm. It
m

is clear that 7m ~ rm and so A Too- Assuming that 7" < r < rm for
some r > 0, m GN, we deduce from the first equation in (2.1) that

max |X(s)| » Itql + » max |P(s)| * bol+ rm.
s€[0,r] sG[0.r]
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On the other hand < r implies max |AT(s)] = oo. The contradiction
S€[0,7]
proves —T@ and we are done if we can show that F(700= 00) = 1.

Step 2. We put H = H(x,p) = (p2/2) + V(x). An application of Ito’s
formula to H(t) = H(X(t), P(t)) yields

dH{t) = P(t-)dP(t) + | tr de(x(t-) ,,
4 dx ¢

\ dx
dv~r P (t) dt+ " (2.2)
dx
where Zt G Rdxd, (Zt)ij = and
1
E=3 T (P2(r) “ ®#2(r_ ) » 2P (r-)(P(r) - -))

- (P(T)- P(r-))D) = 0.

Notice first equation in (2.1) implies that X(¢) is a continuous function.
Replacing dP in (2.2) through the expression in formula (2.1) we arrive at

dH{t) (2.3)
Sc(X(1)) 1 dei{)y J< (SCSY(FI')P)
B ftr 2 ax | 0x J

Setting a stopping time o — s A rm A OR, where =1in f: [£t] & R},

5> 0, m GN we calculate from (2.3) that
W(<j-) = if(0)-1 + II, 2.4)

where

ae(X (1) ~  (de(X(t-)) T

- iju dx I\ dx

0

Step 3. Denote by 'ijj(D) a generator of and by D ('ip(D)) its domain. We
want to estimate |EI1|. For this purpose let us take a function G CQ
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such that &) = x if ja] » 1, supp S C {x : |x| * 2} and define YR(x) =
Ref>(]) . Clearly,

<M&) = 6 for any ¢ < QOR
and since iR G C£°(IRd) C D(ip(D)) is in the domain of the generator of £t
we find that

(2.5)

is a martingale (w.r.t. the natural filtration of Using decomposition
(2.5) we have

ei =e¢ fp{t-)"2N )IldMp +eJ P(t-)22N II~D ) 4R}(t)dt = r+i".
0 0

Applying optimal stopping time to the martingale

J P(t~)(dc(X(t))/dx) dMfR we deduce from

I'=E [ P(t~) dMfR- EP (o~)I~N1 /\Mp
f U w

that J J
rcm % E|AM*x| A 2 ¢ (2.6)

dx dx
where

dc dci(x)

max  syp. i

dx Xel dxj

and we used
laM ** = 1 MC)-<M6r-)l« 2RMIL-

To estimate I" we first estimate

exp{ixCli>(C)<t>R(C)
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where ¥R is a Fourier transform of ()R. Since 4R(() = Rd+14>(R(), it follows

I sj (2ir)~iRJ Rd|NC)NHC)| d( = @*N ~R J () HV) dp.

Levy-Khinchine formula implies that |'0('"*)] ~ Ci(l + wl2) for some constant
C\ —C\ (ip) > 0 and so we find

dp.

Since +G <S(Rd), we obtain

\[ipD)<pR](x)\ < CiR [ (1 + [T2) 4@ dp —RC2< 00

for some constant C2 = C2(ip, (p) uniformly for all x G Rd. Hence

dc
mC2Rs. 2.7)
dx
Combining (2.6), (2.7), gives
[E1| » CtfnR + C"mRs, 2.8)

where C3 = 2||dc/3ii:||00H ~, C4= \\dc/dx\\x C2.
Step 4 We proceed with |EII|. Formula

IAB|U ~ d|HU B Joc, pdwd
where imioo = max (A4)ij, implies that
o dc
dx \dx dx AP
Using

E ([C?2]sA*-) < J v(dy),
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we get
E li A C5s J|
|ZISC2R

for some C5= (d3/2) ||«9c/ rr]|2.
Step 5. Combining (2.4), (2.8), (2.9) we obtain

N H(0) + C3mR + C4mRs + Cl5s J  \yfv{dy). (2.10)
17/K2«

On the other hand,
E(ff(cr-)) = )-EP2(a-) + EV (X(0-)) ts ifip 2(cr) Q.11
> E(P2(s ATnA QR-)I{Tn<sAQR) > (Tm < SA OR).

Piecing together (2.10) and (2.11) finally gives

211
P (rm > X% 4 © QzR)A YC+-2 - +—1
mA m m

mz J
Iyl A2R

Let first m —» oo and then P —» oo shows
P(Px> < s) =

for any fixed s, so P(#* = o00) = 1, and the claim follows. i

2.2 Transience
Our proof of the transience for system
dx — pdt
dv (2.12)

where waj is cx-stable process, will be based on the following statement which
is a natural extension to general Markov processes of a criterion which is well
known for diffusion processes (see e.g. [Pr], [Kha]).



2.2 Transience 40

Lemma 2.2.1. Let {r]t}t"o be apredictable, W I-valued, cadlag strong Markov
process generated by (4, 5S1(A)). Let D CML be a relatively compact Borel set
and assume that there exists some u E 2)(A) with the following properties:

(i) u E C6(Rn)

(ii) iI[l)fu >a>0inD
(Hi) 0in Dc

(iv) u(yo) < a for some y0 £ D

(v) Au E C(Mn) and satisfies Au < 0 in Dc

Then {r]jt}t™o Is transient.

Proof. Since u E T)(4) we find that
t
Mt - ur]t) ~j Aufr]s) ds
0

is a martingale. We set
td = inf{t> 0:79t E D}.
An application of optional stopping time shows that for any fixed T > 0
EyoMTDAT = EyoMO= W°u(y0) = u(y0) < a.
On the other hand

ro AT

EVoMTIAT = Eyo (u(r}rDAT) - J Au{r/S)ds)
0

~ Eyouf{r)rDAT) A Eyo (u{r}rDAT)Ir D<oo) m

Since u E C&we can use Lebesgue Theorem and let 77 —» oo. This gives

a > Tlgéo Eyo (u(?7TDAr) 1 TD<00) = Eyo (u{rjTD) [ TD<00)
A (infit) PYo(Tb < 00) > aPyo(tf> < 00).

Therefore PVo(rD < o00) < 1, that is (see e.g [AKR]) {ry}t"o is transient. O
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Lemma 2.2.2. Let {£t}">o, be a Levy process with Q = 0, that is its Levy
measure has no Brownian part. The generator of the process (X(t), P(t)) =
(X(t,Xo,po), P(t,Xo,po)) solving (2.1) is given by the formula

- .. du(x.p) du(x.p) dV(x) du(x.p) dc(x_) .
Auix,p) = — P dp v d?)_ —————— Ir E£x (2.13)
du(x,p) d
© s rp-o-uz)- T o o
(0 4s)

Proof. Let u(xq,pq) G C2(Rd). Since [£,£]c = 0, an application of Ito’s
formula shows

DN = PR L - — ar du do ri |
dp dx ’

where
1= Y, (u(X(r),P(r)) - U(X(T-),P(T-))

0<T<1t

du(X(r—),P(T—) de

i e AfD).
One readily sees,
d
Eu(X(t),P(t)) (2.14)
a =0
du(x0,p0) du(x0,p0) dV(x0) du(x0,p0)dc(xQ _, .
% Itbsi
dx dp dx dp dx

4=0
The compensation formula (see [Berl], page 7) gives
t

El = E u( X(r—P(r-) + ) -
dx

du(X(r—), P (r—) de(X(r))

dy) d
dp dx v{dy) dr
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and so
d
El 2.15
o (ED @.15)
dcf{x0
u ixOW%c xAgy u{x0po) H du(x0p0) dcggcﬁ) y vidy).
dp dx
Combining (2.14) and (2.15) we complete the proof. g

Theorem 2.2.1. Letd”™ 3; V G C2(Mf), ¢ G (72(Ed,Ed). Then the process
solving (2.12) is transient.

Proof. We are going to apply Lemma 2.2.1. Take the function

7

u(x,p) = (H(x.p) - V0’ Py ve) . 7> 1

where Vo= inf V' —1, and

D —{(xyp) : x|+ pl ~ 1} C E2d. a—(1/2) min u(x,p).
(x,p)€D

Conditions (i)-(iv) of Lemma 2.2.1 obviously hold. For chosen u = u(x,p)

we get
du du dV

diP dp dx
The Levy measure n(d() for a-stable process is given by the formula
v(dQ — \CO\~d~a d(. Using this and the symmetry of vywe deduce from (2.13)
that
[ ep)= ] (uep 20wt ) g d
1C#Ho
An application of Corollary 4.1 with B — (dc¢/dx) with b= 2(V(x) — Vo)

gives Au ~ 0 for any x,p G Eif and so condition (v) of Lemma 2.2.1 holds.
Applying Lemma 2.2.1 we complete the proof. ]



Chapter 3

Estimates for M ultiple
Stochastic Integrals

Here we derive some estimates for multiple stochastic integrals which will be
needed later on. We use the following notation. For any A £ jjIMxN we write

PHoo = max \{4)id\

=1 ...

We will always consider Ar-fold stochastic integrals driven by (general)
real-valued semimartingales {Vj,t}t"0o> j —1,... ,d with cadlag paths or by
the deterministic process rjot = t. We assume that all semimartingales are on
the same probability space (f2,J7, P) and are adapted to the same filtration
(F)tzo. The filtration is assumed to satisfy the usual conditions, i.e., it is

right-continuous and augmented. Since the drjj* j —O0,..., d may appear
in any order we want to keep track when we deal with dr = drjoiT and drjj)T}
j =1,...,d To do so we introduce a sequence £n £ N in the following way:
if

dilji,fidfy272 « « < d Tk (3-1)

is the integrator in our k-fold integral, then

ix —min{s :js”™ 0}
i2 —min{s > [\ :js —0} —1

t2n-1  =min{5 > £n-2 : js 70}
tZn =min{5 > £2n—1:js —0} - 1

43
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i.e., we observe runs of general semimartingale integrators between ¢“n-i and
[<in(inclusive)and of dr’s otherwise. Note that *n-i ~ "2z and [<nt+ 1 <
on+ie We set Aii — {1,..., d} iffbn-1 » i ~ "2n for some n and AL= {0}
otherwise. Finally, set

m=m(k) - #{s :js” 0}

i.e. m is the number of non-trivial integrals in (3.1).
Let WjX'= Wjtl{u), JOT = /o,T(w) be RMxM-valued continuous processes,
such that for 0 * to * T

su A1, jJ —0,...yd 32
SUR J % (3.2)

and vT be some real-valued adapted increasing process such that for any
a, 6 6 R+
Wwjtb - Wj,,,|U N vb- va, j = (3.3)

We also assume that

2 sup ~ Vit < 1, bli, ij°=0, i- 1,...,d (3.4)
ti€[£0,7/

Notice that the assumptions (3.2), (3.4) can always be achieved by suitable
(pre-)stopping arguments.
For 0~ to & T we set

T Tfc- T2-
Ik,r — /] eme /[ WIGK... WI)TV OF drjjltTi ... drjjk1k
0 to o

where Af = All x ... x Af/c, and
Dr (3.9)

=dM wl-wt0+ 4y~ sup |",ri -% tO] + (% A
j=1 \TiJiox] y

We will use the abbreviation BV-eprocess for a process with (almost surely)
paths of bounded variation on compact time-intervals.
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Proposition 3.0.1. Let W;j)T, rp~ be as above and assume that

WjtTW itT = W itrW jtT =

Then
11411 « h  D"'{M(Tio)}*~m||/],T||00,(3.6)
where ||io,r|joo = sup ||/o,s|loo and
ho= (3.7)

(In{ln{& 211)16
provided that at least one of the following two conditions hold:
I1gF—EM or t\ > 1

For the proof of Proposition 3.0.1 we need some technical lemmas. Here
and later we assume tacitly #0 = 0.

Lemma 3.0.3. Let {UT} T, be predictable MMxM-valued processes,
vT, tzT be real-valued semimartingales and

T 12~

ot —J J bjeSTHi—gGgidn” »

O O

If UT is a continuous BV random process, then

T T 72—

or = - f Un § T2 dfv¥],,- X Ktestl

f(Kn--K DUDS r2-dvr2. (3.8)
0

Remarks.

-
1. Note that dUR2 and f (k2 —kt) 4T dv1l are matrix-valued
0

non-commutative objects.
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2. All stochastic integrals, where the integrand is a vector (or a ma-
trix) and the integrator is an R-valued semimartingale will be un-
derstood coordinate-wise. In a similar way, brackets of vectors and
R-semimartingales or matrices of R-semimartingales are understood
coordinatewise. The bracket of two matrices 4, B is defined as a ma-

trix
M

[A, A i Wk 1,.... M,
3=1
which is compatible with the rules of stochastic calculus and matrix
algebra.
Proof. We use the following integration by parts formula for R-valued semi-

martingales:

T T

[ Yr dZn =  YTZr
0 0

W ith the coordinate conventions detailed in the above remark we may choose

T2

I T2 = bfj-2J ' T-Ti—d, VTl ,

0
and Z2 —«R—kt. Clearly, Yg = ZT= 0 and therefore

T Vi T2
Jn(k,tZ_ kt)d | UDJ i avn

= I+ 1L

An application of Ito’s formula shows

g
d1UR | TT- dull (3.9)

T2-
= dUR X J %1 dvll + UROT- dv2+ d U*, J 41 dvTl

Y r2
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Since U* is a continuous BV-process, the bracket in (3.9) vanishes. Thus

1= -1 dun x I K - cK - I - kt) A 2 (3.10)
0 0 0

From (3.9) we find

7*J dudl j ,Km UD<&D2-dvr2 K

Tl
T dUfl x J 4B, di/Bj«.
Lo 0 iT

Since £/, is a continuous BV-process, so is the stochastic integral driven by
dU, and the last bracket above vanishes. So,

T

Combining this and (3.10) completes the proof. O

For the multi-index J = {ji, mmjd) C My and z E {l,....,d}, ©£ E N we
denote by

r r2-
0j,iT J UjMkF) T 1i,Ti—d7jifTIdAT) T)
0 o
where
Uynmn = T = jil *m
A, fal.r* “ Virjn som(%,r2 ~ Vd.r)3dm
Lemma 3.0.4. For any m E k the stochastic integrals satisfy
d
X X (3.11)
=1 ¥

Jjjm-1
(m—1y MO ko T2+ X é



48

where
Bm={J = {ji,....jd) :ji + . tjd =m, ji,...,~ " 0}
and with Dr as in (3.5).

Proof. We write for the right-hand side of (3.11) 1+ 11+ 111. An application
of Lemma 3.0.3 with

UR = U Bri = Wi)Tllk-i)Tl, n2 — AT2)T, vl — Vi, Ti
gives
0j,i,r — AjtfT+ BIAT+ CjT (3.12)
with
AlLT J ' ULTI™M, T Ik —1,71— A [A»jTS ) (3.13)
0
r i)
—  J dUppe x J AWy , (3.14)
0 0
r
N A2 TN T2 LT2VA,T2 (3.15)
0
from the right-hand side of (3.8).
From (3.5)we get
k. - tyr< (2dM) 1Dr, |At7i] < (2dM)-1Dr, I=1,...,d

Using this, the elementary identity

m
A(oi *g2 e+ +n) —" eeegr-i(Aar)(arti  Aor [j)... (omH Aomi),
r=1
where a0 = am+i = 1, Ao0= Aamti = 0, and |J\ —jx+ ... +jd~ m, we
find
m
IAA't]| ~ "+Q2dM)~m+ID™] max |A™ * (dM)~m+I1D™-~] max |A%y,

r=1
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E1

Since 77*. and are pure jump semimartingales, the above estimate implies

r

J Uj,ri1AiriAc—,tj —* [A,jTj Vi,* 11

= n
From condition (3.2) and the formula
HYZIU + MITYIUHZIU F,F e RM*M (3.16)
we obtain ||UjI2| ~ (A!)-1 Mm_1, hence
| -m
iatatlU « 2~ ir D" ] A
where we used the fact that forr > si > 2+ 0

{vi,mbi-fo,Vi]s2 2([77L1D)1 ([»71,J21],,)* - (fo,»»]«)*)
2(4 dM)~2DT3.17)

holds. From the multinomial identity

1
T= (3.18)

we finally obtain
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To estimate B.Jji:-T we observe that for the continuous BV-processes W

1 d
duj,n = duh tjidm= - om

‘r=1

and so, by (3.3), for any integrand /(r) € RMxM

J dUj)T x /(n) N~ MmJ [1/(b)|loo dVTL
0 o 0

Since (3.14) we have

1T [ dUjm (A;2t4, T2 )
i=1 00 <=1

tr
>

£
I

< A"M"*7rsup  |A2T ||4,12|o

Using (3.4) we estimate |[A"2T]| by

2 male,) m 2 max { A p - 1< {dM)~m+IDP 3,

4=1,..., ...,

where 1/?T= sup [7zs|. This and the multinomial identity (3.18) imply

0<S<T

dM pm—
E 7TM KN

and so
EE Bn* < (*=1)7 Dr "MWIL = II+3-20)

We proceed with Cj"T. Since the rj/jIare pure-jump semimartingales, a
formal application of Ito’s formula to the function

fLi{xi,...,xd) =xf ... xf, L- (lu...,ldeB,., (3.21)
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and the process 72 - nT= (72 - TifD),..., (&2 - 1dT)) yields

r

C Lir -- ; UL,r,-fle—1,t2— T2,r
d T
A

= E / E Uth' 'S
i=1o0 A 0<T2”r

= ciiltcE, (3.22)

where

Ar2= A[/LG? - 2702 < X T AAAT2-

Notice that the last calculation is formal. It can, however, be (though
quite laboriously) justified by considering the stochastic differential

d

21| (T2—Vjr)
3=1

after multiplying out the product. Then the usual Ito rules apply to the
semimartingales iy)P and their various mixed products. The process * JI'and
their products are, w.r.t. r2, constants.

From the first line in (3.22) we conclude that

111 =
LEBm+1
Since
UjWi — Ufju..jdWi — (ji + Dff(i,...ji+i,...jd)
and
NV LGUL T2 T MR~ N AMGET DHUJI 1 4 T
£623m+1 JEBm

N v A rt/j,r A AT 2j
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it follows that for the integrals C;j*T from (3.15),

d d Z
E E cw =E E / "R2,IYD2WR2Ik,12"7212 (3.23)
<=i JeBm i=iJesm £

d r

E E / uuLm\ Noo ] **:as = € cCV

i1 LefimH 72t

Combining formulae (3.22)-(3.23) we have found

E E A AHIT g (3.24)

i=i Jenm 00 LeBm+l
We deduce from (3.12) and (3.19), (3.20), (3.24) that

d
<11+ II+III+ (3.25)
*=1 JeBr Lesmt

It remains to estimate the contribution of the jump terms C'/r.
Definition (3.21) implies that

d2fL{x)
E dxidxj © U Ta=il
=1

By Taylor’s formula and the definition of DT, r2 " r,

"A2f Li2--7 i T+ 6Ar] T2
512\~ I sup Vd /L : )

o |A?77* T2A77,
dxidxj

LT
* 0<0<1

ij=l
AN (m 1)%(2dM) pHI1D™ LEnfle(Aﬁ/)D)z,

where we used the inequality

andm’\"&— - mT+ 1~ (2dM) m+ID™ \  r2<'r.
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Consequently, using (m+ 1)2 m 1~ 1, (3.17) and the fact that »n is a pure
jump semimartingale,

1 d }
Clr < 2Etm + ix Ar-~rl/ I 4-1n-iL %..*?»]
n=1 0
r
lid— J dDr,
L\
by (3.18) we obtain
y> m+ 1 . J_
L\ ml
and so
E a Aom!
I'SSmH 2! 2
Substituting this into (3.25), completes the proof. |

Corollary 3.0.1. [f£2n < k' < £2n+i for somen € N or 1~ k' < t\ then

AL T UNRV3 —da el Tid\ T (3.26)
JeBm{ {
S IIWJU*2+ I, 24

0 0
Proof. An application of Lemma 3.0.3 with

b*T2 — U j)T2, AT hhOjTIA ' —I1,T1 ; — vo,r — 7" U Ild K T2 AT2.T

shows that we can estimate the left-hand side of (3.26) by I + II, where

r

I AD,T AJJﬂVKO,TZA '—1,T2 » 2
TeBm {

T T2~

Y ANJEAUR X J XTTW 0,Ti K '-iyn dri
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Similar calculations to the ones performed in the proof of Lemma 3.0.4 give
r

I »~ Mmtl V 1 sup |ALt] f dr2,

T
I < rv 5 sup |A£t| [ ||4',r,-|l]oodura,
J«~[M J
and
Dm~I

1 Dm m
M ‘T Tl < ~ M™ - AN 14T
mAs Gy sop WITI< Ty, sup A 14 T,

20,11

Thus I (resp. 1I) is bounded by the first (resp. second) term in formula
(3.26). m

Proof of Proposition 3.0.1. Without loss of generality we assumethat t0= 0.
We define pi, I G No, recursively by p0= 1 andfor
/n— n
I£ (Tn~)72x] := | “« &Il + 1)) —A2i-l+ 1) j 70~ 0
\id i—
by
Pi=P7n-l«-7ft-1> (3°27)
where g are defined by formula (B.9).

Recall that m = m(k), Dr are defined at the beginning of this section.
Throughout this proof we suppress the argument in m(-) if the argument is
k, i.e. m = m(/c). We split the proof into two steps.

Step 1. We show by induction that

H4.rlloo < PmD? HOMloo, K I (3.28)

Clearly, (3.28) holdsfor £ —0. Assume that wehave(3.28) for O, —1.
Case 1. n< k< Im+i for some n 6 Nor 1~ k < jl. In thiscase
m(k) = m(k —1) and 7jijT = r in the definition of /k>F Therefore,

14T s, M ; 1410l ~ v PmD”
0 0

< n pm (Mr)k=my .
AP T (k—m)T o1

/7 [
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Case 2. i2n-i N k" £2n for some n GN. For m/! € N and r’' = £2n-i, *m, k
we denote by

x=E / Uj,slr'-1,s- d \ir.
JEVm' o
Note that z§ » = I\ T- Applying Lemma 3.0.4 with

T T2 —

QT J j UpRWritnlr'—i T —dlild | T

00
we get
. fHm'r pm~l
iKlL.rlloory  J/-I,-Hocap + ;_ 11/TUdD .H-1| < F1!
0 0
where we used
d 2 T
=EE « ad »7- E  wwsim-a\bor
*=] LEBml+1 0
If £ > t2n-i then after the change of indices m/! —m + 1, r'+ 1=k —m,
m=0,1,..., k —i2n~\ ~ 1?we obtain
IkjKi.rlloo - 1k ~+ i)>1joo N Pmtl, T+ Pm,r, (3.29)
where
Dm f
“mr~ ~m J W"*-m-idoo dDs. (3.30)
0

Summing (3.29) over m = 0,..., (k —iZ2n-\ ~ 1) we get

i@~ N "n-1,T  lloo ™ »or + Bk-t20\,T+ 2" ~  AnTwm (3.31)
n=1

By Corollary 3.0.1, applied to #2n~2 <k! < i2n-i, k' —i2Zn~i —1 we find

UP li nk-en-i+i
["n-iV oo E Pk-hn-i,r+ " ~ ~~jyjM J |[A2n 1-212lloo dr2. (3.32)

0
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Here and later on in case 2 in-1" k * £Xxa& Combining (3.31), (3.32) we
arrive at

A Jj—E2 1+ * e |
AA.tHoo A J 1" -1-2Djj00 72 + 2 (3m,r-  (3.33)
0
Since
xn(k —m —1) = m(k) —m —1 m=0,..., k— (3.34)

we can use the induction hypothesis (3.28) and deduce from (3.30) for m —
0,1,.o0k —2n—1

/W < JoD ™™™M]j} ] wy 4D HloVIU
0
<- Pm—m— r’'m {Mr) - - , .
(m-m)m! T (G- m)! N-35)

The identity m("2n-i —2) = m(£2n-i —1) = m(k) —(k —i2n i + 1) implies

r
(3.36)
0
< Pm. ik. bn_1+)D r {k-&° +l) 1]/6 Tiioo-
0
Together (3.33), (3.35) and (3.36) now show
Horfjo e P (fo-few-+1)(A; 4n i+ 1) IIVH~
k-hn-i - Tk-m
+ E Zm _mjn?\,Pm-m -iD ? f(k-_ J;nr||/g,|]oo. (3.37)

Since m—(k—£2n-i+1) —7n-i it follows from (3.27), (3.34) with / —m—m —1I
that
Pm—m— — P n-i Q{k—2n -i+1)—m —1> M—0,...,/ 2n—m
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From the definition (B.9) we conclude

Kk (-2n—1 2
A (A=A - D)+ t)1(1:)0 (m - m) to!

k-1 2
NPT £ ((*- "-1+ 1)- m) m!
— Pfn-igk—2n-1 = Pmi (3.38)

where we used k —i2n-i + 1- Combining (3.37) and (3.38) we arrive at
(3.28).

Step 2. We are going to prove that

Pn ~ —— (3.39)
(k —m)! (in 1)) w

If 1~ k < £\ then m(/c) = 0, pm= p0 = 1, and estimate (3.39) is clear.
From definition (3.27) we deduce

n—1
Pm = Qk—Qn-i+l fj Qi2j—£2j-i+1 A2n—1 A A A A2y

j-1

and
Pm 1 0t —&)~i+1 A2n k <C£2n+l-
From (B.10) we know
(T~ =* (3.40)
where
Z = (A- m)! + U) ?
3=1

Here aj =£2- £23.1 +1, j = 1l,emn ~ l,and an— k - £2n-1 + 1
for £2n-1 <A " £2n, ~ 4n-1 + 1 for < A< 4n+i- Clearly

/Ic—m "n —1. Using theestimate from Lemma H.4 with m = k —m gives

Z ~ ~ (lln(fc + )& (3.41)
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ancl (3.40), (3.41) show (3.39). The assertion now follows from (3.28) and

(3.39). o



Chapter 4

Stochastic Ham ilton-Jacobi
Equations

4.1 Boundary value problems for stochastic
Hamilton systems (theorem on a diffeo-
morphism)

We consider the following Hamiltonian system
(4.1)

with initial condition (x0,Po) € K24 at f = fo- We write (X, P) —

(X(t, t0 x0po), P(t, to, XQ PO)) G E2 for its solution. The coefficients
(dV/dx) G Rd, (dc/dx) G Rdxd are derivatives of functions / : Rd —RI1
and ¢ — (ci,..., Cd) : Rd — Rd which admit (at least) continuous partial
derivatives up to order 3 such that

OL\V(x) d’c(x)

L aer \L\ = 2,3 4.2)

and
(4.3)

59



4.1 Boundary value problems 60

for some constant K > 0. The driving noise & = (£ijt,..., £dt) is a d-
dimensional Levy process such that

fe.f;]c=0 j=1 4.4)

i.e. it contains no Brownian component. The main result of this section is
the following

Theorem 4.1.1. Under assumptions (4.2)-(4.4), there exists a stopping time
T such that P(T > 0) = 1 and for 0~ to <t < T(u), x0 GRd,

(i) the systemi (4.1) has a solution (X,P),

ny ar

i- = Et+O0it-to), = Ed+ 0(t - 10), (4.5)
0Xx0 dpo

r)X

= = (t-to)Ed+ 0 ((t-1tQ2), (4.6)

where O(-) is uniform with respect to x0,pQ

(ii) the map
D:Rd\"Rd, po->X(t,tQx0p0),

is a dijfeomorphism.
Remark. We can rewrite the system (4.1) in the following form

t t

m)= Jv(X(s),P(s))ds- J'f(X(

to to

with coefficients
Voo, P = ( dvfx)/de ) e®d  rx,p)= (] dcf )/dx ) e 2™°

and the (degenerate) Levy noise

Ct= 1 / ] e 102,1

Notice that V and 7 are globally Lipschitz continuous; Theorem 7 of [Pro

p. 197/8 guarantees existence and uniqueness of a solution (m
L p(1) >0
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Moreover, ifthe coefficients have globally Lipschitz continuous partial deriva-

tives up to order N + 2, than we may differentiate a w.r.t.

the initial conditions up to order N, cf. [Pro], p.254, Theorem 40.

For the proof of Theorem 4.1.1 we need the following auxiliary result.

Lemma 4.1.1. There exists a constant K\ = Ki(K,d) such that for t0 "
a”™ b<IZAK(fI (71 being the stopping time from Lemma 0.0.1 and K being
the constant from (4.2)"

b
JH(r)I d"3|X (o) - (©-

where
X{r) = X{r,tQx0,po), P(r) = P(r, £0,£0,Po)- 4-7)

Proof. Step 1. From system (4.1) we find

T («)) S
dx dfs.

Since X(t), dV(X(t))/dx and dc(X(t))/dx are continuous BV-processes, we
find by integration by parts

4.8,

Here ¢2c(X(s))(£s- $r)/dx2 = E31e(XOM-1,,)/3i2 ¢ &** We
1

know from Lemma 0.0.1 that 2 sup |")§* 1fori=1,....,d r <71 and so
O"s’r

T

IPMKIPMI + Cj + C, fIP(s)\ds, (4.9)
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where

d2a dv dc
C\ = d* V d +d
max sup [ dx?2 dx?2 dx dx

Integrating (4.9) we have for b < 71
b .r
J \P(r)\dr » \P(a)\(b —a) + C\{b —a) + C| J] \P(s)\dsdr. (4.10)
Since for b—a < (3Ci)'1

C\JJ \P(s)\dsdr = Ci(b—a)j\P(s)\ds —C\J(r —a)\P(r)\dr

a o I a

I[\P(s)\ds, 4.11)

a

we deduce from (4.10) that

P (1)] a<| (|P(a)] + Ci)(6 - (4.12)

a

Step 2. Similarly, we find from (4.8)
[P(r) - P(o)] s: C1+C, |P(s)|da (4.13)

We integrate (4.13) to get

b by
J |P(r)-P(o)|dr Ciib-

a a a

ACL6 —a) + i J IP(s)] ds,
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where we used (4.11) and so, by (4.12)
0
11 P(r) - P(a)\ g i([I»(a)| +3

Thus
0 .0
J Pr)dr »~ \P(a)\(b—a) —] \P(r) —P(a)\ dr
> -(|P(a)|-3(70(6-a). (4.14)

Combining (4.12) and (4.14) we arrive at

b b
J \P(r) \dr ~ 6(71(6 —a) + 3 J P(r) dr
The assertion follows with K\ = 6Ci. O

Corollary 4.1.1. Let/ :Rd—»R, f E Cl and
SrMx) =0 if faf > K
(K being the the constant from (4.2)). Then for 0 ~tQ"t< 714 K f1
Vantot]f(X (-))"K 2, (4.15)
where K2 = K2(K, d, ) is some constant.

Proof. Let B = {r G [tot] ' |7 ()] » K}. 1f B —0 thenthe left-hand side
of (4.15) vanishes and the assertion of the corollary isclear. Otherwise we
set a = inf{r :r € B})b=sup{r:r 6 B}. Since supp Cix :a ~ /<3,

Varfo t/f(X(-)) ~ dsup |/(1)(a;)] max Vars Xi(")
xmd

b
N dsup |/(1)(a:)|f\P{r)\dr

and (4.15) follows from Lemma 4.1.1. O
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We introduce a new stopping time
=" A/{21Al,
where K2 — max X2(X,d, dq/drcj) and K2 is defined in Corollary 4.1.1.

Proof of Theorem 4.1.1. Stepl. Since (X, P) can be differentiated with re-
spect to the initial data {xQpo), we find that the matrix-valued process

d(X P) ( dX/dx° dx/dPo
d(x0,Po) d

satisfies the formally differentiated system (4.1) (cf. also [Pro], proof of
Theorem 39, p.250):

dG = Wo«Gdt + T Wi*Gd" , G|=o = G0= (4.16)
where
/ 0 Ed 0 O
Wo* = . WU =
\ d2V(X(t))/dx2 0 / V—dZCj(X(t))/de 0
4.17)

A solution of the system (4.16) can be given by the following (formal) series
expansion,

(08]
G=J"G k4.18)
=0
with Go = G}erand
a t d *
Gl=y-;; WrGqydWjl,, Gk=Y,; | Wi-tG*-! dVjitT (k e N)
j=0 to J=0 10

where #T = @O, 7r, ..., %jI) — (1, £i,t, e+, fd,r) is a (d + 1)-dimensional
semimartingale. Indeed, it is immediate that
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so (4.18) will give a solution of (4.16) whenever it converges uniformly (on
compact intervals) in ¢
Since the terms of the series (4.18) are fc-fold integrals, we get

d / A4 n 4 w

G - E 2d + N2 Y z d + h ,tA I (4'19)
fc= jfivijfc—o Yy A2r A2

where A{j G Rdxd, are suitable (series of) block-matrices and

t rk- r2-
~j g "J - w djETR (4.20)
fo to fo

Because of the particular form of the WjtTs in (4.IT), we know more about
the structure of Ay in (4.19). Let

Ji = {{ji, **~,jk) : k GN, none of ju ...,jk equals to 0}
(i.e. all integrators in (4.20) are Levy processes) and
—{(i, wejk) m 2 at most one ji,...,jk equals to 0}

(i.e. at most one dr integration happens). If (ji,...,j&) € d7i, then the
iterated integrals have the form

00

r

r G ndxd

Piv-yjkyt

and if (j\,... ,jk) GJ 2, they are of the form

1 RYRY ru 0 rn,r2l,r22 G
Lygkr r2i r22 ' '
Thus
11211 1loo J ITA 22I1m ” E (4.21)
Bly;jk)edJl
2 11000 1 E 1)’--5/;}A (422)

(hy-yjk)ed\J2
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where J —Ujg"j0,..., d}k.

Step 2. Let us now verify the conditions needed in Proposition 3.0.1.
Lemma 0.0.1 and condition (4.4) imply that 7t — (t, £t) satisfies (3.4) for
0<t0O™t <nm.

Condition (4.2) implies

Halloo ~ K, j=20,...,d
and by (4.17) we find
WijiTWw T = 0 = Wi, TWjiT i,j = 1,...,d.

Definition (3.5) (with M=2d) and formula (4.15) with / = (dci/dxj),
i,j =1,...,d give
Dt~ 2d2(7"2 + fit + ~ 0)5
where are given by formula (0.13), and Lemma 0.0.1 shows

Dt~ 2d2(I<2+ 2)= 0(1), 0~ A~ ¢<T (4.23)

Step 3. An application of Proposition 3.0.1 to matrices K 1W )T G R2dx2c/5
j =1,..., d shows

/1 Iji,-,3k,t NK%DT{2d(t-tO}*™
Ol

where b* are given by (3.7),

M —M-i x ... x Mk and Mi = {1,...,d} or Mi = {0}. (424
One readily sees

MnJl —0=>m”*k—1 and M nJ2=0 m” k—2. (4.25)
Consequently we find from (4.21)

IIAnIloo ? 1172200 * 2kK kbk(Dt + 2d(t —tp))k 1(2d)(t —to), (4.26)

k=2

where we used, by (4.25),

D™t - t0) k~m ™ (Dt + 2d{t - 10))k~1{2d){t - t0)
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and the fact that the set {0,..., d} is the union of subsets of type (4.24); the

number of such subsets equal to 2k. Clearly the series $i(x) = P 2ZkK kbkXk~1
o
converges for any x € K and, by (4.23), <Bi(Dt+ 2d(t —t0)) —0(1). Then

we deduce from (4.26) that

||]0os5lM-2loo= 0(t —to), 07 to” t<T. (4.27)
Similarly, we have
P n2lU < A 2kK kbk{Dt +
k=2
A (2d)28 2(Dt +2d (t-10)) (t-10)2= 0((i —1t0)2),(4.28)
where $2(r) = 2 kK kbkx k~2.
k=2

Substituting estimates (4.27), (4.28) into (4.19) we arrive at (4.5), (4.6).

Step /a From (4.6), we conclude (using the implicit function theorem)
that the map D :po -> X(t,p0) = X(t,t0,x,x0) is a local diffeomorphism.
Let us prove that it is injective. Since

X(t,p2) -X(t,pi) = J X + r{p2- pi)) (p2~ Pi) dr,

(o)

we have
1 i T
\X{t,p2) -X (t,Pi)]2= JJ (P2~Pi)T( " J (pi +s(p2-pi))x
00

x (1po) /\Pl+ rAz_PlA wPlAd'I”dSA C/\PZNPI’\T "'29A

for some constant C = C(t, to) > 0. The last inequality is due to (4.6).
This shows that D is injective and so D : Rd —* 2>(Rd) C Rd is a global
diffeomorphism. It follows from estimate (4.29) that X (¢:p0) —&°° as po —»
00. Since 2) is open and closed, 2)(Rd) C is open and closed. As 2)(IRd) /

0 we have 2)(Rd) = Rd. This finishes the proof of Theorem 4.1.1. i
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We assume that for any multi-index /e No,2 ~|/|” g + 2 the partial
derivatives are bounded
arv (e

NKoi—1,...,d 4.30
dx1 dx1 ! ( )
and continuous.

Lemma 4.1.2. Ifthe coefficients V, @Q satisfy the above mentioned assump-
tions, we have for any 0~ t0™ t <T

4.31)
dp!

S*P(t to xopo) = 0 {{t_to)ls 4.32)
dpQ

where 2~ \I\ ™ g and O(-) is uniform with respect to X0 and p0.
For the proof we need the following lemma.

Lemma 4.1.3. Let YT, Yi)L,..., Yn,T be EMxM-valued locally integrable pro-
cesses, and v be a real-valued semimartingale. Then

J oyt \J yWldn J ... 1J YnTQdri | du7

to \to / \to
s

< n0-v,)*Mn(m;\|oo + VorM y) J [[1VilU dn f dru

to to

where [y —vs)§ — sup WI'—is\, Yf = sup ||yToo; provided that Yr is a
TE[£0,8] TE[£0,5]
continuous BV-process.

Proof. We set Ui.T= Yitlhdr\, i=1,...,nand I — YTUifl... U dnT.

Since Y, Ui,..., Un are continuous BV-processes, integration by parts gives
S n S

I=-JK - IWBW rXtWT...UnT~J2j Vr- v)YTUir.. Yi,r... UnTdr.
to i=I to

The assertion of the Lemma follows now from (3.16). i
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Proof of Lemma 4.1.2. For notational convenience we set Co(JC) = —V’(-X).
Step 1.
Let us choose and fix a sequence (jul/2,¢¢) G {1,..., d!N. Write

AM  9x0) « 9P (r) 9]-'U 0(r) al-'IB0(r)
Ar)="r> o} =~dy~’ B =~ "T"
Ao{r),Bo{T),Am(r),Bm(T) e R dxd, where J - (ju ... Jm) and

Po = (po,i5---,Po,d) e
From equation (4.16) we get

Differentiating (4.33) with respect to pojx, ... ,Po,jm we get the following sys-
tem of SDE

*(£8)
( An(*o)) = Bm(t0) = 0,

where Ami)T G R2dxd is given by the recurrence relation

; n 7 s dWm &}’An-l w _ n
A0, t,r An,i,r /\mm B?@'i(ﬂ ] W '

The interchange of stochastic and ordinary differentials (with respect to the
initial conditions) is possible since the coefficients ofthe system (4.33) smooth
enough cf. Protter [Pro] p.245 Theorem 40. Using (4.17) gives

Aw =( Ad° . i=(4.35)

where

Aoir-"0, Amir- 7T gy )T Ay S0 (d.36)
dpojm 9Po,jm

Here cf ‘(x) — (d2Ci(x)/dx2) G JRdxd. Prom (4.36) we find by induction

mtl gmtlt  (def](X{T))  dk~24o(r) | ,

” A al. Alpy. I $poj.-, to*-, mwo*r 1 ° '
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A solution of (4.34) is given by the following (formal) series expansion

co

G=y"Gk (4.38)
=1
with
d r~ d r
G\ — "N N T AmHIOdr)itT0, Gk —"y ~ I WiilTGk— dpi™T} k "~ 2.
i-0 7 ()

This can be seen as in the proofof Theorem 4.1.1 and (4.38) gives the solution
of (4.34) whenever it converges uniformly (on compact intervals) in z. Thus

d d
A mik) >
— E ! Am,i,To dr}i]lD E E
Bm(1) 06 =1 2, 26c=0 2-0
where
t "A n
722 S : . .
Mik> St dm2ro GliTodlii Y1 ... dpgk, ke
to to
Since WiliTAmjijf —0, A = 1,..., d, it follows that
=0 for 94> o
Observe that formula (3.6) still holds for /Ot C RMxN, ViV € N. For fixed
i=1,..., dan application of Proposition 3.0.1 to matrices K ~xW j)T € RXZA7?

j = 1,..., dwith iot = ft AmilQdrji,lDe R 2dxd shows

E jm,i A—mil ¢*

(k- id)eM

where bk are given by 3.7), M —Mi x ... x Mk, Mi — {0} and Mi
{1,...,d} or Mi = {0} fori > 1. Thus

q
HAnMlloo V \\Bm(t)\loo * tS/l\lé)/\t / / rm2,r0 drjifl) (D + 1),
0 2-0
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where [>(x) = 1+ £ 2kKkbexh) DT and b& are given by (3.5) and (3.7)

respectively. Using, see (4.23), &(Dt+ t) ~ $(2d2(K2+ 2) +1) —0(1) we
arrive at

4.39
dpD (4.39)

Step 2. By induction in m we now show

(4.40)
o
where O(-) is taken uniformly with respect to s <t i = 0,...,d, J € Ng,
X0, PO 6 Then combining (4.35), (4.39), (4.40) we obtain (4.32) and, by
(4.1), get (4.31).

Let us first check (4.40) for m = 1. Estimate (4.40) for i — O directly
follows from (4.6). From (4.37) we find

Adcef(X (r))cetY (T)9X{T) A
IAT = £ A apoj.

For fixed i,7,j! = 1,..., d an application of Lemma 4.1.3 withn =2, M = d,
VT Vi,r)

SO AP, PO
shows
) &fiT =0 (I)fa -r})Ss |] 8;(:) dr
#0

where we used that, by Corollary 4.1.1, Var**F = 0(1) and, by (4.30),

[IF/illoo = sup |[Fr|joo —O0(1). Recall that 7iSis a Levy process. Therefore
T(S[£0,s]

by Lemma 0.0.1 we have (i/i —#)is)§¥ = 0(1) for 0~ t0 "~ s < 77. Using (4.5)
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we see that \\dP/dpOloo = 0(1) and so || Qijjxdpi™Woo — 0((t - t0)2).
Hence

7~16,T
to

fori=1,...,d

We now assume that (4.40) holds for » = 1,..., m —1. Estimate (4.40)
for i — 0 immediately follows from (4.6) and the induction assumption. From
(4.37) we find that AmitT is a sum of the terms of the form

d™42(X(T))d"Xh(T) d™Xir(r) Mr)

dxP &o ' dpQ dpQ
where

pl —r ~ m, I+ ...+ JA + \Ll ~ m. (4.42)
We put Y7 — (d*cfix(r))/dxp). By (4.30) we see ||3*lloo —"(1). Using
again Corollary 4.1.1 we obtain

sup Var“t](y)P= 0(1)
p.q-1,....d

and so for vI'= pjjT, n = r+ 1, M = d we have
n(Vi - (IIP/Hco + V ar~]?) =0(1),

where we used Lemma 0.0.1 in the form (7% —7it9* ~ % < [ for s < 7Z
From equation (4.1) we find

d "X (r) fd P(ri)
OI"f :;] dpg 1

and so for fixed =1,....,dand p,p,..., AL GNj an application of
Lemma 4.1.3 with n —r + 1
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shows
a
J o Qiii,....ir,P-fJ-L{T) "Vi, T (4.43)
to
1AP d"Boj
oy ANe(m o, alAP@ o)y
Too v dPa dxL
to ~0 to
By induction assumption and by (4.6) we have
d"P(r d™"B0
AN ")
dpt dxL
where ¢: N —» N such that 1) = 0, > = n for all n > 1. Hence
= O ((t-*0)7),
where
7=0(/ip+ 1+ ...+ 00A)+ 1+ L] + L
Using that 1+ <5# > n Vn € N and (4.42), give
yA )+ o+ A+ L+ 1=m+ 1.
Thus
1 -m ,i,T dpijT = 0(1) J Qi,ii,...,il’,p,...,fi,[(’l") d]”/l}
;{7 co to
fori=1,...,d ]

4.2 The method of stochastic characteristics

As before we denote by (X, P) = (X(t,10,x0,p0):P(t, to, £0,Po)) the solution
of the Hamilton system

(4.44)
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with initial condition (x0,Po) £ R2d at t —t0, where H : R'lx Id 4
c:Rd-—»Rd. We shall say that H and c satisfy property (D1) if

There exists a stopping time 7 > 0 a.s. such that
for any 0 * t0<t < T, Vxq G Md the map

IDi:R —R, pp X(t,tp, Xo,po)

is a diffeomorphism.

(D)

Next we shall say that If, cand5o : Md —M satisfy property (D2) if

There exists astopping time 7 > 0 a.s. such that
for any 0 * t0 < t < X the map

r=e  ~~ ) xq X (t to, Xo, V50(xq))

is a diffeomorphism.

Remark. In the literature on Burgers turbulence, the map 1D2 25 called La-
grangian function, and its inverse D f1is called the inverse Lagrangian func-
tion [Ber2],

In the following statement we summarise the main results of the previous
section.

Theorem 4.2.1. Let Sp : Rd —= R be a twice differentiable function such

that
02q
°l 1> A for some Ace Va: 6 Krf, (4.45)

H{x,p) = (1/2)p2-\-V(x) and the conditions of the Theorem 4.1.1 hold. Then
(Dl), (D2) are satisfied.

Proof. Theorem 4.1.1 immediately implies (D1).
Using formulae (4.5), (4.6) we deduce from

dX (t,t0,x0,V50(x0)) dX (t,t0,x0,p0)
dxo dxc po=VSo(xo)
dX(t tp, x0,vV6q(x0)) d2Sp(x0)
dp0 dx!

that

X X Vafa,)) =Ed+ Ot _+[{t_ + _q
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and so there exist a constant C! > 0 such that

dX(t,to,Xo,Po) .

1
- Ed for 0" t0<t<TAC\.
0x0 2

Therefore the map D2 W% — -"(£, £0»"Q) V50(r0)) is a local diffeomorphism.
Along the same lines as in the proof of Theorem 4.1.1 we conclude that S)2
is a global diffeomorphism. m

Let po = Po(t, U, x, xo0) be such that
X(t, t0,x0,po(t,t0,x,x0) =x, t>10, xe (4.46)
Moreover, we set

p(t,t0,x,x0) = P(t,t0,x0,po(t,to,x:x0)). (4.47)

For short we write

x(r) = X(T,tOyxo,po(t,to,x,x0)), p(r) = P(r,to,x0,po{t, to,x,x0)).
(4.48)
Recall that X(r), P(r) are defined by (4.7). We will use this notations
throughout this paper. To each pair (X,P) of solutions there corresponds
the action function defined by the formula

t
cr(t, to, X0, P0) dr- J c(X(r))d£T.
to to
(4.49)
If (D1) holds, then one can define locally (for 0* tQ< ¢ < T) the two-point
function

S(t,tQx,x0) = a(t,to,xo0,p0(t,to,x,x0))] (4.50)

finally we set X(1,x0,P9) = X(r,0,x0,po), P{r,Xo,Po) = P(r, 0,x0,Po),
Po(t1,0,X0,P0) = Po(r,x0,Po), a(t,x0,Po) = cr(t, 0,x0,po),
S(t, x, xq) = S(t, 0, x, xo0) if to —O.

The following results (and their proofs) are stochastic versions of the well
known method of characteristics for solving the Hamilton-Jacobi equation
(see e.g. [K3).
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Theorem 4.2.2. Let H(x,p) and c(x) satisfy (DI). The function (t,x) ->
S(t,to,x,x0), as a function of the variables (t,x), satisfies the Hamilton-
Jacobi equation

dS+ H dt + c(a;) =0 (4-51)

in the domain (£0,7) x  for stopping time T with P(T > 0) = 1. Moreover,
we have

dS dS
— (1, t0,x,x0) = p(t,t0,x,x0), — (t,to,x,x0) = --po(t,to,x,Xo). (4.52)

Proof. Without loss of generality we assume that to = 0.
Step 1. We start with the proof of the first relation in (4.52). This
equality can be rewritten as

ds
— ()X (tJx0,po),x0) = P(t,x0,p0)

which is, by (4.50),

a7 d,
270 0.p0 i X(t,x0,p0),x0) = P(t,x0}p0) (4.53)
Due to (4.46),
/A \ i Ay
IN(t, X (t,x0,p0),x0) = ~-(t,x0ipo). (4.54)

It follows that the first equation in (4.52), using (4.53), has the form

der . . . dX
— (t,xQ@po) = P(t,xo0,po) — (t,x0,po). (4.55)

Since X(t), dX(t)/dpo are continuous and of bounded variation, it follows
from Ito’s formula that

dx dX dX
P 457 122 ab

- (4.56)
dp0 dp0 dp0

The left-hand side of (4.55) can be expressed using (4.49). Together with
(4.56) we calculate that its Ito differential gives:
d fndX yil de(X) n ,dX dX Th

a—"Derrr -H ) dt dft=Pd— + — dP.
oV d dp0 dp0 dp0
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Notice that we need the fact that

9 fde(X(r)) %
deJ dx ) Lz'/ dpodx

which is justified by a special case of Theorem 36.9 [M], p. 258. Since by
(4.1) dP = (dH/dx) dt + (dc/dx) dft we find

dP dX d2x dH dX OH dP 9X 5¢

- dt+ P~ dt - t- — — dt- — —

opo dt opodt 0X 0po op op0 opo Ox
» d2X 1 OX (OH 7 9c i

= OpdOt < - Opo \ ox?'* bX

As OX/dt = P we find that (4.57) holds for all ¢+ < T(w), and the first part
of (4.52) is established.
Siep  Using (4.50) we get
95 X 9a 9p0(£, x, Xo)
9x0 9x0 9po 9x0

(4.57)

and so, by (4.46), we rewrite the second formula in (4.52) as

9d 9 fdX\~I1 9X

' 4.58
9x0 9p0 \9p0 9xr Po (4.58)

The relation

0X(r)

P(r) dr

;,a H{X(r), P(r)) dr —c(X(r)) dtn

dT P(r) d);ir)

where a = XQ or a = p0) and definition (4.49) imply

9cr 3X(T) da dxX(r)
P(T P 4.59
9x0 W WV 9x0 dpo ") o (4.59)

Using (4.59) and the fact that

dx{r) dx{r)
dxi 9p0
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give (4.58).

Step 3. To prove (4.51), let us first rewrite it as

0
der(t,Xo,po) + Tj—dpO+ H(x,p(t,xo0,x))dt + c(x) dft — (¢
Because of (4.49) we find
dX
P(t,xQp0)-"-(t, XOlPo) dt - H (X (ttX0Opo)iP (tiX(Jpo)) dt
dli
- c(X(t,x0,p0) dft + \é;de + H(x,p(t, x,x0) dt + c(x) dtt = 0.

By construction, X(r, x0,pQ = x, P(t, x0,po) —p and expressing do/dpo by
(4.55) gives

dX dX
P(t,x0,po)— (t,x0,p0) dt + P{t,xo,po)-7(t,xo,po) dp0= 0. (4.60)
Differentiating (4.46) with respect to ¢t we get
dX dX
dX(t,x0:pQt,x0,x)) = — (t,x0,p0)dt+ — (t,Xo,pQdpo = O.

Thus (4.60) is always satisfied and (4.51) follows. O

Corollary 4.2.1. Under the assumption of the Theorem 4.2.2 we have for
0<t0<t<T

d2S(t, tq,x,xq) 1
Ed+ O (t-10 4.61
dx2 ; _to( (t-10), (4.61)
d2S(t,to,
(110, x/x0) (Ed+ O (t-10)), (4.62)
dx|\
d28(t,t0,%,x0 1
(t.t0,%,x0) [Ed+ O {1-10)), (4-63)
dxdxQ t —1t0

where O(-) is uniform with respect to xo, x .
Proof. Assume again that 0 — 0. From (4.52) and (4.54) we deduce the
equality
d2s(t,x,x9 dP uy -1
= w P X(hPo)w 0
Now (4.5), (4.6) imply the first formula in Corollary 4.2.1. The same argu-
ment can be used to prove the remaining formulae. ]



4.2 H-J equation 79

Theorem 4.2.3. We assume that H(x,p), c(x) and S0(x) satisfy conditions
(D!l), (D2). Then for 0 < to <t < T(u) the formula

t
S(t,t0,x) = SQ’xO)—l—J (p(r)dx(r) - H(x(r),p(r)) dr - c(x(r)) dfT) (4.64)

to

(where the integral is taken along the trajectory x(r) —X(r,to,xo0,'VSo(x)),
p(r) —P(T,to,XQ,VSo(x0)) such that x(t) = x and xq — Xo(t,to,x) is the
inverse map of T92) gives a unique classical solution of the Cauchy problem
for the equation

a4, 6= 0 (4.65)

with initial function S0(x). One can rewrite formula (4.64) in the equivalent
form

S(t,t0,x) = {S0{x0) + S{t,t0x,x0)) |Xomao(ttoa)- (4-66)

Proof. Definition of the two-point function (4.50) implies the equivalence of
(4.64) and (4.66). From system (4.44) follows that X(¢, to,xo0,po) continuous
in ¢ and, using the implicit function theorem, from (D2) we obtain that
xq —x0(t,to,x) is continuous in ¢ and [n),mo] = 0, [to’s differentials for this
equation give

dtS(t,10,x)
= WSufrQdixoltx) 4 45 fuo_; 3% g AS(E g{’o’“m dix 0l 0,x)

dS(t,to
(.0.%.x0)
dt

In the last equality we used S?SQ(xQ) = po in conjunction with (4.52). From
Theorem 4.2.2 we know that

t0,x,x0)\

dS(1,10,%,x 0 .
d5(1,10,x,x0) , i dt - clx) dfu

dsy{t
t=dtS(t,t0,x,x0) = —H fa;, {t

and the theorem follows. O

One can find it more convenient to have an alternative representation of the
solution for the Cauchy problem in Theorem 4.2.3.
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Corollary 4.2.2. Let the assumptions of Theorem 4.2.3 be fulfilled. Then
for 0~ to <t < T(lj) there exists a unique classical (i.e. smooth) solution
of the Cauchy problem from Theorem 4.2.3 with initial function So(x). This
solution is given by the formula

$(1,60,x) = min (S0(x0) + S(z, £, x0)). (4.67)

Proof. From the definition of S)2 it follows that x0(¢,x) is a critical point of
the function So(a;0) + S(¢,to. x,xo). Moreover, due to (4.45) and (4.62) this
critical point is also the (unique) minimum point. o



Chapter 5

Small time and Semiclassical
Asymptotics for Stochastic
Heat Equation Driven by a
Levy Noise

5.1 Preliminaries

We write (X,P) = (X(r,t0,x0,p0) }P(r,tQxo,po)) £ for solution of sys-
tem

dx — pdt
o= (f %L (5.1)
with initial condition (x0,po) £ at ¢ = t0. We assume that the coefficients

V, a, c admit continuous partial derivatives up to order g, g > 3, that is

d™"Vi{x) d\L\a(x) ) d"™c(x)

A
P PR B 0(1), 1< \Ll~ g (5.2)

c(x) satisfies (4.3) and the driving noise = (“},..., £djt) is a d-dimensional
Levy process such that condition (4.4) holds. Additionally we assume that

Ww\2v(dy) oo, (5.3)
v

where v is a Levy measure of £t.

81
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Lemma 5.1.1. For any x0,x £Rd, 0" t0 <t <T we have

p(t,t0,x,x0) = pO(t,t0,x,x0) + 0 (h), 5.4
p(t,tQxo,xQ = 0 (h), (5.5)
x(t) = xf(r)+ 0(r - t0), (5.6)
where
xf(r) =x0+ t—_to (x - x0), 5.7
and

S(t, 10, x0,x0) = [V(x0) + ha(x0)](t - t0) - he(x0)A£to + o(l) (5.8)
as t —»to.

Proof. Step 1. From system (5.1) we get

p(t,to, X, Xo)
= Mt, to, xo) + J 9F "h )1+ _

= I+ 11+ III.

Since sup”"d \dV(x)/dx\, supxeMd \da(x)/dx\ = 0(1), it follows that II =
Oft —to). Integrating by parts we have

de(x(r))
dx

LK , -{»)-»/ "W )fc-(m),()*,

where we used by formula (4.15) with f(x) = ci(x), i = 1,..., d that

[e(x(.)),e(z(-))] = 0.
Since (4.3),

fAM r o -6)pDdT=r dr,
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where B — {t 6 [t0l¢] : I"MI1 ~ K}. By Lemma 0.0.1, supT€0;i] |£r | < 1 for

t <71 and so, by (5.2),

dc(x0) 92c(x(r))("
dx (&-&) dx?2 0 (.

It follows
IIT = 0(h) +  0(|p(r)| dr.

By Lemma 4.1.1 we see jB\v(T)\dr — 0(1). Hence III = 0(h).
together estimates for I, III we establish (5.4).
Step 2. Applying (5.4) with x = xQ0 we have

P(T,t0,x0,po(t, ta,Xo,x0)) = Po(i, t0,x0, x0) + 0(h).

Integrating the last estimate on the segment /0.y and using

t
J P(T,to,xo0,Po(t,to,Xo0,x0)) dr = x0 - XOZ O

to

we get (5.5).
Step 3. From (5.4) we deduce that

x(r) - x0= J (po +0(1))
o
Similarly x —x0 = pQt —to) + 0(t —t0) and so

r-to0
KT = X)) = (x(r) —x0) (x - x0) =0 (t - t0).

Piecing

(5.9)

= Po(t - to) + 0 (1 -

Step 4+ We now proceed with (5.8). Let x(r) be defined by (4.48) with

x —xo. The same kind of argument as in step 1 shows that

cox (r)) atr = c(x0)A 04 o(l)
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for 0~ to <t < 74 t —10- The fact that x(z) = so and (5.5) imply

t t
J Vix(t)) dr - V(xo)t-V(xO)t()-Jr’\p(r)dr —V(x0)(t-to)+0 (t-tQ.

to to

Using the estimates above we deduce from (4.50)

S(t,to,x0,x0)
¢

= | f p2r 4T+ + ha” ~ to’~ MsoJA&o + 0(1).

o
Using again (5.5), gives the proof. i

Corollary 5.1.1. For 0" to <t <T one has
S(t,t0,x,x0) —[U(so) + ha(x0)]{t - tQ - hc(x0)A"0+ o(l)
+0 (h\x- a0)+ 2~ _¢t)» + " ~

as t —* to-

Proof. Expanding S(t,t0,x,x0) into Taylor’s series with respect to x and
applying Corollary 4.2.1, formula (4.52), yield

S(t,t0,x,x0) = S(tyto,x0,x0) -\-p(t,t0,x0,xN{x - s0)

+§ S N < 140 <kFo>m

Using (5.5), (5.8) we complete the proof. ]

5.2 Formal asymptotics for the Green func-
tion of stochastic heat equations

We shall construct WKB-type asymptotics for the stochastic differential
equation

tdip =—fB0®s 17+l ip-dt +hem)-dy,  (5.10)
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where a,V : Rd —=R, ¢ = (ci,...,Cd) : Rd — = >(£->to,®0)-
Assume that the functions V, a, ¢ satisfy conditions (4.3), (5.2) and the Levy
process o satisfy (5.3), (4.4). Additionally we suppose that V(a;), a(a?)
are bounded below and
c{x)y ~ O/x £ Ed, Vy £ suppzz C (5-11)
with v being the Levy measure of £t. Onecan read (5.11)as
c(x)A5,t~ 0 Vx G Vte I+. (5.12)

Let S(t, t0,a;, a,0) be the two point function (defined in preliminaries) for the
Hamilton-Jacobi equation

_ J— + Nt~ . .
5y A0V di—hadi + hedi~ 0 (5.13)

In order to find S(%, to, x, xo) we consider the corresponding Hamilton system

dx = pdt

V(x
dx 1 dx ,v dx

As before we denote by (X, P) the solution of system (5.14) with initial
condition (rc0,Po) at r —t0- We set

. dX{t,to,x0,p0

I{t,t0,Xo0,Po) = det {t,10,x0.p ), (5.15)
opo

J(t,to,x,Xo) = I{t,to,xo0,poft,to,x,x0)). (5.16)

We will use both notations interchangeably according to the set of variables
we want to consider. Formula (4.6) and definition (5.15) immediately imply

Corollary 5.2.1. For 0" to <t < T one has
J~"(t,t0,x,x0) = L=~ 1+ 0(t- t0)) (5.17)

for all x,x0 £

For short we write I(r) = I(r,to,Xo,Po)- Recall that X(r) is given
by (4.7).
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Lemma 5.2.1. The function J-1/2= tGxt xq satisfies
dij~12 dJj-"d 1/ d 28
A nAS B ERY R (5.18)
dt dx dx 2 | dx2#
Proof. The identity
detM = exp{trinM }, (5.19)

where M is a positive definite matrix, and [to’s formula imply

where we used the fact that (dX(t)/dpo) is continuous and of bounded vari-
ation. Applying formula (4.52) we find

di(t) = I(t)tr ((?2 m Y I BdS(t,to, X(t),x0)\ dt
'\ dpo J dpo dx J
= m u

or, using that (1) — J(t}to,X(t),x0)

dJ(tyto,X(t),x0)  j(t,t0,X(t),x0)tr ( (t, £0) JY(£), rr0Y") .
dt dx?2

Hence

(5.20)
Combining (5.20) and relation
dJ-"M p Y ft),~) = tp,Jy(t),gr0) dX(1)
dt dt dx dt

and the equation
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gives

dJ lt2{t,tQX(t),x0) &/ L2(t,t0, ic0) dS
= dt + to

Making change of the variables pQO= pO(t, &, x, a2) we arrive at (5.18). mi

We put
pit,x) = exp{-c(a;)ALT}(1 + ¢(x)A"T) (5.21)
to<r't

and p(t,x) —1 if there are no jumps of on (toU]-
Lemma 5.2.2. For an? to ~ t < 71 we have
p(t,x) = 1+ o(l) as t —=>to-
Proof. The inequality
exp{—2}(1+y) <1 for y>20 (5.22)

implies that
exp {—e(0;)A£t }(1 -f c(a;))ALT) < 1.

On the other hand from
exp{—2/}(1+ y) > exp{~y2} for y>20 (5.23)

we get
exp{—e(a:)A"T}(1 + c(x)A£T) > exp{—fc(x)A’r|2}.

Using that by Lemma 0.0.1 Ylo<T<t 1"£r|2< 1 for ¢t < 7] and the fact that
Ic(a;)] = 0 (1), we establish the lemma. o

Lemma 5.2.3. Forany 0" to <r <T we get
A"p(r)exp|-"i|" +~P(T~) exp]j - | A5(r) =

where for short we write S(T) = S(r,to,x, £0), p(r) —p(7, to,x).
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Proof. We rewrite the left-hand side of (5.24) as

p(r) exp J-p(r-)expj ~~~4
+ip(r-)exp { -*W } AS(r)
= exp{_~7~| P(r)- P(*“)exp (i _ 1AS(T) (5.25)

Since, by (5.13), AS(T) = —hc(x)ALT, it follows that

exP { ~~h "~} A1" A ARS(r)) “ expi-c(D)A (T (1 + c(x)A£T)

and so the square brackets in (5.25) vanishes. ]
Let
4>{t,tn.x,xn) = 6XP" p(t,x)\(t,x,x0)J 1i(t,t0,x,x0), (5.26)
(v®)
where

t
_IA( A
A{px,xO}\L exp Jf— thﬂf’{T,XgTBFn ! (u_W) ds(r’th{T)’xo)drj.

to

(5.27)
Recall that x(r) is given by (4.48).

Lemma 5.2.4. The function A—\(t,x,x0), 0" t0 <t < T satisfies the
equation

pd7tA+ pi\ C}I;S dt + A@d—s dt —O. (5.28)\
oxX 0X oxX 0X

Proof. Making the change of the variable x = X (%, ¢0, X0, PQ) we find from (5.27)

t
W, X(t),x0) =exp| - J[p(r)X(T))]~1"{r,X(T))"{T,to,X{T),xo0)dry
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Hence
de\(t,X{t),Xo) = dt, (5.29)
where in the right-hand side of (5.29) we omit arguments of p, Aand S.
On the other hand, using (4.52) gives

3\ 9S
di\(t,X{t),x0) = dt\ + ~dX(t) =dt\ + — — dt (5.30)

Combining (5.29), (5.30) and making again the change of the variables p0 —
Po(t,to,x,Xo) give the proof. O
Lemma 5.2.5. One can rewrite formula (5.27) in the form,
P(T,X(T))
to<l“-t

where
p(r, x) = exp{—e{x) ALT}(1 + c(x) ALT). (5.32)

Proof. We deduce from (5.21)

dp(r,x) = y ainp ™)
ox ox
to<s<r

and so, by (4.52), we find

t
mA=-/ £ PG T)ar(533)

Changing the order of the integration and the summation in (5.33) and using
p(r) dr —dx(r) we have

InA = _ y . f dinp{S,x(r)) v p frs)

Using again (5.21) we complete the proof. O

An application of Corollary 5.2.1 and Lemmas 5.2.2, 5.2.5 to (5.26) gives
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Corollary 5.2.2. For 0" t0 <t < T one has

<G>(t,to,x, Xg) = 7y/2nh(t _ ) (I+ °(1) as t~*to

for all x, x0 GRd.
We put

(tjitojX.xo0) = fit.to.x.xo0) exp | -

(5.34)

Lemma 5.2.6. The function <f>(tto,x,x0), 0 ~ to < t < T satisfies the
transport equation

t

S(r-) d<f>9s , 1, /328\ '

fexp d$ + ox oxa~a~dT+o g5 J )

+£=0, (535

to

where
FE= 57 (A”g (D)~ exP A5
+~</>(r) exp 11 AS(r))(.5.36)
ifere we write for short "gM — 'Pg(t"Oixixog> S(t) — S/r,10,x,x0),
0(r) = <\, t0,a,x0), p(r) = p(r, x).

Proof. Using Ito’s formula and the fact that [ji, ji] = 0, [A, A] = 0 we have

w df)dS 7 U /da2s\ 7
D e dr + o/ tr \ WK, rfr
exp{-c(xO)A&o} / _idJ"dS, 1Ti /d2S\ ,\
| y M F r| *) ]
. / +
(V271/i)( dx dx
exp {-c(x0)A&0} | exp{-c(x0)A "0}
(v/270/x)d (V271/i)d
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An application of Lemma 5.2.1 (resp. 5.2.4) shows 1 = 0 (resp. Il = Adp))
and so it is enough to prove that

exp. oo K H exp|_sp-)| dp+E=Q (5 37)
V2 m) @ N
Using Lemma 5.2.3 and continuity of A, we obtain
T (r)+ A (r) exp ~} A5,(r)) =°
and so
s= EcpHM AU ~ AJ ,expf S(r-)| M r) (5 38)
(\Z2tt/r) to T ™.t " ~
We have
IANr)l = [1-exp{-c(x)A"T}(1 + c(a;)ACT) ]p(r-)
< Mz))2[Afr|2= O() 1A Cr|2 <00.

Corollary 5.1.1 and the condition V(x) + ha(x) ~ CQ for some constant
Co GE imply that, by (4.50) S is bounded below. Consequently exp{—S/h}
is bounded. Thus we have proved the existence of the integral

t

f XJ~"exp { — A \ dp = Al Sexp{— —1lap(t). (5.39)
o
Piecing together (5.38) and (5.39) we arrive at (5.37). |

Now we can prove that 770 is a formal asymptotics for the Green function
of equation (5.10). More precisely, the following result holds.

Proposition 5.2.1. The function — Vg (UA? %x0), 0~ t0 <t <T
satisfies the equation (5.10) up to a remainder 0(h2). Namely,

hdip% + (~y A +y + hal dt _ hip% cdftt

T 40H exp{ -f} dt {5'40)
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Here 'pQf —ipg (t— to, x, Xo). Moreover,
A (t, t0,22 20) [0 = 5 {x ~x 0). (541

Proof. Write for short S = S(r—,i10,a,x(0). We multiply equation (5.13) by
—exp{—S5-/h}(f), integrate this equation over [to,#, and then add equation
(5.35) multiplied by A. This gives

ST
exp I (hdc/)- <pdS) + hH

to

he ST 2d+dS_ ,(1JdS 1 (d2S Y
Py hdx dx \ B2\ dx
ST
exp >V dr + hadr —he d&;T) . (5.42)

to

Recall that g = <exp {—S'/d} and note that the expression in square
brackets is equal to

Sl d2ipQ o dzg@
eXp A rtr dx2’

An application of [to’s formula yields

t t
S
C B =3%2*0)) + f exp A foexp -
10
ex S d5.sf+s
po P d :

with E as in (5.36). Equation (5.13) and the fact that [£,£]c = 0 imply that
[S, S/c — 0. By its definition p satisfies /p pJc — 0. This and formula (5.26)
imply that [£,S}° = XJ~"[p,S]c —0. Therefore, the corresponding terms in
Ito’s formula vanish and we get

t

t
Jexp{_x}A~A/exp{_T’}AdS+s-
to

to
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This, (5.42) and a lengthy but elementary calculation show (5.40).
It suffices to show (5.41). An application of Corollaries 5.1.1, 5.2.2 to
definition (5.34) yields

iffait, t0,x,x0)

— — ~= —dexP|-1 iv (xo) + ha(x0)](t - t0) + o(l)) X

xexp {i O(m - a0]) - (x+ 0fr - i0))], (5.43)

as t —» t0, which implies (5.41). o

5.3 Multiplicative asymptotics, two-sided es-
timates and a large deviation principle
for the Green function

5.3.1 Asymptotics for the Green function

We rewrite equation (5.40) in the integral form

t
hipQ(t,to,x,x0) — h5(x —xq) —J LoipQ (s, to? x, x0) ds (5.44)

to
d t t
Li"s(s,to,x,x0)dti,s-h ZJ JC{s,t0,x,x0)ds,
% AtO

to

where JC(t,to,x,x0) is given by (5.50),

/[ h2 d2 \
- (Pytrr +y+H N s> (5.45)
~ ~-hci'ipQ, i=1,...,d (5.46)
and put
wG(t,t0,x,x0) =1+ hT + h2T 2+ ..)ijG(t,to,x,x0), (5-47)

where the integral operator defined in appendix 6.3.3 by formula (C.26). We
now prove two auxiliary results which we need later on.
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Corollary 5.3.1. There exists a constant K4 > 0 such that

£ hkj:ka tox'x"
= (hit - 10))~"O{h{t - t0)t(1_e)(1 + |re- x01)ipQ fi, to, x, x0)

holds for 0 ~ to <t < T4£A K4, \L| = 0,..., g with Tix being a stopping
time defined in (C.15).

Proof. By Lemma C.5 d"ip/dxL has the form (C.27) with
a(t,r) — (h(t —r))lLi and m = \L\. Using induction one can easily deduce
from Proposition 6.3.1

krku' MG

sep < hkCh® O+ w —xODL @ 6 %)  (5.48)

for some constant C = C(d, K) > 0 and 0 " to < ¢ < Ti>% where

rt
ak = J J "o J aityn) drx... drk = A|l] —  =--eeee- < L|I| (t- i0),L|+1.
to & jv)
Summing inequalities (5.48) over k£ £ N and using that
l?j’]hkafihf’k—O{the) fort < K4 = (C' (1) /2), give the proof. o
We set
T£E=TDfAK 4. (5.49)
Lemma 5.3.1. Lei (¢t = ¢ or (t — for some i = 1,..., d. Then for

any predictable process bo{t) — 50(i, r, a;, £0) {w.r.t. the natural filtration of
{Ctjt"r ) and the process
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Proof. Changing the order of the integration we have

t s t t
J J bogs,1x, 70))c. T ipxoydidgs = ] J b0(s, 1%, T))K{1.T, 7, x0) d(sdl,

T T T 1
where

rd20){z‘]L(),x,x()) exp f S(t t0ix,xo0)

/Ot 10.x, Xg) = L B (5.50)

and so

t t s
FBO) (s, T,x,x0) d(s = J J J boes, I x, vi)K(, T, rj,x0) drjdld(s

r r

t
— J J bi(t,l,x,p))C(l,T,rj,xo0) dpdl — (tFbi)(t,r,x,x0).

|

Theorem 5.3.1. Let the assumptions given at the beginning of section 5.2
hold. Series (5.47) converges and

Gt to,x,x0) = >@(t,to,x,Xo) (1 + 0(h(t - t0)t(l _e))) (5.51)

= ({0, x,x0)exp |-is'(t,t0,a:,x0)| (140 (h(t - tO)t(1 e))) .

Moreover, ifG(t,r,x,x0) satisfies the equation

HipG(t,10,x,xQ (5.52)
d

4 4
— h5(x - xq) - J Lqifig (s, t0,x,x0) ds - JLi’ipG(s,tO,x,xO)dfi%

fo 4-1 1
for 0~ to < t < Te with Te given by (5.49).

Proof. An application of Corollary 5.3.1 with L = 0 implies the convergence
of series (5.47) and gives asymptotic formula (5.51).
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Now we are going to show that ?>g(L¢0, x, x0) is a Green function for
equation (5.52). Definitions (C.26), (5.45), (5.46) imply TkLi ~ LiTk i —
0,..., d It follows

y : hkJrkLil/>G(t}to, X,x0) = Li hkT kMO (¢, t0, X x o). (5.53)
k=0 k-0
Notice that Corollary 5.3.1 gives convergence in (5.53). Applying hkT k to
the both sides of equation (5.44) and using Lemma 5.3.1 we have

hk+1[Fkipas] (t,t0,x, x 0) (5.54)
t

= hk+i[Fkxi](t,t0,x,x0) - hkj'[fkLoiljas](s,to,x,Xo) ds
fo
d J
! [FkLiil)as] (s,tO0,x,X0) d s - hk+2[TkX2\(t,tQ,x,X0),
i=l1
where Xi(t, t0,a;, m0) = 5(x - x0), X2{t,t0,x,x0) = ffoJC(s,to,x,x0) ds. Since
[?Xi] = X2, it follows

y 5 hiHl [FIXi\(ti to,x»So) - y fifc2R/sk]|(Lio,*)™) = hS(x- x0).
k=0 k-0

Summarising (5.54) over A= 0,1,... we arrive at (5.52). i

5.3.2 Applications

Now we deduce some direct important consequences of Theorem 5.3.1.

Proposition 5.3.1 (Two-sided estimates for heat kernels).
Under the assumptions given in section 5.2 there exist constants K5,h0 > 0
such that

K? exp/ L zf°)!I\ (5.55)
(s/hit - to))" 1 M*“M
sg ipa{t,t0,x,xP< — exp { —A 1j m
(VHt-t0)) 1 3/x(i- to)]

forto™ t <Te h”™ AO.



5.4 Cauchy problem 97

Proof. Corollary 5.1.1, (ii)) Lemma CA and (5.51) give the proof. ]

Proposition 5.3.2 (Large deviation principle). Under the assumptions

given in section (5.2) we have

M
}lli%hhi’ipG(t,to,x,xo) ——S(t,tQx,x0).
(a) Lo
lli%(t - t0) In ipG(t,t0,x,x0) = ——--- —

zn

5.4 The Cauchy problem and global asymp-
totics for stochastic heat equations

5.4.1 Well posedness of the Cauchy problem for heat
equation

Theorem 5.4.1, We assume that ipo(x) £ CooCMf), i.e. tpo(x) is continuous
and vanishing at infinity. Then the formula

[Rtipo™x) = fj(t,tQx) = ifG(t,to,x,x0)if0(xo) dx0 (5.56)

for 0~ to < t < Te gives the unique solution "(t, to,-) £ CO00(Wt) of the
equation

1 d *
hffitfioix) = h'ipo(x) - / LOip(s,t0,x) ds - / L"~(s, t0,x) d£i)S (5.57)
[ Hi
with Li i =0,..., d given by (5.45), (5.46).

Proof. Theorem 5.3.1 implies that a solution of equation (5.57) is given by

formula (5.56). It remains to prove the uniqueness. Let 'ip(t,ta,x) be a

solution of (5.57) such that Rw) —0. For short we write p — 'ifir, to, .t),
= £1—1t0,x), c= c(x), V =V(x), a = a(x).
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Let us first assume that

d
h
V+ha—h GENL+ — YICG /| Vivividy) "1 (5.58)
i=l hi=l  mido

for any x GRd. An application of Ito’s formula shows
dip2=2 dj)+ d*0,M] = 2if) dip4ip2d < Zrc c>

where (%1)i,j — Ki>£j]r? 2T £ Kdxd, and as

d 'dp'?2
Loip2 = 2ipL0ip — (V + ha)ij)2 —h2 }llp
=1
we obtain
d
h dip2+ LOip2dr + Liip2 dtijT (5.59)
=
d
= 2ifjthdip+ LOipdr + L{ip d™T —(V + ha)ip2dr
i=1
-h2 Noodr~'Y2LNldNr + hip2d < ZTc,c> .
=i 'V i=i

Using the fact that ip(t,to,x) is a solution of (5.57) and so the expression in
square brackets vanishes, we rewrite (5.59) as

hdi2+ h2Y"~(H ) dr= 'y tr ("Jr)
i— A A

—2 Liip2d5,ijiT+ hip2 d < ZTc,c> . (5.60)

i=1

Since ip £ CooiM!l), it follows
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Integrate (5.60) over x [£0,£] to get

nd i2(t,t0,x)dx + wlJ ot drdx (5.61)

to Rd to
t

+hJ J W d<ZTc c> dx
Kd 70

Denote the right-hand side of (5.61) by I. Since the left-hand side of (5.61)
is non-negative it follows 1°0. On the other hand

! d "
ElI = -2 J] (V + ha){¥ip2) drdx + 2h,y’\JJ @ (Eipi) d(E" r)dx
Rd to I=1Rd to

t
+h J J (Kipt) c(E < ZTc,c >) dx.
M
Using assumption (5.58) and the fact that

EAT=tE&}, Efa,£§]T=r J yitj v(dy)
Ra\0

we obtain

t ¢
EI = —ZJJ CEtp2 drdx U—2J J E ' drdx ~ 0,
Rd to Ud to
where C — C(x) is the left-hand side of (5.58), and so E 2 =0 thatisip = 0
a.s.
We proceed with the case C(x) < 1 for some x e Rd. Recall that dc/dx

has compact support and V', a are bounded below (see section 5.2), and so
C(x) ~ Co for some constant Co. Let

Ar, 80,x) - exp{(l - CO)r}~(r, £0,®),
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where C is given by (5.58). One readily sees that the function fi satisfies the
equation (5.57) with the coefficients V = V —Co+ 1, a = a, ¢ —c. Clearly,
V, a, c satisfy condition (5.58) and so fi = 0 a.s. Then » = 0 a.s. O

As trivial consequence of formulae (5.43), (5.51), (5.56) we obtain

Corollary 5.4.1. We assume that the conditions of Theorem 5.4.1 are sat-
isfied and fio(x) ~ 0. Then the solution of the Cauchy problem ip(t,to,x) is
also nonnegative.

The results obtained on the Green function allows us to get easily the
following qualitative properties of the solution of the Cauchy problem.

Theorem 5.4.2. We assume that the conditions of the Theorem 5.4.1 are
satisfied. Then

(i) [Rtfiofix) tend to ipo(x) as t —» to for each x and any E CAMNR®);
moreover, if OE Co(Rd), then [Rt'fi] tend to ip$ uniformly, as t —» to.

(ii) Rt is a continuous operator C(Rd) —» Cm(Rd) with the norm of order
((t —to)h)~m for all m ~ q. Here q is from (5.2).

Proof. Using the trivial fact that
1
{~wri)!w IE°-X) as (5-62)

and formulae (5.43), (5.51), (5.56) we have \Rtfio(x) —'ipo(x)\ — 0 as t =10
Since convergence in (5.62) is uniform in x G K for any compact set K C 1d,
we establish (i).

Formula (5.56) and Corollary 5.3.1 imply

d"Rtipo
dxL

0 ((h(t —to)) IL))j (I + \x- xQyLV'ipG(t,to,x,x0)tpo(xQ dxQ.
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By (5.43) we see

f+ \x- xoY)NipOS(t,to,x,x0) dxo= 0 (1)

and (ii) follows. i

Theorem 5.4.3. We assume that the conditions of Theorem 5.4.1 are ful-
filled and V(x) ~ —V0 with some Vg ™ 0. Let

a(x) ~ (Efi) c¢(x) = AL (E6.,1) c(x). (5.63)

2=1
Then
St
E (53,6, Wjichy 1 {1<e<}) < ||'i/>o(s)||ii(*«)exP \VZ Vat r m

In particular, ifV(x) » 0 then the solution of equation (5.52) is dissi-
pative, that is

E Q I~ M o ~11L K dz)Il»» } ) < W oo (z) L*dx)-
(ii) In the case of vanishing potential V(x) =0 we get
E (\i){t,t0,x)\\Li{dy)l {t<T£) = \\"Mx )\\Li(cx)

provided that

d
a(x) = - (Efi)c(x) = - ~ (Efiti)ci(x). (5.64)

2=1

Proof. We first assume that ipo(x) ~ 0 for any x £ Rd. Then by Corol-
lary 5.4.1 ip(t,to,x) ~ 0. Integrating equation (5.57) over x gives

hit< Ts J i/>(tt0ix) dx = » 1i<Te J 'fo(x) dx (5.65)
Kd Rd

t d t
1 oiets Ofj(r, to, x) drdx - [t<I§ r, tQx it1dx.
JJL( ) drd. ZT/\ JJT/\( Qx) dfitTd

to t0
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It follows by (5.43), (5.51), (5.56) that for any I — I,... ,d
(d2'ift(t,t0,-)/dx?), (diJ>(1,t0,-)/dxi) e LI(Rd) and

. —>0 as |xil  +oo.
dxi

From which we see
a2™(r, t0,x)
tr dx

dx?2

= 0.

We deduce from this and definition (5.46)

J Lo'ipfritoix) dx —J Vi(x)'i/j(t}t0,x) dx + h J a(x)'i/j(r,to,x) dx. (5.66)
On the other hand, since
t
e 1E) ipfr )T = (Em)J [Tl li<sd d

it follows from (5.63) and the assumption "(r, t0,x) ~ 0 that

t d t
hE 11<TeJ/ a(x)ip(r,t0,x) dr +FE E li<r. J/Li’ip(r,tO,x)dAT (5.67)
to =1 to

= hfax)- y "ENiGCitx) [ / [E'lpiryto™x) 1t<IJ dr ~ 0.
i=1

to

Thus, taking mathematical expectation from both sides of (5.65) and using
estimates (5.66), (5.67), yield

hE i t0,x) dx 1 <Te (5.68)

A h] tpo(x) dx —JE V(x) Nr, t0,x) dx [t<T, dr.

to
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Since V(x) ~ —Vo, it follows

hE [Mip(t,t0, OlkHd*) h<Te]
t
< hipo{-)\\LHdx) + VOJ EMip{rfiQr)\\Li{dx)! T<Is] dr,

to

and an application of Gronwall Lemma gives (i).
We now proceed with a general case. Let ip0 = ip» —ipf, where

w0,ipo ~ 0. Then
WAt to, )\ \Ldx) = \\ N +{tVo)\\Lifd) + \\tp~(t,t0,x)\\Li{dx).

Here ip+ and ip~ are solutions of equation (5.52) with initial conditions ipf

and 0 respectively. Since (i) is proven for ip+ and ip~ it holds for ip.
Condition (5.64) implies that the left-hand side of (5.67) vanishes. Con-

sequently (5.68) turns into equality. Using V(x) —0 we establish (ii). i

Corollary 5.4.2. The Green function ipG(t,to,x,Xo) satisfies the
non-homogeneous Chapman-Kolmogorov equation

ipG(t,tQx, z0) = J G(t,r, x, r)ipG(r, t0, 1, x 0) dip
Rn

where O N 0™ r N t < Te.

This simple fact is important by different reasons. First of all this property
together with the positivity of the Green function allows to interpret this
Green function (after some normalisations if necessary) as a transition prob-
ability density ofa certain stochastic process. Moreover, using Corollary 5.4.2
we can extend the asymptotic for the Green function to large times ¢, i.e. to
obtain global semiclassical asymptotics, and therefore to get a corresponding
extension of the result of section 5.3.

5.4.2 Generalised solutions for Hamilton-Jacobi equa-
tion

In this section we discuss briefly a construction of generalised solutions of the
Hamilton-Jacobi equation which leads to the well-posedness theorem for the
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Cauchy problem with rather general (even discontinuous) initial data. This
construction is quite similar to the case of deterministic Hamilton-Jacobi
equations (see [KMa]) or to the case of stochastic equations driven by a
Wiener process (see [Kl]) and therefore will be only sketched here.

Notice now that formula (4.67) in preliminaries still makes sense if SQis
merely bounded below and lower semicontinuous. Therefore one can expect
that a reasonable definition of a generalised solution of the Cauchy problem
for equation (4.13) is given by

[J7650](x) —inf(So(C) + S(t,10,x,C))y N (5.69)

for this solution.

One way to come to such a definition is based on the method of van-
ishing viscosity (see e.g. [Kr] and [GL] for the case of the deterministic
Hamilton-Jacobi equations). An alternative approach comes from the ideas
of idempotent analysis ([KMa]). This later approach is based on the simple
observation that the operators R¢,¢> 0, are linear operators on the space of
functions which take values in a metric semiring R U {+00} with the metric
p(a, b) = le~a —e~b| and with the commutative binary operations © = min
and © = m= One can show (cf. [KMa]) that convex smooth functions form a
basis for the semimodule of continuous functions with values in the semiring
1U {+00}. Thus formula (5.69) can be considered as the natural extension
(by continuity and linearity) of the operator Rt defined initially on convex
smooth functions where it gives (at least for small times) a classical solution.
In this set-up one can also introduce a notion of duality which gives the ana-
logue of the usual L2 inner product and thus define the generalised solutions
in the sense of distributions similar to the standard Sobolev construction for
the case of linear equations. This leads again to formula (5.69). For details
we refer to the paper [K2]. The same formula (5.69) can be justified by the
method of viscosity solutions. For a thorough comparison of these two ap-
proaches to the construction of generalised solution to HIB equations in the
deterministic case see recent papers [DeMDo], [McCB].

5.4.3 Asymptotics of the solutions of the Cauchy prob-
lem for heat equation

The next result is a direct consequence of Lemmas D. 1, D.2 and formulae
(5.56) and (5.69).
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Theorem 5.4.4. Let f>(t £0,x) be a solution of Cauchy problem for equation
(5.57) with initial condition ipo(x) = xp at t —to, where D C Mf, S(t,to,x)
be a generalised solution of Hamilton-Jacobi equation with initial condition

S 1D
+00  otherwise
att = to. We define Dt = Dt(cg) C by saying that

x G Dt iff there exits xq GD such that x - X(t, to, Xo, 0).

1. Ifx e Dt then

ip(t,to,x) = (V2irh)d(j)(t,tQ,x,x0) ~det —

xexp{- LhkcL](i+o(h))

for some X0 G D.
2. Ifx 8§ Dt then

0x) - (V2twh)d~l — P, t0,x, x0)

x (det[|6|/GQ)(0) + AT) 2exp {-AIM-A (1 + O(h))

for some x0 G dD. Here b= (dS(t, t0,x, Xo0)/dx0),
A - (d2S(t,to,x,Xo)/dxl), AR is given by (D.l) and dD is given by
(D.2) with e — b/\b\ in some neighbourhood of xq.
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Appendices

6.1 Appendix A

Lemma A.l. Let us denote by

+1
Is=J (I - S2Y 4A.))

s > —1 s € @L Then
2s H-3 N

< X5icd (A")
for any s > —1.

Proof. Chosen any 0 < r < 1 andn 6 No we find from (A.l)

E w = [ — (A3)

"

m=0 i

We integrate (A.3) by parts (with u = (1 —(1 —&)n+1)(1 —52)r and
v = —1/5)) to get

J2 imtr =+
m=0 -1

106
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1

v

= 2(n+ l)/ntr - 2rlr,i + 2rintr.

R e

Consequently we obtain the recurrent formula

A4
In+r 2(n+r1) +1 (A4
- 771=0

Performing elementary calculations and using (A.4), we prove (A.2) for all

non-integer s > —I1. By continuity we obtain (A.2) for s € NO. |
Lemma A.2. Foronpuel )\ {0}, a”™ 1,d" 3 we have
1
Jv) =/(1- h2)-" In(u2+ 2v5+ a)d5 > (Ina) las. (A.S5)
-1

Proof. One can calculate J(v) explicitly for d = 3 and check the statement.
We proceed with d ~ 4. Clearly J{v) = J(—) and J(v) is increasing for
v ~ 1, since 12+ 2u5 + a is increasing for all |5 < 1, a ~ 1. Using the
fact that J(0) — (Ina) Id-3. it suffices to show that J(v) is increasing for
0 < v < 1. Taking the derivative

. J,(v\)/=“1"22m) + a f(l~S2)dr--—
-1

and using the decomposition

v 4g-S v+ S
v2+ 2u>+ a v2+a
71=0
where
W M)= « (A.6)
v2+a v2+ a 'V 2t-a/
771=1 N 7

and #2{v, 5) = —(v, —5), we obtain
.I
Iy =2] (1-5 ar5>I(v,5)ds. (A.7)
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Since

\Y% (JvV -] @,, Ji V-T_

A”\u2+ a/ u2+ a \u2+a/  1—h2’
m—

we find from (A.6)

v

1-A 1+ 2A2)+ (A1-A 2)(1-<52)-A 2 1
TR ( )+ ( )(1-<52) 1-<52
(A.8)
where
AL=25:4y Aa=8.cth (LY (A'9)

Substituting (A.8) into (A.7) and using the notations of Lemma A.l we get

J'ly)=  (a _ Aj o+ 2A2) /fc. + - A2Ii=i

20) 2 2 2

= IdQS—(Al—AZ)[7"2—del—A9|Jd2<—Id23|.
An application of Lemma A.l shows
A >V =% (1- i (A.10)

From (A.9) we find

e dAl +dd- 3) <1 MU A
for 0 ~v ~ y/a, d ~ 4. Combining (A.10) and (A.1l)gives J'{v) > 0 for
0<v <l. O

Lemma A.3. Letd” 3, 0< a < 2. There exists 7= 7(0,d) > 0 such that

f fiP°0 Vp € Rd,AGE, (A.12)

where

= (p+ adp+ 1y7 (|p|2]+ 1)2

f(p, 0
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Proof. Without loss of generality we prove the lemma for A = 1. Denote
the left-hand side of (A.12) as /(7). Changing the coordinates to the polar
coordinates we get

100 100
/(7) = g ZricadraZvar,
20

where

1

ds,
. (r2+ |pl2+ 2rip8+ 1) (lp|2+ 1)7_

or Z =W 2UZi,
Z\ (1-52)* .
_ - v
: (v2+ 1+ 2v5+ p\~2)i  (1+ b|“2)7 W

An application of Lemma 4.2 with a = I + |pl 2 implies

1
J (1 —52) 23 [In(u2+ 2vS 4 a) —In(a)] dS
-1

J(v) —(na) [d3 <0

dZ1
dy 1=0

and so

+00

/(0) = —p| 2 Ju) —(Ina)Id3 v 1 adv < 0.

This and the fact that 7(0) = 0 give the proof. o

Corollary A.l. Letd” 3, 0<a < 2. There exists 7 > 0 such that for any
B 6 Rdxd, b> 0

/b(p,0

where

O scnt B M2+ &7
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Proof. Without loss of generality we give the proof for 6 = 1. We take
A= A(p, B) > 0 such that

C [ 1 C 1 1

=A*
J (p+SCR2+ 1)7 I+ J (b+ @+ 1)7 \(\da

Then
Iéd/ b (p. O = Ié}(|p +Bg*+1)7- (p+Ada+1)0 W * dC

+1 ((Jp +AQ2+ D7« (p2+ 1)V [cFAdC
= I+ 11.

From (A.13) we find 1 = 0. An application of Lemma A.3 shows II " 0,
which gives the proof. i

6.2 Appendix B

For the proof of Proposition 3.0.1 we used some technical estimates which
are not directly related to the arguments of this section.

Lemma B.l. Foryi,...,yn”™ 1 one has

ftto +om+ mMy.)>Lr@+1)(r (n£__t"

Proof. Since y\ + ... + yi > I—1 we easily see

fpi+-+«) >£ ftn+=+"+1Lil. (B.1)

7=1 i=1
We are going to prove by induction that
T ] it

n vi+'"7 >n'n(tt+ «-i> (R2)

=1 8=1

t-jt
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for some ..., in ~ Osuch that A+ -..+in = n. Here the product ]7f ranges
over all 1 ~ I~ n with ii > 0. Indeed, for n = 1 we take il — 1. Assume
that (B.2) is true for n —1. Let B —min{yi + A, ¢+, Vn-i + in-i, Vn}- Then

Ul + e+ yn+ n — 1 (z/l + *1) + emm+ (?2/n—1 + «n-1) + ?2/mn ~ D
0.

n n

If B=yr+azx forsome 1" 1t~ n- 1wetakejr= %+ 1,j§= zfors " r
and jn = 0. Otherwise we put jn — 1, js = is, s = 1,...,n —1. Then the
inequality (B.2) holds for (jl1}..., jn), and all n.

Combining (B.l) and (B.2) we get

" ")

The Lemma follows since the Gamma-function is a log-convex, cf. [A]. i

Lemma B.2. Forn =1,..., k one has
nn~kkh >+ (In(k + })\(B.3)
Proof. For f(x) = (x —k) Inx + k Ink we have
f'(x) = —+ Inx. (B.4)

Let f'(xo) = 0. Clearly, 1 < xQ< k. From (B.4) we get

.Toflnxo + 1) = &, (B.5)
SO
In £ = IngjQ + In(lnx0+ 1) ~ 21nx0- (B.6)
Thus
/k\k
nn~hkk ™ x€O~kkk o, (B.7)
xo J

Inequalities (B.5) and (B.6) imply

— = (lnrco+ 1) » " Ink+ 17 iln(A: + 1). (B.8)
Xo 2 2

Combining (B.7) and (B.8) we arrive at (B.3). ]
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Lemma B.3. We define gk by the following recursion formula

k—i n

go = 1, QK = YJ,yCE—:m17m7lok—m-l, h £ N.
m=0

Then (26\k

gk A 5 kK G N.

(In(/c + 1))2
Proof. With a/* = 3/[(£ + I)(A: —i —1)!] formula (B.9) reads

fe-i
ge=yZ"NiQb k>1.

1=0

Clearly,
A
P G Jins

where the sum ranges over all (i0,..., in) with k —io > .. .ir
that 0 3

aio,ii *Wain-i,in !l
= T I)T(*s “ C +1)

Lemma B. 1 implies that for bi,..., o ~ 1

n—i

r(6,)n (6i+ --- + Mr (6i)
£l

> J Mn+1) (p (b +. .Pbn"™nr
2nbi+ ...+b \ | n

If &5 —in— jn—-\351—2,..., %, bl —in—+ T 1, then
b4 ...+ bn—i§—inT 1=FkT]Ij

and it follows that
n—I
B m1(10-<i) IN * + i)r(c —c+i)

112

(B.9)

(B.10)

(B.11)

0. Notice

(B.12)



6.2 Appendix B 113

Recall that » ~ k& —1. Since the inequalities 7(b + 1) 762 for 62,
T®6+ 1) > 2-Hit for 1 < b” 2 and, by (B.3), n"-&£V > 2"* (In(fc + 1))* we
have

s >iX T! 0 ">i (rf-***)* > On(fc + 1))*.
Consequently, the right-hand side of (B.12) does not exceed 3nB~ 1/ and so

gk < ok .max  moOjil.. .a®_ljin * K")k
*=0>...>in—0 (In(fc + 1))*

where we used that the number of terms in (B.ll) is equal to

k 'k i
O

Lemma B.4. For any m, k, cki,..., an € N with
aid-... +an+m =k} m "~ n—'1 (B.13)

we /mue
(In{aq + 1})-2*... (Inja™ + 1} ) *ml > 2~k (In{ln{& + 2} } )W (B.14)
Proof. Denote the left-hand side of (B.14) by I and observe that
I~ (Vin~2)n > 2~k.

Since (In{ln{& + 2}})£ ~ 1 for k£ ~ 10, (B.14) holds for £ ~ 10. If £ > 10 we

get from (B.13)
a+..+av k—m

n Nmo+o ]

and so, using the log-convexity of f(x) = (In{x + 1} )2,

A k—m

> (InfmTT+1}) 2 nd
Applying lemma B.S5, completes the proof. O

r
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Lemma B.5. For 1~ m <k k » 10, m, k G N one has
f—m
w h.fill.j j r(m + 1) » 2~k (In (In(/c + 2)))I°. (B.15)

Proof. We write 1 for the left-hand side of (B.15) and set x0= (Ink)~Ik.
Case 1. xq < m < k. We split the proofinto three steps. Take x0 <x < k
iG1.
Stepl. Since (k + [)/(x + 1) < k/x < In Awe get

J’_
Infk I < In Sk <In1'nk<—£-<x,
\x +1j \x J In

and so

flnz > fin (in ()8( +ﬂ: 1 )) (B.16)

Step 2. Using the elemental inequality
In(1+ @) ~ ab for 0<b<1 and 0<a<—I

with a = (k —x)/{x + 1), b= 1/(2 Ina;), and

0<a=2Z21" " cha1<2hio0o—1<2mre—1=1"1
xT 1 xq T 1 b

we find that

k+ 1)\ / —x | —
2Ina;in( IzZInxln\/l4k YAk x,
X + 1j X+ 1J x + 1
and therefore i 7 1
Slnx AT KT B.17
AT T TR x4 T B.17)
Step 3. Set
f(x)=hyE Wm€im (1= 1T + i inx.
x+ 1JJ 2
Clearly,
2 —a 1 1 .1
/'"(x) = - - In AIn /A - é a,_ E — + —2(Ins 1).
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Adding (B.16) and (B.17) we obtain f'{x) ~ 0 and so
I~ exp{/(x)} * exp {/ Oo0)} * (B.18)
Since (k+ 1)(xqo + 1)-1 > (3/4) In A, we find

TV g B Sl nineac+ 2))% k~ 10,  (B.19)

In
and so
1 / 1 \ 1
s (x0) N - (k- x¢ (- InInIn(A+2)- 11+ -x0Inx0
k
16 Inlnln(A; + 2) + Z, (B.20)
where
ZZ_ linlnln(A + 2) 1 3 Inlnk 2 3 9Inlnk 7 B cr 10
kKT InA 4Ink 4 InA 4 8 InA '

Combining (B.18) and (B.20) gives (B.15).
Case 2. Let 1 <x ™ {k/Ink). Using (B.19) we have

k—x
PN | 2 /In In(A + 2)

k
A2 4 (Inln(A; + 2)) 8
o v (Inin(4; + 2)
O
6.3 Appendix C
6.3.1 Estimates for Newton systems
Recall that pQis defined by formula (4.46) and denote by
IIMIL _ max M GRdxd.
Lemma C.l. Under the assumptions of Lemma 4.1.2
A .
_ 4 dpo(t.to.x.x() _ = Oftiu, (C.])
dx
d"poft, t0, 0
poft 10./x0 g 2 g (C.2)

dxL
hold for 0~ to <t <T.
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Proof. Since X and p0 are inverse functions, it implies

(<-+>-£)(SD -~
(00)

« HIMIU * (t-to) - (ntler||M]|SO,
n—0
where (dX/dpo) = (t —to)Ed + M. By (4.6) |M]joo —0((t —to0)2) and the
first formula in Lemma C./ follows.
Now we choose £, ji,...,jm G {l,...,d}, m G N. Differentiating the
identity
Pok(ft ta,X(t, to, Xq,Po0),Xq) = Pojc

over po) j I ,Po,jm We get

y, m Pok dXj dXj |y, dpok STXr

it~H=L dxL &8p°J dp°J™ hi dXr dp°i™mw'8p°J’

where the sum Y ' is taken over all is taken over all R,i,..., j, A,... ,B, such
that
i+...+j —Rt 1< \Rl <m, A+ ...+ B=ji+..+jm (CA4)

Note that here £+ ... + and j| + ... + jm are understood as sums of multi-
indices.

We are going to prove (C.2) by induction in m — \L\. If m = 2, then
from (C.3) we get

d
v-" d pok dXi dXj  y-vdpofk d2X,
dxjdxi dpoh dpOh  t=1 dxr dpo”dpoj,

Using formulae (4.5), (4.31) and, by (C.l), the fact that
dpo/dx = 0((t —to) 1) we arrive at

~ dZpod
E . dxjj'dxi ((t -

t,j~i

ta)2k h 2+ 0({t- t0)3)) = 0((t - (C.5)
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Divide (C.5) by (+ —t0)2to get MY = 0(1), where
M =Ed+0(t- to), M € R"** and (Y){iJ} = Y €

The fact that M 1 = Ed24-0(t —4£0) implies F —0(1) and formula (C.2)
for \L\ = 2 follows.

Let us assume that formula (C.2) holds for all L such that Ll < m. We
denote the left-hand side of (C.3) by I -tII 11l . Formulae (4.31), (C.1)

imply II —0((t —to) 7).
We proceed with III . From (4.31), (C.4) we find

d Xj  dwWXj
dpQ dp

Using the induction assumption (d”"po”~/dx1) — 0(1) we arrive at III —
0((t —to)m).

Substituting the estimates above to (C.3) we have the system of dm linear
equations with respect to (d”"pojk/dxL)

E i). %)

where

Jjl = Ei ...ET =8 ...A + OH - to).
-] (t - tO)m dpajl dpo,jn

We rewrite (C.6) in the form MY = 0(1), where
M = Edn+ 0(t - t0), MG xdm

and

which implies F = 0(1) and gives (C.2) for \L| = m. i

Corollary C.1. For0” to <t <T one has

d\M\S
SRF fttax,xo) = 0{1)< |M|3=3. (C.7)
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Proof. Using the chain rule we find from (4.47) that

dAp 0~ dP <YAlpor j
®xA dpo,r dxA A

for |A| © 2, where I is a sum of the terms of the type

d\L\p d\B\poti
Qiy....j,B,...,F 0B X ... XQj*F

such that %... +j — L, \L\ 2, B+ ...+ F —4. By Lemma C.l,
d\B\po/dxB — 0((t —t0)"B" 2°A0)j for any B £ Ng. Since, by (4.32),
d\L\p/dpQ = 0((t —to)ILI) for \L\ ~ 2, it follows that
Qi,...,j;B,....,F = 0((t - t0)7), where

7 = \L\+ [(]31 —2) AO] + ... + [(J[F|] —2) A 0]

- /(BN —DAlN+ ...+ [\F- DAL™O

and so I = 0(1). Using formulae (4.5), (C.2) we obtain
(dP/dpotr)(d"potr/dx4) —O0(1), r —1,..., d Hence

OUu\B
-g™(t,to,E>z0) = 0(1), 4l ~ 2 (C.8)
ApplyingTheorem 1.1.1 wecomplete the proof. O

Corollary C.2. For 0" t0<t < T and \4\ —1,... ,q we have

A AC(r) :
§& - =0d- to)

with X(T) given by (4.48).

Proof. Applying the chain rule to (4.48) we represent d“x{r)/dxA as a sum
of the terms of the type

d"™X 8Blp0ji a|F|Po,j
F yfc  dxB dxF

such thati +... +j =L, B +... + F=A. Applying formulae (4.6),(4.31)
and Lemma C.I give Op..,j-B,...F —C((t —t0)7), where

7= WL T1+[(B —2)A0 + ..+ [{\IF - 2)A0] "2

for 2<\L\ ~ JA| —1 and 7 — 1 for \L\ = 1, |L|= |A|, which gives the
proof. i
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6.3.2 Estimates for the transport and heatequations

Lemma C.2. Let f =f(t,x) :R+ XRd—m  be g+ ltimes differentiable
in x function with bounded derivatives up to order q. Then one can find a
constant Kj > 0 such that for 0 <t < 7ZSAKf, 1~ \\ * ¢

d l (c9)
where
Pf(t’x) = E7L P(T>f(T’x)) (10
to<I":t
and p(r, x) is given by (5.32). In particular,
-NzZr- = o(t'-")Ptx), (c.ii)
= Oitl-*)A(t,x,x0). (C.12)

hold for 0~ to <t <IZEAK\, 1" |L| * qfor some constant Ki > Q.

Proof. From (C.10) we find

d"pf(t, x)
.1
dxL (C.13)
dlillp(Tuf(rux)) <
- M) E E dx 1l dxik
x B[ M) {r1)-
n,..., Tk
Here the sum is taken over all rx,..., £ (to,?) and i\,..., ik such that
i+ ...+ ik—L.
Clearly
9 ~NDBPJTIX*- = Qa(r, x) exp{——<(/(t, a;))Afr}, Al=1,..., g

where Q4 is polynomial with respect to (@"B"c(f(r, x))/dxB)A~T, \B\ —
0,..., A\. One can check that Q4 — |A£T|20(1) if \4l — 1. Using conditions



6.3 Appendix C 120

(4.3), (5.2) and the boundedness of x)/dxB), \B\ = 0,...,g, it
follows that

d*p{rj(r.x))

N CIALT2exp {-c(/(r,:1))A LT}, (C.14)
dxA

for some constant C = C(q,d,I<,/) > 0. Together (C.13), (C.14) gives

= 7)Y, 2-
awg{t,x) . oq)Y,j3cau
k
x jQ exp{—e(/(rn,X))A£Di} p(r,/(r,x))
n=1 rri,..., rt

\L\,

=0l )pf{t,* )£ £ C*1'12-"1A€rJ2,

k=1
where we used that, by (5.12), 1+ c¢(f(r,x))Afr ~ 1 and so

k
JJexp{-c(/(rn,:r)A£LTh} p(r,/(r,x)) *~ pf(tx).

n=1 r*n,.,,T)i

Consequently, for ¢t < 176

d0A = $m)e(cE iaXdVv
B=1 \  #(,<Tt J
U
= 0(Dp(t,a;)£(Ctl=te)\
/e
FI
Using ﬁA—(lO t1-2)* = 0(il-2£) for t <, = (20)<1-2)' ,p

Formula (C.11) is aparticular case of (C.9) with f{#,x) — x. An appli-
cation of Corollary C.2,Lemma 5.2.5 and formula (C.9)withf(7,x) = x(r)
give (C.12). ]

We set
Tm =TAUeAKnx. (C.15)
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Lemma C.3. For 0™ to <t <T, |L|=1,..., g we get

d\L\j~%51,10.X,.X0) _ 0 (1- 10 31,10, x ) (E:1%)

with J = J(t,to>x,%0) being given by (5.16).

Proof. An application of the chain rule yields that d*J~"/dxL is a sum of
the terms of the type

C.17
dpA  dxB X X dxF ( )

where i+ ... +j —A4, B+ ... 4 F = L. One readily sees

d\A\/-3 f 1, fdx\\ dM Aord
~ N1 =« expr 2trlni”® // = exp{0}=Qa " ( }
where 04 a sum of the terms of the type
aw A
© "0 E+..+G=A
dpF '’* dpG
The elementary formulae (tr InM)' = trM  IM7,
M-1) = — where M is a positive definite matrix, imply
A v = B APE" tr (m~ . M OLFEM (C.19)
where the sum is taken over all S,..., such that We put

M - (dX/dpo¥ Kix( Using (4.6), (4.31) give
M-'"FAE =0 ({t- t0)|BJ+]).
Hence
= -1 tr InM = 0((t - tO)|E+1)
dp8 dp$§
and Q4 = 0((t —to)"+1)- Consequently
= 0((t- to)'AI+l) H . (C.20)

Using (C.20) and Lemma C. 1, give the proof. i
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Lemma C.4.

(i) For 0~ to <t < TIE we have

WSW0=xx0) o O xop
(Z There exist constants K, K% > 0 suc/z that
——J " () 10x x0) <
[/i(t-10)]5 —to)|"

holds for 0 ™ to <t < Tijf Vic, £o £ Md.

122

(C.21)

Proof. An application of Lemmas C.2, (7.3 to definition (5.21) show (i).

Applying (5.22) and (5.23) to (C.10) we find
Cjl< Pf(t,x) ~ Cf
for some constant ¢f > 0. In particular,

CfI* p(tx) < Ci,

< A(,£,£0) < C2

(C.22)

for some constants (7i, C2 > 0. Combining (5.17) and (C.22) imply (ii)). O

Lemma C.5. The derivatives of the asymptotic Green function 'ipQ given

by (5.34) satisfy

- AG(WOX,X0) _ (h(t-t0))-\L\(1+\x-x0\yLty(!(t,10,X,x0)O(1), (C.23)

for 0~ t0< ¢t <T, \LI=1,..., 4.

Proof. One readily sees that

JEexni-gh )y =QBexpa-gsi,
where S = S(t,t0,x,%o0) and

o 1 dwssx)  1d7S(x)
08=0)  mmx ., r voh dxF

(C.24)
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Using formulae (4.52), (5.4) we obtain

ds(t, t0,x, xXQ)
dx - Ap(t,tQx,x0)\ ~ pO(t,tQx,x O\ + 0 (1).

Expanding po(t,to,x,Xo) info Taylor series in x and using, by (C.2),
dpo/dx —O0((t - to)-1), give
Po(t,tQ,X,X0) = pO0(t,to,Xo0,X0) + O0((t- tO)~)(x - xq)
- 0(1) +0((t- to)-D)" - xq),
where we used (5.5). Thus

DS(t, to, x, xq)

o U - x0)00).

Combining this estimate, (C.7) and Corollary 4.2.1 we get
0B = (hi{t - A))~B|(1+ \x - a0]B)O(I). (C.25)
Applying the chain rule to (5.34) yields

d™% s(t,t0,x,x0) A d™fi dW /o1
dxL - E

A+B=L K

Using formulae (C.24), (C.25) and (i) Lemma 0.4 we arrive at (C.23). i

6.3.3 Properties of the integral operator T

Let us recall that S(#,tQx,x0) is a two point function for equation (5.13)
and (j)(t,to,x,x0) is given by formula (5.26). For a function x(t, to, x, x4, We
define
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Proposition 6.3.1. Let
x{n,r2x,x0) =a(rur2)(1+ \x- x0)m'ip%o(Ti, 72, x,x 0) O(l)

for some function &, : M+ x K+ —>=K+, meNo. Then
[FX]= 0(tl~fa(t,r) dr™ (1 + \x- &))mSy (1,10, x, x0)

holds for 0~ to <t < Ti%® with Tii£ being given by (C.15).

Proof. Using (C.27) rewrite (C.26) in the form
. t
[Tx]{t,to,x,Xo) = 1 JJ B(p,r)expj-1M | drdp

with = $(7) = ~(t, t, x, 7D + S(r, t0, 7, r0) and

B(p,r) . aft,r)(1+ |a - T7)m<>E 1, e 77) tr- A — 0(1).
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(C.27)

(C.28)

(C.29)

Step 1. Clearly <&p) = min<F(?7) = S(t,to, x, ..,. where 71 = x(r) is given

T)(IRd

by (4.48), and .
PO > PO+ - (AT-1T), - T

provided that (02%0772) ~ A for some A € Mfxd. One has

d2§  dIS(t,r,x,p)  d2S(r,t0,,a0)
b2 dp2 dp2

By Corollary 4.2.1 we see

AR SR -
5m 2\t —¢ t —to
and so
€A S(t,to,x,xQ + ~ + ~ ) (V-V)2-

(C.30)
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Step 2. By (i) Lemma CA4

tr*oy?,%o 1=0 "

drf

and so
B(ipr) - 0(ti~Ha(t,r)(1+ x- pYm@) r, x, 20(x, 0, 7,x0)
Using (ii)) Lemma CA we have

A 1+ [~ 7hm /non
£27,r) = 0(t )75~Tw ~ ¢ ~T- (c 31
Q7xh) —r) (r —£0)]2

An application of formula (5.6) shows that
b —pl A e —Xf\+ Xf —s = Ix —Xf1+ 0(1),
where a;/ = Xf(r) is defined by (5.7), and so, using \x —Xf1 "~ x —x (@, we

get
7—x\ ~ e —fl + [T—TNA Ja, —x0\+ [7T—T7+ C\ (C.32)

for some C\ — Ci(K,d). Substituting (C.32) to (C.31) we arrive at
B{v,T) = (I+ix xol+Ci)m 1+~ ~"7)" . (C33)

Step 3. Substituting (C.30) and (C.33) to (C.29) and making the change of
the variables 7/:= 77—7/ we obtain

= —"%J’\Q + Yc ~ ’\ﬂ‘)mexp (t— ihS{tAo,x,xO)\ Z(t,to), (C.34)
where
Z(t,to) = f ——l.'Z{l’)dT;
I )t N)J2

*r) = /(1 +Wrex,p{-1-("- + dp.

r - ftr
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An application of the elementary formula

J (4 pymexpf-by2idy —b~i (1 + b<7) 0 (1), b> 0,

with b— (1/2h) ((t —r) 1+ (r —t0)  shows

_ Ht-r)(r-t0)
z(r) = h2 Fo 10 0 (D

and so

Z(t,to) - (t _hi]()) aft,r) dr.

to

Together (C.34) and (C.35) give

4
Ojtk6 J aft,r) dr Jx
[hit - t0)]1

Ko
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(C.35)

x(1+ x- xo\)mexp | - i S(£,i0,a;,a;0)j *

By (i) Lemma 0.4 we get

QD<PER)z,10),

[h(t-t0Op

which completes the proof.

6.4 Appendix D

The following two lemmas give the well-known Laplace method (see e.g. [Fe])

in a convenient way.

Lemma D.1. Let D C be an open set, f E 0~ (0o,R); BE 03(0,R);
h > 0. We assume that $ has unique global minimum at f0 £ D, $("o) ~ 0,

N M >0 for some M E Rdxd. Then

Jf(x) exp ‘ —j 4>(rc)| dx

D

= (V27r/)d/ (£0)(det $(2)(10))-i exp j - ~ $(x0)[(1 + 0O(h)).
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For any A E Wixd and b E Ed we define Af E ~x’d ~ by the formula

(A, y) = [(Ay,y)(Ab D) - (Abyf] (A6,6)~\ Vyl 6. (D.1)

Lemma D.2. As before D CM? is an open set, f E Ch(D, E), FE C3(D,E),
h > 0. We assume that $ has unique global minimum at X0 E dD, <&£0) ~ 0,

G2~ M > 0 for some M E Wixd and
{x —Xge) = G(x —Xx0 —(x —XQ, e)e) Ifx E<ODH0{xo0), (D.2)

where 0 (xo0) as some neighbourhood of x —.,. G : T80dD—E+,
G E C3(Ed); G* > 0. Then

J 00) exp| ——<F@)j d (D.3)

D

(det(|&|G<20) + A¥)"* x

where b—<F"b(f0); \ b is given by (D.l) with A = €)(£0),
For completeness we give a proof of Lemma D.2.

Proof. Let us take a > 0 such that
Da= {x e E€: G(x —xo0—(x —Xo,e)e) » x » a] C D
and R —R(a, |6|, M) > 0 such that
(x-x0b) +~ (M(x- X0,X~ X9 > Clx - X o2 Vx E Rd\ Br (x0) (D.4)
for some constant C = C(\b\,M) > 0, Da C BR(x0), where BR(X0) is the

ball of radius R with centre x0. We split the left-hand side of (D.3) into the
sum

D\ BR (x0) Bji(xo)r\(D\Da) D,
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Step 1. Since / €Cf and using Taylor’s decomposition

1
$(s) > $(x0)+ {x- x0,p) + - M(x - xQ,x - x0)

we have
r=o0(exp{-13)})x
X J exp{-1 (x- x0b) - (M(x - xu),x - £0)} dx.
DIBr(xo

Applying (D.4) we get

I = O"exp | —d>(x0)|* / exp| ——|r—=£o0|2} dx. (D.5)

D\Br (xo0)

The elementary formula

0

J exp | —z"zd~ldz r;jaexp] _lj as og—30T.

I
gives

CR2
/ exp{—" z2Jzd 1dz = Rd fexp| - w!| zd 1dz
1
hRd-2

Combining (D.5) and (D.6) we have

— hexpj - -8 (xOexp [ —<E2 1001, (D.7)

S5£ep  We take e > 0 such that 4>(x) ~ ¢é("o0) + £ for
a £ J5N£0)n (D )\ Da). Then

II=exp{- i ($(x0) +e)t0(l). (D.8)



6.4 Appendix D 129
Step 3. We proceed with III. By Taylor’s formula
JANa) = PHE) + (&LE£€—"0+ ) (A(a;—x$),x —X0 4 0(\x —£0|3) x £ Da.

Using decomposition x —x0 = ze A y, y £ T+#@D, e = b/\b\, z £ M and
definition (D.l) we get

(A - x0), (x - x0)) z2(Ae, e) A 2z(Ae,y) A {Ay,y)

(Ae,e) (z A (Ae, y)(Ae, e)-1)2+ (A6y, ).

Hence
$(x) = $("0) 4 Z\ 4 Z2,
where
M= AMAb,y) + 0{1y9)
and
Z2=|6/z+ i (Ae,e) (2:+ (Ae,y)(Ae, e)-1)2+ 0{1z\3).
Consequently

I exp| - I$(£O)} J J f(yiz)exp| - 1 Zi| exp | i Z2} dzdy,

Gy)
(D.9)
where

f{yv,z) =f(x0A4 zeAdy).
The formula

+00

J gz)exp| ~ Y Z~ Y (Z~ + X A~ A}y dz="~ ~ N+
0

for any 9£ Cb(R), Ai,..., A4 £ R, Ai, A2> 0 implies

J 7{y:Z)eXP|-iZ2}dZ=£(-1)’\ a/\)exp{“A /\_|_0(h/\
G(y)
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where a\ = a, 2 — G(y). From (D.9) we find

111=exp {-1$(£<,)} (A+ *2),

where

It = ijr 1+ 0(h)) J f(v,ai) exp | lexp { - i Zij dv.

An application of Lemma D.l shows

h =exp| - “J(v/2ZAAd 1-/(0,a) (deta6)~2 (1 +o(h)).

and
h = (V2°h)d-1-* 7(0,0) (det(]6] G2>(0) + A ,,)p (1+ 0(/i)).
Hence
111 = (y2~h)i- 11| /(0.0) (det(|6] GQ)(0) + A6)) i x (D.10)

xexp { - I<I(£o0)}-(1 +

Combining (D.7), (D.8), (D.10) and using /(0,0) = /(£0), we complete the
proof. i
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