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Abstract 

The Achilles heel of many wearable and electronic textile (E-textile) devices is their power 

requirement, which has been a major hurdle in the adoption of E-textiles. To keep these devices 

continuously powered without frequent recharging or bulky energy storage devices, many have 

proposed integrating energy harvesting capability into clothing. Solar energy harvesting has been 

one of the most investigated avenues for this due to the abundance of solar energy and maturity 

of photovoltaic technologies.  

This research investigated a novel approach for realising solar energy harvesting with 

textiles by embedding miniature solar cells (SCs) within the fibres of a yarn, thus delivering a 

robust and consumer-friendly solution for powering wearable and mobile devices. SCs were first 

soldered onto fine copper wires and encapsulated inside of resin micro-pods, before being 

covered by a fibrous sheath, to realise solar cell embedded yarns (solar-E-yarns) that can be 

readily converted into fabrics with conventional fabric manufacturing processes such as weaving 

and knitting. Preliminary investigations conducted using miniature photodiode embedded E-

yarns laid the foundation for embedding photovoltaic devices within yarns. A mathematical 

model was also formulated to characterise the performance of photovoltaic devices embedded in 

yarns and was experimentally validated using photodiodes to evaluate the effects of the resin 

micro-pod on photovoltaic response.   

Subsequently solar-E-yarns were fabricated using silicon SCs. The photovoltaic response 

of these solar-E-yarns were studied at each stage of the E-yarn fabrication process and under a 

range of test conditions including different light intensities, incident light angles, ambient 

temperatures and humidity levels. Solar-E-yarn performance could be further enhanced by 

impregnating the photoactive sides of the yarns with an optically clear resin, as well as by using 

bifacial SCs.  

A series of fit-for-purpose tests including wash durability tests were conducted on the 

solar-E-yarns which revealed that the solar-E-yarn embedded fabrics could undergo domestic 

laundering and maintained ~90% of the original power output after 15 machine wash cycles, 

which was vastly superior to other solutions proposed in the literature.  

To demonstrate the energy harvesting capability, prototype demonstrators were created by 

weaving solar-E-yarns. A solar fabric demonstrator with ~25cm2 active area generated up to 

~2.15 mW/cm2 under one sun illumination and maintained both the feel and aesthetics of a 

normal textile. The fabric demonstrator was capable of charging various electronic storage and 

powering low power mobile devices. 

The research has generated a wealth of knowledge on the fabrication, performance and the 

utility of the solution for regular clothing applications. These attributes will enable these solar 

fabrics to feature in future wearable electronics and electronic textiles to provide a continuous 

supply of power, without having to compromise on comfort, aesthetics or wash durability.
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This thesis presents a scientific investigation into the development of a wearable 

solar energy harvesting textiles for powering wearable and mobile electronic devices. 

The solar energy harvesting textiles were realized by embedding miniature solar cells 

within the fibres of a textile yarns, enabling the integration of energy harvesting 

capability within the heart of a textile fabric. 

1.1 Background 
 
1.1.1 Wearable devices  

Recent advancements in semiconductor devices, electronic sensor technologies, and the 

Internet of Things (IoT), have made wearable devices an increasingly integral part of 

modern society. In recent years electronic devices have miniaturised, become cheaper, 

and also have low power requirements when compared to their 20th century 

predecessors, mainly to cater the growing demands of mobile phone industry. Smaller, 

smarter, more efficient, and lower-cost electronic components and sensors have made 

mobile and wearable devices technically viable and commercially feasible. The 

International Data Corporation (IDC, 2018) predicts that global wearable device market 

is expected grow from 122.6 million devices in 2018 to 190.4 million devices in 2022, with 

an annual compound growth rate of 11.6 %. According to eMarketer (2019) in the United 

States the number of adults using a wearable devices is expected to grow from 45.8 

million in 2017 to 67.0 million by 2022. The wearable device market is currently 

dominated by wristables (smart watches and activity trackers) with a market share of 

~95% for 2018, while apparel based products capturing only 2.4% (IDC, 2018). 

Wearable electronic devices and technologies have transformed the future of many 

industry sectors including sports and wellness, medical, military, consumer electronics, 

apparel, and communications. The advent of the internet and leaps forward in wireless 

communication technologies have enabled the users to be part of a massive, interactive, 

virtual network with a click of a button. These developments have contributed to the 

new generations of connected wearable and smart mobile devices as we know them 

today, where many wearable devices are equipped with some form of wireless 

connectivity such as Wifi, Bluetooth, Zigbee, or Z-wave. Internet driven global 

megatrends such as social media, digitisation, and e-commerce have also helped to 

popularise wearable devices. 
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Generally, wearable devices are regarded as devices with some level of intelligence and 

smartness (ability to sense external stimuli and respond). However, devices worn on 

body with electronic or electrical functionality which require human intervention to 

operate (e.g. wearable head lamp) also fall under the broad category of wearable devices. 

(Annex 1 provides more details on the definitions and categorisation of wearable devices 

and electronic textiles). In fact, the very first known application of wearable devices were 

reported in late 1800s, where ballet dancers illuminated with electric light bulbs on their 

foreheads performed on stage (The New York Times, 1884). 

1.1.2 Electronic textiles  

The integration of electronics with textiles has transcended from superficially attached 

devices on clothing (Fig.1.1(a)) to devices with fabric embedded devices (for example 

electrodes, stretch sensors or fabric heaters) and interconnects (Fig.1.1(b)). Many E-

textiles are used for sensing applications with most sensing techniques related to body 

vital sign monitoring being based on changes in electrical properties such as a change in 

electrical resistance, electrical potential, or electrical capacitance that are simple to 

capture by functionalised textile structures. More advanced types of sensors which 

involve semiconductors devices, are now available in miniaturised forms that can be 

integrated within textiles in an unobtrusive manner.  

The ideal scenario for an electronic textile (E-textile) can be envisioned as a system that 

has all of the electronic functionality and components (i.e. sensing, signal processing, 

data storage, data communication, signal output and power supply) fully embedded 

within the fabric, discrete from external hardware (Fig.1.1(c)). These textile embedded 

systems are vastly superior to the superficially attached devices as they are light weight, 

less bulky and offer the appearance and feel of normal textiles.  However, the practicality 

of such a fully textile integrated system depends on its three-dimensional 

conformability, aesthetic appeal and mechanical robustness during its use and washing.  
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1.1.3 Electronic yarn technology 

The Advanced Textile Research Group at Nottingham Trent University has pioneered a 

technology to embed semiconductor devices inside of textile yarns (Dias and Fernando, 

2005, Dias and Ratnayake, 2015; Dias and Rathnayake, 2016) to create electronically 

active yarns (E-yarns). The E-yarn technology enables electronic components and 

interconnects to be integrated within the core of textile yarns, thus enabling these to be 

undetectable to the human eye. The E-yarns are fabricated by soldering small-scale 

(typically around 1.0 mm × 1.0 mm cross section) electronic devices onto fine multi-

strand copper wires before encapsulating them individually inside of clear resin micro-

pods that hermetically seal the soldered device and solder joints. The encapsulated 

devices are then covered by a textile fibrous sheath comprising of packing fibres and a 

tubular warp knitted structure, which consolidates the structure to create the final E-

yarn.  The unique architecture of these E-yarns shown illustrated in Fig. 1.2 (Dias and 

Hughes-Riley, 2017) will enable them to be washable and re-useable for multiple cycles 

while maintaining their electronic properties and all-important textile like haptic and 

Figure 1.1. – different levels of integrating electronics with textiles (E-textiles) from 

external or superficially attached devices to fully textile embedded systems.  (a) All 

components superficially attached. (b) Sensing capability integrated within the textile with 

other components superficially attached. (c) All components integrated within the textile. 
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aesthetic character, which will make them more desirable over superficially attached 

wearable devices (Dias and Rathnayake, 2016).  

 

 

The viability of the E-yarn technology to integrate electronic devices within yarns is 

already proven for sensing devices (Hughes-Riley and Dias, 2018; Lugoda et al., 2018; 

Satharasinghe,) and LEDs (Hardy et al., 2018). The next step in the progression of the 

technology is to embed signal processing (transistors and micro-processors), signal 

communication (Bluetooth, ZigBee, WiFi) and power supply (batteries, supercapacitors, 

energy harvesting devices) capabilities within yarns using the E-yarn technology, which 

will enable a fully self-functioning E-textiles. While several types of multi-terminal 

devices requiring upto 4 interconnections (e.g. Accelerometers) being achieved with the 

technology using insulated Cu conductors , in order to achieve E-yarns with more 

advanced functionality (e.g. micro-processor E-yarns) multi-terminal capability need to 

be further enhanced to realise more interconnects in a robust manner, which is yet to be 

achieved. 

1.2 Motivation  

The Achilles heel for many wearable electronic textiles (E-textiles) is the need for a power 

supply.  Batteries are gaining higher energy densities, becoming smaller and longer 

lasting, however they are still relatively bulky and must be attached on to clothing in a 

manner similar to the older forms of electronic textiles such as in pockets or on the 

surface of clothing.  Most commercially available wearable E-textiles are powered by 

standard solid coin cells, pouch cells, cylindrical cells or prismatic cell batteries of an 

Figure 1.2 – Schematic illustrating the structure of an electronic yarn. (Dias and Hughes-

Riley, 2017)   
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Alkaline, Nickel metal hydride (NiMH), Lithium-ion (Li-Ion), or Lithium-ion Polymer 

(LiPo) type (Davis, 2017). LiPo type batteries are preferred for most wearable 

applications due to their relative flexibility compared to other types (Tran, 2016). The 

use of supercapacitors for energy storage for wearable applications has also been 

considered, however they have limited use due to low energy densities, high-power 

densities, and high self-discharge rates. These batteries or supercapacitors are typically 

attached to the garment after assembly, or embedded in a removable module (Fig.1.3) , 

making the systems bulky and cumbersome to use (Jost, Dion and Gogotsi, 2015). 

Smaller and lighter batteries require frequent recharging meaning that there is a 

compromise between battery life and user-friendliness. These deficiencies in the power 

supply of present-day E-textile systems have affected the adoption rates of E-textile, 

which is reflected in the small share of the global wearable devices market captured by 

E-textiles (IDC, 2018).  

 

To counter the challenges posed by energy storage devices, integration of energy 

harvesting capability into textiles has been considered a promising alternative. Amongst 

the energy harvesting technologies explored for E-textiles, such as tribo-electric (Pu, Li, 

et al., 2016; Zhu et al., 2016), piezo-electric (Song, Ahn and Yun, 2015; Ramadan et al. 

2014; Waqar et al. 2015), thermoelectric (Leonov, 2013) or electromagnetic induction (Ylli 

et al., 2013), solar energy harvesting has been one of the most investigated avenues due 

to the abundance of solar energy (International Energy Agency IEA, 2011) and the 

maturity of photovoltaic (PV) technologies (Conibeer and Willoughby, 2014).   

The methods proposed in literature for creating wearable solar energy harvesting 

systems are not practical for regular clothing applications due to their poor normalcy 

(appearance and hand feel), lack of comfort (softness, breathability and moisture 

management), and insufficient three-dimensional deformability (drapability). In 

b a 

Figure 1.3 – (a) Battery module used to power mobile computing development boards. 

(Adafruit.com) (b) Heating glove powered by a battery pack. (telford-motorcyclecentre.co.uk)  



 

 

Chapter 1  Introduction  
  

8 
 

addition, most of these proposed solar energy harvesters are incompatible with water 

and washing.  It is envisioned that to address the deficiencies of existing E-textile energy 

harvesting systems that E-yarn technology can be employed to create photovoltaic 

textiles that bring a new perspective for incorporating energy harvesting capabilities into 

textile structures. 

1.3 Aim of the research  

The aim of this PhD study was to create the knowledge required to craft a solar energy 

harvesting yarn by embedding miniature photovoltaic cells within the fibres of a textile 

yarn (Solar E-yarn), which could be used to develop textile structures capable of 

converting solar energy into electricity to power wearable devices. Here the energy 

harvesting capability is intended to reduce the need for use of heavy and bulky energy 

storage devices and the frequency of recharging.  This work will herald a significant 

step-change in E-textiles by incorporated sources of power into the heart of textiles and 

will pave the way to develop a new generation of wearable devices and E-textiles, mainly 

for outdoor applications. 

1.4 Research Questions 

This research focused on how E-yarn technology can be adapted to create miniature 

solar cell embedded yarns that can be used to construct a wearable and washable textile 

capable of harvesting solar energy and generating satisfactory levels of electricity (i.e. 

by maintaining a high conversion efficiency). A clear gap in knowledge was identified 

in understanding the effects on the opto-electrical behaviour of photovoltaic cells when 

embedded within the E-yarns structure, and the performance and durability of resultant 

E-yarns under operational conditions. In order to bridge this knowledge gap, the 

following research questions were investigated: 

• The formation of fine copper wire interconnects with miniature solar cells. 

• The effect of the resin micro-pod on the performance of the embedded solar cells. 

• The effect of the textile fibre cover on the performance of the embedded solar cells. 

• The performance of the solar cell embedded yarns when integrated within a fabric. 

• The durability of the solar cell embedded fabrics and yarns against mechanical 

stresses and washing. 
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1.5 Research objectives 

1. To develop new knowledge on how to embed miniature photovoltaic cells within 

the fibres of textile yarns using the E-yarn technology.  

2. To investigate the photovoltaic response of yarn embedded photovoltaics devices 

under different electromagnetic spectral ranges, incident angles, and optical 

interferences, induced by the different components of the yarn. 

3. To investigate strategies to improve the power generation capability of the 

fabricated devices. 

4. To study the behaviour of the solar E-yarn under realistic operating conditions. 

5. To demonstrate the solar energy harvesting capability of the fabrics crafted with the 

solar E-yarns. 

 
1.6 Research Methodology 

To achieve the aim and these objectives a quantitative research approach has been 

employed, where the state-of-the-art and knowledge gaps were identified by reviewing 

the available literature. The available knowledge on relevant methods and theories were 

employed for the design, development, and characterisation of the solar energy 

harvesting yarns. The literature review (Chapter 2) provides a background on the 

powering of wearable and E-textile devices using energy storage and harvesting devices. 

The literature review extensively surveys the state-of-the-art textile based solar energy 

harvesting devices, while identifying existing challenges in achieving a practical 

solution. It was envisioned that the E-yarn technology could be employed to create a 

solar energy harvesting textile that possess the desirable attributes of a normal textile 

such as normal appearance and hand-feel, comfort drapability and durability, while 

generating sufficient levels of power.  The literature review facilitated the identification 

of specific knowledge gaps in creating such solar energy harvesting textile based on the 

E-yarn technology. 

The approach proposed to create solar energy harvesting fabrics was to weave miniature 

solar cell-embedded yarns (solar-E-yarns) together. To achieve a drapable and soft fabric 

that can endure machine washing, the shear behaviour and a low bending rigidity of the 

structure had to be maintained. Therefore, the rigid PV elements (solar cells) were 
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deployed in a discontinuous fashion within the fabric in yarn form. The solar-E-yarns 

were realized in three steps: First, miniature solar cells (SCs) were soldered in parallel, 

onto two multistrand copper wires. A new soldering method was developed to conduct 

this soldering step, since the existing soldering technique employed for previous E-yarn 

developments was not capable of solder two parallel copper wires onto the type of solar 

cell available for this work. Next, the soldered SCs were individually encapsulated 

within clear, cylindrical resin micro-pods. The solar-micro-pod filament containing the 

encapsulated cells was then covered by packing fibres and a knit-braid to give the final 

solar-E-yarn a textile-feel and appearance. In some cases, the photoactive side of the 

solar-E-yarn were impregnated with a polymeric resin to improve the photovoltaic 

performance. Using this method, the embedding of other types of solar cells, such as 

organic (Che et al., 2018), perovskite (Feng et al., 2018) or muti-junction (Fraunhofer ISE, 

2019) solar cells, within textiles could be possible, however this research focused on 

crystalline silicon (c-Si) type SCs. The discrete micro-pods and the fibrous sheath 

resulted in solar-E-yarns with a low bending rigidity and a high degree of porosity 

enabling the transfer of moisture and heat through the E-yarns and the resultant fabrics. 

This feature was crucial to prevent discomfort to the user caused by thermal and sweat 

build-up, especially during warm and sunny conditions (Gibson, 1993).  

Preliminary experiments were conducted using two types of miniature photodiodes to 

prove the technical viability of creating a textile yarn embedded optoelectronic device. 

Photodiodes were selected for these preliminary tests as they were a readily available 

and cost- effective alternative to custom developed miniature solar cells (photodiodes 

follow the same operational principles as solar cells although they are specifically 

designed and optimised to have higher speed of response and typically used in reverse 

bias. Solar cells are designed to maximise power and is used in forward bias). To 

characterise the developed E-yarns in a repeatable manner a bespoke optical test rig was 

developed. It was understood that the resin micro-pod (RMP) could interfere with the 

incident light depending on the geometry and optical properties of the resin material of 

the RMP. In order to theoretically estimate the photovoltaic response of the micro-pod 

embedded devices, in relation to the optical properties and geometry of the micro-pod, 

a generalized mathematical model was developed. An empirical study was conducted 

to experimentally evaluate the individual and cumulative effects of different 
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components of the E-yarn structure (RMP, packing fibres and knit braid) on the 

photoelectric output of the embedded photodiode. The generalized model was 

simplified (to a cylindrical micro-pod geometry) to reflect the empirical study 

conducted. Subsequently, the experimental data from the empirical study was compared 

to the estimated values from the mathematical model to confirm the validity of the 

model within given boundary conditions.  

After proving the concept using photodiodes, solar-E-yarns were created by embedding 

crystalline SCs (1.5 mm × 1.5 mm × 0.2 mm) and characterised for their photovoltaic 

output. A fabric prototype comprising five solar-E-yarns (each yarn containing three 

SCs) was constructed to analyse the viability of weaving solar-E-yarns together to create 

solar energy harvesting fabrics. Based on the results the SC length was changed from 1.5 

mm to 3 mm to improve the production efficiency and power density of the resultant 

fabrics. An in-depth characterisation of solar-E-yarns prepared with 1.5 mm × 3 mm × 

0.2 mm SCs was conducted.  The characterisations included the generation of 

characteristic curves, and the measurement of short-circuit current and open-circuit 

voltage of solar-E-yarns at different stages of the fabrication process, as well as under 

different incident angles and different incident light intensities. A critical factor to 

understand for a solar energy harvesting solution intended for wearable application was 

how the angle of incident light effects the functionality of the device: ultimately a wearer 

of a solar energy harvesting device would move relative to the light source (i.e. the Sun). 

Theoretical and empirical models were developed based on geometric models and 

experimental data to predict the effect of incident angle on the performance of the solar-

E-yarns. A study of different variants of solar-E-yarns was also conducted, with the aim 

of optimising the performance. These included the use of resin impregnation of the solar-

E-yarns surface fibres and a bi-facial SC concept to enhance the power output of the 

solar-E-yarns, as well as the possibility of using normal braiding, instead of knit braiding 

to create the fibrous sheath of the solar-E-yarns. 

One of the objectives of the research was to assess the performance of solar-E-yarns 

during the operational conditions that the solar-E-yarns would be exposed to during 

normal use. Wash durability was one if the key aspects assessed and this was conducted 

both in yarn form and fabric form under test conditions with different levels of 

harshness. These tests provided an indication of the level of mechanical stresses the E-
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yarns could withstand before experiencing electrical failure. Other tests included tensile 

strength measurements in yarn form, impact tests, and abrasion tests in fabric form that 

provided insights into the durability of the solar-E-yarns under the mechanical 

interactions that they may get exposed to during use.   Additionally, solar-E-yarn 

performance was evaluated at different temperatures and humidity levels to understand 

their operational boundary conditions in different environments.  

Finally, the solar-E-yarns were woven into a fabric and the performance and the power 

generation capabilities of the solar-E-yarn fabrics were demonstrated. It was understood 

that the performance of the solar-E-yarns woven into a fabric can vary depending on the 

shading effects by the adjacent solar-E-yarns, the albedo effect (effects of light scattered 

from the background), and the colour of the fabric. These effects were studied by creating 

solar-E-yarn woven fabrics with different weaving patterns and colours. Five fabric 

demonstrators were created by weaving multiple solar-E-yarns, each comprising ten 

SCs. The largest fabric demonstrator comprising a total of 200 SCs had a photoactive area 

of 44.5 mm × 45.5 mm. This fabric demonstrator was employed to charge various energy 

storage devices (such as batteries and supercapacitors) and to power small mobile 

electronic devices (mobile phones, fitness trackers) under simulated sun light. A field 

study under natural sun light was conducted using four fabric demonstrators that 

compared the effects of resin impregnation and fabric colour on the power generation. 

The findings of this research proved the viability of integrating miniature SCs within a 

fabric, in the form of solar-E-yarns, to create solar energy harvesting fabrics. This 

approach will revolutionise the way in which wearable and mobile electronic devices 

will be powered in the future where the end user will not have to compromise on 

reusability, appearance or comfort.   

The flow of the research is summarized in the flow diagram shown in Fig. 1.4. 
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Research methodology 

Figure 1.4 – Summary of the progression of the research in a flow diagram.  

Literature review to identify state-of-the-art and knowledge gaps 

Aim 
Craft solar energy harvesting 
yarns by embedding miniature 
photovoltaic cells within the 
fibres of a textile yarn. 

Knowledge Gaps 

• Opto-electrical behaviour of photovoltaic cells 
when embedded within a resin micro-pod and 
covered by a textile structure.  

• The performance and durability of solar cell 
embedded yarns under operational conditions. 

Objectives 

• To develop new knowledge on how to embed miniature photovoltaic cells within the 

fibres of textile yarns using the E-yarn technology.  

• To investigate the photovoltaic response of yarn embedded opto-electronic devices 
under different electromagnetic spectral ranges, incident angles and optical 
interferences induced by different components of the yarn. 

• To investigate strategies to improve the power generation capability of the fabricated 
devices. 

• To study the behaviour of the solar E-yarn under realistic operating conditions. 

• To demonstrate the solar energy harvesting capabilities of fabrics crafted with solar E-
yarns. 

Proof-of-concept solar energy 
harvesting yarns using photodiodes. 

Develop a theoretical model to predict 
the effects of resin micro-pod. 

Experimentally study the effects of the different components of photodiode 
embedded yarns and validate the theoretical model using experimental data. 

Develop a method for soldering solar cells and encapsulating soldered cells. 

Develop an optical test rig to characterize the E-yarns to be developed 

Prototyping of solar-E-yarns and characterising them at different stages of the 
fabrication process. Proof of concept solar energy harvesting fabric. 

 

Experimental investigation of the effects of incident angle. Theoretical and 
empirical modelling of the solar-E-yarn behaviour at different incident angles. 

Detailed characterisation of solar-E-yarns using solar simulator. 

Assessment of the solar-E-yarns response under realistic operational conditions. 

Development of solar energy harvesting fabrics and their characterisation. 

Prototyping and evaluation of variants of solar-E-yarns. 

Demonstration of power generation capability of solar energy harvesting fabrics. 
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Outcomes 

• New knowledge on embedding solar cells within textile yarns and characterisation 
of their behaviour. 

• Development of prototype solar-E-yarns and solar-E-energy harvesting fabrics. 
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1.7 Structure of the thesis 

The thesis contains eight chapters including the introduction, literature review, materials 

and methods, four experimental chapters, and conclusion, as outined below. 

Chapter 1 – Introduction and background. This chapter provides a brief background to 

the topics related to the research (wearable devices, E-textiles, E-yarn technology) and 

presents the key motivation behind the research. Based on that the aims, objectives, 

knowledge gaps, and research questions were defined. The research methodology and 

steps taken to achieve the research objectives of this project were also were outlined. 

Chapter 2 – Literature review. This chapter opens with an overview of incumbent 

electrical power storage devices, such as batteries and supercapacitors, and outlines the 

existing literature on textile based electrical energy storage devices intended for 

wearable applications. With a view towards addressing the drawbacks of energy storage 

devices, the state-of-the-art of textile embedded energy harvesting technologies were 

studied, with an in-depth review on textile integrated and textile based solar energy 

harvesting devices; mainly from a wearability perspective. The end of the chapter 

explores prior work related to embedding small-scale electronic components within 

textile structures. 

Chapter 3 – Materials and methods. This chapter reports the materials and methods used 

to create the opto-electronic device embedded E-yarns studied in this research. This 

includes the instruments and apparatus employed to created electrical interconnects, 

resin micro-pods, and to craft the final E-yarns. The chapter also details the experimental 

procedures followed in order to characterize the opto-electrical performance of the solar-

E-yarns and to ensure repeatability of the test results.  

Chapter 4 – Photodiode (PD) embedded electronic yarns. The chapter covers the 

preperation and characterisation of photodiode embedded electronic yarns (PDEY) to 

prove the technical viability of using solar cell embedded electronic yarns for energy 

harvesting. The effects of the different components of the E-yarns on the performance of 

the embedded PDs were investigated. The chapter detailes the development a 

generalized theoritical model to predict the effects of the cylindrical resin micro-pod on 

the photovoltaic output of an embedded photocell. This model was simplified and 
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validated using experimental data for photodiodes embedded within RMPs of different 

sizes and materials. 

Chapter 5 – Characterisation of solar cell (SC) embedded electronic yarns. The chapter 

details the characterisation of solar cell embedded electronic yarns (solar-E-yarns) at 

different stages of the fabrication process, and at different light intensities. The effects of 

incident angle on the performance of solar-E-yarns were analysed in depth. Theorical 

and empirical models were developed based on geometric models and experimental 

data to predict the effects of incident angle on the performance of the solar-E-yarns. The 

chapter also investigates the effect of resin impregnation introduced in Chapter 3 and 

the use of a bi-facial SC concept to enhance the power output of the solar-E-yarns, as 

well as the possibility of using normal braiding, instead of knit braiding to create the 

fibrous sheath of solar-E-yarns.  

Chapter 6 – Performance of solar cell embedded yarns in operational conditions. This 

chapter focuses on the assessment of solar-E-yarns and resultant farbic when exposed to 

realistic operational conditions that they may encounter during their normal use. These 

tests include wash durability, both in yarn form and fabric form, under test conditions 

with different levels of harshness. Other tests include tensile strength measurements in 

yarn form, and impact tests and abrasion tests in fabric form; these tests provided insight 

into the durability of the solar-E-yarns under the types of mechanical interaction that 

they may be exposed to during use.   Finally, solar-E-yarn performance was evaluated 

at different temperatures and humidity levels to understand their boundary conditions 

for use in different environments. 

Chapter 7 – Solar enegy harvesting fabrics. This chapter covers the preperation of solar 

energy harvesting fabrics using solar-E-yarns, and the electrical characterisation of the 

solar-E-yarn networks in fabric form under different light intensities and incident angles. 

The chapter details the preperation of solar energy harvesting fabric demonstrators and 

the evaluation of their capability to charge energy storage devices and power small 

mobile electronic devices under simulated light. Finally, a field test was conducted 

under sunlight to compare the performance of solar energy harvesting fabrics made 

using different coloured yarns and when resin impregnation was used. 
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Chapter 8 – Conclusion. This chapter concludes the thesis by providing a summary of 

the study and outlining the main conclusions. Suggestions for future work to be 

undertaken to optimise the performance of the solar-E-yarns and to further the 

technology readiness was presented. Finally, the chapter points out the challenges and 

problems encounteded during the course of the research along with steps taken to 

overcome them. 
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2.1 Introduction  

Textiles can be considered as one of the best platforms for capturing and storing most 

forms of energy including solar energy to power wearable devices: They are large 

surface area structures, providing ample space to interact with the human body and the 

environment to harness energy (however the viability of harvesting mechanical energy 

from body kinetics using wearable devices is debatable due to the dependency on 

human body movements and possible intrusiveness), as well as space to incorporate 

energy storage/capturing capability. Textiles also have the benefit of being flexible, 

foldable, conformable and lightweight making them easy to transport. Due to these 

reasons, there has been an emerging interest and steady growth in research into textile-

based energy storage and harvesting technologies during the last few decades (Soin, 

Anand and Shah, 2016). The chapter begins by briefly covering the incumbent electrical 

energy storage devices such as batteries and supercapacitors and outlines the existing 

literature on textile based electrical energy storage devices intended for wearable 

applications. With a view towards addressing the drawbacks of energy storage devices 

various approaches of energy harvesting to power wearable devices were reviewed. 

Multiple streams of research have focussed on generating electricity by exploiting 

various sources of freely available ambient energy: This energy can be captured and 

readily stored or converted into other forms of energy. Important energy harvesting 

technologies which could be integrated with clothing are discussed in this chapter, with 

an in-depth review on the textile-based solar energy harvesting devices intended for 

wearable applications. In addition, the operating principles and fundamentals of the 

photovoltaic devices will be outlined in this chapter. Finally, prior-art relating to the 

incorporation of miniature electronic devices within textile yarns is explored, with the 

aim of identifying candidate technologies for embedding miniature solar cells within the 

core of textile yarns. 

2.2 Powering wearable devices and E-textiles 

The need for portable energy solutions, and the impetus for creating an energy 

harvesting fabric, has been brought about by the proliferation of wearable and mobile 

devices in recent years. Wearable and mobile devices have a wide range of applications 
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including telecommunications (Moustafa et al., 2015), non-invasive healthcare 

monitoring (Piwek et al., 2016), sports (Düking et al., 2016), learning assistance 

(Sapargaliyev, 2015) and entertainment (Page, 2015): The development of these devices 

has been catalysed by the advancements in miniature and low powered electronic 

components originally developed to cater the demands of smart phone industry. For 

example components such as microcontrollers (e.g. MAX32625 by MAXIM) (Maxim 

Integrated, 2019), analogue to digital convertor (e.g. ADS7042 by Texas Instruments) 

(Texas Instruments, 2014), accelerometers (e.g. BMA400 by Bosch) (Bosch Sensortec, 

2019) or Bluetooth® modules (e.g. CYBT-213043-02 by CYPRESS) (Cypress 

Semiconductors, 2019) employed in such electronic devices can operate with only a few 

milliwatts of power. Generally speaking, the power requirement for similar wearable 

devices typically range between tens to hundreds of milliwatts (Kalantarian et al, 2015).  

There are two main user cases for wearable textile energy solutions; extending the 

battery life of mobile (or portable) devices, and fully or partially powering wearable 

electronic textile (E-textile) devices (Min, 2009). Key mobile devices of interest include 

mobile phones, smart watches and fitness trackers, which require 50 mW - 1000 mW 

during normal use (Carroll and Heiser, 2010). E-textiles is an emerging field where 

electronic functionality is integrated with or imparted onto textiles, to realise capabilities 

such as lighting, sensing, and heating (Hughes-Riley, Dias and Cork, 2018). Despite the 

unprecedented interest and potential foreseen, providing a robust and user-friendly 

power supply to them remains an unfulfilled need for many wearable E-textile devices,  

which is  a major hurdle to the wider adoption of E-textiles (Jost, Dion and Gogotsi, 

2015).  

2.2.1 Existing methods for powering wearables and E-textiles 

2.2.1.1  Batteries 

Batteries are the most widely used method of supplying power to wearable devices. 

Batteries directly convert chemical energy stored between their electrodes into electrical 

energy by undergoing chemical reactions. Battery technology dates back to the late 18th 

century as detailed by Whittingham (Whittingham, 2012). In 1799, Italian physicist 

Alessandro Volta created the first battery by stacking alternating layers of zinc, brine-

soaked pasteboard or cloth, and silver. The Daniel cell invented in 1836 used a copper 
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pot filled with copper sulphate solution which was then immersed in an earthenware 

container filled with sulfuric acid and a zinc electrode. The lead acid battery was the first 

rechargeable battery which was invented by Gaston Plante in 1859. Nickel-Cadmium 

(Ni-Cd) batteries were invented by Waldermar Jungner in 1899 helped to pave the way 

for the development of the modern battery technology (Whittingham, 2012). 

The latter half of the 20th century saw rapid developments in battery technology with the 

invention of alkaline battery in 1950s, Nickel-Metal hydride (NiMH) battery in 1989, and 

Lithium-ion (Li-ion) battery in 1991 (Visual Capitalists, 2016). The advancements in 

battery materials, as well as novel charge storage and transfer mechanisms, helped to 

achieve higher charge densities using low-cost raw materials thereby making the 

batteries smaller, lighter and cheaper. For example, since their commercialisation in the 

mid-1990s, energy densities of Li-ion batteries have increased more than threefold, and 

the cost has reduced by more than eight times (Crabtree, Kócs and Trahey, 2015). These 

advancements have helped fuel recent technology trends including electric vehicles, 

mobile electronics, and wearable devices.  

Most commercially available wearable systems are powered by standard solid coin cells, 

pouch cells, cylindrical cells, or prismatic cell batteries of Alkaline, NiMH, Li-Ion or 

Lithium-Ion Polymer (LiPo) type (Davis, 2017). These batteries are typically attached to 

the garment after assembly, or embedded in a removable module, making the systems 

bulky and cumbersome to use (Jost, Dion and Gogotsi, 2015).  

2.2.1.2 Supercapacitors 

Supercapacitors store electrical energy in the form of ions. There are three main types of 

supercapacitors; electrochemical double layer capacitors (EDLC), which physically 

absorb electrolyte ions onto the surfaces of their electrodes, pseudocapacitors which 

undergo reversible redox reactions, intercalation or electrosorption at or near the surface 

of electrodes. The third type, hybrid supercapacitors have electrochemical and pseudo-

capacitor mechanisms (Zhang and Zhao, 2009). Supercapacitors have higher power 

densities and lower energy densities in comparison to batteries, hence they are ideal for 

applications requiring fast charging and discharging of electricity (Kularatna, 2014). First 

versions of supercapacitors were investigated by General Electric in early 1950s. In 1966 
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Standard Oil of Ohio patented a developed version of a supercapacitor under the title 

‘electrical energy storage apparatus’, which was later licensed to NEC Corporation who 

finally marketed the results as "supercapacitors" in 1971, to provide backup power for 

computer memory (Schindall, 2007). The end of the 20th century saw stepped 

improvements in supercapacitor technologies including a reduction in the internal 

resistance and an increase in the electrolyte’s breakdown voltage (David A. Evans, 2007) 

which lead to the wide-spread use of supercapacitors for a range of applications where 

large power density and fast discharge rates were required (Sharma and Bhatti, 2010). 

Lithium-ion supercapacitors, which were pioneered by FDK in 2007, was a milestone in 

supercapacitor history where significant improvements in capacitance values and 

specific energy were achieved (FDK Corporation, 2007). 

The relatively low energy densities, high-power densities, and high self-discharge rates 

of supercapacitors limit their usage to secondary energy storage device and efficient 

power regulation (Jost, Dion and Gogotsi, 2015). 

2.2.1.3 Textile energy storage devices 

With the advancements in ultrathin and flexible energy storage materials, conventional 

batteries and supercapacitors are being transformed for wearable applications for both 

electrical energy storage and power regulation. Nevertheless, the flexibility and thin 

profiles of these improved devices need significant upgrades before integration into 

wearable and E-textile devices (Jost, Dion and Gogotsi, 2015). To address many of the 

challenges associated with conventional energy storage devices for wearable and E-

textile applications, the viability of integrating storage capability within textiles, or 

fabricating textile-based energy storage devices, have been explored. Textile fibre-based 

energy storage devices are reported to be superior over their polymer film and paper 

based counterparts, due to their flexible, pliable nature, which prevents kinking, and 

ability to recover their shape (Jost et al., 2011). 

This has led to the emergence of a new stream of research into textile batteries and 

supercapacitor systems (Jost, Dion and Gogotsi, 2014, 2015; Kaushik et al., 2015; Zhai et 

al., 2016), with an aim to improve the appearance and comfort for the wearer. Clothing 

provides ample space for integrating charge storage capability and therefore is 



Chapter 2  Literature Review  

23 
 

considered as a viable platform for electrical energy storage systems for powering 

wearable devices. The first attempts at creating textile batteries and supercapacitors 

were reported by Yi Cui's group at Stanford University where they realized a single wall 

carbon nanotube (SWCNT) ink coated textile electrode supercapacitor devices (Hu et al., 

2010). In 2011, Jost and co-workers (2011) reported the screen printing of activated 

carbon onto mass-produced cotton and polyester woven fabrics. The structure of these 

energy storage devices was categorised based on their physical dimensionality (one-

dimensional or two-dimensional textile batteries and supercapacitors) by Zhai et al.  

(2016). One-dimensional structures include conductive textile fibre or yarn (made of 

conductive fibres or coated with conductive materials) pairs seprated by a membrane 

material twisted or bonded together. Two-dimensional strucures were prepared by 

coating fabrics with conductive material or by weaving or knitting together one-

dimensional energy storage structures. Jost, Dion and Gogotsi, (2014) followed a 

categorisation based on form; namely, coated textiles, fibre and yarns electrodes, and 

custom woven and knitted fabrics.  

In order to reduce the reliance on recharging, several attempts were reported in 

developing hybrid textile energy systems, where energy storage and energy harvesting 

capability were harmonized (Lau et al., 2019).  The first of these works was reported by 

Fu et al. (2013) where a fibre supercapacitor combined with a triboelectric generator was 

created to store and harvest energy from body movements. Li et al. (2016a) reported a 

flexible energy-smart ribbon with an organic photovoltaic face and flexible 

supercapacitor backing, which could simultaneously harvest solar energy and store 

electricity. Some of these works emphasized the use of supercapacitors to store energy 

which is simultaneously harvested to minimize the frequency of recharging, while other 

hybrid systems used the energy storage in the form of supercapacitors to regulate the 

energy harvested. 

While the primary function of these textile energy storage devices should remain storing 

useful amounts of energy, desirable textile characteristics are critical for their adoption 

for real life applications. While textile energy storage remains a frontier of research in 

the field of wearables and energy, existing knowledge on textile energy storage devices 

may currently be insufficient to practicality power wearable devices, owing to poor 



Chapter 2  Literature Review  

24 
 

durability, washability, appearance and comfort. In addition, any devices containing 

corrosive liquid electrolytes pose significant safety concerns, which make them 

prohibitive for wearable applications (Zhai et al., 2016). 

In light of these drawbacks, many have proposed integrating energy harvesting 

capabilities into clothing (Stoppa and Chiolerio, 2014; Bhatnagar and Owende, 2015), to 

fully or partially power wearable devices using ambient energy available from the 

surroundings or the human body. Energy harvesting systems are also being widely 

investigated to minimize the frequency of recharging the energy storage devices using 

electricity grids or to reduce the size and weight of portable energy storage devices. 

2.2.2 Sources and methods of energy harvesting for wearables 

Solar energy, wind energy, thermal energy from the body, and kinetic energy due to 

body movements, are amongst the most widely investigated sources of energy (Beeby, 

Cao and Almussallam, 2013) for wearable systems, including E-textiles.  

2.2.2.1 Thermoelectric generators for wearables 

Thermoelectric (TE) generators are semiconductor devices capable of generating an 

electric current when exposed to a temperature gradient between two surfaces (change 

in temperature over space) using the Seebeck effect  as shown in Fig. 2.1 (Goldsmid, 

2017).  

 

Electrical energy can be harvested by taking advantage of the energy gradient between 

the body and environment, with the electrical power generation efficiency being 

Figure 2.1 - Schematic illustration depicting the operation of a thermoelectric cell. 
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dependent on this temperature gradient. Several attempts to develop wearable 

thermoelectric generators have been reported in the literature (Sebald et al. 2009; Stark 

2012; Du et al. 2015; Cao et al. 2016; Lee et al. 2016; Li et al. 2016; Lu et al. 2016;  Wu & 

Hu 2016; ). Leonov (2013) found that for a wearable TE system, the conversion efficiency 

is related to many key factors such as ambient temperature, wind speed, clothing 

thermal insulation and a person’s activity; while conversion efficiency was less 

dependent on the wearer’s metabolic rate. He further estimated that the maximum 

power density attainable was around 60 µW/cm2 indoors (~20 °C) and about 600 µW/cm2 

when there was an external temperature of 0 °C. Seeberg et al. (2011) investigated the 

potential of screen printing commercially available organic conductive polymers such 

as poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS) and 

polyaniline (PANI) as active ingredients to realise thermoelectric devices on woven 

cotton textiles. While achieving a thermoelectric voltage of about +10 µV/K, the authors 

identified that the generated voltage exhibited drift and fluctuations which made the 

devices unreliable. Kim et al. (Kim, We and Cho, 2014) realized a textile based TE 

generator system with a power density of 38 W/m-2 when there was a temperature 

gradient of 50 K. In this work, a glass fabric-based flexible TE generator was 

demonstrated using a screen-printing technique. Self-sustaining structure of this fabric-

based TE device did not require top and bottom substrates. However, the above 

discussed TE generators were fabricated using conventional thermo-electric materials 

such as Bi2Te3 and PbTe which are brittle, toxic, heavy, and therefore undesirable to use 

for wearable applications ( Du et al. 2015; Weng et al. 2016;). Also, it is to be noted that 

to achieve power conversion efficiencies greater than 1%, the devices reported need to 

be exposed to temperature gradients in excess of 20 K which are not practical for 

wearable applications.  

Pyroelectric generators can also be employed to convert thermal energy into electricity. 

In contrast to TE generators, pyroelectric generators rely on temperature fluctuations 

(change in temperature over time) caused by thermal diffusion, to generate electricity 

(Sebald, Guyomar and Agbossou, 2009). This was not considered useful for wearable 

applications due to low levels of skin temperature fluctuation (Du et al, 2015), 

approximately ±1 °C even during strenuous exercising and sweat-induced cooling 

(Kondo et al., 1997).  
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2.2.2.2 Piezoelectric generators for wearables 

A piezoelectric material is a solid material that can generate an electron flow when it is 

mechanically deformed. Wearable piezoelectric generators utilize mechanical energy 

generated by human motion to compress or elongate a piezoelectric material and 

subsequently generate pulses of electron flow. The direction of the electron flow is 

dependent on the form of mechanical strain (compression or tensile) undergone by the 

piezoelectric material (Fig. 2.2).   

 

 

Piezoelectric generators can be fixed onto regions on the body where large dynamic 

compressive forces (directly compressing the material) or tensile forces (indirectly 

stretching strands of fibres) due to motion are generated, such as the foot. A range of 

different materials such as piezo ceramics (e.g. Lead zirconate titanate, barium titanate, 

lead titanate, potassium niobate, lithium niobate), piezo polymers such as 

Polyvinylidene fluoride (PVDF), piezocomposites consisting nanowires, carbon 

nanotubes or piezoelectric copolymers have been reported in the literature (Ramadan et 

al. 2014; Waqar et al. 2015). PVDF has been used extensively in different physical forms 

(fibres, yarns, films, tapes, nanofibers) for wearable applications due to its mechanical 

flexibility, good chemical stability, and easiness to handle and the ability to be shaped 

(Zhao and You, 2014). 

A number of research efforts have reported on the development of  textile based 

piezoelectric generators (Chang et al. 2012; Yang & Yun 2012; Zeng et al. 2013; Åkerfeldt 

et al. 2014; Zampetti et al. 2014; D. Yun et al. 2015; M. Zhang et al. 2015;  Song et al. 2015; 

Anand et al. 2016). Various different types of piezoelectric strands have been made by 

wrapping or twisting piezoelectric fibres (Zeng et al. 2013), nanofibers or yarns (Chang 

et al., 2012), or different fibre spinning techniques such as electrospinning (Zampetti, 

P 0 P +
 - P

 -
+

Relaxed Tension Compression

Figure 2.2 - Schematic illustration depicting the piezoelectric effect (Waqar et al. 2015). 
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Bearzotti and Macagnano, 2014), or melt spinning bi-component fibre made with 

poly(vinylidene fluoride) sheath and conductive high density polyethylene 

(HDPE)/carbon black (CB) core (Åkerfeldt et al., 2014). These piezoelectric fibres and 

strands have been converted into various forms of textiles including woven, knitted, 

braided, spacer fabric structures (Soin et al., 2014; Anand et al., 2016) and non-woven 

structures for different applications (Waqar, Wang and John, 2015). One of  the highest 

reported power densities for piezoelectric fabrics have been reported as 80 mW/m-2  by 

Qin et al. for a twisted microfiber-TiO2 nanowire hybrid yarn structure (Qin, Wang and 

Wang, 2008) however the input power was not provided, hence the efficiency or a 

realistic comparison of the energy harvesting capability could not be derived. This is a 

common aspect of prior-art in mechanical energy harvesters. 

2.2.2.3 Triboelectric generators for wearables 

Triboelectric generators can be used to harness energy from vibrations or frictional forces 

generated by human motion or wind. A triboelectric generator (TEG) consists of two 

dielectric material surfaces (A positive dielectric material and a negative dielectric 

material in the dielectric series) applied onto metal electrodes, mechanically interacting 

with each other in four different modes as illustrated in Fig. 2.3. 

 

In the vertical contact-separation mode (Fig. 2.3(a)), the dielectric surfaces generated 

electrons flow through the external load when alternatively contacted and separated 

a b 

c d 

Figure 2.3 - Different triboelectric generation modes. (a) Vertical contact seperation mode, 

(b) contact sliding mode, (c) single electrode mode and (d) free-standing tribo-layer mode. 
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from each other. The contact sliding mode (Fig. 2.3(b)) used the same electrode structure 

and the electron generation occurred when the two dielectric layers slide between each 

other while in direct contact. In the single electrode mode (Fig. 2.3(c)) a dielectric surface 

and an electrode is present, with electron generation occurring by sliding or separation 

between the surface and electrode. Finally, in the freestanding triboelectric-layer mode 

(Fig.2.3(d)) two equally sized electrodes were induced with a charge imbalance by an 

external dielectric material (e.g. a shoe with pre-induced electrical charge generated due 

to walking). In this case, the asymmetric charge distribution of the two electrodes and 

the nature of approach/departure of the dielectric material off the electrodes create a 

charge imbalance on the electrodes, resulting in an electron flow.   

These systems can generate extremely high power densities of up to 1200 W/m2 (Wang, 

2013), however these high power densities are only instantaneous and result in 

generating a high electrical potential difference between the triboelectric surfaces with 

small pulses of current flow. Triboelectric generators are an emerging research topic in 

the field of energy harvesting, and a number of textile and wearable triboelectric nano-

generator (TENG) systems have been reported in literature (Tang et al. 2014; Cheng et 

al. 2015; Ha et al. 2015; Lee et al. 2015; Pu et al. 2015; Liu et al. 2016; Pu et al. 2016; Zhao 

et al. 2016; Zhu et al. 2016). The highest reported power density, 336 W/m2, was 

demonstrated using a composite of aluminium nanoparticles and polydimethyl siloxane 

(PDMS) (Lee et al., 2015). Despite the high voltage and power density, TENGs are highly 

volatile and the total energy generated over a time interval was highly unpredictable. 

Although the TENGs inherently have some energy storage capability in the form of 

dielectric capacitors (Niu and Wang, 2014; Zhao et al., 2019) this internal capacitance was 

not sufficient to regulate the power output. Therefore TENGs require sophisticated 

energy management systems to convert and regulate the power before being used to 

power devices (Wang, Chen and Lin, 2015).  

2.2.2.4  Electromagnetic induction-based energy harvesters for wearables 

Electromagnetic (EM) induction  is also a technique that has been investigated for 

wearable devices, (Ylli et al., 2013; Teichmann et al., 2014; Zhang, Wang and Kim, 2015; 

Cho. et al., 2016; Lee and Roh, 2018) especially for shoes. As with piezoelectric generators 

and TENGs, the power output of EM inductors is dependent on relative motion. The 

relative motion between a conductive coil and a permanent magnet can induce an 
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electric current that can be regulated to power a device; the operating principle of 

generators used in electric power generation. The reported textile-based devices of this 

kind are typically heavy and bulky. A typical EM induction energy harvester has a 

cylindrical permanent magnet in the core which is free to move inside a tubular structure 

onto which the induction coils are mounted. Power conversion rates reported in 

literature for devices with thinner (~10mm) profiles  (Zhang et al. 2015) are below 1 

mW/cm3 (Input power not quantified), limiting them to low power sensor applications 

(Teichmann et al., 2014). Therefore, electromagnetic induction has not yet made 

significant mark in wearable devices or E-textile applications. Also, no noteworthy 

report on fully textile integrated electromagnetic induction-based device was available 

in literature. 

2.3 Solar energy harvesting 

Solar energy can be harnessed by irradiating sunlight upon semiconductor materials that 

can release free-electrons in order to generate an electron flow. This effect was first 

observed by French physicist A. E. Becquerel in 1839 which is defined as the 

photoelectric effect (Becquerel 1839). On average, around 170 W/m2 of solar radiation is 

received at the earth’s surface after atmospheric losses, of which currently only a small 

fraction (less than 0.01%) is converted into electricity (World Energy Council, 2013). Solar 

cell or photovoltaic (PV) technology has come a long way from its first generation of 

silicon (Si) solar cells, and state-of-the-art, multi-junction solar cells have a power 

conversion efficiency (PCE) of 38.8 % (Green et al., 2019). Amongst the many wearable 

solar energy harvesting systems reported, solar cells that can be considered textile based 

(the PV materials built into the fibres, yarn) have conversion efficiencies far behind the 

industry benchmarks for industrial scale PVs, with efficiencies below 4% (Xu et al., 2016). 

Nevertheless, these seemingly modest efficiency levels operate with a higher 

predictability than other textile-based energy harvesting device that use other energy 

sources. Considering the non-reliance on human activity (that can provide a truly non-

obtrusive user experience) to generate power and availability, solar radiation can 

provide a good platform for developing a textile-based energy harvesting system, 

especially for outdoor applications.  
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2.3.1 Photovoltaic effect 

2.3.1.1 Semiconductors 

Semiconductors are a group of materials that have electrical conductivity that range 

between electrical conductors (e.g. metals) and electrical insulators. They can release free 

electrons when provided with energy above a value (band gap) determined by the 

specific material type (Conibeer and Willoughby, 2014). Materials with very high band 

gaps are electrical insulators and the electrical conductors such as metals do not 

demonstrate a band gap as the conduction and valance bands overlap; therefore, the 

excited electron-hole pairs recombine readily.  

Band gaps of typical semiconductor materials used in electronics are summarised in 

Table 2.1 (Kettle 1986) below. 

 

 

 

 

 

 

 

  

As indicated in Table 2.1, the energy band gap will change with the temperature and 

hence for a given material type the behaviour of the charge carriers (electrons and holes) 

would depend on the absolute temperature.  

2.3.1.2 Electron excitation by solar radiation  

Solar radiation contains photons (energy packets) with wide spectrum of wavelengths 

and energy levels, some of which be partially absorbed by the atmosphere as illustrated 

in Fig. 2.4. The atmospheric gases (mainly H2O and CO2) are responsible for these 

Material Energy gap (eV) 

0 K (-273oC) 300 K 

(27oC) 
Si 1.17 1.11 

Ge 0.74 0.66 

InSb 0.23 0.17 

InAs 0.43 0.36 

InP 1.42 1.27 

GaP 2.32 2.25 

GaAs 1.52 1.43 

GaSb 0.81 0.68 

CdSe 1.84 1.74 

CdTe 1.61 1.44 

ZnO 3.44 3.2 

ZnS 3.91 3.6 

Table 2.1 - Semiconductor Band Gaps (Kettle 1986) 
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absorptions. The energy of a photon (given by E = hυ, where h is the planks constant and 

υ the frequency) is determined by its wavelength.  

When a semiconductor is irradiated with photons, the photons have the ability to 

transfer their energy to electrons in the semiconductor lattice and excite them from the 

valance band to the conduction band (Fig. 2.5). 

 Electrons in the valance band contribute to the valance bonds between adjacent 

semiconductor atoms. When the electrons in the valance band gain sufficient energy to 

break the valance bonds (determined by the band gap) they become free electrons or 

enter the conduction band that contribute to an electron flow. If the photon energy is 

larger than the band gap, then electrons are released from the valance band to the 

conduction band. 

Figure 2.4 - Solar radiation spectrum before and after atmospheric absorption (Guillemoles 

2014). 

Figure 2.5 - Excitation of electrons by photons inside a semi-conductor due to photons.  
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2.3.2 Operating principles semiconductor solar cell 

Within a semiconductor, electrons and holes can carry charges. An intrinsic 

semiconductor, shown in Fig.2.6(a) is a pure semiconductor without any impurities. 

Intrinsic semiconductors can be doped with electron donor, D (group 15 atoms) in Fig 

2.6(b) or electron acceptor, A (group 13 atoms) in Fig. 2.6(c) impurity atoms to create N-

type or P-type semiconductors respectively. 

 

In N-type semiconductors electrons are the majority carriers and holes are the minority 

carriers, while in P-type semiconductors holes (vacancies of electrons) are the majority 

carriers and the electrons are the minority carriers. The doped semi-conductors have 

different band structures and reduced band gaps to the intrinsic semiconductors as 

shown in Fig 2.7. 

 

By combining N type and P type semi-conductors a PN junction is formed. At the 

boundary of the PN junction a depletion region (region where no free charge carriers 

Free 

electron 
Hole a b c 

Figure 2.6 – (a) Intrinsic silicon (Si) semiconductor. (b) Intrinsic semiconductor doped 

with donor (D) atom. (c) Intrinsic semiconductor doped with acceptor (A) atom. 

Figure 2.7 – Structures and Band Diagrams of n-Type and p-Type Semiconductors (a) 

Doping silicon with a group 15 element results in a new filled level between the valence and 

conduction bands of the host. (b) Doping silicon with a group 13 element results in a 

new empty level between the valence and conduction bands of the host. (Chemistry Libretext, 

2019) 
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exist) is formed by exchange of majority carriers across the boundary of the PN junction 

developing a small electric field across the boundary of PN junction.  

 When a semiconductor PN junction is illuminated (Fig 2.8), electron-hole pairs are 

generated on both the P and N sides of the semiconductor junction. With the increase in 

carrier concentration, minority carriers on each side (electrons in P side and holes in N 

side) start to cross the depletion region and drift to the opposite side (electrons to the N 

side and holes to the P side) due to the electric field across the depletion region. This 

charge movement increases the majority carrier concentration on both P and N sides. 

When the PN junction is externally connected with an electrical conductor, the majority 

carriers in the N side (electrons) flow through the conductor to recombine with majority 

carrier in the P side (holes), generating an electric current.  

 

 

Theoretical maximum efficiency of a pn-junction Si solar cell is around 32.33% (Shockley 

and Queisser, 1961) due to the maximum number of photons in the solar spectrum that 

can exceed the band gap of 1.1 eV of Si pn junction.   

Depletion 
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semiconducto
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Figure 2.8 - Charge carrier generation and transport within an inorganic PN junction 

semiconductor solar cell. 

Figure 2.9 - Equivalent circuit for a solar cell (McEvoy et at. 2013). 
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Solar cell performance can be analysed using an equivalent electronic circuit, which 

consists of an ideal diode, a current source (IL) and a resistor (RSH) connected together in 

parallel to a series resistor (RS) as illustrated in Fig. 2.9.  

The relationship between the output current (I) and voltage (V) of a solar cell can be 

given by the below equations. 

𝐼 = 𝐼𝐿 − 𝐼𝐷 − 𝐼𝑆𝐻                  (2.1)                                                                                                                 

Where, 

𝐼𝐷 = 𝐼𝑜 ∗ [exp(
𝑉+𝐼𝑅𝑆

𝑘𝐵𝑇
)]              (2.2)                                                                                                          

And, 

𝐼𝑆𝐻 =
𝑉+𝐼𝑅𝑆

𝑅𝑆𝐻
               (2.3)                                                                                                                                

Here, 𝐼𝐿,𝐼𝐷, 𝐼𝑆𝐻 represent the photon-generated current, diode current and shunt resistor 

current respectively. 𝐼𝑜 is the saturation current of the diode, 𝑘𝐵 is the Boltzmann 

constant, and  𝑇 is the absolute temperature. A typical characteristic I-V curve for a solar 

cell is given in Fig. 2.10.  

 

In dark conditions a light induced-current will not be generated, and the I-V curve will 

represent the behaviour of the diode. Once illuminated, a photo current is generated, 

and the I-V curve will be shifted upwards along the current axis. The intersection point 

 

Figure 2.10 - IV characteristic for a solar cell (a) under dark and illuminated conditions 

Equivalent circuit for a solar cell (McEvoy et at. 2013) 
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of the I-V curve on the voltage and the current axis gives the open circuit voltage (𝑉𝑂𝐶) 

and the short circuit current (𝐼𝑆𝐶) respectively. 𝑉𝑂𝐶 is the voltage across the solar cell 

when no connection is made between the terminals (zero current is drawn from the cell), 

which is the maximum possible voltage. 𝐼𝑆𝐶 represents the current flow through a zero-

resistance conductor when connected between the terminals of the solar cell, which is 

the maximum possible current. 

The voltage (VMP) and current (IMP) at the point where the maximum power (PMAX) is 

generated is a useful defining characteristic features of a solar cell. Fill Factor (FF), which 

is a characteristic parameter for a given cell type, indicates the performance of the cell 

when the maximum power is drawn and is defined below. 

𝐹𝐹 =
𝑉𝑀𝑃∗𝐼𝑀𝑃

𝑉𝑂𝐶∗𝐼𝑆𝐶
              (2.4)                                                                                                                            

The power conversion efficiency (PCE) of a solar cell is the percentage of incident light 

energy converted into electric energy by the solar cell (Eq. 2.5). Here, Pin is the incident 

solar/light power received by the solar cell. 

𝑃𝐶𝐸 =
𝑃𝐼𝑁

𝑉𝑀𝑃∗𝐼𝑀𝑃
100% =

𝑃𝐼𝑁

𝐹𝐹∗𝑉𝑂𝐶∗𝐼𝑆𝐶
100%                         (2.5)                                                                               

2.2.3 Types of solar cells 

Several different types of solar cells have been developed using different types of 

semiconductor materials; the first generation of solar cells were of mono-

crystalline/multi-crystalline single junction type. The most renowned first-generation 

solar cell type is the crystalline silicon (c-Si) solar cell, which still dominates the 

commercial solar cell market. These first-generation solar cells are typically rigid and 

brittle therefore, need to be mounted on rigid frames. The second-generation solar cells 

were produced as thin films to reduce manufacturing costs (McEvoy, Markvart and 

Castañer, 2013). The efficiency levels achieved were less than the single crystal types 

except for gallium arsenide (GaAs) cells. GaAs cells were developed to compete with c-

Si solar cells and are more expensive due to the higher cost of raw material. In recent 

years these second-generation solar cells have been applied onto flexible substrates and 

have become one of the best options for applications requiring flexibility, conformability 

to three-dimensional objects, and durability. While research is still ongoing to improve 

the efficiencies of second generation thin-film cells, the substrate material used to 
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construct this type of cells are still limited to flexible sheets or films made of metals, 

ceramics or glass (Feurer et al., 2016; Gerthoffer et al., 2017). The third-generation of solar 

cell technologies include multi-junction cells, organic photovoltaic (OPV) cells, hybrid 

solar cells; namely dye-sensitized solar cells (DSSC) and perovskite solar cells which 

employ inorganic and organic material combinations with different photon absorbing, 

charge carrier generation, and transport mechanisms. Typically OPVs are made of 

photovoltaic polymer pairs (electron donor and electron acceptor pairs) such as poly-3-

hexylthiophene-2,5-diylpoly(3,4-ethylenedioxythiophene):phenyl-C61-butyric acid 

methyl ester (P3HT:PCBM) with metallic electrodes (e.g. Ti or Ag) and a transparent 

counter electrode such as poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) 

(PEDOT:PSS), indium tin oxide (ITO) or their combinations. DSSCs employ a 

combination of organic and inorganic active materials where narrow-band gap metal 

oxide semiconductor nano-particles such as TiO2 or ZnO are deposited onto a 

transparent electrode such as PEDOT: PSS or ITO. An organic dye is adsorbed onto the 

metal oxide layer which is also in contact with a reduction-oxidation (red-ox) couple 

mediator, which transports photo-generated electrons to the metallic counter electrode. 

The perovskite cells use materials with a perovskite crystal structure ABX3 (A = 

monovalent cation, B = metal cation, X = halide anion) as the photon absorption material, 

hence the name. These cells are built nearly identical to DSSCs with the active layer 

consisting from perovskites. Most of these third-generation cell types are yet to make a 

significant entry into large scale commercial applications due to the challenges faced in 

scaling up of production, durability or cost. Multi-junction solar cells have successfully 

managed to enter extra-terrestrial and concentrated photovoltaics (CPV) markets due to 

their unparalleled conversion efficiencies, however their volumes remain small due to 

the high cost.  

In recent years the organic and hybrid cell concepts have shown great promise in 

achieving improvements in conversion efficiency and durability which will allow them 

to compete with first and second generation technologies in the future, especially for 

application demanding mechanical flexibility (McEvoy, Markvart and Castañer, 2013). 

In June 2018 Oxford Photovoltaics achieved a perovskite-silicon tandem solar cell with 

a 28% conversion efficiency that exceeded the 26.7% efficiency world record for a single-
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junction silicon solar cell. Table 2.2 outlines the highest levels of Power Conversion 

Efficiency (PCE) levels achieved in laboratory conditions by the main types of solar cells. 

 

2.4 Solar energy harvesting for wearable applications 

Amongst the other energy harvesting technologies explored for wearables, solar energy 

harvesting has been one of the most investigated avenues due to the abundance of solar 

energy (International Energy Agency IEA, 2011) and the maturity of photovoltaic (PV) 

technologies (Conibeer and Willoughby, 2014). 

Integration of photovoltaics into textiles, or fabricating solar cells on textiles, has been 

driven by several factors, either as an effort to make stiff and rigid solar cells more 

versatile (ease of transporting, deploying and disassembling) for their conventional use 

(off-grid or domestic solar applications), by making them flexible, or by opening up new 

applications such as for powering mobile, wearable or E-textile devices (J. I B Wilson and 

Mather, 2015). It is to be noted that each approach has inherent challenges. For example, 

mobile solar units powering off-grid sites need to withstand extreme climate conditions, 

while E-textile applications demands not only wearability, but also the ability to survive 

multiple wash and wear cycles (Krebs and Hösel, 2015).  

2.4.1 Categorisation of wearable solar energy harvesters in literature 

Various methodologies to integrate solar energy harvesting capability into textiles for 

wearable applications have been explored over the years (Schubert and Werner, 2006; 

Generation Cell Type  Power 

Conversion 

Efficiency (%) 

Fill 

Factor 

1st 

Generation 

Crystalline Si 26.7 ± 0.5 84.9 

2nd 

Generation 

 

Gallium Arsenide (GaAs) thin film 28.8 ± 0.9 86.5 

Copper indium gallium (di)selenide 

(CIGS) 

22.9 ± 0.5 79.5 

 Amorphous Si 10.2 ± 0.3 69.8 

3rd 

Generation 

 

Perovskite  20.9 ± 0.7 74.5 

Dye sensitised 11.9 ± 0.4 71.2 

Organic 11.2 ± 0.3 74.2 

Five junction cell (bonded) 38.8 ± 1.2 85.2 

Table 2.2 - Highest reported solar cells efficiency levels as of June 2018 (Green et al., 

2019). 
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Kumar, 2011; Mather and Wilson, 2017). These approaches can be categorized based on 

the photovoltaic material type (Fig. 2.11) or their physical structure (Fig. 2.12).  

 

 

                    

 

Despite the high efficiency levels and established knowledge which led to their 

domination for mainstream PV applications, inorganic PV technologies including c-Si, 

poly-crystalline silicon and other bulk semiconductor PV configurations have seen 

limited exploration for wearable applications, mainly owing to their lack of mechanical 

flexibility. The demand for softness and flexibility has made traditional stiff and rigid 

inorganic solar cells prohibitive for textile-based applications. Only a handful of 

literature resources present the use of inorganic thin-film semiconductor materials as 

coatings on textile structures (He et al., 2013; J.I.B. Wilson and Mather, 2015). These textile 

structures are limited to a few substrate types (e.g. glass, ceramic, etc.) which can 

withstand high process temperatures used in inorganic semiconductor material 

processing, hence these are of little use for wearable applications. Additionally, these 

Figure 2.11 - Categorisation of solar cell types used for textile applications based on the 

photovoltaic material type. 
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coatings are prone to cracking and delamination under mechanical stresses (J.I.B. Wilson 

and Mather, 2015). However, the application of organic photovoltaics (OPV) (Krebs et 

al., 2006), hybrid photovoltaics such as dye-sensitized solar cells (DSSCs) (Zhao et al., 

2018) and perovskite solar cells (Jung et al., 2018) onto textile substrates have dominated 

most of the textile based PV research.  

Second-generation thin film solar cells applied onto flexible substrates have shown 

promising results, with mechanical flexibility and durable solar energy harvesting 

performance. Thin film PV laminates such as copper indium gallium diselenide (CIGS) 

(Knittel et al., 2010; Nocito and Koncar, 2016) and amorphous thin-film silicon (a-Si, TF-

Si) (J. I B Wilson and Mather, 2015; Plentz et al., 2016; Mather and Wilson, 2017) have 

been explored for textile applications. These thin film PVs have been laminated onto 

textiles either by means of an adhesive layer or using a printed base-layer onto which 

the PV film is laminated.  In addition to their inherent flexibility, a strong interest 

towards OPVs, hybrid PVs and thin film PVs has emerged due to their affordability and 

recent improvements in efficiency. These technologies have already proven themselves 

as cost effective and mechanically versatile alternatives to inorganic solar cells and are 

showing great promise for future wearable photovoltaics, however it is important to 

note that these solutions are still incapable of achieving the efficiencies of inorganic cells 

(Green et al., 2019). As with any film-based technology, thin-film PVs also cannot be 

considered ideal due to the non-permeable nature of the monolithic structure of the 

films. The majority of the materials used for hybrid and organic cells suffer from long 

term-durability issues, and their performance deteriorates upon prolonged exposure to 

sun (Chae et al., 2013);  this is a key challenge for their mass adoption. DSSCs in particular 

can suffer from performance deterioration due to electrolyte leakages, and non-

reversible chemical degradation. Some research has reported solid-state electrolytes and 

dye-electrolyte combinations with higher stability for DSSCs, however their efficiencies 

were not comparable to traditional DSSC cells based on liquid electrolytes and dyes. The 

most effective electrolytes identified as red-ox couples (e.g. iodine-based) in DSSCs 

could be corrosive and toxic. In general, the inherent flexibility of these flexible PVs types 

demands mechanically integrity within and between photoactive and conductive layers. 

Mechanical failures accumulated during deformations will result in drastic performance 
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degradations. This is also a key consideration in adapting flexible PV technologies for 

wearable applications.  

A list of research work reported in literature categorized based on the solar cell material 

type is given in Appendix 1.  

From a wearability and apparel perspective, the categorisation of PV textiles based on 

construction and structure is more relevant, since key textile characteristics (three-

dimensional conformability, air and moisture permeability, and appearance) are mostly 

determined by how individual elements of the structure are assembled together. All 

textiles fabrics are made of yarns made from fibres.  During the manufacture of a textile 

fabric these yarns are bound together physically using interlacing (weaving and 

braiding) and interloping (knitting) techniques.  The type of yarn binding defines the 

mechanical properties and air and moisture permeability of a textile.  The shear 

behaviour of a textile dominates the three-dimensional conformability, and the air and 

moisture permeability of a textile structure is determined by the micro-sized capillaries 

formed during the fabric manufacture.  

 

 

Conductive wires with PV/conductive 

materials coated 

Fabrics made by interlacing one or a combination of 

• PV wires 

• PV-fibres/yarns/Tapes 

• Conductive/metallic wires 

Textile or Polymer/metal fabrics coated 

with PV material/Conductive layers 

Textile fabrics mechanically 

bonded/sewn premade 

flexible PV cells 

Polymer fibres/yarns/tapes 

coated with conductive 

and PV material  

Figure 2.12 - Categorisation of solar cell types used for textile applications based on the 

photovoltaic material type. 
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The reported textile-based PV systems can be broadly categorized based on the structure 

or construction methods shown in Fig. 2.12. 

2.4.1.1 Attaching flexible solar panels onto fabrics using adhesives or sewing  

The simplest method of adding solar energy harvesting capability to a textile is to 

superficially attach flexible solar panels onto the surface of a fabric. Attaching flexible 

solar panels onto fabric surface  has been employed to develop many consumer products 

such as back-packs, hand bags and luggage (Nocito and Koncar, 2016; Mather and 

Wilson, 2017) in addition to apparels. The attachment of flexible solar panels onto 

garments provided a convenient alternative to rigid solar panels and power banks for 

replenishing their mobile devices during outdoor activities. Amorphous silicon and 

CIGS thin-film solar panels being amongst the most widely used cell types, due to their 

good efficiency and long-term stability (Mather and Wilson, 2017).  

 

Early examples include the Maier Sports’ prototype of a winter outdoor jacket 

(Fig.2.13(b)), which was first presented in Munich at the International Trade Fair for 

Sports Equipment and Fashion (ISPO) 2006 and comprised nine amorphous Si solar 

modules from Akzo Nobel. The jacket could generate a maximum power output of 2.5 

W under full sun (Schubert and Werner, 2006). Tommy Hilfiger’s solar powered jacket 

(Fig.2.13(a)), released for the holiday 2014 season, (Forbes, 2014) used a similar concept, 

and comprised flexible amorphous silicon solar cells was developed by Pavilion. Pauline 

van Dongen developed a collection of designer wear with thin film solar cells (van 

Dongen, 2018) attached which included ‘The Solar Shirt’ (2014) that can generate 1 W 

under direct sunlight (Fig. 2.13c)), wearable solar dress (2014), ‘The Solar Parka’ (2015), 

‘The solar Windbreaker’ (2016): for these garments the  thin film solar cells were 

combined into standardised, functional modules.  

a b c 

Figure 2.13 - Prototype apparel with pre-fabricated flexible solar panels attached onto the 

fabric. (a) Tommy Hilfiger’s solar powered jacket (Forbes, 2014). (b) Maier Sports’ outdoor 

winter jacket with solar panels (Schubert and Werner, 2006). (c) Solar shirt developed by 

Pauline van Dongen (van Dongen, 2018). 
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These solar cell-attached garment prototypes provided the first glimpse of wearable 

solar energy harvesters; however, they were limited to heavy-duty outerwear and 

futuristic fashion prototypes. The appearance, comfort and durability of these were not 

comparable to regular clothing, hence these products were not appealing to regular 

consumers. It was evident that in order to achieve satisfactory levels of wearability and 

washability, new paradigms of PV device fabrication methods need to be explored in 

order to enable the conformal (drapable and shear deformable) and structural 

(hierarchical and porous) features that are inherent in textile structures. 

2.4.1.2 Applying flexible photovoltaic films and coatings onto planar textiles 

Printing (Ayse Bedeloglu et al., 2011; Arumugam et al., 2018), laminating or coating (P. . 

Du et al., 2013), organic photovoltaics (OPV) (Krebs et al., 2006; Jinno et al., 2017; Jeong et 

al., 2019), and hybrid photovoltaics such as dye-sensitized solar cells (DSSC) (J. Liu et al., 

2018; Liu et al., 2019) and perovskite solar cells (Lam et al., 2017; Jung et al., 2018) onto 

planar textiles has been widely investigated for textile based PVs (Fig.2.14). 

                       

 

One of the first reported printed PVs intended for textile fabrics was made by Krebs and 

co-workers (Krebs et al., 2006) where organic photovoltaic devices were fabricated onto 

non-transparent polyethylene terephthalate (PET) or Polyethylene (PE) tapes and 

Indium tin oxide (ITO) coated glasses. Two strategies of fabric integration were 

explored; in the first method, PET tapes coated with organic PV materials using a doctor 

blade method were subsequently laminated on to a suitably transparent textile fabric, in 

the second method PE tapes were first laminated to the fabric prior to the application of 

the PV coatings and electrodes onto the tape. The power conversion efficiency (PCE) and 

fill factor of these textile coated PVs were 1.4  10-3 % and 25% respectively, and 

substantial degradation of performance was observed even within two hours of direct 

Figure 2.14 – Schematic illustration of the textile based OPV developed by (a) Lee et al., 

(2014) and (b) Jinno et al. (2017). 

a b 
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exposure to light (1 Sun intensity). The degradation of performance was mainly 

attributed to the instability of photovoltaic material under sunlight. Similar work was 

presented by Bedeloglu and co-workers (Bedeloglu et al., 2009) using polymer PV 

coatings on six different substrates (PP based and ITO/glass based), where the maximum 

PCE achieved was ~ 0.37 % for ITO/glass based substrate. Bedeloglu et al.  subsequently 

realized a 0.29 % PCE for nano-silver coated PP tapes which could be laminated onto 

textiles.  

Sundarrajan et al. (Sundarrajan et al., 2010) attempted to fabricate a polymeric PV 

nanofiber web for textile applications using core-shell electrospinning technique, 

however the PCE achieved by these PV webs were only 0.087 %. In order to make flexible 

PV films more compliant for wearable applications Lipomi and co-workers (Lipomi et 

al., 2011) devised a stretchable polymer solar cell by spin coating a pre-strained 

polydimethyl siloxane (PDMS) film with polymeric PV materials. These stretchable films 

achieved a PCE of 2 %. This strategy of coating pre-strained PDMS, or similar elastic 

films, was adopted widely in subsequent studies to achieve stretchable PV films. 

Polymer PV films were prepared by Kaltenbrunner et al. (Kaltenbrunner et al., 2012) on 

2 μm thin PET foils that exhibited a PCE of 4 % . Importantly, the areal density of these 

PV films was as low as 4 gm–2. It was possible to attach these ultrathin films onto pre-

stretched elastomeric films to realize stretchable PV films as previously achieved by 

Lipomi et al.. Kylberg et al. developed organic PV coatings on woven structures made 

with a combination of metal and polymeric mono-filaments (Kylberg et al., 2011). One 

side of the woven structure was coated with a transparent PET filler material (this side 

was used as the active side to apply a PEDOT: PSS electron transport layer and P3HT: 

PCBM active material), with the back electrodes coated on the other side of the woven 

structure. This construction resulted in a flexible polymeric film with a PCE of 2.2 %. A 

stitchable organic photovoltaic cell was proposed (Lee et al., 2014) where a fabric 

electrode prepared by weaving PE multifilament yarns coated with metal multilayers of 

Ni-Cu-Ni-Au. The authors presented a construction where at least part of the solar cell 

was a textile structure. These cells managed to achieve a PCE of 1.8 %. A fully spray 

coated OPV was realized by Arumugam et al (Arumugam et al., 2016) on a polyester 

cotton blended plain woven fabric, after smoothening the fabric surface using a screen 
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printed interface layer. The interface layer provided a smooth surface to deposit the OPV 

coating.  This construction, however only yielded a PCE of 2010-3 %. 

For the first time an organic PV film (Fig.2.14(b)) was presented by Jinno and coworkers 

for wearable applications which claimed to be waterproof and washable (Jinno et al., 

2017). They fabricated the OPV devices on a 1.0μm-thick parylene film which was 

subsequently covered by another 1.0μm-thick parylene film (referred to as free standing 

OPV by the authors). The free standing OPV exhibited a high PCE of 7.9 %. The 

washability of the free standing OPV was demonstrated by dipping the device in beaker 

of stirred distilled water for 30 minutes, and in stirred 10% detergent water for 5 minutes. 

The free standing OPV was sandwiched between two 200 % stretched 500 μm-thick 

layers of acrylic elastomer with the aim to achieve stretchability and better compatibility 

with water. Another test was performed by dipping the free standing and sandwiched 

devices into distilled water for 120 minutes, which showed ~20% and ~5% reductions in 

PCE respectively. A recent study on OPVs with a SiO2–polymer composite capping-layer 

encapsulation, developed on a woven fabric (Jeong et al., 2019), has seen more rigorous 

washability test where the OPV devices were stirred in 2% detergent solution inside of 

a beaker for 10 minutes after subjecting the device to 1000 bending cycles at a bending 

radius of 3 mm. This test was repeated up to 20 times for thirty days and the OPV devices 

showed no significant change in performance after this time. These devices also 

generated impressive PCE of 7.26 %. This construction however did not yield 

stretchability, although it could undergo thousands of bending cycles without a 

deterioration in performance. In comparison to previous reports of flexible OPV devices 

for wearable E-textile applications, these two liquid-water-compatible devices showed 

great promise and were clearly are leaps forward in achieving wash durable PVs for 

wearable applications. However, the washability and water compatibility tests 

conditions employed in this study were mild, and far from the vigorous hydro-

mechanical, thermal and chemical processes undergone by regular clothing in a 

domestic washing process.  

PV films and coatings based on DSSC and perovskite technologies were also explored 

for wearable applications, however none of these were able to demonstrate levels of 

mechanical robustness and compatibility to water or washing achieved by some of the 

OPVs discussed earlier. One of the first studies on textile based DSSC was presented by 
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Du et al (P. Du et al., 2013) where ~3μm-long TiO2/MgO nanorods were physically bound 

to PET non-woven fabrics using an acrylic binder, onto which the organic dye molecules 

were adsorbed. These devices demonstrated a PCE of 3.93 %, however the long-term 

stability was not evaluated. A cotton fabric based DSSC was presented (Xu et al., 2014) 

where a Ni-polypyrrole coating applied on the cotton fabric was employed as the 

counter electrode to replace fluorine-doped tin oxides commonly used for DSSCs. This 

fabric based DSSC was flexible and yielded a PCE of 3.3 %. The PCE was further 

enhanced up to 3.83 % by the same research team in 2016 by optimizing the surface 

resistance of the Ni-polypyrrole coating (Xu et al., 2016). DSSCs were prepared on metal 

wire woven structures without using transparent conducting oxides (Min Ju Yun et al., 

2016) by employing float printing deposition onto a plain-weave, which generated PCE 

of 4.16 %. Opwis et al. realized a DSSC on a polyamide-coated glass woven fabric (Klaus 

Opwis et al., 2016) that generated a PCE of 1.1 %; these were stable in performance for at 

least seven weeks and showed improved efficiency at lower incident light intensities. A 

DSSCs was developed on woven polyester cotton fabric (J. Liu et al., 2018) by screen 

printing an interface layer onto the fabric before coating it with Ag electrode (Fig 2.15). 

 

 

This approach was similar to how Arumugam et al. prepared the fully spray coated 

textile based OPVs. The resultant DSSCs exhibited a PCE of 2.78 %. A novel approach to 

preparing textile DSSCs were presented (Yun et al., 2019) where a three-dimensional 

structure was developed by sandwiching an electrolyte-infused woven glass-fibre 

spacer fabric, between two stainless steel woven fabric electrodes using an interlock 

stitching process. The electrode fabrics were coated with active materials prior to the 

Figure 2.15 – Schematic diagram showing an isometric view of a textile based solid-

state DSSC device (J.Liu et al. 2018). 
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sandwiching process. Finally, the sandwich structure was encased inside of a pouch 

made of a polyester film which was filled with the electrolyte. The prepared DSSC 

generated a PCE of 1.7 %. A recent report on fully encapsulated liquid electrolyte based 

DSSC, developed on a woven glass fabric (Liu et al., 2019), revealed that the stability of 

the developed cells deteriorated from a PCE of 3.24% to 1.03% during three months of 

exposure to ambient conditions. 

Perovskite material coated PV textiles have also been developed recently, where cell 

architectures similar to the DSSC coated textiles where used: These perovskite PVs 

generated significantly better power densities and longer stability compared to their 

DSSCs counterparts. For example, Lam and co-workers (Lam et al., 2017) reported a 

textile-based perovskite PV laminate using SnO2/PCBM active layer and an elastomeric 

encapsulation covering the fabric and active layers with an unmatched PCE of 15 % for 

a fabric based device. The researchers claimed that the ductile elastomer used for 

encapsulating the device yielded a good flexibility and potential washability; however 

experimental evidence to prove these claims were not presented. Jung et al. reported 

perovskite solar cells prepared via low-temperature solution-processing (Jung et al., 

2018), adopting a planar heterojunction architecture on a textile substrate. A 

polyurethane coating on the textile fabric enabled the low-temperature solution 

processing where the resultant solar cells achieved a good PCE of 5.7 %. CIGS thin film 

coatings were presented on glass-fibre-woven fabrics by Knittel (Knittel et al., 2010) 

which achieved an impressive PCE of 8.0 %. A similar amorphous Si thin-film coated 

glass fabric PV was realized with a PCE of 1.41 % by Plentz et al. (2016), however this 

approach was not suitable for applying PV functionality directly onto standard 

polymeric textiles substrates such as PA or PET due to high processing temperatures. 

Despite their future potential, low temperature processed thin-film PV technologies 

(Hou et al., 2009) are currently not reported for wearable applications. In general, the 

printed, coated or laminated multi-layered PV structures, are either prepared directly 

onto a planar textile surface or patched onto the textile surface after partly or fully pre-

fabricating the device. The former often requires a fabric surface preparation step to 

make the fabric surface electrically functional or morphologically smooth (using a 

coating or by laminating a film) for the application of the PV device. Some methods 

involve developing PV device on textile surfaces made with inherently functional (e.g. 
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electrically conductive) fibres or yarns. To achieve long term stability and compatibility 

with water, the devices have to undergo an encapsulation step using a thin film or a 

flexible coating (sometimes elastic) with excellent barrier properties. Regardless of the 

approach followed or the functionality achieved, one thing common to all these planer 

PVs is the resultant of a non-permeable, non-porous structure. Despite being inherently 

flexible or stretchable, when applied onto large area textiles (which are inherently 

porous due to the openness of woven or knitted structures), these PV materials inhibit 

the air and moisture permeability of the base textile, which is critical for the comfort of 

the wearer, especially during warm and humid conditions. Also, these PV systems 

significantly alter the colour and fibrous surface morphology of textile fabrics. For 

example, most PV films have a smooth glossy surface with a rubbery or foil-like texture 

and the colours are typically limited to the inherent colours of the photoactive or 

electrode material. This would significantly change the appearance and hand-feel of the 

textile fabric. In terms of mechanical behaviour, textile fabrics possess the ability to 

undergo large deformations, without accumulating structural defects. This is due to the 

hierarchical fibre entanglement of textile structures, where the yarns have a high degree 

of freedom to move independently within the macro structure and reorganize, without 

changing their micro-structure (i.e. yarns can move independently without changing the 

fabric structure and fibres can deform independently without collapsing the yarn 

structure). However, when a monolithic coating or a film is applied on to the surface of 

a textile fabric structure, it permanently binds the textile fibres and yarns together and 

occupy the empty spaces between individual fibres in yarns; this significantly hinders 

fibres’ and yarns’ freedom of movement when external forces are applied. 

2.4.1.3   One dimensional (1D) photovoltaic structures 

With the aim of addressing the disadvantages of coated or film-like planar PV materials, 

scientists have been exploring the alternative routes of developing one-dimensional (1D) 

PV devices in the form of fibres, yarns, wires or tapes (e.g., narrow woven and knitted 

tapes) for fabricating planar PV devices using a bottom-up approach. Two main routes 

have been explored for creating such one-dimensional devices with regards to the base 

material; initially, metal wires, carbon-based fibres (Carbob fibres, CNTs) or conductive 

polymer filaments were employed as the core with the other layers built on top of them 

to create PV-fibres. The other method presented in the literature utilized conventional 
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polymeric textile fibres as the base material to build the 1D devices. The latter approach 

is more desirable for retaining the textile features of the resultant planar structure due 

to better flexibility and lower stiffness, while the former allows for a simpler fabrication 

process and better device performance (in terms of PCE) due to lower electrical 

resistance of the core electrode. 

2.4.1.3.1 Photovoltaics using non-polymeric fibres or wires.  

Use of metal wires or carbon-based fibres as the core to craft 1D photovoltaics (PV-fibres) 

has been investigated, where the conductive material was coated with various 

photovoltaic material combinations to create organic, hybrid or inorganic co-axial-fibre 

shaped solar cells. In principle the stacking of PV layer(s) and others onto the fibre 

surface was similar to the coated, laminated or printed films discussed earlier, with the 

small cross sections and large aspect ratios allowing them to be woven into fabrics. 

Literature suggests that, hybrid PV (predominantly DSSCs) technologies have 

dominated the research on PV-fibres, due to their ease of adaptability to one-

dimensional flexible structures. The conformal electrolytes (mostly liquid or gel) used in 

DSSCs allow these PV-fibres to deform while maintaining the integrity of the PV 

structure. However, DSSC can suffer performance degradation caused by leakage of 

electrolyte due to the deficiencies of the encapsulation. A typical DSSC fibre is fabricated 

on a Ti wire core, where TiO2 or ZnO nanoparticles or nano-wires are grown on the Ti 

wire before adsorbing the sensitizer dye (Fig.2.16). It is widely understood that the 

catalytic performance of both the electrode and counter electrode is instrumental for 

achieving enhanced PV performance, and therefore nano-scale modifications to the 

electrodes are often implemented (Cavallo et al., 2017)). In some reports, Ti wire was 

replaced by stainless steel or carbon nanotube based wires. The counter electrodes have 

often taken the form of a Ti or Pt wire twisted around the working electrode (other 

conductive strands such as CNTs were also explored) before encasing the twisted 

assembly inside of an electrolyte (predominantly liquid based) filled encapsulation.  

Early studies of these DSSCs had limited flexibility and mechanical robustness due to 

the capillary tube encasements employed, and the poor adhesion between the Ti wire 

and the TiO2 nano coating (Ramier et al., 2008). Several reports have seen the metal wire 

counter electrodes being replaced by a transparent conductive metal oxide (e.g. ITO) 

capillary tubes; these tubes also served the purpose of encapsulating the device, 
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however, they make the device stiff and rigid which is undesirable for a textile 

application. Lv et al. (Lv et al., 2011) reported a DSSC wire with the twisted working 

electrode / counter electrode configuration encapsulated by a electrolyte filled capillary 

tube, which generated a PCE of 5.41 %: The authors further investigated the lensing 

effect of the capillary tubes employed for encapsulating the device.  

 

DSSCs fibres with carbon-nanotube (CNT) based working electrodes and counter 

electrodes have been presented in the literature (Cai, Chen and Peng, 2012; Chen, Qiu, 

Cai, et al., 2012; Velten et al., 2013; Yan et al., 2014), which resulted in metal free PV-fibre 

devices, with improved flexibility and weavability. These exhibited power densities 

ranging between 2 -3 % with the exception of the CdSe/CdS quantum dot modified 

working electrode and solid electrolyte based twisted DSSC presented by Yan et al. 

Figure 2.16 – (a) Schematic of a Ti wire metal core based DSSC wire developed by Yang 

et al. (2013). (b) Three-dimensional representation and SEM images of a carbon 

nanofiber core based DSSC wire realized by Yan et al. (2014). 

a 

b 
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which generated a PCE of 6.24 %. Zhang et al. (S. Zhang et al., 2012) proposed a modified 

CNT based DSSC fibre by replacing the CNT counter electrode with a Pt nanoparticle 

adsorbed, twisted CNT film which yielded a PCE of 4.85 %. Yang et al. (Yang et al., 2013) 

managed to realize a PCE of 8.45 % with a Ti/TiO2/Pt working electrode by replacing the 

Pt counter electrode with a Pt nanoparticle modified graphene oxide (GO) fibre. A multi-

working electrode structure with six Ti/TiO2 working electrodes assembled around a Pt 

counter electrode was proposed by Liang et al. (Liang et al., 2015). The assembly was 

inserted into a flexible plastic capillary tube filled with an electrolyte. This multi-

working electrode structure achieved a PCE of 9.1 %. In 2017 Fu et al.  (Fu et al., 2018) 

reported the highest PCE record of 10 % for a DSSC type PV wire, which was created 

using a core-sheath twisted CNT fiber counter electrode modified with Pt. The authors 

used a Ti/TiO2 working electrode as the core of the wire which was treated with a N719 

(C58H86N8O8RuS2) sensitizer dye and iodine based red-ox couple. The DSSC fibres 

showed >80% of its original efficiency after 2000, 90° bending cycles (Bending radius not 

provided). The long-term stability of the device was not reported. The researchers hand 

stitched the PV-fibres onto a T-shirt to demonstrate their power generation capability by 

connecting to a commercial pedometer.  

           

 

Perovskite based co-axial fibre PV devices (Fig 2.17) have recently emerged, addressing 

some of the challenges faced by DSSCs while also maintaining some of the favourable 

structural features of DSSC devices. The co-axial fibre perovskite cells used a similar 

working electrode and counter electrode configuration to the DSSCs while the dye-

electrolyte combination in a DSSC was replaced by a perovskite active material, enabling 

an all solid-state PV-fibre. One of the first perovskite PV-fibres intended for use in fabrics 

Figure 2.17 – (a) Schematic of a Ti wire metal core based perovskite PV wire developed 

by Qiu et al. (Qiu et al., 2014). (b) Structure of double twisted perovskite PV yarn 

prepared on carbon nanotube fibre electrodes (Hu et al. 2016). 

b a 
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was reported by Qiu et al. (Qiu et al., 2014). They employed a stainless-steel wire 

electrode deposited with a mesoporous TiO2 layer, which was subsequently coated with 

CH3NH3PbI3 perovskite sensitizer material. A hole transport layer was applied onto the 

sensitizer-coated working electrode and a CNT sheet was wrapped as the counter 

electrode to realize the PV-fibre. This construction managed to generate a PCE of 3.3 %. 

He et al. (2015) followed a similar approach where they replaced the TiO2 layer with a 

ZnO nano-rods grown on a stainless steel wire. The resultant PV-fibre generated a PCE 

of 2.61 %. The PV-fibre showed a 7 % change in performance after 200 bending cycles of 

30°. A double twisted perovskite yarn was developed by coating one CNT fibre bundle 

with TiO2/sensitizer/hole transport layers and twisting it with another CNT fibre bundle. 

This PV-fibre device realized a maximum PCE of 3.03 % and was stable after 96 hours in 

ambient condition, and 1000 bending cycles of 30° (bending radius not provided). Hu et 

al. (Hu et al., 2016) reported a fibre-shaped perovskite solar cell using an Au counter 

electrode in a co-axial construction which resulted in a PCE of 5.3 %. It was clear that 

amongst the flexible PV technologies explored for co-axial PV-fibre devices, Perovskites 

show the highest potential for wearable applications, due to their all-solid construction, 

and excellent mechanical stability; although long-term stability and superior power 

conversion efficiencies achieved by their planar form devices are yet to be realized. 

 

Co-axial fibre PV devices have also been created using OPVs (Lee et al., 2009; 

Chuangchote, Sagawa and Yoshikawa, 2011; Liu et al., 2012) (Fig.2.18) , inorganic PVs 

(Chen, Qiu, Kia, et al., 2012; L. Zhang, Shi, Li, et al., 2012)  or thin-film PVs (L. Zhang, 

Song, et al., 2012); however these have not made significant advancements in 

performance and have not been frequently explored recently. This may be due to their 

unsatisfactory flexibility, mechanical robustness, the complexity of the production 

process, or potentially low power conversion efficiencies (<4%) in comparison to DSSC 

or Perovskite metal core fibre/wire shape devices.  

Figure 2.18 – Schematic of a typical design for a metal core based organic PV wire. 

(Chuangchote, Sagawa and Yoshikawa, 2011)  
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2.4.1.3.2 Photovoltaics using polymeric fibres with multilayered conductive and 

photovoltaic material coatings. 

While conductive core based co-axial or twisted constructions was the most widely 

explored route for fibre PV devices, polymer core/substrate-based fibre photovoltaics 

have also been studied with the aim of achieving improved mechanical robustness and 

conformability during subsequent processing and use. O’Connor and co-workers 

(O’Connor, Pipe and Shtein, 2008) used polyimide-coated silica fiber as the core of the 

PV-fibre to fabricate an OPV fibre. Thin films of conductive material and organic active 

materials were deposited by vacuum thermal evaporation to devise a PV-fibre with a 0.5 

% PCE. An OPV fibre (Toivola et al., 2009) was realized on a polymethyl methacrylate 

(PMMA) optical fibre which did not generate notable amount of power (PCE< 0.1%). 

Bedeloglu et al. fabricated  a polymer PV-fibre (Fig 2.19(a)) starting with a  polypropylene 

(PP) fibre core, which only generated 0.021% PCE ( a. Bedeloglu et al., 2010). A stretchable 

dye-sensitized solar cell was presented by Yang et al. where a CNT fibre tape was 

helically wrapped around a rubber fibre (Fig. 2.20(b)) to be used as the elastic counter 

electrode (Z Yang et al., 2014). Subsequently, a helical Ti/TiO2 working electrode 

adsorbed with the dye-sensitizer was wrapped around the elastic counter electrode. This 

construction was highly conformable and was able to generate a PCE of 7.13% which 

was maintained during stretching.  

          

 

There has been a wide range of work investigating fibre/wire/tape shaped PV devices 

transformed into planar form (e.g. a woven textile) as discussed in 2.4.1.4. The above 

discussed fibre-PV devices however, have been only demonstrated in fibre/wire form. 

Therefore, their performance in planar form (i.e. fabric form) needs further investigation 

Figure 2.19 – (a) A schematic of a polypropylene fibre core based organic PV wire ( a. 

Bedeloglu et al., 2010). (b) A Schematic (top) and SEM image (bottom) of a stretchable 

DSSC wire prepared by wrapping CNT fibre tape around a rubber core (Yang et al. 2014). 

a b 
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to establish their feasibility for wearable applications. For example, the feasibility of 

weaving these in to fabrics and mechanically robustness, aesthetics, and wash durability 

of these PV-fibres in fabric structures need to be examined. In principle these PV-fibre 

devices can be used to make fabrics that exhibit limited desirable textile characteristics 

(e.g. air/vapor permeability and shear deformability), but their appearance, surface 

texture, and flexibility appear to be significantly different from that of textile fabrics 

made of conventional textile yarns intended for wearable applications. Hence, it is 

doubtful that these PV-fibre devices could be adapted for powering wearable or e-textile 

devices for regular clothing. 

2.4.1.4 Textile fabrics made by weaving yarns with PV-fibres.   

To understand the drawbacks of coated or laminated planar PV materials is to weave 

PV coated wires or flexible PV tapes. Woven structures prepared using wires, fibres, 

yarns or tapes containing PV materials, various non-woven webs comprising PV-fibres 

or PV-coating, are found in literature that demonstrated flexible planar PV devices (Fig. 

2.20).  

         

These fabrics woven with PV-yarns (made using PV-fibres) or PV-narrow-tapes  benefit 

from the inherent flexibility and conformability rendered by the interlacing of yarns or 

narrow-tapes in the  woven structure, where the individual elements (wires, fibres or 

narrow-tapes) of the weave were free to undergo relative deformations due to external 

stresses even if the individual elements are not stretchable. A woven structure with 

discrete PV wires or tapes would allow the structure to permeate air and moisture, which 

is critical for a wearable application. Most of the woven fabrics realised fully functioning 

Figure 2.20 – Schematic illustrations of woven photovoltaic fabrics using (a) CdSe coated Ti 

wire working electrode (L. Zhang, Shi, Ji, et al., 2012), and (b) co-axially coated polybutylene 

terephthalate (PBT) fibres (Nannan Zhang et al., 2016). 

a b 
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planar PV modules by combining separate working electrode and counter electrode 

strands. Here the interlacing points within the woven structure provided the electrical 

interconnects to complete the fully functioning PV cell. Another approach for creating 

PV woven structures is by using fully functional PV wires or yarns with both the 

electrodes (working electrode and counter electrode) within the same strand similar to 

those discussed in 2.4.1.3.  

In most cases, these woven devices did not report power densities based on total planar 

area of the PV wire distribution, but only based on the area covered by the PV elements 

(wires or narrow tapes). It is important to note that a true comparison of such woven 

devices can only be made with the actual fabric area-based power densities. Conversion 

of 1D solar elements to woven fabrics would involve significant shading due to the 

interlacing points, that will affect the conversion efficiency of the fabrics. However little 

consideration had been paid to characterise or theoretically estimate these effects in 

literature.   Also, in these studies, any evidence of long term wash and wear durability 

was not forthcoming.  

An early example of a woven PV fabric was reported by interlacing a CdSe coated Ti 

wire as a working electrode with a set of CNT yarn used as counter electrodes (L. Zhang, 

Shi, Ji, et al., 2012). This device demonstrated how a photovoltaic planar structure can be 

fabricated by using interlacing points for electrical contacts. The CdSe coated wires in 

the fabric structure had a PCE of 1.24 %, which was lower than the same CdSe coated 

wire twisted with a CNT counter electrode (2.9 %). This was attributed to the 

comparatively low number of contact points and contact pressure between the two 

electrodes in the woven structure. Pan et al. prepared woven mesh like electrode pairs 

(Pan et al., 2014) which were stacked together to create a DSSC fabric structure. The 

working electrode was woven using TiO2 nanotube grown Ti wires which were 

subsequently adsorbed with the sensitizer dye. The counter electrode was made using 

woven CNT yarns. Stacked electrodes were sealed and injected with the electrolyte to 

realize a DSSC which exhibited a PCE of 3.10%. The PCE of the device showed less 

dependency on the incident angle in comparison to the planar devices; this behaviour is 

desirable for mobile applications, where the incident light angle is unpredictable. The 

reason for this uniformity in performance was due to the circular cross sections of the 

electrodes and the spacing between the adjacent electrodes in the same plane of the 
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fabric; this minimized the shading effect of nearby electrodes at higher incident angles. 

Similar to the coated or laminated PV devices, the need to fully encapsulate the device 

hindered the permeability and flexibility of the final product. In an effort to improve the 

textile appearance and feel of PV woven textiles, a few attempts to weave PV-fibre 

devices along with regular textile yarns have been reported in the literature (Chai et al., 

2016; N Zhang et al., 2016; P. Liu et al., 2018). Zhang et al. demonstrated a woven fabric 

solar energy harvester by interlacing all-solid-state co-axial DSSC working electrodes 

(weft yarns) with metal coated polymer counter electrode (warp yarns) (Nannan Zhang 

et al., 2016). The working electrodes were prepared by coating Mn/ZnO nano-

rod/sensitizer dye/hole-transfer layers onto a polybutylen terepthalte (PBT) fibre. The 

functioning solar cell was completed by using the warp weft interlacing points for the 

electrical connections between the two electrodes. A single wire-shaped solar cell unit 

was reported to have a PCE of 1.3 %, which is lower than some of the core-sheath type 

DSSC fibres dicussed in previous section; however, the demonstration of the woven 

form energy harvesting capability using a regular tighly woven structure was a novel 

aspect of this work. Zhang et al. conducted mechanical stress analysis of the PV elements 

within the woven structure and studied the effect of mechanical stress on the PV 

performance. Further, the effect of counter electrode (warp) density and the woven 

pattern (plain, twill or satin) on the PV performance was analysed. The results showed 

that the warp densities and the weave structure which realised the highest number of 

interlacing points (or the contact points between the warp and weft) yielded the best 

PCEs. Bending tests were conducted with no significant change in performance 

observed after 500 cycles (Bending radius not given). Fabrics woven using the 

afromentioned PV-fibres and wool yarns were also presented, however the energy 

harvesting capability of the wool blended fabric was not investigated. The same DSSC 

wire structure was utilized by the team to prepare an all-solid-state textile woven device 

to simultaneously harvest and store solar energy (Chai et al., 2016). The solar energy 

harvesting section of the fabric was relized by weaving together DSSC working electrode 

wires (weft yarns)  and Cu coated polymeric counter electrode (warp yarns), in addition 

cotton yarns were used to fill the gaps between the elctrode wires. A PCE of ~1% was 

reported, however it was not clear whether this was based on the fabric area or the wire 

area. The researchers reported that the device had a stable performance after two months 

of exposure to ambient conditions, and after 100 bending cycles of 120° (Bending radius 
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not provided). The same research team created a similar woven textile that could harvest 

solar and mechanical energy simultaneously (Chen et al., 2016). The fabric generated a 

power density of 25μW/cm2 when worn by a human walking under 80mW/cm2 sun 

intensity.The solar energy harvesters used in this work were DSSC co-axial type wires 

identical to that used by Zhang et al.  

Liu et al. reported a woven PV structure (Fig 2.21) realized by weaving OPV working 

electrode weft wires with counter elctrodes as a warp (P. Liu et al., 2018).  

 

 

This successfully demonstrated the weaving of fibre shaped PV structures using 

industry standard weaving loom, which was a key milestone in textile PV devices. This 

fabric also employed the interlacing technique to achieve electrical interconnections 

between the working electrodes and counter electrode wires. The co-axial working 

electrode was prepared on a Ti wire core by coating ZnO buffer layer, PTB7:PC71BM 

active layer, and a PEDOT: PSS hole transport layer sequentially. Ag-plated nylon was 

used as the counter electrode. The warp was prepared by alternating Ag-plated nylon 

and cotton yarns. The resultant woven fabric exhibited a PCE of 1.62% (wire form). The 

fabric showed a less than 15 % reduction in performance after bending up to 80°(bending 

radius not provided) and had no deterioration of performance after 1000 bending at 20° 

and 1000 twisting cycles of 180°, indicating relatively higher stability to other devises of 

the same type under mechanical deformations. The fabric was very similar to a regular 

woven fabric in terms of appearance. In summary, this study has demonstrated 

promising prospects for the future of woven wearable PV devices in many aspects, 

however the strategies to improve fabric level PCE to compete with coated/laminated 

Figure 2.21 – Schematic of woven photovoltaic fabrics using metal wires coated with organic 

PV layers (Liu et al. 2018). 
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textile PV devices need to be investigated if these woven PV wires or fibres are to have 

practical applications. It was obvious that by improving the density of working 

electrodes the PCE of the fabric could be enhanced, however this would have significant 

implications for the conformability and softness of the fabric, which would need to be 

considered. 

One approach of improving the PCE of woven PV textiles is by replacing PV wires with 

pre-fabricated PV ribbons (also referred to as tapes) as reported in some of the literature 

(Krebs and Hösel, 2015; Min Ju Yun et al., 2015; C. Li et al., 2016; Kuhlmann et al., 2018). 

These ribbons were either complete PV devices or constituted of some of the active PV 

layers. PV ribbons have a larger active area, and they can cover a significantly larger 

proportion of the available planar surface compared to PV wires. However, PV ribbons 

can significantly alter the conformability and appearance of the final fabric depending 

on of the stiffness of a single ribbon and a number of ribbons per unit length within the 

fabric. Yun et al., fabricated a woven PV device by inserting a DSSC type PV ribbon (M J 

Yun et al., 2015) using a conventional weaving machinery. The active substrate of the PV 

ribbon was made on a perforated stainless-steel tape coated with TiO2 nano material, 

which was subsequently adsorbed with sensitizer dye. This ribbon device exhibited a 

PCE of 2.63 %. Krebs and Hösel (2015) employed pre-fabricated OPV tapes (~2 cm wide) 

to weave a large area (25 × 25 cm2) woven solar cell textile (Fig 2.23(a)). The solar tapes 

woven into the structure consisted of 16 serially connected organic solar cells with a PCE 

of 1%. 

 

a b 

Figure 2.23 – Images of photovoltaic woven structures prepared using (a) organic photovoltaic 

ribbons (Krebs and Hösel, 2015) and (b) perovskite photovoltaic and supercapacitor 

composite tapes (C. Li et al., 2016). 
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 A ribbon shaped hybrid device which can synchronously harvest and store solar energy 

(Fig. 2.23(b)) was reported by C. Li et al. (2016). This could be inserted into a woven 

structure to demonstrate a wearable energy device. The ribbon was prepared by stacking 

a perovskite flexible PV film onto a thin film electrochemical supercapacitor device. The 

top electrode of the supercapacitor also acted as the counter electrode of the PV device. 

The perovskite PV device generated an impressive 10.41 % PCE when the hybrid device 

was illuminated under one sun intensity. The supercapacitor held an energy density of 

4.14 Jcm-3 and a power density of 243 mWcm-3. The demonstrated woven device did not 

resemble a textile material due to larger widths (>1cm) of tapes used in the work.  

A textile based solar energy harvesting and storage system was created by weaving pre-

fabricated 44 mm-wide CIGS thin-film PV cells and attaching commercially available 

flexible batteries (solid-state lithium batteries having a thickness of 0.4 mm, with a 

capacity of 235 mAh at a voltage of 3.75 V) (Kuhlmann et al., 2018).   This system could 

generate a high PCE, however this design was similar to the first-generation solar fabric 

concepts where solar cells were directly attached to the fabric and cannot be considered 

suitable for a wearable application due to the lack of flexibility and normalcy. Krebs and 

Hösel have argued that woven PV tapes are one of the most technically feasible and 

commercially viable stratergies for incorporating PV functionality onto textiles (Krebs 

and Hösel, 2015), however it is doubtful whether such devices are suitable for the use in 

future wearable devices intended for day-to-day use, mainly due their lack of normalcy.  

Fabrics woven with PV coated wires or flexible PV tapes showed improvements in their 

shear behaviour and breathability, however, they still looked and felt significantly 

different to normal textile fabrics. In addition, the electrical interconnections achieved 

by the interlacing points may not by reliable during the deformations undergone by the 

resultant garments, and these interconnections could deteriorate during washing and 

wearing. 

2.4.1.5 Non-woven PV structures 

Non-woven textile structures such as electro spun nano-fibre webs or fibre membranes 

(electro spun or wet-laid)  were also investigated as a substrate for textile PV devices by 

few research groups (Sundarrajan et al., 2010; Sun et al., 2015; Juhász Junger et al., 2018). 

Sundarrajan et al. (2010) managed to realise an electrospun polymeric PV web by co-
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electrospinning a two component polymer mixture to form a co-sheath structure, where 

P3HT/PCBM was the core and polyvinyl pyrrolidone (PVP) was the shell. This technique 

was emplyed due to the difficulty of electrospining of pure conjugate polymers. The shell 

material was subsequently dissolved to realize the P3HT/PCBM, which was used as the 

active layer of a PV web, sandwiched between transparent conductive electrode films: A 

notable PCE was not reported for the device. An efficient dye-sensitized solar cell based 

on a PET membrane (as the medium for liquid electrolyte) was developed by Sun et al., 

(2015) which reported a PCE of 10.2 %. The PET membrane was prepared by wet laying 

PET short staple fibres and binding them using a water based binder. The photoanode 

and counterelectrodes used were monolithic and non-conformable, hence the device was 

not desiarable for a wearable application. A DSSC PV device with textile-based counter 

electrodes coated by a conducting polymer and working electrodes built on TiO2 coated 

Fluorinated tin oxide (FTO) glass dyed with a natural dye were investigated by Junger et 

al. (2018) which showed conformable properties, however the PCE achieved was not 

noteworthy. 

2.4.1.6 Mechanically linked rigid or flexible solar cell arrays 

As an effort to make inorganic semiconductor PV materials more attractive for flexible 

applications, rigid inorganic cells can be mechanically and electrically linked together 

with flexible materials to create quasi-flexible structures. A number of such 

embodiments in the form of solar jackets or suites (Haugen 1989; Anon 1996; Jaynes 2007; 

Orandi 2009;), windable, rollable or retractable solar modules (Hanak et al., 1987; Ma, 

2011; Oppizzi, 2014), awning solar modules (Heidenreich 2007; Lambey 2008; Nocito et 

al. 2012), and flexible interconnected solar cell networks based on fabrics (Escoffery 1966; 

Luch 2009; Forster & Zimmermann 2011; Daniel 2011; Lerner et al. 2015; Chen et al. 2015; 

Nance et al. 2016) have been proposed in several patents. The products and processes 

disclosed in these patents appear to be of limited use for practical wearable systems, due 

to inadequate level of flexibility, lack of shear behaviour, and unsuitability for washing. 

In addition, the appearance rendered by these fabrics attached devices were not 

desirable for the use on regular clothing. 

Sandia National Laboratories have been working with micro-scale inorganic 

photovoltaic cells for concentrator photovoltaic (CPV) applications, which were also 

explored for flexible solar arrays (Cruz-Campa et al., 2011). This micro-enabled 
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photovoltaic (MEPV) technology has been demonstrated in flexible mouldable 

concentrator PV (CPV) arrays where the cells are distributed on a concentrator lenses 

array (Gu et al., 2015), as well as flexible arrays of closely packed cell arrays (Sandia 

National Laboratories, 2017) mounted on a flexible substrate (Fig. 2.24(a)). The bespoke 

microscale PV cells have hexagonal shape with back contacts and typically have a 

thickness of 14 µm and a width from 250 – 500 µm (Fig. 2.24(b)). To minimize the edge 

recombination losses, the cell boundaries were heavily doped. With the optimized cell 

design they managed to achieve a PCE of 14.9 %. One advantage of using such micro-

scale PV devices for CPV applications is the ability to dissipate heat efficiently which 

improves the PCE. This work using miniaturize hexagonal solar cells provides evidence 

of the potential of employing miniaturized PV cells for applications requiring flexibility. 

Nevertheless, the use of similar miniature solar cells networked and deployed in an 

aesthetically pleasing and mechanically durable way for wearable applications 

discussed in this thesis is not reported to date.  

               

 

It is evident that there is a gap in the knowledge in creating a truly wearable and 

washable solar energy harvesting system. Hence, a need exists to explore novel 

approaches in delivering a system that addresses the above-mentioned challenges in-

order to deliver a viable wearable photovoltaic energy harvesting system for powering 

mobile electronics, wearable devices, or electronic textiles.  

 

 

b a 

Figure 2.24 – (a) An image of the prototype micro-solar panel developed using micro-enabled 

photovoltaic technology (MEPV) (Sandia National Laboratories, 2017). (b) Microscopic 

image of micro-structured PV cells developed by Sandia Laboratories (Cruz-Campa et al., 

2011). 
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2.5 Strategies for integrating electronic device within textile fabrics in the form of 

yarns, threads or tapes 

A novel approach to create fabrics which can harvest solar energy worth exploring is to 

incorporate plurality of prefabricated discrete miniature solar cells at a yarn level. The 

appearance, conformability and mechanical robustness of such fabrics will depend on 

the method of integration and size of the solar cells. Also, the integration method shall 

not substantially impede the energy harvesting capability.  There have been a number 

of strategies reported in prior art that aimed to integrate electronic components into 

yarns or tapes, to be converted to fabrics. (Leonard 2004; Dias & Fernando 2006, Hill et 

al. 2009; Brun et al., 2009;; Brun et al. 2011; Speich 2011; Brun, Leonard 2013, Vicard, et 

al. 2014; Brun, Lancon, et al. 2014; Newby & Pedley 2017;).  In 2005 Dias and Fernando  

in their patent disclosed an electronic yarn where an operative device was confined 

within the fibres of a yarn and the device was then protected using a polymer micro-

pod. Staufert (2008) proposed a filamentous structure intregrated with electronic 

components that has textile characteristics. This structure has an electronic filament that 

consists of conductive wires and small electronic components, along with an additional 

element for mechanically stabilizing the structure. A textile sheath was wound  around 

the electronic filament, however, a protection mechanism suggested by Dias and 

Fernanodo for the integrated devices from external mechancal stresses and chemical 

agents were not provided . Both these inventions provided a solution to protect the yarn 

integrated device, however the method of creating electrical connections to the device 

was not disclosed in detail. The device embedded yarn was intended to be converted to 

a knitted or a woven fabric. Leonard (2004, 2013) proposed a  textile thread or fiber that 

had electronic elements embedded or encapsulated  to create a fabric. The textile thread 

or fiber comprised of elements interconnected to form a signal processing system. The 

structure and the details of the architecture of the textile thread or how the individual 

elements would be electrically and mechanically interconnected within the thread to 

deliver a mechanically robust system was not presented. A transponder thread that can 

be integrated with a transponder chip along with an antenna inside of a yarn was 

proposed by Speich (2011) but also lacked detailed insight into the construction of the 

thread. Hill et al. 2009 disclosed an approach where electronic chips were integrated onto 

electrically insulated weavable flexible tapes with conductive tracks on them. A woven 
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structure made using these tapes was also proposed. Zysset et al., (2010) also 

demonstrated a similar tape-like device integrated within woven structures, where the 

device was used as weft yarn. A tape could comprise multiple of electronic devices 

attached along the longitudinal axis (i.e. the length of the tape) which may or may not 

be electrically interconnected. The primary means of electrical interconnections between 

devices were the conductive threads used for the warp yarns. These tapes were also a 

potential platform for integrating miniature solar cells however, the appearance and 

softness of resultant fabric may not have been best suited for the intended application. 

Brun et al. (2009, 2011) descided the assembly of a  microelectronic chip onto a pair of 

conductive wires using a method referred to as ‘Diabolo’. The chip was designed to have 

groves on the sides close to its contact pads to accomodate the conductive wires. The 

electrical connection could be secured either after positioning the wire inside of the grove 

using soldering or by mechanically crimping the grove. Brun, Lancon, et al. (2014) 

extended this concept to prepare a sheathed yarn, with the wire attached chip inserted 

at the core of the yarn, however a means of providing a protective encapsulation to the 

chip was not elaborated. A printed yarn system that has a core-sheath structure was 

presented by Newby & Pedley (2017). Here, an electronic circuitry-incorporated linear 

substrate was used as the core and the sheath comprised fibres. The core was prepared 

by printing the electronic circuitry on a tape and attaching electronic component onto 

the circuitry before concealing (encapsulating) it within a covering material which is 

typically a polymer resin. While this invention has some structural features similar to 

the filament device presented by Dias & Fernando (such as the use of a resin to 

encapsulate the electronic components and use of fibres to surround the core), the 

printed linear circuitry within the core of the yarn which has the form of a thick tape, 

may significantly stiffen the final yarn. Rein et al. (Rein et al., 2018) realized a diode fibre 

by drawing a multilayered preform comprising of two tungston wires, multiple diode 

chips, and additional polymeric layers which were consolidated in a heated hydraulic 

press. The electrical interconnections between the diodes and the tungston wires were 

physically pressed contacts (insteade of soldering or using crimped fixtures, the contact 

is maintained by sandwiching the wires and diodes between the polymeric layers during 

the pressing process), therefore the long term stability of the interconnects between the 

devices and wires need to be investigated.  
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The robustness of the electrical conductive pathways and interconnects is a critical factor 

in determining the practicality and utility of a E-textile system for day-to-day 

applications in addition to the all-important flexibility and ability to conform to 3D 

contours. The electrical properties (electrical resistance, frequency response, crosstalk) 

required are often dictated by the application and the mechanical properties (tensile 

strength, fatige resistance, abrasion resistance, elastic modulus)  are equally important 

for most applications (Agcayazi et al., 2018). For example for signal transmission (e.g. 

bio-potential measurements) applications low conductivity is acceptabile however for 

power transmission (e.g. heating and lighting) higher conductivity levles are needed. In 

literature, various materials and methods have been proposed and studies on the 

conductive pathways and interconnection methods have often been discussed as a key 

theme.  

Conductive pathways used for E-textiles typically have the form of fibres, yarns, wires 

or printed lines made of various substrates such as inherently conducting polymers 

(Grancarić et al., 2017), metals (Tseghai et al., 2020), polymer-metal composites 

(Chatterjee, Tabor and Ghosh, 2019), conducting polymer composites and metal coated 

polymers(Ali et al., 2019). Copper is often the preferred choice interms of conductiveity 

and cost effectiveness. However the use of metals as part of textiles is limited by their 

relatively high stiffness and low extension to failure compared to fiber-forming 

polymers. To minimize the stiffness, metal coated or metal composite polymeric fibres 

are also considered, however there is a compromise of conductivity. Conducting 

polymers and composites are advantageous due to their tunable electrical conductivity, 

ease of processing and cost-effectiveness. However, they have poor temperature and 

environmental (moisture and oxygen) stability and are significantly lower in 

conductivity compared to metals (Schwarz and Van Langenhove, 2013). 

Interconnects are often one of the key factors determining the parcticality of a E-textiles 

systems. Interconnections can take the form of soldered or welded joints (Dias and 

Ratnayake, 2015; Koshi, Nomura and Yoshida, 2020; Micus, Haupt and Gresser, 2020), 

mechanical crimp or grip connectors and conductive adhesives. E-textile systems may 

comprise miniature semiconductor devices typically made of silicon which are stiff and 

brittle. When joining the semiconductor devices to a relatively flexible conductive 

pathways, the mechanical properties beside the interconnection point remain 
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significantly different, exposing the interconnection point to high mechanical stress. 

While having good electrical coductance the material employed for the interconnection 

point need to have the correct balance of adherence to both the conductive pathway as 

well as the terminals of the semiconductor device, to acheive robust mechanical joint. 

Therefore selection of the right material and technique for the interconnection point is 

critical for the mechanical and electrical robustness of the e-textile system. The below 

table compares different interconnection methods as summarized by Agcayazi et al. 

 

Interconnection 

method 

Structure Advantages Drawbacks 

Welding Melting both metals to 

make 

a physical connection 

-  High conductivity 

-  Strong physical 

connection 

 

-  Materials need to 

withstand high 

temperatures 

-  Connection is not 

flexible 

Soldering Introducing a low 

temperature melt 

material in between to 

adhere the two surfaces 

for an electrical 

connection 

- High conductivity 

- Strong physical 

connection 

- Low melt solders 

are available 

- Materials need to 

withstand high 

temperatures 

- Connection is not 

flexible 

Relaxed flexible 

grip 

- Looping conductive 

fiber through a metallic 

object 

- Wrapping metallic 

wires through zigzag 

sewing 

Simplisity and 

flexibility 

 

Connection quality varies 

with motion, heat, 

moisture 

Crimping Crimping the textile 

using a metallic object 

Robust physical and 

electrical connection 

Stiffness 

Conductive 

adhesives 

Curable resin doped with 

conductive particles 

Good conductivity 

and flexibility 

deterioration due to 

humidity,temperature 

variations 

 

An electronically functional yarn (Dias and Rathnayake, 2016), which has similarities to 

electronic yarn introduced in 2005 by Dias & Fernando, details a structure that integrate 

electronic components within the core of textile yarns. These yarns were fabricated by 

connecting electronic devices onto fine copper wires before encapsulating them inside 

of polymeric resin micro-pods that hermetically seal the connected devices with the 

wires extending along the axis of the yarn; a textile fibre sheath surrounding the wires 

and the micro-pods gives textile features to the completed yarn. The use of copper wires 

Table. 2.3 – Comparison of different interconnection methods employed for E-textiles. 

(Agcayazi et al., 2018) 
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enable integration of devices requiring power transmission, while interconnection using 

soldering creates an electrically and mechanically robust connection between the wire 

and the device. The resin micro-pod covers the solder-joint and creates an area with 

graduated stiffness between the copper wire and the solder joint, which reduces the 

accumulation of bending fatigue near the solder joint thereby improving mechanical 

robustness. These electronic yarns (E-yarns) can be readily integrated into a textile 

structure either by weaving (interlacing textile yarns) or knitting (inter-looping textile 

yarns), that is mechanically robust and wash durable. The viability of the E-yarn 

technology to integrate electronic devices within textiles was proven for sensing devices 

such as thermistors (Hughes-Riley et al., 2017; Lugoda et al., 2018), acoustic sensors 

(Hughes-Riley and Dias, 2018) in addition to lighting devices such as LEDs (Hardy et al., 

2018). 

Whilst some of these methods detailed in the literature could be potential candidates for 

integrating PV devices within a textile structure in the form of a yarn, the selection 

criterion should focus on not only the wearability and durability aspects, but also the 

power conversion efficiency, which is governed by the intensity of light received by the 

photoactive surface of the solar cell.   

2.6 . Discussion 

In this chapter the state-of-the-art of textile embedded energy harvesting technologies 

presented in literature was studied with an in-depth review on various methods 

disclosing textile integrated and textile based solar energy harvesting devices, mainly 

from a wearability perspective. While the energy harvesting capability remains 

important, wearability is decisive for wider adoption of these technologies in regular 

clothing. In general, the chemistry and micro/nano structure of the materials are crucial 

for optimizing the photovoltaic performance. In most of the literature, flexibility is 

considered the prime requirement for wearability, however in reality it is often a 

combination of many facets such as softness, three-dimensional conformability, normal 

appearance, air/moisture permeability and wash durability. There exists a gap in 

knowledge on how these features can be achieved, while maintaining satisfactory levels 

of power conversion efficiency. Retaining the hierarchical structure present in 

conventional textile fabrics (i.e. fabric made of yarns that are prepared using plurality of 
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fibres) is of paramount importance in achieving these desirable features. This research 

aims to realise a solar energy harvesting fabric that preserves the hierarchical structure 

by combining textile yarns created by embedding discrete miniature photovoltaic cells 

within a fibrous structure. Amongst several methods that reported yarns/tapes 

integrated with electronic devices E-yarn technology pioneered by Dias and co-workers 

is considered a viable candidate to achieve this. However, the nature and effects of the 

interferences of sunlight with fibrous structure and encapsulation in the E-yarn structure 

has not been previously investigated, which is a gap in in knowledge. 
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3.1 Introduction 

This chapter details the methods and procedures followed, and materials used, during 

the research to fabricate and characterize solar energy harvesting electronic yarns (solar-

E-yarns). The methods include step-by-step details of the production process and the 

equipment and materials used for soldering photocells (here the term ‘photocell’ refers 

to both solar cells and photodiodes used in the research), encapsulating them inside of 

resin micro-pods, and covering them within textile fibres to realize the final solar-E-

yarns. The chapter also cover the procedures and instruments employed to simulate test 

conditions and conduct electrical measurements of the photoactive devices during their 

production process and after converting into fabrics. Some of the contents in this chapter 

has been included in a journal article by the author (Satharasinghe, Hughes-Riley and 

Dias, 2018). The methods and materials detailed in this chapter apply to the experiments 

mentioned throughout this thesis; specific or unique experiments will be detailed in their 

relevant chapters. Procedures for the fit-for-purpose testing and preparation of E-yarn 

embedded fabrics will be detailed in Chapter 6 and Chapter 7 respectively.  

The E-yarn technology has previously been explored for embedding radio-frequency 

identification (RFID) devices (Rathnayake, 2015), light emitting diodes (LEDs)(Hardy et 

al., 2018) and various types of sensors (Hughes-Riley et al., 2017) within the core of textile 

yarns has been reported previously. This work presents a fundamental shift in how this 

technology is employed where photoactive devices that respond to light are embedded. 

The intensity and spectral distribution of light transmitted into the photocell used to 

embedded in the core of the E-yarn determined photovoltaic output of the yarn. The 

components in the E-yarn would significantly interfere with the incident light. 

Therefore, these interferences need to be carefully characterized and understood, to 

design a solar-E-yarn that generates an optimized and reliable photovoltaic output. 

A typical E-yarn production process use standard surface mount device (SMD) type 

components with the solder pads on the same face of the component that can be soldered 

onto copper wires; the photodiodes used at the early stages of this research consisted of 

two solder pads. The miniature photovoltaic cells that were commercially available for 

use in this work brought new process challenges compared to other E-yarn developed 

with SMDs. In fact, the solar cells required two parallel copper wires to be soldered onto 

solder pads which were on front and back sides of the cell. Therefore, several 
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modifications to the original E-yarn architecture and fabrication process were 

introduced that are explained in this chapter. In aid of this, prior to initiating the sample 

preparation using solar cells, the reflow soldering process used in previous E-yarn works 

was revisited. The aim of this was to gain a better understanding into how the soldering 

stage of the E-yarn production process could be modified to achieve reliable solder joints 

with minimum effect on the functionality of the solar cells. Further, a bespoke apparatus 

was designed and built to achieve precise positioning of the soldered device inside of 

the resin micro-pod. This not only allowed for consistent solar-E-yarns to be produced 

but also allowed for the effects of the positioning of the photocell inside the micro-pod 

to be studied. An additional process of impregnating the solar-E-yarn surface was 

introduced to enhance the intensity of light received by the photoactive device. 

For characterization, an optical test rig was built at the initial stages of the research 

project to characterize the opto-electronic performance of E-yarns embedded with 

photoactive devices in comparison to performance of the maiden device (i.e. 

photodiodes and solar cells before embedding within the yarns). Upon completing the 

proof-of-concept studies, a standardized solar simulator was employed as the light 

source for the characterization. The solar simulator provided a light source which 

allowed the devices to be compared against an absolute measurement scale and prior 

art. Mechanisms to conduct measurements under varying incident light angles were also 

devised was use with the optical test rig and the solar simulator. 

3.2 E-yarn fabrication process  

The basic steps of fabricating photocell embedded yarns are shown in Fig. 3.1. Here the 

term photocell is used to represent both photodiodes and solar cells. Unless specifically 

mentioned, the yarn fabrication steps described are applicable for both the photocell 

types. 

The first step of the process was to solder the photocells onto fine copper wires. The 

soldered device and the solder joints were then encapsulated within a protective resin 

micro-pod. The micro-pod with soldered photocell along with the copper wires were 

then sheathed with textile fibres to give the E-yarn a textile-feel and appearance. 

Optionally, the fibres in the photoactive side of the E-yarn was impregnated with a 

polymeric resin. 
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3.2.1 Photodiodes and solar cells 

In the initial phase of the research, a proof-of-concept for the photocell embedded yarn 

was developed. In addition, an in-depth investigation into the effects of different 

components of the yarn on the opto-electronic behavior of the photocell was conducted.  

Photodiodes were employed as a cost effective and readily available alternative for solar 

cells to conduct initial testing and demonstrate a proof-of-concept photocell embedded 

yarn.   

Two types of commercial surface mounted device (SMD) miniature silicon P-I-N type 

photodiodes (PDs) were selected for the initial study and are shown in Fig. 3.2 

(TEMD7000x1 and VEMD6060x1 from Vishay Intertechnology Inc., Malvern, PA, USA, 

the basic specifications are given in Table 3.1 and complete datasheets provided in 

Annex 2). These photodiodes were responsive to visible and near infra-red regions of 

the electromagnetic spectrum, which was similar to the spectral distribution of the  

sunlight.  

a b  

Creating  arrays of 
miniature Photocells 
with fine Cu wires 

Primary photocells 
encapsulation 

Sheathing with packing 
fibers and knitted tube 

Impregnation with 
transparent resin  

Figure 3.1 - Fabrication process of photocell embedded yarn. (a) Microscopic images of 

photodiode yarn fabrication at different stages. (b) Microscopic images of solar cell yarns 

after each step in the fabrication process. (Scalebar indicate 1mm) 
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The availability of commercially available very small-scale solar cells is limited. Several 

high efficiency multi-junction solar cell manufacturers were contacted for sourcing 

miniature solar cells. There existed a challenge in sourcing small batches of cells due to 

high minimum order quantities defined by the companies. As an alternative, miniature 

silicon solar cells, cut to required shape and dimensions from a standard crystalline solar 

cell were eventually sourced from Solar Capture Technologies (Photovoltaic Technology 

Centre, Blyth, United Kingdom). The specifications of the original large area cells of this 

type indicated a power conversion efficiency (PCE) level of approximately 18 %. (see the 

basic specifications in Table 3.1 and test report provided by the supplier in the Annex 3). 

 

 

Device Type 

Dimensions 

(mm) 

Photoactive 

Area (mm2) 

Performance 

PIN Si Photodiode SMD – 

Visible and near infrared 

TEMD7000X01 - Vishay® 

Intertechnology 

2 x 1.25 x .85 0.23 Voc=350mA, Isc=3µA 

Under Ee = 1 mW/cm2, λ 

= 950 nm 

PIN Si Photodiode SMD – 

Visible and near infrared 

VEMD6060X01– Vishay® 

Intertechnology 

2 x 4 x 1.05 0.85 Voc=360mA, Isc=5µA 

Under Ee = 1 mW/cm2, λ 

= 950 nm 

crystalline-Si (laser grooved 

buried contact)  

1.6 x 1.6 2 PCE ~ 18% under AM 

1.5 -1 sun for the large 

size cell from which the 

miniature cells are cut.  
 

1.6 x 3 4 

3.2 x 3 8 

a b c 

Figure 3.2 – Two photodiode (PD) types used for the first phase of the research. Image of (a) 

TEMD 7000x01 and (b) VEMD 6060x01. (c) Front view schematic of the PDs. Images are not 

to scale (Courtesy – Vishay Intertechnology) 

Table 3.1 - Specifications of the different photodiode and solar cell types used during this 

study. 
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These solar cells were of the laser grooved buried contact (LGBC) type where the front 

side of the cells surface contained an array of parallel Cu bus bars working as the 

negative electrode (cathode) as shown in Fig. 3.3(a). Each bus bar is connected to the 

solder pads positioned at one side of the front face of the cell. The positive electrode 

(anode) was spread throughout the backside of the solar cell (Fig. 3.3(b)). 

 

The first batch of solar cells sourced had dimensions of 1.5 mm × 1.5 mm and 3.2 × 3 mm 

(Fig. 3.3(a, b)). These dimensions were selected to ensure that the cells width was 

sufficiently small to be accommodated within the cylinders of the knit braiding machines 

available the Advanced Textiles Research Group (ATRG) to cover the resin micro-pod. 

Eventually, the trade-off between the cell area and the fineness of resultant yarn is 

largely dependent on the end-use. Prior to conducting experiments 30 samples from each 

cell type were observed under the digital microscope (VHX-5000-Keyance (UK) Limited, 

Milton Keynes, United Kingdom) to evaluate variations in their size and photoactive 

area. Cells with a 1.5 mm width and a 3 mm length were subsequent sourced after the 

initial studies to increase the total active area of solar cell embedded yarns fabricated for 

preparing woven fabric demonstrators. This also reduced the number of cells needed to 

generate required amount of power; this would reduce the number of potential points 

a b 

(i) 

(ii) 

(iii) 

(i) 

(ii) 

(iii) 

1 mm 1 mm 

Figure 3.3 – Optical microscopy images of the (a) front and (b) back sides of (i) 1.5 ×1.5 mm, 

(ii) 3.2  × 3 mm and, (iii) 1.5 × 3 mm solar cells employed in this research. The useable active 

area of the cell is indicated by the red rectangles. 
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of failure.  Table 3.2 details the variations in active cell area of the three types of cells. 

The measured values of the full data set are given in Appendix 2. 

 

 
Useable active area (mm2) 

Cell Type 1.5 mm × 1.5 

mm 

1.5 mm × 3 

mm 

3 mm × 3.2 

mm 

Average 1.756 3.486 7.652 

Standard 

deviation (SD) 0.1066 0.315 0.364 

Coefficient of 

variation (CV) 6.04% 9.03% 4.75% 

 

The results show that the maximum variation in cell size for the tested cells were 

observed for 1.5 mm × 3 mm cell type. The variation was less than 10%, which was 

considered acceptable, for further experimentation. No clear relationship between the 

cell size and the level of size variation was identifiable based on the measured results. 

3.2.2 Soldering surface mount devices (SMD) onto fine copper wires 

Soldering electronic components onto printed circuit boards (PCBs) using a reflow oven 

is an established soldering technique in the electronics industry and can be employed to 

solder circuit boards comprising of many components (Willis, 2003). During a typical 

reflow soldering process the PCB, solder paste, and solder pads are heated in a 

controlled manner according to a reflow soldering profile, which has an initial heat 

ramping phase, preheating phase, ramp to peak phase, reflow phase and a cooling phase 

as shown in Fig 3.4(a). For situations where individual components need to be soldered 

or repaired discretely without heating the complete PCB, reflow ovens cannot be used. 

In such situations IR spot reflow soldering is widely used (Anguiano et al., 2005). Here a 

beam of IR radiation is directly focused onto the component and only the required 

component and the PCB footprint around the component is heated according to a reflow 

profile similar to that of the reflow oven. The E-yarn technology employs this technique 

for soldering miniature SMDs onto fine copper wires (Rathnayake, 2015) and this 

technique is also used in this work. Previously, Rathnayake (2015) investigated the use 

of IR spot reflow soldering to solder SMD type LEDs and resistors (0402 and 0201 sizes) 

Table 3.2 – Measured variation in the active area of three solar cell sizes used in the research. 

Batches of 30 cells were selected from each cell size for this analysis. 
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onto fine eight strand copper wires (single strand diameter 55µm). The device was 

placed with the solder pads facing upwards onto a metal plate covered with black 

adhesive tape (soldering base), with the Cu wire positioned on top of the two solder 

pads of the device. A predetermined volume of solder paste was dispensed onto the 

solder pad areas and exposed to the IR beam using an IR spot reflow soldering station. 

The IR beam is circular in shape, of which the aperture size and vertical position can be 

adjusted to achieve a focused IR spot with required diameter. It was identified that a 

conventional reflow soldering profile was not suitable for this scenario due to the direct 

application of heat; in conventional printed circuit manufacture the heat is transferred 

to the solder pads by the circuit board. Several modifications to the reflow profile was 

trialled and a profile with only two phases (with steep temperature ramping and 

cooling) was found to be successful (Fig 3.4(b)).  

 

Figure 3.4 - Screen shots of (a) a typical soldering profile used reflow soldering surface 

mount devices (SMDs) onto printed circuit boards (PCBs). (b) The modified profile for 

soldering SMD components on to fine copper wires (Rathnayake, 2015). 

a 

b 
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However, insights on the critical parameters affecting this unique soldering process was 

not presented in this study. It was identified that to adapt this reflow soldering process 

for more complex device configurations, similar to the photovoltaic cells used in this 

study, a better understanding of these critical parameters needs to be gained. Therefore, 

preliminary tests were conducted on the effects of IR beam parameters (beam diameter, 

level of beam focus) and the materials used in the process (SMD device, copper wires, 

copper wires and solder paste). Although a complete comprehension of the effects of the 

process and material parameters was not within the scope of this work, the general 

understanding gained from these tests were instrumental in achieving optimized 

soldering parameters for soldering various types of miniature electronic components 

developed using the E-yarn technology. A good quality solder joint can be confirmed by 

a smooth, clean and shiny solder joint and this was verified by optical microscopic 

images. Temperature variation within the IR heated spot for different spot sizes were 

observed. The IR beam was directed to a ceramic tile coated with black matt ceramic 

paint. A k-type thermocouple (Z2-K-1.0-1/0.2-MP-ANSI, Labfacility Ltd, West Sussex, 

United Kingdom) connected to a temperature logger (RDXL65D Six Channel Handheld 

Temperature Data Logger, Omega Engineering Limited, Manchester, United Kingdom). 

The IR spot size was changed by adjusting the aperture size of the IR lamp. The tip of 

the thermocouple was positioned on ceramic tile at the required distance from the centre 
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Distance from centre of the beam (mm)

3.22 mm 4.71 mm 5.71 mm 7.03 mm

8.66 mm 10.02 mm 11.05 mm

Table 3.5 –Measured temperature for different infrared beam diameters at different distances 

from the centre of the beam. The measurement was conducted on a matt black ceramic tile 

surface after one-minute heating at 100% infrared beam power. 
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of the spot. The tests revealed that there is a temperature gradient from centre to the 

perimeter of the IR heated spot, and that the temperature of the heated spot increases 

with the diameter of the IR beam (Fig. 3.5).  

In addition, it was noted that the maximum rate of heating was achieved when the IR 

beam was in focus with the heated surfaces (i.e. the solder pads and solder paste) which 

was expected. The rate of heating was also dependent on several other parameters such 

as the solder pad area of the SMD, total cross-sectional area of the copper wires used, 

colour and surface roughness (which relates to the thermal absorption coefficient of the 

material) of the SMD and the soldering base (i.e. the SMD and the platform). It was 

desirable to have a soldering base with low thermal conductivity and high thermal 

absorptivity to maintain a high-temperature surrounding in the soldering region. Based 

on these preliminary tests a soldering base made of black pigmented silicone rubber was 

selected and the reflow soldering profile was fine-tuned based on the size of the SMD 

and total copper wire thickness. Silicone has a lower thermal conductivity compared to 

metals and ceramics (Clemens, 2001). By black pigmentation the thermal absorptivity of 

silicone can be improved (Tesfamichael et al., 2001). A solder joint with a smooth and 

shiny surface was considered a good quality solder joint. Complete soldering occurs 

when all the metal particles in the solder-paste melt and form a non-porous 

homogeneous solid, resulting a smooth surface that reflect light evenly. To assess the 

quality of the solder joint optical microscopy was employed.  

In summary, it was important to position the device at the centre of the IR spot, with the 

spot focused at the solder pads to achieve the most efficient soldering process. Larger 

solder spots resulted in steeper heat ramping. A material with a darker and rougher 

surface (higher thermal absorption) and low thermal conductivity facilitated the efficient 

heating of the solder paste. The rate of heating was slower when the total thickness of 

the Cu wires used was higher (this resulted in higher rates of heat loss from the solder 

joint via Cu wires).  

3.2.3 Making electrical interconnects between the solder-pads and Cu wires for 

photodiodes  

A photodiode (PD) was placed on a flexible base made of black pigmented silicone 

(Transil 40-1 silicone and 10% black silicone pigment, Mouldlife, Suffolk, United 

Kingdom) with the two solder pads facing upward towards the IR source (direct 
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heating) (Fig. 3.6(a)). As previously mentioned, black pigmented silicone facilitated an 

efficient soldering process, by retaining the thermal energy transmitted by the IR beam 

around the device. 

A multi-strand Cu wire with seven twisted Cu monofilaments (seven strand, linear 

density = 120 mg/m, single strand diameter = 50 µm, Knight Wire, Potters Bar, UK) was 

placed on top of the two solder pads (Fig. 3.6(b)). Approximately 3.0 µl of lead free solder 

paste (SolderPlus® S965D500A6, Nordson EFD, Dunstable, UK) was dispensed onto the 

Cu wire at the solder pad (Fig. 3.6(c)) using a pneumatic dispensing system (EFD 

Ultimus II dispenser system, Nordson EFD, Dunstable, United Kingdom), and reflow 

soldered using IR spot reflow soldering system (PDR IR-E3 Rework System, PDR- 

Design & Manufacturing Centre, Crawley, UK). The reflow system settings (reflow 

Figure 3.6 – Soldering process for SMD photodiodes (PDs). (a) PD placed on the silicone base 

with solder pads facing upwards.  (b) Cu wire placed over the solder pads of the PD. (c) Solder 

paste dispensed onto the solder pads and Cu wire at points of contact. (d) Solder pads and 

solder paste exposed to IR beam. (e) Solder joints formed. (f) Cu wire length between solder 

joints removed. 

a 

b 

c 

d 

e 

f 
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profile, beam diameter) were adjusted to optimise the soldering to achieve robust 

electrical and mechanical connection between solder-pads and copper wires (Fig. 3.6(d, 

e)). Finally, the Cu wire length between the solder joints was removed by cutting the Cu 

wire at the inner edges of the solder pads (Fig. 3.6(f)) using a scalpel (0.5 mm blade 

thickness).  

 

3.2.4 Making electrical connections between the solder-pads and Cu wires for solar 

cells 

Unlike the PDs, the solar cells had the solder pads on either side of the cells. Therefore, 

the E-yarn soldering process had to be modified to enable the reflow soldering on both 

sides of the cell onto two parallel positioned Cu wires simultaneously. The soldered pad 

on the front of the cell consisted of array of Cu buried contacts. These were positioned 

on the photoactive (face) side of the cell close to one edge of the cell. The entire backside 

of the cell is solderable (see Fig. 3.7). 

 

 

 

Areas that 

can be 

soldered 

Figure 3.7 - Areas that can be soldered on the front (left) and back (right) contacts of a 

solar cell (3.2 mm × 3.0 mm). 

 

Figure 3.8 – Black pigmented silicone used as the soldering platform for solar cells. (a) 

Photograph of the mould. (b) Magnified view of the soldering process. 

 

a  
b  
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A bespoke mould was fabricated (Fig. 3.8) using the same silicone material used for the 

PD soldering base. The mould was designed to position two parallel aligned Cu wires 

onto the front and back solder pads, located on either side of the SC. All the other 

materials and parameters were the same as for the PD soldering.  

The steps for soldering a solar cell onto a pair of Cu wires is illustrated in Fig. 3.9. 

Initially, one Cu wire was placed in one of the two wire positioning groves (Fig. 3.9(b)). 

Solder paste was then dispensed onto the wire, where the front solder pad would be 

soldered onto the Cu wire (Fig. 3.9(c)). The solar cell was positioned into the groove, 

with the front solder pad in contact with the solder paste/Cu wire (Fig. 3.9(d)). The 

second Cu wire was positioned onto the back contact of the solar cell (Fig. 3.9(e)) and a 

solder paste volume was dispensed where the back contact and Cu wire made contact. 

Once the positioning was complete, IR reflow soldering was conducted (Fig. 3.9(f)). The 

solar cell was positioned in this orientation (back contact directly facing the IR beam) to 

minimize the detrimental effects of direct heat exposure on the photoactive area. The 

solder base facilitated indirect heat transfer to the front contact, allowing simultaneous 

soldering of both front and back contacts of the solar cell. For connecting multiple cells 

onto the same pair of Cu wires, with predetermined gaps between cells, a mould with 

Figure 3.9 - Soldering process for solar cells (SCs). (a) The bespoke mould design. (b) The Cu 

wire positioned on the mould. (c) Solder paste was dispensed onto the first Cu wire. (d) The 

SC was positioned on the mould with the front contact touching the first Cu wire. (e) The 

second Cu wire was positioned on the mould and back side of the SC. (f) Solder paste was 

dispensed onto the second Cu wire and IR beam was applied. 

a b c 

d e f 



Chapter 3  Materials and Methods  

81 
 

multiple groves with required cell spacing was prepared (further details on soldering 

multiple solar cells are provided in Chapter 7.)  

Observations under the microscope showed that a dark colour patch appeared on the 

photoactive side of the solar cell near the solder joint during the soldering process. This 

dark patch could be attributed to the charred residues of the solder-paste remaining on 

the front surface of the solar cell. Therefore, a test was conducted to determine any 

adverse effects of the IR reflow soldering process on the performance of the solar cells. 

Five 3.2 mm × 3.0 mm solar cells (which were otherwise identical to the solar cells used 

throughout the rest of this work), were soldered onto fine copper wires using the IR 

reflow soldering unit at 250°C. The soldered cells were subsequently exposed to five 

heating cycles of 230°C (with same cycle time as the soldering). The measurements of 

the control samples were conducted (Fig. 3.10(b)) using a conductive copper adhesive 

tape (1181 Tape Copper Foil with Conductive Adhesive, 3M United Kingdom PLC, UK). 

The results showed (Fig.3.10(a)) that the cells underwent a 5% change in short-circuit 

current (ISC) even after excessive heating of upto 5 times longer than the normal soldering 

process. No significant change in open-circuit voltage (VOC) was observed at the end of 

the test. Microscopic images show clear evidence of residue after the soldering, which 

did not change significantly afterwards. 
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3.2.5 Encapsulating the Soldered photocells inside resin micro-pods 

Encapsulation of the soldered photocell is a key step of the E-yarn fabrication process 

and provides protection to the photocell during its use and washing. As in the previous 

work on E-yarns, an optically clear, ultra-violate curable, electronic grade flexible resin 

was used to create the resin micro-pods in this study. Micro-pods with a circular 

cylindrical shape was prepared throughout this study although it was known that other 

cross-sectional shapes such as parabolic or elliptic can have different effects on how 

incident light is refracted in the micro-pod. It was important to have the ability to control 

the depth of the photocell inside of the cylindrical micro-pod to ensure consistency when 

fabricating the yarns with photocells as well as to conduct an empirical study on the 

effect of the depth of positioning of the photocell inside of the micro-pod on the 

performance of the micro-pod-embedded photocell. In order to achieve this a bespoke 

encapsulation apparatus was devised (Fig. 3.11). 

Figure 3.10 - Change in performance of solar cells after soldering and exposure to heat. 

(a) Change in short-circuit current (ISC) and (open-circuit voltage) VOC after soldering 

and each subsequent heating cycle. (b) Setup for measuring the control sample, using 

copper adhesive tape.  

b 

a 
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The encapsulation apparatus consisted of one rotary and one stationary wire clamp and 

two cymbal tensioners, before and after the two tensioners; these securely positioned the 

soldered photocell inside of a PTFE (polytetrafluoroethylene) (Adtech Polymer 

Engineering Ltd., Gloucester, UK) or a silicone tube (Advanced Fluid Solutions Ltd., 

Essex, UK) during the resin injection and curing process. PTFE or silicone was employed 

as the mould as they allowed the micro-pod to be easily released from the mould, as 

detailed in the literature (Nashed et al., 2019). Due to their flexibility and elasticity, 

silicone tubes showed the ability to better release the micro-pod. Therefore, silicone 

tubes were employed for the experiments with photocells. The tube was mounted on to 

an adjustable platform with three degrees of freedom (XYZ planes). The tube’s circular 

cross section was aligned concentric with the centre of the rotary fibre clamp. A digital 

camera was positioned behind the stationary clamp concentric to the tube with the focal 

length adjusted to obtain a clear view of the inner perimeter of the tube. The soldered 

photocell-Cu wire strand was reinforced by using a 20f/ 110dtex Vectran yarn 

(Vectran™, Kuraray America Inc., Houston, TX, USA) and guided through the tube with 

the photocell positioned approximately centrally inside of the tube.  

Resin injection 

tip 

Cymbal Tensioner 
Cymbal Tensioner 

3-Axis movable 

platform 

Rotary fibre  

Clamp 

Stationary 

fibre Clamp 

Digital camera (Cross 

sectional view) 

Digital camera 

(side view) 

UV light 

source 
PTFE Tube 

Figure 3.11 - The apparatus for positioning and encapsulating photocells inside of 

cylindrical resin micro-pods. 
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The Vectran™ strand provided strength to the Cu wires to prevent breakages during 

subsequent processing. The strand was maintained under tension using the cymbal 

tensioners before the rotary clamp was fastened onto the strand. The photocell 

positioning was adjusted using the rotary clamp and XYZ movable platform with the 

operator observing the position through the camera to ensure that the intended 

orientation of the photocell inside the resultant micro-pod was achieved (Fig. 3.12(a)). 

 

Once the positioning was complete, a predetermined volume of UV curable resin 

(Specifications provided in Annex 5) was injected into the tubular-mould (silicone tube) 

(Fig. 3.12(b)). The resin volume was controlled to create a cylindrical micro-pod with a 

length 2.0-3.0 mm longer than the length of the photocell (1.0-1.5 mm longer on each 

side). Extra care was taken to ensure that the resin was free of air bubbles and that the 

Figure 3.12– The steps for encapsulating the soldered devices. (a) Positioning the device inside 

of the silicone tube. (b) Dispensing the resin into the tube. (c) Curing the resin using UV 

light. (d) The cured micro-pod released from the tube.  

Views from the digital microscopes (e) after positioning the device inside the tube and (f) while 

dispensing the resin. 

b 

c d 
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photocell was completely surrounded by the resin.  The resin was then exposed to UV 

light (BlueWaveTM 50, Dymax Corporation, Torrington, CT, USA, Specification provided 

in Annex 6) for sixty seconds until it was fully cured (Fig. 3.12(c)). In the case of larger-

sized (> 3.0mm diameter) resin micro-pods multiple UV exposure cycles (four cycles for 

the largest micro-pods mentioned in this thesis) were carried out. Finally, the strand was 

released from the clamps and the cymbal tensioners, by forcing the cured micro-pod and 

Cu wire strand (referred to as micro-pod-Cu strand) out of the tube by pulling the 

Vectran yarn (Fig. 3.12(d)). 

 

3.2.6 Embedding the micro-pod inside of a knitted fibre sheath 

After the encapsulation process, the micro-pod-Cu strand was wrapped within a sheath 

of textile fibres to provide the textile appearance and hand feel. The fibre wrapping or 

covering provided additional protection to the micro-pod, copper wires and the 

embedded photocell. There are three possible routes avaible to wrap a fibre sheath 

around the micro-pod; braiding (multiple number of yarns are interlaced at an angle 

<900, to form a tubular structure), circular warp knitting (interlooping multiple number 

of yarns in the length direction direction to create a small diameter tubular knitted 

structure), and yarn covering (by wrapping one or two yarns around a core yarn in a 

spiral shape without interlacing or interlooping). However, in the research a small 

diameter warp knitting machine (RIUS MC-Knit braider, Barcelona, Spain- Specification 

provided in Annex 7) was utilised to craft a knit -braided structure to prepare the E-

yarns embeded with photocels (Fig.3.13(a)). 
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Warp knit braiding was considered the more conducive method for preparing optically 

active devices, due to its more open structure of the knit-braid, in comparison to 

conventional interlaced braiding. This will be further discussed in section 5.4.4.  In 

addition knit braiding has been employed for previour E-yarn developemnts which 

accumulated substatial knowledge on preparing E-yarns using knit-bariding 

(Rathnayake, 2015; Nashed et al., 2019). Two small diameter circular warp-knitting 

machines (RIUS MC-Knit braiders with 2.0 and 4.0 mm inner diameter hollow cylinders 

with six and eight needles respectively, outer diameters of the hollow needle cylinders 

were 10.0 mm; RIUS, Barcelona, Spain) were used to hold the fibres of the packing yarns 

(fibre sheath) around the micro-pod and Cu wire, which were consolidated by the 

tubular knitted structure formed by interloping the yarns surrounding the packing 

yarns. Two sets of yarns were simultaneously delivered to the knitting head of the 

machine along with the photocell-Cu/Vectran strand that was delivered as the core yarn. 

One set of white 48f/167 dtex texturized polyester (PET) packing fibres were delivered 

Figure 3.13 – Knit braiding process using the RIUS MC machine equipped with a 2.0 mm 

inner diameter hollow cylinder. (a) Photograph of the knit braiding machine used for 

completing the E-yarns. (b) Schematic illustration of the delivery of the yarns and micro-pod 

strand and yarns to the knit-braiding point and the output of the process. 
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straight through the inside of the hollow needle cylinder with the RMP, copper wires 

and Vectran yarn, thus these did not form loops. The second set of white PET yarns 

(48f/167 dtex) were delivered to the knitting needles on the outer surface of the needle 

cylinder, which formed the warp knitted structure (1/1 single bar tricot knitted structure) 

around the packing fibres, creating the final E-yarn (Fig.3.13(b)). The packing fibres were 

used to retain the RMP and copper wires centrally in the E-yarn and fill the spaces in the 

core of the knit braid between the micro-pods, thereby maintaining a regular thickness 

along the resultant E-yarn, i.e. minimise the thick-places of the yarn.  

For making the knit braid for RMPs with diameters larger than 1.5 mm, the braiding 

machine fitted with eight needle hollow cylinder, with a 4.0 mm inner diameter, was 

selected. In this case, eight PET yarns (48f/167dtex) were used for packing fibres while 

eight PET yarns were fed to the knitting-needles to form the knit-braid structure. For 1.5 

mm diameter RMPs a six-needle hollow cylinder with a 2.0 mm inner diameter was 

selected, and six PET yarns (48f/167dtex) were used to form the knit-braid. Four PET 

yarns were used as packing fibres.  

3.2.7    Impregnation of the fibrous sheath with clear resin   

In some cases, the photoactive side of the photocell embedded yarn was impregnated 

with the same resin used to create the resin micro pod by dispensing the resin onto the 

fibrous sheath (Fig. 3.14).  

This process was intended to improve the light penetration to the resin micro-pod by 

minimizing the light scattering due to the fibre sheath. It was evident that when the air 

trapped between the fibres were replaced by a material with a similar refractive index of 

the fibres, the Fresnel reflection at the fibre surface was minimised. The volume of the 

Figure 3.14 – Photograph of the resin impregnation on a solar cell embedded E-yarn. 
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resin dispensed was controlled to achieve a full impregnation of the spaces between the 

fibres all the way down to the resin micro-pod, while leaving only a thin layer of resin 

on the outer most layer of fibres. The resin absorption was also facilitated by the capillary 

action of the fibres. Finally, the non-cured resin was exposed to the UV light source for 

forty seconds to achieve a complete curing of the resin.  

Some relevant optical and mechanical properties of the polymeric material employed 

during this research are summarized as below (Table 3.3). 

 

Material Material group HD RI TS 

9001 EV-3.5 (Dymax 

Corporation, USA) 

Acrylated urathane 

(UV curable) 

D45 1.51 5.2 MPa 

OP 29 (Dymax 

Corporation, USA) 

Acrylated urathane 

(UV curable) 

D60  1.50 22 MPa 

OPT 4200 

(Intertronics, UK) 

Polyurathane A75 1.47 15 MPa 

OPT 7020 

(Intertronics, UK) 

Silicone A75 1.41 4.8 MPa 

OPT 5200 

(Intertronics, UK) 

Epoxy D82 1.56 - 

Texturized PET yarn  

(Stretchline UK) 

Polyester yarn  - 1.54 

(Morton et 

al., 2008) 

84 cN/tex 

Vetran® (Kuraray 

USA) 

Liquid crystal 

polymer 

- - 229 cN/tex 

 

3.3 Evaluating the optoelectronic behaviour of the photocells and photocell E-

yarns 

The fabricated samples were evaluated for the opto-electronic behaviour under a 

predetermined lighting condition. The main objective of the evaluation was to study the 

opto-electronic parameters (open circuit voltage and short-circuit current) of the 

photocells embedded inside of the RMPs relative to the bare (without any RMP or fibre 

coverage) photocells. To achieve this, a bespoke optical test rig was developed that could 

generate a reliable and reproducible light beam with a suitable spectral and irradiance 

Table 3.3 – Optical and mechanical properties of the polymeric material employed for E-yarns. 

(RI- Refractive Index, TS – Tensile strength, HD – Hardness). These values have been used 

in all modelling and calculations. 
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output. The test rig also provided a means of using light filters and mechanism to 

position the specimens in a repeatable manner. The sample holder of the test rig was 

later modified to allow exposure of the photocell-E-yarns at various incident angles. 

3.3.1 Optical test rig 

The test rig (Fig. 3.15(a)) consisted of a quarts tungsten halogen lamp (QTH10/M 

Thorlabs Inc., Ely, United Kingdom) coupled with a glass diffuser and a concave lens 

resulting in a 50 mm diameter circular beam output. The diameter of the output from 

the lamp was reduced to 25 mm to match the size of the light filters subsequently aligned 

to the light beam using an adjustable filter holder wheel. Next to the filter holder, a frame 

with a removable sample holder was mounted. The backside of the sample holder was 

attached with a polymeric sheet (Transparent PET sheet; ~0.5mm thickness) on which 

the test sample was mounted. The polymeric sheet was marked with vertical and 

horizontal grid lines to enable precise positioning of the test sample in the sample holder. 

It was observed that the beam of light caused the temperature of the sample and 

surrounding area to rise, with temperatures as high as 35°C being observed. Therefore, 

in order to maintain the temperature of the test samples around 250C, a Peltier cooler 

(Supercool® PE-161-12-15, Gothenburg, Sweden) and thermocouple-based feedback-

controlled temperature control system was employed. The thermocouple (Z2-K-1.0-

1/0.2-MP-ANSI, Labfacility Ltd, West Sussex, United Kingdom) of the temperature 

control system (CN7500, Omega Engineering Limited, Manchester, United Kingdom) 

was positioned adjacent to the test sample in the sample holder. The Peltier cooling tile 

was attached behind the sample holder (cooling face adjacent to the sample holder) 

which was affixed to an aluminium block which acted as a heat sink. Two cooling fans 

were provided; one at the back side of the lamp and the other one behind the aluminium 

block to prevent overheating of the lamp and the Peltier cooler. The lamp and the Peltier 

cooler were powered by a laboratory DC power supply (Fig. 3.15(b)), and the cooling 

fans were powered by a 12V AC/DC converter power pack.  
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The test samples were mounted onto the polymeric sheet using electrical insulation tape, 

with the centre of photoactive area of the photocell aligned to the centre point of the line 

grid (with 1.0 mm vertical and horizontal divisions) and the photoactive plane parallel 

to the surface of the polymeric sheet. The cells could be observed through the fibres on 

close inspection with naked eye, and the positioning was adjusted manually whenever 

needed  by trial and error. The sample holder assembly was then placed inside of the 

holder frame with the Cu wire connectors extending outwards from the top and bottom 

sides of the holder frame. The Cu wires were connected to the leads of a high precision 

digital multi-meter (34410A 6½, Agilent Technologies LDA UK Limited, Stockport, UK) 

using small alligator clips. Each test sample was conditioned inside of the sample holder 

for about 30 seconds before reading measurements from the multi-meter (Fig. 3.15(c)).  

In some cases the measurements were conducted under a filtered beam of light using 

different optical filters (305-485 nm band pass, 485 nm long-pass and 780 nm long pass) 

c b 

Figure 3.15 – (a) Image of the optical test rig and light source used to evaluate the 

photocells and resultant samples. (b) Variable DC power source (ISO-TECH IPS 3303, 

RS Components Ltd. Northants, United Kingdom). (c) Digital multi-meter (34410A 6 

½, Agilent Technologies LDA UK Limited, Stockport, United Kingdom) used for 

evaluation experiments. 
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to ascetain the behaviour of the photocells and resultant yarns when exposed with 

different bands of the light spectrum. Unless specified the lamp was powered with ~ 12V 

/ 0.89A supply.  

A dedicated VEMD 6060×1 type photodiode was employed as a baseline to monitor any 

variations in the light intensity at the sample holder over time. The ISC reading of the 

photodiode was considered for this due to the linear dependency between the light 

intensity and ISC. The baseline reading was conducted after every ~ 50 readings to ensure 

that the light intensity at the centre of the sample holder was within ±2% of the initial 

measurement. Any variations outside of the tolerance was rectified by adjusting the 

input voltage to the lamp. The electromagnet spectrum of the lamp provided by the 

manufacturer is given in Fig.3.16(a). The output spectrum and power of the light beam 

generated by the lamp was analysed using a spectrum analyser (LabSpec 4 Bench 

Benchtop Analyzer, Malvaern Panalytical, UK) and a power meter (13PEM001 

Broadband Power/Energy Meter, Melles Griot, IDEX Health & Science LLC, WA, USA) 

without an optical filter (full beam) and with the three optical filters mentioned 

previously.  

Fig. 3.16(b) shows the spectra under the three optical filters normalized to the full 

spectrum values. The normalized spectral outputs for the optical filters confirmd a close 

match with spectral data provided by the supplier. The light power output measured at 

the sample holder at different lamp voltages under different filters is shown in Fig. 

3.16(c). The power output of the lamp was observed to be non-linear to the supply 

voltage (V), which is also explined by theory, where power output P is given by P = V2/R, 

where R is the resistance of the lamp which varies based on the filament temperature. 



Chapter 3  Materials and Methods  

92 
 

It was important to study the uniformity of the light distribution incident at the sample 

holder, to ascertain how variations in the positioning of the device might affect the 

measurements. A photodiode of the type VEMD 6060×1 was positioned on each grid 

point (the grid had 1mm × 1mm divisions) to map the light intensity at the sample holder 

as given below in Table 3.4.  

 
 

Normalized ISC measured (%) 

Area 

(mm) 

No diffuser Diffuser close to 

the sample 

Diffuser between the 

lens and the bulb 

Avg CV Avg CV Avg CV 

9 96.0 2.88 96.9 1.67 99.7 0.99 

25 91.3 5.62 94.4 3.38 97.8 2.64 

49 87.0 7.71 92.1 4.65 96.1 3.19 

81 82.5 10.4 88.4 7.42 94.3 4.41 

It was observed that the coefficient of variation of the measured current (ISC) was <1% 

within a 3 mm × 3mm square from the centre of the grid (Table 3.3) when the diffuser is 

b a 

Figure 3.16 – Optical test rig and light source settings. (a) Image of the optical test rig. (b) 

Manufacturers specification for the emission spectrum of the tungsten halogen lamp 

(Courtesy - Thorlabs Inc.). (c) Transmission spectra for different filters employed. (d) 

Relationship between supply voltage and optical output of the lamp through different light 

filters.  

Table 3.4 – Short-circuit current (ISC) variation measured at the sample holder of the optical test 

rig, without optical filters. Values given are normalized to the ISC measured at the centre point of 

the beam. 
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fixed between the bulb and the convex lens of the lamp. (Appendix 3 provides full details 

on this intensity analysis). 

3.3.2 Solar simulator 

The optoelectronic properties of solar cells vary depending on the incident light intensity 

and spectral distribution. Conducting experiments according to the standard test 

methods, using a standardised solar simulator, was crucial in order to obtain a realistic 

and comparable estimation of the behaviour of any type of solar cell or solar device. The 

solar textile was not intended for indoor applications hence tests were not conducted at 

light intensities observed indoors. In order to characterize the solar cells a solar simulator 

was sourced to provide repeatable, reliable and globally comparable input conditions. 

After considering a range of models available from different solar simulators 

manufacturers, a model (Fig. 3.17) with class ABA rating (Class A for spectral match, 

Class B for uniformity and class A for temporal stability) was selected (LSH-7320 ABA 

LED solar simulator, Newport Corporation,150 Long Beach Blvd., Stratford, CT 06615, 

USA) as the most suitable (fulfilling the minimum requirements) and cost effective (low 

maintenance and running costs) option. Complete specification of the solar simulator 

and the calibration certificate is provided in the Annex 8.  

 

Figure 3.17 – A photograph of the solar simulator employed in this research. (a) Image of 

the solar simulator in operation (b) spectral distribution and (c) spectral match of the 

incident light against the standard. (Courtesy – Newport Corporation, USA). 

b 

c 

a 
Solar 

simulator 

AM 1.5 G 

reference 

Upper limit 

Lower limit 

Solar 

simulator 



Chapter 3  Materials and Methods  

94 
 

Unless specified otherwise characterisations were conducted under one sun (1000 W/m2) 

intensity 1.5 AM globla solar spetrum settings. The intesity variation of the beam of light 

at the measurment plane was evaluated using the VEMD 6060x1 photodiode, using a 

similar procedure employed for the optical test rig (full details of provided in Appendix 

4). The results confirmed that the intensity distribution within the 5 mm × 5 mm area at 

the centre of the beam is < 0.3% (Table 3.5). 

 

 

 

 

An enclosure was used to isolate the sample from external lighting. A feedback-

controlled cooling system (similar to the system used in the optical test-rig, prepared 

using identical components) was built to maintain the test sample within ±2°C of a set 

temperature. The Peltier cooler and the cooling fan was controlled by a temperature 

controller based on the feedback given by a thermocouple positioned on top of the 

temperature-controlled platform as shown in Fig. 3.18.  

 

Measured area (cm2) Normalized ISC measured 

Average CV 

9 99.867 0.205 

16 99.69 0.311 

25 99.708 0.274 

Table 3.5 – Short-circuit current (ISC) variation measured under the of the beam of light 

generated by the solar simulator at one sun intensity. Values given are normalized to the ISC 

measured at the centre point of the beam. 

Figure 3.18 – Photographs of the enclosure employed for conducting measurements 

using solar simulator. 
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3.3.3 Conducting characterisations under different angles of incident light  

It was important to understand how the incident angle of light affected the performance 

of the embedded photocells. Incident angle of light varies throughout the day for a 

conventional fixed solar panel. The incident light intensity on a fixed flat panel solar cell 

varies with the cosine of the angle of tilt (Balenzategui and Chenlo, 2005). Fresnel 

reflection (caused by the partial reflection at the cell-air boundary) also varies with the 

incident angle. Solar tracking devices are used to align the solar panels to the direction 

of the moving sun that minimized the effect of change in incident angle. When it comes 

to wearable or mobile applications the incident angle is unpredictable, and it is 

impracticable to envision any form of tracking mechanism, unless the device is 

stationery for relative longer periods. Therefore, a desirable feature of a wearable or 

mobile solar energy harvesting system would be uniformity of performance at different 

incident angles. For conducting measurements under different incident angles using the 

optical test rig, the sample holder was modified with a Teflon tube affixed with a 

goniometer, with 5o angle divisions as shown in Fig.3.19. An opening was cut in the 

Teflon tube as shown in Fig 3.19(a)) to allow the inserted photo cell embedded E-yarn to 

be fully exposed to light between approximately -100° to 100° incident angles.   

 

 

To conduct measurements when light was exposed from the front side (front half circle), 

the photocell E-yarn was positioned inside of the tube of the sample mount, to have the 

photo-active side of the photo cell facing the centre of the opening in the tube. Exposure 

from behind the photoactive side of the photocell E-yarn (back half circle) was simulated 

by positioning the back side of the photocell E-yarn facing the opening in the tube. The 

Figure 3.19 – Photographs of the modified sample holder to conduct measurements at 

different incident angles using the optical test rig. (a) Teflon tube attached to the goniometer. 

(b) Front and (c) back views of the sample holder after the modification. 

 

a b c 
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photocell E-yarn was secured to the Teflon tube at its the top and bottom ends and 

inserted inside of the sample holder. The incident angle was changed in steps of 5° to the 

required value by rotating the dial before recording the ISC/VOC measurements. 

 

 

Similarly, a rotary sample holder was devised to conduct measurements at different 

incident angles under the solar simulator (Fig 3.20). The rotary axis of the sample holder 

was held horizontal by an aluminium pole. A goniometer with 5° angle divisions was 

fixed to the rotary sample holder to measure the angle relative to the beam of light from 

the solar simulator. 

 

3.3.4 Generating characteristic curves for photocells 

Construction of the characteristic curves (IV and power curves) for the photocells were 

conducted using a fixed resistor array network (Fig. 3.21) with a resistance range from 1 

Ω to 100 MΩ utilised. To generate data points, photocells were exposed to the light 

source (optical test rig or solar simulator) and then the Cu wires were attached to the 

resistor network. The voltages across the resistor array were measured for each data 

point under the selected incident light condition. Resistance value across the resistance 

array was also recorded for each data point to include any changes in the contact 

resistance of the network. The current through the resistor network was calculated using 

  

 

Figure 3.20 – (a) The rotary sample holder devised measurements at different incident angles 

using the solar simulator. Solar-E-yarn positioned on the sample holder (b) at varying incident 

angles in the radial direction and (c) at varying incident angles in the longitudinal direction. 
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the Ohm’s law and the current-voltage (I-V) and power-voltage (P-V) curves were 

generated based on the measured voltages and calculated current values. 

3.3.5 Data analysis 

In general, for each data point reported in this thesis minimum of five measurements 

were conducted on five test specimen and the average value has been presented. In some 

instances (e.g. for evaluating the solar fabric demonstrator) five repeat measurements 

were conducted on the same test specimen. Standard deviation (SD) of the five 

measurements was given for each data point to indicate the spread of measurements, 

which is graphically represented as error bars. Any exception to the above is explicitly 

mentioned under the relevant experimental sections.  

3.4 Summary 

This chapter reports the types of materials and methods followed to create the photocell 

embedded E-yarn specimens studied in this research. This includes the instruments and 

apparatus employed to created electrical connections (soldered copper wires), resin 

micro-pods and final E-yarns. The chapter also details the experimental procedures 

followed in order to characterize the opto-electrical performance of the photocell E-yarns 

and to ensure repeatability of the test results. Here, the equipment and apparatus 

Figure 3.21 – (a) Circuit diagram and (b)photograph of the fixed resistor network used as the 

variable resistor for developing IV curves. 

 

a b 
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employed to generate repeatable lighting (optical test rig and solar simulator) and test 

conditions (temperature control system and dark enclosures) were outlined to ensure 

repeatability of measurements. The general methods and procedures mentioned in this 

chapter may be modified in specific ways to conduct detailed characterisations (e.g. to 

evaluate the effect of change in temperature and liquid moisture), which will be 

elaborated in the relevant experimental sections in the following chapters of this thesis.  

 

 



Chapter 4  Photodiode Embedded Electronic Yarns  

99 
 

 

 

 

 

Chapter 4 

Photodiode Embedded 

Electronic Yarns  





Chapter 4  Photodiode Embedded Electronic Yarns  

  101 
 

4.1  Introduction 

In the first phase of this research, PDs were considered for the proof-of-concept of a solar 

energy harvesting textile yarn, as they were a readily available alternative to miniature 

solar cells. Photodiodes (PDs) are semiconductor based opto-electronic sensing devices 

that follow similar operating principles as solar cells. For typical applications, PDs can 

be connected under forward bias (photovoltaic mode) or reverse bias (photoconductive 

mode) (Yotter and Wilson, 2003). They are extensively used in a number of commercial 

products including cameras, medical devices, safety equipment, optical communication 

devices, position sensors, bar code scanners, automotive sensors, and surveying 

instruments (Yotter and Wilson, 2003; Farahi, 2014). Their wide-spread employment has 

resulted in the development of small, low-cost PD devices. PDs also have been employed 

for energy harvesting in the literature (Cemine, Sarmiento and Blanca, 2008; Moayeri 

Pour, Benyhesan and Leon-Salas, 2014).   

The packaging of the photoactive chip of a typical SMD type photodiode is designed for 

a shorter response time and high precision. Therefore, the size of the photoactive area of 

the device is only a fraction of the total device area: This results in a maximum power 

density significantly lower than that of a solar cell. Nevertheless, the knowledge 

generated by creating the photodiode embedded yarns (PDEY) would be directly 

applicable for a new branch of studies into optical sensing and solar energy harvesting 

E-yarns, which had not previously been explored. Finally, the possibility of enhancing 

the photovoltaic output of the PDEY by impregnating the fibrous sheath with a clear 

polymer resin was evaluated. 

The use of the E-yarn technology to embed optically sensitive electronic devices, such as 

a photodiode or a solar cell, within the core of a textile yarn could have implications on 

how the embedded device would respond to the incident light. In this chapter an in-

depth study on how the individual components of the E-yarn (the resin micro-pod and 

the fibrous sheath) affect the photovoltaic output of the embedded device was studied 

using miniature photodiodes. The study provided a close representation of how E-yarn 

embedded solar cells would respond to incident light, in comparison to a maiden (non-

embedded) solar cell, which was critical in assessing the technical viability of this 

approach for creating solar energy harvesting textiles.  
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It was understood that the resin micro-pod (RMP) could interfere with the incident light 

depending on the geometry and optical properties of the resin material of the micro-pod. 

These effects may have significant implications on the intensity of light received by the 

photoactive area of the embedded photocell (the term photocell was generally used to 

represent for photoactive chip of the photodiode or solar cell), and hence the electrical 

output of the device. In order to theoretically estimate the electrical output of the micro-

pod embedded photonic devices, in relation to the optical properties and geometry of 

the micro-pod, a generalized mathematical model is presented in this chapter. An 

empirical study was conducted to validate the model based on a cylindrical micro-pod 

shape. Subsequently, the experimental data from the empirical study was compared 

against the estimated values from the mathematical model (simplified for a cylindrical 

micro-pod shape) to confirm the validity of the model within the given boundary 

conditions. The textile fibres of the packing yarns would scatter the incident light and 

have a significant influence on the amount of light received by the RMP, and eventually 

the photoactive surface of the embedded device, which would determine the 

photovoltaic output of the photocell E-yarn. The empirical study further investigated the 

individual and cumulative effects of the packing fibres and a knit-braid structure used 

to consolidate the packing fibres on the electrical output of the PDEY.  

The results presented in this chapter provide a proof-of-concept for a solar energy 

harvesting textile yarn and pave the way to the next stage of the research where solar 

cells will be embedded with yarns. The PDEYs discussed in this chapter reappear in the 

chapters 5 and 6 where they were subjected to further tests along with the solar cell 

embedded yarns. The work presented in this chapter is previously featured in a 

publication titled ‘Photodiodes embedded within electronic textiles’ by the author 

(author list: Achala Satharasinghe, Theodore Hughes-Riley and Tilak Dias) 

(Satharasinghe, Hughes-Riley and Dias, 2018), which discussed the application of the 

PDEY for sensing applications, although these results are equally important and relevant 

for energy harvesting applications.   
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4.2 Modelling the effect of the micro-pod encapsulation  

In order to understand and characterise the effects of the resin micro-pod on the opto-

electronic performance of the embedded device a generalized mathematical model was 

proposed (Fig. 4.1). 

 

A generalized mathematical model was proposed to estimate the effects of the geometry 

of the cylindrical RMP (selected due to the cylindrical geometry of fibres and yarns), 

optical properties of the resin, and incident lighting conditions on photovoltaic 

performance of the photocells. The model was derived based on geometrical optics 

(Keating, 2002; Malacara-Hernández and Malacara-Hernández, 2013) and the 

fundamentals of photovoltaics (Cemine, Sarmiento and Blanca, 2008; Markvart and 

Castañer, 2012; Vincent et al., 2015). First, a ray tracing model was defined based on a 

cylindrical RMP with uniform cross section. The ray-tracing model estimated the light 

intensity at a photoactive plane defined inside of the RMP. The light intensity was 

governed by the shape of the RMP and the optical properties of the micro-pod material 

as explained by the fundamental laws of refraction, reflection and absorption of light. 

Based on the estimated light intensity at the photoactive plane and the photovoltaic 

performance of a non-embedded photocells, the short-circuit current (ISC) and open-

circuit voltage (VOC) of a photocell embedded inside the RMP could be predicted. 

This generalized model can be extended to incorporate RMPs with non-uniform three-

dimensional features (e.g. hemispherical) which were not within the scope of this work. 

• Geometric Optics 
• Refraction, 

Reflection and 
absorption of 
light 

Ray Tracing 
Model 

• Effects of level of 
light irradiance on 
Voc and ISC 

• Characteristic IV 
curve for each 
device. 

Fundamentals of 
photovoltaics 

• ISC/VOC values 
relative to a non-
encapsulated 
device under same 
light conditions 

Predictive model 
for ISC and VOC  

Figure 4.1 – Predictive model development based on ray tracing model and 

fundamentals of photovoltaics. 
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The generalized model was simplified to represent the experimental scenarios of interest 

in this work, with experimental results compared against the model-estimated results.  

4.2.1 Generalized ray-tracing model 

A right-angled cylinder (with its bases given by a function y=g(x) ) representing the 

RMP was defined with respect to a three-axis rectangular co-ordinate system (XYZ) as 

given in Fig. 4.2(a). The intersection between the cylindrical RMP and a plane orthogonal 

to the bases of the cylinder (parallel to the XZ plane) was defined as the plane of 

measurement.  

A single ray of incident light can be considered, as illustrated in Fig. 4.2(b). The ray had 

an intensity 𝐸i and an angle γ to the vertical axis, which met the boundary of the 

cylindrical micro-pod defined by y=g(x) at co-ordinates 𝑥0,𝑦0. A fraction of the incident 

ray was reflected (𝐸𝑟𝑚) at the boundary surface and the remaining fraction (𝐸p) of light 

was refracted into the RMP. The refracted ray was partially absorbed (attenuated) 

during its travel inside of the RMP before reaching the plane of measurement (𝐸t). 

Based on the selected geometry, Snell’s law for refraction was used to determine the 

intersection point of the refracted ray and the photoactive plane as given in equation (1).

  

𝑥1 = 𝑥 − ⌊
𝑔(𝑥)−ℎ

tanβ
⌋       (1) 

Where βwas the angle between the transmitted ray 𝐸𝑡 and the photoactive plane, which 

was determined by incident angle of the ray (γ), the tangent angle at the boundary 

Figure 4.2 – Development of the ray tracing model. (a) Defining the micro-pod geometry 

and plane of measurement. (b) Illustration of the ray tracing model for a cross section of 

the micro-pod. The plane of measurement is indicated by green colour. 

a b 
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surface (𝑑𝑦/𝑑𝑥 at 𝑥0, 𝑦0) and the refractive index of the micro-pod material (𝑛𝑟); ℎ was 

the distance between X-axis and the plane of measurement. 

A fraction of the ray (𝐸𝑟𝑐) was partially reflected at the plane of measurement, and the 

residual ray (𝐸𝑐) was transmitted to the photocell. 

Based on the geometry of the RMP and theory of light absorption, the light 

transmitted(Keating, 2002) to the photocell at (𝑥1, ℎ) was given by equation (2). 

𝐸𝑐 = 𝐸𝑖 ∗ (1 − 𝑘𝑚)(1 − 𝑘𝑐) ∗ 10−µ∗([𝑔
(𝑥𝑜)−ℎ] cosec𝛽       (2) 

where µ was the decadic attenuation coefficient for the micro-pod material, 𝑘𝑚 was the 

fraction of light reflected at the air-micro-pod boundary surface and 𝑘𝑐 was the fraction 

of light reflected at the micro-pod-measurement plane respectively. 𝑘𝑚and 𝑘𝑐were 

derived using Fresnel equation (Keating, 2002) as shown below. 

𝑘𝑚 = (
1

2
) ∗ {[

cos𝜃−𝑛𝑟√1−(sin 𝜃/𝑛𝑟)
2

cos𝜃+𝑛𝑟√1−(sin 𝜃/𝑛𝑟)
2
]
2

+ [
𝑛𝑟 cos𝜃−√1−(sin𝜃/𝑛𝑟)

2

𝑛𝑟 cos𝜃+√1−(sin𝜃/𝑛𝑟)
2
]
2

}   (3.1)                   

𝑘𝑐 = (
1

2
) ∗ {[

𝑛𝑟sin𝛽−𝑛𝑐√1−(
𝑛𝑟
𝑛𝑐
cos𝛽)2

𝑛𝑟sin𝛽+𝑛𝑐√1−(
𝑛𝑟
𝑛𝑐
cos𝛽)2

]

2

+ [
𝑛𝑝sin𝛽−𝑛𝑟√1−(

𝑛𝑟
𝑛𝑐
cos𝛽)2

𝑛𝑐sin𝛽+𝑛𝑟√1−(
𝑛𝑟
𝑛𝑐
cos𝛽)2

]

2

}    (3.2)        

Here, 𝜃 was the angle made by the incident ray to the normal of 𝑦 = 𝑔(𝑥) at 𝑥0, 𝑦0 

𝛽𝑥1, ℎand 𝑛𝑐 was the refractive index of the photoactive surface. 

The average light intensity (𝐸𝐴𝑉𝐺) between two points (𝑥𝑎 , ℎ) and  (𝑥𝑏, ℎ) on the plane of 

measurement was given by: 

𝐸𝐴𝑣𝑔 =
∫ 𝐸𝑐 sin𝛽
𝑥𝑏
𝑥𝑎

𝑑𝑥

𝑥𝑏−𝑥𝑎
      (4) 

 

4.2.2 Deriving the electrical parameters using the ray tracing model 

For a photodiode with a rectangular photo-active area embedded inside of an RMP, that 

has a width equal to the measurement plane discussed in the above ray tracing model, 

the irradiance intensity on the photodiode 𝐸 (synonymous to the term 𝐸𝐴𝑉𝐺  used in the 

ray tracing model) can be estimated.  
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The relationships between short-circuit current and irradiance intensity is linear for a 

photocell (Chegaar et al., 2013). Therefore, the short circuit current for an arbitrary 

irradiance intensity level 𝐸 can be given based on a baseline irradiance intensity 𝐸𝑛and 

the resultant short circuit current 𝐼𝑠𝑐𝑛 as: 

𝐼𝑠𝑐 = 𝐼𝑠𝑐𝑛 (
𝐸

𝐸𝑛
)           (5.1) 

For a given irradiance intensity, open-circuit voltage 𝑉𝑜𝑐 can be given based on a baseline 

irradiance intensity 𝐸𝑛and the resultant open circuit voltage 𝑉𝑜𝑐𝑛as: 

𝑉𝑜𝑐 = 𝑉𝑜𝑐𝑛 +
𝑛𝑘𝑇

𝑞
 ln (

𝐸

𝐸𝑛
)         (5.2) 

Where 𝑛, 𝑘, 𝑞 and 𝑇 represent the ideality factor for the photocell, Boltzmann Constant, 

electron charge and absolute temperature respectively (Chegaar et al., 2013). 

The performance of a soldered PD without RMP or further modifications was considered 

the baseline (𝐸𝑛, 𝐼𝑠𝑐𝑛, 𝑉𝑜𝑐𝑛) for generating theoretically estimated ISC and VOC values. The 

derived model was subsequently validated experimentally to provide a generalised 

solution for the encapsulation of optical devices within similar micro-pods. Full details 

of the mathematical model are provided in Appendix 5. 

4.2.3 Simplification of the generalized ray tracing mathematical model 

In order to generate theoretical values to compare with the experimental data, the 

generalized mathematical model was simplified to a cylindrical RMP with a right-angled 

circular base as illustrated in Fig. 4.3(a), where the diameter of the cylinder was R. The 

centre of the cylinder in the circular plane was taken as the origin  and the boundary 

surface of the RMP was given by equation (6.1).  

𝑦 = 𝑔(𝑥) = √(𝑅2 − 𝑥2)         (6.1) 

The incident beam of light was normal to the photoactive plane therefore γ = 0. Based on 

the defined circular geometry. 

𝜃 = sin−1 (
𝑥

𝑅
)             (6.2) 

𝛽 = sin−1 {
√(𝑅2−𝑥2)(𝑛𝑟2𝑅2−𝑥2)+𝑥

2

𝑛𝑟𝑅2
}         (6.3) 
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The estimated light intensity distribution at the photoactive plane for PD1 embedded 

inside of cylindrical RMPs (with circular bases) of different diameters is shown in Fig. 

4.3(b).  

Equations (6.1) - (6.3) were used to simplify the generalized ray tracing model given by 

equations (4.1) - (4.4) to a micro-pod with circular cross section. To arrive at the estimated 

ISC and VOC values equations (5.1) - (5.2) were substituted with the corresponding E, En, 

ISCN and VOCN values. The constant nkT/q was derived using the IV curves for the non-

embedded devices. 

 

4.2.4 Application of the mathematical model to photodiodes 

 

The photodiodes employed in the study had an epoxy encapsulation window for the 

protection of the photocell. For simplicity in calculations when applying the 

mathematical model, the PDs were considered to have an epoxy window with negligible 

thickness although the actual thickness of this layer was ~ 0.5 mm. Therefore, the use of 

the simplified model for the PD with negligible epoxy window thickness in the above 

developed mathematical model needed to be justified. The calculation below verifies 

that when the effects of optical reflection, refraction and absorption were considered, 

this simplification made an insignificant difference on the irradiance intensity at the 

photoactive plane for all scenarios discussed within this chapter. 

Figure 4.3 – Simplification of the ray-tracing model for a right-circular cylindrical micro-

pod. (a) Ray tracing model for a right-circular cylindrical micro-pod. (b) Intensity variation 

at the measurements plane estimated using the simplified model, for micro-pods with different 

diameters.   

a b 

5.8 mm 
4.8 mm 
3.8 mm 

2.7 mm 
1.9 mm 
1.5 mm 
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Before encapsulation 

When the actual PD and model defined PD configurations were compared before 

encapsulation, the loss in transmission due to Fresnel reflection (partial reflectance at 

material interfaces) was the same due to the same acrylic-epoxy material interfaces 

present in both the cases. The reduction of intensity due to absorption of light by the 

epoxy material for actual PD configuration is given as: 

%𝑜𝑝𝑡𝑖𝑐𝑎𝑙𝑎𝑏𝑠𝑜𝑟𝑝𝑡𝑖𝑜𝑛𝑏𝑦𝑡ℎ𝑒𝑒𝑝𝑜𝑥𝑦𝑙𝑎𝑦𝑒𝑟𝑤𝑖𝑡ℎ0.5𝑚𝑚𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠

=  (1 − 10−(.5𝑥0.0001)) ∗ 100 = 0.0115% 

The model-defined configuration only had a fraction of the above loss due to the thinness 

of the epoxy layer. 

After encapsulation 

If a ray which passes the air-acrylic resin interface, enters the acrylic material, reaching 

an edge of the photoactive material is considered, calculations show that the ray reaches 

Epoxy  

window 

Acrylic- 

Epoxy 

interface  

window 

Figure 4.4 - Comparison photodiode (PD) configurations. (a) Actual PD before encapsulation. (b) 

Model defined PD before encapsulation. (c) Actual PD after encapsulation. (d) Model defined PD 

after encapsulation. 
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the acrylic material at an angle no more than 10° to the vertical axis, for all the scenarios 

discussed in this thesis for both PD types. Both the rays shown in Fig 4.4(c) and Fig 4.4(d) 

cross the same material interfaces, therefore the reduction in transmittance due to 

Fresnel reflectance is the same. Since the epoxy layer in the simplified consideration is 

very thin, the effect of refraction can be neglected.  

From Snell’s law the angle of a transmitted ray into the epoxy material is given by θ as 

below. 

1.51 sin(10°) = 1.55 sin𝛳𝛳 = 9.74° 

The deflection (𝑑) of the incident ray due to refraction within the PD can be calculated 

as below for an epoxy layer thickness of 0.5 mm (the actual epoxy layer thicknesses of 

PDs are less 0.5 mm). 

𝑑 = 0.5(tan10° − tan 9.74°)𝑑 = 0.00234𝑚𝑚 

This deflection was negligible compared to the width (0.92 mm) of the photoactive 

material (less than 0.25%) of the photo cell. Additionally, similar attenuation coefficients 

for the acrylic and epoxy materials resulted in a negligible difference in losses due to 

optical absorption. 

Based on the above calculations, it can be concluded that the physical differences 

between the actual PDs and simplified PD configuration used for estimations had a 

negligible difference on light intensity calculated at the photoactive plane. 

4.3 Empirical study on the effect of resin micro-pod on photodiode performance 

Experiments were conducted using two types of commercial surface mount device 

(SMD) silicon P-I-N type PDs (TEMD7000x1 and VEMD6060x1 from Vishay 

Intertechnology Inc., Malvern, PA, USA), hereafter referred to as PD1 and PD2 

respectively. The effect of RMP size, resin type, position of the PD inside of the RMP, 

and the fibrous sheath on short circuit current (ISC) and open-circuit voltage (VOC) of the 

PDs in photovoltaic mode (zero bias) (Deen and Basu, 2012; Saito, 2012) were 

experimentally determined.  
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Fig. 4.5 depicts typical characteristic curves (current-voltage and power-voltage) for the 

two PD types, generated under the optical test-rig at base line test conditions produced 

by supplying a 12 V/0.89 A input to the lamp and without using light filters along with 

the corresponding fill factors (FF) of and ideality factors. PD2 had a larger area to 

perimeter ratio, and showed a ~13% higher fill factor and a lower ideality factor 

compared to PD1, this was possibly due to lower edge recombination of charge carriers 

(Fell et al., 2018). 

4.3.1 Variation analysis for TEMD 7000x01 before and after encapsulating inside 

RMPs.  

Thirty samples created using PD1 were tested using the optical test rig under baseline 

test conditions, with ISC and VOC recorded. The soldered PDs showed an average, 

standard deviation (SD) and co-efficient of variation (CV) of 12.87 µA, 1.14 µA and 8.86 

% for ISC (Fig. 4.6(a)) and 0.381 V, 0.0045 V and 1.18 % for VOC values (Fig. 4.6(b)).   

Twenty of the thirty soldered PDs were randomly selected and encapsulated inside of 

cylindrical RMPs with a ~2.7mm diameter using the Dymax 9001E-V3.5 acrylated 

urethane resin (Dymax, 9001E-V3.5, Dymax Corporation, Torrington, CT, USA; this 

resin was used throughout this work unless otherwise specified). The PDs were 

encapsulated at the lowest possible level of the resultant RMP. The encapsulated 

samples had average, SD and CV values of 23.20 µA, 1.88 and 8.12 % for ISC (Fig. 4.6(a)) 

and 0.4101 V, 0.0040 and 0.97 % for VOC (Fig. 4.6(b)). From these results, it was clear that 

there was a significant increase in ISC and VOC values after the encapsulation, which 

Figure. 4.5 - Characteristic curves for the two photodiode (PD) types employed in the 

experiments. (a) TEMD 700001 (PD1).  (e) VEMD 606001(PD2). 

Current-voltage Power-voltage 

FF=0.61, n=2.15 FF=0.69, n=1.81 
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provided evidence of a light concentrator effect of the RMP. There was a variation in the 

ISC values before the encapsulation process, which remained unaltered after the 

encapsulation, indicating that no measurable variation was introduced to the ISC values 

by the encapsulation process. These variations were within the manufacturer’s 

specifications and therefore strict quality checking was not considered a requirement. 

4.3.2 Effect of micro-pod diameter  

Sets of PD1s soldered onto fine copper wires were encapsulated with 1.5 mm, 1.9 mm, 

2.7 mm, 3.8 mm, 4.8 mm and 5.8 mm diameter RMPs using the clear acrylated urethane 

resin. Similarly, sets of PD2s were soldered onto fine copper interconnects and were then 

encapsulated creating PD2s encapsulated within RMPs with 2.7 mm, 3.8 mm, 4.8 mm 

and 5.8 mm diameters. A 5.8 mm outer diameter RMP would produce a final E-yarn that 

was significantly larger than desirable for a wearable application, therefore larger RMP 

sizes were not investigated. The PDs were positioned at the bottom of the resultant RMP 

(hereafter referred to as the standard PD configuration): Therefore, the exact depth of 

the PD within the RMP also varied with the micro-pod diameter as depicted in Appendix 

6. 

The ISC and VOC values were recorded and are illustrated in Fig. 4.7, along with the values 

predicted by the mathematical model. Both the ISC and VOC values for PD1 showed an 

increase in values up to a 4 mm diameter RMP, which plateaued afterwards. In the case 

Figure 4.6 - Variation analysis of TEMD 70001 Photodiode before and after encapsulation 

inside 2.7mm micro-pods in standard PD configuration. (a) Short circuit current. (b) Open 

circuit voltage. 

After encapsulation Before encapsulation 
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of PD2, despite the increase in ISC and VOC values, the plateau effect was indistinct for the 

RMP sizes tested for this experiment.  

 

 

Fig. 4.8 showed ISC and VOC measurements under three different optical filters 

normalized to the corresponding measurement without an optical filter for PD1 and 

PD2. These values remained constant for both the PDs before and after encapsulation 

inside RMPs of different diameters. This indicated that the spectral band of the light 

received by the photoactive chip of the PD did not change with the diameter of the RMP. 

This was an important result as different spectral wavelengths could be relevant to 

different use cases. The incident light spectrum may vary based on the ambient 

conditions, and in some instances the available light source may not be direct sunlight 

(e.g. artificial lighting that has a different light spectrum). Also, the fibre sheath and 

micro-pod could take different colours based on the aesthetic requirements that act as a 

light filter. 

a b

dc

Figure 4.7 - Effect of micro-pod diameter on short-circuit current (ISC) and open-circuit 

voltage (VOC) for photodiodes (PDs) embedded in the standard configuration under different 

optical filters. (a) ISC compared to RMP diameter for TEMD 70001. (b) ISC compared to 

RMP diameter for VEMD 60601. (c) VOC compared to RMP diameter for TEMD 70001. 

(d) VOC compared to RMP diameter for VEMD 60601. In all the cases the first data point 

of each data series (demarcated using a marker with a black border) indicated the ISC and VOC 

values against the width of the photoactive area for non-encapsulated PDs. 
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An estimation of ISC and VOC values were calculated using the mathematical model and 

compared with the experimental data points, with a mean average percentage error 

(MAPE) subsequently calculated. The mathematical model estimated values exhibited a 

close fit with the experimental data with MAPEs of 7.38% for ISC and 1.40% for VOC for 

PD1 and 8.13% for ISC and 0.43% for VOC for PD2, considering all RMP sizes. When RMP 

sizes up to 4.8 mm were considered for PD2, the MAPEs improved to 5.57% for ISC and 

0.33% for VOC indicating the better fit of the model within these boundary conditions. 

Therefore, it can be concluded that the developed mathematical model was suitable for 

predicting ISC and VOC values for both PD types within the given error percentages, 

providing a useful general solution.  

4.3.3 Effect of the depth of positioning the photodiode inside of the resin micro-pod 

PDs were embedded inside of 2.7 mm diameter RMPs at three depth levels (the standard 

PD configuration of extreme bottom, at the extreme top, and at the centre). Microscopic 

images of the RMPs confirmed that the level of accuracy of the PDs positioning inside 

RMPs to be within ~ ±5% (detailed in Appendix 6). The experimental results for ISC and 

VOC are presented against the depth to RMP diameter ratio (hereafter referred to as DDR) 

in Fig. 4.8 along with predicted values from the mathematical model for different RMP 

diameters (1.5 mm, 2.7 mm, and 5.8 mm for PD1 and 2.7 mm, and 5.8 mm for PD2).  

a b

Figure 4.8 - (a) The ratio between ISC with and without optical filter compared to the micro-

pod diameter. (b) The ratio between VOC with and without optical filter compared to the micro-

pod diameter. In all the cases, first data point of each data series (demarcated with a black 

border) indicate the ISC and VOC values against the width of the photoactive area for non-

encapsulated photodiodes (PD1-TEMD 700001, PD2 - VEMD 606001). 

PD1 with 304-785 nm band filter

PD1 with 495 nm long-pass filter

PD1 with 495 nm long-pass filter

PD2 with 304-785 nm band filter

PD2 with 495 nm long-pass filter

PD2 with 495 nm long-pass filter780  780  
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The results (Fig. 4.9) confirmed that the depth of the photocell within the RMP was a key 

determining factor in the opto-electronic performance. The mathematical model 

predicted values showed a good fit with the experimental data with a MAPE of 7.41% 

and 6.25% for ISC and 1.36% and 0.80% for VOC for PD1 and PD2 respectively. This further 

confirmed the utility of the mathematical model for accurate predictions of ISC and VOC 

values.  

 

 

Based on the predicted values, it was clear that the PD diameter did not have a direct 

effect on the ISC and VOC for up to a ~0.75 DDR for PD1. The model predicted that for 

PD1, a 1.5 mm diameter RMP would yield maximum ISC and VOC at around ~0.85 DDR. 

In the case of PD2, the 2.7 mm diameter RMPs generated the maximum values for ISC 

and VOC, at a DDR of around 0.87. For PD2, it was not possible to fabricate 1.5 mm RMPs 

2.7 mm diameter - Experimental

1.5 mm diameter - Experimental

5.8 mm diameter - Experimental

2.7 mm diameter - Estimated

1.5 mm diameter - Estimated

5.8 mm diameter - Estimated

Figure 4.9 - Effect of depth on short-circuit current (ISC) and open-circuit voltage (VOC) for 

photodiode embedded resin micro-pods with different diameters. Experimental and 

mathematical model estimated values given for (a) ISC compared to depth/diameter ratio for 

TEMD 70001, (b) VOC against depth/diameter ratio for TEMD 70001, (c) ISC against 

depth/diameter ratio for VEMD 60601 and (d) VOC against depth/diameter ratio for VEMD 

60601. Measurements conducted using the optical test rig without optical filters.  

 



Chapter 4  Photodiode Embedded Electronic Yarns  

  115 
 

since the SMD packaging of PD2 was 2.0 mm wide. Nevertheless, the mathematical 

model predicted that the ISC and VOC values for the photoactive chip (~0.9mm wide) of 

the PD2 embedded inside of a 1.5 mm RMP would reach a maximum value at around a 

DDR of 0.65. These values were significantly lower than the corresponding maximum 

values of PD2 embedded within 2.7 mm and 5.8 mm diameter RMPs.  

These experimental results along with the mathematical model estimations indicated 

that DDR was a key parameter when optimising opto-electronic characteristic: DDR 

showed a greater direct influence on the PD performance than the absolute values of 

depth or the diameter of the micro-pods. In general, higher DDRs yielded higher values 

for ISC and VOC. Nevertheless, in certain cases there existed peak ISC and VOC points 

beyond which a marginal decrease in ISC and VOC was observed. This was attributed to 

the diversion of rays away from the photoactive area of the PD and an increase in the 

path length of the light inside the RMP (leading to greater light absorption). As 

mentioned previously, in practical scenarios, it was not always possible to achieve DDRs 

that yield the theoretical maximum ISC /VOC value due to the thickness and width of the 

PD.  

When the results for PD1 and PD2 were compared it was clear that the RMP diameters 

that realised the highest ISC/VOC values were different for each PD type. This was an 

indication that the width of the photoactive plane was also a key determining factor in 

selecting the size of the RMP. The RMP should be large enough to accommodate the 

photoactive device and there may exist a practical maximum RMP diameter value owing 

to the design constrains governed by the end applications and process parameters. It is 

important to examine how the ISC and VOC values behave within these limits to determine 

the most suitable RMP diameter. 

4.3.4 Effect of the micro-pod material 

The effects of the material properties of elements used in optical systems are well 

understood: They can define how electromagnetic waves reflect, refract and get 

absorbed, for an optical element with a given geometry.  

Experiments were conducted using five different types of resins (including the standard 

resin) by embedding PD1 type within RMPs of 2.7 mm diameter (in the standard PD 

configuration). These resins had refractive indices ranging from 1.404 to 1.560 (this was 
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the widest range of refractive indices for a clear polymer resin readily available 

commercially). Except for the 9001 EV-3.5 and OP 29 which were UV curable acrylic 

resins, the other resin types used were room-temperature vulcanized (RTV) resins. 

Therefore, resin micro-pods using the RTV resins were prepared by letting the resin cure 

at an elevated temperature (~ 40°C) for ~4 hours after injecting the resins into a mould. 

All the resins tested have been utilised by the electronic industry and have been 

specifically developed for encapsulating and bonding electronic or optic devices. As the 

resultant RMPs exhibited different levels of shrinkages after UV curing, experimental 

results were normalized based on the diameter of the RMP produced with standard resin 

to provide comparable ISC and VOC values. The results were plotted against the refractive 

indices as depicted in Fig. 4.10. In addition, the mathematical model estimated ISC and 

VOC values were indicated in the same figures.   

The results indicated an overall increasing trend in ISC and VOC values with the increase 

in the refractive index. The silicone-based resin OPT 7020 yielded the lowest ISC while 

the optical grade acrylated urethane resin OP29 exhibited the highest ISC values, which 

was ~15% higher than the standard resin (9001 EV-3.5). Nevertheless, considering the 

proven suitability for electronic applications (better resistance to moisture and thermal 

cycling), lower hardness, and price the 9001 EV-3.5 resin was continued as the material 

used for preparing micro-pods in further work.  
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It was noteworthy that for the RMP geometries considered in this study, the refractive 

index had a significantly higher impact than the attenuation coefficient on the irradiance 

intensity measured at the photoactive plane. The refractive index governs the ray 

concentrating effects, while also defining the reflective losses (at material boundaries), 

which are significant in magnitude. As an example, in the case of a 2.7 mm diameter 

RMP made of the standard resin (1.51 refractive index and 0.0001 dB/mm attenuation 

coefficient), theoretical values for the percentage of light reflected at the surface of the 

RMP and the percentage absorbed by the RMP were ~4 % and less than 0.05 % 

respectively. The model-estimated values for each data point were calculated based on 

the assumption that all of the resins absorbed light in a similar way, which may not have 

been the case (Knoll, 2006), as detailed information on attenuation coefficient of all the 

resin-types was not forthcoming in the literature. When compared with the experimental 

data, the mathematical model exhibited a MAPE of 6.03 % and 1.44 % for ISC and VOC 

values respectively, which indicated a good fit.  

4.4 Photodiode embedded electronic yarns 

PD E-yarns (PDEY)s with PD1 and PD2 type devices were realized by encapsulating 

them inside of 2.7 mm diameter RMPs in the standard PD configuration and finally 
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Figure 4.10 - Effect of resin material type on short-circuit current (ISC) and open-circuit 

voltage (VOC) for photodiode embedded resin micro-pods. Experimental and mathematical 

model estimated values given for TEMD 70001 embedded inside 2.7mm diameter micro-

pod in the standard configuration. (a) ISC compared to refractive index. (b) VOC compared to 

refractive index. The blue line indicates the mathematical model predicted values with a 

decadic attenuation coefficient of 0.0001 dB/mm.  
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integrating them within a fibrous sheath (2.7 mm was the smallest RMP size that could 

be employed for both PD types) as depicted in Fig. 4.10. PDEYs with 1.5 mm diameter 

RMPs were prepared only using PD1 type devices.  

 

 

 

The structure of the PDEYs and images of the devices after each step in the fabrication 

process are given in Fig. 4.11 (a-g). The finalized PDEY had a maximum outer diameter 

of ~4.4 mm and a minimum diameter of ~4mm. 

Figure 4.11 – (a) Cross sectional illustration of photodiode embedded yarn. (b) Image of two 

photodiode embedded yarns (Thin yarn – TEMD 7000 embedded in 1.5mm micropod and in 2mm 

knit braid. Thick yarn – VEMD 6060 embedded in 5.8mm micro-pod and 6mm knit braid). 
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4.4.1 Performance of photodiode embedded E-yarns 

 

 

Figure 4.12 – Appearances of photodiode (PD) embedded yarns at different stages of the 

fabrication process. (a) Schematic cross-sectional view of PD devices, top view images of 

(b-d) TEMD 70001 type and (e-g) VEMD 60601 type PD devices after being soldered 

to copper wires, after being embedded inside of resin micro-pods, and in the completed 

yarn form respectively.  

E-  E-  

a b 

Figure 4.13 – Comparison of experimental (a)short-circuit current (ISC) and (b) open-

circuit voltage (VOC) TEMD 7000x1 and VEMD 6060x01 before encapsulation, after 

embedding inside resin micro-pods of 2.7mm diameter (standard resin in the standard PD 

configuration), and for the completed PD yarn (with the same RMP, sheathing fibres and 

knitted structure). Measurements conducted using the optical test rig at baseline 

conditions.  
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It was evident that the sheathing fibres and knit-braid structure had a negative effect on 

the ISC and VOC , due to the reduction of light flux on to the RMP caused by scattering 

(Aliaga et al., 2017) and absorption (Pelton, 2002) of light by the fibres (see comparative 

results in Fig. 4.13. Nevertheless, the finished PDEY generated ISC and VOC values 

comparable to the original PDs. 

 

 

b c 

a 

Figure 4.14 – (a) Example current-voltage (IV) and power-voltage (PV) curves for one sample. 

(b) Maximum power (PMAX), and (c) fill factor (FF) for TEMD 70001 photodiode (PD) 

devices at different stages of the PD E-yarn (PDEY) fabrication process based on five IV and 

PV curves. Resin micro-pod (RMP) diameter 2.7 mm and yarn thickness was 4mm.  
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A further analysis was conducted for PD1 by generating I-V and P-V under the standard 

test conditions using the optical test rig at different stages of the PDEY fabrication 

process (Fig 4.14). The maximum power output (PMAX) and FF (fill factor) were estimated 

using the data from Fig. 4.14(a) showing example I-V and P-V curves for one sample and 

derived PMAX and FF values based on five IV and PV curves in Fig. 4.14(b-c).  

The results clearly show the positive effects of the RMP on the power output, and 

subsequent reduction in power output due to the fibrous sheath. Nevertheless, in 

comparison to the un-embedded device, the PDEY showed no significant change in PMAX, 

suggesting that the micro-pod and the fibrous sheath had approximately equal but 

opposite effect on the power density at the photoactive area of the PD. 

 

4.4.2 Individual and combined effect of the components 

To understand the individual effects of the RMP, packing fibres and the knit-braided 

structure on the performance of the PDEYs, a series of PD1 embedded devices with 

different constructions were fabricated and ISC measurements were conducted, as shown 

in Fig. 4.14 below. These yarns had an RMP of 1.5 mm (with the PD in standard PD 

configuration) and final E-yarn thickness of ~2.0 mm. A 1.5 mm diameter RMP was used 

for these experiments, as this was the smallest possible yarn diameter achievable for PD1 

out of the RMP sizes tested. 

As discussed previously, the light concentrating effects of the RMP were evident with a 

23 % increase in ISC for PD with the RMP (Fig. 4.13 a (ii)) compared to PD only (Fig. 4.13 

a (i)). This was reduced by around 48% after covering the RMP with the knit-braided 

fibrous sheath (Fig. 4.13a (v)). When the E-yarn was made without packing fibres (Fig. 

4.13a (iv)) the ISC values were ~29% lower than the PD with the RMP values. When the 

E-yarn was made without a micro-pod (Fig. 4.13a (iii); the soldered PD was manually 

inserted into a knit-braid structure), the ISC values were 39% lower than for the PD only 

(Fig. 4.13a (i)) value, which showed the combined shading effect of the packing fibres 

and the knit-braid on the PD.  

These results provided a clear indication of the individual and combined effects of the 

RMP, packing fibres and the knit-braid structure on the amount of light transmitted to 

the photosensitive area of the PD. The knit-braid (linear density of the knit-braid 

~385mg/m) showed a higher shading effect than the packing fibres (linear density of 
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packing fibres ~70mg/m), due to the higher fibre density created by the loop structure of 

the knit. 

  

The shading effect of the composite fibrous sheath can be attributed to the amount of 

light scattered and absorbed (attenuated) by the fibres in the sheath. The knit-braid has 

a semi-open tubular structure (Fig. 4.13c) where a proportion of the light can be directly 

transferred to the interior (packing fibre layer) of the PD-E-yarn through the openings 

without scattering or absorption. The degree of openness of a knitted structure is defined 

by the porosity (Gong, 2015), which is dependent on the thickness of the yarns and loop 

structure of the knitted fabric. A proportion of the light that was received by the yarns 

in the knit-braid was partially reflected or scattered at the surface of the fibres of the 

yarn. Each individual fibre will scatter a fraction of incident light depending on the 

refractive index of the fibre material. Therefore, the total amount of light transmitted 

PD-E-yarn  PD-E-yarn without 

Figure 4.15 – Individual effect of different components of the PD embedded yarn on the 

short circuit current (ISC). (a) Schematic cross-sectional view of different yarns 

constructions with PD1. (b) The ISC values for each yarn construction under full spectral 

incident light using the optical test rig. (c) Microscopic image of the knit braid structure. 

(d) Schematic depicting the transmission of light through the packing fibres and knit braid 

structure in the fibrous sheath. 
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through the knit-braided sheath and packing fibres would decay exponentially with 

fibre density as further discussed in Chapter 5. Polyester fibres typically have an 

refractive index of ~1.54 (Morton et al., 2008) meaning that 4 - 5 % of the incident light 

was reflected by a single fibre. 

Light penetrating into the fibre was absorbed by the polymer and delustrants present 

within the fibre (Morton et al., 2008). The light absorption contributed significantly less 

than the light scattering, especially for the fine and white/light colour fibres employed 

in this study. Due to these phenomena, only a proportion of the incident light would be 

transferred though the bundle of fibres to the inner layer of the yarn. The same effect, 

with a lower magnitude, was given by the packing fibres since the number of fibres were 

smaller than that of the knit-braid. 

4.4.3 Effect of resin-impregnation 

It was clear that the Fresnel reflection at the fibre surfaces caused light scattering, 

resulting in a reduction in the light penetrating into the core of the PDEY. According to 

theory this was caused by the difference in refractive indices of the materials on either 

side of the material boundaries, which in this case were the refractive indices of polyester 

and air. A preliminary experiment was conducted by impregnating the fibrous sheath 

with the optically clear resin, thereby replacing the air pockets between the fibres with 

the resin which had a refractive index similar to the fibre material. The results showed a 

significant enhancement of ISC, it was speculated that this enhancement of light 

transmission was caused by reduced Fresnel reflection.  

 

a b c 

Figure 4.16 – Change in (a) appearance, (b) short-circuit current (ISC) and (c) open-circuit 

voltage (VOC) after resin impregnation for photodiode embedded E-yarns (PDEY) prepared 

with TEMD 70001 (PD1) and VEMD 60601 (PD2) 2.7 mm diameter resin micro-pods 

and 4 mm diameter fibrous sheath. Measurements conducted using the optical test rig at 

baseline conditions.  
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4.5 Conclusions 

The effects of the RMP geometry and material on the opto-electronic properties (short 

circuit current and open circuit voltage) of the PD E-yarns were investigated in detail 

empirically and by using a mathematical model. The experimental data exhibited a good 

fit with the mathematical model, which proved the utility of the model in establishing 

design rules for the PD E-yarns within given constraints. The results indicated that for 

the two PD types discussed in this work, the depth (represented as a ratio of the diameter 

of the micro-pod) at which the photoactive plane of the PD was positioned inside the 

RMP was a key factor in determining the ISC and VOC values. The experiments conducted 

with PD embedded within micro-pods made from a series of resin types (with a range 

of refractive indices) showed the positive effect that higher refractive indexes had on ISC 

and VOC. 

The results of the experiments conducted with the PD embedded E-yarns revealed that 

the ISC and VOC values of the finished yarn were comparable to the values produced by 

bare PDs, and lower than the values of PDs embedded inside the micro-pods. The knit-

braid structure of the fibrous sheath was the main reason for this reduction, while the 

packing fibres also contributed. This reduction in performance could be minimized by 

impregnating the fibrous sheath with a clear polymeric resin, reducing Fresnel 

reflection. In general, ISC was highly sensitive to the variations in the geometry and 

material type of the yarn components (due to the linear relationship between ISC and 

light intensity), while VOC values varied modestly with similar variations (due to the 

logarithmic relationship between VOC and light intensity).  

With the results obtained for PD embedded E-yarns using this technique, there was no 

doubt that the integration of various types of photocells inside of textile yarns was a 

technically viable proposition for applications including energy harvesting and optical 

sensing. Further, the development of a generalised theoretical model allows for the 

creation of optimised E-yarn designs for other miniaturized opto-electronic devices and 

textile based optical sensing.
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5.1 Introduction  

 

This chapter builds on the work demonstrated in Chapter 4 by embedding solar cells 

(SCs) within textile yarns, which is a critical step towards the development of a solar 

energy harvesting textile. Due to the unavailability of sufficiently small SCs (small 

enough to be embedded within a yarn), custom-made miniature SCs (MSC) were 

prepared in collaboration with a photovoltaic cell manufacturer (Solar Capture 

Technologies, UK), who laser cut standard size crystalline silicon SCs to the required 

specifications. The photodiodes employed in the preliminary work had a small 

photoactive footprint relative to the size of the device (device footprint = 2.5 mm2, 

photoactive area = 0.23 mm2,); in contrast, most part of the front face of the MSCs 

employed in this work were photoactive. The MSCs also had a significantly different 

solder-pad configuration to the surface mount device (SMD) photodiodes, with solder-

pads on both the front and back side of the MSC. Therefore, the soldering techniques 

employed to solder PDs had to be modified to successfully create electrical connections 

between the solder pads and the copper wires. Using SCs embedded in micro-pods with 

different diameters, the mathematical model developed in Chapter 4 was further 

validated. However, the micro-pod diameter was maintained at 1.6 mm for most of the 

experimental work presented in the chapter due to design and process boundary 

conditions. 

The majority of the work in this chapter presents the characterisation of solar-E-yarns 

that contain a single embedded MSC. The characterisation included both the generation 

of characteristic curves and the measurement of short-circuit current and open-circuit 

voltage of solar-E-yarns. Characterisation was conducted at different stages of the solar-

E-yarn fabrication process, when the solar-E-yarn was integrated within woven fabrics, 

and under different test conditions (different light intensities, different incident angles). 

The chapter also investigated the effect of resin impregnation, introduced in Chapter 4, 

the use of a bi-facial MSC concept to enhance the power output of the solar-E-yarns, and 

the possibility of using braiding, instead of knit braiding, to create the fibrous sheath of 

the solar-E-yarns. 
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5.2 Preliminary tests using solar cells 

 

5.2.1 Characterisation of maiden miniature solar cells 

The current-voltage (IV) curves were generated using the baseline setting for the optical 

test rig for two different sizes of MSC (1.5 × 1.5 mm and 3.2 × 3.0 mm); these IV curves 

were used to derive corresponding power-voltage (PV) curves, short-circuit current (ISC), 

and open-circuit voltage (VOC) as shown in Fig. 5.1.  

 

Theoretically, the short circuit current (ISC) of a solar cell should scale linearly with the 

photoactive area of the device, however practically this may vary due to irregularities in 

manufacturing process. Therefore, another test was conducted to verify the linear 

relationship between the photoactive area and the ISC using the 3.2 × 3mm MSCs; 

Figure 5.1 – (a) Characteristic curves, (b) short-circuit current and (c) open-circuit voltage 

measurements for 1.5 × 1.5 mm and 3.2 × 3.0 mm solar cells. Measurements conducted 

using optical test rig at base-line test conditions. 

a 

b c 
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different photoactive areas were achieved by covering the front face of the MSCs using 

masks made of black opaque tape.  

The results showed (Fig. 5.2) that ISC was linear with the photoactive area, which agrees 

with theory (Chegaar et al., 2013). Importantly the 1.5 × 1.5 mm MSC data closely 

agreed with the trend obtained by covering regions of the 3.2 × 3.0 mm MSC, proving 

that any manufacturing discrepancies introduced negligible difference for MSCs of this 

size. 

 

 

 

5.2.2 Effects of resin micro-pod  

 

The 1.5 mm × 1.5 mm MSCs were embedded within resin micro-pods (RMP) with 1.6 

mm, 2.7 mm, 3.2 mm and 4.8 mm outer diameters, with the MSC positioned at the 

bottom of the RMP (the standard configuration). RMP embedded MSCs were evaluated 

using the optical test rig (described in Chapter 3, pages 81-85) under the full beam of the 

optical test rig with and without optical filters; the results are shown in Fig 5.3. The 

mathematical model developed in Chapter 4 was applied to the different micro-pod 

diameters to verify the validity of the model for MSCs.  

Figure 5.2 – Change in short-circuit current (ISC) with the photoactive area. The blue circles show 

the photo active area exposed on 3.2 × 3.0 mm solar cells by using black tape masks. The green 

triangle and orange diamond represent the fully exposed 1.5 × 1.5 mm and 3.2 × 3.0 mm solar 

cells respectively. 
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Figure 5.3 showed that the behaviour of the MSCs embedded within RMPs was similar 

to the data collected for PDs (Chapter 4): ISC increased with the diameter of the RMP, and 

different light spectra only reduced the observed ISC, however did not change the 

relationship between ISC and diameter. The mathematical model compared well to the 

experimental data and was shown to have a mean absolute percentage error of 8.5%. 

 

5.2.2.1 Implications of Fresnel reflection 

The RMP introduced an intermediate material layer between the MSC and air that has a 

different refractive index (RI) that significantly influence the amount of light reflected at 

the MSC surface; unlike the PD scenario where the pre-existing encapsulation had a 

similar RI to the RI of the RMP material. In adapting the mathematical model for MSCs, 

the Fresnel reflection (FR) at the MSC surface, as given by Fresnel equation (Eq. 5.1), was 

considered.  

𝑅𝑓 = (
1

2
){[

𝑛1cos𝜃−𝑛2√1−(
𝑛1
𝑛2
sin𝜃)2

𝑛1cos𝜃+𝑛2√1−(
𝑛1
𝑛2
sin𝜃)2

]

2

+ [
𝑛2cos𝜃−𝑛1√1−(

𝑛1
𝑛2
sin𝜃)2

𝑛2cos𝜃+𝑛1√1−(
𝑛1
𝑛2
sin𝜃)2

]

2

}                            5.1   

Here n1 and n2 are the refractive indices (RIs) of the materials on either side of the 

material boundary (i.e. the MSC-RMP boundary) and  𝜃 is the angle made by the incident 

ray to the normal of the boundary surface. According to the Fresnel equation (Eq. 5.1), 

the partial reflection (Rf) increases with the difference between the RIs (n1 and n2) of the 

two materials on either sides of the boundary (Keating, 2002). For the MSC-RMP 
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Figure 5.3 – Change in short-circuit current (ISC) with the micro-pod diameter for the 1.5 × 

1.5 mm solar cells, tested under different spectral inputs using optical test rig. The first data-

point (with black outline) of each data series shows the value for the maiden solar cell.  
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boundary the RIs of the materials on either side of the boundary were, 1.9 (RI for the SiN 

anti-reflective coating of the MSC surface denoted by nc) and 1.51 (RI for the resin 

material of the RMP denoted by nr) respectively. For the maiden MSC surface the RI at 

the boundary was 1.9 (nc) and 1 (RI for air denoted by na). 

Experimental results showed an 18% increase in ISC for MSC embedded inside of a 1.6 

mm diameter RMP (as shown in Figure 5.3). In this case, the RMP diameter was only 

~7% wider than the MSC, therefore the increase in ISC could not be explained by the 

lensing effect alone. Theoretical estimates calculated using the Fresnel equation (Eq. 5.1) 

showed that the total light reflected at the resin-air interface and resin-MSC interface 

when using a 1.6 mm diameter RMP (Fig. 5.4(b)) was ~7 %. In the case of the maiden 

MSC (Fig. 5.4(a)) the estimated FR at the MSC surface was ~9.7 %.  

 

 

Based on this estimate it was clear that the reduction in FR at the MSC surface was the 

main contributor for the enhancement of the ISC after encapsulation within the RMP. This 

enhancement was especially evident for the MSC embedded within a 1.6 mm diameter 

RMP, because the light enhancement due to lensing effect was the lowest for 1.6 mm 

diameter RMP.  

The theory suggested that to minimize the FR at an interface of two materials with 

significantly different refractive indices (na and nc), a layer of a third material with an 

intermediate RI could be employed. The RI of the RMP material (𝑛𝑟) that minimise FR 

can be given as (Keshavarz Hedayati and Elbahri, 2016): 

Reflection at the 

air-cell interface  

na=1 
Incident 

ray  

nc = 1.9 nc = 1.9 

Reflection at the 

resin-cell interface  

Incident 

ray  

Reflection at 

the air-resin 

interface (Erm) 

 

nr=1.51 
β 

na=1 

β 
nc = 1.9 

ϴ ϴ 

Figure 5.4 – Comparison of the effects of Fresnel reflection for the (a) maiden miniature 

solar cell and (b) a miniature solar cell embedded within 1.6 mm diameter resin micro-pod 

with a 1.5 mm wide miniature solar cell.  

a b 
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                                                               𝑛𝑟 = √𝑛𝑎𝑛𝑐                                                            5.2 

 

Therefore, for the MSCs with SiN anti-reflective coatings the ideal RI of the RMP material 

that minimize FR is ~1.38. In this respect one of the best candidate martials for the RMP 

would be Poly(1,1,1,3,3,3-hexafluoroisopropyl methacrylate) that has excellent optical 

clarity and RI close to 1.38 (Sigma-Aldrich, no date). It should be noted that these 

calculations assumed that all material surfaces were smooth, however in reality, this is 

often not the case. 

 

5.2.2.2 Significance of total internal reflection 

 

At the MSC surface a fraction of the incident light received is reflected, as previously 

explained using the Fresnel equation. This reflected fraction of light can be subjected to 

total internal reflection (TIR) at the micro-pod-air interface resulting in light being 

trapped inside of the micro-pod (Fig. 5.5). This light trapping can contribute towards an 

enhancement in ISC of the embedded MSC.  

 

 

The previously presented mathematical model assumed that the effects of TIR would be 

negligible. While this is a valid assumption for a photodiode (since the photoactive 

width was significantly smaller than the micro-pod diameter), the implications of TIR 

on the total light flux received were reconsidered for an MSC; this could be significant 

Erc 

Et 

Erm 

Ei 

Eri 

ᵠ ᵠ

nr=1.51 
β β 

na=1 

nc=1.9 

Figure 5.5 – Illustration of the occurrence of the total internal reflection of a ray of light 

within a 1.6 mm micro-pod embedded with a 1.5 mm wide solar cell.  
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for scenarios where MSC width is similar to RMP diameter where internally reflected 

light has a high probability of reaching the MSC surface. 

The conditions for total internal reflection at the RMP-air interface are determined by the 

relative refractive indices of the material interface as given in Eq 5.3.  

 

At the critical angle: 

      Sinφ =
𝑛𝑎

𝑛𝑟
                                                         5.3 

For the micro-pod-air interface:  

sinφ =
1

1.51
 

φ = 41.47° 

Therefore, any ray reaching the RMP-air interface making angle beyond 41.47° to the 

normal at the micro-pod surface will be subjected to TIR. 

The magnitude of the TIR can be approximated by the sum of all of the rays reflected at 

the MSC-RMP interface (Erc) that make an angle between 41.47°and90° to the RMP-air 

boundary surface. The previous version of the mathematical model was extended to 

capture the TIR for MSCs embedded within RMPs as given in Appendix 7. Based on the 

extended mathematical model the influence of TIR for 1.5 mm × 1.5 mm MSCs, 

embedded at within RMPs of different diameters were estimated, and it was found that 

TIR caused less than 0.15 % of the total light directly received (Et) by the MSC. This 

estimation confirmed the validity of the assumption that TIR had a negligible effect on 

ISC, even for scenarios where photocell widths are similar to micro-pod diameter. 

 

5.3 Micro solar cell embedded yarns 

5.3.1 Material selection and structure 

The performance of the MSC was evaluated at different stages of the fabrication process.  

The width of the MSCs to be used was a key consideration in achieving the optimum 

balance between the E-yarn thickness and the power density of the resultant 

photovoltaic fabrics. A larger width for the MSC would be desirable to achieve higher 

power densities but would result in thicker fabrics. Therefore, most of the proceeding 

work was limited to using micro-pods with a diameter of 1.6 mm to accommodate the 

widest possible MSCs (1.5 mm wide) within ~2.0 mm diameter E-yarn (which was the 
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smallest diameter achievable using the available knit-braiding machine). Initially, 1.5 

mm ×1.5 mm size MSCs were used for preparing the solar cell embedded E-yarns (solar-

E-yarns) and the first prototype of a solar cell embedded woven fabric. 

 Considering the need for creating the thinnest possible yarn using existing machinery 

and available MSC sizes, specifications given in Table 5.1 were selected as the baseline 

for creating solar-E-yarns. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The cross-sectional and isometric views of the solar-E-yarn prepared according to above 

specifications are schematically illustrated in Fig. 5.6 below. The key differences of the 

solar-E-yarn structure in comparison to the PDEYs discussed in previous chapter are 

evident in the illustrations (such as the use of two parallel running copper wires and 

solder pads on both front and back sides of the solar cells). 

Component/Parameter Description 

Cell size 1.5 × 1.5× 0.2 mm (measured dimensions, width and length 

1.54±0.04 × 1.55±0.03 mm) 

Cu wire type 7 × 50 µm multi strand twisted Cu wire   

Micro-pod geometry and 

size 

Cylindrical with a 1.6 mm diameter circular base and 2.5-

3.0 mm length 

Micro-pod resin type Dymax 9001E-V3.5 acrylated urethane  

Packing fibres Four texturized polyester packing yarns (yarns with 48 

filaments and a liner density of 167 dtex) 

Knitted sheath 2.0 mm diameter warp knitted tube with six texturized 

polyester yarns (yarns with 48 filaments and a liner 

density of 167 dtex) 

Table 5.1 - Specification for the solar-E-yarns prepared for evaluations and experiments. 
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An additional resin impregnation step was introduced to the normal E-yarn fabrication 

process in preparing Solar-E-yarns. For this the Dymax 9001E-V3.5 acrylated urethane 

resin was used and fibres covering front side of the solar cells in the micro-pod regions 

were selectively impregnated. The selective impregnation helped to minimize the 

change in surface texture of the solar-E-yarn. 

 

5.3.2 Evaluation of solar-E-yarns using 1.5 mm ×1.5 mm solar cells 

 

The solar-E-yarns were prepared according to the specifications detailed in Section 5.3.1 

(above) and were evaluated at each stage of the E-yarn fabrication process using the 

optical test rig (using both methods; no optical filter and with optical filters). The 

measurement of ISC and VOC at different stages of the fabrication process are given in Fig. 

5.7.  

Knit braid 

structure 

Miniature 
solar cell 

Figure 5.6 – Schematic illustrations of (a) isometric and (b) cross sectional view of solar 

cell embedded yarns. 

a b 
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The changes in ISC confirmed the enhancement of light intensity at the photoactive 

surface by the RMP, the shading effect of the fibrous sheath and the improvement in 

light penetration due to the resin impregnation. 

In comparison to the maiden MSC values, a 34 % increase in ISC was observed after 

embedding the MSC inside of the RMP and a 26 % reduction in ISC was seen after 

covering the RMP with a fibrous sheath (combination of packing fibres and knit braid). 

The resin impregnation enhanced the ISC by ~16% compared to the maiden MSC. As 

observed in previous experiments using PDs, ISC changed significantly due to the 

changes transpired during the E-yarn fabrication process, while in comparison there was 

only a modest change in VOC. Therefore, these results were consistent with the results 

observed for PDEY discussed in Chapter 4. 

b c a 

Figure 5.7 - Change in the short circuit current (ISC) and open circuit voltage (VOC) at 

different stages in the fabrication process for 1.5 × 1.5 mm solar cell embedded yarns, 

tested using optical test rig full beam under different optical bands. 
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To compare the change in MSC performance at different stages of the fabrication process, 

under different spectral bands of incident light, the ISC and VOC values were generated 

using filtered light. The results were normalised to the corresponding values without 

any optical filters (full spectrum) as shown in Fig. 5.8.  

 

The results showed that at all the stages of the solar-E-yarn fabrication process the device 

performance was consistent for different optical bands. In other words, the RMP and the 

fibrous sheath interact with light consistently and proportionately across different parts 

of the incident light spectrum (ultraviolet, visible and infrared). 

 

5.3.3 Effect of changing the incident angle of the light source normal to the longitudinal 

axis of the devices on their optoelectronic properties 

For any solar energy harvesting system, having an understanding about the effect of the 

angle of the incident light on the power conversion efficiency is vital. For fixed 

applications (i.e. fixed solar panels installed outside) the angle of the incident light 

would vary based on the position of the Sun. To minimize the variation in power 

generation during the day, solar panels are often mounted onto solar tracking systems 

that follow the sun to achieve direct light exposure onto the solar panel. However, these 

solar trackers increase the capital investment of the system (Hafez, Yousef and Harag, 

2018) and maintenance costs. In the case of wearable systems, the incident angle of the 

light relative to the solar energy harvesting textile would vary unpredictably based on 

Figure 5.8 - Change in short circuit current (ISC) and open circuit voltage (Voc)at different stages 

in the fabrication process for 1.5 x1.5 mm solar cell embedded yarns under different optical filters. 

The values are normalised to the results with no-optical filter for each stage of the process. 
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the movement of the wearer relative to the light source (Sun). Therefor it was important 

to study the response of the solar cell embedded yarns at range of different incident 

angles.  

The initial experiments were conducted using 1.5 × 1.5 mm SCs and TEMD 70001 

photodiodes (PD1) with 2.7mm RMPs and 4.0 mm fibrous sheaths. PDs were also 

included in the investigations to fully comprehend the effects of the E-yarn structure at 

different incident angles for different photocell types. ISC measurements were taken for 

different angles normal to the longitudinal axis of the solar E-yarn (-180° to 180° where 

0°was the exposure normal to the photoactive plane facing the photoactive side) at 5° 

increments. In the first set of experiments the MSCs and PDs were studied in their 

maiden form, with RMPs, and in the final yarn form (without resin impregnation). The 

experiments were conducted using the optical test rig under baseline settings. Fig. 5.9 

illustrates how ISC output changed with the incident angle. 

  

The result showed that the ISC profiles varied significantly with the incident angle at 

different stages of the E-yarn fabrication process for both the PD (Fig. 5.9(a)) and MSC 

(Fig. 5.9(b)). In the case of maiden MSC a significant ISC response was observed only in 

the front half circle (form -90° to 90°) due to the flatness and mono-faciality (single 

photoactive face) of the maiden MSC. The shape of this curve was sinusoidal which 

followed the cosine of the incident light beam. In the case of the bare PD the shape of the 

curve was not sinusoidal; this was due to the effects of built in epoxy encapsulation 
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Figure 5.9 – Change in short circuit current (ISC) at different the incident angles for (a) 

TEMD 70001 (PD1) type photodiodes and (b) 1.5 × 1.5 mm solar cells. 



Chapter 5  Solar cell Embedded Yarns  

139 
 

(window) in the PD device. The rectangular cuboid shaped window in the PDs can 

induce internal reflections resulting in a plateau in the front half circle and peaks in 

photocurrents in back half circle (<-90° and >90°). The curves were similar in shape for 

both the SCs and PDs after encapsulation within the RMP. The peak ISC was enhanced 

due to the lensing effect of the RMP, which has been discussed in detail in the previous 

chapter. In comparison to the maiden MSC, the encapsulated MSC showed an increase 

in ISC when the back half circle of the RMP was exposed to light, this was possibly due 

to diffusion of the of the light trapped by the RMP to the opposite side (photosensitive 

side) of the MSC as a result of internal reflections. After covering the RMPs with a fibrous 

sheath, the shape of the ISC curve became flatter and the variation in ISC with the angle 

significantly reduced. The peak ISC for the PDEYs and solar-E-yarns reduced in 

comparison with the maiden PD and MSC in the front half circle, and the opposite effect 

was evident in the back half circle. This can be explained by the combined light trapping 

and light diffusion effects of the fibrous sheath and RMP, which redistributed the 

incident light around the cross section of the E-yarn. This was an interesting observation 

since the PD and MSC embedded yarns generated significant photocurrents even when 

illuminated from the backside. This effect is advantageous in solar energy conversion 

when the incident angle is unpredictable (due to dynamic nature of the light source and 

the harvester). In addition, this effect is beneficial when converting these solar-E-yarns 

into fabric, where yarn to yarn performance variations caused by angular positioning 

discrepancies would be significantly nullified.  

5.3.4 Individual and combined effects of the components of the solar-E-yarns 

In the previous chapter, the effects of the each of the components that make-up an E-

yarn on the performance of embedded PDs were discussed. In order to distinguish 

between the effects of each of the components on the solar-E-yarns, similar experiments 

were conducted with MSCs incorporated into different constructions as listed below. All 

the components were constructed according to the specifications given in Table 5.1 (i.e. 

1.6 mm RMP and ~2.0 mm knit braid). Tests were conducted using the optical test rig, 

with experiments performed for incident angles between -180° and 180° in 5° increments 

as shown in Fig. 5.10. 
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I. Maiden MSC 

II. MSC with RMP only 

III. MSC with knitted-braid only (No packing fibres) 

IV. MSC with RMP and knitted-braid (No packing fibres) 

V. MSC with packing fibres and knitted-braid (No micro-pod) 

VI. MSC with RMP, packing fibres and knitted-braid (Solar-E-yarn) 

VII. Solar-E-yarn with resin impregnation 

VIII. MSC with RMP, knitted-braid and resin impregnation (No packing 

fibres) 

 

 

 

The results shown in Fig. 5.10 further confirmed how the RMP and fibrous sheath 

changed the ISC at different incident angles measured normal to the longitudinal axis of 

the device. This experiment revealed the individual effects of each component including 

the packing fibres and resin impregnation as well as the synergistic effects of the 

components.  

The results suggested that the shading effect of the packing fibres was significantly 

smaller than that of the knitted-braid (warp knitted tubular structure). This could be 

attributed to a smaller number of fibres and the orderly orientation of the layer of 

packing fibres around the RMP. In contrast, the knitted- braid structure had a 

0

20

40

60

80

100

-180 -135 -90 -45 0 45 90 135 180

I S
C

(µ
A

)

Incident Angle (Degrees)

Maiden SC

SC with micro-pod only

SC with knitted tube only

SC with micro-pod and knit braid

SC with packing fibres and knit braid

Solar-E-yarn

Solar-E-yarn with resin impregnation

Figure 5.10 – Change in short circuit current (ISC) with the incident angle for different solar 

cell (MSC) embedded device constructions evaluated under the baseline test settings using 

the optical test rig. 
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comparatively higher number of fibres and irregular fibre orientation, which could 

result in significantly higher light scattering and absorption away from the core of the 

yarn. After resin impregnation the shading effect of the packing fibres was negligible. 

The resin impregnation clearly enhanced the ISC by ~23% compared to maiden MSC 

value, proving the effectiveness of the resin impregnation in improving light 

transmission through the fibrous sheath to the RMP.  

When the results for the MSC with RMP only, MSC with fibrous sheath (packing fibres 

and warp knitted tube) only, and solar-E-yarn were compared, it was observed that only 

the solar-E-yarn exhibited the improved uniformity of ISC over the range of incident 

angles. This gave clear evidence of the synergistic effects yielded by the combination of 

the RMP and fibrous sheath that was not present in the individual cases. The above-

mentioned individual and synergistic effects can be theoretically explained as below, 

without detailed mathematical modelling.  

At oblique incident angles, the maiden MSC (Fig 5.11(a)) received the least amount of 

direct light flux since the light receiving surface is flat. Nevertheless, the total light flux 

received is directed for the power conversion. When embedded inside of the RMP (Fig 

5.11(b)), the micro-pod received a higher amount of direct light flux due to its circular 

cross section. This light received was collected and directed to the photoactive area 

yielding higher ISC values compared to the maiden MSC. 

 

In the case of a yarn embedded with MSC without resin impregnation (Fig 5.11(c)), the 

Figure 5.11 – Cross sectional illustration of light flux received at the photoactive plane for 

(a) a maiden MSC, (b) a MSC embedded within a resin micro-pod and (c) a solar-E-yarn 

at oblique incident angles. 
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light flux received by the yarn surface was the highest due to the increase in the effective 

diameter. However, only a proportion of the light flux received at the yarn surface was 

directed to the RMP, resulting in lower overall ISC than for the maiden MSC: This was 

due to the light scattered by the fibrous sheath.  

After the fibres in the front side of the solar-E-yarn were impregnated with the resin the 

proportion of light transferred through the fibrous sheath significantly increased, 

leading to higher overall ISC values compared to the maiden MSC. This phenomenon can 

be further explained using Fig. 5.12.  

Light reflects partially each time it confronts a fibre-air interface. When a single fibre is 

considered, a ray is reflected twice by the fibre. When the reflections of a ray by a series 

of fibres is considered, if the reflections by the ith fibre is given by ri (1) and ri (2) (the first 

and second reflection respectively) the relative intensity of a beam of light after being 

scattered (Ir/I) by n number of fibres can be given as: 

𝐼𝑟

𝐼
= (1 − r1(1))(1 − r1(2))(1 − r2(1))(1 − r2(2))……… . (1 − r𝑛(1))(1 − r𝑛(2))                   5.3 

The according to the Fresnel equation smallest amount of reflection occurs when the 

incident angle is 0° because at this point FR can be given as: 

𝑅𝑓(0) = [
𝑛1−𝑛2

𝑛1+𝑛2
]
2

                                                                                                                       5.4 

In the scenario where the incident angle is 0° the smallest possible reflection by n fibres 

(with circular cross sections) would occur when the centres of the fibre cross sections are 

on a straight line, along which the ray travels through the fibres (Fig. 5.13). Although, 

the probability of fibre cross-sections aligning on a straight line is small due to the 

Figure 5.12 – Cross sectional illustration of light transmission through a bundle of fibres in 

the sheath of the MSC yarn (a) before resin impregnation and (b) after resin impregnation. 
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randomness of fibre orientation in the fibrous sheath, this hypothetical scenario would 

be useful, to understand the effect of resin impregnation. For this analysis effects of light 

absorption (attenuation) by the fibre and resin material is considered negligible. 

 

 

 

 

In this case: 

 𝑟(𝑖)1 = 𝑟(𝑖)2=𝑅𝑓(0)   
𝐼𝑟

𝐼
= {1 − [

𝑛1−𝑛2

𝑛1+𝑛2
]
2

}
2𝑛

                                                         5.5 

Before resin impregnation (Fig 5.12(a)), n1=1 and n2=1.55.  

  
𝐼𝑟

𝐼
= {0.953479}2𝑛         5.6 

After resin impregnation (Fig 5.12(b)) n1=1.51 and n2=1.55.  

 
𝐼𝑟

𝐼
= {0.999829}2𝑛         5.7 

The change in 
𝐼𝑟

𝐼
 with n can be plotted for the two scenarios as shown in Fig. 5.14. 
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Figure 5.14 – Estimated change in the transmitted light intensity for a ray travelling 

through multiple fibres (n) in a straight line before and after the spaces between the fibres 

are impregnated with resin. 

r(1)1 r(1)2 

 

r(2)1 r(2)2 

 

r(n)1 r(n)2 
I 

Ir 

Figure 5.13 – Cross sectional illustration of a ray travelling through a series of fibre cross 

sections arranged in a straight line. 
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For all other cases where a light ray would take a staggered path (θ> 0), the 

enhancement in ISC due to resin impregnation should be more evident. Based on this 

analysis the enhancement due to resin impregnation can be directly attributed to the 

reduction in Fresnel reflection. 

The average ISC values for maiden MSC, solar-E-yarn, and solar-E-yarn with resin 

impregnation was calculated for the full circle around the E-yarn (-180° to 180°) and front 

half circle (-90° to 90°), as depicted in Fig. 5.15. The average ISC provided a good 

indication about the comparative power conversion efficiency across a range of incident 

angles for different wearable photovoltaic systems.  

 

The average ISC of the full circle exposure is an indication of how the MSC yarn performs 

when the incident light is exposed uniformly around the yarn in a circular manner. 

Front-half circle exposure was representative of a free standing solar-E-yarn with the 

photoactive side of the yarn directed to North on a sunny day. When the full circle mean 

value is considered, the maiden MSC exhibited the lowest value, due to negligible ISC 

generated by the back half circle. In this case, the solar-E-yarn with resin impregnation 

yielded mean values, which were ~45% and ~38.5% higher than the mean values of 

maiden MSC and solar-E-yarn, respectively. In the case of the front half circle mean 
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Figure 5.15 – Average short circuit current (ISC) value calculated for the full circle (-180° to 

180°) and front half circle (-90° to 90°) for a maiden MSC, a solar-E-yarn, and a solar-E-

yarn after resin impregnation, based on the measurements conducted at different incident 

angles using the optical test rig. The error bars show the standard deviation of the ISC values 

across the angles measured. 
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values, the solar-E-yarns with resin impregnation exhibited 31.6 % and 56.7 % higher 

values than the values for maiden MSC and solar-E-yarn, respectively. The front half 

circle means values clearly showed that the solar-E-yarns had a similar overall 

performance to the maiden MSCs. Solar-E-yarns with resin impregnation exhibit 

superior performance to the maiden MSCs and the solar-E-yarns across all of the 

incident light angles. It is to be noted that this behaviour may not be present when the 

solar-E-yarns are deployed within fabrics due to the shading effects present at larger 

incident angles due to fibres of neighbouring yarns; this will need further investigation 

in fabric form.  

These results confirmed the contributions the RMP, fibrous sheath, and resin 

impregnation in combination have in optimizing overall performance of solar-E-yarns 

for solar energy harvesting applications. 

5.3.5 Theoretical and empirical modelling of the effect of the angle of the incident light 

normal to the longitudinal axis of the devices 

The generalised ray-tracing model developed in Chapter 4 encompassed the effects of 

incident angle (γ) on the light intensity at the photoactive plane of a photocell embedded 

inside a micro-pod geometry defined by a function f(x). It is useful to understand how 

the incident light is propagated through the fibrous sheath after scattering, attenuation 

and polarisation by the fibres, so that an estimation of the effects of the fibrous sheath 

on the photovoltaic output of the solar-E-yarn can be obtained. However, a similar ray-

tracing approach used in Chapter 4 for the micro-pod cannot be followed to study the 

effect of the fibrous sheath, due to the complex nature of light propagation through the 

randomly oriented fibrous structure. Theoretical estimations of the polarisation, 

scattering, and propagation of light within fibrous structures have been presented in the 

literature using techniques such as Monte-Carlo simulations (Green, Lamberg and 

Lumme, 2000; Peng, Ding and Wang, 2012). However, such detailed study is not an 

object of this work. Instead, an empirical model was derived based on the width of the 

beam of light captured by the solar-E-yarn, and the incident angle of light, to estimate 

the ISC of the solar-E-yarn at varying incident angles. 

 

 



Chapter 5  Solar cell Embedded Yarns  

146 
 

5.3.5.1 Change in the width of incident beam of light with the angle 

The width of the beam of light captured by the front side (front-half circle) of the device 

at higher incident angles were significantly different for the above three cases (maiden 

MSC, MSC embedded within RMP, solar E-yarn). This was due to the change in the 

geometry after the encapsulation and after being covered with fibres. Simplified ray 

tracing models for maiden MSC, MSC inside RMP and solar-E-yarns are depicted in Fig 

5.16. 

 

 

The theoretical values for the width of the beam of light captured by the front face of the 

MSC device in each case, for an incident angle  𝛾 can be calculated as shown below. 

The width of the beam captured by the maiden MSC (Fig 5.16(a)): 

𝑊𝑐 = 𝑊 cos 𝛾          5.8 

Where 𝑊is the width of the maiden MSC. 

The width of the beam captured by the RMP (Fig 5.16(b)): 

𝑊𝑚 = 𝑅𝑚 +√(𝑅𝑚
2 − ℎ2) cos 𝛾 + ℎ sin 𝛾      5.9 

Where 𝑅𝑚 is the radius of the RMP and h is the depth from the centre of the micro-pod 

to the MSC. 

The width of the beam captured by the solar-E-yarn (Fig. 5.16(c)): 
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Figure 5.16 – Cross sectional illustration of light flux received at the photoactive plane for 

(a) a maiden MSC, (b) a MSC embedded within a resin micro-pod and (c) a solar-E-yarn 

at higher incident angles. 
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𝑊𝑦 = 𝑅𝑦 +√(𝑅𝑦
2 − ℎ2) cos 𝛾 + ℎ sin𝛾       

 5.10 

Where 𝑅𝑦 is the mean radius of the RMP and h is the depth from the centre of the micro-

pod to the MSC. 

For the experimental scenarios considered here h = 0, therefore: 

𝑊𝑚 = 𝑅𝑚 +√(𝑅𝑚
2 − ℎ2) cos 𝛾 − ℎ sin 𝛾 = 𝑅𝑚(1 + cos 𝛾)     5.11 

And: 

𝑊𝑦 = 𝑅𝑦 +√(𝑅𝑦
2 − ℎ2) cos 𝛾 − ℎ sin𝛾 =𝑅𝑦(1 + cos 𝛾)    5.12 

By substituting measured values into the equations, with W = 1.5 mm, 𝑅𝑚 =

1.6𝑚𝑚and𝑅𝑦 = 2.0𝑚𝑚, the change in the effective width of the collected beam for 

different incident angles were calculated (Fig. 5.17). 

 

 

5.3.5.2 Modelling the effect of incident angle on short-circuit current 

The theoretical values given in Fig. 5.17 showed that when the front half circle of the 

individual MSC devices were considered, both the RMP and solar-E-yarn captured a 

significant amount of light even when illuminated at 90°. By applying the ray tracing 

model developed, and the Fresnel equation for the reflection at the MSC surface, the 
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Figure 5.17 – Theoretical values for the effective width of the beam captured by the maiden 

miniature solar cell (MSC), MSC embedded within a resin micro-pod, and solar-E-yarn. 

Here the diameter of the solar-E-yarn is assumed to be constant. 
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theoretical values for the light captured by the maiden MSC and the MSC embedded 

inside of an RMP with different incident angles of light can be estimated and compared 

with the experimental results (Fig 5.18). In both cases the measured ISC value at 0° 

incident angle for the maiden MSC was considered the baseline (i.e. theoretical and 

experimental ISC values at 0° for maiden MSC were assumed to be equal). A complete 

derivation and calculation of the generalized ray tracing model is given in Appendix 5. 

Unlike in the previous cases, theoretical estimations for the light absorbed by the MSC 

embedded within the solar-E-yarns required more advance modelling techniques, such 

as Monte-Carlo simulations, where the light intensity at a given point in the fibrous 

sheath space is defined using a probability density function (PDF) to encompass the 

complexities of light propagation (due to reflection, refraction and polarisation) through 

multi-fibre structures (Green, Lamberg and Lumme, 2000; Peng, Ding and Wang, 2012). 

In its simplest forms the PDF was derived based on the optical properties of the fibre 

material, geometry of the fibres, the fibre density and relative fibre orientation within 

the fibrous structure. In this work instead of developing a generalized model based on 

the properties of the fibrous sheath, the relationship between the incident light angle and 

ISC was empirically modelled for solar-E-yarns, based on the width of the beam of light 

captured by a solar-E-yarn.  

The basis for this empirical model is the assumption that the ISC the solar-E-yarn can be 

given as (based on the Eq .5.11): 

𝐼𝑠𝑐 = 𝑓(𝛾)𝑊𝑦=𝑓(𝛾)𝑅𝑦(1 + cos𝛾)       5.13 

Where 𝑓(𝛾)is defined as a trigonometric function in the form of sum of sines given in 

Eq. 5.14: 

𝑓(𝛾) = ∑ 𝑎𝑖 sin( 𝑏𝑖𝛾 + 𝑐𝑖)
𝑛
𝑖=1        5.14 

Here, the first, second, and third order sum of the sines were evaluated for the empirical 

model based on the goodness of fit given by R2 (co-efficient of determination). 

First order form: 

 𝑓(𝛾) = 𝑎1 sin( 𝑏1𝛾 + 𝑐1)        5.15 

The second order form: 

𝑓(𝛾) = 𝑎1 sin( 𝑏1𝛾 + 𝑐1) + 𝑎2 sin( 𝑏2𝛾 + 𝑐2)      5.16 
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Third order form:  

𝑓(𝛾) = 𝑎1 sin( 𝑏1𝛾 + 𝑐1) + 𝑎2 sin( 𝑏2𝛾 + 𝑐2) + 𝑎3 sin( 𝑏3𝛾 + 𝑐3)   5.17 

Here  𝑎1,𝑏1, 𝑐1, 𝑎2, 𝑏2,𝑐2, 𝑎3, 𝑏3, and 𝑐3were fitting constants, for the given scenarios.  

The curve fitting was conducted using the Matlab® curve-fitting toolbox, to arrive at the 

fitting coefficients and R2 for the first-order, second-order and third-order form for the 

solar-E-yarn. Using the same approach, an empirical model was generated and 

examined to estimate the ISC for the MSC embedded in RMP as given by Eq. 5.18: 

𝐼𝑠𝑐 = 𝑔(𝛾)𝑅𝑚(1 + cos 𝛾)        5.18 

Where 𝑔(𝛾) is a sum of sines series. 

The results of the curve-fitting are given in the Table 5.2. 

 

Device type Sum of 

sines order 

Fitting coefficients R2 

a b c 

For the 

solar-E-

yarn 

First order a1 = 365.5 b1=0.006057 c1 =0.06309 0.8058 

Second 

order 

a1 =7911 

a2 =7887 

b1 =1.259 

b2 =1.261 

c1 =0.4809 

c2 =3.621 

0.9741 

Third order a1 =39.91 

a2 =24.17 

a3= 9.124 

b1 =1.057 

b2 =2.312 

b3 =2.968 

c1 =0.4414 

c2 =2.441 

c3 =4.963 

0.9923 

For the 

MSC 

embedded 

within an 

RMP 

First order a1 = 53.35 b1=0.8757 c1 =1.21 0.9528 

Second 

order 

a1 =3779 

a2 =3727 

b1 =1.294 

b2 =1.304 

c1 =1.595 

c2 =4.737 

0.9848 

Third order a1 =70.11 

a2 =1780 

a3=1762 

b1 =1.581 

b2 =3.722 

b3 =3.733 

c1 =0.4588 

c2 =1.505 

c3 =4.634 

0.9851 

 

Based on the R2 values the third order sum of sines series were selected for the empirical 

model, for the solar-E-yarn. In the case of MSC inside RMP, there was no significant 

different in the R2 values from second-order to third-order model. Therefor second-order 

sum of sines series was selected in this case. The empirical models for ISC for the solar-E-

yarn (ISCy) was given by:  

Table 5.2 – Results of the curve-fitting for short-circuit current (ISC) using Matlab®. 
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𝐼𝑠𝑐𝑦 = 𝑊𝑦[39.91 sin( 1.057𝛾 + 0.4414) + 24.17 sin( 2.312𝛾 + 2.441)+

9.124 sin( 2.968𝛾 + 4.963)](1 + cos 𝛾)]      5.19 

Similarly, the empirical model for the MSC embedded within an RMP (ISCm) was given 

by 

𝐼𝑠𝑐𝑚 = 𝑊𝑚[3779 sin( 1.294𝛾 + 1.595) + 3727 sin( 1.304𝛾 + 4.737)](1 + cos 𝛾) 5.20 

The experimental and model- estimated data for maiden MSC, MSC embedded within 

an RMP, and the solar-E-yarn are shown in Fig 5.18. 

 

 

5.3.6 Effect of colour of the fibre sheath 

The colour of large scale solar panels employed for applications such as building 

integrated photovoltaics (BIPV) is also an important consideration, as the solar energy 

harvesting capability should harmonize with the architectural and aesthetic features of 

its surroundings (Halme and Mäkinen, 2019). The colour of the solar panels are typically 

modified by colouring the encapsulation material (Hardy et al., 2013), or halftone (colour 

dot pattern) printing (Kamelolone Solar, 2018). Halme and Mäkinen in their theoritical 

study on efficiency limits for single-band solar cells with different colours suggestted 

that a green-yellow would be the optimum colour for a Si solar cell material.  As 
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Figure 5.18 – Experimental and estimated values for the short-circuit current for maiden 
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discussed in Chapter 2, in most cases, the textile-based solar energy harvesters presented 

in the literature were limited to the colour of the photoactive material employed within 

the cell. 

The colour of the solar-E-yarns could be a key design consideration depending on their 

end-user application, especially for outerwear products. The fibre sheath of the solar-E-

yarn determines its colour. For this research white textile fibres were mainly employed 

to craft solar-E-yarns.  However, it is important to investigate the viability of creating 

solar-E-yarns with different colours that expand the application area of the solar-E-

yarns. Therefore, solar-E-yarns were prepared using fibrous sheaths in two additional 

colours (red and black) and were studied to analyse the effect of colour on their 

photovoltaic output (ISC and VOC). The 1.5 mm × 1.5 mm SCs encapsulated within 1.6mm 

micro-pods were covered using texturized polyester yarns, of the same yarn 

characteristics mentioned in previous experiments, in white, red and black as shown in 

Fig 5.19. 

 

The ISC and VOC values of the solar-E-yarns were evaluated using optical test rig under 

different optical fitters to study the effect of coloured fibre sheath under different optical 

spectra (Fig. 5.20). The ISC for each solar-E-yarn type at different incident angles were 

also studied.  

5 mm 

Figure 5.19 – Photograph of solar-E-yarns with packing yarns and tubular warp knitted 

structure made using black, red, and white textured polyester yarns for the knit braid. The 

packing fibres were white coloured. 
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When red and black fibrous sheaths were used the solar-E-yarns showed ISC value of 89.4 

±5 .8% and 77.7 ± 1.2% compared to the normal solar-E-yarn (white sheath) respectively 

(See Fig.5.20(a)) under the full light spectrum. The data for VOC values (Fig 5.20(b)) did 

not show a significant difference for three different colours tested. These results 

Figure 5.20 – Results for the solar-E-yarns with black, red and white outer sheaths. (a) 

Short-circuit current (ISC); (b) normalized ISC, and (c) open-circuit voltage (VOC). In (b) the 

results were normalized to the ISC for white solar-E-yarn for each spectral band. 
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suggested that the colour of the knit braid did influence the ISC value although this effect 

did not significantly compromise the performance of the solar-E-yarns.  This also 

provided evidence that the light penetration into the RMP predominantly occurred 

through the spaces between the fibres. When the ISC values form the red and black solar-

E-yarns were normalized to the white solar-E-yarn values, it was clear that the 

measurements under 305-785 nm band (ultraviolet and visible band) filter resulted in 

the largest difference in relative ISC value. 

This observation could be explained by the higher light absorption by black and red fibre 

sheath in comparison to white in the visible range. When the 780 nm long-pass (infra-

red range) filter was used the difference between the ISC values were the smallest (Figure 

5.20 (a)), possibly due to the similar absorption of infra-red energy by all three-colours 

of knit-braids. 

ISC measurements were also conducted with different incident light angles normal to the 

longitudinal axis of solar-E-yarns made with black, red and white knit braids (Fig. 5.21). 

 

 

All of the solar-E-yarns showed similar behaviour at different angles of incident light 

regardless of the colour of the outer textile sheath. 
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Figure 5.21 – Change in short-circuit current (ISC) at different incident angles for solar-E-

yarns with white, red and black outer sheaths. Measurements were conducted using the 

optical test rig with no optical filters. 
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5.3.7 First prototype of fabric using solar cell yarns 

In-order to confirm the feasibility of converting the solar-E-yarns into a fabric form, a set 

of yarns with multiple MSC embedded were fabricated. The solar-E-yarn each included 

three embedded MSCs (1.5 mm × 1.5 mm) which were soldered onto a pair of copper 

wires in parallel. Gaps between the two adjacent MSCs were maintained at 2.0 mm after 

considering four factors; maximise the power density of the solar-E-yarn, maintaining a 

sufficient spacing between the MSCs to produce discrete RMPs that could hermetically 

seal the MSCs, retain the bendability of the resultant fabric, and to prevent short-

circuiting of the two parallel copper wires (as this Cu wire was not electrically insulated). 

The soldered MSCs were individually encapsulated in 1.6 mm diameter cylindrical 

RMPs of ~2.5 mm length and were finished according to the baseline specifications given 

in Table 5.1 (page 124) as shown in Fig. 5.22(a). Five of these solar-E-yarns were then 

woven into a fabric swatch in combination with cotton yarns as shown in the Fig. 5.22(b).  

 

The solar cell region covered a rectangular area of ~1.0 × 1.4 mm (~1.4 cm2) as shown in 

Fig. 5.23(a). The five individual yarns were then connected in series to create a network 

of 15 MSCs as illustrated in Fig. 5.23(b). 
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Figure 5.22 – Schematic depiction of (a) a solar-E-yarns prepared with three 1.5 × 1.5 mm 

solar cells and (b) the fabric woven with solar-E-yarns and cotton yarns. 

Miniature solar cell 
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The prototype was tested under direct sunlight (Fig 5.24) on a sunny day and under one 

sun illumination (1000 W/m2, AM 1.5 Global spectrum) using the solar simulator 

mentioned in Chapter 3; the results obtained are given in Table 5.3. The solar simulator 

was introduced and employed for subsequent evaluations of the solar-E-yarns and 

resultant fabrics under standard one sun illumination to generate globally comparable 

test results. The solar simulator also provided closer representation of the conditions 

prevailing in most real-life applications. 

 

 

 

 

Lights source ISC (mA) VOC (V) Estimated power 

(mW) at FF = 0.65 

Direct Sunlight 1.42 2.62 2.42 

Solar Simulator (1000 W/m2, 

AM 1.5 G) 

1.53 2.65 2.64 

Theoretical estimation based 

on single cell performance 

1.56 2.71 2.75 

Figure 5.23 – First fabric prototype developed with solar cell embedded yarn. (a) Microscopic 

image of the fabric. (b) Electrical network of solar-E-yarns within the fabric. 

(

a b 

1 mm 

1.4
 m

m
 

Table 5.3 – Output from the prototype solar energy harvesting fabric under direct sunlight 

and using the solar simulator. 

Figure 5.24 – Measurement of short-circuit current and open-circuit voltage of the first 

solar energy harvesting prototype fabric under direct sunlight. 
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These experiments confirmed the viability of developing solar energy harvesting fabrics 

woven with solar-E-yarns. The first prototype exhibited an estimated power density of 

1.88 mW/cm2 which would be adequate for powering wearable or low-powered mobile 

electronic devices when applied for an outerwear product such as a jacket. Compared to 

the theoretical estimates based on single cell solar-E-yarns were slightly higher than the 

experimental figures probably due to mismatch losses and cell mis-alignment losses. In 

addition the fabric surrounding would also have a positive effect on the solar-E-yarn 

performance. These will be further discussed in Chapter 7. 

5.3.8 Optimisation of solar cell length 

Based on the evaluations conducted using 1.5 mm 1.5 mm SCs the possibility of 

increasing the length of the MSC as a strategy to improve power density was considered. 

This would also reduce the number of MSCs required to produce the same amount of 

energy, which will improve the manufacturing efficiency. The length of the MSC dictates 

the length of the micro-pod which directly influenced the bending radius the solar-E-

yarn. Therefore to achieve an optimum balance between bendability and power density 

of the solar-E-yarn the cell length was revised to 3.0 mm. It was estimated that by using 

3.0 mm long cells, the maximum power density of a solar-E-yarn integrated woven 

fabrics can be enhanced by ~ 30%, as shown in the Table 5.4. The table also shows the 

estimated power density of resultant fabric prepared with resin impregnated solar-E-

yarns for both the MSC sizes.  

Solar-E-yarn type Maximum number of 

solar cells in 1 cm2 

Maximum power density in 

fabric form (mW/cm2)  

1.5 × 1.5 mm  12 1.88 (Measured) 

1.5 × 3 mm 8 2.50 (Estimated) 

1.5 × 1.5 mm with 

resin impregnation 

12 3.29 (Estimated) 

1.5 × 3 mm with resin 

impregnation 

8 4.38 (Estimated) 

 

5.4 Solar-E-yarns using 1.5 mm ×3.0 mm solar cells 

The production process and material employed for preparing solar-E-yarns using 1.5mm 

× 3 mm MSCs was identical to that of solar-E-yarns with 1.5mm × 1.5 mm MSCs, as 

Table 5.4 – Estimated maximum power densities for fabrics woven using solar-E-yarns 

prepared with different MSC sizes. 
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mentioned in Table 5.1. Fig 5.25 shows microscopic images of the different stages of the 

solar-E-yarn process when using 1.5mm × 3 mm MSCs were used (Fig 5.25).  

 

 

 
Characterisation was conducted using the solar simulator at one sun intensity (AM 1.5 

global spectrum, 1000W/m2). In this case a detailed study of device performance was 

performed by generating current-voltage (I-V) and (P-V) power voltage curves (Fig. 

5.26(a)) from which ISC, VOC, FF, and PMAX were derived. 

The linear relationship between light intensity and ISC explains the clear change in ISC of 

the MSC during the yarn fabrication process. On the other hand, VOC showed a modest 

change due to its logarithmic relationship with light intensity (Chegaar et al., 2013).  

When the MSCs were encapsulated within the RMPs the ISC and PMAX values increases 

by 18.3% and 21.7% respectively. After covering the MSC in RMP with a fibrous sheath 

the ISC and PMAX values decreased by 29.3% and 32.5% (relative to the values of maiden 

MSCs) due to shading and light absorbance effects of the fibrous sheath as observed 

previously. After resin impregnation the ISC and PMAX values were enhanced by ~66.5% 

compared to the values for solar-E-yarn before resin impregnation. In comparison to the 

maiden MSC, the resin impregnated solar-E-yarn had a 12.8 % higher PMAX. The VOC did 

not change significantly due to the fabrication process. FF was reduced by ~4.6% form 

the maiden MSC to solar-E-yarn, which recovered to original values after resin 

impregnation. 

Figure 5.25 – Microscopic images of 1.5 × 3.0 mm MSC (a) soldered onto Cu wires, (b) 

embedded inside 1.6mm resin micro-pod, (c) solar-E-yarn and (d) solar-E-yarn with resin 

impregnation. 
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1mm 1mm 

a b 
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In summary these results agreed with the results observed for the experiments 

conducted using 1.5mm × 1.5 mm MSCs. Further experiments on the preparation and 

characterisation of the solar-E-yarns and resultant fabrics prepared with multiple 1.5 

mm ×3.0 mm MSCs are discussed in Chapter 7.    
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Figure 5.26 – Opto-electronic characterisation of the solar-E-yarns with a single 1.5mm × 3 

mm single cell at different stages of the fabrication process, under one sun (AM 1.5 global 

spectrum, 1000W/m2) intensity: (a) Current-voltage curves (IV), (b) power-voltage (P-V) 

curves, (c) short-circuit current (ISC), (d) open-circuit voltage (VOC), (e) fill factor and (f) 

maximum power (PMAX). 
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5.4.1 Effect of change in incident angle normal to the width direction of the solar-E-yarns 

As mentioned in Chapter 3, the solar simulator introduced the possibility of conducting 

measurements at different incident angles normal to both longitudinal axis and width 

direction of the solar-E-yarns. An experiment was conducted to measure the change in 

the ISC of solar-E-yarns normal to the width direction of the MSC and resultant solar-E-

yarns using the solar simulator. These results, along with the previous tests of solar-E-

yarns at varying incident angles normal to the longitudinal axis generated using the 

optical test rig (discussed previously in 5.3.3 and 5.3.4) provided a complete picture of 

the performance of solar-E-yarns at varying incident angles in three-dimensional space. 

When the angle of incident light changed normal to the width direction, the ISC reached 

zero at 90° and -90° angles. This was possibly due to the complete self-shading of light 

when the beam of light was parallel to the photoactive plane of the MSC. The 

normalized ISC values at each stage in the solar-E-yarn fabrication process closely 

followed the cosine law. This provided clear evidence that the effects of the different 

components of the solar-E-yarn did not vary with the change in incident angle normal 

to the width direction of the embedded MSC. 
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Figure 5.27 –Change in short-circuit current (ISC) at different incident angles normal to the 

width direction of the MSCs in the front half circle, for solar-E-yarns at different stages of 

the fabrication process. (a) Absolute ISC values. (b) Normalized ISC values (normalized to the 

value at zero-degree angle, at each stage).  
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In a real-life application not only would the azimuth and altitude of the sun change but 

also the orientation of the solar-E-yarns is unpredictable due to the movement by the 

wearer of the clothing embedded with solar-E-yarns. Based on the results of the above 

experiments and empirical models given by Eq 5.8, 5.19 and 5.20, change in ISC with 

incident angle variations in three-dimensional hemispherical space can be empirically 

estimated as:  

𝐼𝑆𝐶(𝑀𝑎𝑖𝑑𝑒𝑛𝑆𝐶) = 𝑘𝑊 cos 𝛾1 cos 𝛾2        5.21 

𝐼𝑆𝐶(𝑆𝐶𝑖𝑛𝑅𝑀𝑃) = 𝑅𝑚[3779 sin( 1.294𝛾1 + 1.595) + 3727 sin( 1.304𝛾1 + 4.737)](1 +

cos 𝛾1) cos 𝛾2         5.22 

𝐼𝑆𝐶(𝑆𝑜𝑙𝑎𝑟−𝐸−𝑦𝑎𝑟𝑛) = 𝑅𝑦[39.91 sin( 1.057𝛾1 + 0.4414) + 24.17 sin( 2.312𝛾1 + 2.441)+

9.124 sin( 2.968𝛾 + 4.963)](1 + cos 𝛾1)]cos 𝛾2     5.23 

Where W, Rm and Ry are the width of the SC, radius of the RMP, and radius of the solar-

E-yarn. 𝛾1 and 𝛾2 are the angles to the vertical axis made by the two orthogonal 

projections of an incident ray as indicated in Fig 5.28.  

 

 

In summary the ISC showed higher uniformity with change in incident angle normal to 

the longitudinal direction compared to the ISC with change in incident angle normal to 

the width direction of the solar-E-yarn. Therefore, in practical applications it would be 

best to position the solar-E-yarns vertically on the final garment when designing 

products for use in the polar regions and vice-versa (position the solar-E-yarns 

horizontally) for use in the tropical regions of the globe. 

 

Longitudinal axis of 

the MSC 

Width direction of the 
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Axis normal to the photoactive plane 
Projection of the incident ray normal to 

the width direction of the MSC Projection of the incident 

ray normal to the 

longitudinal axis of the 
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γ1 γ2 
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Figure 5.28 – Illustration of an incident ray defined in three-dimensional space relative to 

the photoactive surface of a MSC. 
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5.4.2 Effect of light intensity on the solar-E-yarns 

In practical scenarios, the intensity of light received by the solar energy harvesters may 

change over time: This could be due to atmospheric changes such as the nature of cloud 

cover, the change in altitude and azimuth of Sun, or the motion of the wearer. According 

to theory ISC of MSCs have linear relationship with intensity of light, while the VOC 

changes logarithmically with the light intensity (Chegaar et al., 2013) as given in Eq. 5.24: 

𝑉𝑂𝐶 = (
𝑘𝐵𝑇

𝑞
) 𝑙𝑛 (

𝐼𝑝ℎ

𝐼0
+ 1)        5.24  

Where 
𝑘𝐵𝑇

𝑞
  is a constant for a given temperature (kB - boltzman constant, T- absolute 

temperature , q-electron charge), 𝐼𝑝ℎ is the photo-generated current, and 𝐼0 is the dark 

current. According to the equation, when the MSC is in the dark 𝑉𝑂𝐶 approaches zero. 

When the MSC is embedded inside of the E-yarn the fibrous sheath and the RMP 

interfere with the incident light. An experiment was conducted to study the effects of 

the components of the solar-E-yarns on the ISC and VOC were consistent at different light 

intensities in comparison with maiden MSCs (Fig. 5.29). 

  

 

The results confirmed that the linear relationship between ISC and light intensity is 

preserved at every stage of the solar-E-yarn fabrication process. The current per input 
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with light intensity for solar-E-yarns at different stages of the fabrication process. 100% 
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power values (Table 5.5) given by the gradient of the lines of Fig. 5.29(a) show that the 

effects of RMP, fibrous sheath and resin impregnation on the current, at different light 

intensities were proportionate to the light intensity.  

 

Device type Short-circuit current (ISC)/input 

power density (mA/mWcm-2) 

Maiden MSC 0.0114 

MSC embedded within an RMP 0.0134 

Solar-E-yarn 0.0074 

Solar-E-yarn with resin impregnation 0.0116 

 

The experimental VOC values for the MSCs at each stage in the solar-E-yarn fabrication 

process fit closely with the logarithmic relationship (Eq.5.25) given by: 

𝑉𝑂𝐶 = 𝑎 𝑙𝑛(𝑏𝑥 + 1)         5.25 

as given in table 5.6. Here x is the light intensity and a and b are fitting constants. 

 

Device type Fitting constants R2 

Maiden MSC a = 0.07446, b = 17.46 0.9788 

MSC inside RMP a=0.04418, b = 3612 0.9956 

Solar-E-yarn a = 0.05869, b =82.13 0.9922 

Solar-E-yarn with 

resin impregnation 

a = 0.05847, b = 123.3 0.9892 

 

Although the VOC value should reach zero at zero light intensity, the experimental results 

at this point was slightly higher than zero, probably due to imperfect dark conditions. 

5.4.3 Packing fibres embedded within the micro-pod 

The use of texturized yarns for packing fibres was crucial to improve the uniformity in 

thickness of E-yarns along the length direction, where the texturized yarns can bulk-up 

by crimping when the E-yarn relaxes. In the regions without RMPs, the packing fibres 

readily crimp and occupy the empty spaces in the core of the E-yarn. However, the 

Table 5.5 – Estimated short-circuit current (ISC) per incident light power using the 

experimental ISC values at different light intensities current. 

Table 5.6 – Results of the curve-fit for open-circuit voltage (Voc) against light intensity for 

solar-E-yarns at different stages of the fabrication process. Curve-fitting was conducted 

using the Matlab® curve-fitting tool. 
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packing fibres are compacted between the RMP and knit-braided structure in the regions 

with the RMP therefore, do not crimp and volumize. To enhance the uniformity of the 

E-yarns it was suggested that the packing fibres could be embedded inside of the RMP 

with the soldered MRC during the encapsulation process. This was expected to reduce 

the diameter of solar-E-yarns at the RMP, as illustrated in Fig 5.30. 

 

To evaluate the viability and benefits of embedding packing fibres within the RMP for 

solar-E-yarns, the encapsulation process was modified to position packing fibres (four 

167dtex/48f packing yarns) within the encapsulation tube surrounding the soldered 

MSC. 

 
 

The microscopic images of the RMPs prepared with packing fibres embedded in RMP 

(Fig. 5.31) showed that, the RMP embedded with packing fibres appeared slightly 

Knit braid 

Packing 

fibres 

Packing fibres 

outside the RMP 

Packing fibres embedded 

inside RMP 

a b 

Figure 5.30 – Schematic of the longitudinal sections of solar-E-yarns prepared with 

packing fibres (a) outside of the resin micro-pod (RMP) and (b) embedded within the RMP. 

a b 

c d 

Figure 5.31 – Microscopic images of (a) MSC embedded within a resin micro-pod (RMP) 

(b) MSC and packing fibres embedded within RMP, and the resultant solar-E-yarns with 

(c) packing fibres outside of the RMP and (d) packing fibres within the RMP. 
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translucent compared with the RMP without packing fibres. On the other hand, in the 

microscopic images for standard solar-E-yarns (prepared with packing fibres outside of 

the RMP) the layer of packing fibres was clearly visible through the knit-braid.  

ISC measurements taken using solar-E-yarns with the two different packing fibre 

configurations showed that at the RMP stage there was a ~9% reduction when the 

packing fibres were embedded within the RMP, possibly due to light scattering 

occurring at the fibre-RMP interfaces; There was no significant difference in the ISC for 

the solar-E-yarns as shown in Fig 5.32, confirming that embedding the packing fibres 

within the RMP did not enhance the photovoltaic performance of solar-E-yarn.  There 

was a ~9 % reduction in the thickness (~0.2 mm) of the solar-E-yarn when the packing 

fibres were embedded inside the RMP (Fig. 5.32(b)), confirming that the uniformity of 

the solar-E-yarn was marginally improved.  

 

5.4.4 Solar-E-yarns prepared with normal braided outer sheath 

The knit braided structure of the solar-E-yarns can be replaced by a normal braided 

structure which is prepared using a different technique. Unlike the knit braid, where the 

tubular structure is prepared by inter-looping yarns, a normal braided structure is 

formed by interlacing several sets of yarns at different braid angles. The tubular 

structures prepared by normal braiding have several structural differences compared to 

knit-braided yarns, such as lower tube wall thickness, higher compactness and higher 
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Figure 5.32 – (a) Comparison of normalized short-circuit current (ISC) when the packing 

fibres were outside of the resin micro-pod (RMP) and packing fibres embedded within the 

RMP; at the RMP stage and solar-E-yarn stage. The results are normalized to maiden 

MSC measurements. (b) Change in thickness of the solar-E-yarn when packing fibres were 

embedded within the RMP. 
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cover factor. These features impart an even and smooth surface appearance to the 

normal braided structure that could be advantageous for applications requiring smooth 

fabric surfaces. The cover factor of the tubular structure determines the proportion of 

incident light that can be directly transmitted to the core of the yarns. Higher cover factor 

of normal braiding means, higher interference with incident light that may reduce the 

ISC and power output of the solar-E-yarn. From a process standpoint, unlike knit 

braiding, normal braiding is a semi-continuous process where the yarn carrier bobbins 

cannot be replenished while the machine is running. In the normal braiding process, the 

main structural parameter that can be adjusted is the lay length. Lay-length determines 

the braid angle (the angle made to the longitudinal direction of the braided tube by the 

individual yarns). It was observed that with braid angle the cover factor and the 

diameter of the braided tube changed, and this could change the light intensity received 

by the embedded RMP. A series of solar-E-yarns were prepared with varying lay lengths 

(8 mm to 20 mm; Fig. 5.33(b)) using Herzog textile braiding machine (RU/12480, Herzog 

GmbH, Germany) (Fig. 5.33(a)) to observe the relationship between the lay-length, E-

yarn diameter, and the ISC generated by the solar-E-yarns. 

 

Lay length -8mm 

Lay length - 12 mm 

Lay length - 16 mm 

Lay length - 20 mm 

Figure 5.33 – (a) The Herzog braiding machine used for preparing the solar-E-yarns. (b) 

Microscopic images of the solar-E-yarns prepared with different lay lengths. 
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These solar-E-yarns used 1.5 mm × 3.0 mm MSCs embedded within 1.6 mm diameter 

RMP with no packing fibres. One set of solar-E-yarns were prepared with packing fibres 

(four 167dtex/48f texturized polyester packing yarns) embedded within the RMP and 12 

mm lay length. The braid structure was prepared using 24 texturized polyester 

(167dtex/48f) yarns. 

The result for solar-E-yarns prepared using the braid with a 12 mm lay length (Fig. 

5.34(a)), with and without the inclusion of packing fibres, confirm that there was no 

significant effect of the packing fibres on ISC. The ISC showed a positive linear relationship 

with the lay length and braid angle, clearly indicating the increased openness of the 

braid with a higher lay length as shown in literature (Kyosev and Aurich, 2016). It was 

estimated that a normal braided solar-E-yarn with ~14.0 mm lay length would generate 

an ISC values generated by a, solar-E-yarn with a knit braided sheath of 2.0 mm diameter. 

 

 

The normal braiding process can be more versatile over the knit braiding process where 

the diameter of the E-yarn is limited by the inner diameter of the knitting cylinder. Also, 

the appearance of the normal braided sheath is smooth due to the highly ordered 

interlacing structure in contrast to the heterogeneous yarn orientation within the 

interlooped knit-braided structure (Fig.5.35).   
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Figure 5.34 – Measurements from the solar-E-yarns made with normal braid outer sheath. 

(a) Effect of packing fibres on the normalized short-circuit current. (b) Effect of braid lay length 

on the normalized short-circuit current. The data shown has been normalized to the maiden 

MSC ISC. The red dashed line indicates the corresponding value for a solar-E-yarn with a knit-

braided sheath.  Measurements were conducted under one sun intensity. 
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The results confirmed that diameter of the braid was changing with the lay length (Fig. 

5.36). It was estimated that the diameter of the braid increased beyond 2.0 mm for lay 

lengths higher than ~9 mm. However, at this lay length the ISC value for the normal 

braided solar-E-yarn was estimated ~20% lower than a corresponding knit-braided 

solar-E-yarn. It was observed that the core of the solar-E-yarn (micro-pod-wire filament) 

was loose and unstable within the braid for lay lengths beyond 8 mm. 

 

While some freedom for movement of the micro-pod within the sheath is desirable to 

maintain flexibility and conformability of the E-yarn, excessive space between the braid 

and the core would create instability causing significant rotational misalignment of the 

RMP. This misalignment would be detrimental to the performance of the solar-E-yarn 

embedded fabrics, due to the possible electrical mismatch losses caused by irregular 

shading. In summary, while the normal braided solar-E-yarn had a more desirable 

appearance, photovoltaic output of a stable solar-E-yarn prepared was lower than the 

solar-E-yarns prepared using knit-braiding. 

a b 

Figure 5.35 – Side-by-side visual comparison of the solar-E-yarns prepared with (a) a knit-

braided sheath and (b) a normal braided sheath. 

Figure 5.36 – Change in diameter of the braid with lay length for the solar-E-yarns. 
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5.4.5 Solar-E-yarns using bi-facial solar cell concept 

Originating at Bell Labs in 1954, in last decade, bifaciality has emerged as a concept with 

a potential to enhance power generation capability of SCs (Kopecek et al., 2015). Bifacial 

cells have transparent faces that allow light to reach the photoactive material from both 

the front and back of the cell (conventional cells only have front active surface). This is 

achieved by using localized arrays of back contacts that are similar to the front contacts 

(Fig 5.33(b)). These bifacial cells can increase the power generated by gathering scattered 

light from the background, that lower the cost per unit power (Kopecek et al., 2015). 

Bifacial technology has allowed for the deployment of vertical mount solar panels that 

are more efficient, versatile, and robust than tilted mono-facial panels (Guo, Walsh and 

Peters, 2013).  

It was expected that the efficiency of solar-E-yarn could be significantly improved by 

using the bifacial cells. Also, further improvements of incident angle independency were 

foreseen. Since bifacial cells of the required size were not available, a bifacial equivalent 

cell was fabricated by attaching two individual MSCs back-to-back (Fig. 5.33(c)). 

 

 

 

MSC 2 

Cu wire (common 

back electrode) 

Cu wires 

(front 

electrodes

) 

Solder joints 

MSC 1 

c 

Front contacts 

Front 

contacts 

Rear 

contacts 

 

 

a b 

Figure 5.36 – Schematic of a typical electrode configuration of (a) a mono-facial and (b) a 

bifacial MSC. (c) Schematic illustrating the bi-facial equivalent solar cell prepared using two 

1.5 mm × 3 mm solar cells. 
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The MSCs were soldered as shown in Fig. 5.36 and were encapsulated inside of 1.6 mm 

diameter resin micro pods, covered inside of a 2.0 mm diameter fibrous sheath, and the 

surface fibres were impregnated with the encapsulation resin. The ISC and VOC were 

measured (Fig. 5.37) for the samples made with bifacial cells at different stages of the 

fabrication process at one sun intensity at 00 incident angle. The results for the direct 

angle measurements showed no significant improvement in ISC or VOC for bi-facial solar-

E-yarns compared to the conventional solar-E-yarns. 

 

 

The change in ISC with incident angle for the bi-facial solar-E-yarns was analysed using 

the optical test-rig and compared against the results for the solar-E-yarns made using 

mono-facial MSCs, as shown in Fig. 5.38.  
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Figure 5.37 – The (a) normalized ISC and (b) normalized VOC for the bi-facial equivalent solar 

cell prepared with two 1.5 mm  3 mm solar cells. The values indicated are normalized to the 

results for maiden MSCs. 
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The results showed a clear enhancement of ISC at higher incident angles for solar-E-yarns 

and solar-E-yarns with resin impregnation prepared with bi-facial cells. This provided 

evidence of the light diffusing to the opposite face of the MSCs when the incident angle 

increased. At a 90° incident angle the solar-E-yarns generated (both before and after resin 

impregnation) an ISC that was ~65% of the value at direct (0°) exposure. As expected, the 

behaviour of the bifacial devices at the back half circle (90°-180°) were identical to the 

front half circle. 
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Figure 5.38- Bifacial solar-E- yarn performance. (a) Short circuit current (ISC) and (b) open 

circuit voltage (VOC) at different stages of the production process. (c) Change in ISC with 
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When average ISC was considered across the front half circle for the bifacial solar-E-yarn 

and bifacial solar-E-yarn with resin impregnation there was a ~22 % and ~19 % increase 

in ISC respectively when compared to their mono-facial counterparts. Overall, the 

combined effects of bifaciality and resin impregnation on solar-E-yarns imparted an 83 

% increase in average ISC in the front-half circle. 

As seen in Fig. 5.38(b) the increase in the full circle (0°-180°) average ISC values from 

mono-facial devices to bifacial devices were significantly higher than respective 

increases for half-circle values, however the half-circle values are more relevant for 

practical applications. 

 

5.5 Conclusions 

 

The experimentally observed effects of light scattering due to the fibrous sheath on the 

solar-E-yarn performance closely aligned with the values theoretically estimated using 

the mathematical model. The resin impregnation enhanced the short-circuit current of 

solar-E-yarn by ~70 % and compensated for the negative effects of the fibrous sheath, 

however the appearance and surface properties of the solar-E-yarn was modified by the 

resin impregnation. The solar-E-yarn appeared to have a more uniform response at 

different incident angles compared to the maiden MSCs especially when the incident 

light was normal to the length direction of the yarn. The comparison studies conducted 

using white, black and red fibrous sheaths of confirmed that the solar-E-yarns can 

respond to any colour without a significant compromise on their performance. The fabric 

prototype prepared by weaving together solar-E-yarns (with 1.5 mm × 1.5 mm 

embedded solar cells) to prove the viability. This fabric generated a power density of 

1.88 mW/cm2. This was proof of the viability of the technology for developing solar 

energy harvesting fabrics. To improve the power density of the solar-E-yarns and 

process efficiency, the cell length was changed from 1.5 mm to 3.0 mm after initial 

investigations. The experiments conducted using 1.5 mm ×3.0 mm solar cells verified the 

results of the previous experiments conducted with 1.5 mm × 1.5 mm embedded solar 

cells. The change in the short-circuit current and open-circuit voltage for the solar-E-

yarns at different light intensities exhibited consistent behaviour when compared to the 

maiden MSCs. 
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Embedding the packing fibres within the resin-micro pod did improve the uniformity of 

the yarn and reduced the solar-E-yarn thickness by ~9%, while not affecting the solar-E-

yarn performance. A normal braided sheath resulted in a smooth, regular and uniform 

looking solar-E-yarn, however, this compact structure affected the photovoltaic 

performance of the solar-E-yarn. The bi-faciality concept was implemented by bonding 

two mono-facial MSCs together, that created bi-facial solar-E-yarns with superior 

performance to the solar-E-yarns prepared using mono-facial MSCs, especially at higher 

incident angles. It was observed that by combining the bi-facial concept and resin 

impregnation, the normal solar-E-yarn performance could be enhanced by about 83 % 

when front half of the solar-E-yarn was considered.  

Chapter 6 of the thesis covers the evaluation of the solar-E-yarns with relation to various 

external factors (temperature, humidity, moisture) and processes (washing and drying); 

which the solar-E-yarns would be exposed to during their use. 
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6.1 Introduction 

The importance of understanding the behaviour of any E-textile product during its 

regular use is clear: The practicality of solar energy harvesting textiles will largely 

depend on whether they could withstand the mechanical and physical stresses or 

chemical agents that they would encounter during daily use without a significantly 

deterioration in their photovoltaic functionality. As discussed in chapter 2 assessments of 

textile-based solar energy harvesters under operational conductions (such as 

performance after washing) reported in literature could not be considered satisfactory 

or realistic. This chapter focuses on assessing the reliability of the solar-E-yarns when 

exposed to various conditions that they would encounter during their regular use as part 

of a wearable product. This will help to define the boundary conditions within which 

the solar-E-yarns can operate in a satisfactory manner and identify the durability aspects 

of the solar-E-yarn that require improvements.  

In this research the assessment of durability after washing and performance under 

different ambient conditions (change in temperature and humidity) was conducted. In 

addition, the effects of mechanical stresses such as tensile forces, abrasion and impact 

were also assessed. Due to the absence of dedicated test methods and standards for 

testing of E-textiles, some of the existing test standards and procedures designed for 

regular textiles (in apparel applications) were adapted in a suitable manner to conduct 

the relevant evaluations such as wash durability, tensile strength and abrasion 

resistance. Other evaluations were conducted by designing controlled experiments with 

little or no specific reference to existing test standards. Assessments of test samples were 

conducted considering both the textile aspects (e.g. appearance) and photovoltaic output 

(e.g. short-circuit current). It is logical to assume that the electrical functionality is more 

susceptible to deterioration during use due to the higher probability of electrical 

conductivity/interconnect failures. Previous work has identified copper wire breakages 

as the first mode of failure of many E-yarns (Hardy et al., 2018). Some of the durability 

tests covered in this chapter were previously presented in the publication ‘Photodiodes 

embedded within electronic textiles’ by the author (Satharasinghe, Hughes-Riley and 

Dias, 2018). 
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6.2 Wash durability testing 

Wash durability is a key determinant for the robustness of an apparel product intended 

for regular clothing application. Machine washing and hand washing are the practical 

methods of cleaning clothes, where clothes are exposed to multiple different thermal, 

hydro-mechanical and chemical conditions over the duration of the wash cycle. Machine 

washing using detergents and hot water provide an efficient means to removal of dirt 

and impurities from textile materials. However, these harsher and extreme conditions 

could be detrimental to clothing with embedded electronic system. Hand washing could 

be more forgiving to the electronics embedded systems due to the mild hydro-

mechanical conditions of the process. 

Three tests were conducted to assess the wash durability of solar-E-yarns using machine 

washing and hand washing methods. The machine wash tests were conducted in two 

forms; in E-yarn form where the solar-E-yarns were attached onto a T-shirt using 

embroidery and in fabric form where the solar-E-yarns were woven into fabrics and 

washed using a wash bag. Use of a wash bag for washing high-value/delicate 

textile/apparel products is a common practice, that preserve the appearance and 

functionality of the product. Wash bag prevents the garmets from excessive abrasion, 

bending fatigue and entanglement with other clothing. The machine wash tests were 

conducted, closely following the procedure 4N outlined in the British standard BS EN 

ISO 6330:2012; Textiles - Domestic washing and drying procedures for textile testing (BSI 

Standards Publication, 2012), using a domestic front-loading washing machine (Bosch 

Logixx 8 VarioPerfect, BSH Home Appliances Ltd, UK) and 20g of detergent (Persil Non 

Bio, Unilever UK Ltd, UK) for 25 cycles along with cotton ballasts (100% cotton white T-

shirts were used as ballasts to create a total wash load of 2.00 ± 0.01 kg). The samples 

were tumble dried with ballasts inside a front-loading condenser type domestic tumble-

drier (Bosch Classixx 8, BSH Home Appliances Ltd, Milton Keynes, United Kingdom). 

The wash and tumble dry programmes were selected for the washing and drying 

machines gave approximately similar settings to the wash and tumble dry cycles 

prescribed in the wash standard as mentioned in the Table 6.1. 
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Hand washing of the fabric samples was conducted with 10g of detergent (same type of 

detergent used in the machine wash test) for 25 cycles (total washing time of 7.5 hours), 

by closely following the AATCC Monograph M5 for Standardization of Hand 

Laundering for Fabrics and Apparel (American Association Of Textile Chemists And 

Colourists, 2010) as given in Table 6.1. Both washing and rinsing were conducted with 

50 ± 2°C tap water (recorded using a digital temperature meter connected with a k-type 

thermocouple). The samples were line dried under accelerated conditions using a 

domestic cooling fan to reduce the drying time without applying mechanical or thermal 

influences. Hand washing and line drying for high-value or delicate apparel products is 

a regular practice and is a viable proposition for apparel integrated with solar-E-yarns. 

In the case of outerwear (such as coats, blazers or jackets) hand washing or dry-cleaning 

(which is even more mechanically forgiving) is the recommended method of cleaning. 

 Parameter Directed in the standard Settings and conditions 

employed in the test 

Machine 

washing ( BS 

EN ISO 

6330:2012)  

Temperature 40±3°C 40°C 

Washing time 15 minutes 15 minutes 

Rinsing time 10 minutes 10 minutes 

Spinning time 5 minutes 6 minutes 

Spinning RPM 800±20 800 

Hand 

washing 

(AATCC 

Monograph 

M5) 

Temperature As agreed, 50°C 

Washing  3 repeats of 2 minutes 

soaking and 1-minute 

gentle squeezing cycles 

with 7.6L of detergent water 

inside a 19L container. 

3 repeats of 2 minutes soaking 

and 1-minute gentle squeezing 

cycles with 1L of 1% detergent 

water inside of a 2L container. 

Rinsing  3 repeats of 2 minutes 

soaking and 1-minute 

gentle squeezing cycles 

with 7.6L of tap water inside 

of a 19L container. 

3 repeats of 2 minutes soaking 

and 1-minute gentle squeezing 

cycles with 1L of tap water 

inside of a 2L container. 

Tumble 

drying 

Temperature, 

RPM and Time 

Drying time selected to 

achieve ~2% final relative 

humidity. 

Drying program set to 

Sportswear (1 hour 47 minutes) 

Line drying Drying 

apparatus and 

conditions 

Lay flat on a perforated 

shelf or hung on a garment 

hanger without blowing air. 

Line dried for 2 hours at room 

temperature (20-25°C) by 

blowing a stream of air 

generated by a pedestal cooling 

fan.  

Table 6.1 - Wash test conditions specified in the test standards and set conditions during 

the experiments.  
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6.2.1 Machine wash testing of solar-E-yarns 

The first set of machine-wash tests were conducted on solar-E-yarns in yarn form where 

the solar-E-yarns were stitched onto rectangular fabric swatches (~10.0 cm ×20.0 cm 

single jersey cotton fabrics) using a zig-zag stitch pattern. The photoactive sides of the 

E-yarns were aligned to the front side of the fabric swatch during the stitching process. 

For the wash durability tests, 2.0 mm diameter solar-E-yarns with 1.6 mm RMPs were 

prepared embedding 1.5 mm × 1.5 mm MSCs, 1.5 mm × 3.0 mm MSCs, and the PD1 type 

photodiodes (TEMD 7000x01) as listed below. Single E-yarn had one MSC or one PD 

embedded within it. 

i. 1.5×1.5 mm MSC embedded solar-E-yarn - 10 samples 

ii. 1.5×1.5 mm MSC embedded solar-E-yarn with resin impregnation - 5 samples 

iii.  1.5×3.0 mm MSC embedded solar-E-yarn - 10 samples 

iv. 1.5×3.0 mm MSC embedded solar-E-yarn with resin impregnation - 5 samples 

v. 1.5×1.5 mm 3.0 MSCs parallel connected solar-E-yarn - 5 samples 

vi. TEMD7000×1 photodiode embedded E-yarn (PDEY) – 5 samples 

vii.  TEMD7000×1 PDEY with resin impregnation – 5 samples 

Each fabric swatch included five solar E-yarns or PDEY of the same type, with ~1.0 cm 

gaps between the adjacent yarns. The fabric swatches were affixed onto cotton T-shirts 

using press studs as shown in Fig. 6.1. 

 

The ISC and VOC of each sample was measured before washing, and after 1, 2, 3, 4, 5, 10,15, 

20 and 25 wash and dry cycles to characterise their performance. The performance of the 

b a 

Figure 6.1 – Preparation of test samples for the wash durability tests of the solar E-yarns 

and PD embedded E-yarns. (a) Five solar E-yarns or PDEYs were stitched onto each fabric 

swatch. (b) Solar-E-yarn or PDEY embroidered fabric swatches were attached onto a cotton 

T-shirt using press studs. 
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solar-E-yarns and PDEYs were assessed by removing the fabric swatches from the T-

shirt and exposing them to one sun intensity using the solar simulator. Samples with 

significant (>10 %) changes in their performance compared to previous assessment 

cycles were considered to have failed. The failed E-yarn samples were removed from the 

fabric swatches prior to performing the next wash cycle. Full details of the ISC and VOC 

measurements are given in Appendix 8. Based on this criterion, the number of fully 

functional solar-E-yarns after the respective number of washes are given in Fig 6.2. 

 

The results indicated that the solar-E-yarns prepared with 1.5 ×1.5 mm MSC failed at a 

higher rate compare to the other types of solar-E-yarns. Except for 1.5 ×1.5 mm solar-E-

yarns, all other types of solar-E-yarns and PDEYs survived at least 5 cycles of machine 

washing and tumble drying. However, none of the solar-E-yarns and PDEYs were 

particularly durable beyond 10 cycles. After 15 wash/dry cycles 62.5 % of the solar-E-

yarns and PDEYs functioned correctly. After 25 washes only 17.5 % of the total 40 yarns 

tested had survived. This result showed that the solar-E-yarns and PDEYs were not able 

to survive repeated machine laundry and tumble drying beyond 5-10 cycles. 

The failed solar-E-yarns were dissected and analysed for their cause of failure using 

optical microscopy. This included identifying failures in the copper wire and possible 

micro-cracks or the ingress of water though the RMP. The analysis showed that with the 

exception of one failure, all of the other failures were due to copper wire breakages. More 

than 93% of the copper wire breakages had occurred close to the RMP (Fig. 6.3(a)). No 
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washing and tumble-drying cycles. 
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indication of moisture ingress into the RMP was observed. When the broken ends of the 

multi-filament copper wires were closely analysed, evidence of solder wicking through 

the capillaries between the individual Cu strands were noticed (Fig 6.3(b)).  

  

 

This wicking process of solder paste can occur when the solder alloy is in a liquid state 

during the soldering process. It was noticed that the stiffness of the broken Cu wire ends 

was significantly higher than the maiden Cu wire, possibly due to the solder wicking. 

This Cu wire stiffening may have resulted in localisation of fatigue stress on the Cu wire 

close to the RMP during the washing process eventually causing it to break. Therefore, 

it was of interest to analyse the possibility of reducing the Cu wire breakage close to the 

RMP by minimizing the solder wicking; however, this analysis is not within the scope 

of this research programme. 

6.2.2  Machine wash and hand wash testing of woven fabrics with solar-E-yarns and 

photodiode embedded E-yarns  

The second and third wash tests were conducted on solar-E-yarns and PD-E-yarns 

(PDEY) that had been woven into a fabric structure; the fabrics with solar-E-yarns are 

denoted as solar-fabrics and fabrics woven with PDEYs are named PD-fabrics hereafter. 

The objective of these tests was to assess the durability of the solar-E-yarns when 

integrated into a woven fabric and after undergoing machine washing and hand 

washing. Wash testing the solar-fabric and PD-fabrics would be more representative of 

how they would be used and washed in real-life. The machine wash tests were 

conducted after inserting the samples inside a wash bag to provide more protection to 

the samples of solar-fabrics and PD-fabrics). In contrast to the solar-yarns and PDEYs 

where the wash tests were followed by tumble drying, the solar-fabric and PD-fabric 

a b 
Solder paste 
residue 
between the 
Cu filaments 

Figure 6.3 – Analysis of cause of failure after washing. (a) Dissected solar-E-yarn with a 

copper wire breakage close to the resin micro-pod. (b) Magnified image of the copper wire 

breakage point showing solder wicking through the capillaries.  
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samples were line dried. Although these conditions were milder compared to the 

previous test conditions, this was also a practical and viable method for cleaning a high 

value-added product such as a solar-fabric. 

The solar-fabric and PD-fabric samples were constructed by weaving either solar-E-

yarns or PDEYs and cotton yarns in a basket weave structure as shown in Fig. 6.4. Cotton 

yarns (100% cotton spun yarns, 38.9 × 2 tex; Elton Vale Yarns Ltd, UK) were used as the 

warp and solar-E-yarns or PDEY were inserted as the weft, with the photoactive side of 

the solar-E-yarns or PDEY fully exposed. Between two adjacent solar-E-yarns or PDEYs, 

five knit braided yarns without a core (the fibrous sheath of these yarns was identical to 

the solar-E-yarns or PDEYs, however without the RMP and copper wires) and cotton 

weft yarns were inserted in an alternating order as shown in the Fig. 6.4. 

 

b 

Fig. 6.4 - Woven fabrics containing solar-E-yarns prepared for wash durability and 

abrasion tests. (a) Schematic illustration of the fabric samples. (b) Photograph of the 

woven fabric prepared for testing.  
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The fabrics were machine washed (similar to the first wash test) inside of a wash bag 

and line-dried at room temperature as detailed in Table 6.1. Below six different types of 

E-yarns were woven into the fabrics (a total of twelve fabric samples and sixty E-yarns) 

and were subjected to machine washing (following the method given in Table 6.1). 

i. 1.5 × 1.5mm MSC embedded solar-E-yarns – 5 samples 

ii. 1.5 × 1.5mm MSC embedded solar-E-yarns with resin impregnation -5 samples 

iii. 1.5 × 3.0 mm MSC embedded solar-E-yarns -5 samples 

iv. 1.5 × 3.0 mm MSC embedded solar-E-yarns with resin impregnation - 5 samples 

v. TEMD7000×1 type photodiode embedded PDEYs - 5 samples 

vi. TEMD7000×1 type photodiode embedded PDEYs with resin impregnation - 5 

samples 

Hand washing was also conducted on another set of fabric samples prepared with the 

same types of solar-E-yarns and PDEYs. 

Both the ISC and VOC of the solar-E-yarns and PDEYs were recorded before washing, and 

after 1, 2, 3, 4, 5, 10,15, 20 and 25 wash and dry cycles using the solar simulator (one sun 

intensity), similar to the previous wash test. In addition to the ISC and VOC measurements 

the IV and PV curves were also generated before washing and after 25 washes using 

correctly functioning E-yarns. The results of the wash durability test (Fig. 6.5) showed 

that the solar-E-yarns and PDEYs in the washed and tumble-dried fabric samples, had a 

survival rate of over 90 % after 15 wash cycles. After 25 cycles 67 % of the solar-E-yarns 

and PDEYs still functioned correctly. In this case 92 % of the failures were due to Cu 

wire breakages close to the RMP.  
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Figure 6.5 – Number of correctly functioning E-yarns woven into fabrics after machine 

washing and tumble-drying cycles. 
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In the case of hand washing tests all solar-E-yarns and PDEYs in woven fabrics survived 

25 cycles of washing and drying. This was a drastic improvement from the results 

observed for solar-E-yarns and PDEYs tested in yarn form as shown in Fig. 6.6.  

The results confirm that the combined effects of integrating solar-E-yarns and PDEYs 

within a woven fabric, washing inside a wash bag and line drying are considerable. It is 

understood that this was possibly due to the structural support given to the solar-E-

yarns and PDEYs by the woven structure, additional protection provided by the wash 

bag that prevented the woven fabric from excessive torsional and tensile stresses during 

machine washing and, the absence of tumble drying significantly reduced the  

mechanical stresses on the solar-E-yarns and PDEYs. The individual effects of the 

integrating the solar-E-yarns and PDEYs within a woven structure, washing using a 

wash bag and line drying were not separately investigated in this study.  

 

The average of normalized ISC and VOC measurements and, maximum power (PMAX), and 

fill factor (FF) of the solar-E-yarns that survived 25 washes in fabric form are shown in 

Fig. 6.7.The normalized ISC and VOC values (normalized to their values before washing) 

showed that the ISC reduced by ~3 % and ~6 % after 25 hand wash and machine wash 

cycles respectively. The FF values showed insignificant changes after 25 hand or 

machine washes. The PMAX values reduced by ~13.5 % and ~10.4 % after 25 machine wash 

cycles and 25 hand wash cycles (Fig. 6.7(b)), which was the compound effect of changes 

in ISC, VOC, and FF. The minor reductions in output power observed was possibly due to 

the migration of the textile fibres in the fibrous sheath during washing, which could 

increase the shading effect.  
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Figure 6.6 – Comparison of the test results after wash testing for the solar-E-yarns 

and solar-fabrics . 
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The results suggested that the photovoltaic performance of the embedded MSCs did not 

deteriorated significantly due to the exposure to the combination of water, detergents, 

heat, and liquid. While the solar-E-yarns are not suitable for machine washing beyond 

15 cycles in its current form, hand washing which is a practical and viable method for 

cleaning high-value clothing can be readily used for apparel integrated with solar-E-

yarns. The observed levels of durability of MSCs in  solar-E-yarns can be attributed to 

the discrete micro-pod structure that protected the MSCs from the water-detergent mix 
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Fig. 6.7. Wash durability of solar-E-yarns embedded within woven fabrics. (a) Change in 

short circuit current (ISC) and open circuit voltage (VOC) after washing (normalized to before 

wash values) and (b) change in fill factor (FF) and maximum power output (PMAX) after 25 

wash cycles for machine washed and hand washed solar-E-yarns. Two sets of five solar-E-

yarns were woven into solar-fabrics and subjected to machine washing and hand washing. The 

average output of the fully functioning solar-E-yarns indicated with error bars show the SD 

of the full functioning solar-E-yarns. 
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in the wash-bath and degree of freedom for the movement of the individual RMPs 

within the solar-E-yarns structure, as the micro-pods are not bound to the fibrous sheath. 

The fibrous sheath provided tensile reinforcement to the solar-E-yarn. The fabrics woven 

with solar-E-yarns has an architecture that was inherently flexible allowing the solar-E-

yarns to move independently (by shear deformation) when under mechanical stress. 

Condsidering these advantagous structural features, the durability of the woven solar-

E-yarns when machine washed should largely improve simply by enhancing the 

mechanical properties (bending and torsional fatigue) of the copper wire and optimising 

the soldering process to minimize the solder wicking during soldering.  

6.3 Tensile strength tests 

The tensile strength of the solar-E-yarns were evaluated to assess their ability to 

withstand the tensile forces that may be applied during subsequent manufacturing 

processes (i.e. weaving, knitting or embroidery) or regular use. Previous work had 

analysed the tensile properties of E-yarns with LEDs and showed a breaking strength of 

54.93–67.46 N (Nashed et al., 2019). In the case of solar-E-yarns, the geometry of the 

embedded device (MSC), solder pads and the solder joints are significantly different to 

the LED yarn. Also, it is important to understand the point of electrical failure under 

tensile loading, which is relevant to the photovoltaic functionality of the solar-E-yarns. 

Therefore, an experimental procedure was defined to measure the points of mechanical 

failure and electrical failure of solar-E-yarns as shown in Fig. 6.8.  
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Figure. 6.8 - (a) Image of the test apparatus and (b) a schematic of the voltage divider circuit 

used for the solar-E-yarns tensile test. 
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Five solar-E-yarns embedded with 1.5 × 3.0 mm MSCs were fabricated with 1.5 mm 

diameter RMP and a 2.0 mm diameter knitted sheath. The solar-E-yarns were tested 

using the Zwick tensile tester with a 2.5 kN load cell and 100 mm grip to grip separation 

(Fig.6.8(a)) until the (complete) mechanical breakage of the solar-E-yarn. The ends of the 

copper wires of each solar-E-yarn were connected to a voltage divider circuit as 

indicated in the Fig.6.8(b). The tensile load, strain, and the voltage across the yarn were 

simultaneously recorded with the Zwick software as given in Figure 6.9(a). An analysis 

of the failure points is given in Fig. 6.9(b). Also, the breaking strengths of the components 

of the solar-E-yarns (Cu wire, Vectran® yarn, and fibre sheath) were individually 

measured.

The force-strain curve showed a jaggered pattern with four distinct drops (Fig 6.9(a)). 

These drops can be attributed to the failures of individual components of the solar-E-
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(circles – first mechanical failure, diamonds-electrical failure and triangles-complete 

breakage). 
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yarns. Tensile tests were conducted for individual components of the Solar-E-yarn and 

the results were compared against the Solar-E-yarn eleongation test results. The 

breaking strength of the Vectran® yarns (24.3 ± 2.0 N) was approximately comparable 

to the drop in load at the first failure pioint (~19.7 N). Therefore, the breakage of the 

Vectran® yarn within the solar-E-yarn can be assigned to the first failure point. Similarly 

the third faliure point (drop in force ~3.7 N) can be assigned to the breakage of the Cu 

wire that had a breaking strength of 3.26 ± 0.26 N. Based on the results (Fig 6.9(b)) it was 

clear that the solar-E-yarns can withstand tensile loads of above 54.3 ± 4.5 N before the 

initial mechanical failure occured. The electrical failure of the solar-E-yarns was 

observed at 66.7 ± 9.9 N, which occured before the mechanical failure of Cu (third 

mechanical failure point) wire. The final mechanical failure (complete breakage) occured 

around 88.1 ± 4.3 N with the breakage of the knit braid. The test was terminated at this 

point. The sequence of the failure of different components of the E-yarn can be attributed 

to the amount of slack and the level of elengation before breakage for each component. 

For example although Cu wire has a lower breaking strength than Vectran® yarn, it has 

a higher strain at breakage (19.46±0.39 %) compared to Vectran® yarn (10.66±2.05%) 

hence the electrical failure occurs after the Vectran® yarn breakage.   According to 

literature,in a typical weaving process the maximum tension applied on a single warp 

end is less than 20N (Shih et al., 1995). Therefore, based on the results confirmed that the 

electrical and mechanical robustness of the solar-E-yarns under tensile loading was 

sufficient to survive subsequent processing and normal use.  

6.4 Abrasion resistance test 

During their regular use textile fabrics are subjected to rubbing (abrasion) against the 

various surfaces and this can affect their appearance (fibre breakage and pilling) and 

mechanical integrity (loss of material, fabric structural failures). The solar-E-yarns 

would be positioned on regions of the garment that are consistently exposed to light, 

such as front or back of a jacket, that may be less susceptibility to abrasion. On the other 

hand, due to the higher stiffness of the RMPs, the solar-E-yarns may be more vulnerable 

to fibre breakages even under lower number of abrasion cycles. Therefore, the impact of 

abrasion on the appearance and performance of solar-fabric was evaluated. To analyse 

these effects on solar-fabrics, abrasion tests were conducted using a Martindale abrasion 

tester (902 Mini Martindale, James Heal Ltd, England). The five solar-E-yarns made with 
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1.5 × 3.0 mm MSCs, 1.5 mm diameter RMPs and 2.0 mm diameter knitted sheaths were 

woven into a fabric, identical to that used for wash testing in 6.2.2. The fabric sample 

was subjected to abrasion testing for 6000 cycles (12000 rubs) according to BS EN ISO 

12947-2:2016 (BSI Standards Publication, 2016). A standard rubbing cloth (SM25 

Martindale Abrasive Cloth, James Heal Ltd, England) with a 9 kPa rubbing load was 

used for the test. These abrasion conditions are representative of the level of abrasion, a 

low-abrasion risk region an outerwear may undergo during its normal use. The voltage 

of each solar-E-yarn was monitored during the test under constant lighting conditions 

(achieved by using an LED table lamp), to identify any abnormal changes in electrical 

properties, using a USB data logger (NI USB DAQ 6008, National instruments Inc, USA) 

and a bespoke program (see Appendix 9) based on LabView® (National instruments Inc, 

USA). Microscopic images were taken before the start of the tests and after every 1000 

cycles while the test sample were fixed to the abrasion tester. The ISC and VOC were 

measured for each solar-E-yarn before and after the abrasion tests under one sun 

intensity. 

  

 

 

Continuous voltage readings from 0 to 6000 abrasion cycles did not indicate any 

abnormalities during the test. However, a gradual change in voltage within each 1000 

cycle period was observed; at the beginning of the next 1000 cycle, the voltage returned 

to a value similar to the initial voltage, indicating that this change was temporary. This 

change may be caused by factors such as increase in temperature (subsequently 

increasing wire resistance) or accumulation of static electricity due to the rubbing action.  

a 
b 

Test sample 

Data Logger 

Abrasion 

tester 

Figure 6.10 - (a) Experimental setup for conducting the abrasion testing. (b) Set-up for the 

microscopic imaging of the test sample at intervals of 1000 abrasion cycles. 
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Figure 6.11 – Normalized short-circuit current (ISC) and open-circuit voltage (VOC) of 

solar-E-yarn embedded fabrics before and after undergoing 6000 abrasion cycles, tested 

when exposed to one sun intensity with solar simulator. 

Table 6.2     - Microscopic images of the five solar-E-yarns during the abrasion test. 
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The microscopic images before the test and after each 1000 abrasion cycles (Table 6.2) 

showed minor changes in surface fibre distribution and small levels of fibre breakages, 

which were not clearly visible to the naked eye. Based on the results it is clear that despite 

the change in stiffness in the micro-pod regions the solar-E-yarns maintained a 

satisfactory appearance and photovoltaic performance after 6000 abrasion cycles (12000 

rubs), that may be sufficient for a region of an outerwear that has low abrasion risk. It is 

to be noted that, based on the specific applications the abrasion test may need to be 

varied to represent the real-life scenario. 

6.5 Mechanical impact testing 

For completeness, experiments were conducted to assess the capability of solar-E-yarns 

to survive mechanical impact. Solar-E-yarns (constructed using one 1.5 ×3.0 mm MSC 

per yarn) were woven into a fabric (the same fabric structure used for previous durability 

tests) and were subjected to mechanical impact using a wire impact tester (DVT SAH 

KAB Cable Impact Tester) with a 10 cm drop height (Fig 6.17). 

  

The mechanical test performed would be more severe than the nature of mechanical 

forces encountered during their use (when worn on body or during washing), however 

this gave an indication about the maximum impact the solar-E-yarn could survive 

without sustaining substantial deterioration in performance (i.e. the boundary 

conditions for use). A preliminary test was conducted to determine the maximum impact 

weight at which the yarn retained at least 50% of its functionality (>50 % of the original 

short circuit current) after one impact cycle. Hammer weights from 100 g to 500 g (in 100 

a 

10 cm 

Hammer 

b 

Figure 6.17 - Mechanical impact tests on the solar-fabric. (a) Image of the mechanical impact 

test apparatus with the wire impact tester conducted on solar- fabric sample. (b) Magnified 

image of the impact head positioned on the solar-fabric. 
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g increments) were used for the preliminary test. Then five solar-fabric samples were 

subjected to 25 impact cycles using the hammer weight determined by the preliminary 

test. The ISC and VOC values were measured using the solar simulator under one sun 

intensity. 

The preliminary test (Fig. 6.18(b)) showed that the solar-E-yarns retained their 

functionality (here defined as ISC above the 50% of the original value) only when a 100g 

hammer was used. Tests with multiple impact cycles of the 100g mass were conducted 

up to 25 cycles, and the ISC and VOC values were recorded at 1, 2, 3, 4, 5, 10, 15, 20 and 25 

impact cycles. After 3 impact cycles using the 100 g hammer, the ISC value of the solar-E-

yarns reduced below 50% of the original value. The impact energy of a single impact 

cycle can be estimated by: 

𝐸 = 𝑚𝑔ℎ     6.1 

Where m is the mass of the hammer, g is the gravity constant and h is the falling height 

of the hammer. 

  

For a 100g hammer falling from 10 cm height the impact energy was therefore ~98 mJ. 

This level of impact is significantly lower than the impact energy absorbed by human 

joints for example during a fall ( 10.5J on the knee joint during a fall) (Schwarze, 

Hurschler and Welke, 2019) hence the solar-E-yarns in its current form will not be 

suitable for positioning on the areas of the garments that are prone to mechanical impact.  

The mechanical impact durability of the solar-E-yarns could be improved by increasing 
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the RMP diameter, which may provide a greater level of protection to the embedded 

solar cell. However, this may not be desirable due to the increase in yarn thickness, 

which will impact appearance and wearability. The material properties of the RMP may 

also be modified, that could improve the impact absorption properties, which is not 

investigated in this study. 

6.6 Effect of temperature and humidity 

The environmental conditions the solar energy harvesting textile may have to experience 

during its normal use may vary vastly. Therefore, the effect of changes in temperature 

and humidity are two key parameters that need to be considered in this respect.  

6.6.1 Effect of temperature on solar-E-yarns 

The effect of temperature on the photovoltaic behaviour of solar cells (SC) are well 

known. According to the theory, with increase in temperature, VOC of an SC reduces 

approximately linearly and the ISC would show a small logarithmic increase  (McEvoy, 

Markvart and Castañer, 2013; Chander et al., 2015). It was important to understand 

whether the MSCs embedded within the solar-E-yarn structure had a similar behaviour 

when compared with the maiden MSC, as the RMP and fibrous sheath would impede 

heat flow to the cell (Hughes-Riley et al., 2017). Therefore, the change in ISC and VOC with 

temperature for solar-E-yarns at different stages of the fabrication process was 

investigated. Solar-E-yarns were prepared with 1.5 × 3.0 mm MSCs, 1.6 mm diameter 

RMPs and 2.0 mm diameter knit braided structure using the standard material types 

employed throughout this chapter. The solar-E-yarns were positioned on the 

temperature-controlled chilling/heating plate (EchoTherm™ IC50 digital 

chilling/heating plate, Torrey Pines Scientific Inc., Carlsbad, CA, USA) as shown in Fig. 

6.12; with temperature adjusted from 0°C to 60°C in 5 °C steps.  

A matt black tube was placed on the chilling/heating plate to cover the solar-E-yarns 

from ambient light. The actual temperature close to the devices were monitored using a 

thermocouple (Z2-K-1.0-1/0.2-MP-ANSI, Labfacility Ltd, West Sussex, United Kingdom) 

connected to a temperature logger (RDXL65D Six Channel Handheld Temperature Data 

Logger, Omega Engineering Limited, Manchester, United Kingdom). Once the system 

had reached an equilibrium, measurements were conducted under one sun intensity. ISC 
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and VOC values were plotted against the temperature measured by the thermocouple for 

the solar-E-yarns at each stage of the fabrication process (Fig. 6.13). 
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Figure 6.13 - The effect of temperature on the short circuit current (ISC) open circuit voltage 

(VOC) of solar-E- yarns at different stages of the fabrication process, measured at one sun 

intensity. 

Figure 6.12  - (a) Experimental setup for monitoring the effect of temperature on the 

photovoltaic behaviour of solar-E-yarns. (b) Close-up image of the solar-E-yarns 

positioned on the chilling/heating plate with the thermocouple. 
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According to the theory (Wu and Chen, 1982); 

𝑉𝑂𝐶 ≃
𝑘𝐵𝑇

𝑞
[ln(𝐼𝑆𝐶/𝐼0) + 1]        6.2 

Where T is the absolute temperature, kB is the Boltzman constant, q is the electron charge, 

I0 is the reverse dark current. However, it was suggested (Singh and Singal, 1983) that 

this temperature dependent behaviour of VOC can be empirically represented as; 

VOC = 𝑉(0)𝑂𝐶 + 𝛼T                                                                  6.3 

Where V(0)OC is the open-circuit voltage at 0 K and is constant. T is the absolute 

temperature. The theoretical analysis of the effect of temperature on ISC is often lengthy 

and complex (Krawczyk, Jakubowski and Zurawska, 1981) and therefore, is not 

discussed in detail in this work. As the experimental results and theory suggested, in its 

simplest form ISC and T can also be defined with a linear relationship within a specific 

temperature range (Eq. 6.3), where the gradient of the curve gave the temperature co-

efficient of ISC (i.e. change in ISC for a unit change in temperature) . 

𝐼𝑆𝐶 = 𝑎1 + 𝑏1𝑇                 6.4  

The curve fitting was conducted using the Matlab® curve-fitting toolbox, with the 

results shown in Table 6.3. The coefficient of variation (R2) indicated the goodness of 

the data fit of the selected curve types.  

Device type Fit coefficients for ISC Fit coefficients for VOC 

a1 b1 R2  𝑽(𝟎)𝑶𝑪 𝜶 R2  

Maiden MSC 0.979829 0.000727 0.8601 1.1651 - 0.0021 0.9876 

MSC with RMP 1.336365 0.000195 0.1054 1.1944 -0.0021 0.9976 

Solar-E-yarn 0.703129 0.000127 0.9646 1.1816 -0.0021 0.9991 

Solar-E-yarn with 

resin impregnation 

1.168668 -0.000116 0.5098 1.2057 -0.0022 0.9998 

The results of the curve-fitting confirm a that the temperature and VOC had a close linear 

relationship, with a gradient of -0.0021 approximately meaning that for a 1 K increase in 

temperature, there was ~2.1 mV reduction in VOC at all stages of the solar-E-yarn 

fabrication process. This value is defined as the temperature coefficient of open-circuit 

voltage, which showed a close agreement with the values reported in literature (2.1-2.4 

mV/K) for Si solar cells (Wu and Chen, 1982; Cotfas, Cotfas and Machidon, 2018). The 

Table 6.3 – Curve fitting the data for short-circuit current (ISC) and open circuit voltage 

(VOC) at different temperatures. 
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results of the curve-fitting for the ISC were not conclusive and the temperature coefficient 

of ISC could not be accurately estimated, possibly due to the small and irregular changes 

in ISC with temperature.  

6.6.2 Effect of humidity on solar-E-yarns 

Humidity in the atmosphere could affect the performance of a solar-E-yarn especially at 

high humidity levels in two ways. Firstly, it could change the optical properties of 

different components of the solar-E-yarns by creating thin layers of liquid droplets. 

Secondly, the liquid layers could change the electrical resistance between the two 

electrodes of the device. To assess the behaviour of solar-E-yarns at different relative 

humidity (RH) levels, a solar-E-yarn characterisation apparatus was setup inside a 

temperature/humidity controllable chamber (Thermotron SM-1.0-8200 Benchtop 

Environmental Chamber, Thermotron Industries, USA) as shown in Fig 6.14.  

 

Since it was not possible to use the solar simulator inside of the humidity-controlled 

chamber (due to its size), for this experiment the optical test rig with full beam settings 

was employed, with solar-E-yarns positioned in the sample holder as before.  

Temperature/ humidity 
controllable chamber  

with optical test rig setup 
inside 

Multi-meter to 
measure 
current/voltage 

Power supply 
for the lamp 
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Figure 6.14 - (a) Experimental setup for monitoring the effect of humidity on the photovoltaic 

behaviour of solar-E-yarns. (b) Image of the optical test rig positioned inside the 

temperature/humidity-controlled chamber with the solar-E-yarns mounted in the sample 

holder. 
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The RH value inside the chamber was changed from 30% to 90% at 15% steps while the 

temperature was maintained 25 ± 2 °C. The results show insignificant change in ISC or 

VOC within the RH range tested, suggesting that the solar-E-yarns were not susceptible 

to fluctuations in photovoltaic performance over RH values (Fig.6.15).  

 

In this experiment the effects of change in humidity in the near surrounding of the solar-

E-yarns was considered. Due to the low moisture   However, in real life scenarios, 

humidity changes in the atmosphere has a direct effect on the incident light intensity. 

With the increase in humidity, the moisture vapour droplets in atmosphere scatter and 

absorb significant amount of light resulting in a reduction in incident light intensity 

measured at the surface of the earth (Gwandu and Creasey, 1995). 

6.6.3 Effect of liquid water on solar-E-yarns 

In addition to the effect of water in vapour form, the solar-E-yarns could occasionally 

encounter liquid water during their use. To evaluate the effect of liquid water, the solar-

E-yarns fabricated with bare Cu wires were not suitable due to short-circuiting. 

Therefore, the bare Cu wires were replaced by insulated Cu wires (BXL2001, OSCO Ltd, 

UK) for the solar-E-yarns used in this experiment. The insulated Cu wire had seven 

twisted strands of Cu individually enamelled with Polyurethane coating. The electrical 

properties of these Cu wires were similar to the bare Cu wires used in other experiments. 

The twisted strands were also covered with a Nylon fibre wrapping that protected the 

enamel from abrasion and reinforced the wires. To solder the MSCs onto these insulated 

Cu wires, the Nylon cover and the enamel were manually stripped using a soldering 
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Figure 6.15 – Change in (a) short-circuit current (ISC) and (b) open-circuit voltage (VOC) with 

relative humidity (RH) for solar-E-yarns at 25 °C measured under optical test rig at full beam. 
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iron, Pb-solder wire (RS PRO 0.81mm Wire Lead Free Solder, +228°C Melting Point, RS 

Components, UK) and solder flux (Flux for soft soldering, Power Craft, UK). Special care 

was given to maintain a stripping length to 3.0-4.0 mm. It was observed that this manual 

stripping process resulted in a few millimetres of melted nylon serve on either side of 

the stripped region (Fig. 6.16), which was not desirable for preparing solar-E-yarns with 

multiple solar cells.  

 

 

However, for this experiment this was considered acceptable since the solar-E-yarns 

were prepared with single MSCs. The MSCs were soldered onto the prepared Cu wires 

using the same soldering method employed in previous experiments. Solar-E-yarns with 

1.6 mm diameter RMP and 2.0 mm diameter knit braided sheaths were prepared to 

complete the yarn. 

Five solar-E-yarns prepared as mentioned above, were woven into a solar-fabric sample 

using the same methods and materials used for the preparing samples for the wash 

durability testing. The ISC and VOC measurements of the solar-E-yarns of the solar-fabric 

sample were measured under one sun intensity at dry condition (Fig. 6.17(a)), after 

soaking with tap water (Fig. 6.17(b)) and after being immersed in tap water (Fig. 6.17(c)).  

Stripped region of the Cu wire 

soldered onto the MSC 

Melted Nylon wrapping close 

to the stripped region   

Figure 6.16 – A MSC soldered onto a pair of insulated Cu wires after removing the 

polyurethane enamel and Nylon wrapping. 
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The results (Fig. 6.16(d)) clearly show that the solar E-yarns made using insulated copper 

wires functioned correctly when soaked or immersed in tap water. It was noticed that 

the ISC values had a ~35 % increase in comparison to the values shown under dry 

conditions. This could be explained by how water interacts with textile fibres of the 

fibrous sheath: The amount of light scattered by individual fibres in the sheath is a 

function of the differences in refractive indices (Δn) of the fibre material and the spaces 

between fibres. According to the Fresnel equation, a higher Δn will resulted in a greater 

amount of light scattering. When the solar-E-yarn is dry Δn value is 0.55 (refractive index 

of the fibre ~1.55, air 1). When the solar-E-yarn is wet the Δn value is 0.22 (refractive 

index of water ~1.33). Due to lower amount of scattering under wet conditions, the MSC 

received a higher light flux, resulting in higher ISC values. This effect was similar to how 
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Figure 6.17 – Solar-fabric sample with five solar-E-yarns constructed using electrically 

insulated copper wires under (a) dry condition, (b) after soaking with tap water and (c) after 

immersing in tap water. (d) The normalized ISC and VOC values for the five solar-E-yarns when 

dry, after soaking with tap water and after immersing in tap water. (e) A diagram representing 

the effect of water on the light transmission through the fibrous sheath of the solar-E-yarns.  
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resin impregnation enhanced the performance of solar-E-yarns as discussed in chapter 

5. 

6.7 Conclusions 

The results of these experiments confirmed that the solar-E-yarns exhibited satisfactory 

levels of performance under different operational conditions that they may encounter 

during their regular use. Wash durability tests of solar-E-yarns confirmed that the solar-

E-yarns in a woven structure could survive 15 machine wash cycles and beyond 25 hand 

wash cycles. The reduction in maximum power after 25 wash cycles was ~13.5 % and 

~10.4 % for machine washing and hand washing respectively. The solar- fabrics showed 

no significant changes in performance or appearace after 6000 abrasion cycles. The solar-

E-yarns retained their normal functionality beyond 50 N in uniaxial tensile tests which 

exceeded the tensile forces encountered during garment manufacture or normal use. The 

performance of solar-E-yarns significantly deteriorated beyond three impact cycles of 98 

mJ. While this impact test would provide an understanding of the limits of the impact 

that the solar-E-yarns could withstand, further tests may be needed to simulate a more 

representative mechanical impact scenario. 

The experiments conducted at different temperatures confirmed that the solar-E-yarns 

behaved similarly to the maiden miniature solar cells with change in temperature, where 

the VOC reduced linearly with the temperature with a temperature coefficient of 21 

mW/°K. As predicted, a small increase in ISC was observed with temperature changes, 

however the results were not conclusive and an accurate temperature coefficient could 

not be obtained. The tests under different relative humidities showed no significant 

change in the solar-E-yarn performance with changes in relative humidity in the 

localised surrounding, although according to literature the change in humidity in 

atmosphere significantly affects the intensity of incident light. The test conducted with 

solar-E-yarns prepared with insulated Cu wire confirmend that the functionality of the 

solar-E-yarns did not deteriorate in the presence of liquid water. Soaking the solar-E-

yarns with tap water, or immersing them in tap water, improved the ISC by ~35 %, 

possibly due to the reduction in the light scattering in the fibrous sheath.  
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7.1 Introduction 

This chapter presents thee preparation, characterisation, and demonstration of solar 

energy harvesting fabrics prepared using solar-E-yarns. For practical applications the 

solar-E-yarns (one dimensional) need to be deployed in fabrics (two dimensional), in this 

research woven fabric constructions are considered. The fabrics were prepared using a 

table loom that represented a pilot scale weaving process. 

Six fabric demonstrators were prepared using solar-E-yarns (each containing ten, 1.5 × 3 

mm solar cells) and tested under simulated sunlight and/or natural sunlight. The first 

fabric demonstrator comprised of 200 MSCs and was employed to demonstrate the 

capability of the technology to charge various energy storage devices and power small 

mobile electronic devices. The second fabric demonstrator comprising 200 MSCs had 

two independently networked modules; one prepared with resin impregnated solar-E-

yarns, and the other with normal solar-E-yarns. Another four fabric demonstrators each 

comprising 50 SCs were prepared to conduct a comparative test of the effect of resin 

impregnation and colour of fibre sheath in fabric form. Towards the end of the chapter, 

a study into the effect of incident light angle on the photovoltaic performance of the 

fabrics has been presented. A study into how different distribution of the solar-E-yarns 

within the fabric effect photovoltaic performance has also been performed. This study 

was aimed at defining the design rules and operational boundary conditions for the solar 

energy harvesting fabric. 

7.2 Fabrication of solar-E-yarns for fabric demonstrators 

To prepare the solar energy harvesting fabrics, solar-E-yarns were prepared with 

multiple 1.5 × 3 mm SCs connected in parallel. Most of the physical dimensions the solar-

E-yarns were based on practical implications: The positioning of the solder pads on 

opposite faces of the solar cell made parallel connection the most practical approach for 

creating a solar-E-yarns using multiple SCs. An important parameter in the yarn design 

was the gap between two adjacent SCs. To achieve the maximum power density the cells 

needed to be soldered without any spacing between each other, however this was not 

viable due to the process and design constrains: To be able create discrete RMPs that 

hermetically sealed the soldered SCs, using the current method, a minimum gap of ~2 

mm was required between SCs. In addition, smaller gaps between RMPs would have 
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had an adverse effect on the flexibility and bendability of the final solar-E-yarn. 

Considering these factors, a 2 mm gap between adjacent SCs were maintained at the 

soldering stage. Ten parallel connected solar cells with 2 mm gaps between adjacent SCs 

resulted in a solar-E-yarn with a length of ~5 cm. 5 cm was the maximum length of yarn 

that could be characterised using the solar simulator and therefore, 10 SCs per yarn were 

used for all of the yarns prepared for the demonstrator fabrics. To solder ten SCs 

according to the specifications mentioned above, a mould was prepared with black-

pigmented silicone (Fig. 7.1). The process for soldering multiple SCs was similar to the 

process for soldering a single SC, where all ten SC were positioned on the grooves of the 

mould before laying the second Cu wire onto the back contact of the SCs.  

 

After dispensing the solder paste onto the Cu wire the MSCs were individually soldered 

using the process described in section 3.2.4 of Chapter 3. The encapsulation process for 

the individual soldered MSCs used the process described in section 3.2.5 (Dymax 9001E-

V3.5 resin was used). The micro-pod had a diameter of 1.6 mm and a length of ~4 mm (1 

mm longer than the MSC, which was positioned at the centre of the RMP). The process 

and materials for covering the solar-micro-pod is described in section 3.2.6. 

Microscopic images of the solar-E-yarns at different stages of the fabrication process 

are shown in Fig. 7.2. 

Figure 7.1 – The mould employed for soldering ten solar cells onto a pair of Cu wires. 
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The short circuit current (ISC) and open-circuit voltage (VOC) values at each stage of the 

process for twenty solar-E-yarns was measured under one sun light intensity (Fig. 7.3). 

 

The change in ISC and VOC values per cell in the above tested samples were similar to 

the results obtained for the solar-E-yarn with single solar cell, given in 5.4 of chapter 5.  

0

4

8

12

16

Maiden SCs

after soldering

 SCs inside

RMPs

 Solar-E-yarns

I S
C

(m
A

)

a

0.38

0.43

0.48

0.53

0.58

Maiden SC after

soldering

 SCs within

RMPs

 Solar-E-yarn

V
O

C
(V

)

b

a 

b 

c 

Figure 7.2 – Preparation of solar-E-yarns with ten solar cells. (a) Ten solar cells soldered 

onto pair of parallel Cu wires. (b) The soldered solar cells individually encapsulated within 

cylindrical resin micro-pods. (c) The completed solar-E-yarns with ten solar cells. 

Figure 7.3 – (a) Short-circuit current (ISC) and (b) open-circuit voltage (VOC) for solar-

E-yarns prepared with ten solar cells. Here the results show the average and standard 

deviation of 20 samples. 
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7.3 First fabric demonstrator  

To construct the first MSC embedded demonstrator fabric, 20 solar-E-yarns with ten 

MSCs per yarn were used. A table top weaving loom (four shafts, 24” width; Harris 

Looms, UK) was prepared (Fig. 7.4(a)) with a 12 cm wide sheet of warp yarns (~10 yarns 

per centimetre) using white cotton yarns (38.9 x 2 tex; Elton Vale Yarns Ltd, UK). The 

warp yarns were threaded to achieve a four by one shedding pattern (a basket weave). 

The woven fabric was created (Fig 7.4(b)) using these solar-E-yarns inserted in the weft 

direction. The solar-E-yarns were inserted in such a manner that the photoactive side 

was fully exposed on the front surface of the fabric. The SC embedded region of the 

fabric (the photoactive area) had a footprint of 44.5 mm × 45.5 mm. 

  

Fig. 7.5(a) illustrates the woven structure employed for preparing demonstrator fabrics. 

Cotton yarns (same type used for the warp) were used as weft yarns to fill the gaps 

between the solar-E-yarns. One cotton weft yarn was inserted between each of the solar-

E-yarns. Four mini-modules, each consisting of five solar-E-yarns, were created by 

connecting five solar-E-yarns in series. The electrical connections between the five solar-

E-yarns within each mini-module is indicated in Fig. 7.5(a), with the circuit diagram of 

the solar cell network within each mini-module shown in Fig. 7.5(b). 

 

44.5 mm 

45
.5

 m
m

 

Figure 7.4 – (a) Image of the weaving loom during the solar-E-yarn weaving process. (b) 

The first solar-E-yarn demonstrator after completing the weaving process. 

b a 
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The mini-modules produced an ISC and VOC of ~7.5 mA and ~2.6 V respectively. The 

four mini-modules were connected in different configurations that generated ISC values 

ranging between 7.5 – 30.1 mA and VOC values ranging between 2.6 – 10.2V as shown in 

Fig 7.6. 
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Figure 7.6 – Different network configurations of the four mini-modules of the solar 

energy harvesting fabric, with their short-circuit current and open-circuit voltage values. 
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Figure 7.5 – (a) The woven fabric structure of the solar energy harvesting fabric 

demonstrators and the solar-E-yarn connections of a single mini-module. (b) Three-

dimensional illustration of the side view of the solar energy harvesting fabric structure. (c) 

Electrical circuit diagram of the network of solar cells in a single mini-module. 
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Since most battery types and small mobile devices were compatible with a ~5V supply, 

the four mini-modules were permanently wired according to the configuration that 

generated ISC- 14.2mA, VOC- 5.1V (Fig.7.7).  

 

 

7.3.1 Electrical characterisation of the first fabric demonstrator 

The first fabric demonstrator was characterised using the solar simulator. The I-V curves 

were generated for the fabric demonstrator under four different light intensities of AM 

1.5 G solar spectrum. The P-V curves, ISC, VOC, PMAX and FF were derived using the I-V 

data.  

The solar energy harvesting fabric demonstrator generated PMAX values of 43.4±0.29 mW, 

31.00±0.38 mW, 18.60±0.25 mW and 7.62±0.17 mW under 100%, 75%, 50% and 25% of one 

sun illumination (100mW/cm2, 1.5 AM spectrum) respectively, as shown in Fig. 7.8(a, c). 

a 

b 

Figure 7.7 – (a) Image of the solar cell embedded fabric (black box indicating solar cell 

footprint) and (b) three-dimensional schematic of the solar cell fabric demonstrator 

showing how the solar-E-yarns and mini-modules were connected. 
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At one sun intensity ISC, VOC, FF, and power density values of 14.14±0.05 mA, 5.14±0.02 

V, 0.598±0.004 and 2.146±0.014 mW/cm2 were observed respectively (Fig. 7.8(b, c)).  

 

 

Overall, the ISC and PMAX values showed a close linear relationship with the light intensity 

level, indicating a behaviour equivalent to a typical c-Si SC network (Chegaar et al., 2013). 

The PMAX per solar-E-yarn when woven into the fabric was 217.3 µW, ~4.5 % lower than 

the average PMAX values of 20 individual solar-E-yarns (227.5±17.5 µW), owing to 

current/voltage mismatches caused due to cell-to-cell variations (Kaushika and Rai, 

2007) and variations in angular position of the embedded MSCs relative to the fabric’s 

surface. Part of these losses would get compensated by the increase in light flux due to 

Figure. 7.8 - Performance of miniature solar cell embedded fabric demonstrator. (a) Current-

voltage (IV) and power-voltage (PV) characteristics, (b) short circuit current (ISC) and open 

circuit voltage (VOC) and (c) fill factor (FF) and maximum power (PMAX) for solar cell 

embedded fabric demonstrator at different sun intensities, (100% = one sun intensity with 1.5 

AM standard solar spectrum). Error bars indicate the SD of five repeat experiments. 

Performance of the solar cell embedded fabric demonstrator under (d) shear deformation, (e) 

draping on a finger and (f) bending around a finger. Error bars show the standard deviation 

of five repeat measurements using one sample. 
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the specular reflectance (albedo effect) for the fabric surrounding which is investigated 

in detail in section 7.6. 

When worn, a solar energy harvesting fabric may undergo mechanical deformation, 

therefore the effects of deformation on the electrical performance under these conditions 

was important to understand. When subjected to shear deformation (Fig. 7.8(d)), 

draping (Fig. 7.8(e)) and bending (Fig. 7.8(f)), the demonstrator fabric showed ISC values 

of 13.83 mA, 11.06 mA and 2.32 mA respectively under one sun intensity. These results 

provided clear evidence that the SC embedded fabric could generate power while 

undergoing various forms of deformation. The ISC after bending significantly differed 

from the ISC before deformation (14.14 mA), due to the lower surface area exposed to the 

light source (less than 30 % of the photoactive area was exposed), which is also curved 

(incident angle varies across the exposed curved area). The modest reduction in ISC after 

draping on hand was due to the curvature of the photoactive area. There was an 

insignificant change in ISC after shear deformation. These results indicated that the 

changes were likely caused by the change in incident angles, not due to electro-

mechanical effects within the cells and cell network, when subjected to deformations. 

When the fabric was returned to its original shape the measured ISC recovered to its pre-

deformed values in all cases. These results provided evidence of the viability of the solar-

E-yarns for wearable applications as clothing would be exposed to different levels of 

sunlight and has to undergo various mechanical deformations during its regular use. 

7.3.2 Liquid absorption properties of the solar cell (SC) embedded fabric 

demonstrator 

 An experiment was conducted to assess the liquid absorption properties of the solar 

fabric demonstrator, to compare its liquid moisture management performance against a 

control fabric without solar-E-yarns. The control fabric was woven using knit-braided 

yarns without the MSC-RMP-Cu wire core (all other material and process parameters 

remaining identical to the solar-E-yarns) The was prepared using identical woven 

structure, process parameters and additional cotton yarns to the demonstrator fabric for 

a comparison test. The solar cell embedded demonstrator fabric containing 200 SCs and 

the control fabric were tested using the Gravimetric Absorbance Test System (GATS – 

M/K systems Inc, USA), as shown in Fig. 7.8(a). The backside of the fabrics was covered 

by a thin polyethene film with a 45 mm × 45 mm window, to selectively expose the back 
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side of the cell embedded area of the fabric to the porous plate of the GATS. The fabrics 

were placed on the porous plate of the GATS and an absorption test was conducted 

according to TAPPI T561 (Sorptive Rate and Capacity Using Gravimetric Principles) 

with distilled water, until the fabric was saturated.  

 

The results for the liquid absorption test are given in Fig. 7.9(b). The fabric demonstrator 

showed saturated water capacity of 17.43 g which was similar to the results for the 

control fabric sample (saturated water capacity of 17.29 g). The solar fabric demonstrator 

showed a higher absorption rate (up to 50% higher) than the control fabric during the 

first 50s of the tests. This may be due to the increased wicking action caused by the higher 

tightness (resulting smaller capillary radii) of the fabric structure in the solar cell 

embedded area. Tighter woven structure leads to small capillary radii between 

individual fibres, that increase the rate of the wicking action. 

7.3.3 Demonstration of energy harvesting capability 

The ability of the MSC embedded fabric demonstrator to charge different types of 

electrical devices was explored, as ultimately the SC embedding fabric was designed to 

charge wearable devices. To demonstrate the possibility of creating fully fabric 

integrated energy harvesting and storage systems, an array of supercapacitor embedded 

E-yarns were prepared using, CPH3225A supercapacitors (11mF, 3.3V, 3.2 × 2.5 × 0.9 

mm, Seiko Instruments Inc, Japan). Each of the E-yarns comprised of ten supercapacitors 

connected to two parallel Cu wires and individually embedded within cylindrical RMPs 

Figure 7.9- (a) Image of the GAT System used for liquid absorption measurements. (b) 

Liquid absorption of the solar cell embedded fabric and the control fabric. 
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of 3.2 mm diameter before being covered with a 4 mm knit braided structure (Fig 7.10). 

The supercapacitor embedded yarn had a resultant capacitance of 110 mF. Further 

details of preparation and characterisation of supercapacitor embedded E-yarns are 

provided in Appendix 10. 

 

An experiment was conducted where the above supercapacitor embedded yarns were 

charged by the solar fabric demonstrator using the solar simulator. A single 

supercapacitor yarn was connected to the solar fabric demonstrator and charging was 

performed under 100%, 75%, 50%, 25% and 10% of one sun intensity (Fig. 7.11).  

 

The charging voltages and the time taken to reach the voltages at corresponding sun 

intensities are given in Table 7.1. 
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Figure 7.10- Supercapacitor embedded textile yarns. (a) Supercapacitors soldered onto 

copper wires. (b) Supercapacitor strands after the supercapacitors were encapsulated inside 

of 3.2 mm diameter micro-pods. (c) Supercapacitor embedded textile yarn after covering 

with a 4 mm diameter fibrous sheath. 

Figure. 7.11 - Charging supercapacitor embedded E-yarns using the solar energy harvesting 

fabric demonstrator at different solar intensity levels generated by solar simulator.  
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Light intensity 

(% one sun) 

Charged voltage (V) Charging time (s) 

100 % 3.2 37 

75 % 3.1 46 

50 % 3.0 160 

25 % 2.73 187 

10 % 2.4 261 

 

A 47 mF (5.5 V) supercapacitor (KEMET Electronic Components, USA) was charged 

using the solar fabric under 100%, 75%, 50% and 25% of one sun illumination; the 

supercapacitor reached its maximum voltage within 15s and 60s under 100% and 25% 

sun intensity respectively ((Fig. 7.12(a)). 

Under 100 % sun intensity the fabric woven with solar-E-yarns was able to charge a 15 

mAh (3.7 V) Li-ion battery to ~ 3.7 V within 10 minutes ((Fig. 7.12(b)) and charged a 380 

mAh (3.7 V) Li-polymer battery from 3.1 V to 3.55 V within 60 minutes ((Fig. 7.12(c)).  

 

The solar fabric demonstrator was also capable of charging a basic mobile phone with 

1000 mAh battery (Fig. 7.13(a)), a fitness tracker with a 50 mAh battery ((Fig. 7.13(b)) and 

a LED fabric demonstrator ((Fig. 7.13(c)) that contained 10 flashing LEDs E-yarns. These 

demonstrations provided clear evidence of the utility of the solar energy harvesting 

Table. 7.1 – Charged voltage and charging time for supercapacitor embedded E-yarns using 

the solar energy harvesting fabric demonstrator at different solar intensity levels generated by 

solar simulator.  

 

Table. 7.12 – Charging and powering devices using the solar cell embedded fabric. Evaluating 

the charging behaviour of (a) a 47 mF, 5.5 V super capacitor, (b) a 15 mAh, 3.7 V miniature 

Li-ion battery and (c) a 380 mAh, 3.7 V Li-polymer battery using the solar cell embedded 

fabric.  
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fabric for use within regular clothing as a power source for wearable devices, which 

often have a power requirement around tens to a few hundreds of milliwatts. 

 

 

 

 

7.4 Second fabric demonstrator  

A second fabric demonstrator was prepared in a similar fashion to the first fabric 

demonstrator, however here half of the solar-E-yarns were impregnated with the Dymax 

9001 E-V3.5 resin (Fig 7.14(b)). The solar-E-yarns with resin impregnation and without 

resin impregnation were separately serially networked into two modules (Fig 7.14(a)). 

 

 

Module 1 (without resin 

impregnation) 

Module 2 (with resin 

impregnation) 

a 
b 

Figure. 7.14 – Second fabric demonstrator prepared using solar-E-yarns with and 

without resin impregnation. (a) Schematic illustration of the two separately networked 

modules. (b) Image of the second fabric demonstrator.   

 

Figure. 7.13 - Demonstrating the charging of (a) a basic mobile phone with a 1000 

mAh, 3.7 V battery, (b) a fitness tracker with 50 mAh, 3.7 V battery and (c) powering 

an LED embedded fabric demonstrator developed using E-yarn technology.  
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The second fabric demonstrator was characterised under one sun using the solar 

simulator (Fig. 7.15), and the results are summarized in Table 7.2 

 

The results for the resin impregnated module confirmed the enhancement brought about 

by using resin impregnation, with a ~78 % increase in PMAX with resin impregnation.  

 

 

 

 

 

7.5 Fabric demonstrators for comparative tests and field test 

A third set of solar fabrics were prepared to conduct a comparison test under the solar 

simulator and a field test under natural sun light. Four solar fabric demonstrators were 

prepared using solar-E-yarn types given below (Fig 7.16). 

• Solar-E-yarns prepared with white textile fibres. 

• Solar-E-yarns prepared with white textile fibres and with resin impregnation. 

• Solar-E-yarns prepared with red textile fibres. 

• Solar-E-yarns prepared with black textile fibres. 
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Parameter Module 1 Module 2 

I
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 (mA) 5.90 10.19 

V
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 (V) 5.04 5.24 

P
MAX

 (mW) 18.68 33.33 

FF 0.63 0.62 

Table. 7.2 – Summary of the results for the module 1 (no resin impregnation) and module 2 

(with resin impregnation) for second fabric demonstrator under one sun illumination. 

 

Figure. 7.15 – IV and PV characteristics for module 1 (no resin impregnation) and module 2 

(with resin impregnation), under one sun illumination. 
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Each fabric comprised of five solar-E-yarns (each solar-E-yarn contained ten SCs as 

detailed in 6.1) woven together (Fig. 7.17) in a fashion similar to fabric demonstrators 

one and two.  

 

 

 

a 

b 

c 

d 

Figure. 7.16 – Microscopic images of the solar-E-yarns prepared for producing the third set of 

solar fabric demonstrators. (a) Solar-E-yarns prepared with white textile fibres. (b) Solar-E-

yarns prepared with white textile fibres and with resin impregnation. (c) Solar-E-yarns 

prepared with red textile fibres. (d) Solar-E-yarns prepared with black textile fibres. 

 

a b 

Figure. 7.17 – Image of the third set of solar fabric demonstrators (a) during and (b) after the 

weaving process. 
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7.5.1 Characterisation of solar-E-yarns and resultant fabrics 

The individual solar-E-yarns were evaluated for ISC and VOC under one sun intensity 

before weaving (free standing form) and in within woven fabric (Fig. 7.18).  

 

 

 

When the yarns in free standing form were considered, the black and red yarns showed 

a 37 % and 25 % reduction in ISC respectively in comparison to white yarns, while after 

resin impregnation the ISC improved by ~79 %. The VOC for the black and red yarns were 

11.4 % and 2.0 % lower than for the white yarns; after resin impregnation the VOC 

increased by 1.5 %. When the yarns in free standing form and fabric form were compared 

a ~10 % increase in ISC was observed for white yarn, while in the other cases the increase 

in ISC in fabric form was insignificant. Any changes in performance of solar-E-yarns after 

weaving into fabric could be attributed to two factors. Firstly, any angular 

misalignments of the yarns after embedding within the fabric would cause a reduction 

in performance. Secondly, the enhancement of incident light caused by scattered light 

off the fabric surface surrounding the solar-E-yarns (the albedo effect) (Brennan et al., 

2014). The significance of the albedo effect is governed by the specular reflectivity of the 

surrounding surfaces. The higher enhancement of ISC due to albedo effect in the case of 

white yarns can be explained by the significant specular reflectivity by the surrounding 

white fibres. In the case of the red, and black solar-E-yarns, as well as the solar-E-yarns 
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Figure. 7.18 – The (a) short-circuit current (ISC) and (b) open-circuit voltage (VOC) of solar-

E-yarn prepared for the third set of fabric demonstrators in free standing and fabric form. 
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with resin impregnation, the specular reflectivity of the surrounding was significantly 

lower, therefor the ISC enhancement may not be apparent after the losses due to angular 

misalignments are considered. The VOC values showed a reduction between 2.8 % - 4.8 

% from free standing form to fabric form across all four yarn types. The reason for this 

reduction was not clear. 

Five-individual solar-E-yarns of each type were networked in series to create four solar 

fabric demonstrators (white, red, black and white with resin impregnation) and were 

characterised under one sun intensity using the solar simulator (Fig. 7.19). 

 

 

The ISC, VOC, PMAX and FF data were derived from the IV and PV curves as given in the 

Table 7.3. 
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Figure. 7.19 – I-V and P-V curves for the four solar energy harvesting fabrics generated under 

one sun intensity using solar simulator. 

 

Table. 7.3 – Summary of the results for the third set of fabric demonstrators, under one sun 

illumination, using solar simulator. 
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The module ISC values were between 3.4 % - 8.4 % lower that the yarn form ISC values 

across the four solar-E-yarn types, indicating that mismatch losses possibly due to the 

variations caused by angular misalignments. The PMAX values for the black and red 

demonstrators were 59 % and 39 % lower (respectively) than the corresponding value 

for white fabric, and the resin impregnated white fabric was ~55 % higher. 

These results revealed that the colour of the fibrous sheath has a significant detrimental 

effect on the power output of the solar fabrics and confirmed the enhancement of power 

due to resin impregnation. The implication of the significant performance differences for 

different coloured-yarns will be significant when preparing modules with multiple 

colours. In the extreme case, the number of cells per yarn may need to be increased by 

~60% for black colour yarns if they are to be networked in series with white yarns. 

7.5.2 Field test using the third set of fabric demonstrators 

A field test under natural sunlight to evaluate the comparative behaviour of the third set 

of solar energy harvesting demonstrators was designed. An autonomous mobile data 

acquisition device (DAQ) was built to conduct the field tests as detailed in Appendix 10. 

The DAQ was designed to record the voltage across fixed load resistors connected to the 

four solar fabric modules and a commercially available flexible solar module (MPT4.8-

75, flexible solar module with 0.24W peak power, PowerFilm solar Inc., USA) (Fig. 7.20). 

The fabric modules and the commercial solar module were attached onto a fabric using 

press studs.  
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Figure 7.20 – Schematic illustration of the experimental setup for conducting field tests for 

the third set of solar fabric demonstrator using a data acquisition (DAQ) device. 
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1 kΩ load resistors (R1, R2, R3, R4 and R5, the measured resistance values were ~990Ω) 

were used for all five solar modules the field test, to generate comparable test data (a 1 

kΩ load resistor value did not match the load resistance at the maximum power point 

for the modules, therefore the modules did not operate close to the maximum power 

point during the test).  The modules were attached onto the back side of a white T-shirt. 

The solar fabrics were positioned onto the T-shirt with the individual solar-E-yarns of 

the solar fabrics positioned vertically. The T-shirt was dressed onto a mannequin and 

placed outdoors (Fig. 7.21), with the solar modules facing the North, on a bright sunny 

day without clouds (17th of September 2019 from 1.00 PM and 2.30 PM, in Nottingham). 

 

 

The power density generated by each module during the test period of ~85 minutes is 

given in Fig. 7.22 and the average test results are summarized in Table 7.4. 

The results provide evidence that the white fabric solar modules show comparable 

power density to the commercial flexible solar module. The enhancement due to resin 

a b 

c 

Figure 7.21 – (a) The field test conducted with solar fabric modules and commercial solar 

module attached onto a T-shirt that was dressed onto a mannequin. (b) Image of the solar 

modules attached to the T-shirt. (c) The mobile data logging device developed for recoding the 

performance of the solar modules. 
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impregnation was apparent in the test results, where the resin impregnated solar module 

generated a power density 35.3 % and 24.3 % higher than the white fabric module and 

commercial solar module respectively. The black and red fabric solar modules generated 

a power density that were 54.4 % and 23.5 % lower than the white fabric module. The 

results of the field test confirm that the fabric modules prepared using solar-E-yarns 

were suitable for generating power under natural sun light.  

 

 

 

 V (V) I (mA) J (mA/cm2) P (mW) Power density 

(mW/cm2) 

White module 1.93 1.95 0.353 3.76 0.68 

Black module 1.30 1.305 0.235 1.69 0.31 

Red module 1.69 1.715 0.310 2.89 0.52 

White resin 

impregnated module 
2.25 2.275 0.412 5.11 0.92 

Commercial solar 

module 
6.41 6.48 0.115 41.53 0.74 
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Figure 7.22 – Schematic illustration of the experimental setup for conducting field tests using 

the third set of solar fabric demonstrator using a data acquisition (DAQ) device. 

 

Table 7.4 – The average results of the field study for each solar module  
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7.6 Effect of incident angle and the spacing of the solar-E-yarn within fabrics 

The solar fabric demonstrators prepared earlier in this work were designed to achieve 

the maximum power density. For some applications maximising power density may not 

be critical but achieving the maximum power output per cell may be more desirable. In 

other instances, achieving better flexibility and drapability may be advantageous. 

Therefore, it would be beneficial to evaluate the effects of distributing the solar-E-yarns 

on a fabric may have on their performance under direct and at oblique illumination 

angles.  For these experiments solar-E-yarns with a diameter of 2 mm containing a single 

1.5 mm × 3 mm SC were prepared using white textile fibres.  

7.6.1 Evaluating free standing solar-E-yarns 

 Solar-E-yarns were positioned with different spacing’s between the adjacent yarns (0 

mm - 4 mm gaps) in a free-standing form on the sample holder, as shown in Fig. 7. 23(a), 

and the ISC was recorded at different incident angles (the solar-E-yarn positioned at the 

centre was evaluated) under one sun intensity. The results were normalized to the ISC 

values for a solar-E-yarn without adjacent yarns as shown in Fig. 7. 23(b).  

 

 

 

The results clearly indicated the shading effects of adjacent yarns with relation to the 

gaps between the adjacent yarns. These results can be explained with a simple geometric 
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Figure 7.23 – (a) Image of three solar-E-yarn positioned on the rotary sample holder with 

specific gaps between each other for conducting ISC measurement at different incident angles. 

(b) ISC measurements were conducted under one sun intensity at different incident angles for 

solar-E-yarns with different gaps between adjacent yarns. (Results normalized to the values 

of solar-E-yarn with no adjacent yarns. 

 



Chapter 7  Solar Energy Harvesting Fabrics 

221 
 

model (Fig.7.24), which shows the relationship between the gaps between adjacent yarns 

(l), and the critical angle (θ) at which the shading was initiated with respect to the 

diameter (D) of the E-yarns.  

 

 

𝜃 = cos−1 (
𝐷

𝐷+𝑙
)      7.1 

Based on the geometrical model the critical angles for a 2 mm diameter solar-E-yarns 

with zero, 1 mm, 2 mm 3 mm and 4 mm gaps were estimated as 0°, 48.2°, 60°, 66.4° and 

70.5° respectively. These estimated values indicate an agreement with the empirical 

results (i.e.  the angles at which the data series cross the dotted line in Fig. 7.23(b)). 

7.6.2 Experiments with solar-E-yarns woven into fabrics 

For the second set of experiments, fabrics with different spacings between the solar-E-

yarns were prepared (Fig. 7.25), with five solar-E-yarns included in each fabric sample. 

Before preparing the fabrics the ISC values for each solar-E-yarn were measured in free 

standing form at different incident angles. To realize different gaps between adjacent 

solar-E-yarns a specific number of cotton weft yarns were inserted between solar-E-

yarns (Table 7.5). 

 

Approximate gap between 

two adjacent E-yarns (mm) 

Number of cotton weft yarns 

inserted between E-yarns 

0 1 

1 3 

2 7 

3 11 

4 15 

θ 

l D D 

Plane along the 

diameters of the E-yarns  

Figure 7.24 – Cross sectional geometric model for determining the critical angle at which the 

shading from adjacent solar-E-yarns occurred. 

 

Table. 7.5 – Number cotton yarns inserted as weft between solar-E-yarns when preparing 

solar-E-yarn fabrics with specific gaps between adjacent E-yarns. 
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When required, cotton yarns were used as weft yarns to add extra length to the fabric 

samples. The woven structure and weaving procedure were similar to the other woven 

fabrics prepared in this chapter.  

 

In this case the critical angle at which the shading from the adjacent yarn was initiated 

would be dependent on the fabric thickness (t) as well. The critical angle (θ) can be 

geometrically modelled based on D, l and t as shown in Fig. 7.26. Here it was assumed 

that the solar-E-yarns were embedded halfway within the fabric. 

 

 

Figure 7.25 – Five fabric samples prepared with different gaps between the individual solar-

E-yarns. 

θ 
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Plane along the 

diameters of the E-

yarns  
t t/2 

Figure 7.26 – Cross sectional geometric model for determining the critical angle at which the 

shading from adjacent solar-E-yarns would occur in fabric form. 

 

4 mm 
gaps 

3 mm 
gaps 

2 mm 
gaps 

1 mm 
gaps 

No gaps 

Open solar-E-yarns at 
the fabric edges 

Gaps between solar-E-yarns 



Chapter 7  Solar Energy Harvesting Fabrics 

223 
 

Based on the geometrical model there existed a shading caused by the fabric thickness 

independent of the gaps between yarns.  

For cos−1 (
𝐷

𝐷+𝑙
) < sin−1 (

𝐷−𝑡

𝐷
) the critical angle would be given by  

𝜃 = cos−1 (
𝐷

𝐷+𝑙
)                                                     7.2  

Else 

𝜃 = sin−1 (
𝐷−𝑡

𝐷
)                                                 7.3 

Considering this shading due to the fabric with a thickness of ~0.4 mm, the critical angles 

for 2 mm diameter solar-E-yarns with zero, 1 mm and 2 mm gaps were approximated as 

0°, 48.2°, 60°. In all other cases the critical angle was 64.2°.  

 

 

The solar-E-yarns were individually characterized for ISC at different incident angles (0°-

85°) by positioning the fabric samples onto the rotary sample holder and using the solar 

simulator under one sun illumination. The results were normalized to the free-standing 

individual yarn form values, measured for comparability, (Fig. 7.27). The estimated 

critical angles for different gaps showed a similar trend to the empirical results (i.e.  the 

angles at which the data series crossed the dotted line in Fig. 7.27(b)).  
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Figure 7.27 – (a) Change in ISC with incident angle (b) ISC at direct illumination and averaged 

in the front half circle for solar-E-yarns embedded in fabrics with different gaps between 

adjacent yarns (Results normalized to the values of free standing solar-E-yarn with no 

adjacent yarns. 
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In all of the cases explored, the solar-E-yarns within the woven structures showed higher 

ISC values than the corresponding free-standing values for small incident angles, and 

lower ISC values for higher incident angles. Overall, the average ISC for the front half circle 

increased with the gap between the solar-E-yarns. It is believed that this effect was due 

to the significant albedo effect (Brennan et al., 2014) (from the surrounding fabric at 

smaller incident angles, as shown in Fig. 7.28. When the incident angle increased the 

adjacent solar-E-yarn started to shade part of the incident light Fig. 7.28(b). By studying 

the cross-sectional geometry of the woven structure, it was clear that the angle at which 

the direct shading from yarns started to occur increased with the gaps size, which 

supported the experimental results. When the incident angle increased, the light flux 

reaching the solar-E-yarn reduced due to direct shading (from neighbouring solar-E-

yarns) as well as a diminished albedo effect (as the gaps between the solar-E-yarns were 

also shaded), this is illustrated in Fig. 7.28(b).   

 

 

The impact of the albedo effect due to the surrounding fabric was investigated 

empirically by covering the solar-E-yarn gaps (rectangular spaces on the fabric between 

the active regions of adjacent solar-E-yarns) and outer surrounding (complete 

surrounding except for the gaps). Experimental results using a woven sample with 3.0 

mm gaps between the solar-E-yarns showed (Fig. 7.29) that the albedo enhancement 

from the solar-E-yarn gaps were higher and more angle dependent in comparison to the 

albedo enhancement by the outer surrounding. The albedo enhancement due to the gaps 

disappeared completely at incident angle of 55 - 60°, as approximated by in the 

geometrical model. 

Indirect 

illumination  Shaded region  

Direct illumination  

Indirect illumination  

a  b 

Figure 7.28 – Illustration of the effect of direct and indirect illumination received by woven 

solar-E-yarns at (a) direct incident light and (b) illumination where the incident light was at 

an oblique angled. 
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Another experiment was conducted to understand the relationship between the 

illuminated area and the albedo effect on solar-E-yarns when woven into fabrics. For this 

experiment fabrics identical to those prepared for the wash durability tests in Chapter 6 

were employed. The ISC of the individual solar-E-yarns woven into the fabric were 

measured under one sun intensity with matt black windows exposing different fabric 

areas surrounding the active area of the solar-E-yarn (Fig. 7.30). 
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Figure 7.29 – Change in normalized ISC (normalized to free-standing ISC values) with incident 

angle for woven solar-E-yarns with 3.0 mm spacing, when the surrounding of the solar-E-

yarns area was covered with black, non-reflective tape. The red dashed line shows the results 

for a free standing solar-E-yarn. 
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Figure 7.30 – (a) Matt black windows prepared for conducting the experiments different 

illumination areas. (b) An example of a window positioned on the fabric sample before 

conducting measurements under the solar simulator. 
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The 4.5 mm × 2.5 mm window fully covered the surrounding of the solar-E-yarn active 

area, and this measurement was considered the baseline for comparison. The ISC values 

generated with 5 mm, 10 mm, 15 mm and 20 mm windows and without a window (in 

this case illumination area ~50mm × 50 mm) were normalised to the baseline value and 

plotted against the exposed area as illustrated in Fig. 7.31. 

 

 

Based on these results it was clear that the albedo effect resulted in a significant increase 

(23.5 %) when up to a 10 mm diameter window was used, beyond which the incremental 

enhancement was less than 3 %. This result would be useful in designing solar-E-yarn 

embedded fabrics with different coloured fabrics, where light-coloured margins around 

the photoactive region is advantageous in enhancing the photovoltaic performance. The 

width of the margin may vary depending on the fabric structure and type of yarns of the 

fabric. 

7.7 Conclusions 

The first solar fabric comprised 200 solar cells, which generated a short-circuit current, 

open-circuit voltage and a power density of 14.14 mA, 5.14 V and 2.146 mW/cm2 

respectively. Using this fabric, the charging of energy storage devices suitable for 

wearable and mobile electronic device such as Li-ion batteries, Li-polymer batteries, and 

supercapacitors, was demonstrated successfully under simulated light of one sun 

intensity. In addition, the first solar fabric demonstrator was capable of powering a small 
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Figure 7.31 – The normalized ISC for a solar-E-yarn embedded in woven fabric, exposed to one 

sun intensity with different sized windows. Results normalized to the ISC value of 4.5 mm × 

2.5 mm window measurement.  
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mobile phone, a fitness tracker and an E-textile with ten embedded LEDs E-yarns. The 

second solar fabric comprised two solar-E-yarn modules each prepared with ten solar-

E-yarns (100 solar cells). The solar-E-yarns of one of these modules were resin-

impregnated. The results confirmed that the resin impregnation enhanced the power 

generation by ~78 %, as observed in studies conducted with free-standing solar-E-yarns. 

A third set of solar fabrics were prepared using the solar-E-yarns with white (standard), 

red, and black knitted sheath, and a resin impregnated white sheath. Each fabric 

comprised of 50 solar cells (five solar-E-yarns). The comparison study conducted with 

these four fabric modules indicated that red and black knitted sheaths caused a 

reduction in the short-circuit current by 3 7% and 25 % respectively when compared to 

white yarns. A comparative field test conducted using this third set of solar fabric 

demonstrators, and a commercial flexible solar module, revealed that the solar fabric 

demonstrators were capable of generating a comparable level of power density to the 

commercial module under natural sunlight. It was observed that the albedo effect and 

the shading by adjacent yarns have a significant effect on the performance. The woven 

solar-E-yarns showed a higher power output than the free standing solar-E-yarns at 

smaller (0°-55°) incident angles. Also, the power generated by the woven solar-E-yarns 

increased with the gap between individual solar-E-yarns; these observations were 

attributed to the increase in albedo effect caused by the surrounding fabric. A significant 

reduction in power was observed at higher incident angles due to shading by adjacent 

yarns. The relationship between the solar-E-yarn performance and illuminated area of 

the fabric was studied and the short-circuit current showed an increased with the area, 

which eventually reached a saturation point. This meant that it was desirable to have 

specific gaps between the solar-E-yarns in a solar fabric to maximise the power 

generated per yarn and minimize shading at higher incident angles
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8.1 Conclusions  

In light of the aim, objectives and research questions outlined in Chapter 1, this thesis 

draws the below conclusions on the behaviour and utility of solar-E-yarns and resultant 

fabrics intended for wearable applications. 

The E-yarn technology provides a robust and versatile platform for creating solar energy 

harvesting textile yarns. The discrete micro-pod structure, and porous fibrous sheath 

meant that the solar-E-yarns are flexible, breathable and appeared and felt like a normal 

textile structure. When converted into planer form (fabrics), the solar-E-yarns impart the 

same desirable properties to the fabrics; these characteristics that are critical for retaining 

the comfort, aesthetics and durability suitable for regular clothing.  

As with the conventional solar energy harvesters, the power generation capability 

remained the primary determinant of the utility of solar-E-yarns: The solar-E-yarn 

exhibited a comparable energy harvesting capability compared to the maiden miniature 

solar cells, which confirmed the technical viability of the solar-E-yarn technology for 

converting solar energy to electricity. The solar-E-yarn fabrication process, and 

individual components of the solar-E-yarns, imparted positive and negative effects to 

the energy conversion performance. The resin micro-pod (in general) improved the 

performance of the embedded miniature solar cell; the size, geometry and optical 

properties of the resin micro-pod was decisive to the level of enhancement. In practical 

applications these resin-micro-pod parameters may be dictated by design constrains 

such as the thickness of the fabric. The textile fibre sheath provided textile appearance 

and feel however, had a negative effect on the energy harvesting performance mainly 

due to light scattering caused by Fresnel reflection. The resin impregnation process 

substantially nullified the negative effects of the fibre sheath, resulting in an output that 

exceeded the performance of the embedded maiden miniature solar cell. This 

enhancement can be attributed to the lensing effect created by the resin micro-pod in 

combination with the resin impregnation.  

The solar-E-yarns and resultant fabrics were sufficiently durable and robust to survive 

domestic washing, various external mechanical forces, and changes in environmental 

conditions that they may be subjected during their regular use in clothing applications.  
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The solar energy harvesting fabrics developed using the solar-E-yarns demonstrated 

their utility in charging small energy storage devices and powering small mobile 

electronic devices. The demonstrations revealed the true potential of the technology for 

powering larger and more powerful devices, using a fabric with larger photoactive area. 

8.2 Contribution to knowledge 

This research generated new knowledge and insights into the design rules, fabrication 

techniques, boundary conditions for use, and performance characteristics of 

photovoltaic devices embedded in textile structures that include: 

• A detailed design for a solar energy harvesting textile yarns based on the existing 

E-yarn technology; 

• The specific fabrication techniques needed to develop a solar-E-yarns with multiple 

parallel connected cells; 

• A comprehensive empirical and theoretical study on the effects of a geometry, size 

and optical properties of a cylindrical-shaped clear resin micro-pod on the opto-

electric performance of a photovoltaic device embedded within the resin micro-pod; 

• A comparative study on the individual and combined effects and interference of the 

resin micro-pod, textile fibrous sheath, and resin impregnation on the opto-electric 

performance of a miniature solar-cell under direct and oblique angled illumination; 

• Evaluation of the opto-electric performance of solar-E-yarns when exposed to 

domestic washing, abrasion, mechanical impact, uniaxial tensile loading and during 

changes to environmental conditions (temperature, humidity and liquid water); 

• Performance characterisation of solar-E-yarn in woven fabrics designed to generate 

the maximum possible power density, and demonstration of the power generation 

capability in fabric form; 

The implications of the albedo and shading effects on the performance of the solar-E-

yarns by investigating the distribution of the solar-E-yarns, angle of incident light, and 

the illumination area. 

8.3 Challenges encountered 

Various operational and technical challenges were encountered during the project that 

largely relates to the availability of material and instruments .  
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Firstly, solar cells with suitable dimension were not readily available. Therefore, the 

preliminary studies were conducted using miniature photodiodes until a supplier of 

custom-cut miniature solar cells was found. With regards to the equipment for 

characterisation, during the first phase of the project a bespoke optical test rig had to be 

developed to conduct the characterisation of E-yarns embedded with photodiodes until 

a standard solar simulator was provided by a sponsor. Due to this the results generated 

at the early phase of the project were not directly comparable with global standards. In 

addition, for I-V curve tracing a fixed resistor array was devised which made the process 

cumbersome and time consuming. 

With regards to the challenges related to the fabrication of solar E-yarns, the sourced 

miniature solar cells had their contact pads on front and back sides of the cell, which was 

not solderable with the soldering method employed in E-yarn technology. A modified 

method that allowed the solar cell to be soldered onto a pair of parallel running copper 

wires had to be developed. Since the diameter of the resin micro-pod was largely 

dictated by the available internal diameter of the cylinder of the knit-braiding machine 

used to create the fibre sheath. Due to this the scope for optimising the micro-pod size 

was limited. Finally, the existing semi-automated E-yarn fabrication process was not 

adaptable to fabricate solar-E-yarns and therefore the preparation of solar energy 

harvesting fabrics consisting of hundreds of solar cells, took substantial number of man-

hours. 

8.4 Future work 

This work explored the fundamentals and the viability of creating solar energy 

harvesting yarns and fabrics using the E-yarns technology.  

Further work may be required to enhance the readiness of the technology to ensure 

commercial viability and fitness for specific applications that include: 

• Development of a pilot manufacturing line that can achieve a scalable, repeatable, 

and cost-effective output. 

• Development of a cost effective, reliable, supply of miniature solar cells which will 

be critical in achieving commercial viability. 

• Improvement of the mechanical robustness of the copper wires at the point of entry 

into the resin micro-pod need to be addressed in order to augment the durability of 
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the solar-E-yarns under repeated machine washing. More specific mechanical test 

procedures may need to be employed to simulate such strenuous mechanical 

processes. 

Several avenues of in-depth study is also desirable to identify the boundaries of the 

capability while enhancing the utility of the technology for various applications. 

 Further explorations into the fundamentals on the effect of the solar-E-yarns density 

and distribution on a woven fabric would be beneficial to enhance the utility of the 

technology for various applications. It may be desirable to optimise the flexibility and 

drapability (three-dimensional conformability), which may be critical for applications 

requiring improved comfort and aesthetics. Computational simulation and modelling 

techniques are suggested for such optimisations to minimising the need for physical 

prototypes. Using the developed generalized theoretical model, cylindrical resin micro-

pods with a non-circular base (e.g. elliptic or parabolic) may be evaluated. The 

mathematical model may be further extended to non-uniform cross-sectional shapes 

defined in three-dimensional space (here the surface of the micro-pod would be defined 

by a surface function, instead of a linear function) to facilitate the creation of optimized 

geometries for resin micro-pods suitable for different miniature solar cell sizes or specific 

applications.  

Detailed evaluations using textile fibres with different thickness, cross sectional shapes 

(e.g. trilobal, rectangular, oval and hollow), materials (e.g. photoluminescent), and levels 

of texturization may be useful in developing a comprehensive knowledgebase on the 

effect of the fibrous sheath on the performance of the solar-E-yarn. Studies in to how the 

resin micro-pod can be engineered to survive mechanical impact may be necessary for 

designing solar-E-yarns for products that are prone to collisions with rigid objects.  

Finally, application of the core technology across different photovoltaic cell types would 

also be desirable, that would require the sourcing/development of different types of 

miniature solar cells and the creation of robust electrical and mechanical connections 

between the cell and wire. 
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Appendix 1 - List of research work reported in literature categorized based 

on the solar cell material type  

Category Description Performance/Remarks 

DSSC textile 

fibre and 

fabric 

All-solid, dye-sensitized solar 

cell (DSSC) textile fibre and 

fabric which is tailorable and 

wearable (Chai et al, 2016). 

The cells are 100% made of solids 

and can be cut/sewn. Power 

conversion efficiency (PCE) are well 

below liquid based DSSC (only 

around 1 %) Good bending 

performance. 

DSSC printed 

fabric 

TCO-free flexible dye- 

sensitized solar cells 

coated/printed on fabrics (M.J. 

Yun et al, 2016). 

PCE of 4.16 %. 

Perovskite 

solar cell yarn 

Wire-shaped perovskite solar 

cell yarn based on TiO2 

nanotubes (Wang et al, 2016). 

Integrated Ti/TiO2 

nanotube/perovskite/CNT solar cell 

wire exhibited a PCE of 1.16 %. 

Fabric 

electrode 

based DSSC 

Polypyrrole-coated cotton 

fabrics as textile counter 

electrode for dye-sensitized 

solar cells (Xu et al, 2016). 

Pt-free, PCE of 3.83%, low cost, and 

biodegradable. 

DSSC fabric Monolithic-structured, single- 

layered, textile-based, dye- 

sensitized solar cells (M J Yun 

et al, 2016) 

Initial PCE (0.35 %) decreased to 

0.21 % and 0.18 % after 5 and 7 days, 

respectively, for the fabric. 

DSSC coated 

fabric 

Textile-based dye-sensitized 

solar cells using glass-fibre 

fabrics (Opwis et al, 2016). 

PCE of 1.8 % lasts for 7 weeks. 

Perovskite 

solar cell yarn 

Wearable double-twisted 

fibrous perovskite solar cell (Li 

et al, 2015)  . 

PCE of 3.03 %, bending stability 

exceeding 1000 cycles, and maintain 

89 % efficiency after 96 h. 

DSSC tape 

and woven 

fabric 

Insertion of dye-sensitized 

solar cells in textiles using a 

conventional weaving process 

(Yun et al, 2015). 

PCE of 2.63% for inserted cells. 

DSSC woven 

fabric 

PDMS woven textile imprinted 

transparent layer for DSSC 

(Lim et al, 2015). 

Compared to the bare FTO/glass, 

the textile PDMS increased the total 

transmittance from 82.3 to 85.1% 

and its diffuse transmittance was 

significantly increased from 5.9 to 

78.1 % at a 550 nm wavelength. 

DSSC non-

woven fabric 

Dye-sensitized solar cells based 

on a wet-laid PET membrane 

electrolyte (Sun et al, 2015). 

Non-woven based DSSC with a 

PCE of 10.248 % and better lifetime 

with plasma treatment. 
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Perovskite 

solar wire 

and woven 

fabric 

Woven structures made of ZnO 

perpendicularly grown 

(stainless steel) wire, 

perovskite solar cell (He et al, 

2015). 

PCE of 3.8 % achieved. photovoltaic 

fibres and fabrics can be twisted in 

three dimensions without obvious 

damage to the structure. 

DSSC 

Fibre/yarn 

3D solid-state wire-shaped 

DSSC with a hybrid 

photovoltaic structure (Yan et 

al, 2014). 

All Solid state DSSC with PCE of 

7.39 % using a CNT, QD hybrid 

structure. Relatively steady cell 

performance up to 100 irradiation 

cycles for up to 50 h. 

DSSC fibre Stretchable, wearable dye-

sensitized solar cell textile 

(Yang et al, 2014). 

7.13 % PCE with stretchability by 

wrapping a wire around an elastic 

monofilament fibre. 

Hybrid 

woven solar 

fabric 

Graphene woven fabric based 

Hybrid solar cell with solid 

state electrolyte and n-Si (Li et 

al, 2014) 

PCE of 11 %. 

DSSC yarn Sewable DSSC on Glass fibre/Ti 

wire based electrodes (Yun et 

al, 2014). 

Sewable onto regular textiles. 

Flexibility and high performance 

under 4 mm radius of curvature for 

over thousands of deformation 

cycle. PCE 5.8 %. 

Woven 

electrode for 

DSSC 

Cotton woven fabric based 

Nickel/Polypyrolle coated 

counter electrode for DSSC (Xu 

et al, 2014). 

PCE of 3.30 %. 

DSSC fibre DSSC/electrochemical 

capacitor with coaxially 

arranged, TiO2 coated, Ti wire 

and CNT sheets as two 

electrodes (Chen et al, 2014). 

PCE of 2.73% achieved by DSSC, 

capacitor energy storage efficiency 

reached 75.7 % with specific 

capacitances up to 3.32 mF/cm2 and 

power densities up to 0.27 mW/cm2 

at 50 mA. 

DSSC solar 

fabric 

DSSC textile with Ti woven 

electrode and woven CNT 

counter electrode, stacked 

together (Pan et al, 2014) 

Maximum PCE of 3.10%. 

Maintained good energy 

conversions even with bending for 

100 cycles and deformed form a 

rectangle to a parallelogram. 

Graphene 

composite 

DSSC fibre 

Photovoltaic wire derived from 

a graphene composite fibre. 

(Yang et al, 2013) 

PCE of 8.45% achieved at fibre level. 

DSSC wire All-solid, flexible solar textiles 

based on dye-sensitized solar 

cells with ZnO nanorod arrays 

on stainless steel wires (Chae et 

al, 2013). 

PCE of 2.57 %. 

DSSC yarn TiO2/Pt coated, CNT spun yarn 

based DSSC (Velten et al, 2013). 

PCE of 3.1 %. 
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DSSC yarn Flexible DSSC based on ITO 

and Pt/Ti coated PEN 

electrodes and electro spun 

TiO2/MgO core-sheath 

nanorods (Du et al, 2013). 

 TiO2/MgO core sheath structure 

showed a better performance 

compared with TiO2 only 

structures. 

CNT based 

DSSC yarn 

All carbon nanotube fibre 

electrode-based, dye-

sensitized, photovoltaic wire 

(Cai, Chen and Peng, 2012). 

Maximum PCE 3.9 % achieved with 

modification of working electrodes 

with TiO2. 

CNT based 

DSSC yarn 

Intertwined aligned CNT based 

(TiO2 coated and non-coated) 

twisted DSSC yarn (Chen et al, 

2012). 

PCE of 2.94 % achieved. Good 

strength and flexibility. 

CNT based 

DSSC yarn 

Solid electrolyte Ti-TiO2, CNT 

yarn based DSSC yarn (Uddin 

et al, 2013). 

All Solid State. PCE of 0.1959 % with 

prolonged-time stability. Highly 

flexible. 

DSSC fibre Large size, high efficiency 

fibre-shaped dye-sensitized 

solar cells (Lv et al, 2011). 

PCE of 5.41 % achieved. 

DSSC fibre DSSC fibre base on a cladding 

less optical fibre (Gaudiana et 

al, 2006). 

PCE is very low (<0.001 %) 

Coated OPV 

fabric 

Spray coated organic solar cells 

on woven polyester/cotton 

fabrics (Arumugam et al, 2016). 

PCE of 0.02 % achieved. 

OPV fibre Stretchable fibre shaped 

polymeric solar cell on an 

elastic substrate and a spring-

like structure (Z. Zhang et al, 

2015). 

Maximum PCE of 1.23 % with PCEs 

that vary less than 10 % after being 

bent for 1000 times and under 

stretching at a strain of above 30 %. 

OPV yarn Textile-based OPV as a 

stitchable power source (Lee et 

al, 2014). 

OPV showed an enhanced short 

circuit current density of 13.11 

mA/cm2, which was higher than 

that of a typical OPV. The 

corresponding PCE reached to 

about 1.8 %. 

Woven OPV 

fabric 

A lightweight polymer solar 

cell textile that functions when 

illuminated from either side 

(Zhang et al, 2014). 

Maximum PCE of 1.08 %. 

OPV fibre Organic photovoltaic cells 

containing electron-

transporting organic 

nanofibers made of  bis(octyl)-

perylenediimide (PDI-C8) in 

the form of nano-fabrics 

(Hyoung Park et al, 2012). 

An increase in fill factor is observed 

for photovoltaic cells incorporating 

the nano-fabric heterojunctions. 
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OPV yarn Solid-state, polymer-based, 

fibre solar cells with carbon 

nanotube electrodes (Liu et al, 

2012). 

PCE of 2.3 %. 

OPV fabric Photovoltaic textile structure 

using polyaniline/carbon 

nanotube composite materials 

(Bedeloglu et al, 2011). 

PCE of 0.023 % for photovoltaic 

tapes and 0.04 % for ITO-coated 

glass-based solar cells. 

OPV woven 

fabric 

Transparent and flexible 

electrode based on a metal and 

polymer fibres woven mesh, 

and a PEDOT:PSS based solar 

cell fabricated on the same 

mesh (Kylberg et al, 2011). 

Flexible woven fabric-based cells 

with PCE of 2.2 %. 

Coated OPV 

tape 

P3H:PCBM based organic solar 

cell coated on Polypropylene 

tape with PEDOT:PSS anode 

and metallic cathode (A. C. 

Bedeloglu et al, 2010). 

PCE of 0.29 %. 

OPV fibre MDMO-PPV:PCBM and  

P3H:PCBM based organic solar 

cell coated on polypropylene 

fibres, with PEDOT:PSS anode 

and metallic cathode (A. 

Bedeloglu et al, 2010). 

PCE of 0.021 % and 0.01 % achieved 

for MDMO-PPV: PCBM and P3H: 

PCBM based solar cell fibres 

respectively. 

Electro spun 

OPV fabric 

Fabrication of P3HT/PCBM 

solar cloth by electrospinning 

core–shell nanofibers made of a 

conducting polymer or PVP as 

the shell (Sundarrajan et al, 

2010). 

Continuous P3HT or P3HT/PCBM 

nanofiber solar fabric with 8.7×10−8 

% PCE. 

Coated OPV 

tape 

Flexible textile based organic 

photovoltaic devices fabricated 

onto non-transparent PP tapes 

and ITO coated glasses 

(Bedeloglu et al, 2009). 

Maximum PCE of 0.33 % was 

observed with an Ag coated PP tape 

substrate. 

OPV fibre Fiber-shaped organic 

photovoltaic cell, utilizing 

concentric thin films of small 

molecular organic compounds 

(O’Connor, Pipe and Shtein, 

2008). 

PCE of 0.5 %.  

OPV 

decorative 

coating 

Incorporating organic solar 

cells into garments and textiles 

by coating a polyethylene 

terephthalate (PET) substrate 

with PEDOT electrode using 

The total area of the device on PET 

was typically much smaller than the 

active area due to the decorative 

design of the aluminium electrode. 
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doctor blade and screen-

printing methods (Krebs et al, 

2006). 

The maximum module output 

power was found to be 0.27 µW. 

Si Based PV 

sheet 

laminated 

fabric 

Amorphous Si based flexible 

semi-conductor sheets 

laminated onto textiles (Nocito 

and Koncar, 2016). 

Flexible textile-based fabrics with 

good manufacturability and utility. 

PCEs were four times lower than c-

Si. 

Amorphous 

Si PV layer 

coated 

woven fabric 

Amorphous Si based p-i-n solar 

cells printed on glass fibre 

woven structures (Plentz et al, 

2016). 

PCE of 1.4 % achieved, which 

increased by 5 % with a transparent 

conductive oxide 

Inorganic PV 

fibre and 

woven fabric 

Photovoltaic woven textile 

with all solid inorganic solar 

cell fibre (Zhang et al, 2016). 

PCE of 1.3 % for a single cell unit. 

Hybrid 

triboelectric 

and solar 

yarns woven 

fabric 

Micro-cable inorganic/polymer 

hybrid material structured 

textile for simultaneously 

harvesting solar and 

mechanical energy (Chen et al, 

2016). 

Combined power generation of 0.5 

mW (4 × 5cm2 area) for a human 

walking under 0.8 sun illumination. 

Si based PV 

fibre 

Si p-i-n junction photodiode 

junction for photovoltaics (He 

et al, 2013). 

PCE of 0.5 %. 

CdSe-CNT 

PV yarn 

Semiconductor solar cell fibre 

with CdSe-CNT Nanowires 

(Zhang, Shi, Li, et al, 2012). 

Highly flexible semiconductor solar 

cell yarn with PCE of around 1-2 %. 

CuInSe2 PV 

wire 

Flexible fibre-shaped CuInSe2 

solar cells with single-wire-

structure (Zhang, Song, Tian, et 

al, 2012). 

PCE of 2.31 %, which varied 

between 2.16–2.32 % during 

rotation (0-360°), bending (0-360°), 

and long-time aging (stored at 60 °C 

for 600 h) processes. 

CIS based 

woven PV 

fabric 

Inorganic CIS PV cell on a glass 

fibre woven fabric (Knittel et al, 

2010). 

High level of flexibility achieved. 

PCE was higher than 8 %. 

Si based PV 

cell printed 

fabric 

Printed arrays of Si microcells 

on flexible substrate, with 

concentrator lens arrays (Yoon 

et al, 2008). 

PCE of 6 % was achieved under 1 

sun illumination, highly bendable, 

and performance changing only 

slightly with bending. 

Inorganic-

CNT 

nanowire-

based PV 

fibre and 

woven PV 

fabric 

Fibre and fabric solar cells by 

directly weaving carbon 

nanotube yarns with CdSe 

nanowire-based electrodes 

(Zhang, Shi, Ji, et al, 2012). 

PCE in the range 1 % to 2.9 % at yarn 

level. 
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CNT/Ti wire 

electrodes for 

PV fibre 

Porous, platinum nanoparticle-

adsorbed carbon nanotube 

yarns for efficient fibre solar 

cells (Zhang, Ji, Bian, et al, 

2012). 

PCE of 4.85 % at yarn level. 
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Appendix 2 – Variation of physical dimensions of the solar cells. 
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Figure Ap1 – Variation in the physical dimensions of the (a) 1.5 × 1.5mm, (b) 1.5 × 3.0 mm 

and (c) 3.0 × 3.2 mm solar cells in batches of 30 cells measured using a digital optical 

microscope. 
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Appendix 3 – Light intensity analysis of the lamp used in the optical test 

rig with and without diffusers. 

To evaluate the intensity distribution a VEMD 6060×1 photodiode was positioned on 

the sample holder. The sample holder was demarcated with a grid of 1 mm × 1 mm 

unit cells. The Isc values were then recorded on the grid space for four different 

scenarios, with the lamp of the optical test-rig being supplied with 12 V and 0.89 A. 

First the measurements were conducted without using a light diffuser. 
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-2 0 90 99 107 106 103 111 116 116 113 109 102 90 87 84 81 82 62 50 0 -2 0 76.3 83.9 90.7 89.8 87.3 94.1 98.3 98.3 95.8 92.4 86.4 76.3 73.7 71.2 68.6 69.5 52.5 42.4 0

-3 0 88 93 100 103 108 110 114 118 114 108 100 98 87 84 81 82 63 50 0 -3 0 74.6 78.8 84.7 87.3 91.5 93.2 96.6 100 96.6 91.5 84.7 83.1 73.7 71.2 68.6 69.5 53.4 42.4 0

-4 0 85 87 94 97 105 102 108 112 108 100 96 86 85 82 80 80 62 50 0 -4 0 72 73.7 79.7 82.2 89 86.4 91.5 94.9 91.5 84.7 81.4 72.9 72 69.5 67.8 67.8 52.5 42.4 0

-5 0 80 81 87 90 100 97 101 104 102 93 91 83 84 80 87 78 62 48 0 -5 0 67.8 68.6 73.7 76.3 84.7 82.2 85.6 88.1 86.4 78.8 77.1 70.3 71.2 67.8 73.7 66.1 52.5 40.7 0

-6 0 0 75 80 83 94 88 93 96 93 87 86 79 80 78 76 75 58 0 0 -6 0 0 63.6 67.8 70.3 79.7 74.6 78.8 81.4 78.8 73.7 72.9 66.9 67.8 66.1 64.4 63.6 49.2 0 0

-7 0 0 0 75 77 86 83 85 90 85 80 81 77 78 75 72 68 0 0 0 -7 0 0 0 63.6 65.3 72.9 70.3 72 76.3 72 67.8 68.6 65.3 66.1 63.6 61 57.6 0 0 0

-8 0 0 0 0 70 79 76 79 82 73 76 79 74 78 72 64 0 0 0 0 -8 0 0 0 0 59.3 66.9 64.4 66.9 69.5 61.9 64.4 66.9 62.7 66.1 61 54.2 0 0 0 0

-9 0 0 0 0 0 74 70 73 77 73 70 74 72 74 63 0 0 0 0 0 -9 0 0 0 0 0 62.7 59.3 61.9 65.3 61.9 59.3 62.7 61 62.7 53.4 0 0 0 0 0

-10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 7 8 9 10 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 7 8 9 10

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

9 0 0 0 0 0 30 36 41 40 41 43 39 35 34 32 0 0 0 0 0 9 0 0 0 0 0 44.1 52.9 60.3 58.8 60.3 63.2 57.4 51.5 50 47.1 0 0 0 0 0

8 0 0 0 0 40 34 40 45 44 45 46 43 40 38 36 34 0 0 0 0 8 0 0 0 0 58.8 50 58.8 66.2 64.7 66.2 67.6 63.2 58.8 55.9 52.9 50 0 0 0 0

7 0 0 0 44 43 40 44 48 47 48 50 47 43 41 39 37 39 0 0 0 7 0 0 0 64.7 63.2 58.8 64.7 70.6 69.1 70.6 73.5 69.1 63.2 60.3 57.4 54.4 57.4 0 0 0

6 0 0 49 48 46 44 47 52 51 51 53 49 45 43 42 40 42 36 0 0 6 0 0 72.1 70.6 67.6 64.7 69.1 76.5 75 75 77.9 72.1 66.2 63.2 61.8 58.8 61.8 52.9 0 0

5 0 45 52 52 50 47 51 54 54 55 55 53 48 46 45 43 45 38 33 0 5 0 66.2 76.5 76.5 73.5 69.1 75 79.4 79.4 80.9 80.9 77.9 70.6 67.6 66.2 63.2 66.2 55.9 48.5 0

4 0 48 54 55 52 51 54 57 57 57 59 55 50 48 47 45 47 40 35 0 4 0 70.6 79.4 80.9 76.5 75 79.4 83.8 83.8 83.8 86.8 80.9 73.5 70.6 69.1 66.2 69.1 58.8 51.5 0

3 0 51 56 57 55 54 57 60 60 60 61 58 52 51 48 48 49 41 36 0 3 0 75 82.4 83.8 80.9 79.4 83.8 88.2 88.2 88.2 89.7 85.3 76.5 75 70.6 70.6 72.1 60.3 52.9 0

2 0 53 57 59 57 57 60 63 62 62 59 60 54 53 50 49 51 43 37 0 2 0 77.9 83.8 86.8 83.8 83.8 88.2 92.6 91.2 91.2 86.8 88.2 79.4 77.9 73.5 72.1 75 63.2 54.4 0

1 0 54 58 60 59 59 63 65 64 64 65 62 55 54 51 50 51 43 38 0 1 0 79.4 85.3 88.2 86.8 86.8 92.6 95.6 94.1 94.1 95.6 91.2 80.9 79.4 75 73.5 75 63.2 55.9 0

-1 0 54 58 61 60 61 63 66 66 65 65 63 57 54 52 50 52 43 38 0 -1 0 79.4 85.3 89.7 88.2 89.7 92.6 97.1 97.1 95.6 95.6 92.6 83.8 79.4 76.5 73.5 76.5 63.2 55.9 0

-2 0 54 58 61 60 62 64 66 67 66 65 64 57 54 51 50 51 43 38 0 -2 0 79.4 85.3 89.7 88.2 91.2 94.1 97.1 98.5 97.1 95.6 94.1 83.8 79.4 75 73.5 75 63.2 55.9 0

-3 0 53 56 60 59 63 63 66 68 65 64 62 56 54 51 50 51 43 38 0 -3 0 77.9 82.4 88.2 86.8 92.6 92.6 97.1 100 95.6 94.1 91.2 82.4 79.4 75 73.5 75 63.2 55.9 0

-4 0 52 53 57 57 62 62 65 66 64 61 61 55 53 50 49 50 41 38 0 -4 0 76.5 77.9 83.8 83.8 91.2 91.2 95.6 97.1 94.1 89.7 89.7 80.9 77.9 73.5 72.1 73.5 60.3 55.9 0

-5 0 49 50 55 55 60 60 62 64 62 59 59 53 52 48 47 48 40 36 0 -5 0 72.1 73.5 80.9 80.9 88.2 88.2 91.2 94.1 91.2 86.8 86.8 77.9 76.5 70.6 69.1 70.6 58.8 52.9 0

-6 0 0 46 51 52 58 56 59 61 59 56 56 52 50 47 46 45 37 0 0 -6 0 0 67.6 75 76.5 85.3 82.4 86.8 89.7 86.8 82.4 82.4 76.5 73.5 69.1 67.6 66.2 54.4 0 0

-7 0 0 0 47 48 55 53 56 59 55 52 53 49 48 45 43 42 0 0 0 -7 0 0 0 69.1 70.6 80.9 77.9 82.4 86.8 80.9 76.5 77.9 72.1 70.6 66.2 63.2 61.8 0 0 0

-8 0 0 0 0 44 51 48 53 56 51 48 51 45 48 42 40 0 0 0 0 -8 0 0 0 0 64.7 75 70.6 77.9 82.4 75 70.6 75 66.2 70.6 61.8 58.8 0 0 0 0

-9 0 0 0 0 0 47 44 47 52 47 44 46 43 44 38 0 0 0 0 0 -9 0 0 0 0 0 69.1 64.7 69.1 76.5 69.1 64.7 67.6 63.2 64.7 55.9 0 0 0 0 0

-10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 7 8 9 10 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 7 8 9 10

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

9 0 0 0 0 0 23 23 22 23 25 25 24 21 21 21 0 0 0 0 0 9 0 0 0 0 0 71.9 71.9 68.8 71.9 78.1 78.1 75 65.6 65.6 65.6 0 0 0 0 0

8 0 0 0 0 24 25 25 24 25 26 26 26 23 22 22 22 0 0 0 0 8 0 0 0 0 75 78.1 78.1 75 78.1 81.3 81.3 81.3 71.9 68.8 68.8 68.8 0 0 0 0

7 0 0 0 24 25 26 26 25 26 27 28 27 24 24 23 24 23 0 0 0 7 0 0 0 75 78.1 81.3 81.3 78.1 81.3 84.4 87.5 84.4 75 75 71.9 75 71.9 0 0 0

6 0 0 25 26 26 27 27 27 27 28 29 28 26 25 24 25 24 23 0 0 6 0 0 78.1 81.3 81.3 84.4 84.4 84.4 84.4 87.5 90.6 87.5 81.3 78.1 75 78.1 75 71.9 0 0

5 0 26 27 27 27 28 28 28 28 29 30 29 27 27 25 26 25 23 20 0 5 0 81.3 84.4 84.4 84.4 87.5 87.5 87.5 87.5 90.6 93.8 90.6 84.4 84.4 78.1 81.3 78.1 71.9 62.5 0

4 0 27 28 28 28 29 29 28 29 30 31 30 28 28 26 27 25 24 21 0 4 0 84.4 87.5 87.5 87.5 90.6 90.6 87.5 90.6 93.8 96.9 93.8 87.5 87.5 81.3 84.4 78.1 75 65.6 0

3 0 28 28 29 29 30 30 29 30 31 31 31 29 28 27 27 26 25 22 0 3 0 87.5 87.5 90.6 90.6 93.8 93.8 90.6 93.8 96.9 96.9 96.9 90.6 87.5 84.4 84.4 81.3 78.1 68.8 0

2 0 28 28 29 29 30 30 30 30 31 32 31 30 29 28 28 26 26 22 0 2 0 87.5 87.5 90.6 90.6 93.8 93.8 93.8 93.8 96.9 100 96.9 93.8 90.6 87.5 87.5 81.3 81.3 68.8 0

1 0 29 29 30 30 30 30 30 31 32 32 32 30 30 28 28 27 25 22 0 1 0 90.6 90.6 93.8 93.8 93.8 93.8 93.8 96.9 100 100 100 93.8 93.8 87.5 87.5 84.4 78.1 68.8 0

-1 0 29 29 30 30 31 31 30 30 31 32 32 30 30 28 28 27 25 22 0 -1 0 90.6 90.6 93.8 93.8 96.9 96.9 93.8 93.8 96.9 100 100 93.8 93.8 87.5 87.5 84.4 78.1 68.8 0

-2 0 29 29 30 30 31 31 31 31 32 32 32 30 30 28 28 27 25 22 0 -2 0 90.6 90.6 93.8 93.8 96.9 96.9 96.9 96.9 100 100 100 93.8 93.8 87.5 87.5 84.4 78.1 68.8 0

-3 0 29 29 29 30 31 31 31 31 32 32 32 31 30 28 28 27 25 23 0 -3 0 90.6 90.6 90.6 93.8 96.9 96.9 96.9 96.9 100 100 100 96.9 93.8 87.5 87.5 84.4 78.1 71.9 0

-4 0 28 28 29 29 30 31 30 30 31 32 32 30 29 28 27 26 25 22 0 -4 0 87.5 87.5 90.6 90.6 93.8 96.9 93.8 93.8 96.9 100 100 93.8 90.6 87.5 84.4 81.3 78.1 68.8 0

-5 0 27 28 28 29 29 30 30 30 31 31 31 30 28 27 27 26 25 24 0 -5 0 84.4 87.5 87.5 90.6 90.6 93.8 93.8 93.8 96.9 96.9 96.9 93.8 87.5 84.4 84.4 81.3 78.1 75 0

-6 0 0 27 27 28 28 29 30 29 30 30 30 29 28 27 26 25 24 0 0 -6 0 0 84.4 84.4 87.5 87.5 90.6 93.8 90.6 93.8 93.8 93.8 90.6 87.5 84.4 81.3 78.1 75 0 0

-7 0 0 0 26 28 27 28 28 28 30 29 29 29 27 26 25 25 0 0 0 -7 0 0 0 81.3 87.5 84.4 87.5 87.5 87.5 93.8 90.6 90.6 90.6 84.4 81.3 78.1 78.1 0 0 0

-8 0 0 0 0 27 26 27 27 27 29 28 28 28 26 25 24 0 0 0 0 -8 0 0 0 0 84.4 81.3 84.4 84.4 84.4 90.6 87.5 87.5 87.5 81.3 78.1 75 0 0 0 0

-9 0 0 0 0 0 25 26 25 25 28 27 27 27 25 25 0 0 0 0 0 -9 0 0 0 0 0 78.1 81.3 78.1 78.1 87.5 84.4 84.4 84.4 78.1 78.1 0 0 0 0 0

-10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 7 8 9 10 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 7 8 9 10

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

9 0 0 0 0 0 15 16 16 16 17 18 17 15 14 15 0 0 0 0 0 9 0 0 0 0 0 65.2 69.6 69.6 69.6 73.9 78.3 73.9 65.2 60.9 65.2 0 0 0 0 0

8 0 0 0 0 16 17 17 17 17 18 19 18 16 16 16 16 0 0 0 0 8 0 0 0 0 69.6 73.9 73.9 73.9 73.9 78.3 82.6 78.3 69.6 69.6 69.6 69.6 0 0 0 0

7 0 0 0 17 17 18 18 17 18 19 20 20 18 17 17 17 17 0 0 0 7 0 0 0 73.9 73.9 78.3 78.3 73.9 78.3 82.6 87 87 78.3 73.9 73.9 73.9 73.9 0 0 0

6 0 0 18 18 18 19 19 19 19 20 21 20 18 18 17 18 17 17 0 0 6 0 0 78.3 78.3 78.3 82.6 82.6 82.6 82.6 87 91.3 87 78.3 78.3 73.9 78.3 73.9 73.9 0 0

5 0 18 19 19 19 20 19 20 20 21 21 21 19 19 18 18 18 17 15 0 5 0 78.3 82.6 82.6 82.6 87 82.6 87 87 91.3 91.3 91.3 82.6 82.6 78.3 78.3 78.3 73.9 65.2 0

4 0 19 20 20 20 20 20 20 20 21 22 22 20 20 19 19 19 18 16 0 4 0 82.6 87 87 87 87 87 87 87 91.3 95.7 95.7 87 87 82.6 82.6 82.6 78.3 69.6 0

3 0 20 20 20 20 20 21 20 21 22 22 22 21 20 20 20 19 19 16 0 3 0 87 87 87 87 87 91.3 87 91.3 95.7 95.7 95.7 91.3 87 87 87 82.6 82.6 69.6 0

2 0 20 21 21 21 21 21 20 21 22 23 23 21 21 20 20 20 19 16 0 2 0 87 91.3 91.3 91.3 91.3 91.3 87 91.3 95.7 100 100 91.3 91.3 87 87 87 82.6 69.6 0

1 0 20 21 21 21 22 21 21 22 23 23 23 21 21 20 20 20 19 16 0 1 0 87 91.3 91.3 91.3 95.7 91.3 91.3 95.7 100 100 100 91.3 91.3 87 87 87 82.6 69.6 0

-1 0 21 21 21 21 22 21 21 22 23 23 23 22 21 21 21 20 19 16 0 -1 0 91.3 91.3 91.3 91.3 95.7 91.3 91.3 95.7 100 100 100 95.7 91.3 91.3 91.3 87 82.6 69.6 0

-2 0 21 21 21 21 22 22 22 22 23 23 23 22 21 21 20 20 19 17 0 -2 0 91.3 91.3 91.3 91.3 95.7 95.7 95.7 95.7 100 100 100 95.7 91.3 91.3 87 87 82.6 73.9 0

-3 0 21 21 20 21 22 22 22 22 23 23 23 22 21 20 20 20 19 16 0 -3 0 91.3 91.3 87 91.3 95.7 95.7 95.7 95.7 100 100 100 95.7 91.3 87 87 87 82.6 69.6 0

-4 0 20 20 20 20 21 21 21 21 22 23 23 22 21 20 20 19 18 16 0 -4 0 87 87 87 87 91.3 91.3 91.3 91.3 95.7 100 100 95.7 91.3 87 87 82.6 78.3 69.6 0

-5 0 20 20 19 20 20 21 21 21 22 22 23 22 21 20 20 19 18 15 0 -5 0 87 87 82.6 87 87 91.3 91.3 91.3 95.7 95.7 100 95.7 91.3 87 87 82.6 78.3 65.2 0

-6 0 0 19 19 20 20 21 21 20 22 22 22 21 20 20 19 18 17 0 0 -6 0 0 82.6 82.6 87 87 91.3 91.3 87 95.7 95.7 95.7 91.3 87 87 82.6 78.3 73.9 0 0

-7 0 0 0 18 19 18 20 20 19 21 21 21 21 20 19 18 18 0 0 0 -7 0 0 0 78.3 82.6 78.3 87 87 82.6 91.3 91.3 91.3 91.3 87 82.6 78.3 78.3 0 0 0

-8 0 0 0 0 18 18 19 19 19 21 21 21 21 19 19 17 0 0 0 0 -8 0 0 0 0 78.3 78.3 82.6 82.6 82.6 91.3 91.3 91.3 91.3 82.6 82.6 73.9 0 0 0 0

-9 0 0 0 0 0 17 17 18 18 20 19 20 20 18 19 0 0 0 0 0 -9 0 0 0 0 0 73.9 73.9 78.3 78.3 87 82.6 87 87 78.3 82.6 0 0 0 0 0

-10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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Figure Ap2.1 – Variation of light intensity reaching the sample holder of the optical test rig 

without a light diffuser and with one light diffuser positioned between the lamp and the sample 

holder, close to the sample holder. Normalized data presented are based on the ISC measured at 

the centre. 

Absolute ISC (μA) Normalized  ISC 
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-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 7 8 9 10 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 7 8 9 10

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

9 0 0 0 0 0 61 70 72 71 72 73 70 64 61 54 0 0 0 0 0 9 0 0 0 0 0 51.7 59.3 61 60.2 61 61.9 59.3 54.2 51.7 45.8 0 0 0 0 0

8 0 0 0 0 69 69 71 72 71 72 72 71 68 68 63 52 0 0 0 0 8 0 0 0 0 58.5 58.5 60.2 61 60.2 61 61 60.2 57.6 57.6 53.4 44.1 0 0 0 0

7 0 0 0 71 69 70 71 72 72 72 74 72 69 70 69 61 61 0 0 0 7 0 0 0 60.2 58.5 59.3 60.2 61 61 61 62.7 61 58.5 59.3 58.5 51.7 51.7 0 0 0

6 0 0 76 74 70 70 72 74 73 73 75 72 70 72 72 67 67 51 0 0 6 0 0 64.4 62.7 59.3 59.3 61 62.7 61.9 61.9 63.6 61 59.3 61 61 56.8 56.8 43.2 0 0

5 0 74 81 79 74 72 76 77 77 78 78 76 72 73 75 71 71 54 43 0 5 0 62.7 68.6 66.9 62.7 61 64.4 65.3 65.3 66.1 66.1 64.4 61 61.9 63.6 60.2 60.2 45.8 36.4 0

4 0 79 86 84 80 76 81 83 83 82 84 79 74 75 76 73 74 57 45 0 4 0 66.9 72.9 71.2 67.8 64.4 68.6 70.3 70.3 69.5 71.2 66.9 62.7 63.6 64.4 61.9 62.7 48.3 38.1 0

3 0 83 91 90 86 82 87 91 90 89 89 84 78 78 78 74 75 58 45 0 3 0 70.3 77.1 76.3 72.9 69.5 73.7 77.1 76.3 75.4 75.4 71.2 66.1 66.1 66.1 62.7 63.6 49.2 38.1 0

2 0 86 95 95 92 89 94 98 96 97 94 90 81 82 80 76 77 59 47 0 2 0 72.9 80.5 80.5 78 75.4 79.7 83.1 81.4 82.2 79.7 76.3 68.6 69.5 67.8 64.4 65.3 50 39.8 0

1 0 88 98 99 97 93 102 105 103 101 100 93 84 84 83 78 78 60 48 0 1 0 74.6 83.1 83.9 82.2 78.8 86.4 89 87.3 85.6 84.7 78.8 71.2 71.2 70.3 66.1 66.1 50.8 40.7 0

-1 0 90 102 106 102 98 106 110 109 106 106 99 87 86 84 80 80 62 49 0 -1 0 76.3 86.4 89.8 86.4 83.1 89.8 93.2 92.4 89.8 89.8 83.9 73.7 72.9 71.2 67.8 67.8 52.5 41.5 0

-2 0 90 99 107 106 103 111 116 116 113 109 102 90 87 84 81 82 62 50 0 -2 0 76.3 83.9 90.7 89.8 87.3 94.1 98.3 98.3 95.8 92.4 86.4 76.3 73.7 71.2 68.6 69.5 52.5 42.4 0

-3 0 88 93 100 103 108 110 114 118 114 108 100 98 87 84 81 82 63 50 0 -3 0 74.6 78.8 84.7 87.3 91.5 93.2 96.6 100 96.6 91.5 84.7 83.1 73.7 71.2 68.6 69.5 53.4 42.4 0

-4 0 85 87 94 97 105 102 108 112 108 100 96 86 85 82 80 80 62 50 0 -4 0 72 73.7 79.7 82.2 89 86.4 91.5 94.9 91.5 84.7 81.4 72.9 72 69.5 67.8 67.8 52.5 42.4 0

-5 0 80 81 87 90 100 97 101 104 102 93 91 83 84 80 87 78 62 48 0 -5 0 67.8 68.6 73.7 76.3 84.7 82.2 85.6 88.1 86.4 78.8 77.1 70.3 71.2 67.8 73.7 66.1 52.5 40.7 0

-6 0 0 75 80 83 94 88 93 96 93 87 86 79 80 78 76 75 58 0 0 -6 0 0 63.6 67.8 70.3 79.7 74.6 78.8 81.4 78.8 73.7 72.9 66.9 67.8 66.1 64.4 63.6 49.2 0 0

-7 0 0 0 75 77 86 83 85 90 85 80 81 77 78 75 72 68 0 0 0 -7 0 0 0 63.6 65.3 72.9 70.3 72 76.3 72 67.8 68.6 65.3 66.1 63.6 61 57.6 0 0 0

-8 0 0 0 0 70 79 76 79 82 73 76 79 74 78 72 64 0 0 0 0 -8 0 0 0 0 59.3 66.9 64.4 66.9 69.5 61.9 64.4 66.9 62.7 66.1 61 54.2 0 0 0 0

-9 0 0 0 0 0 74 70 73 77 73 70 74 72 74 63 0 0 0 0 0 -9 0 0 0 0 0 62.7 59.3 61.9 65.3 61.9 59.3 62.7 61 62.7 53.4 0 0 0 0 0

-10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 7 8 9 10 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 7 8 9 10

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

9 0 0 0 0 0 30 36 41 40 41 43 39 35 34 32 0 0 0 0 0 9 0 0 0 0 0 44.1 52.9 60.3 58.8 60.3 63.2 57.4 51.5 50 47.1 0 0 0 0 0

8 0 0 0 0 40 34 40 45 44 45 46 43 40 38 36 34 0 0 0 0 8 0 0 0 0 58.8 50 58.8 66.2 64.7 66.2 67.6 63.2 58.8 55.9 52.9 50 0 0 0 0

7 0 0 0 44 43 40 44 48 47 48 50 47 43 41 39 37 39 0 0 0 7 0 0 0 64.7 63.2 58.8 64.7 70.6 69.1 70.6 73.5 69.1 63.2 60.3 57.4 54.4 57.4 0 0 0

6 0 0 49 48 46 44 47 52 51 51 53 49 45 43 42 40 42 36 0 0 6 0 0 72.1 70.6 67.6 64.7 69.1 76.5 75 75 77.9 72.1 66.2 63.2 61.8 58.8 61.8 52.9 0 0

5 0 45 52 52 50 47 51 54 54 55 55 53 48 46 45 43 45 38 33 0 5 0 66.2 76.5 76.5 73.5 69.1 75 79.4 79.4 80.9 80.9 77.9 70.6 67.6 66.2 63.2 66.2 55.9 48.5 0

4 0 48 54 55 52 51 54 57 57 57 59 55 50 48 47 45 47 40 35 0 4 0 70.6 79.4 80.9 76.5 75 79.4 83.8 83.8 83.8 86.8 80.9 73.5 70.6 69.1 66.2 69.1 58.8 51.5 0

3 0 51 56 57 55 54 57 60 60 60 61 58 52 51 48 48 49 41 36 0 3 0 75 82.4 83.8 80.9 79.4 83.8 88.2 88.2 88.2 89.7 85.3 76.5 75 70.6 70.6 72.1 60.3 52.9 0

2 0 53 57 59 57 57 60 63 62 62 59 60 54 53 50 49 51 43 37 0 2 0 77.9 83.8 86.8 83.8 83.8 88.2 92.6 91.2 91.2 86.8 88.2 79.4 77.9 73.5 72.1 75 63.2 54.4 0

1 0 54 58 60 59 59 63 65 64 64 65 62 55 54 51 50 51 43 38 0 1 0 79.4 85.3 88.2 86.8 86.8 92.6 95.6 94.1 94.1 95.6 91.2 80.9 79.4 75 73.5 75 63.2 55.9 0

-1 0 54 58 61 60 61 63 66 66 65 65 63 57 54 52 50 52 43 38 0 -1 0 79.4 85.3 89.7 88.2 89.7 92.6 97.1 97.1 95.6 95.6 92.6 83.8 79.4 76.5 73.5 76.5 63.2 55.9 0

-2 0 54 58 61 60 62 64 66 67 66 65 64 57 54 51 50 51 43 38 0 -2 0 79.4 85.3 89.7 88.2 91.2 94.1 97.1 98.5 97.1 95.6 94.1 83.8 79.4 75 73.5 75 63.2 55.9 0

-3 0 53 56 60 59 63 63 66 68 65 64 62 56 54 51 50 51 43 38 0 -3 0 77.9 82.4 88.2 86.8 92.6 92.6 97.1 100 95.6 94.1 91.2 82.4 79.4 75 73.5 75 63.2 55.9 0

-4 0 52 53 57 57 62 62 65 66 64 61 61 55 53 50 49 50 41 38 0 -4 0 76.5 77.9 83.8 83.8 91.2 91.2 95.6 97.1 94.1 89.7 89.7 80.9 77.9 73.5 72.1 73.5 60.3 55.9 0

-5 0 49 50 55 55 60 60 62 64 62 59 59 53 52 48 47 48 40 36 0 -5 0 72.1 73.5 80.9 80.9 88.2 88.2 91.2 94.1 91.2 86.8 86.8 77.9 76.5 70.6 69.1 70.6 58.8 52.9 0

-6 0 0 46 51 52 58 56 59 61 59 56 56 52 50 47 46 45 37 0 0 -6 0 0 67.6 75 76.5 85.3 82.4 86.8 89.7 86.8 82.4 82.4 76.5 73.5 69.1 67.6 66.2 54.4 0 0

-7 0 0 0 47 48 55 53 56 59 55 52 53 49 48 45 43 42 0 0 0 -7 0 0 0 69.1 70.6 80.9 77.9 82.4 86.8 80.9 76.5 77.9 72.1 70.6 66.2 63.2 61.8 0 0 0

-8 0 0 0 0 44 51 48 53 56 51 48 51 45 48 42 40 0 0 0 0 -8 0 0 0 0 64.7 75 70.6 77.9 82.4 75 70.6 75 66.2 70.6 61.8 58.8 0 0 0 0

-9 0 0 0 0 0 47 44 47 52 47 44 46 43 44 38 0 0 0 0 0 -9 0 0 0 0 0 69.1 64.7 69.1 76.5 69.1 64.7 67.6 63.2 64.7 55.9 0 0 0 0 0

-10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 7 8 9 10 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 7 8 9 10

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

9 0 0 0 0 0 23 23 22 23 25 25 24 21 21 21 0 0 0 0 0 9 0 0 0 0 0 71.9 71.9 68.8 71.9 78.1 78.1 75 65.6 65.6 65.6 0 0 0 0 0

8 0 0 0 0 24 25 25 24 25 26 26 26 23 22 22 22 0 0 0 0 8 0 0 0 0 75 78.1 78.1 75 78.1 81.3 81.3 81.3 71.9 68.8 68.8 68.8 0 0 0 0

7 0 0 0 24 25 26 26 25 26 27 28 27 24 24 23 24 23 0 0 0 7 0 0 0 75 78.1 81.3 81.3 78.1 81.3 84.4 87.5 84.4 75 75 71.9 75 71.9 0 0 0

6 0 0 25 26 26 27 27 27 27 28 29 28 26 25 24 25 24 23 0 0 6 0 0 78.1 81.3 81.3 84.4 84.4 84.4 84.4 87.5 90.6 87.5 81.3 78.1 75 78.1 75 71.9 0 0

5 0 26 27 27 27 28 28 28 28 29 30 29 27 27 25 26 25 23 20 0 5 0 81.3 84.4 84.4 84.4 87.5 87.5 87.5 87.5 90.6 93.8 90.6 84.4 84.4 78.1 81.3 78.1 71.9 62.5 0

4 0 27 28 28 28 29 29 28 29 30 31 30 28 28 26 27 25 24 21 0 4 0 84.4 87.5 87.5 87.5 90.6 90.6 87.5 90.6 93.8 96.9 93.8 87.5 87.5 81.3 84.4 78.1 75 65.6 0

3 0 28 28 29 29 30 30 29 30 31 31 31 29 28 27 27 26 25 22 0 3 0 87.5 87.5 90.6 90.6 93.8 93.8 90.6 93.8 96.9 96.9 96.9 90.6 87.5 84.4 84.4 81.3 78.1 68.8 0

2 0 28 28 29 29 30 30 30 30 31 32 31 30 29 28 28 26 26 22 0 2 0 87.5 87.5 90.6 90.6 93.8 93.8 93.8 93.8 96.9 100 96.9 93.8 90.6 87.5 87.5 81.3 81.3 68.8 0

1 0 29 29 30 30 30 30 30 31 32 32 32 30 30 28 28 27 25 22 0 1 0 90.6 90.6 93.8 93.8 93.8 93.8 93.8 96.9 100 100 100 93.8 93.8 87.5 87.5 84.4 78.1 68.8 0

-1 0 29 29 30 30 31 31 30 30 31 32 32 30 30 28 28 27 25 22 0 -1 0 90.6 90.6 93.8 93.8 96.9 96.9 93.8 93.8 96.9 100 100 93.8 93.8 87.5 87.5 84.4 78.1 68.8 0

-2 0 29 29 30 30 31 31 31 31 32 32 32 30 30 28 28 27 25 22 0 -2 0 90.6 90.6 93.8 93.8 96.9 96.9 96.9 96.9 100 100 100 93.8 93.8 87.5 87.5 84.4 78.1 68.8 0

-3 0 29 29 29 30 31 31 31 31 32 32 32 31 30 28 28 27 25 23 0 -3 0 90.6 90.6 90.6 93.8 96.9 96.9 96.9 96.9 100 100 100 96.9 93.8 87.5 87.5 84.4 78.1 71.9 0

-4 0 28 28 29 29 30 31 30 30 31 32 32 30 29 28 27 26 25 22 0 -4 0 87.5 87.5 90.6 90.6 93.8 96.9 93.8 93.8 96.9 100 100 93.8 90.6 87.5 84.4 81.3 78.1 68.8 0

-5 0 27 28 28 29 29 30 30 30 31 31 31 30 28 27 27 26 25 24 0 -5 0 84.4 87.5 87.5 90.6 90.6 93.8 93.8 93.8 96.9 96.9 96.9 93.8 87.5 84.4 84.4 81.3 78.1 75 0

-6 0 0 27 27 28 28 29 30 29 30 30 30 29 28 27 26 25 24 0 0 -6 0 0 84.4 84.4 87.5 87.5 90.6 93.8 90.6 93.8 93.8 93.8 90.6 87.5 84.4 81.3 78.1 75 0 0

-7 0 0 0 26 28 27 28 28 28 30 29 29 29 27 26 25 25 0 0 0 -7 0 0 0 81.3 87.5 84.4 87.5 87.5 87.5 93.8 90.6 90.6 90.6 84.4 81.3 78.1 78.1 0 0 0

-8 0 0 0 0 27 26 27 27 27 29 28 28 28 26 25 24 0 0 0 0 -8 0 0 0 0 84.4 81.3 84.4 84.4 84.4 90.6 87.5 87.5 87.5 81.3 78.1 75 0 0 0 0

-9 0 0 0 0 0 25 26 25 25 28 27 27 27 25 25 0 0 0 0 0 -9 0 0 0 0 0 78.1 81.3 78.1 78.1 87.5 84.4 84.4 84.4 78.1 78.1 0 0 0 0 0

-10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 7 8 9 10 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 7 8 9 10

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

9 0 0 0 0 0 15 16 16 16 17 18 17 15 14 15 0 0 0 0 0 9 0 0 0 0 0 65.2 69.6 69.6 69.6 73.9 78.3 73.9 65.2 60.9 65.2 0 0 0 0 0

8 0 0 0 0 16 17 17 17 17 18 19 18 16 16 16 16 0 0 0 0 8 0 0 0 0 69.6 73.9 73.9 73.9 73.9 78.3 82.6 78.3 69.6 69.6 69.6 69.6 0 0 0 0

7 0 0 0 17 17 18 18 17 18 19 20 20 18 17 17 17 17 0 0 0 7 0 0 0 73.9 73.9 78.3 78.3 73.9 78.3 82.6 87 87 78.3 73.9 73.9 73.9 73.9 0 0 0

6 0 0 18 18 18 19 19 19 19 20 21 20 18 18 17 18 17 17 0 0 6 0 0 78.3 78.3 78.3 82.6 82.6 82.6 82.6 87 91.3 87 78.3 78.3 73.9 78.3 73.9 73.9 0 0

5 0 18 19 19 19 20 19 20 20 21 21 21 19 19 18 18 18 17 15 0 5 0 78.3 82.6 82.6 82.6 87 82.6 87 87 91.3 91.3 91.3 82.6 82.6 78.3 78.3 78.3 73.9 65.2 0

4 0 19 20 20 20 20 20 20 20 21 22 22 20 20 19 19 19 18 16 0 4 0 82.6 87 87 87 87 87 87 87 91.3 95.7 95.7 87 87 82.6 82.6 82.6 78.3 69.6 0

3 0 20 20 20 20 20 21 20 21 22 22 22 21 20 20 20 19 19 16 0 3 0 87 87 87 87 87 91.3 87 91.3 95.7 95.7 95.7 91.3 87 87 87 82.6 82.6 69.6 0

2 0 20 21 21 21 21 21 20 21 22 23 23 21 21 20 20 20 19 16 0 2 0 87 91.3 91.3 91.3 91.3 91.3 87 91.3 95.7 100 100 91.3 91.3 87 87 87 82.6 69.6 0

1 0 20 21 21 21 22 21 21 22 23 23 23 21 21 20 20 20 19 16 0 1 0 87 91.3 91.3 91.3 95.7 91.3 91.3 95.7 100 100 100 91.3 91.3 87 87 87 82.6 69.6 0

-1 0 21 21 21 21 22 21 21 22 23 23 23 22 21 21 21 20 19 16 0 -1 0 91.3 91.3 91.3 91.3 95.7 91.3 91.3 95.7 100 100 100 95.7 91.3 91.3 91.3 87 82.6 69.6 0

-2 0 21 21 21 21 22 22 22 22 23 23 23 22 21 21 20 20 19 17 0 -2 0 91.3 91.3 91.3 91.3 95.7 95.7 95.7 95.7 100 100 100 95.7 91.3 91.3 87 87 82.6 73.9 0

-3 0 21 21 20 21 22 22 22 22 23 23 23 22 21 20 20 20 19 16 0 -3 0 91.3 91.3 87 91.3 95.7 95.7 95.7 95.7 100 100 100 95.7 91.3 87 87 87 82.6 69.6 0

-4 0 20 20 20 20 21 21 21 21 22 23 23 22 21 20 20 19 18 16 0 -4 0 87 87 87 87 91.3 91.3 91.3 91.3 95.7 100 100 95.7 91.3 87 87 82.6 78.3 69.6 0

-5 0 20 20 19 20 20 21 21 21 22 22 23 22 21 20 20 19 18 15 0 -5 0 87 87 82.6 87 87 91.3 91.3 91.3 95.7 95.7 100 95.7 91.3 87 87 82.6 78.3 65.2 0

-6 0 0 19 19 20 20 21 21 20 22 22 22 21 20 20 19 18 17 0 0 -6 0 0 82.6 82.6 87 87 91.3 91.3 87 95.7 95.7 95.7 91.3 87 87 82.6 78.3 73.9 0 0

-7 0 0 0 18 19 18 20 20 19 21 21 21 21 20 19 18 18 0 0 0 -7 0 0 0 78.3 82.6 78.3 87 87 82.6 91.3 91.3 91.3 91.3 87 82.6 78.3 78.3 0 0 0

-8 0 0 0 0 18 18 19 19 19 21 21 21 21 19 19 17 0 0 0 0 -8 0 0 0 0 78.3 78.3 82.6 82.6 82.6 91.3 91.3 91.3 91.3 82.6 82.6 73.9 0 0 0 0

-9 0 0 0 0 0 17 17 18 18 20 19 20 20 18 19 0 0 0 0 0 -9 0 0 0 0 0 73.9 73.9 78.3 78.3 87 82.6 87 87 78.3 82.6 0 0 0 0 0

-10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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Figure Ap2.2 – Variation of light intensity reaching the sample holder of the optical test rig 

with one light diffuser (positioned between the lamp and the lens) and with two diffusers 

(positioned one close to the sample holder and the other between the lamp and the lens). 

Normalized data presented are based on the ISC measured at the centre. 

Absolute ISC (μA) Normalized  ISC 
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Appendix 4 - Light intensity analysis of the solar simulator. 

 

The light intensity of the beam of light generated by the solar simulator at one sun 

intensity was measured using a VEMD 6060×1 photodiode at the measurement plane on 

a grid of 1 mm × 1 mm unit cells, close to the centre point of the beam. 

 

 

 

 

 

 

  

-20 -10 -5 -3 -2 -1 0 1 2 3 5 10 20

-20 0.323 0.329 0.332 0.331 0.325

-10 0.325 0.331 0.333 0.333 0.333 0.332 0.328

-5 0.332 0.334 0.335 0.334 0.332

-3 0.334 0.335 0.335 0.335 0.334 0.335 0.335

-2 0.334 0.333 0.335 0.334 0.335 0.333 0.335

-1 0.333 0.331 0.335 0.333 0.334 0.334 0.335

0 0.324 0.333 0.334 0.334 0.334 0.334 0.335 0.335 0.334 0.334 0.334 0.332 0.328

1 0.333 0.334 0.335 0.335 0.335 0.333 0.335

2 0.333 0.334 0.333 0.334 0.335 0.332 0.334

3 0.333 0.334 0.334 0.333 0.333 0.334 0.334

5 0.331 0.333 0.333 0.334 0.331

10 0.321 0.328 0.331 0.331 0.331 0.33 0.325

20 0.318 0.321 0.321 0.325 0.32

-20 -10 -5 -3 -2 -1 0 1 2 3 5 10 20

-20 0.964 0.982 0.991 0.988 0.97

-10 0.97 0.988 0.994 0.994 0.994 0.991 0.979

-5 0.991 0.997 1 0.997 0.991

-3 0.997 1 1 1 0.997 1 1

-2 0.997 0.994 1 0.997 1 0.994 1

-1 0.994 0.9881 1 0.994 0.997 0.997 1

0 0.967 0.994 0.997 0.997 0.997 0.997 1 1 0.997 0.997 0.997 0.991 0.979

1 0.994 0.997 1 1 1 0.994 1

2 0.994 0.997 0.994 0.997 1 0.991 0.997

3 0.994 0.997 0.997 0.994 0.994 0.997 0.997

5 0.988 0.994 0.994 0.997 0.988

10 0.958 0.979 0.988 0.988 0.988 0.985 0.97

20 0.949 0.958 0.958 0.97 0.955

Figure Ap3 – Variation of light intensity at the (a) absolute and (b) normalized short-circuit 

current measurements for the solar simulator when generating a beam of light at one sun 

intensity. The normalized data presented is based on the ISC value measured at the centre of 

the grid. 

a 

b 



 

   Appendices 
 

272 
 

Appendix 5 - Full details of the mathematical model 

In order to understand and characterise the effects observed for an encapsulated PDs a 

generalized ray tracing mathematical model, which predict the light intensity within the 

RMP, was proposed. 

Generalized Ray Tracing Model 

In its simplest terms, a single ray incident of light can be considered. The ray had an 

intensity 𝐸𝑖and angle γ to the vertical axis, which met the boundary of the cylindrical 

micro-pod defined by 𝑦 = 𝑔(𝑥) at co-ordinates 𝑥0, 𝑦0, as illustrated in Fig. Ap. 4. A 

fraction of the incident ray was reflected (𝐸𝑟) at the boundary surface and the remaining 

fraction (𝐸𝑝) was refracted into the RMP. The refracted ray was attenuated during its 

travel inside of the RMP before reaching the plane of measurement (𝐸𝑡). A fraction of 

the ray (𝐸𝑟𝑐) was partially reflected at the photocell surface, and the residual ray (𝐸𝑐) 

was transmitted to the semiconductor.  

 

 

 

 

 

 

 

 

𝑦 = 𝑔(𝑥) 

γ 

α 

θ 

β 
(x1,h) 

(-W,h) (W,h) 

θ 

(xo,yo) 

Ei Erm 

Et 

Ep 

Erp 

Ec 
Figure Ap4 - Generalized ray-tracing model depicting the cross-sectional view of the 

cylindrical micro-pod. 

Ei- Intensity of incident ray 

Erm- Intensity of reflected ray at air micro-pod boundary 

Erp- Intensity of reflected ray at the plane of measurements 

Ep-Intensity of the ray penetrated through the micro-pod 

Et –Intensity of transmitted ray at the plane of measurement 

Ec –Intensity of transmitted to the photocell 

γ– Angle of incident light to the vertical axis 

g(x) –Boundary surface function of the material 

nr – Refractive index of the resin material relative to air 

np – Refractive index of the photocell material relative to air 

µ – decadic attenuation coefficient of the material 

θ – Angle of incident light to the normal of the boundary surface 

α - Angle of refracted light to the normal of the boundary surface 

β – Angle of transmitted light to the horizontal axis 
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𝐸𝑝 = 𝐸𝑖 − 𝐸𝑟𝑚     (I) 

Based on the geometry: 

𝛼 + 𝛽 + 𝛾 − 𝜃 =
𝜋

2
 

(
𝑑𝑦

𝑑𝑥
) = −cot(𝛽 + 𝛼) 

𝑥1 = 𝑥0 − ⌊
𝑔(𝑥𝑜)−ℎ

tanβ
⌋     (II) 

From Snell's law of refraction: 

𝑛𝑟 ∗ sin𝛼 =sin𝜃 

From Fresnel equation for partial reflection of non-polarized light at the boundaries of 

non-magnetic material: 

𝐸𝑟𝑚

𝐸𝑖
= (

1

2
) ∗ {[

cos𝜃−𝑛𝑟√1−(sin𝜃/𝑛𝑟)
2

cos𝜃+𝑛√1−(sin𝜃/𝑛𝑟)
2
]
2

+ [
𝑛𝑟 cos𝜃−√1−(sin 𝜃/𝑛𝑟)

2

𝑛𝑟 cos𝜃+√1−(sin 𝜃/𝑛𝑟)
2
]
2

}         (III) 

Based on the theory of absorption of electromagnetic radiation inside a homogeneous 

material: 

𝐸𝑡 = 𝐸𝑝 ∗ 10
(−µ𝑙)            (IV) 

Where:𝑙 = [𝑔(𝑥𝑜) − ℎ] cosec𝛽 

Using the Fresnel equation for the partial reflection of non-polarized light at the 

boundaries of non-magnetic material, the reflection at the micro-pod-photocell 

boundary can be given as: 

𝐸𝑟𝑝

𝐸𝑡
= (

1

2
) ∗ {[

𝑛𝑟sin 𝛽−𝑛𝑝√1−(
𝑛𝑟
𝑛𝑝
cos𝛽)2

𝑛𝑟sin 𝛽+𝑛𝑝√1−(
𝑛𝑟
𝑛𝑝
cos𝛽)2

]

2

+ [
𝑛𝑝sin𝛽−𝑛𝑟√1−(

𝑛𝑟
𝑛𝑝
cos𝛽)2

𝑛𝑝sin𝛽+𝑛𝑟√1−(
𝑛𝑟
𝑛𝑝
cos𝛽)2

]

2

}               (V) 

The intensity of the ray transmitted to the photocell:  

 𝐸𝑐 = 𝐸𝑡 − 𝐸𝑟𝑝 

The average Intensity between two points (𝑥𝑎 , ℎ) and  (𝑥𝑏, ℎ) on the horizontal plane 

along (x1, h) are given by: 

𝐸𝐴𝑉𝐺 = (∫ 𝐸𝑐 sin𝛽 . 𝑑𝑥/(𝑥𝑏 − 𝑥𝑎)
𝑥𝑏

𝑥𝑎

) (VI) 
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Simplification of the generalized model for a circular cross section 

In order to generate comparative values with the experimental data, the generalized 

mathematical model was simplified to an RMP with a circular basis.  

 

Incident light is uniform and parallel to the vertical axis. The boundary surface is 

circular, and the width of the section is equal to the diameter (se Fig. Ap. 5). 

𝑦 = 𝑔(𝑥) = √(𝑅2 − 𝑥2) 

    γ=0 

𝜃 + 𝛽 − 𝛼 =
𝜋

2
 

(
𝑑𝑦

𝑑𝑥
) = − tan𝜃 

(
𝑑𝑦

𝑑𝑥
) = −

𝑥

√(𝑅2 − 𝑥2)
 

Here −𝑅 <

ℎ < 𝑅 

             

tan 𝜃 =
𝑥

√(𝑅2−𝑥2)
⇒ sin𝜃 =

𝑥

𝑅
, cos𝜃 = (

√(𝑅2−𝑥2)

𝑅
)and  

𝑛𝑟 ∗ sin𝛼 =sin𝜃⇒sin 𝛼 = (
𝑥

𝑛𝑟𝑅
), cos 𝛼 =

√(𝑛𝑟2𝑅2−𝑥2)

𝑛𝑅
 

sin𝛽 = sin (
𝜋

2
− 𝜃 + 𝛼) = cos(𝛼 − 𝜃) =

√(𝑅2−𝑥2)(𝑛𝑟
2𝑅2−𝑥2)+𝑥2

𝑛𝑅2
  

cos 𝛽 = cos (
𝜋

2
− 𝜃 + 𝛼) =  sin( 𝜃 − 𝛼) = 𝑥(√(𝑛𝑟

2𝑅2 − 𝑥2) − √(𝑅2 − 𝑥2))/(𝑅2 ∗ 𝑛𝑟) 

tan𝛽 =
√(𝑅2 − 𝑥2)(𝑛𝑟

2𝑅2 − 𝑥2) + 𝑥2

𝑥(√(𝑛𝑟
2𝑅2 − 𝑥2) − √(𝑅2 − 𝑥2))

 

⇒ 𝑥1 = 𝑥0 − ⌊
𝑔(𝑥𝑜)−ℎ

tanβ
⌋=𝑥0 [1 − (√(𝑅

2 − 𝑥𝑜
2) − ℎ) ∗

(√(𝑛𝑟
2𝑅2−𝑥𝑜

2)−√(𝑅2−𝑥𝑜
2))

√(𝑅2−𝑥𝑜
2)(𝑛𝑟

2𝑅2−𝑥𝑜
2)+𝑥𝑜

2
]              (VII) 

⇒ 𝑙 = [𝑔(𝑥𝑜) + ℎ] csc𝛽 =
𝑅2𝑛𝑟 (√(𝑅

2 − 𝑥2) − ℎ)

√(𝑅2 − 𝑥2)(𝑛𝑟
2𝑅2 − 𝑥2) + 𝑥2

 

α 

β 

(R,0) 

(x1,h) 

(-R,0) 

(-W,h) (W,h) 

θ 

Ei 

Et 

Ep 

Ec 

Figure Ap.5 - Simplified ray tracing model for a circular cross 

section. 
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𝐸𝑟𝑚

𝐸𝑖
= (

(1−𝑛𝑟
2)
2

2
) ∗ {[

𝑅

√(𝑛𝑟
2𝑅2−𝑥2)+√(𝑅2−𝑥2)

]
4

+ [
𝑛2(𝑅2−𝑥2)−𝑥2

(√(𝑛𝑟
2𝑅2−𝑥2)+𝑛2√(𝑅2−𝑥2))

2]

2

}    (VIII) 

Estimating short circuit current and open circuit voltage for a crystalline photocell 

encapsulated inside of an RMP  

The intensity estimates were converted into estimated ISC and VOC values using the 

fundamentals of semiconductor photovoltaics. For a crystalline silicon photocell 

embedded inside of an RMP that has a rectangular photo-active area with a width equal 

to the width of the measurement plane, the irradiance intensity on the photocell  𝐸 can 

be given as the:  

𝐸 = 𝐸𝐴𝑉𝐺  

Based on the theory the relationships between short-circuit current (𝐼𝑠𝑐) and irradiance 

intensity 𝐸 for a photocell can be given as: 

𝐼𝑠𝑐 = 𝐾𝐸 ∗ 𝐸 

Where 𝐾𝐸 is a constant that characterizes the relative variation of short circuit current 

as a function of irradiance intensity. 

The nominal values for short circuit current (𝐼𝑠𝑐𝑛) and open circuit voltage (𝑉𝑜𝑐𝑛) of the 

photocell are determined experimentally under nominal irradiance intensity (𝐸𝑛) before 

encapsulating inside an RMP.  

 

Using the above equations, the short circuit current 𝐼𝑠𝑐 for an irradiance intensity 𝐸 can 

be estimated as:  

𝐼𝑠𝑐 = 𝐼𝑠𝑐𝑛 ∗ (
𝐸

𝐸𝑛
)          (IX) 

Also, the open circuit voltage 𝑉𝑜𝑐 for a given irradiance intensity 𝐸 can be given as:  

𝑉𝑜𝑐 = 𝑉𝑜𝑐𝑛 +
𝑛𝑘𝑇

𝑞
∗ ln (

𝐸

𝐸𝑛
)           (X) 

Here 𝑘 - Boltzmann Constant (1.380649 × 10−23 JK-1) 

𝑛 - Ideality factor  

𝑞 - Electron charge 
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𝑇- Absolute temperature 

The ideality factor (𝑛) for the photocell is determined using the IV curve of the 

photocell under nominal irradiance condition 𝐸𝑛. The IV curve is fitted to an 

exponential function in the below form: 

 

𝐼 = 𝛼 − 𝛽𝑒𝛾𝑉 

 

Where 𝐼 is the current 𝑉 is the voltage and α,𝛽 and 𝛾 are constants. According to 

theory the ideality factor is given by:  

 

𝑛 =
𝑞

𝛾𝑘𝑇
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Appendix 6 – Positioning of the photodiodes inside of resin micro-pods 
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Figure Ap. 6 - Theoretical and practical the depths of positioning for the photoactive plane of 

photodiodes inside of resin micro-pods. (a) Schematic of the PD in the bottom position. (b) Schematic 

of PD in the top position. (c, d) Depth to diameter ratio for top and bottom positions against micro-

pod diameter for: (c) TEMD 7000×01 (d) VEMD 6060×01. 

Figure Ap. 7 - Images showing the positioning of the photodiodes inside of 2.7 mm diameter 

resin micro-pods. (a) TEMD7000×01 embedded at the bottom position. (b) TEMD7000×01 

embedded at centre position. (c) TEMD7000x01 embedded at top position. (d) 

VEMD6060×01 embedded at the bottom position, (e) VEMD6060×01 embedded at the 

centre position. (f) VEMD6060×01 embedded at top position. (bottom) Schematics of the 

three PD positions. 
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Appendix 7 – Mathematical model revised to include total internal 

reflection. 

 

 

When a refracted ray approaching the solar cell surface (Et), making an angle β 

to the photoactive surface is considered, the intensity of the partially reflective light Erc 

can be given as; 

𝐸𝑟𝑐
𝐸𝑡

= (
1

2
) ∗

{
 
 

 
 

[
 
 
 𝑛𝑟sin𝛽 − 𝑛𝑝√1− (

𝑛𝑟
𝑛𝑐
cos𝛽)2

𝑛𝑟sin𝛽 + 𝑛𝑝√1− (
𝑛𝑟
𝑛𝑐
cos𝛽)2

]
 
 
 
2

+

[
 
 
 𝑛𝑐sin 𝛽 − 𝑛𝑟√1 − (

𝑛𝑟
𝑛𝑐
cos𝛽)2

𝑛𝑐sin 𝛽 + 𝑛𝑟√1 − (
𝑛𝑟
𝑛𝑐
cos𝛽)2

]
 
 
 
2

}
 
 

 
 

 

 

The equation for the linear path flowed by the reflected ray at the photoactive surface 

can be given as:  

𝑦 = −𝑡𝑎𝑛𝛽(𝑥 − 𝑥0) 

Based on this, the co-ordinates of the point at which the reflected ray reaches the 

micro-pod air boundary (xr, yr) can be given as:  

𝑥𝑟 = 𝑥0𝑠𝑖𝑛
2𝛽 ± (√𝑟2 − 𝑥2𝑠𝑖𝑛2𝛽)𝑐𝑜𝑠𝛽 

𝑦𝑟 = 𝑠𝑖𝑛𝛽(𝑐𝑜𝑠𝛽 ± √𝑟
2 − 𝑥2𝑠𝑖𝑛2𝛽) 

The angle of the normal drawn at (xr, yr) to the micro-pod-air boundary can be given 

as: 

tan−1(−
𝑥

𝑦
) + 𝜋/2 

The acute angle made by the reflected ray to the normal drawn at (xr, yr) to the micro-

pod-air boundary is given as: 

Erc Et 

Erm 

Ei 

Eri 

ᵠ ᵠ

nr=1.51 
β β 

na=1 

nc=1.9 

Figure Ap. 8 – Illustration of the occurrence of the total internal reflection of a ray of light 

within a 1.6 mm micro-pod embedded with a 1.5 mm wide solar cell.  

(x0,0) 

(xr,yr) 
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φ = π − (β +
π

2
+ tan−1( − 𝑥𝑟/𝑦𝑟)) 

φ =
π

2
− β + tan−1( 𝑥𝑟/𝑦𝑟) 

Based on Snell’s law at the critical angle of total internal reflection (TIR) at the micro-

pod-air boundary: 

Sinφ =
𝑛𝑎
𝑛𝑟

 

φ = sin−1 (
𝑛𝑎
𝑛𝑟
) 

For TIR: 

φ > sin−1 (
𝑛𝑎
𝑛𝑟
) 

π

2
− β + tan−1( 𝑥𝑟/𝑦𝑟) >  sin

−1 (
𝑛𝑎
𝑛𝑟
) 

β < 
π

2
+ tan−1( 𝑥𝑟/𝑦𝑟) − sin

−1 (
𝑛𝑎
𝑛𝑟
) 

 

By summing the reflected rays fulfilling the above requirement, the intensity of total 

internal reflection can be approximated. 
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Appendix 8 – Measured test results of the solar-E-yarns during the wash 

test. 
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Appendix 9 – LabView program for monitoring solar-E-yarns during 

abrasion tests. 

 

 

 

 

 

Figure Ap. 9 –Image of the (a) output interface and (b) visual programming code of the 

LabView program developed for monitoring the voltages of the solar-E-yarns during the 

abrasion test. 

a 
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Appendix 10 - Preparation and characterisation of supercapacitor 

embedded E-yarns. 

 

Ap. 10.1 Basic characterization of supercapacitors 

Characterisation of a small-scale supercapacitor (CPH3225A, Seiko Instruments Inc., 

11mF, 3.3V, 3.2 × 2.5 × 0.9 mm) was initiated. The super capacitors were soldered onto 

seven strand Cu wires using reflow soldering with lead-free solder and encapsulated 

inside of a 3.2 mm diameter resin micro-pod using Dymax 9001E-V3.5 resin.  

 

 

Measurements were conducted on the maiden supercapacitors and 

encapsulated supercapacitors. Their charge discharge characteristics were 

assessed: Charging was conducted by applying a 3V DC voltage and the 

discharging was conducted through 50Ω resistor.  

 

 

a b 

Figure Ap. 10 –Image of the CPH3225A supercapacitors (a) soldered onto seven strand Cu 

wires and (b) after encapsulating within 3.2mm diameter resin micro-pod. 
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Figure Ap. 11 – (a) Charging and discharging curves for the supercapacitors. (b) 

Estimated capacitance values for the supercapacitors before and after encapsulating within 

a resin micro-pod. 
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Using the charge discharge curves the capacitance (C) of the supercapacitors were 

estimated using the below equation. 

𝐶 = (∑𝐼𝑡) /𝛥𝑉 

Where I is th charging/discharging current and 𝛥V is the charging/discharging voltage 

difference. The results confirmed (Fig. Ap. 10) that the resin micro-pod had no 

significant effect on the charging-discharging behaviour or the capacitance. 

Ap. 10.2 Supercapacitor embedded e-yarns 

To develop an energy storage capability for the solar energy harvesting fabric, 

supercapacitor embedded textile yarns were fabricated. First, CPH3225A (3.2mm × 2.5 

mm) supercapacitors were soldered in parallel onto fine copper wire using a reflow 

soldering process to create strands including ten supercapacitors each. The gap between 

two adjacent devices was kept to ~5 mm (see Fig. Ap. 11(a)). The soldered 

supercapacitors were then individually encapsulated with Dymax 9001-EV 3.5 resin 

using a silicone tube with a 3.2 mm inner diameter. The micro-pod length was 

maintained ~5-5.5 mm (see Fig. Ap. 11(b)). A 4 mm diameter fibrous sheath was then 

used to cover the encapsulated strands using a RIUS knit braiding machine with 4 mm 

inner-diameter cylinder (8 needles/8 knitting yarns and 6 packing yarns; see Fig. Ap. 

11(c)). 

 

 

 

a 

b 

c 

Figure Ap. 12- Supercapacitor embedded textile yarns. (a) Supercapacitors soldered onto copper 

wires. (b) Supercapacitor strands after the supercapacitors were encapsulated inside of 3.2 mm 

diameter micro-pods. (c) Supercapacitor embedded textile yarn after covering with a 4 mm 

diameter fibrous sheath. 
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Appendix 11 - Data acquisition device built to conduct the field tests. 

 

Ap. 11.1 Hardware 

A data acquisition unit was built based on the Teensy 3.5, Arduino compatible, 

development board (PJRC Electronic Projects) which featured a 32-bit 120 MHz ARM 

Cortex-M4 processor with floating point unit. All digital pins were 5 V tolerant. The 

development board comprised of a microSD card slot that allowed for remote data 

capture and stored.  

 

For powering the data acquisition unit, a Lithium-polymer battery (3.7 V, 190 mAh;  

Mikroelektronika D.O.O., Serbia) was connected through a charging module (Adafruit 

LiIon/LiPoly Backpack Add-On for Pro Trinket/ItsyBitsy, Adafruit Industries LLC, 

USA).  The output from each solar fabric module was connected to a 1 kΩ load resistor 

network and the voltage across each resistor was connected an individual input pin (pins 

14-18 were used).  

Ap. 11.2 Programming the Teensy 3.5 board 

An Arduino 1.8.9 (Arduino LLC, USA) programming platform was employed to 

configure the analogue data inputs pins 14-18 (A0-A4) and program the data storage 

onto the micro-SD card (see programming script below).  

a 
b 

Load resistor 

network 

Li-Po battery 

Charging 

module 

Development 

board 

Connector pins 

Figure Ap13- (a) Image of the Teensy 3.5 development board with the pinouts. (b) Assembly of 

the development board, charging module, battery 
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The board was programmed to captured voltage values from five inputs sequentially in 

0.2 s intervals, so that voltage was read from each input at a sample rate of 1 Hz. The 

program also converted the voltages to current and power values based on the load 

resistor values.  After each reading cycle (every second), a string of data was written to 

the SD card that contained a time stamp, input channel number, voltage, current, and 

power values for all five inputs. 

The data was stored onto a text file in the below format, that could be transferred to an 

excel file directly. 

 

 

 

 

Ap. 11.3 Arduino Code 

#include <SD.h> //libraries 

#include <SPI.h> 

const int chipSelect = BUILTIN_SDCARD; 

double R,V,I,P; 

void setup()  

{ 

  analogReadRes(13); //define resolution 

  //Serial.begin(9600); //initialize serial 

  if (!SD.begin(chipSelect)){ 

    return; 

  } 

} 

void loop()  

{ 

  String dataString = ""; 

  dataString += millis(); 

  dataString += "\t"; 

  //Serial.println("time stamp"); 

  for (int analogPin = 0; analogPin < 5; analogPin++) 

  { 

   int reading = analogRead(analogPin); 

   V =(0.0004035*reading + 0.0011938); 

   if (analogPin == 0) 

   { 

Time stamp Data sets for five inputs 
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   R = 0.998; 

   } 

   else if (analogPin == 1) 

   { 

   R = 0.9955; 

   } 

   else if (analogPin == 2) 

   { 

   R = .9889; 

   } 

   else if (analogPin == 3) 

   { 

   R = 0.3855; 

   } 

   else if (analogPin == 4) 

   { 

   R = 0.33; 

   } 

   I = V/R; 

   P = V*I; 

   dataString += analogPin; 

   dataString += "\t"; 

   dataString += V; 

   dataString += "\t"; 

   dataString += I; 

   dataString += "\t"; 

   dataString += P; 

   dataString += "\t"; 

   delay(200); 

  } 

  File dataFile = SD.open("datalog.txt", FILE_WRITE); //Opening the data file 

    if (dataFile) 

    { 

    dataFile.println(dataString); 

    dataFile.close(); 

    Serial.println(dataString); 

    } 

    else 

     { 

     } 
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Annex 1 - Introduction to wearable devices and E-textiles 

1.1 Categorisation of wearable devices 

While wearable electronic devices and technologies have many different applications 

and forms, they share common characteristics; they always stay close to the user’s body, 

collecting data with the aim to improve how users interact with the external 

environment. The most common classifications of wearables are based on their form 

factor and end-use. The International Electrotechnical Committee (IEC), which works 

closely with the industry and academia on providing standardisation for wearable 

devices, has broadly categorised wearables into accessories, electronic textiles (E-

textiles), patchable devices, and implantable devices (International Electrotechnical 

Committee, 2018). While the vast majority of commercially available devices fit into the 

accessories category (e.g. wristables, eyewear), devices classified as implantables have 

only just started to emerge for medical applications. Teslasuit, a start-up company 

developing smart clothing apparel with haptic feedback, motion capture, climate control 

and biometric feedback systems has categorised wearable devices  (Teslasuit, 2017) 

based on the physical form-factor, as shown in Fig. An1.1.  

 

  

 

Wearable 

Devices 

Figure An1.1 - Categorisation of wearable devices based on the form proposed by Teslasuit 

(2017).  
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The Beecham group has proposed the most widely used catagorisation of wearables and 

IoT (Beecham Research, 2019) based on the industry sectors and application groups (Fig. 

An1.2). This catagorsation broadly covers the applications which are mapped with the 

relavant features (functions) and form factors (assets). 

 

  

1.2.3 E-textiles and smart textiles 

1.2.3.1 Terminology 

The term electronic textiles (commonly abbreviated as E-textiles) is loosely defined as 

textiles with some form of electronic functionality. E-textiles are often discussed with 

regards to wearability and their use in for clothing and accessories, however E-textiles 

have also proven their use in other industries such as automotive  (Wagner, 2013; 

Barmag and Neumag, 2015),  furnishing (Postrel, 2017) aerospace and medical textiles 

Figure An1.2 - Categorisation of wearable devices based on function and application 

proposed by Beecham Research (2019). 
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(Coyle and Diamond, 2016). In addition, E-textiles have opened up unimaginable 

opportunities in energy, protective gear and security fields (Koncar, 2016) where the use 

of textiles historically had a limited scope. This demonstrates the versatility and 

practicality of employing textiles as a platform to integrate electronics.  

Several other terminologies such as smart textiles, intelligent textiles or interactive 

textiles can be associated with E-textiles. These can often refer to an intelligent or smart 

functionality which may not involve adding an electronic functionality with textiles, and 

hence do not fall under the category of E-textiles. For example, a shape memory polymer 

textile, although considered a smart textile, does not possess any electronic functionality. 

The below Venn diagram (Fig. An1.3) illustrates how several related domains overlap 

within the space of textiles, electronics and functional materials. 

 

 

  

 

While many E-textiles can have smart functionality built within the structure of the 

textile, some E-textiles require constant human interventions to operate, and hence 

cannot be considered smart. A heated glove which is switched on by the user on-demand 

is an example for such E-textile device without smart functionality. In contrast to E-

textiles, smart textiles are defined as textile structures which can sense and respond to 

the changes in the environment. Tao (2001) defined smart textiles as intelligent textile 

structures or fabrics that can sense and react to environmental stimuli, which may be 

mechanical, thermal, chemical, biological, and magnetic amongst others. Smart textiles 

are broadly categorized according to the nature of responsiveness to external stimuli; 

passive smart textiles which can only sense the stimuli, active smart textiles which can 

Textiles Electronics 

Functional materials 

E-textiles 

 

Smart textiles 

Wearable 

devices 

Figure An1.3 - Venn diagram illustrating overlapping domains related to electronics, 

textiles and functional material. 
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sense and react to stimuli and very smart textiles which can sense, understand external 

stimuli, and provide adaptive response (Das et al., 2013).  

1.2.3.2 Evolution of E-textiles and wearable devices 

Historically, textiles embellished with metallic fibres and yarns, which are commonly 

used in E-textiles have been in existence for over 1000 years. For example, gowns made 

for royals who lived in Elizabethan era were known to be embroidered with threads 

wrapped with gold tapes (Járó, 1990). However, due to the absence of active electronic 

functionality in such garments they are not considered E-textiles. The origin of E-textiles 

dates back to late19th century where the first reports of E-textiles were described as 

“ballet girls with electric lights on the foreheads and batteries concealed in the recesses 

of their clothing”(The New York Times, 1884). Then in 1911 the first patent disclosing an 

electrically heated glove was filed by Carron (1911). Between this patent and the mid-

1980’s a number of new E-textile innovations were developed including the electric 

blanket. H. Lee Wainwright saw a fibre-optic lamp and realized he could add animation 

to apparel. With this inspiration he created the first fibre-optic animated shirt in 1985 (H. 

Lee Wainwright, 2019). These inventions scattered across almost a century however, 

could not proliferate wearable device technologies until the inception of wearable 

computing after 1985. 

In the mid-1990s  MIT researchers Ed Thorp and Claude Shannon designed a cigarette 

pack-sized analogy device to improve the odds on roulette wheels (Thorp, 1998) paving 

the way to the first wearable computers. MIT Media Lab initiated by Steve Mann, Thad 

Starner and Alex P. Pentland pioneered the field of wearable computing (Starner et al., 

1995) in late 20th century. Their vision was to design a networked, multimedia computer 

that can be worn as clothing or built into the user’s clothes, where power of computing 

can assist everyday tasks (Starner et al., 1996). Concurrently at Georgia Tech a team led 

by Jayaraman developed a textile based wearable interface called ‘Wearable 

Motherboard™’ using woven textile and metal conductive wires. Further, they 

proposed a detailed framework for designing wearable systems, where performance 

requirements were mapped to design parameters (Gopalsamy et al., 1999). Another team 

at the MIT Media Lab explored ways to harmonize wearable computers to clothing in a 

soft and graceful manner by investigating  the possibility of integrating digital 
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electronics with conductive fabrics using embroidery techniques (Post et al., 2000) to 

develop E-textiles ranging from embroidered keyboards to fashion technology 

garments. As a result, one of the first commercially available wearable microcontrollers 

for E-textile applications, the Lilypad Arduino, was created by Leah Buechley at the MIT 

Media Lab in 2007 (Adafruit, 2017). Within the space of a century, E-textiles with 

primitive functionality has transformed into objects of intelligence and cognition. The 

field of E-textiles have seen unparalleled progress with regards to form and 

functionality, thanks to the advancements in electronics, material science, information 

technology and textile technology as well as the growing consumer interest to embrace 

wearable devices. Today, E-textiles are not only intelligent and miniaturised, but also, 

have started to look and feel similar to regular textiles and clothing.  

1.2.3.3 Categorisation of E-textiles: a textiles perspective 

From a textile perspective, components of E-textile systems can be broadly categorized 

into three generations based on its form (Hughes-Riley, Dias and Cork, 2018) as shown 

in Table An1.1. This categorisation is highly relevant in assessing the wearability and 

normalcy of E-textiles. Regardless of the degree of complexity and intelligence built into 

clothing, wearability and normalcy of E-textiles can play a decisive role in their adoption 

by users, as most users would favour a familiar and normal textile appearance. Users 

may also not be willing to compromise on the fit, mobility and comfort (tactile, thermal) 

delivered by regular textile fabrics (Cassill, Caroll and Suh, 2010).  

1.2.3.4 Components of E-textile systems 

The functionality and the level of intelligence in an E-textiles system can offer a wide 

range from user controlled reactive systems to fully autonomous adaptive systems. 

Depending on the complexity of the desired E-textile system the nature of the 

components in it will vastly vary as shown in Fig. An1.4. While the above is valid for 

any wearable system in general, focus will be given for E-textiles based wearable 

systems in this work. A typical E-textile system can comprise of one or more components 

outlined below. 

 



 

 

Annexes 

296 
 

Conductive pathways 

Conductive pathways can be defined as electrically conductive bus bars running 

between other components within n textile. They can either transmit power or 

communicate analogue or digital signals between other components. 

 

Actuators 

Actuators in the context of E-textiles can be defined as micro-devices generating a 

mechanical, audio, visual or electro-magnetic output in response to an electrical input. 

These are mostly prefabricated micro-devices attached onto textiles. 

Power supply 

Power supplies provide electrical energy required for the functioning of the electronic 

devices in an E-textiles system. These can comprise of a combination of electrical energy 

storage, energy conversion or ambient energy harvesting devices. A power supply is an 

essential component for a wearable system, regardless of its complexity or function. 

Sensors  

Sensors selectively and quantitatively detect an external stimulus to induce a  

 

Simplest, 

least intelligent 

Most complex, 

most intelligent 

Actuators  Power supply Manual 

Switch 

Data Storage 

Sensors 

Data conversion 

and processing 

unit 

Power supply 

Actuators  

Wireless 

communication 

module 

Figure An1.4 - Components of an -textiles system based on the level of complexity and 

intelligence.  



 
  

 
 

 
 

 1st generation 2nd generation 3rd generation 

Description Electronic components superficially 

attached onto the surface of fabrics and 

clothing. 

Electronic functionality incorporated in 

the textile structure during fabric 

manufacture. 

Electronic functionality embedded into yarns (E-

yarns)  

Examples Conventional electronic components. 

Printed electronic components. Flexible 

PCBs. Functional thin films. 

Electrodes and conductive pathways in 

knitted and woven fabrics. 

LED E-yarns, Thermistor E-yarns. 

Fabrication 

techniques 

Conventional electronics device 

fabrication. Printing.  Chemical surface 

functionalisation or etching.  

Incorporation of fine metal wires and/or 

conductive yarns during the knitting and 

weaving processes.  

Chemical functionalisation or etching. Co-

extrusion of functional layers. E-yarn technology. 

Integration 

techniques 

Adhesive bonding, stitching, lamination. 

Printing. Various mechanical fastening 

techniques such as press studs, magnetic 

fasteners mechanical plugs and clips. 

Stitching, embroidery or adhesive 

bonding of the electronic components 

onto the textile. 

Insertion of conductive yarns and/or 

metal wires as the weft during weaving. 

Use of intarsia techniques to create 

conductive areas during knitting.  

Weaving, knitting, stitching or embroidery. 

Advantages Established development and 

manufacturing, simple to integrate. High 

level of intelligence wide range of 

functionality available. 

Established development and 

manufacturing. Some normalcy and 

comfort for wearable applications. 

However, the electrically conductive 

areas are visible on the fabric 

Lightweight, and discrete. Excellent normalcy 

and comfort for wearable applications. Potential 

for high level of functionality and durability. 

Disadvantages Heavy and bulky. Poor normalcy and 

comfort. Poor shear behaviour. Poor 

durability of the permanently integrated 

systems. 

Limited functionality and low levels of 

intelligence. 

Manufacturing technology commercially not 

available.  

Table An1.1 - Generations of E-textiles and their 

features. 
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proportional change in electrical properties such as resistance, inductance, and 

capacitance, or generate an electric current or a voltage. Textile sensors are amongst the 

most investigated components for wearable systems.  

Data conversion and processing unit 

The complexity and functionality of a data conversion and processing unit can vary from 

basic signal amplification or switching to a level of multi-tasking including signal 

conversion and processing, computing, power management, and graphical 

representation. 

Data storage 

These are the memory devices used to store collected raw data, processed data, or 

programs containing instructions for the autonomous function of the system. These 

could be a combination of ROM, RAM and removable flash memory.  

Wireless communication module 

Wireless communication modules send and receive data and information between the 

E-textile system and an external system. The external system may be in close proximity 

(mobile phone) or distant (communication satellites) and may have direct network 

connectivity (e.g. internet connectivity via a telecommunication network). The frequency 

of connection, data transfer rate, maximum coverage distance will have implications on 

the size of the module and power requirement, and therefore it is important to optimize 

the design specification for the communication module for a given application.  

Initially, E-textiles were constructed by attaching electronic components onto the surface 

of textiles, or into concealed pockets, affecting both the comfort and aesthetics of the 

textile (Fernández-Caramés et al., 2018). This led to investigations into methodologies for 

integrating electronics within textiles to create wearable systems that retain their tactile 

properties (drapability, softness) and other properties which are critical to the comfort 

of the wearer (breathability, moisture transfer characteristics). This led to the next 

generation of E-textiles where conductive metal wires or conductive yarns integrated 

with the structure of textile fabric; these could be used to create interconnections (Stoppa 

and Chiolerio, 2014), textile heaters (Mbise, Dias and Hurley, 2015), and electrode-based 

sensors (Toprakci & Ghosh 2015;. Brun et al. (2009) introduced the "Diabolo" process with 
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an aim to directly connect a semiconductor chip assembly to conductive wires that can 

be woven into fabrics. The same diabolo approach was utilized in the European project 

PASTA (Simon et al., 2012) to integrate RFID and lighting functionality at yarn level. 

Zysset et al. investigated the integration of digital silicon based temperature sensors 

(2010) and LEDs (2012) onto weavable textile bands. Electronic yarns (E-yarns) have seen 

small electronic chips integrated into the core of a textile yarn (Dias and Fernando, 2009; 

Dias and Rathnayake, 2016) to embed electronic functionality within textile yarns as 

mentioned previously. Recent research has seen electronic components integrated at  

fibre extrusion level (Münzenrieder et al., 2017; Kwon et al., 2018; Rein et al., 2018), 

however the practicality of these solutions will depend on their ability to withstand fibre 

drawing process and robustness during washing and wearing. 

Commercially available E-textiles and systems proposed in the literature are not 

complete textile systems, instead focus on one or few textiles embedded aspect such as 

sensing or actuation. Ideally, all the components of an E-textile system require to be fully 

textile based (third generation) to provide the greatest comfort and wearability to the 

user. However, even the most advanced E-textiles based wearable systems, currently 

available commercially are limited to either sensors or actuators only. The power supply, 

data processing, storage, and wireless communication are provided by an external 

hardware module, which is often rigid and bulky, compromising the appearance and 

the wearer’s comfort. 
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Annex 2 – Full specifications of the photodiodes 

2.1 TEMD 7000×01 photodiode 
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2.2 VEMD 6060×01 photodiode 
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Annex 3 – Test report provided by the manufacturer for the solar cells 

before cutting 
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Annex 4 – Material specification of the solder paste 
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Annex 5 -Material specifications of the encapsulation resins
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Annex 6 – Specifications of the UV lamp 
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Annex 7 – Details of the knit braiding machine 
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Annex 8 – Full specification and calibration certificate for the solar 

simulator 

 



 

    

   Annexes 
 

332 
 

 
 

 



 

    

   Annexes 
 

333 
 

 
 

 

 

 

 

 

  


