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A bstract

In recent years there has been a lot interest in studying the structural changes 

in time series, especially in economic time series. Statistical methods have been 

developed to deal with this kind of problem. Bayesian methods are becoming more 

and more popular in this field.

This thesis focuses on two kinds of structural change, abrupt structural change 

which happens at some point and the gradual structural change which happens 

over a period of time. For the former structural change, we discuss the two-phase 

model and the structural break model; for the latter structural change, we discuss 

the smooth transition model. We address the problem of parameter estimation for 

these models using a Bayesian approach. We derive expressions for the posterior 

densities for parameters which are used to make inference of the parameters and 

posterior model probabilities which are used to compare models. We also discuss 

the double smooth transition model which has two smooth transition components. 

Markov chain Monte Carlo methods are used to estimate these models, including 

parameter estimation and model selection. Models are fitted with their predictive 

means. We illustrate our approaches with empirical examples such as the British 

industrial production index, the US economic time series from Nelson and Plosser 

(1982) and the global average temperature series.

Finally we apply the reversible jump Markov chain Monte Carlo method to a 

structural break model which has unknown number of structural break points. The 

posterior model probabilities are obtained for models with different structural break 

points and posterior densities for parameters in the preferred model (with the biggest 

estimated posterior model probability) are also obtained. We fit the model to two 

US economic times series, the US real GNP series and the US consumer price index, 

with the number of structural break points selected by our algorithm automatically.
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C hapter 1

Introduction

There has been recent interest in studying and developing statistical models that 

account for a changing structure in time series in general and in economics time 

series in particular. Structural change has been a major concern in economics for a 

long time. Statistical tests and regression analysis are the principal tools in the eco­

nomic analysis of these models. For example, Bacon and Watts (1971), Broemeling 

and Tsurum (1987), Wang and Zivot (2000) and Busetti and Harvey (2001) tested 

and fitted economic data with structural break models. Their models consist of a 

structural break component and a stationary term or a random walk.

Harrison and Stephens (1976) is one of the earliest to model changes in level and 

slope using Bayesian approach. Ferelli and Tunnicliffe Wilson (1990) considered 

the robust Bayesian estimation of level and trend, by making the mass probability 

large, the model sensibly represents series with a small number of changes in level 

and trend. The Bayesian approach has become increasingly popular in recent years. 

See, for example, Marriott and Newbold (1998), Marriott and Newbold (2000), 

and Wang and Zivot (2000). We present statistical inference on structural change 

from the Bayesian point of view within the framework of the linear structural break 

model (with abrupt structural breaks happening at unknown points) and the smooth 

transition model (with smooth changes of structure within a period of time.) We 

put emphasis on the analysis of posterior distributions and use them to conduct 

hypothesis tests as well as to obtain parameter estimates.

Many econometric testing problems involve nuisance parameters which are not 

identified under the null hypothesis. Problems of this type are often referred to as

1



CHAPTER 1. INTRODUCTION 2

Davies type problems (Davies, 1977; 1987) and are characterised by the fact that 

parameters that are needed to specify the model under the alternative hypothesis are 

not identified under the null hypothesis so conventional statistical theory cannot be 

used. The hypothesis testing approach to inference for the linear model with struc­

tural change has nuisance parameters because the structure of the model changes 

and the parameters under the null hypothesis may not appear under the alternative 

hypothesis and vice versa. While most practical work on testing problems involving 

nuisance parameters has utilised non-Bayesian procedures, Bayesian methods offer 

certain advantages that are useful in empirical research. The first part of this work 

concerns the Bayesian procedures for the hypothesis testing problem involving nui­

sance parameters in the linear model with a structural change at some unknown 

point.

Another problem in econometrics concerns modelling econometric growth and 

inference associated with this. Various theories on stages of economic development 

and growth assume that an economic relationship changes over time. A considerable 

proportion of time series econometrics research has been concerned with the debate 

as to whether economic series are best characterised as non-stationary processes 

which contain an autoregressive unit root or as stationary process possibly including 

a deterministic component. Recently the debate has been concerned with stationary 

processes with a change of structure in the deterministic component. For example, 

Crafts, Leybourne and Mills (1989), Terasvirta and Anderson (1992), Terasvirta 

(1994), Greenaway, Leybourne and Sapsford (1997) and Leybourne, Newbold and 

Vougas (1998). Econometricians think of these models as providing feasible alterna­

tive data descriptions to non-stationary models because their behaviour can appear 

superficially quite similar. The second part of this work concerns the inference for 

stationary processes with deterministic smooth transition components called smooth 

transition models.

The development of Markov chain Monte Carlo (MCMC) techniques has pro­

vided a new tool for Bayesian statistical analyses. Many papers and books on the 

use of MCMC have been published recently, for example, Metropolis etc. (1953), 

Hastings (1970), Tierney (1994), Gilks, Richardson and Spiegelhalter (1996), P. J. 

Green (1995) and Robert and Casella (1999). Many technical reports, which provide
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the latest results of this field, can be found on the MCMC preprint at the web site: 

http://www.statslab.cam.ac.uk/~mcmc/ of the MRC statistical laboratory, Univer­

sity of Cambridge. We will apply the MCMC techniques to our Bayesian analysis 

of the smooth transition models. We will also apply the reversible jump Markov 

chain Monte Carlo (RJMCMC) method to the linear structural break models with 

unknown number of structural break points.

The contents of this work consist of the following chapters.

In Chapter 2 , we introduce the two-phase linear models described by Davies 

(1977, 1987) and follow the notations by Hinkley (1969). This is a model which 

changes its slope only. The change of slope is represented by a parameter 7 , which 

is independent of the previous slope. By representing the change of slope as an 

independent parameter, we are inducing a relationship between the slopes before 

and after the break. We suggest different priors for the parameters in the model 

and obtained posterior distribution of the parameters in the model, especially the 

posterior density for r , the structural break point of the two-phase model. We com­

pare the two-phase model with the linear model using posterior model probabilities. 

Simulations were carried out to evaluate the performance of our algorithms.

In Chapter 3, we extend the two-phase model discussed in Chapter 2 . We discuss 

the case the disturbance term in the two-phase model is an AR(1) process, instead 

of white noise. The two-phase model is compared with the linear model and the 

posterior for both parameters and models are obtained.

In Chapter 4, we introduce several kinds of smooth transition models. The gen­

eral description of smooth transition model was given by Bacon and Watts (1971). 

From then on, a lot of papers introduced different specific smooth transition models 

and discussed the parameter estimation and hypothesis testing. We concentrate 

on the smooth transition models introduced by Leybourne, Newbold and Vougas 

(1998). In this chapter, we only discuss the simplest of the three smooth transition 

models, which describes the changes of level by the parameter 0:2, 7  and r. We ob­

tain the posterior densities for the parameters in the model and the posterior model 

probabilities for the smooth transition model. We compare the smooth transition 

model with a linear model, using the posterior model probabilities of them.

In Chapter 5, we consider more complex smooth transition model, representing

http://www.statslab.cam.ac.uk/~mcmc/
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the changes of level and slope by parameter a 2, /?2> 7  and r , with an AR(1) distur­

bance term in stead of white noise. We again compare the smooth transition model 

with the linear regression model using the posterior model probabilities.

In Chapter 6 , we introduce the slice sampler and apply the slice sampler to the 

more complex smooth transition model discussed in Chapter 5. We illustrate the 

performance of our algorithm, using the British industrial production index and the 

US GDP series.

In Chapter 7, we discuss the double smooth transition model introduced by 

Harvey and Mills (2000), which has two smooth transition components instead of 

one. Both smooth transition components represent the changes of level and slope 

together. The posterior densities for the parameters in the double smooth transition 

model are obtained. In order to sample directly from the posterior densities of these 

parameters, we use a hybrid Monte Carlo Markov chain sampler consisting of a Gibbs 

sampler for the parameters for which the full conditionals are standard distributions 

and the adaptive rejection Metropolis sampler (ARMS) for the parameters for which 

the full conditionals are complex and not easy to sample from directly. We then 

apply our approach to the global and hemisphere temperature data sets. Predictive 

distributions for the future observations are obtained.

Finally, in Chapter 8 , we describe a new techniques which was introduced to 

statistics by P. J. Green (1995), the reversible jump Markov chain (RJMCMC). The 

RJMCMC is used to sample from the densities for which the dimensions change 

in the sampling process. Traditional methods cannot be applied in this case. We 

apply the RJMCMC to the structural break model which has unknown number 

of components. In the structural break model, the changes of level and slope are 

independent between the structural break points, which is much more appreciate 

from a time series point of view. The posterior probabilities of the different models 

(different number of the structure break components) and the posterior densities of 

parameters are obtained. Our approach is applied to two historical US economical 

time series.



Chapter 2

Tw o-phase Linear M odel

We wish to use a Bayesian approach to test hypotheses in the presence of parameters 

which enter the model only under the alternative. These parameters are called 

nuisance parameters. To illustrate the approach, we will consider the two-phase 

linear regression model, which is widely used, and compare the hypotheses using 

posterior model probabilities. We present two cases with two different priors for the 

parameters of the model. Simulation will be carried out to investigate the approaches 

introduced in this chapter.

2.1 Tw o-phase Linear Regression M odel

Davies (1987) used simulation to investigate his approach for two models, one of 

which is the two-phase model. Davies (1987) described the two-phase model as 

Observe X i , . . .  ,X n, a sequence of independent normal random variables 

with unit variance and expectations given by

where ti denotes the time at which the ith measurement was made and 6 

the unknown time at which the change in slope occurred.

Hinkley (1971) consider the cases where there are no discontinuities in the regres­

sion function. We follow Hinkley (1971) to write the two-phase model in regression 

form and adopt his notations.



CHAPTER 2. TWO-PHASE LINEAR MODEL 6

Suppose 2/1, . . .  ,yn are independent normal random variables. Suppose further 

that under the null hypothesis there is a constant linear trend. Under the alterna­

tive, the linear trend changes at some unknown point, r , but remains continuous. 

We will drop the strict condition in Davies, which assumes that the variance is a 

known constant, as this does not seem reasonable in practise. This two-phase linear 

regression model may be written as follows

{ ao +  diL  +  $i, ti < r;

qjo T  do +  (q;i +  d \ ) t i  +  £{, t i  >  r ,

where €i is iid N(0 , a 2), i =  1 , 2 , . . . , n .  L denotes the time at which the zth 

measurement was made and r  denotes the unknown time at which the change in 

slope occurred. We follow Davies (1987) to suppose the time of measurement to 

be centred so that ~  0* d0 and di are unknown parameters. Because

the linear trend function is continuous at t — r , the parameters should satisfy 

do +  d\T — 0 , and the model may be rewritten as

yi — a 0 +  aiU +  7 (U -  t ) + -I- ei:

where z+ = max(0, z), 7  =  d\. In this continuous two-phase model, there is only 

a change of slope which is represented by the parameter 7 . In the following, we 

assume that the prior for 7  is independent of the previous slope qji, which induces 

a relationship between the slopes before and after the break point r.

Davies (1987) tests the hypothesis that 7  =  0 against the alternative that 7  7̂  0. 

We write the null hypothesis (7  =  0), the alternative (7  7  ̂ 0) and their respective 

models separately.

We denote the model under the null hypothesis as M q. The null hypothesis 

(model M q) can be written as follows

Mq : yi = a:o +  cx,\ti +  (2-1)

where £i is iid N(0 , cr2), i =  1,2 , . . .  ,n. a > 0. =  0.

Under the alternative hypothesis the slope of the linear trend changes at some 

unknown point, r. We denote the model under the alternative hypothesis as M\. 

The alternative hypothesis (model M\) can be written as follows

: yi — qjo +  a iL +  — t ) + +  (2 .2)
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where r  G If we denote T{ — (L — r ) + , we can rewrite the alternative

hypothesis (model Mi) as follows

where t  G ( ti , tn) and 7* is not observable or known because r  is unknown.

We notice that when r  = tn, the model Mi becomes the same as model M0. When 

r  = ti the model Mi becomes the same as model M0 except at the left point t = t\. 

Furthermore, when r  —> t\ or r  —> tn, model Mi goes to model M0, any approach 

attempting to distinguish between these two models becomes impossible unless we 

obtain more data, for example, at time t0 < t\ or tn+i > tn which are outside the 

interval (ti,tn)- In order to overcome this difficulty, we suppose r  G [t2,£n_i]. In 

this case, the sample data should come from one of the two models.

We now have a sample, y i , . . . , y n, denoted as a vector y =  (3/1, - - - ,yn)' from one 

of the two models M0 and Mi, we shall test which model the sample comes from by 

comparing the two models using a Bayesian approach.

In order to simplify the calculations, we use the following matrix notations for 

the model M q

Mi : yi =  a 0 +  aiL  +  7 n  +  eit (2.3)

M0 : y =  X qol + u, 

where a  — (ct0, au)', u =  (ei, e2> • • • > en)' and

(2.4)

y I tn J
The model Mx in matrix notations is then

Mi : y =  Xif3x +  u, (2.5)

where y and u are the same as above, (31 = (aQ, au, 7)' and

 ̂ 1 tn Tn J

where r* =  (^ -  r ) +, r  G [t2,
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2.2 The Likelihood Functions

8

An essential element of the Bayesian approach is Bayes’ theorem. In order to use a 

Bayesian approach to test hypotheses, we need to use Bayes’ theorem to obtain the 

posterior probabilities for the models, Mq and M\. Bayes’ theorem can be written 

as follows

posterior density oc prior density x likelihood function,

We can apply Bayes’ theorem for inference about the parameters in the models M q 

and Mi and for inference about the models M q and Mi themselves. The posterior 

distributions for the models M0 and Mi can be used to test the hypothesis, that is, 

to test which model the sample data most probably comes from (according to the 

posterior model probabilities) and the posterior distributions for the parameters in 

both models M0 and Mi can be used to make inferences about the parameters.

In order to use Bayes’ theorem, we need the likelihood functions with respect to 

the two models, M0 and Mi. The likelihood function with respect to the model Mo 

can be written as follows

1 f 1 n 1
p(y\0o,Mo ) = (27r)n/2o.„ exp j - —  2 J ( yi -  ao -  oiii;)2 j  , (2.6)

where cr > 0 and 90 — (cuo, cki, cr)' is the parameter vector. Using matrix notation, 

we can rewrite the likelihood function above as

p(y|0o, Mo) =  exP -  x °a Y(y ~  x °“ )}  • (2-7)

Following Zellner(1987, p.66), we rewrite this as

<w. «■> -  j g s  <- { - ' - * ' (° •- Z ? X ’ { a  " } ■  <“ >

where =  n — 2 , & =  (XgA0)“1XJy and Sq =  —— — .
z'o

The likelihood function with respect to the model Mx can be written as follows

c?~n ( 1 A 'l
p(y|0i, Mi) =  ^ „ /3 exp j  ^  (yi -  a 0 -  a tf  j -  7  {U -  r ) +) H ,  (2.9)

where 9± is the parameter vector 9\ — (aQ, 01 ,7 , r, a)'. In order to use matrix 

notation to represent this likelihood function, we shall use t* instead of (t{ — r ) +,
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the likelihood function (2.9) can then be written as follows

<7~n f  1 n )
p(y |0i , MO =  exp 2^  T  ( |  ’ (2-10)

which can be written in matrix notation as follows

p(y|0i, M x) =  — —  exp | - “ (y -  X iP x)'(y - X ,/^ )}  ■ (2.11)

As before, we can rewrite this as follows

P(y\0i, M x) -  ^ y „/2 exp { --------------------- — -------------------- V , (2.12)

where Vi =  n — 3, =  (X[Xi)~lX [y  and =  —— - 1 _
V\

2.3 Bayesian M odel Selection

Here we follow Marriott and Newbold (1998), Marriott and Newbold (2000) and 

Wang and Zivot (2000) and use posterior model probabilities to compare hypothesis 

or select models. The conditional probability of model Mi, given the sample y, (the 

posterior probability of M*, See Bernardo and Smith, 1994, pp.387) is

P(MAy) = ___________ ________________  (2 13)
1 ,|y ; P{Ma)p(y\M0) +  P (M l)p(y\M1) ’ l J

where i =  0,1, P(Mi) is the prior probability assumed for the model Mi and p(y| M*) 

is the integrated likelihood function with respect to model Mi. The integrated 4

likelihood is obtained from

p(y\M i)=  f  p(y\0i> Mi)p(6i\Mi) d&it (2.14)

where 9{ is the parameter vector in model Mi, p(y |0», Mi) is the likelihood function 

with respect to model Mi and p(6i\Mi) is the prior for the parameter vector 0i in 

model Mi. Integrals of this type will occur frequently later, so for convenience, we 

denote

L i=  / ’p(y|0i,A*)p(0i|Af4)<0<. (2.15)

The simple approach (used in Marriott and Newbold (1998), Marriott and Newbold

(2000) and Wang and Zivot (2000)) to testing H0 against Hi decides in favour of
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the hypothesis with the largest posterior model probability, that is, we would accept 

model Mi if P(M f |y) > P(Mj\y), \fj ^  i.

For the approach we are adopting here we take uniform priors for the models, 

so that P(M q) — P(Mi) — 0.5. This is equivalent to using a 50% prior weight on

where i — 1 , 2 .

2.4 Conjugate Prior

We adopt conjugate priors for parameters a0, ai and o in model M0. In model 

Mi, there are two more parameters 7  and r. We will use priors for parameter ao, 

au, a and 7  that are conjugate priors conditional on r  being known, and since the 

parameter r e  [£2, tn-i]> we use a uniform distribution as a prior for r.

2.4.1 P osteriors for M odel M q

First we derive a conjugate prior for the parameter vector 6 q in model M q. The 

likelihood for model M0 is given in (2 .8), the conjugate prior for a  given a in this 

model is

where fj,a is a two-dimensional constant vector and Va is an 2 x 2 positive definite 

symmetric constant matrix. We adopt the usual conjugate prior for o in model M0, 

which is the inverted gamma distribution with density function

7  =  0 and a 50% prior weight on 7  ^  0. Given these prior probabilities for the 

models, the posterior model probabilities are

p m y ) (2.16)

0 < a < + 00 , (2.18)

where a, b > 0 are constants.

The joint conjugate prior distribution for 0O in model M0 is then
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Combining (2.19) with the expression on the right side of (2.8), we obtain the joint 

density for y and &o as

p(y,60\Mo) =  a f y *  I2 x
(27t) 2+1r (6)a6<j26+ra+3 (2 20)

eXP{ _ 2o2 +  («  “  ^ ' ^ ( a  -  « ) j ,

where V0 — XqX0 +  Va \  a. — V0 1(X'0X 0& +  V a) and z/0s§ =  +  2/a  +  (a  -

a ) 'X ;X 0(/ia -  a ) .

Integrating this with respect to cr gives

/ „ , i  2i,+1+t r ( 6 + l  + |)|V '-1|5
p { y , a \ M 0 )=   ' E + l r , „ 2 t  x

(2tt) 2+ r ( 6)a6 (M.1+?) (2-21)
|t'o«o + (a — a)Vo(« — a)

We then integrate (2.21) with respect to a  and obtain

2 » r ( 6 + t ) |y - 1|*
7r f  r ( 6)a41V01 £ (j'o«o)6+®

If we apply Bayes’ theorem to model M0 to obtain the posterior distribution for 

the parameter vector 0Oj we obtain

P(y|Mo) = ty , l ' ; a ' • (2.22)

p(0a\y, M0) oc g2/ n+3 exp ( - ^ 2  h>®° +  (“  ~ - « ) ] ) •  (2.23)

This posterior distribution can be used to make inferences concerning the parameter 

vector 0O =  (a0, a i, cr).

If we integrate (2.23) with respect to a,  we can obtain the marginal posterior 

distribution for o conditional on model M0 as

p(<xly,M0) oc g2/ [i+1 exp j - " | )  ,0 < a < oo, (2.24)

which is an inverted gamma distribution.

We can also integrate (2.23) with respect to cr, we obtain the marginal posterior 

distribution for the parameter a  conditional on M0 as

r o *1 2b+n+2
p(a  |y, M0) oc [u0§l +  (a  -  dcyX'0X 0(oi - a ) ]  2 , (2.25)

which is a multivariate student t distribution.
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2.4.2 P osteriors for M odel M i

In order to simplify the choice of the parameters of the prior distributions in the 

two models, we use the same prior distributions for the parameters a 0, a\ and a 

in model M\ as were used in model Mq. We would also like to obtain conjugate 

priors for all of the parameters (including the parameters goj and a) in model 

Mi. Given the complexity of the structure of the likelihood function with respect to 

the parameter r , (see equations (2.9) to (2.12),) no simple expression for a conjugate 

prior for r  exists. For this reason, we use a uniform distribution as a prior for r  and 

adopt conditional conjugate priors for parameters cvo, aq, 7  and cr, given r.

The form of the likelihood suggests that, conditional on cr and r , the conjugate 

prior for (31 should be the multivariate normal with density

p(/9i| a, exP { “ ^ 2(^1  -  /3 ? )) , (2-26)

where V± is a constant 3 x 3  positive definite symmetric matrix, f3\ a constant 

vector. Conditional on r, the conjugate prior for a should be the inverted gamma 

with density

M M x )  =  r(&) J cr2h+i exP { - ^ 2  } ' 0 < c r < + o o ,  (2.27)

where a, b > 0 are constants. We choose the same values for a and b as in model 

M0.

If we suppose that /31 and a are independent of r , then the joint prior for 9i is 

then taken to be

p(0i|Mi) =  p(/31 | o r ,  Mi)p(a\M1)p(r\Mi).

As stated earlier, we choose the same conjugate prior distribution for a. as in 

model M q by selecting the precision matrix V\ for parameter vector /31 = (0 , 7 ) as

\  ^21 V22 J

where Va is a 2 x 2 positive definite symmetric matrix defined in model M0, V{2 = V21 

are 3x1  and 1x3 matrixes respectively, and v22 is a positive constant. The marginal 

conjugate prior for ol conditional on a is then the multivariate normal distribution
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with precision matrix Va and density as

(“  -  Me) (2.28)

where fj,a is the same two-dimensional constant vector used in model M0. The 

marginal conjugate prior we adopt for 7, given a, is the (non-zero) normal distri­

bution N(/x7, (crK7)2), where 7 /  0. As we do not know whether 7 > 0 or 7 < 0, 

we place the same weight on 7 > 0 and 7 < 0, this leads to = 0, f3\ — 0)'.

We then have the density function of the marginal conjugate prior for 7, given a in 

model Mi as

where 7 7̂  0, I<7 =  1/y/vm  is a positive constant.

We know nothing about the correlation relationship between a: and 7 in model 

M\. This relationship is represented by the correlation coefficient matrix V12. For 

simplicity and in the absence of any other prior information, we suppose V12 =  03 

we then have

Clearly we can also choose V12 7̂  0, if we have some prior information about the 

correlation between a  and 7.

We know r  G so the uniform prior for r  is

(2.29)

where

when r G [t2,*n-i]; 

otherwise.
(2.31)

0, otherwise.

The joint prior density for 9\ can therefore be written as

(2.32)

where a > 0, r  G [£2>in-1]-
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The joint density for y and 9\ is then

p(y,0i|Mi) =

and using (2 .12) with (2.32), we obtain

(27r) ( i„ _ i  — h ) K~fV (b) aba 2b+n+i
^S? +  O31 - f t ) 'V 109l - 3 l )

p (y ,6>i|Mi) =  — r x
(2.33)

exp < —
2 a2

where V) =  X ' ^  + Vu  f t  =  V c \ X [ X f a  =  +  2 /a +  ( f t

P i Y V i f a  ~  P i ) a n d  Te [*2.*»-i]-

Integrating (2.33) with respect to a gives

2&|F - 1|^ r (^ f± ^ )
p(y,Pi>T\Mi)

7 r ^ (tn-1 -  £2)-&r7r(&)ab (2.34)
n 2 b + n + 3  v '

«/,Sf +  03! -  P1)'Vl f a  -  f t )  "X

where r  G fe^n-i]-

Integrating this with respect to (3X gives

ob |y -l|f  p/'26+n\
P( y’ T1 Ml )  =  ^ ' Q ' ,1,  ~2\ gMn ’ (2-35)7T2 (tn_! -  2

where r  G fojV -i]-

If we integrate (2.35) with respect to r, we obtain

26|T/“ 1| i r ( ^ )  p " -1
7Tt(in_! -  i2)i^7r(5)a6 Jt2

Applying Bayes’ theorem to model M l5 we obtain the joint posterior density for 

the parameter vector Oi

o b \ y - l A j ' ( 2 b ± n \  r tn- i

=  *7T  “  T i F m T  6 I  (2.36)n i ( t n„1 -M K „ T (b )a b Jt,

P (^ |y -M )̂ K ^ 4  e*P j - ^ b t  M |  . (2.37)

If we integrate (2.37) with respect to /31? we obtain the joint posterior density 

for (t, cr)

p (r , a]y, 1ft)oc ^  J 2t+n+1 exp { - g } . (2.38)

If we know r, the posterior distribution for cr would be the inverted gamma 

distribution with the following density

p (<t|t, y, 1ft) < x ^ T _  exp j d ^ r ) -  (2.39)
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Integrating (2.38) with respect to a , we obtain the posterior density for r  as 

follows

p (r |y, MO oc -1 (2.40)
|V i|5 [n«?] 2

If we integrate (2.37) with respect to a, we obtain the joint posterior density for

p{Pi,r\y,Mi)oc j/is? +  ( /3 , -  0 ,) 'V i(f t -  /3X) 2 , (2.41)

which also means that, conditional on r , (31 has a multivariate student t distribution.

2.4 .3  P osterior M odel P robabilities

Substituting (2 .22) and (2.36) in (2.16), we obtain p(X\M 0) and p(X\Mi)  as

p(Mo|y) =  (2-42)

and

where

P{M i \y) =  (2.43)

- T .  (2.44)
(tn_l t2)Kry Jt2 | Vl I 2 (Z>-1 S?) 2|V i|*(^S?)-i

The above expression can now be used to discriminate between the two models.

2.5 N oninform ative Prior

In this section we consider using noninformative priors for the parameters in model 

Mo and model M\. For parameters appear in both models, we choose noninformative 

priors. However, any improper priors (including noninformative priors) are only 

defined up to a constant, see Jeffreys (1961). These constants will cancel in the 

expression for the posterior model probabilities in (2.16) because these constants 

appears in both the numerator and denominator in (2.16). In model Mi, there are 

two additional parameters 7  and r. We need to use proper prior distributions for 

7  and t  because they are only present in model Mi. See Marriott and Newbold 

(1998), Marriott and Newbold (2000) and Wasserman (2000). For the parameter 

7 , we adopt a conjugate prior given the other parameters. We know the parameter 

t  £ [t2 ,tn-i]i so we use a uniform distribution as a prior for the parameter r.
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2.5.1 P osteriors for M od el M0

The noninformative prior for a. in model Mq is

16

p(cx\Mo) = K a , (2.45)

where K a is a constant. We suppose the prior distribution for a in model M0 is

In cr ~  K aj which leads to the following results for u

p(<7|Mo) =  (2.46)

where K a is a constant.

If we suppose ol and a  are independent of each other, we then have the joint 

prior distribution for 90 ( a  and cj) as

p(9o\M0) = p(oi\Mo)p(a\Mo),

that is

p(e0\M0) =  (2.47)

The joint density of (y, 9o) is then given by

-  i s j f e  • »  I - * * 4 1 "  * ” * ,(<‘ - * • ’ }■ <248>

Integrating this with respect to a  gives

p (y ,ol\Mq) = [^o52 +  (a  _  a Qyx '0X 0{cx -  a 0) ] . (2.49)
zir 2

We then integrate (2.49) with respect with a  to obtain

P(y\Mo) =  -  7T- (2-50)

Applying Bayes’ theorem, we obtain the joint posterior density for the parameter 

vector 9q as

to I » / \  1 f  +  (<* -  a 0)'A';Xo(a -  a 0) 1 ,np(9o|y,M0) oc ^ e x p  |  i   1 j  • (2-51)

If we integrate (2.51) with respect to a ,  we obtain the posterior distribution for 

cr with density

p(cr|y,M0)oc ^ j - e x p (2.52)
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which is an inverted gamma distribution.

If we integrate (2.51) with respect to cr, we obtain the posterior distribution for 

ot with density

which is a multivariate student t distribution.

2.5.2 P osteriors for M od el M \

We adopt the same prior distributions for parameters ao, 07 and <r in model Mx as 

in model Mq. That is,

where K a , K a are the same as in model M0.

In order to calculate the posterior model probabilities P(M*|y), i =  0,1, we shall 

adopt proper priors for the parameters 7  and r. We use the natural conjugate prior 

for 7  given a in model Mi. For the same reason as in the section 2.4.2, we select 

the prior for 7  given in (2.29).

We know r  G [t2, tn~ 1], so we adopt the uniform prior distribution given in (2.31).

We suppose that a ,  (7 , a) and r  are a priori independent of each other. Then 

we have the joint prior distribution for all parameters in model Mi as

p (a |y , M0) oc [u0s20 +  (a  -  a oyX'0Xo{cx -  a 0)] 2 , (2 .53)

K  K
p(cx,a\M\) = (2.54)

p{Bi\M1) =  p(a|M i)p(7 |a, Mi)p(r|Mi)p(cr|Mi)

that is

(2.55)

where r  G [t2, tn- 1], 7  > 0. 

Because

p (y ,6>i|Mi) =p(0i\M1)p(y\0u M 1)

straightforward calculation gives the joint density for y  and (>i as

(2.56)



CHAPTER 2. TWO-PHASE LINEAR MODEL 18

where Vx = X ' ^  + U, fa  =  V ^ X ^ f a ,  i^Sf -  vxs\ + { f a - f a y x ' ^ f a - f a )  +  

and U is a matrix defined by

U =

t 0 0 0 

0 0 0

\

0 0

Integrating (2.56) above with respect to gives

r(a± i)
27

X
n+1

2

(2.57)

where r  G [t2j*n-i]-

Integrating this with respect to (3X gives

K aK aT ( f )
p (y ,r \M 1) = (2.58)

27r^(tn_i - t 2)K^(vl s\y-*\Vi\* 

where r  G [i2, tn-i]*

If we now integrate (2.58) with respect to r , we have

K K ptn-i
P(j\M i) = a /  M ) - * N - *  dr. (2.59)

2?r 2 (tn- i  -  t2jKj Jt2

Applying Bayes’ theorem, we obtain the joint posterior density for the parameter

vector 6i as

1
p(0i|y ,A /i) oc ^ e x p  j

2a 2
M ? + 03i -  j j j v lOS, -  /3,) )  , (2 .60)

If we integrate (2.60) with respect to /3l5 we obtain the joint posterior density 

for (t, cr)
z/i*np(r,o-|y,M i) oc n—1 exp
2<t2 /

If we know r , then <r will have an inverted gamma density 

p{a\T,y,M l) oc .cr

(2.61)

(2.62)

If we integrate the joint posterior for (r, cr), (2.61), with respect to <j, we obtain 

the posterior density for r  as

1
p(r\y,M i)  oc (2.63)
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Integrating (2.60) with respect to cr, we obtain the joint posterior density for 

( /3 1? t )  as follows

If we know r , /31 will have a multivariate student t distribution with density

2.5 .3  P osterior M odel P robabilities

Using (2.50), (2.59) together with (2.16), we obtain p(M0|y) and p(Mx|y) as in 

(2.42) and (2.43) where

These posterior model probabilities will be used in our Bayesian test of models.

2.6 Sim ulations

Now we are going to illustrate the approach with the noninformative prior we have 

discussed above using simulated data. First we will illustrate the posterior inference 

for the “break” parameters 7  and r  and then we will illustrate the model choice.

For each simulation below (unless otherwise stated), we generate sample data 

from the model

so that ao =  0, 0:1 =  0.5, without loss of generality. We choose a — 1 and use 

different values for 7  and r. The measuring time begins at ti — —9.5 and ends at 

tn =  9.5, the intervals between x and L are equal and n=100. See Davies (1987), 

example 1 in the section “Simulations” .

Sim ulations o f th e P osterior D en sities I

We have an unknown parameter K 7 in the prior for 7 . The specific choices of prior 

densities for cr and 7  should be considered together because the prior for 7  depends

p (/3 i,r |y ,M x) oc +  (/3X -  -  f t ) ]  2 . (2.64)

p(/3 i|r,y ,M i) oc v{s\ +  (f31 -  -  /3X) 2 . (2.65)

(2 .66)

y{ =  0.5L +  7 (L -  r ) + +  £i, (2.67)
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on cr. This choice is discussed in more detail in the second part of this simulation 

and in later chapters. First, we choose K 7 = 1.

We generate 100 observations from each of 6 versions of (2.67) where (7 , r) takes 

the values shown in Table 2 .1. Notice that when 7  =  0, r  is nonsense for the model 

so we put a * in Table 2.1 for this case.

7 0 5 1 1 1 5

r * -8.55 -4.75 0 4.75 8.55

Table 2.1: Pair of values for (7 , r) used in the simulation. *: Note r  is meaningless 

when 7  =  0 .

The posterior density of r  is then plotted for each pair (7 , r)  and presented in 

Figure 2.1 (a) through to (f). The dotted vertical lines present the true values of r .

For Figure 2.1 (a), we generated sample data with (7 , r) from the first column 

of Table 2.1. Because 7  =  0 , the sample data are from model Mo where there is no 

change in slope, in this case r  can clearly be any value represented by * in Table 

2 .1 . The graph in Figure 2.1 (a) shows that the value of r  can be anywhere in the 

interval but is most likely to be at an extreme.

For Figure 2.1 (b), 7  =  5 , r  — —8.55 from the second column of Table 2.1. The 

change of slope, 7 , is large, but the change happens at the place which is very near 

the left edge of the interval of the measuring time. We can see in Figure 2.1 (b) that 

the posterior density of t  concentrates near the true value of r.

For Figure 2.1 (c), we set 7  =  1, r  =  —4.75 according to the third column of 

Table 2.1. This time r  is in the middle part of the interval but the change in the 

slope, 7 , is relatively small. The posterior density of r  again concentrates close to 

the true vale of r.

For Figure 2.1 (d), 7  =  1, r  =  0 from the fourth column of Table 2 .1 . Here r  is 

at the centre point of the interval.

For Figure 2.1 (e), 7  =  1, r  =  4.75 from the fifth column of Table 2.1. Here r  is 

of the symmetric point to r  — —4.75 in the third column of Table Table 2 .1. 7  =  1, 

the same value for 7  as in the third column of Table 2 .1 . The posterior density 

concentrates around the true value of r  with similar bias compared with Figure 2.1
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Figure 2 .1 : Posterior densities of r  in two-phase model. K 7 — 1.
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(c).

In the above three simulations, for Figure 2.1 (c), (d) and (e), we generated data 

using the same value of 7 , different values of r. We would expect that when r  is in 

the middle of the interval of the measuring time, we should obtain the best results 

among these three simulations. However we could not find this phenomenon in these 

three simulations. The problem is, we just have one simulation for each case. If we 

would like to find subtle difference between them, we need to repeat each simulation, 

for example, 1000 times, and then compare these repeated simulations.

For Figure 2.1 (f), 7  =  5, r  =  8.55 from the last column of Table 2.1. Similar 

situations for 7  and r  compared with the second column of Table Table 2 .1. 7  =  5, 

r  =  8.55 gives a much large slope change near the right edge of the interval.

Sim ulations o f P osterior D en sity  II

We are now going to investigate the effect of different values of K 7 on the inference 

of the posterior density of r . We compare the posterior densities of r  corresponding 

to different values of K 1. We change K 7 =  1 in the above simulation to K 1 —

2 , 10, 100,1000 respectively and also generate 100 observations from (2.67), for each 

value of and values of 7 , r  from Table 2.1.

First, we plot the posterior densities of r  corresponding to — 2,10,100,1000 

respectively in Figure 2.2 to Figure 2.5. In each figure (a) to (f) refers to different 

values of (7 , r)  accordingly to Table 2 .1. (Notice that we have plotted the posterior 

densities of r  for K 7 = 1 in Figure 2.1.

We see from Figure 2.1 to Figure 2.5, where J<7 =  1,2,10,100,1000 respectively, 

that the graphs of the posterior density of r  are similar except (a), the posterior 

densities for r  when the true value of 7  =  0 and r  is meaningless in the model. 

When Kry increases, the posterior densities for r  become more “diffuse” especially 

when the value of K 7 increases from 2 to 10. The posterior density for r  looks like 

a uniform distribution over the measuring time interval when K 1 > 10. We know 

that a uniform distribution provides the lest information than other distributions. 

So we think when K 7 becomes larger, the estimation of the posterior density for r  

becomes better, when the true value of 7  =  0 and r  becomes meaningless in the 

model. Our simulations also suggest that there is little effect to the estimation of
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Figure 2.2: Posterior densities of r  in two-phase model. K y 2.
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Figure 2.3: Posterior densities of r  in two-phase model. K 7 =  10.
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Figure 2.4: Posterior densities of r  in two-phase model. K 7 — 100.
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Figure 2.5: Posterior densities of r  in two-phase model. K 7  =  1000.
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the posterior density of r  when K 7 is larger than 10 .

Second, we list the posterior mean, standard deviation and 95% probability 

interval for r  in Table 2.2 in three parts separately, with different values of K 7 =

1,2,10,100,1000 and different true values of (7 ,r )  in Table 2.1, labelled as (a) to

(f)-
We see the column (a), the true value of 7  =  0, the sample data comes from 

model M0, where r  has no meaning. The posterior standard deviation of r  increases 

when I<7 increases, reflecting the increasing uncertainty in the prior of r; the length 

of the 95% probability interval for r  increases when JT7 increases, which also shows 

the uncertainty of r . So from the results at column (a), we prefer to choose bigger 

value of K j.  We note that when K 7 is greater than 10, there is little additional 

effect.

For columns (b) to (f) in Table 2.2, the sample data comes from model Mi. For 

column (b), the true value of r  =  —8.55, which is outside of all the 95% probability 

intervals; For columns (c) to (f), all the 95% probability intervals contains the corre­

sponding true value of r  except when K7 = I'm  column (f). At column (f), we found 

improvement in inference for r  when K 7 becomes bigger, the standard deviations 

decrease, the length of the 95% probability intervals decreases too. However, when 

K,y is great than 10, no obvious improvement of the inference of r.

From above discussions, we know that when the sample data come from model 

M0, that is, 7  =  0 , the change of slope term — r ) + disappears from the model 

and r  becomes meaningless. Larger value of K 7 means larger standard deviation of 

the prior for 7 , more “diffuse” prior for 7 . Our simulations suggest that when 7  =  0, 

more “diffuse” prior for 7  is better than a normal distribution with a relatively small 

variance. However too large value for the variance of the prior normal distribution 

is not necessary because it provides little effect.

Sim ulations o f M odel C om parison

Finally, we would like to see how our approach to model comparison behaves for 

different simulations. We generate data from model (2.67) with the same values for 

the parameters except 7 , r  and the sample size n. Every simulation we use consists 

of 1000 replications. In the following tables, when 7  =  0, it means that data were
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k 7 (a) (b) (c) (d) (e) (f)
mean

1 0.068 -7.59 -5.14 0.667 4.64 7.16

2 0.0488 -7.81 -5.19 0.672 4.67 8.14

10 0.324 -7.94 -5.2 0.674 4.68 8.56

100 0.459 -7.95 -5.2 0.674 4.68 8.57

1000 0.461 -7.95 -5.2 0.674 4.68 8.57

standard deviation

1 6.79 0.324 0.426 0.537 0.384 0.858

2 7.1 0.312 0.434 0.536 0.382 0.62

10 7.53 0.314 0.437 0.536 0.382 0.302

100 7.61 0.315 0.437 0.536 0.382 0.289

1000 7.61 0.315 0.437 0.536 0.382 0.289

95% probability interval

1 (-9.17, 9.17) (-8.17, -6.9) (-6.02, -4.34) (-0.32, 1.76) (3.86, 5.39) (5.24, 8.45)

2 (-9.22, 9.22) (-8.36, -7.14) (-6.08, -4.37) (-0.314, 1.76) (3.91, 5.42) (6.34, 8.75)

10 (-9.26, 9.27) (-8.52, -7.28) (-6.1, -4.38) (-0.313, 1.76) (3.92, 5.43) (7.88, 8.92)

100 (-9.27, 9.28) (-8.52, -7.28) (-6.1, -4.39) (-0.313, 1.76) (3.92, 5.44) (7.95, 8.93)

1000 (-9.27, 9.28) (-8.52, -7.28) (-6.1, -4.39) (-0.313, 1.76) (3.92, 5.44) (7.95, 8.93)

Table 2.2: Effects of different values of K 7 for inference of r.
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generated from model M0; otherwise data were generated from model Mi. The 

frequency of the event {P(Mo|y) > 0.5} in the 1000 replications is denoted as p , 

so, when 7  =  0 , a large value of p corresponds to a “success” performance of our 

approach; when 7 ^ 0 , the smaller value of p is, the better our approach performs. 

The proportions of times P(M 0 |y) > 0.5 for each simulation are listed in Table 2.3.

No. n r
7

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1 20 0 93.9 88.7 75 51.7 29.1 10.7 3.6 0.4 0.1 0

2 64 0 96.9 87.3 50.2 16 1.8 0

3 64 -5 96.9 89 72 45.2 22.4 7.7 2.3 0.2 0

4 64 -7 96.9 89 82.2 73.5 58.9 41.8 29.6 19 11.2 6.3 2.9

5 128 -7 93 89.2 78.9 63 42.7 24.3 13.2 5.1 1.3 0.5 0.1

6 AR(1) 70.8 69.7 65.4 59.2 49.8 39.5 31.4 21.9 16.4 11.2 6.4

Table 2.3: Proportion of times P(M 0|y) > 0.5 in 1000 replications.

We divide the simulations into 6 groups according to the value of (n, r). Within 

each group, we have 11 simulations according to different value of 7 . So totally we 

have 66 simulations. When 7  =  0, the data come from model M0, so the higher 

proportions of times P(M 0|y) > 0.5 the better; when 7  /  0, the data come from 

model Mi, so the lower proportions of times P(M 0|y) > 0.5 the better. We can 

observe two trends in the table: when 7  =  0 , the larger the sample size the better 

results; when 7 ^ 0 , the larger the value of 7  the better results. We explain the 

details of the simulation results as follows.

For group 1 simulations, we take r  =  0 and n =  20. For group 2 simulation, we 

increase the sample size to n =  64. As the sample size increases, our test performs 

better in group 2 simulations than in group 1 simulations. For group 3 simulations, 

we change r  =  0 to r  =  —5. This means that in model Mi the regression line changes 

its slope at time t = — 5 of the way through the observed sample, from t =  —9.5 to 

t — 9.5. We still choose n =  64. It should be more difficult to test which model the 

data come from than in group 2 simulations because r  is nearer to the beginning of 

sampling time. For the extreme case, when r  goes to the start (or end) of sampling 

time, ( t  —» ti), Mi becomes the same as model M0, and the two models, M q and
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Mi, are indistinguishable. We notice that when the data are generated from model 

Mi, our testing results become more favourable to M0 compared with the results in 

group 2 simulations, although the difference is not very big. For group 3 simulations, 

we choose r  =  — 7, even closer to the beginning of sampling time. The results are 

worse than those in group 3 simulations. For group 5 simulations, we increase sample 

size to n = 128, still with r  =  — 7. The results are better than those from group 4 

simulations. Finally, for group 6 in simulations, in order to test the robustness of 

our approach, we replace the iid N(0, 1) process et with an AR(1) process

Ut = put-1  +  £t, (2 .68)

where p =  0.5, et is still iid N(0, 1) and keep n  and r  the same values as for group 

5 in simulations. The results for group 6 simulations show the worse performance 

of our approach for AR disturbance term than the results for the model with white 

noise.
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Tw o-phase M odel II

In this chapter, we focus on the topic of expanding the two-phase model discussed 

in Chapter 2 with the disturbance term changed to an AR(1), a first order autore­

gressive process, because AR(1) disturbances are sometimes encountered in practice. 

The expanded two-phase model is

where x+ =  max{0, a;}, r  G [£2, tn- 1], fe }  is an iid N(0, cr2) process, i =  1 ,2 , . . . ,  n. 

p e  (—1,1) because we are assuming that Ui, i = 1,2, . . . , n  is stationary. If we 

denote T; =  {U — r ) + , we can rewrite the model as follows

In the above model, yi is the ith observation measured at time ti , Ui is the first-order 

autoregressive process. Note that if p — 0, this model would reduce to the simple 

model discussed in Chapter 2.

We wish to use a Bayesian approach to choose between a two-phase model and 

a linear model, when the disturbance terms for both models are AR(1). The null 

model M0, is represented as

y i  =  a 0 +  a i U  +  7 ^  -  r ) +  +  m ,  

Ui =  p U i - i  +  S i,
(3.1)

y% =  OL0 +  Oil t i  -1- 7 Ti +  U i ,

U i  —  p U i — i  - j -  S i .

(3.2)

Mo : yi — OiQ + OL\ti +  Wj,

Wj =  pUi-1 +
(3.3)
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where p E (—1,1). The alternative two-phase model, Mi, is represented as

Mi : yi =  a 0 +  api  +  yrt +  ui:
(3.4)

Ui — pUi—i ~t~

3.1 T he likelihood functions

In order to test hypothesis in a Bayesian frame work, we need to obtain the likelihood 

functions corresponding to the null and the alternative models, that is the likelihood 

functions for model Mq and model Mi. We begin with the analysis of model Mi, 

because the analysis of model Mo is similar and simpler.

By eliminating Ui, Ui-i from the above model Mi, we obtain

Mi : y i -  pyi-i =  (1 -  p)ao +  {L -  pL-i)ax +  (n -  p r^  1)7 +  e*. (3.5)

Note that the new symbol y0 appears when % =  1 . y0 represents the initial condition 

of the model. The parameter vector of model Mi is &i — (a0, ai, 7, r, a, p)'.

If we assume that the process {yi} was operative for i = 0, that is, operative for 

time to, then the initial value, yo, for the model is given by

yo — a0 +  aito +  u0. (3.6)

We discuss the distribution of the initial value yo through the properties of the

disturbance term {uj}. The disturbance term { u ^  is an AR(1) stationary process 

which has the properties E{ui) — 0 and var(ui) = au, where cru is a constant. It 

is easy to verify that Ui ~  N ^0, 7^ 2) ,  see, for example, Box and Jenkins (1976), 

in particular we have u0 ~  N (o, j—y) and therefore y0 ~  N +  cxito, 71^2)■ We 

denote u0 — y / l  — P2uo, then u0 ~  N(0,cr2) and u0,£i,£2 , . . .  ,en are iid N(0 , cr2).

We transform data from (yQ, y i , . . .  ,yn) to [x0, x i , . . .  , x n) as follows. We set x0 =  

1/1  -  p2Vo = P2 a0 +  \ / l -  P2toa i +  ^0 and Xi = y i -  pyi-i, i = l , 2 , . . . , n .  If

p — 0 , this transform will be identical and the disturbance terms, Ui, i — 1, 2 , . . .  ,n,

will be white noise. We denote x =  (jcq, xi, X2 , . . . ,  xn)', e = (uq, £1 , £2 , • • •, £n)',
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(3 — (ao, oil, 7 )' so that 0 — ((3', r, a) and

 ̂ a/ 1 -  P2 \ / l  -  0

33

1 -  p

1 - P

h  — pt0 

h  ~ pti

Ti -  pr0 

t 2 -  pn

y 1 P tn ptn—1 Tn pTn—i J
Notice that x is unobservable, x0 and X\ are functions of p and yo, and Xi, i ^  1 are 

functions of p. X  has unknown p and r  as parameters. We can rewrite model Mi 

in matrix notation as follows

M i : x =  X(3 + e. (3.7)

The Jacobian of the transformation y i— » x  is as follows

dx.
dy

p2 0

1

~P 1

The joint probability density function for x =  (rc0 , x i , . . . ,  xn)', is given by

p (x \6, Mi) =
\ 71+1

6XP 1 2cr2I  --\  2(7 vs2 + (P -  P ) 'X (3.8)

where u = (n + 1 ) — 3 =  ra —2 , (3 = (X 'X )~ lXand =  (x —

The likelihood function for model Mi, or the joint probability density for y, is 

given as

exp{~i
\y/27vaj

X (3.9)

vs2 + ).

We can obtain likelihood function for model M0 by noting that it can be setting

7  =  0 in model Mi.

By eliminating ut and ut- i  from model M0, we obtain

M0 : yi -  pyi-1 =  (1 -  p)a0 +  (U -  p t ^ a i  +  et . (3.10)

J*
tfoA.
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Using similar notation to that in model Mi, we have, for model Mo,

 ̂ y/1 — p2 y/1 -  p2t0 ^

1 -  p t i - p t o
A q —

y 1 p tn ptn— i J

ot =  (c to ,^)' and the parameter vector for model M0 is 90 =  (a0, <*i, <?, p), model

Mo is represented in matrix notation by

M n x — X 0cx +  e, (3-11)

where x and e are same as in model M\. We then obtain the joint probability 

density function for x =  (xq, #i, . . . ,  xn)' for model Mo as

\  n+1

P(x|So’M o)= ( v t )  exp ! 2o*
vqs2q +  (a  -  6l)'X'oX o(ol -  a)

}•
(3.12)

where v0 =  ( n + 1) —2 =  n — 1, a  = (XqX 0) xXJx, and UqSq =  (x — Wo&)'(x — X0o:). 

The likelihood function for model Mo, is then given by

p(y|0o, M0) =  p(x|#0, M0) | J\
\  n + l

v/1 p2( ^ )
ẑoSq +  («  -  -  a )exp

2 a 2 }

(3.13)

3.2 Priors and Posteriors for m odel

We discuss priors for model Mi first. We choose a conjugate prior for /3 conditional 

on cr in model Mi

p(/3|a,M i) =
( ^/2na)

(P — P•)}. (3.14)

where V is a constant 3 x 3  positive definite symmetric matrix, (3° is a constant 3 

dimensional vector. The conjugate prior for a in model Mi is an inverted gamma 

distribution with density

t 11/  \ 2 ( a \ b!2 1 r a '\
p(<7|Ml) =  r n M  ( 2 )  ^ w exp{ " 2 ^ / ’r(6/2)

where a, b > 0 are constants.

(3.15)
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We know nothing about r  but r  6  [t2, i], so we choose an uniform distribution

for r  in model Mi with the density

/ I i— ~ T >  ),f n—1 -  *2 (3.16)
I 0 , otherwise.

We know p  £ (—1,1), which corresponds to the stationary case of the disturbance 

term, so we choose a uniform distribution for p  in model M \  with the density

, , s f V 2> P € ( ~ M ) ,p(p|Mi) =  { ^ (3.17)
I 0 , otherwise.

We suppose that (/3, cr), t  and p  are a priori  independently distributed in model 

Mi, so that we have the joint prior for the parameter vector of model Mi as follows

p O W )  =  Ai«p  { - 2 ^ 0 8  -  /3 °)|a
| V | r a \  2 f  O ' !

X (27r)3/2r(&/2)(t„_i -  i2) V2J 6XP I 2 ^ /  ’
Then we can obtain the joint distribution for y and 0 in model Mi as

exp { - ^ 2  -  -s1)}

(3.18)

x |rr1/2 f a \ i  J n  « ? \

(2W)!+ r(6 /2 )(4„_ 1 - t 2) l 2 )  6XP\  2<r2 J ’

(3.19)

where Vi =  X [ X x + V ~ \  /31 =  V{'l {X[X1p  + V '1/?0) and i/xsf =  a +  v s 2 + (0 1 

P ° ) V ~ 1 0  -  p ° ) .

If we integrate (3.19) with respect to we obtain

/ |V | - I/2 / a \ *pfy.r.cr.plM!) = —  ̂  ~ —  — (5)
(2tt) 2 r(6/2)(tn_i - i 2) V2/

\ / l  -  p2 x —  r exp
g-n+b+21 p i  | 2

(3.20)

and integrating this with respect to cr we obtain

, % 2 ^ a i |V |- l r ( a ± |± i )
p(y> t ,p Mi) =  — ^  —  

(27T)+-r ( 6/ 2)(f„-i - 12)
\ / l - p 2

l U l l ^ s 2) 2̂ '

Prom above (3.21), we obtain the joint posterior density for (r, p) as

(3.21)

/i 2
p(r, p|y, Mx) oc — V----- P . (3.22)

IVilH^iS?) 2
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Finally we integrate (3.21) with respect to r  and p to obtain

2^ a f | V | - 2r ( ^ | ± i )
p{ y \M

(27r)“̂ 1r(& /2)(^ -1 -  i2)
f 1 /■‘" - 1 ,

x  /  /  T T T T T i o . n + i + i  drdP,
J - l  J u

(3.23)

i2 |Vl|2(l/15f)2i±t:ti 

which is needed for the model comparison.

3.3 Priors and Posteriors for m odel M0

Now we discuss priors and posteriors for model M0. As for (3 in model Ml, we 

choose a conjugate prior for a  conditional on o in model M0, namely

p(a|cr,M 0) =  - ^ = - y 2 exp j - ~ ( a :  -  « ° ) | , (3.24)

where Vo is a constant 2 x 2  positive definite symmetric matrix. We suppose that 

Vq is the upper-left sub-matrix of V, which appears in (3.14), V  =
(  T /  \Vo V\2

^22

We choose the same priors for a and p as in model Mi, so we have

/ i , ^ \  2 / n \ V 2 1 r a i ,
K<T|Mo) =  r W 2) ( 2 )  ^5+1 exp { — 2^2 } 1 + 00 , (3.25)

where a and b are the same constants used in model Mi and

p{p\M0) = {  1/2’ (326)
0 , otherwise.

We again suppose that (a,<r) and p are a priori independently distributed so 

that we can obtain the joint prior for the parameter vector as follows

p(0o|Mo) =  - J - ^ e x p { - ^ ( a - c t ° ) ' V 0 ^ a - a 0) )

27iT(i>/2) \2 /  P l  2cr2 J '

We then obtain the joint distribution for y and 0O in model Mq as

(3.27)

p(y,d0\M0) =  ^+6+P e x p j - ^ a  -  a ^ V o ifa  -  a 1) )

„  l^ o |- 1/2 f a V c x p (  ^ o i l  ( 3 '2 8 )
(27r)a?r(6/2) '2 /  \  2a2 J ’
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where Vbi — X'0X 0 +  V̂-1, a 1 =  V<E 1(X ,0X 0a. +  V ^ a 0) and I'oiSoi =  a +  v0sl +  

(a.1 — a°)VJ_1(o: — a 0).
If we integrate (3.28) with respect to a ,  we obtain

,  U / f ,  |F0| - 1/2 / a \ l

’v W l|i“l> H ? } ’
then the posterior joint distribution for (a, p) is

p(ff’p|y’Mc)oĉ ^ exp{“^ } -  ( 3 ' 3 0 )

If we integrate (3.29) with respect to a  , we obtain

2 T flt|Vo|-ir (!!i| ±i)p(y,p\M0)
(2’r)!‘̂ r ( 6/ 2) ,  .

s / T = 7  ( }X

p(p\y,M0) cx —  „ „W 1  ■ (3.32)

|V'oi|2(r'oiSoi) !E±̂ ±1 

Correspondingly, the posterior density for p is

V 1 ~ P
I V o i lH ^ o i s l ^

If we integrate (3.31) with respect to p, we obtain

2 2f 1a£|Vro H r
^  =  ( J A r ( V 2)2 }

x  —

which will be used in model comparison between model Mo and Mi.

(3.33)

3.4 Posterior M odel Probabilities

As we have obtained p(y|M 0) and p(y|M i), if we set equal priors for the models, 

that is, P(M 0) =  -P(Mi) =  0.5, then we can use (2.13) on page 9 to obtain the 

posterior probabilities as

P(M 0 |y) =
(3-34)

p m y )  = — k ,
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where

Jo J
drdp

| v r *  Jo Jh| V rt | i ( « / 18?)ad^±1
(t„_ i -  t2)|v&|-i r 1 V T ^

Jo dp

We would favour the model which has the bigger posterior model probability.
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Sm ooth Transition M odels

Smooth transition models are widely used to model economic time series, represent­

ing deterministic structural change in a time series regression as an alternative to 

the structural break models discussed in Chapter 2 and Chapter 3. The structural 

change of smooth transition model happens between different regimes over time 

while the structural break happens at some point instantaneously, for example, in 

the two-phase model. Considerable attention has been devoted to the smooth tran­

sition models for decades, including estimation of the parameters in the smooth

transition models and testing of smooth transition models against other models, 

such as linear models, unit root models.

Smooth transition models were originally proposed by Bacon and Watts (1971). 

Bacon and Watts (1971) argued the two-phase model is only appropriate if it is 

known that an abrupt transition happens. This is the disadvantage of the two-phase 

model because usually the nature of the structural change of practical data sets is not 

known a priori. Bacon and Watts (1971) introduced a smooth transition function 

trn{(:r — ^o)/t}  and suggested that the smooth transition function trn{(x — Xq) /^ }  

satisfies the following conditions:

(a) lim trn ( |s |/7 ) =  1;5—YC&
(b) trn(O) =  0;

(c) lim trn (s /7 ) — sgn(s);

(d) lim s trn (s /7 ) =  s.
s—>oo

By changing the value of 7 , trn{(a; — x0)/'y} describes abrupt transition ( 7  «  0) or
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very gradual transition (7  > 1). Bacon and Watts (1971) considered the following 

smooth transition model

Y  = a 0 +  ai(x  — x0) 4- a2{x -  £o)trn{(rc -  x0)/^f} +  Z, (4.1)

where Z  is a random variable accounting for error. Bacon and Watts (1971) also 

suggested specific transition functions that can be used: the cumulative distribution 

function of any symmetric probability density function or the hyperbolic tangent. 

A Bayesian approach had been used to estimate the parameters in the model (4.1) 

with a hyperbolic tangent function as the smooth transition function, trn (s /7 ) — 

tanh(s/7 ).

Maddala (1977) discussed the two-phase regression (which he called switching 

regression) and then suggested an alternative to the two-phase regression, a contin­

uously varying parameter regression given by

Vt = Ptxt +  ut,
c (4-2)

A =  0 +  1 + *.-*,>

where 5 < 0. Maddala (1977) suggested that the parameters of (4.2) can be esti­

mated by nonlinear least-squares methods.

Terasvirta and Anderson (1992) investigated various time-series representing 

business cycles, such as production and unemployment and considered these cy­

cles as being nonlinear and can be adequately described by a smooth transition 

autoregressive (STAR) model given by

Vt = Mo +  n[wt +  feo  +  7T'2wt)F(yt- d) +  ut, (4.3)

where ut is i.i.d. N(0 , <r2), TTj =  (nju  . . . ,  7rjp)', j  = 1 , 2 , wt = (yt_u . . . ,  yt_p)' and F  

is the transition function proposed by either

F{yt- d) =  (1 +  exp{-7 fe_ d -  c)})"1, 7  > 0 , (4.4)

or

F{yt- d) =  1 -  exp{ - 7 (yt_d ~  c)2}, 7  > 0 , (4.5)

and the corresponding smooth transition model is called either LSTAR or ESTAR 

model. The issue of nonlinearity of business important because if the business cycles
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are nonlinear, then the linear model theory will be inadequate and produce inferior 

prediction in practice. Terasvirta and Anderson (1992) conducted a test of the linear 

AR model against the STAR model. If the linearity was rejected, a sequence of tests 

of nested hypotheses would carry out to choose between LSTAR and ESTAR models 

and the specific models are estimated by the nonlinear least-square methods.

Lin and Terasvirta (1994) discussed similar smooth transition regression given

by

Vt =  x'tM +  x'tn2F(zt) +  Ut, (4.6)

where x t =  (1, yt_u . . . ,  yt- p, x u , . . . ,  x qt)' is an m  x 1 vector, m ~  p + I + q, 717 =  

(7Tn,. . . ,  7Tim)/, 7r2 =  (7T2i, •. ., TT̂ m)' are m x 1 parameter vectors, and ut is an error 

term with E u t — 0, E x tut — 0, and E ztut — 0. The smooth transition function F(t) 

is given by either

F(t) — -E(L7 ) =  (1 +  exp{~7 (tA: P a i t ^ 1 + . . .  P a k- i t  +  a fc)})_1, k =  1,3, (4.7) 

or

F(t) = F(t, 7 ) — 1 — exp{—7 (t — ck)2}). (4.8)

They used the first-order Taylor approximation of F(t) at t =  0, A(t), to substi­

tute F(t) in (4.7) or (4.8). They then test the null hypothesis 7  =  0 against the 

alternative, the approximated (4.6), substituting F(t) withA(t).

Granger and Terasvirta (1993, ch.7) suggested the logistic smooth transition 

regression (LSTR) trend model as

In(yt) -  ai +  fot +  a 2St{j, r) +  /32tSt{7 , r) +  et, (4.9)

where t — 1,2, . . . , T ,  r  G (1,T) and St( 7 , r) =  {1 +  exp[—7  (t — t )]}""1 is the 

curvilinear logistic function. Granger and Terasvirta (1993) noticed the difficulties 

of using the nonlinear least-squares (NLS) methods to estimate the parameters in 

model (4.9). The estimate for 7  may converge very slowly, particularly if the true 

value of 7  is large. In this case, the transition occurs quickly. The reason for this 

phenomenon is when the true value of 7  is large, the smooth transition function 

St(7 , t )  — {1 +  exp[—7 (t — r ) ] } - 1  produces similar values when 7  varies in a neigh­

bourhood of the true value of 7 . (See our discussions of the value of the smooth
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transition function below.) Therefore, the standard errors of the NLS estimate of 7  

may appear very large, which is not indicating the insignificance of the estimate.

Greenaway, Leybourne and Sapsford (1997) modelled economic growth and struc­

tural change with smooth transition models presented above in (4.9). They tested 

the null hypothesis of constancy of the intercept and trend against the smooth tran­

sition alternative. They followed Lin and Terasvirta (1994) to use a polynomial 

approximation of St{7 , r)  =  {1 +  exp[—7 (i — r )]}-1 and assumed a third-order Tay­

lor expansion is adequate. The NLS estimates are used for the parameters in model 

(4.9).

Leybourne, Newbold and Vougas (1998) considered testing non-stationary pro­

cesses, autoregressive unit root, against alternatives that were stationary around a 

smooth transition. They considered the following three smooth transition regression 

models

Model A yt — a x +  a2St{ j ,r )  +  vu (4.10)

Model B yt = o>i + Pit +  a 2St{/y, r) +  vu

Model C yt = ati+ Pit +  a2St(7 , r) -1- P2tS t( l , r ) +  vu

where vu t =  1 ,2 , . . . ,  T, is a stationary process, 7  > 0 and £*(7 , 7-) is the logistic

smooth transition (LST) function, based on the sample of size T,

r )  =  1 +  exp{_^ .(j _  tT ) }  1 ( 4 U )

where r  E (0,1). They tested various unit root hypotheses as follows

Null hypothesis yt — vu vt — z^-i +  et, Vo = ip,

Alternative hypothesis Model A, Model B or Model C;

Null hypothesis yt = vu vt =  « +  ut- i  +  et , ^0 =

Alternative hypothesis Model B or Model C;

then used a nonlinear least-square (NLS) algorithm to estimate the parameters in 

the smooth transition models (4.10). In Model A and B, the eventual changes of 

level are represented by 0:2, 7  and r. In Model C, the eventual changes of level are
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represented by ck2> 7  and r; the eventual changes of slope are presented by /32, 7  and 

r.

We develop our approach within the framework of a Bayesian perspective to 

compare the linear model with the logistic smooth transition regression models which 

were considered by Leybourne, Newbold and Vougas (1998), in above (4.10). In this 

chapter, we consider the simplest smooth transition model, Model A in (4.10), with 

the error term vt i.i.d N(0, a2). In the following chapters, we will consider the 

remaining smooth transition models with more complex error terms.

The LST function £*(7 , r)  in (4.11) controls the transitions between different 

regimes. When 7  > 0, the model transition occurs smoothly from the initial regime

V t —  a i  +  J ' t ,  t  — 0 0 ,

to the final regime

V t —  CX1 +  CT2 +  I ' t i  t  -—>• + O O ,

because lim £*(7 , r )  =  0 and lim £ 4 (7 ,7 -)  =  1 respectively. When 7  < 0 , the
t->—00 t—>+00

model transition occurs gradually in the opposite direction from the initial regime

Vt =  011 +  ol2 +  vu t  - *  - 0 0 ,

to the final regime

yt =  ai +  vt, t + 0 0 ,

because in this case lim £4(7 , r)  =  1 and lim (7 , r) — 0 . Because £*(7 , r) =
t-> —00 i-»+oo

1 — S t(~ 7 , t) ,  we only need to consider the case 7  > 0 without loss of generality.

Leybourne, Newbold and Vougas (1998) gave the following interpretation of the 

parameters of £ 4 (7 ,  r )  when 7  >  0. The parameter r  determines the timing of the 

transition midpoint since, for 7  > 0 , we have £ - 00(7 , t )  =  0 , £+00(7 , r) =  1 and 

t ) = 0.5 . The speed of transition is then determined by the parameter 7 . If 7  

is small then £ 4 (7 ,  r )  takes a long period of time to traverse the interval (0 , 1), and 

in the limiting case with 7  = 0, £ 4 ( 7 ,  r) =0.5  for all t. On the other hand, for large

values of 7 , £ 4 (7 ,7 - )  traverses the interval (0 , 1) very rapidly, and as 7  approaches

+ 00 , this function changes value from 0 to 1 instantaneously at time t =  tT. Thus 

in (4), yt is a independent series around a mean which changes from initial value ol\ 

to final value 0 7  H~ G!2.
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We will illustrate how the LST function S t( j ,r )  behaves using numerical exam­

ples. For symmetry of St(7 ,r )  at r  =  0.5, 5 0(7 , 0.5) =  1 -  S r(7 , 0.5), we suppose 

that t = 0 ,1 , . . . ,  T. Now the starting time is at t =  0 and the sample size is T  +  1.

The LST function 5* (7, r)  is determined by 7  and t — r T , that is, 7  and how 

far away t is from the midpoint rT , and is symmetry at t = rT.  In fact we 

have S TT + A t { /L  t )  =  1  —  S TT ~ A t ( 7 ,  t ) .  See Figure 4.1. In Figure 4.1, we plot 4 

graphs of St(7 , r)  with 7  =  1 , r  =  0.5 and different T =  15,30, 50,100 respectively. 

Even though the sample size is different, S t{j,r )  produces same values around the 

midpoint rT .

T =  15 T  — 30
o
00 o

T  = 50 T  = 100

(O
_  *■» O

o
CM
0oo

o
00 o 
<0 

+>0 Q -M- o
CMooo

10 20 30 40 500

o

CO■40 o

o

0 20 80 100

Figure 4.1: Graphs of 5 t(7 , r )  with 7  =  1, r  =  0.5 and T  =  15,30,50,100 respec­

tively.

We calculated values of r) around the midpoint rT  and the results are 

presented in Table 4.1, where 7 =  0.01,0.1,0.5,1.0,3.0,5.0 respectively. We denote 

At = t — rT.  From Table 4.1, we see that, given 7 =  0.01, 6^(7, r)  is 0.48 when 

A t =  —8 , increasing to 0.5199 when A t  =  8 . This shows that a small value of 7 

leads to a slow adjustment (speed of transition) from the old regime of ct\ to the new 

regime of ai +  a 2. On the other hand, if 7 =  5.0, 5*(7, r) is 0.0066 when A t = —1
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and increases to 0.9933 when A t  =  1. This shows that an abrupt change from the 

old regime to the new regime can be expressed using a large value of 7 . The data 

in Table 4.1 show that we can use 7  to express the speed of the transition at which 

S'* (7 , r) traverses from one regime to the other. The bigger the value of 7 , the bigger 

the speed of the transition. We can use the logistic smooth transition function to 

express a wide range of structural changes from very smooth transitions to abrupt 

change.

Besides these two extreme examples, we have 5Tr-8(L0, r) = 0.0003 and 

SVr+8(l-0, t )  =  0.9996, so for sample size of 100, the whole range is effectively 

traversed in 16 observations, a steep step in the bottom picture on the right in Figure 

4.1. From Table 4.1, we know that if 7  =  3, the whole range will be traversed in 9 

observations symmetrically placed around rT .

From above discussion we know that, for moderate sample size, for example, 

T  =  100, values of 7  > 1.0 are extremely unlikely if we know a priori that there is a 

gradual smooth transition occurs with the measuring time interval t e  [0, T]. This 

information will help us to set prior for 7  later.

4.1 M odel Selection

We wish to use a Bayesian approach to choose between the linear model (constant 

trend) and the LST model. We will decide from which model the sample data comes 

on the basis of the posterior model probabilities, P(Mi\y)  for the two models. We 

will favour one model rather than the other if P(Mi\y)  is bigger than that of the 

other. The model M0 can be stated as follows

M0 : yt = ai + vu (4.12)

where vt is iid N(0, a2), t — 0 ,1 , . . . ,  T. The model Mi, is the following LST model

Mi : yt — ai +  a2St{j, r) +  vu (4.13)

where a 2 ^  0, 7  > 0 and 5*(7 , r) is the LST function defined at (4.11) above.

We denote all the parameters in model M0 as the parameter vector 0O =  (ai, cr)', 

all the parameters in model Mi as the parameter vector =  («i, a 2, 7 , r, <r)', and 

the sample data as y =  (3/0, 2/ 1 , , yr)'■
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A t  

(t -  rT)
7

0.01 0.1 0.5 1.0 3.0 5.0 7.0 9.0

-8 0.48 0.31 0.018 0.0003 0 0 0 0

-7 0.4825 0.3318 0.0293 0.0009 0 0 0 0

-6 0.485 0.3543 0.0474 0.0024 0 0 0 0

-5 0.4875 0.3775 0.0758 0.0066 0 0 0 0

-4 0.49 0.4013 0.1192 0.0179 0 0 0 0

-3 0.4925 0.4255 0.1824 0.0474 0.0001 0 0 0

-2 0.495 0.4501 0.2689 0.1192 0.0024 0 0 0

-1 0.4975 0.475 0.3775 0.2689 0.0474 0.0066 0.0009 0.0001

0 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

1 0.5025 0.5249 0.6224 0.731 0.9525 0.9933 0.9991 0.9999

2 0.5049 0.5498 0.731 0.8807 0.9975 0.9999 1 1

3 0.5074 0.5744 0.8175 0.9525 0.9998 0.9999 1 1

4 0.5099 0.5986 0.8807 0.982 0.9999 1 1 1

5 0.5124 0.6224 0.9241 0.9933 0.9999 1 1 1

6 0.5149 0.6456 0.9525 0.9975 1 1 1 1

7 0.5174 0.6681 0.9706 0.999 1 1 1 1

8 0.5199 0.6899 0.982 0.9996 1 1 1 1

Table 4.1: Values of LST function around t =  rT .
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Given a sample y, the Bayesian comparison of the two models again proceeds by 

computing the posterior model probabilities, which are given by Bayes’ theorem in 

(2.13). For the approach we adopt here, we will again assume that the two models 

are equally likely a priori, so that P(Mi) = 0.5.

In order to simplify the derivation of our approach, we use matrix notation to 

represent the model Mx as follows

Mi : y  =  I a  +  u, (4.14)

where a. — (au, a^)' and X  is the matrix

1 1 s 0 N

1 Si

 ̂ 1 St j

where St =  St{7 , r)  is the LST function, t — 0 ,1 , . . . ,  T. The elements in the second 

column of the matrix are functions of both 7  and r.

4.2 The likelihood Functions

The likelihood function for the model M0 can be written as

p(y |0°, Mo) =  exp ~  “ l)2} ' (4'15)

We then rewrite the above as

p (;y |0 o, M 0) =  Z , x ± i  e x P Ky> ~  ^  +  t " 1 _  y W  }  > (4 -1 6 )

where y =  y? =

The likelihood function with respect to model Mi can be written as follows

p{y\0uMi) =  ^ r i gT+1 exp fot -  “ 1 -  afeSt)2j  ■ (4.17)

Using the matrix formulation in (4.14), we have the likelihood function with 

respect to model Mi as

p(y|<?1’Ml) = exp { ~ i (y -  * a),(y “ Xa)} • (4-18)
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We then can rewrite this as follows

where v =  T-1, d  =  (X 'X )~ lX'yand s2 =  ^  ^  — X °^

4.3 Priors

We adopt conjugate priors for the parameters in both models where possible. The 

parameters a\ and a are present in both models, while a.2, 7  and r  are only present 

in model M\. Because of the complicated structure for 7  and r  in the likelihood 

function for model Mi, simple conjugate priors do not exist for these parameters. 

We adopt the logistic distribution for 7  and the uniform distribution as a prior for 

7* in model M\.

4.4 Posteriors for M odel Mo

We adopt a joint conjugate priors for cti and <7, first the conjugate prior for ai given 

o is

p { a M )  =  ’ ( 4 -2 0 )

where k\ > 0 is a constant, E (a i|cr, M0) =  c and var(a1|(j, M0) =  k2a2. As is usual,

we adopt the inverted gamma distribution as the prior for a

p(ff|Mo) = r(ft)«U +i exP { _ i }  ’ 0 < < +0° (4-21)

where a and b are constants, satisfying a, b > 0 .

The joint distribution for (0o5y) is then
2 a - ( T + 2 b + 3 )2a - { T + 2 b + 3 )  C q  >1

p(Oo,y\M0) =

f T +  1 +  1/^1 / 21XeXp |     (a i - u )  j ,
(4.22)

c /k2 + (T + l)y
where u — ———     . 2 and G =  (T +  l)y 2 +  c2//ci +  2/a — (T +  1 +  1 /k \) u2.T  + l  + l / k l  

igrate (4.22) \
2 cr- ( T + 2 b + 2) {  Q  \

p(a, y |M0) =  T+i t exp < -  — 7 > . (4.23)
(27r)“^((T  + l)fcf +  l)3r(6)a6 I 2a2 J

If we integrate (4.22) with respect to a,\ we obtain
2a ~(T+2b+2)
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Integrating (4.23) with respect to a then gives

o & p  ( T + 2 b + l  \

P(y|Mo) =  - a t  ■ ■ \  3 G-****1. (4.24)
7r 2 ((T +  l)/ji +  l ) 2r ( 6)a6

Applying Bayes’ theorem, we obtain the posterior density for 0O as

f n  i n/r \ 1 f G?+(T + l + l//c?)(ai-u)2lp(flo|y,M0) =  gT+2t+8e x p | -------------------------------  1 .  (4.25)

If we integrate (4.25) with respect to a±t we obtain the posterior density for a as

p(<7|y, M0) oc exP \ ~ ^ } ’ (4'26)

which is an inverted gamma distribution.

Or we integrate (4.25) with respect to cr, obtain the posterior density

1
p («i|y , Mo) o c    5 ^5 5 5̂-, (4.27)
[G +  (T +  1 +  l/fc?)(“ i -

which is a univariate student t distribution.

4.5 Posteriors for M odel

Because of the complexity of the structure of the parameters 7  and r  in the likelihood 

function for model Mi, no simple expression for a conjugate prior for (7 , r)  exists. 

We suppose that (o!,cr), 7 , r  are a priori independent, then we have the joint prior 

for 61 in model Mi as follows

p(0i|Mi) =  p(a|cr, Mi)p(7 |M i)p(r|M i)p((j|M i).

The conditional conjugate prior distribution for a ,  given cr, in model Mi is the 

normal distribution with density function

p(a\a, Mi)  =  ■ 2^ ~  I exp ( - ^ 2  («  -  ^ 0) % ~ ^ 0) )  . (4.28)

where VQ is a 2 x 2 positive definite symmetric matrix and fi0 is a 2-dimension vector.

We adopt the same conjugate prior for a in model Mi as in model M0, which 

has the density function given in (4.21).

Prom the discussion of Table 4.1, we know that values of 7  > 1.0 will give rise 

to very rapid changes that are likely to be difficult to distinguish from structural
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breaks. Our prior for 7  should reflects the fact that for gradual smooth transitions, 

we are most likely to see values less than 1. Even in small sample periods, if 

7  — 1, the smooth transition function St(7 , r) gives from Stt - 8 =  0.0003 to Stt +8 =  

0.9996 within 16 samples around the midpoint rT. We choose the positive logistic 

distribution (See E. B. Fowlkes, 1987) as the prior for 7  with density function

Pfrl M l> =  (r+e-fc»T)2 ’ (429)

where 7  > 0, k2 > 0 is a constant. We plot the positive logistic density with k2 =  1 

in Figure 4.2. We can see from Figure 4.2 that the probability of {7  > =  6} is 

very tiny. So we think the choice of k2 — 1 gives us a suitable prior for 7  which 

spreads out enough to cover the interesting intervals for 7  G (0,1), corresponding to 

a gradual smooth transition, and 7  > 1, corresponding to an abrupt transition.

LO

CO

o

0 2 4 6 8 10
7

Figure 4.2: Positive logistic density function with k2 = 1.

We know nothing about r  except that r  G (0,1), so we choose a uniform distri­

bution as the prior for r  with density function

where r  G (0,1).

p(r) = 1 , (4.30)
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(4.31)

We can now write the prior density for the parameter vector d, as follows

p (0i |M i)  =  exP {~̂ ~ W))'Vo-1 ( «  -  Mo)}

2 f 1 1 2 k2e-k‘f
X r(6)o ba2b+1 6XP J (1 +  e-fcn )2’

and so the joint distribution for (#i, y) is

/a 4ib2V1 ^  f H  1 e“ *27
(2jr)2;?2r(6)(i!'(TT+2l>+4eXPl  2a2J (l +  e~*27)2

x exp l - ^ 2̂  ~ A)}

where V - 1 = X 'X  +  V0~ \  (i = V{X 'Xat  +  V^Vo) and H  =  (/x0 -  a ) 'X 'X ([ i  

6l) +  z's2 +  2/a.

Integrating (4.32) with respect to a , we obtain

(4.32)

p(7 , 7-,cr,y|j\4i) =
(2ir)**lr(6)aM '*»* (433)

1 f  H  \e-*27 1 ;

X | y - 1| exp \  2<72/  (l +  e-*27)2'

Integrating (4.33) with respect to <r, we obtain

p(7 ,r,y |M i) = -------- z |i  '  ,--------
, * 2 r ( 6 K  e- ^  (4 -34)
1   T  4 - 2 6 + 1  e  2 7x — H  2\y - i \  (l +  e - fc27)2

Finally integrating (4.34) with respect to (7 , r) gives

,  . T ® *  (4 .S5)
r T+26+i e r

(1 +  e-*27)2
f  f  1 -i'+2b+i e - •

x j j  2 — r zz ^ s ?  di dT-

Using Bayes’ theorem, we obtain p(0i|y,M i), the posterior distribution for 9U 

with respect to model Mi, as

p(0i|y ,M i) oc p(y |0i,M i)p(0i|Mi)
1 /  H  \  e~k21

*  aT+2b+A exP |  2cr2 J (1 +  e - fc27)2 - (4.36)

X eXp { - ^ ( a ~ A ) V  A)}
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Integrating (4.36) with respect to a  gives the marginal joint posterior distribu­

tion for 7 , r, cr as

p(7 > t ,  0-|y, Ml) = 1 1  p(9i \y ,M t)d a

|y| (4'37)
K o-r+26+2 exp \  ~ 2^2 J  (i +  e-fe7)2 '

Integrating again with respect to a gives the marginal posterior distribution for

7 , r  as
r+ o o

p(7 ,r |y ,M i) =  / p(7,T, ojy, Mx) dcr
1/0 -jut (4.38)

oc \V\H  2 (1 +  e - fc27)2-

We can then integrate (4.38) with respect to either 7  or r  to obtain the marginal 

posterior distribution for r  or 7  respectively,

p (7 |y ,M x) oc M te [  \V\H  Z±^ ±1 (4-39)
Jo(1 +  e~fc27)2

and
/ i  „ ,  S f  ■ v ' r i  T-r T + 2 b + 1 e  ,  . .

p ( r |y ,M i) o c y ^ |K |f f  > (T f ''e'-*,T) 2 ^  (4'40)

The conditional posterior distribution of o: given (7 ,r , cr) from p(0i|y) has den­

sity

J i v - H  r 1 A 1
p (a |7 ,r,o -,y ,M 1) =  V2^ 2 exp ■ !-— ( a  -  A)'V (4.41)

which is a multivariate normal distribution with mean fx and precision matrix 

V’~1/cr2. Here fi and V~l /cr2 are functions of 7  and r  which are unknown.

4.6 Posterior M odel Probabilities

We set equal probability as priors for both models, M0 and Mi, using (2.13), we 

obtain the posterior probability for model M0 as

P(M~D|y) =  (4.42)

and the posterior probability for model Mi is

P(Mi\y) =  (4.43)
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where
~ 1 T,-L.9/»_L1 / ~

k = :
T + 2 b + l (4.44)

4.7  Sim ulations

Now we use simulated data to illustrate the above approach to choosing between

model M0 and M\. We choose the following prior parameters: k\ =  1, Vq =

a =  1 , b =  2 , &2 =  1.

In order to calculate the posterior probability for model Mo, we need to calculate

area [0 ,1] x (0, -foo). We use Gauss-Laguerre rules (See Griffiths, 1993) to calculate 

the inner integral with respect to 7  over the infinite interval (0, + 00). Then we use 

Gauss-Legendre rules to calculate the outer integral with respect to t  over the finite 

interval [0 , 1].

Leybourne, Newbold and Vougas (1998) generated series from the model

yt = 1.0 +  10.0^ ( 7 , r) + fit fit — 0.8/it-i A £t £t ~  NID(0,1),

for various values of the speed of transition parameter 7  =  0.01,0.1,0.5,1, 5, with 

the transition midpoint fraction r  set at 0.2 and 0.5 and considering sample size 

100, 200. They obtained results based on 2000 replications.

We follow them to set ol\ — 1.0. (*2 =  10.0 is too significant for our algorithm 

to choose between model M0 and M\ so we choose — 3 arbitrarily smaller than 

10.0. We have only discussed NID(0, cr) error term, we cannot apply with an AR(1) 

error. The standard deviation of f i t in their AR(1) error is 5/3, so we choose a — 5/3 

for our simulations. We select more values for 7  =  0.05,0.5,1,2,3,4, r  — 0.8 and 

sample size 50. So we generate series from the model

the value of k in (4.44), which involves integrating a function of two variables over the

yt = 1.0 +  3 .0St(7 , r)  +  st et ~  NID(0,5/3). (4.45)

for various values of 7 , r  and sample size T  + 1. We obtain the proportions of the
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time we would have favoured model Mo, based on 10,000 replications and list them 

in Table 4.2, Part I.

T + l 50 100 200

r 0.2 0.5 0.8 0.2 0.5 0.8 0.2 0.5 0.8

7 Part I

0.01 0.9955 0.9963 0.9969 0.9707 0.9726 0.9773 0.4747 0.4108 0.5375

0.05 0.8912 0.8833 0.9362 0.2199 0.0407 0.3396 0.0005 0 0.0022

0.1 0.6476 0.4365 0.7955 0.0807 0.0007 0.1658 0.0001 0 0.0002

0.5 0.429 0.0381 0.6381 0.0308 0 0.0769 0 0 0

1 0.425 0.0375 0.6332 0.0304 0 0.0763 0 0 0

2 0.432 0.0395 0.6394 0.0313 0 0.0781 0 0 0.0001

3 0.4359 0.0404 0.6424 0.0319 0 0.0789 0 0 0.0001

4 0.4374 0.0408 0.6448 0.0323 0 0.0796 0 0 0.0001

5 0.4384 0.041 0.6452 0.0323 0 0.08 0 0 0.0001

a2 Part II

0 0.9998 0.9998 0.9998 0.9995 0.9995 0.9995 0.9996 0.9996 0.9996

0.5 0.9985 0.9981 0.9988 0.9971 0.9902 0.9973 0.9896 0.9515 0.9908

1 0.993 0.9888 0.9952 0.9704 0.8802 0.9787 0.8635 0.4582 0.8861

1.5 0.976 0.9554 0.9844 0.8539 0.5027 0.8977 0.4618 0.0284 0.529
2 0.9288 0.8621 0.9597 0.5932 0.1261 0.6955 0.0909 0.0001 0.1342

2.5 0.825 0.6695 0.8985 0.2816 0.0104 0.4126 0.0043 0 0.0104

3 0.6476 0.4365 0.7955 0.0807 0.0007 0.1658 0.0001 0 0.0002

Table 4.2: Proportion of P(M 0 |y) > 0.5 in 10,000 replications.

In Table 4.2, Part I, data series come from model Mi so the small values of 

the proportion of the time we favoured model M0 in the table indicate that Mi 

has been successfully detected. We have three groups of results, corresponding to 

sample size T  +  1 — 50,100, 200 respectively. In each group, we have various values 

for 7  and r . We can see, in each group, that when 7  increases, the proportion of 

favouring model Mo decreases. That is reasonable because when 7  increases, the 

smooth transition component , r) becomes more significant and easier to be

“caught” by our algorithm. For the same 7 , when r  =  0.5, our algorithm performs 

better because the smooth transition happens in the middle of the measuring time
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interval [0, T\ and is easier to be “caught” than it happens in the left edge or right 

edge of the measuring time interval. Different groups reveal that when the sample 

size increases, the performance of our algorithm becomes better. We also found in 

the first group, T  + 1  =  50, when r  =  0 . 2 o r r  =  0 .8 , no improvement for the results 

when 7  becomes bigger from 1 to 5. This, however, is not unexpected because when 

7  is bigger than 1 , the smooth transition becomes abrupt and sharp, which was 

carried out in a short period of time. See Table 4.1 and Figure 4.1. No significant 

change of the smooth transition happens in the data series when 7  is great than 1.

a 2 is the magnitude of the smooth transition. We also look at the effect of a 2 

by changing a 2 to various values and fixing 7 . We choose a 2 =  0,0.5,1,1.5, 2, 2.5,3 

and fix 7  at an arbitrary value, for example, at 7  =  0.1. We obtain the proportions 

of the time we would have favoured model M0 and list them in Table 4.2, Part II. 

Except a2 = 0 , all the data series come from model Mx. When a2 =  0, the data 

comes from model M0, we found the proportions of the time we favoured model 

M0 are near 1. The difference between different groups should contribute to the 

generation of different random numbers for different groups. We set the same seed 

to generate random numbers for each experiment, so the proportions within group 

are the same while between groups, the sample size changed, the proportions are 

different in the last digit. From 7  =  0.5 to 7  =  3, all the data series come from 

model M\. The performance of our algorithm improved when a 2 becomes bigger 

and when the sample size becomes bigger. Within each group, when r  =  0.5, we 

obtained the best results compared with r  =  0.2 and r  =  0 .8 .



Chapter 5

Sm ooth Transition M odel II

In this chapter, we will extend the smooth transition model discussed in detail in 

Chapter 4 by introducing additional terms into the smooth transition model. We 

will discuss the third smooth transition model in Leybourne, Newbold and Vougas 

(1998), that is, model C, in (4.10), with an AR(1) disturbance term to illustrate how 

the model can be extend to allow for autocorrelated errors. The smooth transition 

model we are going to discuss in this chapter is

yt -  a i +  fiit +  a2St{7 , r) +  P2tS t(7 , t )  +  ut ,
(5.1)

ut =  put- 1 +  et,

where p G (—1,1), et is iid N(0, cr2), a is unknown constant, t =  0,1, . . .  ,T.  The 

sample size is T  +  1. 5* (7 , r) is the logistic smooth transition (LST) function in 

(4.11), based on the sample of size T  +  1, where r  G (0,1) and 7  > 0. Now 

we have two trend terms, one is the linear term, a\ 4- Pit, which describes the 

linear change in the trend; the other is the linear logistic smooth transition term, 

a 2St('yJr) -b p2tS t{j, t) .

We compare the smooth transition model in (5.1) with linear regression model,

M0 : yt = ai + Pit +  uu
(5.2)

Ut =  put- 1 +  £ U

where p G (—1,1), £t is iid N(0, cr2), correspondingly, we call the smooth transition 

model in (5.1) model Mi.
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5.1 The likelihood functions
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In order to use Bayesian methods to compare the two models and obtain the posterior 

densities for the parameters of model Mi, we first need to obtain the likelihood 

functions for each model. We start with the likelihood function for model Mi and 

will then obtain the likelihood function for model M0.

By eliminating ut, ut- i  from model Mi, we obtain

Mi : yt -  pyt-1 =  (1 -  p)a i H- ((1 -  p)t +  p)fa

+  {St ~  pS t- l )&2  +  (tS t  — p{ t  — T)St- l )^2  +  £t.
(5.3)

where St = Sti'j^r) is an abbreviation for the smooth transition function. Notice

that when t =  0, a new symbol appears in model Mx. ?/_i is the initial state
r2<7

mof the model. As we saw in Chapter 3, ut ~  N(0,  ------~), t =  0 , ± 1, ± 2 , ,
1 — pz

particular we have u_i ~  N(0, We denote U-1 =  y / l  — p2u_i, then we have

U-i ~  N (0,a2), so that (u_i,e0> • • ■ ,£t ) are iid N(0, cr2).

We set 0i — (ai, P i,a2, /32,y ,r ,  p,<j)', the parameter vector in model M\. In 

order to use matrix notation to describe the model, we denote z_i =  V T ^ y - u  

that is, x - i  = y/1 -  p2ai -  a /1  -  p2fii +  a/1  -  p2S - 1a 2 -  y / l -  p2S-i/32 +  u~1, 

x t = y t -  p y t - i, t  = 0 , 1 , . . . , T, we transform (y_i, y0, • • •, V t )  to (m_i, x0, . . . ,  xT). 

If we now write x =  (a;_i,rc0, .. . , x T) \  e =  (w-i,e0»ei» • • • >£r)', P =  (<*i, A ,a 2, f t )

and

/

X  =

V1 -  p

i  -  p 

i - p  

i ~  p

p Sq -  pS-i

1 S i - p S o
2 — p S2 p<Si

v T - p ^ s u

pS-i

Si

2S2 — p5i

\

\  1 “  P  (1 — p ) T  +  p  S t  — P ^ t - i  T S t  — p(7" — l ) S r _ i  j

we have model M i as

M i: x =  X/3 +  e. (5.4)

Notice that x is unobservable, x _ i ,  x0 are functions of y _ i ,  y0 and p, which are all un­

known. x t} t =  1 ,2 , . . . ,  T, are functions of p. When p  =  1, the transformation from 

( y _ i ,  y o 3 • • • > V t )  to (a?_i, Xq, . . . ,  x t )  becomes identical and the disturbance terms in
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both models become iid N(0 , cr2). The Jacobian of the transformation y

^ l - p 2 0

58

X  I S

J  =
dx
dy

~P

-p 1

The joint distribution of x =  (x~i, x0, . . . ,  x t), can be written as

p ( x | 0 i M l )  =  ( i )  e x p { “ ^
vs2 + 03 -  P)'X-

}• (5.5)

where i/ =  (T +  2) -  4 =  T  -  2, /§ =  (X 1 X )~ 'X 'x ,  and vs2 =  (x -  X/3)'(x -  X/9). 

The likelihood function for model M\ is then given by

- A - ^ r

exp
\  2cr2 v s 2 +{P-p y x 'X ( f i  - Y

(5.6)

Similarly, we can obtain the likelihood function for model M0 because model M0 

is the simple case of model Mi when a2 =  fa — 0 .

By eliminating ut and ut~ 1 from model M0, we obtain

M0 : y t ~  P V t-1 =  (1 ~  p)«i +  ((1 -  p)t +  p)/5i +  e t .

If we denote the parameter vector in model M0 as Oq =  (« i5 &2 , p , cr); and

(5.7)

Xn =

 ̂ V* -  p - V i  -  p ^
1 -  p p
I -  p 1

1 - p 2 - p

v 1 - P ( l - p ) T  + p j

we can rewrite model M0 as follows

.Mo • x — -Xoo: T

where a  =  (gu, fix)'.

(5.8)
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The joint distribution of x in model M0 is given as

, /  I V +2 1 t'osS + ( a - a y X i X 0( a ~ & ) )
P ( x | 0„ ,M o e x P (     2 ) ,  ( 5 -9 )

where p0 =  (T +  2) — 2 =  T, a  =  (XgXo)_1XJx, and VqSq — (x — X 0d:)'(x — X0d). 

The likelihood function for model Mq is then given by

/  1 \  T’+2 
p{y\0o, Mo) =  - = = -  v ' W ’x\v 2 ira  /  /c lnx

f  t'oSo +  ( «  -  d ) '-X J .X o (a  -  d )  1
eXP\  2^  j ’

5.2 Priors and Posteriors for m odel

We select priors for the parameters in model M\. We choose a conjugate prior for 

/3 conditional on a in model Mi as follows

p{p\o, Mi) =  exp -  -  /3°) J , (5.11)

where V  is a 4 x 4 positive definite symmetric constant matrix, j3° is a 4 dimensional

constant vector. The conjugate prior for a in model M\ is an inverted gamma

distribution with density

P(<7|Ml) =  f W 2) ( f ) 6/2 ^ T eXP{ “ 2^ } ’ 0 < * < + ° ° ’ (5-12)

where a, b > 0 are constants.

As for 7  and r , we choose the same prior distributions that were used in Chapter 

4. These are given by
okp-ki

=  ( 1 + e - * 7 ) 2 ’ ( 5 J 3 )

where k > 0 , 7  > 0 and

/ 1  . f  1, rG  (0 , 1);
p(r|M i) =  I (5.14)

I 0 , otherwise.

We know p G (—1,1), which corresponds to the stationary case, so we choose a 

uniform distribution over (-1, 1) for p which has density

p (p \m 1) =  {  1 / 2 ,  r e ( _ M ) ;  ( 5 1 5 )

0 , otherwise.
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We suppose that ((3, a), 7 , r  and p are a priori independently distributed, so 

that we have the joint prior density for 9i as

ta \ 21- 6/2|] / |- i /2aV2
p(91\M1) = —  X(2?r)2r(&/2)

1
^ exp v

a 1 2kTe~kTl
- p°)} X (5.16)

exp I 2cr2 J (1 +  e fcT7)2 

Now we can obtain the joint distribution for (y,9i) in model M\ as

, 21"6/2|F |- 1/2a6/2
p(y, 9i Mi) =   —g---------- x

(2Jr)s^r(6/2)

a T + b + 7

exp

6XP{“2^(/3_/3l)Vl('9 _ '8l)} X ( 5 ' 1 7 )

vs\ 1 2kT
(1 +  e~kT"t)2 ’

where Vx = X 'X  + V ~ \  p 1 =  V p ( X 'X P  + V ^ p 0), and vs\ =  a +  vs2 +  (p l 

P)’X 'X (P °  -  P).

If we integrate (5.17) with respect to we obtain

, 21-V2 |V |- i /V / 2
P(y, 7> t , p, a  Mi) =  s i r — 1-------------x(27 r)^ r(6 /2 )|14 |1/2

\ / r - P 2

Integrating this with respect to cr, we obtain

exp {
v s l \  2kTe~kTl 
2a2 J (1 +  e~kT7)2

, 6 /2
p ( y 7 r p |M0  =  ^ & f f l ^ xPfy.T.T.piM ,) (2)r)^ r(6/2)|V L|V 2

i / l  - p 2
(^sf)Iat ±2( l  +  e - ^ ) 2 ’

If we now integrate this with respect to 7 , r, p, we obtain

2^ | y | - V 2r (2M|±2) a6/2
p(y|Afi) =

///
(27r)2:Pr(6/2)

X

V i 3 2 kTe~kT
IVil1/2̂ ? ) 3̂  (l + e-“ vi’)2 

This will be used in the model comparison later.

djdrdp.

(5.18)

(5.19)

(5.20)
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5.3 Priors and Posteriors for m odel Mo

Now we select priors for parameters in model M0. We select a conjugate prior for 

a. conditional on a in model M0 as

p (a |a ,M 0) =  - M ^ eXp ( - - L ( a  -  Q'°)V0“ 1(a: -  a 0)}  , (5.21)
I 2(7 J

where Vo is a 2 x 2 positive definite symmetric constant matrix, a 0 is a 2 dimensional 

constant vector. For simplicity, we take Vo to be sub-matrix of V, where V  =
Vo Vi2 \  . .

is the matrix in (5.11).
V{2V22 J

We choose the same priors for p and a as in model Mi, that is,

p(p\M0, ) = <  V 2 ’ P 6 ( _ 1 ’ 1); (5.22)
0 , otherwise,

p{r\M0) = <

and

1, r e  (0,1);

0 , otherwise,
(5.23)

K a |M o )  =  f ( ^ 2) ( I ) V2 ^ eX p{ “ 2^ } -  ° < f f < + c o > (5-24)

where a, b > 0 are the same constants as in model M i.

We suppose that (a , a) and p are a priori independent. With these priors for 

parameters in model M0 and the independence assumptions, we can obtain the prior 

for the parameter vector in model M0 as

x
(5.25)

in 171 /T \ z vf“ar,"\Vo 1 r a 'i
pWMo) = 2^r(6/ 2) ^ exp{ - 2̂ }

exp { ~ 2c t^ “  "  “ °)Vo"1(a  -  <*°)) •

Then we can obtain the joint distribution for (y, 0O) in model M0 as follows 

1 a i . , i  f  j/os^ i
p ( y ’ M M o )  =  ^  e x p  \  ~ 2^ - }  x

0XP{ _ 2ct2 (a  — a i)Vox(a — « i)  ) ,
(5.26)

where Voi =  +  V„ 1, a L =  V0ll (X'0X 0a  +  V0 ‘a 0), i/os^ = a +  ia>sI + ( a x

a) 'X^Xo(a0 -  a).
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If we integrate this with respect to a ,  we obtain

i | \  21_6/2ail/2 |Vb| -1^2p(y ,  p, aM 0) =  jrrj x
(27r) ̂  r (6/ 2) | Vox 11̂ 2 f52?1

exP ^ 2tT2 / '

Integrate (5.27) with respect to cr, we obtain

nf-.-ji.ui 2W 2|y0|-v2r(£±P) y r v
Pty .P iM o) (2 7 r)IP r(6 /2 ) |y o i|1 /2

If we integrate this with respect to p, we obtain 

2 Ẑ a ' ,/2|-l/n| - i / 2 r  f Z i i± 2 )  r

p(y|Mo) = ------- 19 ^ r t h M  /  w A n i  iT S E T ^ P ’ (5-29)(2tt) 2 r ( 6/ 2) J |Poi I (^o^oi) 2

which can be used in the model comparison.

5.4 Posterior m odel probabilities

We assume that the investigator does not know which model the sample data is 

from. So we set equal prior probabilities for the two models, P(Mo) =  P(Mi) = 0.5. 

Using (2.13) on page 9, we can obtain the posterior model probabilities as follows

P(M„|x) =  *
t  (5.30)

P(M i|x) -

where

k

1 +  fc*

f f f  v / T ^  2 k T e -kT''
\ V \ - ^  J J J  (1 +

In order to evaluate (5.30) in any particular case, we need to complete the triple­

integral which is not straightforward using numerical methods especially when the 

integrand is typically concentrated in a small region of R3. For example, in above 

integral, the range for 7  is infinity, 7  € (0,00). We can expect that the task of this 

kind of calculation of (5.30) is expensive in time for computer. In the next Chapter, 

we use a kind of new technology, MCMC, to avoid above analytic integral. So we 

just leave it and carry on to the next chapter.
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Sm ooth Transition and M CM C

Research on economic time series has always attracted a lot of interests from eco­

nomists and statisticians. Economists believe that trends and cycles exist in eco­

nomic time series. Crafts, Leybourne and Mills (1989) and Newbold and Agiakloglou 

(1991) discussed trends (evolving growth rates) and cycles in British industrial pro­

duction, from year 1700 to year 1913. Recently, some economists began to consider 

the trends in some economic time series to be nonlinear and smooth without abrupt 

changes. Terasvirta and Anderson (1992), Terasvirta (1994), Greenaway, Leybourne 

and Sapsford (1997) used smooth transition models to describe model growth and 

structural changes. Leybourne, Newbold and Vougas (1998), Sollis, Leybourne and 

Newbold (1999) tested the null hypothesis unit roots against the alternative of a 

smooth transition and used the smooth transition to fit the economic time series.

In this chapter, we use the smooth transition model discussed in Leybourne, 

Newbold and Vougas (1998) to fit two economic time series. We use a Bayesian ap­

proach, that is, we make references through the posterior densities. We use Markov 

chain Monte Carlo (MCMC) methods to sample from the posterior densities and 

use the samples to make inferences for the parameters in the model. In this way, we 

avoid complex analytic integrals which we met in the previous chapter and evaluate 

by numerical Monte Carlo. In particular, we use the Markov chain Monte Carlo 

method, called slice sampler, to carry out sampling from the posterior densities.
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6.1 Bayesian M odels
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Here we adopt the smooth transition model discussed in Leybourne, Newbold and 

Vougas (1998). We set up the priors for the model and obtain the posterior for the 

parameters of the model.

6.1.1 S m ooth  tran sition  m odel

In Leybourne, Newbold and Vougas (1998), their alternative consists of the three 

smooth transition models with stationary disturbances given in (4.10). For sim­

plicity, we only discuss the third one with an AR(1) process for the disturbance 

term. Suppose we obtain sample data, y  =  (y0, y i , . . . ,  yr)', from the third smooth 

transition model

yt =  ofi +  fot +  a 2St( 7 , t ) +  p2tSt( 7 , r) 4- uu
(6 .1)

ut =  put-. 1 + e ti

where t — 0 ,1, . . .  ,T,  p E (—1,1), £t is iid N(0, a2) and <r is an unknown positive 

constant. The sample size is T  + 1 . St(7 ,r )  is the logistic smooth transition (LST) 

function,

gt(7’r ) = l +  exp{-7 ( t - r T ) } ’ (6'2)

where r  E (0,1), 7  > 0. This smooth transition model can be used to describe 

both increasing and decreasing behaviour in observed time series. See discussion 

in Chapter 4 and Chapter 5. The interpretation of the parameters of the smooth 

transition function 5 *(7 , r )  was discussed in Chapter 4.

6.1 .2  L ikelihood

In order to use Bayes theorem to make references about the model, we need to obtain 

the likelihood function for the model. We follow Zellner (1987), pp.87 and suppose 

the process represented by (6 .1) has been operative for t = 0 , - 1 , —2 , T0, 

where T0 is unknown. We suppose T0 > 1 in order to obtain distribution of u0 in 

the following.

From the stationarity of ut, we have var(ut) = var(ut_i). Because ut~ 1 is inde­

pendent of et , if we calculate the variance of the two sides of the AR(1) equation,
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we obtain var(^) =  var(ei_i) =  a2/ ( l  — p2). Easily, we have E(ut) =  E(ut- 1) =  0 . 

Because {ut} is a Gaussian process, the distribution of ut is normal, determined by 

its mean and variance only, so we have

r2
u t ~ N  0 ,

o
1 - P 1

(6.3)

in particular, we have u0 ~  N ^0 , z~ —^ . If we denote u0 = y / l  — p2u0, then we 

have u0 ~  N(0 , <r2), wo is independent of eu t > 0 , so that (flo^o,. . .  ,£t ) are iid 

N(0 , a2).

By eliminating ut, ut- i  from the model, we obtain

yt -  pyt- \  =  (1 -  p)ai +  ((1 -  p)t +  p)/3i

A (St — pSt-1)«2 +  (tSt — p(t — l)S t_ i)/?2 +  £t,
(6.4)

where St =  St(7 , r) is an abbreviation for the smooth transition function, for 

t =  1,2, . . . , T .  We now construct a new series, denoted xt — yt — PVt-i, f°r

t — 1, 2 , . . . ,  T. If we denote £ 0 — \A  — p2yo, x =  (x0, Xu . . . ,  xT)(, then we ob­

tain a transformation from y to x, which has the Jacobian

J
dx.
dy

\ /T

-p 1

\ / i  -  p2- (6.5)

The relationship between the two joint distributions for x and y is p(y) =  | J|p(x).

For convenience, we denote the parameter vector as 0 =  (au, /3X, a 2, /?2, 7 , v, p, a)', 

and we denote £ =  (w0, £1, . . . ,  £ t ) \  which is i.i.d. N(0, cr2), (3 =  (a*i, /?i, a 2, ^2) and

1 v/ l - p 2 0 V 1 -  0 N

1 — p 1 5i — pSo S\

x  =  1 -  p2- / 9  S 2 -  p S i  2 5 2  -  p 5 i

\  1 - p  (1 ~ p )T  + p

We have x0 = \ / l  — p2(ai +  a 2Sj) +  Co, then the model can be presented as

x  = X/3 + e. (6 .6 )
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Using the results for the multivariate normal regression in the appendix, the 

joint distribution for x can be written as

(  1 V +1 f 1
=  f e j  expr ^p(x |0) us2 +  ( p - p y x  p) (6.7)

V v W  1 2 ^

where i/ =  (T +  l ) - 4  =  T - 3 , 0  =  ( X ' X ^ X ' x ,  and vs2 =  (x -  X/9)'(x -  X p ) .  

The joint distribution for y then can be written as
\  T + l

p{y\6) =  \/l-p 2 expI - —1  2<72
!/s2 +  (/3 -  P) 'X 'X(P } (6.8)

6.1 .3  Priors and P osteriors

We choose a joint conjugate prior for (3 and a as follows:

m ° ] = B k exp p a y v ^ _  ^  * (6.9)

where V  is a 4 x 4 positive definite symmetric constant matrix, /3° is a 4 dimension 

constant vector,

2 /a \W 2 1
p(cr) = ( f ) ' <J6+1 exp (6.10)

V  = k2 (6 .11)

Tib/2)

where a,b > 0 are constants.

Monahan (1983) and Naylor and Marriott (1996) gave suggestions about how 

to choose the values for the prior covariances of f t  and a, b. We follow them and 

choose
^ 1 0  0 0 ^

0 1 0  0 

0 0 1 0  

0 0 0 1

where kp = 16 and a = b — 1/128. Under these selections, the prior distribution for 

a is “diffuse” and is shown in Figure 6.1. The plot is truncated at quantile q — 15.6, 

correspondingly to the cumulative probability 0.04, that is, P(a  < 15.6) =  0.04. 

The prior variances for ai, f t ,  0:2, f t  are the same k^a2.

When we fit the smooth transition model to data, we believe that a smooth 

transition happens in the period of time of measuring the data, that is, r  G (0,1). 

We use gamma and uniform distributions for 7  and r  as priors respectively,

V /

p{7 ) =  G (6 .1 2 )
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m o .

o .

o

0 5 10 15
X

Figure 6.1: Density of inverted gamma, IG (1/128,1/128), truncated at quantile 

with cumulative probability 0.04.

and
I  1, r e  (0,1);

P ( t )  = I (6.13)
I 0 , otherwise.

where ai,&i > 0. We choose a\ — 4 so that the prior mean for 7  is 4&i and 

the standard deviation is 2b\. The prior for 7  covers the interval (0 ,10bi) with 

probability about 0.99. From the discussion in Chapter 4 we know, when 7  =  0.1, 

r  = 0.5, about 99% of a smooth transition can be carried out, from 0.00669 to

0.99331, in the time interval t £ (0,100). In our experience, the value of 7  should not 

be much bigger than 0.4 unless we know a priori that there is an abrupt transition 

during the time of measuring the data.

We know p £ (—1 , 1), which corresponds to the stationary case, so we choose 

the uniform distribution over (-1, 1) for p

1/2' ' € < - 1' 1)! (6.14,
0 , otherwise.

p(p) =

We suppose that ((3, <r), 7 , r  and p are a priori independently distributed, so
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that we have the following joint prior distribution for the parameter vector

p(0)<x “ j exP — /3°)V_1(/3 — /3°) j x

^ eXp{_ 2^}G(ai,6l)’
Now we can obtain the posterior for 9 as

p ( % ) «  ^ 4 exp |  -  P y v i i p  -  p A  x 

^ + 2 eXP{_^ } G(ai’6l)v/l_p2’

(6.15)

(6.16)

where 14 =  X ’X  + V ~ \  /31 =  V c \ X ' X j i  + y _1/3°), and vs\  =  a + us2 + (0 1 -  

p y X ' X ^ - P ) .  Notice that Vi, (31 and vs\  depend on p, 7  and r; G(ai , bi) depends 

on 7 .

6.2 Introduction of M arkov Chain M onte Carlo

Markov chain Monte Carlo (MCMC) is a general method to simulate complex, non­

standard multivariate distributions. MCMC methods have a profound influence on 

statistics especially in Bayesian inference. The theoretical discussion and applica­

tions of MCMC can be found in Geman and Geman (1984), Besag (1989), Geyer 

(1992), Smith and Roberts (1993), Besag and Green (1993), Tierney (1994), Gilks, 

Richards and Spiegelhater (1996), Robert and Casella (1999) and Chen, Shao and 

Ibrahim (2000), Besag (2000). Instead of sampling independently from a univariate 

(or multivariate) distribution, p(9), MCMC methods simulate dependent realisations 

9i , . . .  ,9n, which form an irreducible Markov chain with n(9) as its stationary dis­

tribution (limiting distribution of 9n). Samples from the Markov chain then can be 

used for statistical inference about p(9), for example, E7r(g(9)) can be approximated 

by averaging the function g(.) over the samples from the chain as

£r(ff(*))« ;;!> (* * )•  (6-17)•V . -1=1

When g(9) = I{q<=b}> the above equation becomes an approximate evaluation of 

probability of P{9 E B ), where /  is the usual indicator function. See, for example, 

Geyer (1992), Smith and Roberts (1993), Besag (2000) for more discussion.
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The statistical analysis, using MCMC methods, is based on the formula in (6.17). 

If the distribution function is the posterior density of parameter 0, p(0|y), then (6.17) 

can be used to estimate the posterior mean with g(9) — 9, or posterior standard 

deviation with g{9) = (9 — £?(0|y))2, where E(9\y) is the posterior mean of 9. The 

more complex g(.) can provide estimates of other moments and probability quantiles.

It is possible to estimate the predictive density using the sample from the pos­

terior density. If we denote y as a future observation, corresponding to time t , we 

have

as the joint density for y and the parameter vector 9, conditioned on the observed 

sample data y, where p(y\9,y) is the conditional distribution for y , given 9 and y. 

p(0|y) is the posterior density for 9. In fact the distribution for y is only determined 

by 9 and has nothing to do with y, so we can write p(y\9, y) =  p(y\9). By integrating 

the above with respect to 9, we obtain the predictive density for y as

The above integration may be complicated, however we have obtained the sample 

data from the posterior density p(9 |y), so we can avoid this difficulty by using Monte 

Carlo integration and calculate

where 0*, i =  1 ,2 , . . . ,  n  is the sample from the posterior density for 9

The best known MCMC sampling algorithms are Gibbs sampler, (Grenander 

(1983), Geman and Geman (1984)) Metropolis-Hastings’ sampler (Metropolises al. 

(1953), Hastings (1970)) and the latest Reversible Jump Markov chain Monte Carlo 

(RJMCMC) (Green (1995)). Casella and George (1992) and Chib and Greenberg 

(1995) give excellent tutorials on Gibbs sampler and Metropolis-Hastings’ sampler 

respectively. In the following, we will briefly introduce the Gibbs sampler and the 

Metropolis-Hastings5 sampler. We will introduce the slice sampler in detail and use 

the slice sampler in our smooth transition model.

p{y,o\y) = p{y\Q,y)p{9\y) (6.18)

p($\y) = [ p(y\0)p{9\y) d9. 
Je

(6.19)

p(y\y) ~ fb (6 .20)
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6.2.1 G ibbs sam pler

We have the p-dimensional random vector variable x =  (ad, x2, . . . ,  xp) ~  / (x )  and 

marginal full conditionals fa — p(xt \x1: . . . ,  x1”1, x l+1, . . . ,  xp). The Gibbs sampler 

constructs the Markov chain through the following iterative steps as:

Given xra =  (x *, x2, . ■ ■, xp), generate

!• 4 +i ~  

2- 4 +i ~  / 2(^2|4 + i ,Xn,- - - ,xp); 

p • 4 +i ~  /p(^pI4 + i5 • • • 5 4 +i)-

6.2.2 M etropolis-H astings sam pler

Suppose the target density is / .  In order to use Metropolis-Hastings’ sampler, we 

arbitrarily select a proposal distribution q(-\x) which is easy to simulate from, then 

through the following iterative steps, we obtain the Markov chain with /  as its 

stationary distribution,

Given xn,
1. generate y ~  q(y\xn);

2. take
(

Ui with probability A\

xn, with probability 1 — A,

where A = mm R M & M .

^n+1 — <

’ f ( x n ) q { y \ x n )

There are some varieties of algorithms for Gibbs sampler and Metropolis-Hastings 

sampler. In the following, we introduce the slice sampler which is a special case of 

Gibbs sampler and will be used in the inference of the smooth transition model in 

this chapter.

6.2 .3  Slice Sam pler

Slice samplers are a form of auxiliary variable technique which introduce auxiliary 

random variables to facilitate the design of an Markov chain Monte Carlo (MCMC) 

sampling algorithm. Swensden and Wang (1987) first used auxiliary variable tech­

nique in MCMC for the inference of the Ising model. The Ising model can be used
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in image processing. Suppose we have a black-and-white image consists of a two- 

dimensional table of pixels, with value 1 for white and 0 representing black, say. 

Then the image can be described as a binary process, r) — (771, . . .  ,r]n), with joint 

distribution as

where > 0, i < j  and I  is the indicator function. (6.21) usually be referred to as 

Ising model. Edwards and Sokal (1988) generalised the Swensden-Wang technique, 

using the auxiliary variable technique to general models. The form of the slice sam­

pler introduced below is due to Edwards and Sokal (1988). Besag and Green (1993) 

introduced the slice sampler into statistics literature. Since then the use of this tech­

nique has gradually increased. A. Mira and L. Tierney (1998) compared the slice 

sampler with independence Metropolis-Hastings sampler. Roberts and Rosenthal 

(1999) discussed the convergence of slice sampler Markov chains. Damien, Wake­

field and Walker (1999) demonstrated the use of auxiliary variables for sampling 

non-standard densities with a variety of examples. More details of slice sampler 

were discussed in Neal (2000). The strength of the slice sampler is in its general­

ity and ease of implementation. Frequently, the implementation is straightforward, 

which is a merit from a practical point of view.

Suppose /(x ) is a density with respect to d-dimensional Lebesgue measure, which 

is given, up to a constant, by

obtain a Gibbs sampler by introducing auxiliary variables as in the following steps:

• Sample m  independent uniform random variables un+i(i, un+i i2, . . . ,  nn+i>m, 

with

7̂1+1,* ^  ^(0? ^z(^n))>

(6 .21)

/(x )  a  7r(x)n” i ;,(x), (6 .22)

where 7r(.) is a density of known form and the /<(.) are non-negative functions. We

Given xn,

• Sample xn+i ~  7r(x) conditional on the set L = {x : Zj(x) > un+1̂ }, 

where t/(a, b) denotes the uniform density on the interval (a, b).
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The idea behind the algorithm is straightforward. By introducing auxiliary vari­

ables u =  (ui, U2 , . . . ,  Mm)', which are independently distributed, Ui ~  C/(0,^(x)), 

the joint density for (x, u) is

7(x , u) o c  Trip^Il^ Ify i  < ^(x )}> (6.23)

where /{.} denotes the indicator function. (6.23) can be proved easily by integrating

the right hand side of (6.23) with respect to u which will give the density of x. From 

the joint density for (x, u), we have the full conditional density for x as

/(x |u) o c  7 t ( x ) I I £ : 1 / { ^ ( x )  >  U i } ,  ( 6 . 2 4 )

which can be sampled a s x ~  ir(x) conditional on the L =  {x : li(x) > Ui}. The full

conditional density for u is

f(ui\x)  ~  U(0,li(-x)). (6.25)

So conditional on x, Ui are independently uniformly distributed over (07i(x ) ) 5 i — 

1,2, . . . , m  respectively. Since we can obtain the full conditionals for x  and u, 

implementing the Gibbs sampler for (x, u) is straightforward using the steps above.

6.3 D iagnosing Convergence

We have introduced several methods of constructing Markov chain which can be 

used in (6.17), providing an approximation of probabilities or probability quantiles 

we want. For the implementation of any MCMC method, we need a stopping rule 

to guarantee that the number of iterations is sufficient for the approximation of 

(6.17). Another problem is about the burn-in, that is, how to get rid of the effect of 

the starting state 0O? For a Markov chain we generated, {00,0 i , . . . ,  0n}} the chain 

will gradually “forget” its initial state 190 and P(6n\00) will eventually converge to a 

unique stationary distribution of the Markov chain, denoted as 7r(0), which is inde­

pendent of n and 9n. (See the reviews of Brooks and Roberts (1998) and Mengersen 

et al. (1999).) So far we have discussed only running one chain. It is permissi­

ble to run parallel chains. It is believed that one long run has the best chance to 

find new features of the distribution such as new modes while comparison between
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parallel chains can provide differences if the chains have not approached station- 

arity. Gelman and Rubin (1992) recommended parallel chains while Geyer (1992) 

recommended one long chain. Cowles, Roberts and Rosenthal (2000) discussed the 

possibility of introducing biases into estimation based on the sampler output by 

applying convergence diagnostics in some ways. They recommended choosing the 

number of burn-in by applying convergence diagnostics to one or more pilot chains 

and then making inference on a separate long chain. It seems the debates between 

the one long chain and several parallel chains will continue. In the following, we will 

introduce two kinds of convergence diagnostics for parallel chains and single chain 

respectively.

6.3.1 R aftery  and Lewis D iagnostic

Raftery and Lewis (1992) considered the convergence diagnostic of a single long run 

of simulation. Instead of studying the convergence of the Markov chain of {9n}, 

Raftery and Lewis studied the derived two-state Markov chain, where an explicit 

analysis of convergence control is obtained. There are three numbers about the 

convergence, the minimum sub-sampling step in order the derived chain is a Markov 

chain, the number of burn-in and the length of the chain for given precision on the 

empirical average.

Suppose we consider quantiles of U, a function of parameter vector. We denote 

Ut as the value of U for the t th iteration, then we have the following derived binary 

chain
f  1, if Ut < u ;

Zt = {  (6.26)
j 0, otherwise.

The sequence {Z t} is not a Markov chain. Raftery and Lewis suppose that the 

dependence in {Zt} falls off rapid with increasing lag k, that is, if we form a subse­

quence of {Zt} as

z \ k) =  Z XM̂ X )*, (6.27)

consisting of every fcth iteration from the original chain, then z f :) will be approxi- 

mately a Markov chain if k is sufficiently large.

Raftery and Lewis determine the lag k by testing if {z[k is a Markov chain 

against the alternative that { Z ^ }  is a second order Markov chain, that is, the vector
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(z[k\  z[k+l )̂ is a Markov chain. Raftery and Lewis choose the smallest value of k 

for which the null hypothesis, {z[ ĥ } is a Markov chain, is preferred. After achieving 

the value k for the Markov chain {z[k^}, Raftery and Lewis determine the number

of burn-in iterations, M  =  mk  by considering the two-state Markov chain with the 

following transition matrix

where a  is the probability of changing from the first state to the second state and 

j5 is the probability of changing from the second state to the first state. The two- 

state Markov chain is then converges to the stationary distribution ir =  (7ro,7Ti) =  

(/3 ,a)/(a  ±  /3). Therefore Raftery and Lewis determine the burn-in length by re­

quiring that

for i , j  = 0,1, where e > 0 is any given precision with default value e — 0.001 given 

by Raftery and Lewis. Raftery and Lewis gives out

where A =  1 — a  — f3, which is usually positive in practice. Then the number

r — 0.0125, s =  0.95, that is, the estimate of cumulative distribution function 

locates within ±0.0125 of the true cumulative distribution function with probability

0.95. Raftery and Lewis then gives out the length of iterations which satisfies this 

requirement as N  = nk, where

where $  is the standard normal cumulative distribution function. Moreover Raftery 

and Lewis suggest that we can use the non-thinning chain to obtain greater accuracy 

than their criterion. Raftery and Lewis also give out the initial number of iterations

(6.28)

(6.29)

w  (
® ^max{a:,/J} J

(6.30)

of burn-in M  — mk  is determined. Here Zn  ̂ = ~ XXu ^ i ^  the estimate of 

q =  P(U < u|Data). For large n, Z ^  will be approximately a normal distribution. 

Raftery and Lewis require that P(q — r < Z ^  < q +  r) = s, with default values

(6.31)
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for the pilot run of the chain as

Nrnhmm
2 g( 1 ~ g) 

r 2 (6.32)

For example, when q =0.025 or 0.975, r =  0.0125 and s =  0.95, then Nm-m = 600. It

and k. Raftery and Lewis (1992b) suggest that a further statistic I  =  H±.K COuld■'’min

be calculated to measure the increase in the number of iterations due to dependence 

in the sequence. Values of I  greater than 1 indicate a high level of dependence. 

Raftery and Lewis suggest that I  greater than 5 often indicates problems of the 

implementation.

6.3 .2  G elm an and R ubin  D iagnostic

Gelman and Rubin (1992) diagnostic is applicable to parallel chains, based on de­

tecting when the Markov chains have “forgotten” their starting points, that is, the 

parallel Markov chains drawn from different starting points become indistinguish­

able by comparing the between-sequence variance and the within-sequence. Gelman 

and Rubin (1992) advise that a set of starting values which are over-dispersed with 

respect to the stationary distribution 7r should have been obtained for the parallel 

Markov chains. Gelman and Rubin diagnostic can be applied to all scalar summaries 

of interest from the target distribution (posterior distribution of parameters), for ex­

ample, mean, standard deviation, 2.5% and 97.5% order statistics which consist of 

95% posterior probability interval, of each parameters. We denote the scalar sum­

mary of interest as 0 , assume m  parallel simulation chains, each of length n. Gelman 

and Rubin define the between sequence variance B  and the within-sequence variance

would be possible to run a final run of the simulation chain with the above M, N

W  as
m

w

B (6.33)

-  1 T A

where 0*. =  -  V ' ipij} 0.,Tl " y~^(0jj — 0i.)2. Then Gelman

and Rubin define the “conservative” estimate of the variance of 0  as
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which is unbiased under stationarity, that is, if the starting points were actually 

drawn from the target distribution. This estimate is “an overestimate” because 

the starting points were over-dispersed and may not be from the target distribu­

tion. Gelman and Rubin call the within-sequence variance W  an “underestimate” 

variance of if) because the simulation Markov chains have not explored the whole 

support of target distribution within limit length of simulation and therefore have 

less variability. When n oo, both Vty )  and W  will approach var(^).

Gelman and Rubin suggest that we can monitor the convergence of the paral­

lel Markov chains by estimating the ratio between the “overestimate” V fy )  and 

“underestimate” W

R  =  (6.35)

which will approach 1 when the parallel Markov chains converge. Gelman and Rubin 

also suggest that if all the values of R  are less than 1.1 or 1.2 then we can assess the 

convergence of the parallel chains.

Brooks and Gelman (1998) suggest a modification of the statistic R  accounting 

for sampling variability in the variance estimates as

6 +  d +  3R(^)  0 f x

R ‘ ~  ~d + 2 ~  J + 2 ~W ~ ' (6'36)

where d is the estimated degrees of freedom for a student-t approximation to the 

posterior inference based on the simulations. The degrees of freedom d can be 

estimated by the method of moments as d «  2V(^)/var(V’(^>)), given by Brooks 

and Gelman.

S-plus programmes for these two convergence diagnostics can be found in Statlib, 

S archive and I use these S-plus programmes to carry out the convergence diagnos­

tics.

6.4 A pplication of the Slice Sampler

Here we indicate how we can use Monte Carlo Markov Chain methods to obtain 

inference for the smooth transition model. In particular, we will use the slice sampler 

to obtain samples from the posterior density (6.16). We can factorize the expression
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in (6.16) as
3

(6.37)

where n(9) is a proper joint density function for 9, k(9), i = 1,2,3, are positive 

functions given below

in the following steps

• First, sample 7 , r  and p independently from gamma distribution, uniform 

distribution on (0 , 1) and uniform distribution on (—1, 1) respectively;

• then sample <r, conditional on 7 , r  and p, from inverted gamma distribution;

• finally sample (3, conditional on 7 , r , p and cr, from multivariate normal dis-

,2

q-T-\-b-\-2

h(6) =  i u r 1/3, (6.38)

h(0)  =
T+M-l

h(0) =  x/ 1  -  p2.

We can sample from tt(9) directly, for example, 7r(0) can be factorized as

*(<)) = p{7 , r > p)p(ff|7, T, p)p(P\<7, r, p, <t) (6.39)

if we sample 7 , r  and p independently, then we have the factorization as

(6.40)

where

p(7) =  G(ai,6i), 

P { T )  - ^ { 0 < t < 1 } ,

p(p) =  7{_1<j0<1}; (6.41)

■ T + 6 + 2

<?)

where /{.} is the indicator function. So the sampling 0 from 7r(0) can be carried out

tribution.
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The implementation of the slice sampler is therefore straightforward by iterating 

between

• sampling 9 from tt(9) conditional on 9 being in the set L(ui,w2,n 3) =  {9 : 

k{9) > Ui,i — 1, 2 ,3} by rejection sampling and

• independently sampling new values of Ui from U(Q,li(0))> i — 1 , 2 ,3.

We notice {9 : h(d\y) > w3} =  {9 : —y/T~—uf  < p < y / l  — n |}  and k(0\y), i — 1,2 

are functions of 7 , r  and p only. So we do not need to sample a and (3 until we have 

proper samples for p, 7  and r  which satisfy l{{9) > Ui, i =  1, 2,3. We can adjust the 

steps as follows

• sampling p from U(— a/1 — u3, y^l — u|);

• sampling independently 7  and r  conditional on being in the set L ( u i , u 2) — 

{(7 , r, p) : li(9|y) > Ui,i — 1, 2} by means of rejection sampling;

• sampling a from the inverted gamma distribution conditional on 7 , r  and p\

• sampling f3 from multivariate normal distribution conditional on 7 , r , p and

• sampling new values of Ui from £7(0, ^(^|y)) independently for i = 1 , 2 ,3.

Before we begin our sampling, we need to discuss how to generate data from some 

familiar distributions. First we need to generate data from an inverted gamma (I G ) 

distribution or gamma G distribution. Inverted gamma and gamma distributions 

have the following simple relationship. Given g ~  G(a, fi) with the two parameters 

(cx,/3), we set a — l/y/g,  then a ~  IG(v,  s), with the two parameters (1̂ , s), where 

the relationship between (a, j3) and (17 s) is given by

Because we have v very large (compared with 1), we have a, > 1. So, we only 

need the algorithm to generate data from a gamma distribution, G{a,j3), with the 

parameters a > 1, j3 > 0. It is easy to prove (see Appendix A) that h ~  G(at, 1),
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then g = fih ~  G(a,/3). The method we adopt for generating data from a G(a , 1) 

with a > 1 was suggested by Best (1978),

1. Define b — a  — 1, c — (12a — 3)/4;

2. Generate u,v iid U(0,1) and define

w = u ( l - u ) ,  y =  "  5 )  ’ x ^ b  + y\

3. If x  > 0, take 2 =  64u2u;3 and accept x  when

z < 1 — 2y2 / x

or when

2(b\og(x/b) - y ) >  log(^);

4. Otherwise, start from 2.

For the multivariate normal distribution, we generate Z from the standard mul­

tivariate normal distribution and then use the Choleski method to factorize the 

required covariance matrix V  so that V  =  LI/, where L is a lower triangular ma­

trix. If we set Y  =  L'Z +  /Lt, we then obtain the multivariate normal vector variable

Y N(/z, V).  (See A. Jennings and J. J. McKeown (1992), second edition for the

discussion of this method and Choleski decomposition of symmetric matrix.)

In the following, we will discuss the application of our approach to two real 

economic time series, leaving the discussion of the performance of the slice sampler 

we used in the last section.

6.5 Em pirical A pplications

In the previous section, we introduced the slice sampler for sampling from the joint 

posterior density function for the parameters in the smooth transition model. Now 

we apply our method to two empirical examples to illustrate our procedure. The 

first series is the annual British industrial production index, from year 1780 to 

1913 (134 observations) reproduced in Table A.l on page 160 in the Appendix. 

Crafts, Leybourne and Mills (1989) constructed the first series, and decomposed



CHAPTER 6. SMOOTH TRANSITION AND MCMC 80

the series into its trend and cycle components and compared with those obtained 

from traditionally available indices. Newbold and Agiakloglou (1991) provided an 

alternative analysis of this series with the standard autoregressive integrated moving 

average model building approach. Leybourne, Newbold and Vougas (1998) tested 

the null hypothesis of an autoregressive unit root for this series. One of their tests 

rejected the null hypothesis for the annual British industrial production series at 

1% significance level. Then they fitted the alternative, the smooth transition model 

with AR(2) error, to this series using a nonlinear least squares (NLS) algorithm. 

The second is the US quarterly gross domestic production series, from 1961 to the 

first two quarters of 2000 (158 observations). We follow Leybourne, Newbold and 

Vougas (1998) to fit the smooth transition model to the first series, as well as the 

second series, with the logarithm of the scaled data (that is, if the original series is 

x t , we use series yt =  \og(xt.)

In the following, we will present the results of the Bayesian analysis of the two 

series and then conduct the discussion of the performance of the slice sampler Markov 

chains for the two series, the convergence diagnostic, the burn-in and how long the 

Markov chains used for Bayesian analysis, etc.

6.5.1 E xam ple 1: B ritish  Industrial P rod u ction  Index

We first apply our approach to the British industrial production index series. We 

obtain the fitted smooth transition model, using posterior means as point estimates 

for the parameters

yt = 1.28+ 0.0128*+ 0.6935*

+0.00692*5* +  Uf, (6.42)

ut — 0.585u*_i +  su

where St =  o .l)sW  51..I7I}}' f  =  °-387’ T  =  133’ e‘ iid N(0’*2) and
<t — 0.0403. The estimated trend in the smooth transition model and the British

industrial production series are plotted in Figure 6.2, where the solid line is the

actual data and the dotted line is the estimated trend.

The Bayesian analysis provides more information than the posterior mean of

parameters (point estimates used in (6.42)). We also obtained the posterior second
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Figure 6 .2 : UK industrial production and the fitted trend.

moments and an estimate of posterior density for each of the parameters. The 

posterior mean and standard deviations for each parameter are listed in Table 6 .1 . 

The posterior densities for all the parameters in the model are plotted in Figure 6.3. 

The quantiles with different cumulative probabilities for each parameter are listed 

in Table 6.2.

ai A 0L2 ^2

mean 1.28 0.0128 0.693 0.00692

sd 0.0477 0.00447 0.222 0.00412

7 T P a

mean 0.0842 0.387 0.585 0.0403

sd 0.0183 0.0426 0.097 0.00255

Table 6.1: Posterior mean and standard deviation for UK industrial production 

index series.

Using the posterior quantiles in Table 6.2, we can obtain Bayesian interval esti­

mations for each parameter, for example, a 95% posterior probability interval for 7
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Figure 6.3: Posterior densities of the parameters for UK industrial production index 

series.

P = P {X  < x)

V 0.025 0.05 0.25 0.5 0.75 0.95 0.975

1.19 1.21 1.26 1.29 1.31 1.34 1.36

f t 0.00271 0.00531 0.0106 0.0132 0.0156 0.0189 0.02

Oi2 0.328 0.386 0.55 0.67 0.811 1.08 1.2

f t 4.98e-05 0.00115 0.00433 0.00656 0.00897 0.0135 0.0158

7 0.0538 0.0582 0.072 0.0824 0.0941 0.116 0.125

T 0.308 0.329 0.369 0.39 0.409 0.44 0.451

P 0.407 0.435 0.521 0.58 0.643 0.747 0.788

a 0.0356 0.0363 0.0385 0.0401 0.0419 0.0447 0.0456

Table 6.2: Quantiles for the posterior distributions of the parameters for UK indus­

trial production index series.

0.0 0.5 1.0 1.5 0.0 0.05 0.10 0.1S •2 ■1 0 1 2

o

0.30 0.0 0.2 0.4 0.Q 1.0>0.10 0.0 0.05 0.10

0.2 0.4 0.6 0.8 1.0
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is (0.0538,0.125); or (0.0582,0.116) with posterior probability 0.9. A 95% posterior 

probability interval for r  is (0.308,0.451); or (0.329,0.44) with posterior probability 

0.9.

We found from the plot of the posterior densities and quantiles for the posterior 

densities of 7  and r  that, our approach favours a gradual smooth transition with 

the speed 7  around 0.0842 and the midpoint of the smooth transition locates at tT  

around 51.471, corresponding to May 1831.

We can obtain the predictive density for y =  yr+i, which is presented in Figure 

6.4. The predictive mean, standard deviation and quantiles for j /T + i  are listed in 

Table 6.3.

p{y\y)

CO -

o -

y

Figure 6.4: First step predictive density for UK industrial production index series.

p =  P ( X  < q) 0.025 0.05 0.25 0.5 0.75 0.95 0.975 mean sd

Q 4.49 4.51 4.57 4.61 4.65 4.71 4.73 4.61 0.0598

Table 6.3: Statistics for the first step predictive density for UK industrial production 

index series.

The predictive distribution can also be obtained for yti t =  0,1, . . .  ,T.  With the
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predictive densities for yt, t =  0 ,1 , . . . ,  T, we can obtain mean and quantiles of these 

predictive distributions. Fitting model with the predictive mean of yt, E(yt |y), 

is preferable in Bayesian literature, because this approach is obtained from the 

Bayesian point of view, making all inferences from the corresponding distributions 

conditional on the observed sample y.

We obtained two quantiles with cumulative probabilities 0.025 and 0.975 respec­

tively for each yt , t — 0,1, . . .  ,T. These can then be plotted with the predictive 

mean, E(yt |y), and actual data in Figure 6.5 to give approximate 95% predictive 

probability intervals for the model at each time t —  0 ,1, . . .  ,T . The solid line is 

the actual data, the dotted line is the predictive mean, E(yt |y), and the dashed line 

is the 95% predictive probability intervals. We can see from the plot that all the 

actual data fall in the 95% predictive probability intervals in this case.

CO -

CM -

400 20 60 80 120100
t

Figure 6.5: 95% predictive probability intervals for UK industrial production index 

series.

In the smooth transition model, we use the smooth transition function St = 

St (7 , r) to describe the transition. The smooth transition function we selected St — 

St{7 , t )  satisfies some properties as St 6  (0 , 1) and St t+a* =  1 — SrT- At- We would 

like to know if these properties preserved for the posterior mean of the smooth
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transition function

E(St \ y )=  f  St p(6\y)de. (6.43)

With the posterior sample from the posterior density of the parameters , we can use 

the Monte Carlo integrating method to obtain the posterior mean of the smooth 

transition function as

E ( S « |y ) « - I > ( 7 * .* - 0 ,  (6.44)n .—-
i = l

where 7*, 7* are the marginal sample from the sample 0*, i = 1, 2 , . . .  ,n,  where n

is the sample size. We have plotted E(St\y)  as a function of t in Figure 6 .6 . We

found that E(S t \y) € (0 , 1) but E(STr+At\y) ^  1 -  E(STT-At\y), that is, the range 

of E(St\y)  is the same of the range of St but the shape of E(S t |y) is different from

s t .

00d

o

0 20 40 60 80 100 120
t

Figure 6 .6 : Posterior mean of the smooth transition function for UK industrial 

production index series.

6.5 .2  E xam ple 2: U S Q uarterly G D P  series

Now we will apply our approach to the US quarterly gross domestic production 

series. We found the disturbance term for this series is very weak compared with
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the trend, we feel that it is unnecessary to consider the disturbance term as AR(1). 

Using the posterior means as point estimates for each parameter, we obtained the 

fitted smooth transition model with white noise as

where St —

yt -  6.27 +  0.0174* +  0.8025* -  0.00389*5* +  eu 

1

(6.45)

, f  =  0.45, T  =  157, et i.i.d. N(0,0.03472).1 +  exp{—0.0854(* -  70.65)}
The actual data and the estimated trend are plotted in Figure 6.7 with a solid line

and a dotted line respectively. The posterior means and standard deviations for each

parameter in the model are listed in Table 6.4 and posterior quantiles are presented

in Table 6.5. The posterior densities for the parameters are plotted in Figure 6 .8 .

Our approach favours a gradual transition for this series with the speed of the

smooth transition around 7  =  0.0854 and the midpoint of the smooth transition

locates around r  * T =  70.65, corresponding to the third quarter of 1978.

CD

0 50 100 150

Figure 6.7: US gross domestic production and the fitted smooth transition compo­

nents.

We also present the predictive density for yr+i in Figure 6.9, the posterior pre­

dictive moments and quantiles in Table 6 .6 .
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ai A Ot.2 &

mean 6.27 0.0174 0.802 -0.00389

sd 0.0106 0.000763 0.0547 0.000663

7 T a

mean 0.0854 0.45 0.0347

sd 0.0105 0.0132 0.00198

Table 6.4: Posterior mean and standard deviation for model of US GDP series.
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Figure 6.8: Posterior densities for parameters in the model for US GDP series.
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P II IA x)

p 0.025 0.05 0.25 0.5 0.75 0.95 0.975

ai 6.247 6.251 6.261 6.268 6.275 6.285 6.289

Pi 0.0157 0.016 0.0169 0.0174 0.0179 0.0185 0.0186

Oi2 0.705 0.719 0.764 0.798 0.836 0.898 0.92

P2 -0.0051 -0.00492 -0.00435 -0.00393 -0.00347 -0.00275 -0.00248

7 0.0667 0.0693 0.0781 0.0847 0.0919 0.104 0.108
r 0.423 0.427 0.441 0.45 0.458 0.471 0.475
a 0.0311 0.0317 0.0334 0.0346 0.036 0.0382 0.0389

Table 6.5: Quantiles for the posterior in model for US GDP series.

p(yl y )

CO -

o  -

9.1
— i—

9.39.2

y

Figure 6.9: First step predictive density for US GDP series.

p = P ( X <  q) 0.025 0.05 0.25 0.5 0.75 0.95 0.975 mean sd

q 9.13 9.14 9.18 9.2 9.22 9.26 9.27 9.2 0.0362

Table 6.6: Statistics for the first step predict for US GDP series.



CHAPTER 6. SMOOTH TRANSITION AND MCMC 89

The US government published new data of the US gross domestic production, 

the data for the third quarter of year 2000, which was 10,052.2 billion dollars. The 

logarithm of the scaled datum for the third quarter is therefore 9.21555, which is be­

tween the two quantiles 9.2 and 9.22, correspondingly to the cumulative probability 

0.5 and 0.75 respectively.

We again obtained an approximate a 95% predictive probability interval for each 

of yt, t =  0 , . . .  , T  and plot these predictive probability intervals with the actual 

data and the predictive mean of yt , E(yt |y), in Figure 6.10. The two dashed lines 

outside consist of the approximate 95% predictive intervals, the dotted line is the 

predictive means, E(yt \y), and the solid line is the true data. The posterior mean of 

the smooth transition function for the model fits the US gross domestic production 

series is plotted in Figure 6.11.

toCO

0 10050 150
t

Figure 6.10: 95% predictive probability intervals for US GDP series.

6.6 Perform ance o f the Slice Sampler

We have proposed using the slice sampler to carry out sampling from the posterior 

density of the parameters of the smooth transition model because it is the most



CHAPTER 6. SMOOTH TRANSITION AND MCMC 90

o

00
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t

Figure 6.11: Posterior mean of the smooth transition function for US GDP series.

direct way to do this in this case. The expression for the posterior density for the 

parameters in this model is complex, especially for 7 , r  and p. If we had some other 

information for the densities of these parameters, we might be able to use other 

methods, for example, the Metropolis-Hastings algorithm, using the prior informa­

tion to determine the proposal distributions, especially for 7 , r  and p. The slice 

sampler is direct but in practice, there may be problem, especially when the number 

of auxiliary variable increases, the determination of the set L(u) =  {9 : li(6) > U{} 

may become increasingly difficult; if we still use rejection method for the determina­

tion of the set L(u) =  {6 : li(9) > u*}, this may cause low efficiency. Moreover, the 

increasing of auxiliary variables may cause the slowdown of the convergence of the 

Markov chain. (See discussion of Robert and Casella (1999), p291.) There are other 

versions of slice sampler and these methods usually will not sample more efficiently 

than Gibbs sampler or a well-tuned Metropolis-Hastings sampler. (See Neal (2000).) 

In the next chapter, when we consider the double smooth transition model, we will 

adopt other methods to sample from the posterior density, avoiding these problems.

We have discussed how to choose a± and 61 for the prior for 7  in the section 6.1.3,
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where we suggested ai — 4 so that the standard deviation for 7  was not too small 

compared with its mean. When ai — 4, we have the prior mean as 4&i and prior 

standard deviation as 2b\. Economists think there are gradual smooth transitions in 

the UK industrial production series and US GDP series. So we select a small value 

for bi, for example, b\ = 0.025, then the prior mean of 7  is 0.1. 7  =  0.1 is suitable 

for describing a graduate smooth transition which carries out over an medium size 

of time interval, for example, [0 , 100].

We use two different methods to diagnose the convergence of the Markov chain 

for UK industrial production index series, Raftery and Lewis (1992a) and Gelman 

and Rubin (1992) diagnostics.

For the Raftery and Lewis diagnostic, we choose initial values for 7  =  0.1, 

r  =  0.5 and p — 0. For the Gelman and Rubin diagnostic, we generate six parallel 

simulation chains, each of which has dispersed values for 7 , r  and p according to our 

prior knowledge about them: 7  is positive and less than 1 for a graduate smooth 

transition; r  € (0,1); and p £ (—1, 1). We list the dispersed initial values for the 

six parallel simulation chains in Table 6.7.

Series 7 r P
1 0.1 0.5 0

2 0.01 0.5 0.5

3 1 0.1 -0.9

4 0.1 0.9 0.9

5 0.01 0.1 -0.5

6 1 0.9 0

Table 6.7: Dispersed initial values for 7 , r  and p in six parallel simulations for UK 

industrial production index series.

Raftery and Lewis’ method suggests that a “burn-in” should be under 100 itera­

tions and the length of chain to obtain the default accuracy (r — 0.0125, s =  0.95) is 

about 3000. We check both quantiles q = 0.025 and q =  0.975 which are frequently 

used in practice. We list the diagnostic of Raftery and Lewis in Table 6.8 for the 

chain between iteration 1000 and 2000 with left-hand cumulative distribution at
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Figure 6.12: Gelman and Rubin diagnostic for Markov chain for UK industrial 

production index series.

0.025 and 0.975 respectively. In Table 6 .8 , km& is the thinning parameter required 

to make the chain into an independent chain. Raftery and Lewis diagnostic shows 

that the simulation chains for all the parameters in the smooth transition model, 

except p, converge after 1000 iterations. We do not need to worry about the infer­

ence of p too much because we are much more interested in other parameters in the 

smooth transition model than p and a because other parameters have specific inter­

pretations in a practice series. For example, 7  and r  are the speed and proportion of 

midpoint respectively for a smooth transition. Further diagnostics using simulation 

chain between other iterations (2000-3000, 3000-4000 etc) give out similar results 

for k, M, N, I  and Mnd-

Gelman and Rubin’s method suggests that a “burn-in” of 200 iterations is 

enough. Values for Rc are all smaller than 1, and the smallest is 0.9977. The 

biggest value of the upper bound of Rc is 1.002 , the smallest is 0.9977. All the 

values of Rc are under and near 1 indicate that the six parallel simulations are in­

distinguishable. We list the diagnostic results in Table 6.9. We plot the Gelman
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P{U < w|Data) =  0 025 P (U <

oIITT9_3 975

k M N I Mnd k M N I Mild

O1 1 3 749 1.25 2 1 2 570 0.95 1

A 1 3 692 1.16 2 1 3 729 1.22 2

OL2 1 2 591 0.99 1 1 2 618 1.03 2

P2 1 3 749 1.25 2 1 3 671 1.12 2

7 1 3 692 1.16 2 1 3 671 1.12 2

r 1 4 811 1.36 2 1 3 729 1.22 2

P 1 4 811 1.36 2 1 18 3053 5.12 8

a 1 2 591 0.99 1 1 2 570 0.95 1

Table 6 .8 : Raftery and Lewis diagnostic for the UK industrial production series.

and Rubin diagnostic for the posterior means in Figure 6.12, which also suggest 

convergence after 200 iterations.

P(U < w|Data)

2.5% 25% 50% 75% 97.5% Rc sup{Rc}

o\ 1.217 1.258 1.281 1.305 1.354 0.9979 0.9983

Pi 0.0008016 0.01032 0.01280 0.01523 0.01881 0.9977 0.9977

0,2 0.3360 0.5755 0.6894 0.8084 1.139 0.9980 0.9989

P2 0.0007584 0.004758 0.007127 0.009181 0.01463 0.9978 0.9979

7 0.05389 0.07041 0.08092 0.08951 0.1199 0.9987 1.001

r 0.3023 0.3649 0.3862 0.4061 0.4419 0.9978 0.9980

P 0.3889 0.5187 0.5839 0.6497 0.7536 0.9982 0.9992

a 0.03634 0.03982 0.04026 0.04079 0.04305 0.9990 1.002

Table 6.9: Gelman and Rubin diagnostic for the UK industrial production series.

Additionally, we plot the simulated sample of each parameter in the long single 

simulation for the first 600 iterations in Figure 6.13. These simulated samples do 

not show any sign of lack of convergence after 300 iterations. We also plot the 

autocorrelation function for each parameter in Figure 6.14. These autocorrelation 

functions show us how fast the autocorrelation functions go to 0 with the increasing
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of iterations. This is important for the MCMC methods because the autocorrelation 

function measure the dependence within a chain. High dependence usually means 

slow convergence of the chain. We can see from the plot of autocorrelation functions 

that all the autocorrelation functions decrease rapidly.

I
S
1
I
s

Figure 6.13: Simulated samples for the UK industrial production index series.

After the analysis of the convergence of the Markov chains, both six parallel 

chains and one long chain, we chose a burn-in of 1000 and ran a long single simulation 

of 50,000. We used this single simulation chain to obtain the results for the Bayesian 

analysis of the UK industrial production index series reported in the section 6.5.1.

For the US gross domestic production series, the Raftery and Lewis diagnostic 

suggests the burn-in should be under 10 and the length of the chain of about 1000 

is enough. We also checked both quantiles q = 0.025 and q — 0.975. We list the 

results of the Raftery and Lewis diagnostic in Table 6.10. The application of the 

Raftery and Lewis diagnostic to other range of the samples (for example, samples 

between iteration 1000-2000, 2000-3000 etc) gives out very similar results, which 

suggests the adequateness of the recommended values of the burn-in M  and length 

of the chain N.  Low values of I  in Table 6.10 for all parameters suggest the rapid
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Figure 6.14: Autocorrelation function of the Markov chains for the UK industrial 

production index series.

convergence of the chains because of the low dependence. The simulated sample 

of the first 600 iterations for each parameter is plotted in Figure 6.15, which could 

help us to find lack of convergence if an obvious trend exists. The autocorrelation 

functions in the lag 100 are plotted in Figure 6.16, which show us the very low 

dependence of the chains, consistently with the results from the Raftery and Lewis 

diagnostic. We ran a single simulation of 50000 for the Bayesian analysis of the US 

GDP series.
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P(U < «|Data) =  0 025 P (U < w|Data) =  0 975

k M N I Mnd k M N I înd
a i 1 3 672 1.12 2 1 2 570 0.95 1

A 1 4 793 1.33 2 1 2 619 1.03 2

a  2 1 2 619 1.03 2 1 5 823 1.38 2

A 1 4 759 1.27 2 1 5 863 1.45 2

7 1 6 1060 1.78 4 1 4 793 1.33 2

r 1 3 730 1.22 2 1 3 700 1.17 2

cr 1 2 570 0.95 1 1 2 570 0.95 1

Table 6.10: Raftery and Rubin diagnostic for the US GDP series.

Figure 6.15: Simulated sample of the Markov chain for the US GDP series.
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Figure 6.16: Autocorrelation functions of the Markov chain for the US GDP series.



C hapter 7

D ouble Sm ooth Transition

In this chapter, we discuss the double smooth transition model, which has been 

used to describe more complex models than those we discussed in the previous two 

chapters. This double smooth transition model has been used in the case of the 

global average temperature series by D. Harvey, 2000. We will discuss how to use 

Monte Carlo Markov chain methods to carry out a Bayesian analysis of the double 

smooth transition model.

The double smooth transition model is

y t =  ex i  +  (3it +  +  O is S ^  +  /?3 t S ^  +  £ t, (7.1)

where 5 ^  is the smooth transition function for the zth smooth transition component

^  =  1 4- exp{—7i(t — n T )} ’ (7'2)

0 < Ti < t 2 < 1. The disturbance terms eti t =  0 ,1 ,. . . ,  T, are i.i.d. N(0, cr2), where 

a > 0 .

7.1 Likelihood Function

We introduce the following matrix notation

( 1 0 s i 1] 0

1 1 s j 1* s j1*
X  =  1

98

s f

S,(2) ;(2)

q (  2 )  r p q ( 2 )
C 'rp  -1 kjrp

(7.3)
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which is a (T +  1) x 6 matrix, y =  (y0, y i , . . . ,  yT)' is the sample data vector, 

e =  (eq,£i, . . .  ,£T)' is the disturbance vector and 0  — (ai, 0i, a'2, 0 2 , a 3, 0s)f is a 

sub-vector of the parameter vector 6 =  (/3,71, n , 72, r 2,cr)/. For convenience, we 

denote another sub-vector as Oi =  (71, 71, 72, 72) so we have 0 — (/3,01}<r)'. Then 

the double smooth transition model in matrix notation is

y  = X 0  + e. (7.4)

It is straightforward to write the likelihood function as

/ 1 /  vs2 + ( p - p y X ' X ( ( 3 - 0 ) \  . .
P(y\  0 )“  £ m  exP |  1 2^ ------------| , (7.5)

where v = T -  5 , 0  = ( X ‘X ) - lX ' y  and us2 =  (y -  XP ) ' (y  -  X p ) .

7.2 Priors

We choose a conjugate prior for 0,  conditional on the remaining parameters, as 

follows

m 6 u a )  = 5 ^ 7 exp {“i (/9 ~ -  '9°)} • (y-6)
where F  is a 6 x 6 positive definite symmetric matrix and 0 Q is a 6 dimensional 

vector. As we have no a priori information about the nature of the correlation 

between the elements of /3, we suppose V  and 0°  are constant.

For cr, we choose an inverted gamma distribution as prior

( \ 2 ( a \ bl2 1 r a \
p{a) = r W )  ( 2 )

where a, b > 0 are constants. Here we follow Monahan (1983) and Naylor and 

Marriott (1996) to suggest a =  b =  1/128, ky  =  16, as we did in Chapter 6 . We 

also suggest V  is ky  in the diagonal and zero elsewhere.

We know 7* > 0, i =  1,2. We again used the “diffuse” inverted gamma distribu­

tion as a prior for 71 and 72,

, , 2 / o \ V 2 1 f a I
p(7i) =  !W 2 ) ( 2 ) ^ expr ^ | / ’ (7-8)

i = 1 , 2 , where a, 6 take the same values as in (7.7).
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When we use double smooth transition model to fit data, we believe a priori that 

there are two smooth transitions in the time interval in which the data are observed 

and the two midpoints of the smooth transition are located within the same time 

interval, that is, t i , t 2 G (0,1), where n  < r2. We adopt a joint uniform distribution 

as prior for (tl, t 2) conditional on n  < r2 so that

where n  G (0 , 1), i = 1 ,2  and I  is the indicator function I{Tl<T2} — 1? if < r2; 

otherwise I{Ti<t2) — 0-

We assume 0\ is a priori independent of (3 and a and also the components of 

0 1 are a priori independent of each other. From the above discussion, we have the 

joint prior for the parameter vector 0 as

where 7* > 0 , i =  1 ,2  and 0 < t\ < r2 < 1.

7.3 Posteriors

Now that we have the likelihood function and the prior for the parameter vector of 

the double smooth transition model, we can obtain the posterior for 0 as

where V) =  X ' X + V ~l ,/3 =  V f ^ X ' X ^ + V - 1̂ ) ,  =

We know from the above expression that the posterior for (3 is a multivariate 

normal distribution conditional on the other parameters and the posterior for a is 

an inverted gamma distribution conditional on the other parameters.

(7.9)

p(6) oc exp -  /3 °)|
(7.10)

■T+b+8

13) and 7* > 0 , i — 1 ,2 and 0 < Ti < r2 < 1.
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7.4 A R M S m ethod in Gibbs Sam pling

1 0 1

We have seen from the above section that sampling from non-typical distributions is 

important in the practical application of Monte Carlo Markov chain. Gilks and Wild 

(1992) and Gilks, Best and Tan (1995) discussed two methods for sampling from 

full conditional distributions. One is the adaptive rejection sampling (ARS), which 

can be used to sample from log-concave distributions ( where the logarithm of the 

density function is concave). The other is the adaptive rejection Metropolis sampling 

(ARMS) for sampling from non-log-concave distributions. In order to explain these 

two methods, we need first to explain what is the accept-rejection algorithm.

7.4.1 A ccep t-R ejection  A lgorithm

There are a lot of non-standard distributions from which sampling is difficult. For 

example, sampling from an inverted gamma distribution which has the form of (7.7) 

above is difficult if we would like to sample from (7.7) directly. The accept-rejection 

algorithm provide us a method to solve this kind of problems.

The accept-rejection algorithm can be described as follows. Suppose we would 

like to sample from the density f (x )  (called the target density). Instead of sampling 

directly from / ,  we sample from another density g(x) (called the proposal density), 

which is easy to sample from, provided that there exists a constant M  > 0 such that

f (x )  < Mg{x) (7.12)

on the support of f (x )  ({x : f (x )  > 0}). Then the accept-rejection algorithm can 

be carried out in the following steps

1. Generate X  g(x), U 17(0,1);

2. Accept Y  =  X  if U < f  (X ) / (Mg(X)); Otherwise return to 1,

where U(0,1) denotes a uniform distribution over (0,1), then we have Y  r>>j f (x ).

7.4.2 A dap tive R ejection  Sam pling

Although it seems that the accept-rejection algorithm can be used to sample from 

any density, it is difficult to choose M  and the proposal density g in practice. Ar­

bitrary choosing of M  and g will cause inefficiency in the sampling algorithm and
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therefore is impracticable. The design of an accept-rejection algorithm will depend 

on the specific distribution density function. Gilks and Wild (1992) suggested an 

algorithm to sample from a log-concave density, called the Adaptive rejection sam­

pling (ARS). ARS is based on the construction of an envelope and the derivation of a 

corresponding Accept-Rejection algorithm when the density function is log-concave.

Suppose we have a density f{x),  which is log-concave, that is, if we set h(x) =  

log(/(#)), then h(x) is concave (h"(x) < 0). Let Sn be a set of points X{, i — 

0 , 1 , . . . ,  n +  1, in the support of f(x).  Suppose we know h(xi) = log(f(xi))  up to 

the same constant for all i = 0 ,1 , . . . ,  n  -F 1. Because h(x) is concave, the segment 

between (xi,h(xi)) and (o^+i, h(xi+i)) is below the graph of h(x) over the interval 

and is above the graph of h(x) outside the interval (see Figure

7.1).

Mi

x

Figure 7.1: Lower and upper envelopes of a log-concave density.

We denote Mi, i = 0,1 , . . . , n  are the points on the curve of y = h(x) and 

Ti}i+i(x) is the line through the two points (Mi,Mi+1). For x 6 [xi,xi+1], we define

hn(x) = min{i,;_] (:i;), L,+ i) I + 2 )} > 

hn(x) =  Lif+l(x)

(7.13)

(7.14)

*2 \
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on the interval [xo,xn+i\. For x $  [a:o,®n+i]j we also define

hn(x) =  min{L0)i(a;), Ln,n+i(x)}, (7.15)

hn(x) =  -oo , (7.16)

then we have

hn(x) < h(x) <  hn(x).  (7.17)

We call hn(x) and hn(x) the low and the upper envelopes for h(x) respectively.

Therefore, if we define f_n(x) ~  exp(hn(x)) and f n(x) = exp(hn(x)), then f  {x) and 

f n(x) are the lower and the upper envelopes for f (x )  respectively,

f n(x) < f{x) < f n(x). (7.18)

If we define Cn as the normalisation constant of f n(x) so that f n{x) =  Cngn(x) and 

gn(x) is a proper density, then the ARS algorithm is as follows

1. Initialise n and Sn;

2. Generate X  ~  gn{x) ,U ~  U(0,1);

3. If U < £n(X) / (Cngn(X), Y  = X;otherwise, if

otherwise update Sn to S'n+i =  Sn U {A} and go to step 2 until enough sample 

data has been accepted.

Then we have Y  rsj f ( x ) .

7.4 .3  A dap tive R ejection  M etropolis Sam pling

Gilks, Best and Tan (1995) generalised the ARS method to deal with non-log-concave 

density. Gilks, Best and Tan called the new method the adaptive rejection Metropo­

lis sampling (ARMS) (see Gilks, Best and Tan (1995) for details). Here we outline 

their algorithm.

We denote by Sn — {xi\i  = 0, l , . . . , n  +  1} the current set of abscissae in 

ascending order, that is, :ro < < • • • < £n+i» where x0 and xn+\ are the lower and

upper limits of the domain D of the support of f(x).  The lower and upper limits 

of D could be infinite if f (x )  is not bounded on the left side and right side of D 

respectively. Denote h(x) =  In(f(x)).



CHAPTER 7. DOUBLE SMOOTH TRANSITION  104

Let Lij(x; Sn) denote the line between the two points (Xi, h(xi)) and (Xj, h(xj)), 

j  = i +  1, £ =  0 , 1 , . . . ,  ra. Define a piecewise linear function hn(x) on (a;0, xn+i) as

hn(x) = max{Li)i+l(x, Sn) ,m m {Li-hi(x-, Sn), Li+hi+2{x; Sn),}},  (7.19)

when Xi < x < X{+i, where min{a, 6} — a if b is not defined. And we define

1
9 n ( x )  = — exp (hn(x)), (7.20)

Tfln

where

=  I  ^Xm (7.21)

The ARMS algorithm is then as follows

1. initialise n and Sn independently of A0, where X 0 is the current sample from 

/(*);

2. Sample X  from ^ (x ) , U rsj (7(0,1);

3. If U > f { X ) / exp(hn(x)), then

(a) S e t S n+1 = Sn(x)\J{X};

(b) Relabel points in 5n+i in ascending order;

(c) n = n+ l;

(d) Go back to step 2;

4. Else accept X and go to next step;

5. Sample U ~  t /(0 ,1);

6- I * U >  min { l, then

(a) Set X m = X 0;

(b) Else set X m — X ;

7. Return Afm;

Through the above steps we generate a sample X m from f{x).  Repeat the above 

steps we generate a rejection sampling chain proposed by Tierney (1991). Tierney 

(1994) discussed the convergence property of this “hybrid” adaptive chain.
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C programmes to carry out the ARMS algorithm can be found in the web site of 

MRC Biostatistics Unit, Cambridge. I use these subroutines within my own C + +  

programmes to implement our approach for the double smooth transition model.

7.4 .4  A R M S for D oub le Sm ooth  T ransition M od el

Now we apply the ARMS algorithm to our double smooth transition model. With 

the discussions of the general ARMS algorithm and the posterior density function for 

the parameter vector 0 in the double smooth transition model given in the previous 

sections, we can construct a hybrid of the Gibbs sampling algorithm as follows.

As is usual in Gibbs sampling, we denote 0 ^  as the current sample. Given the 

current sample 0^ , we would like to obtain the next sample 0(n+1) in the following 

steps:

1. Update vs \ , and V f 1 with values of 0^ ;

2. Sample (3 n̂+^ from <ĵ n\  y) which is a multivariate normal distribu­

tion;

3. Sample cdn+1) from p(a\/3^n+1\  y) which is an inverted gamma distribu­

tion;

4. Sample from using the ARMS sam­

pler;

5. Sample ^ +V> from p(72 |/^n+1 ,̂ 7$n+1 ,̂ r ^ ,  cr(n+1)) using the ARMS sam­

pler

6. Sample r}n+1  ̂ f r o m w h e r e  t\ € (0,r ^ ) ,  

using the ARMS sampler;

7. Sample r ^ +V> fromp{r2\(3^n+1\ ry[n+1\ r [ n+1\ ^ n+1\a ^ n+1')), where r2 £ (r[n+1\  

1), using the ARMS sampler;

8. Update n =  n +  1;
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7.5 Em pirical A pplications
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We now apply our algorithm to three global average temperature data sets (obtained 

from the Climatic research unit, University of East Anglia, UK). These temperature 

series are a combination of land air temperature anomalies (Jones (1994)) and sea 

surface temperature anomalies (Parker, Folland and Jackson (1995)) on a 5°x5° grid- 

box basis. The combination of the land air temperature and sea surface temperature 

data sets was discussed in Parker, Jones, Bevan and Folland (1994). These average 

global temperature data sets are widely used in the research of the international 

climate change. We use the annual average hemispheres (Northern, Southern) and 

global temperature series provided by Jones, Osborn and Briffa (1997) from 1856 to 

1998, 143 observations.

7.5.1 th e  tem perature data  sets

The annual average temperature data sets of the two hemispheres (Southern and 

Northern) and the global average temperature data sets are studied using different 

methods. Harvey and Mills (2000) tested the unit roots against the alternative of a 

stationarity around a double smooth transitions in trend. Harvey and Mills test their 

hypothesis for two time series, the global average temperature series. When the null 

unit roots was rejected, double smooth transition model was fitted to these series. 

We follow them to fit the double smooth transition model to the three temperature 

series, the global average temperature and two hemisphere temperature series. We 

look at the results of the Bayesian analysis of the double smooth transition model 

for these three series first, leaving the discussion of the convergence of the Markov 

chains later with the discussion of the performance of the ARMS algorithm.

The posterior means and standard deviations for each parameter in the double 

smooth transition model for these three temperature data sets are listed in Table 

7.1.

We also plotted the posterior densities of all the parameters for the Global av­

erage, the Northern and the Southern Hemisphere models in Figure 7.2, Figure 7.3 

and Figure 7.4 respectively. The posterior densities for 71 and 72 in all the three 

temperature models show that the algorithm can successfully estimate the different
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Global average Northern Hemisphere Southern Hemisphere

mean sd mean sd mean sd

04 -0.367 0.0471 -0.234 0.0917 -0.443 0.0776

A 0.00414 0.00477 0.0022 0.00983 0.00975 0.0076

OL<l -1.28 0.666 -1.26 0.982 -1.24 0.698

f t 0.0182 0.0111 0.0188 0.0171 0.00918 0.00695

0̂3 -1.49 0.874 -2.43 1.17 0.349 0.644

A 0.00244 0.0107 0.0098 0.0144 -0.00755 0.00732

71 0.523 0.516 0.466 0.504 0.307 0.423

n 0.355 0.0441 0.384 0.0737 0.336 0.0466

72 0.118 0.071 0.157 0.213 1.47 0.967

72 0.717 0.0476 0.756 0.0561 0.636 0.0149

<T 0.103 0.00623 0.131 0.00785 0.097 0.00598

Table 7.1: Posterior means and standard deviations for three temperature data sets.

ranges of support for 71 and 72. In Figure 7.2, for the Global average temperature, 

the range of support for 72 is much narrower than that of 71 and the same is from 

in Figure 7.3 for the Northern Hemisphere temperature whereas in Figure 7.4 for 

the Southern Hemisphere the range of support for 72 is much larger than that of 

71. The speeds of the two smooth transitions for each data set are different. For 

the Global average temperature, the speed of the first smooth transition is much 

larger than that of the second. The ratio of the two speeds is 71/72 — 4.43. For 

the Northern Hemisphere temperature, the ratio of the two speeds is 71/72 =  2.97 

and is obviously less than the ratio for the Global average temperature. For the 

Southern Hemisphere temperature, the ratio of the two speeds is 71/72 =  0.209, 

which is much less than 1. The second speed is much larger than the first speed for 

the Southern Hemisphere.

We can see from Table 7.1 that the proportions of the middle point of the first 

smooth transition, 71, are 0.355, 0.384 and 0.336 for the Global average, the North­

ern Hemisphere and the Southern Hemisphere respectively. The corresponding mid­

points for the first smooth transition are in the years 1906, 1910 and 1903. The



CHAPTER  7. DOUBLE SMOOTH TRANSITION  108

proportions of the middle point of the second smooth transition, 72, are 0.717, 0.756 

and 0.636 for the Global average, the Northern Hemisphere and the Southern Hemi­

sphere respectively. The corresponding midpoints for the second smooth transition 

are in the years 1957, 1963 and 1946. So it would appear that both the first and sec­

ond transitions for the Global average temperature had their midpoints between the 

first and second transitions for the Northern Hemisphere and the Southern Hemi­

sphere temperature respectively.

We list the range of years in which 95% of the two transitions (from St(7 , r)  =  

0.025 to St (7 , r) — 0.975) would have probably taken place for the three temperature 

data sets in Table 7.2.
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Figure 7.2: Posterior densities for the Global average temperature.

We obtained quantiles for the posterior densities for the parameters of the Global 

average, the Northern and the Southern Hemisphere which can be used to construct 

posterior probability intervals for each parameter. We list these quantiles for all the 

parameters of the Global average, the Northern and the Southern Hemisphere in 

Table 7.3, Table 7.4 and Table 7.5 respectively.

We have discussed how to obtain the predictive density of yt in Chapter 6, see
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Figure 7.3: Posterior densities for the Northern Hemisphere temperature.

s

I
s

-0.02 0.02 0.040.0,

CM

O

-0.3 -0.2 -0.1

s
o

-40.05

3
a

0.01 0.02 0 .03 0 2 4  6 8 10 12

3
8

I:
o

0.1 0 .2  0.3 0.4 0 .5  0.6

s
s

d

166 10 200

o

o

0.60 0.65 0.70 0.75 O.BO

S

8

0.06 0.09 0.10 0.11 0.12

Figure 7.4: Posterior densities for the Southern Hemisphere temperature.
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Transition From

(year)

To

(year)

Range

(years)

Global First 1899 1913 14

average Second 1926 1988 62

Northern First 1902 1918 16

Hemisphere Second 1940 1986 47

Southern First 1891 1915 24

Hemisphere Second 1943 1948 5

Table 7.2: Range of years 95% of two transition take place.

0.025 0.05 0.25 0.5 0.75 0.95 0.975

a.\ -0.449 -0.432 -0.395 -0.368 -0.341 -0.301 -0.288

Pi -0.00119 -0.000583 0.00155 0.00319 0.00521 0.012 0.0156

a 2 -2.96 -2.56 -1.54 -1.14 -0.894 -0.611 -0.458

P2 0.00119 0.00555 0.0121 0.0163 0.0221 0.0381 0.0465

ot 3 -3.35 -3 -2.02 -1.46 -0.946 -0.0987 0.246

f t -0.0247 -0.0168 -0.00188 0.00411 0.00893 0.0158 0.0186

7i 0.021 0.0421 0.168 0.364 0.682 1.53 1.93

Tl 0.292 0.309 0.332 0.346 0.366 0.445 0.485

72 0.0103 0.0206 0.0761 0.112 0.155 0.217 0.238

r2 0.613 0.642 0.693 0.72 0.744 0.78 0.795

cr 0.0916 0.0933 0.0985 0.103 0.107 0.114 0.116

Table 7.3: Posterior quantiles for parameters of the Global average temperature.
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0.025 0,05 0.25 0.5 0.75 0.95 0.975

cri -0.353 -0.339 -0.281 -0.241 -0.2 -0.134 -0.0941

A -0.00635 -0.00518 -0.00225 0.000263 0.00309 0.0162 0.0273

Ot.2 -3.38 -2.83 -1.73 -1.27 -0.873 0.595 0.958

fa -0.0118 -0.00625 0.0103 0.0188 0.0272 0.0431 0.0507

a  3 -4.83 -4.36 -3.14 -2.42 -1.73 -0.579 0.013

fa -0.0188 -0.0116 0.00325 0.0108 0.0181 0.0289 0.0328

7i 0.0197 0.0395 0.174 0.322 0.616 1.43 1.87

n 0.222 0.278 0.345 0.372 0.429 0.513 0.531

72 0.00633 0.0127 0.0633 0.124 0.18 0.333 0.55

72 0.654 0.679 0.725 0.752 0.779 0.848 0.924

cr 0.116 0.119 0.126 0.131 0.136 0.145 0.148

Table 7.4: Posterior quantiles for parameters of the Northern Hemisphere tempera­

ture.

0.025 0.05 0.25 0.5 0.75 0.95 0.975

ai -0.549 -0.531 -0.487 -0.453 -0.418 -0.331 -0.25

fa 0.00137 0.00195 0.00466 0.00755 0.0126 0.0243 0.0297

OL<2 -3.05 -2.67 -1.59 -1.02 -0.73 -0.48 -0.425

fa -0.00477 -0.000451 0.00583 0.00887 0.0124 0.0209 0.0245

a 3 -0.632 -0.439 -0.0994 0.216 0.734 1.56 1.83

fa -0.0245 -0.0215 -0.0121 -0.00598 -0.00213 0.00166 0.00324

7i 0.0172 0.0343 0.172 0.313 0.593 1.36 1.76

n 0.248 0.271 0.315 0.332 0.353 0.417 0.446

72 0.157 0.254 0.811 1.27 1.93 3.38 3.89

T2 0.615 0.62 0.627 0.634 0.64 0.655 0.671

<t 0.0861 0.0876 0.0928 0.0967 0.101 0.107 0.11

Table 7.5: Posterior quantiles for parameters of the Southern Hemisphere tempera­

ture.
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equation (6.20). We obtained two quantiles with cumulative probability 0.025 and 

0.975 respectively for yt, t =  0 , 1 , . . . , T, predictive mean of yt, t =  0 , 1 , . . . , T 

using the sample from the posterior distribution and plotted them with the actual 

three temperature series in Figure 7.5, Figure 7.6 and Figure 7.7 respectively. The 

quantiles with cumulative probability 0.025 and 0.975 consist of the predictive 95% 

probability intervals for the unobserved yt, t  =  0 ,1 , . . . ,  T.

CO

o

400 20 60 80 100 120 140
t

Figure 7.5: Predictive 95% probability intervals, predictive means and the actual 

Global average temperature.

We can also obtain predictive densities for the future temperatures (t > T). We 

have obtained the first step (t =  T + l )  predictive densities for the three temperature 

models. The predictive mean, standard deviation and quantiles at the future time 

t — T  +  1 for the three temperature models are presented in Table 7.6.

The posterior means of the two smooth transition function S't(7*,Ti), i — 1,2 

at points t = 0 ,1 , . . . , T  for the Global average, the Northern and the Southern 

temperature are plotted in Figure 7.8, Figure 7.9 and Figure 7.10 respectively. We 

can compare these graphs with the calculations in Table 7.2. From the graphs it is 

obvious that the second transition of the Southern Hemisphere carries out in a short
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Figure 7.6: Predictive 95% probability intervals, predictive means and the actual 

Northern Hemisphere temperature.
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Figure 7.7: Predictive 95% probability intervals, predictive means and the actual 

Southern Hemisphere temperature.
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Global

average

Northern

Hemisphere

Southern

Hemisphere

mean 0.414 0.495 0.286

sd 0.113 0.15 0.101

cumulative

probabilities quantiles

0.025 0.192 0.205 0.0875

0.05 0.228 0.252 0.12

0.25 0.338 0.395 0.218

0.5 0.414 0.493 0.286

0.75 0.489 0.592 0.354

0.95 0.599 0.74 0.453

0.975 0.635 0.792 0.486

Table 7.6: First step predictive mean, standard and quantiles of the Global average, 

the Northern and the Southern Hemisphere temperature.

time (5 years for 95%) while the second transition of the Global average temperature 

carries out in a comparative longer time (62 years for 95%).

7.6 R eparam eterisation

Reparameterisation has been considered in the MCMC literature as a way to speed 

up convergence in a Monte Carlo Markov chain sampler. It can be used in a Gibbs 

sampler, a Metropolis-Hastings algorithm or in a hybrid sampler. The general idea 

of the reparameterisation is to use transformations of the parameters to reduce corre­

lations between parameters of the target distribution so as to produce rapid mixing 

Markov chain. A simple extreme example can be found in Robert and Casella 

(1999), Example 7.1.10 on page 294. A more detail review of reparameterisation 

can be found in Gilks and Roberts (1996). General methods of reparameterisation 

still need be addressed with more efforts and the performance of the present meth­

ods in complex models and high dimensions is still unknown and is a matter for 

experimentation on a case by case basis.
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Figure 7.8: Posterior mean of smooth transition function for the Global average 

temperature.
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Figure 7.9: Posterior mean of smooth transition function for the Northern Hemi­

sphere temperature.
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Figure 7.10: Posterior mean of smooth transition function for the Southern Hemi­

sphere temperature.

For our double smooth transition model, we know that all reasonable values for 7  

are within the interval (0,10), or more precisely (0.01,10) (see Table 4.1 in Chapter 

4). 7  =  0.01 corresponds to an “approximate” straight line within the time interval 

t G (0,100) and 7  =  10 corresponds to an “abrupt” jump that happens within 

t — t T  ±  1. In theory the support for the posterior for 7  is (0,oo). Our problem 

is how to sample from the posterior distribution for 7  with infinite support interval 

without imposing any unreasonable limits on 7 . We also need to achieve good mixing 

in the Markov chain, that is, the sample path of 7  should traverse its support quickly. 

To address all of these, we consider the transformation, v =  exp(—7 / 2). With this 

transformation, we know that v G (0,1), which is a limited interval and can be 

easily sampled from with any MCMC sampler. A more important point is that the 

range of v corresponding to the reasonable range of 7  discussed above, will cover 

more than 99% of the interval (0,1) for v , with 7  =  0.01 corresponding to v — 0.995 

and 7  =  10 corresponding to v =  0.0067. By introducing this transformation, we 

impose no limits upon the range of 7 . In our applications above, we found this
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reparameterisation gave as good mixing of the chain for 7 as for other parameters.

In our sampling algorithm for the double smooth transition model, we have used 

this reparameterisation for 71 and 72 so that ~  exp (—71/2) and v2 — exp(—72/2) 

and used ARMS method to sample for v\ and v2 with left bound 0 and right bound 

1 which are required. So in fact we imposed no limits on the range of 7*, i =  1, 2. 

The discussion of the reasonable range of 7*, i =  1,2 help us to make sure that 

our transformations of 71 and 72 are suitable and the Markov chains for and 72 

converge as well as those of other parameters.

7.7 Perform ance of ARM S

We use the hybrid Monte Carlo Markov chain method, the adaptive rejection Metro­

polis sampling within Gibbs Sampling, to sample from the posterior density of the 

parameter vector. The adaptive rejection Metropolis sampling gives us a “proposal” 

distribution in the Metropolis step automatically while in fact sometimes we have 

little idea about the true distribution in each Metropolis step and so it is difficult to 

choose a “proposal” distribution which is “similar” to the true distribution. Gibbs 

sampling is a better algorithm then Metropolis-Hastings because Gibbs sampling 

has no rejection step and is therefore more efficient if the conditional distribution 

can easily be sampled from directly. However in practice applications, sometimes 

we meet both conditional distributions for some parameters that are easily sam­

pled from and others that are not. In these cases the hybrid Monte Carlo Markov 

chain method is an obvious choice. A hybrid Monte Carlo Markov chain algo­

rithm is a MCMC method which simultaneously utilises both Gibbs sampling and 

Metropolis-Hastings steps. The advantages of the hybrid algorithm is that: if the 

conditional distributions for some of the parameters are standard distributions and 

we know how to sample from them directly, then we use Gibbs steps; however if the 

conditional distributions for other parameters are non-standard distributions that 

cannot be sampled from directly, then we use Metropolis-Hastings steps. Tierney 

(1994) discussed the sufficient conditions for the uniform ergodicity of the chain 

and proved that the irreducibility and aperiodicity of the chain generated by a hy­

brid method follow directly from the irreducibility and aperiodicity of each of the



CHAPTER 7. DOUBLE SMOOTH TRANSITION  118

Gibbs and Metropolis-Hastings steps. Nobile(1998) showed how the introduction 

of a Metropolis-Hastings step in the Gibbs steps speeds up the exploration of the 

support of the stationary distribution.

In our double smooth transition model, the conditional posterior distributions 

for Qfi, /?i, a 2, p2, a 3, /?3 are normal distributions and for a is an inverted gamma 

distribution, all of which are easily sampled from. For these parameters we choose 

the Gibbs steps to sample from their conditional posterior distributions. The condi­

tional posterior distributions for 71, n , 72 and r2 are non-standard distributions and 

in fact the expressions for the conditional posterior distributions are too complex 

to easily explore their shapes. It is hard to give “reasonable” proposal distribu­

tion for them in order to use standard Metropolis-Hastings steps. In this case, we 

choose the adaptive rejection Metropolis sampling steps in order to sample from 

these conditional posterior distributions.

In general cases of diagnostic of the convergence of the chain, we need to deter­

mine the burn-in, from where the chain begins to converge, the number of iterations 

needed to achieve the specified precision. We generate 100,000 samples from the 

posterior and use the Raftery and Lewis (1992) method to find the burn-in and 

length of the chain needed to achieve enough accurate estimation of the two pri­

mary quantiles q =  0.025 and q =  0.975. In the Raftery and Lewis diagnostic, we 

have statistics k , M, N , I  and /qnd as thinning lag to make the chain first order 

Markov, the burn-in, the number of length, measurement of dependence and thin­

ning lag to make the chain into an independent chain respectively (see Chapter 6 , 

section 6.3.1). For all the three temperature series, Raftery and Lewis diagnostic 

suggests the burn-in under 20 , the number of length of the chain under or around 

2000 for all parameters. However, when we diagnose the convergence of the chain for 

the Southern Hemisphere series, we find the statistic I  of the chain for 72 between 

iteration 1 to 600 is 4.97, which is very near 5. Raftery and Lewis suggest that if 

I  greater than 5 often indicate problems. So we discard the sample between itera­

tion 1 to 600. We present the Raftery and Lewis diagnostic results for the Global 

average (iteration 1 to 600), the Southern Hemisphere (iteration 1 to 600) and the 

Southern Hemisphere (iteration 601 to 1200) in Table 7.7, Table 7.8 and Table 7.9 

respectively. We apply the Raftery and Lewis diagnostic to the chains of these three
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temperature series for the sequential chains and obtain similar results as in Table 

7.7, Table 7.8 and Table 7.9. So we chose 600 as the burn-in, 6000 as the number 

of length of the chain to make a Bayesian analysis of the double smooth transition 

model for all the three temperature series.

P ( U < u|Data) — 0.025

VI

a. «|Data) =  0.975

k M N I k\nd k M N I hud

Oil 1 2 571 0.96 1 l 4 751 1.26 2

Pi 1 4 751 1.26 2 l 5 863 1.45 2

01.2 1 3 654 1.10 2 1 11 1908 3.20 4

P2 1 11 1908 3.20 4 l 9 1595 2.67 5

1 3 654 1.10 2 l 3 654 1.10 2

Ps 3 15 2598 4.36 5 1 5 996 1.67 4

7i 1 4 751 1.26 2 l 5 863 1.45 2

n 1 5 996 1.67 2 l 11 1908 3.20 4

72 1 6 1156 1.94 3 l 4 751 1.26 2

r2 1 9 1595 2.67 3 1 9 1595 2.67 3

a 1 2 536 0.90 1 l 4 751 1.26 2

Table 7.7: Raftery and Lewis diagnostic for the Global average temperature series.

The sample paths of the first 600 iterations are plotted in Figure 7.11, Figure 

7.12 and Figure 7.13 for the Global average, the Northern and the Southern Hemi­

sphere temperature series respectively. No obvious evidence of non-convergence of 

the chains is found in these sample paths. The autocorrelation functions of the 

first 100 iterations are plotted in Figure 7.14, Figure 7.15 and Figure 7.16 for the 

Global average, the Northern and the Southern Hemisphere temperature respec­

tively. These autocorrelation functions provide measurements of the dependence 

within the chain for each parameters. All these autocorrelation functions decrease 

rapidly especially when the lag is larger than 20. The rapid decreasing of the auto­

correlation functions suggest that the convergence of the chains is quick.
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P { u < w|Data) =  0 025

V
I

bA, w|Data) =  0 975

k M N I kind k M N I kind
CKi 1 2 571 0.96 1 1 5 996 1.67 2

A 1 3 654 1.10 2 1 6 1156 1.94 2

01.2 1 2 571 0.96 1 1 5 996 1.67 2

A 1 4 751 1.26 2 1 8 1351 2.26 3

1 3 654 1.10 2 1 3 654 1.10 2

A 1 4 751 1.26 2 1 4 751 1.26 2

7 i 1 5 863 1.45 2 1 2 571 0.96 1

Tl 1 5 863 1.45 2 1 5 996 1.67 2

7 2 1 4 751 1.26 2 1 4 751 1.26 2

T2 1 9 1595 2.67 3 1 8 1351 2.26 3

(7 1 2 536 0.90 1 1 2 571 0.96 1

Table 7.8: Raftery and Lewis diagnostic for the Northern Hemisphere temperature 

series.

< u|Data) =  0.025 V
I

bA
. w|Data) =  0.975

fc M N I înd k M N I înd

G!i 1 2 571 0.96 1 1 5 996 1.67 2

A 1 2 571 0.96 1 1 5 863 1.45 2

Oi2 1 3 654 1.10 2 1 4 751 1.26 2

A 1 3 654 1.10 2 1 3 654 1.10 2

OJ3 1 5 996 1.67 3 1 3 654 1.10 2

A 1 3 654 1.10 2 1 6 1156 1.94 2

7i 1 6 1156 1.94 2 1 3 654 1.10 2

Tl 1 3 654 1.10 2 1 2 571 0.96 1

7 2 1 4 751 1.26 2 1 3 654 1.10 2

T2 1 5 863 1.45 2 1 11 1908 3.20 4

<T 1 3 654 1.10 2 1 2 571 0.96 1

Table 7.9: Raftery and Lewis diagnostic for the Southern Hemisphere temperature 

series.
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Figure 7.11: Sample path of Markov chain for the Global average temperature.
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Figure 7.12: Sample path of Markov chain for the Northern Hemisphere tempera-
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Figure 7.13: Sample path of Markov chain for the Southern Hemisphere tempera­

ture.

Figure 7.14: Autocorrelation of Markov chain for the Global average temperature.
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Figure 7.15: Autocorrelation of Markov chain for the Northern Hemisphere 

temperature.
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Figure 7.16: Autocorrelation of Markov chain for the Southern Hemisphere

temperature.



C hapter 8

R eversible Jum p M CM C

We have used Markov chain Monte Carlo methods to sample from different poste­

rior distributions in Chapter 6 and Chapter 7. In this chapter, we would like to use 

MCMC in model selection. In model selection, different models with different vari­

able dimensions are compared and the number of parameters in the model is itself 

one of the parameters that need to be estimated. In this case, traditional MCMC 

methods will not be applicable.

Recently a lot of work has been done to use Markov chain Monte Carlo methods 

to compare models in order to determine which model the sample comes from. A 

method of constructing a Markov chain for models with variable dimensions of the 

parameter space called reversible jump Markov chain Monte Carlo (RJMCMC) has 

been proposed by Green (1995). Richardson and Green (1997) applied this method 

to the model of univariate normal mixtures. Encouraged by this success, a lot of work 

has been done since then. Troughton and Godsill (1997) employed full conditionals 

to achieve efficient reversible jump Markov chains for autoregressive time series. 

Robert, Ryden and Titterington (2000) applied the RJMCMC to hidden Markov 

models, Yan and Brooks (2000) used the RJMCMC in archaeology, applied the 

RJMCMC to model prehistoric corbelled domes. Waagepetersen and Suzuki (2001) 

wrote a tutorial paper on RJMCMC, which is worth reading.
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8.1 R eversible Jum p M CM C

Green (1995) introduced a new framework for the construction of reversible Markov 

chain samplers that jump between parameter subspaces of different dimensionality.

Suppose we want to choose between a collection of models {Mi , % — 0 , 1 , . . . ,  k}.

rii, i — 0 , 1 , . . . , A;, may be different. Without loss of generality, we suggest that 

rii < rij, if i < j .  We observe the sample y, then the joint distribution of Mi, 0® 

and y can be written in general as

where % — 0,1 , . . . ,&.  The components of this product are the prior probability of 

the model, the prior density for the parameter vector conditioned on the model and 

the likelihood function. The posterior joint distribution of (M*, 0 ^ )  is

For convenience of notation, we shall suppress dependence on y, for example, we 

shall denote p(Mi, 0 ^ |y ) as p(Mi, 0 ^ ) .

Green (1995) constructed a Markov chain which is aperiodic and irreducible, 

using the “reversible jump” method. Now the moves of the Markov chain are of two 

types, one consists of moves within a model; the other consists the moves between 

models. Within model moves are performed using traditional MCMC updates, for 

example, using the Metropolis Hastings, Gibbs or Slice sampler. Between model 

moves are performed using the “reversible jump” method. Suppose we are in the 

state Xi = (M *,0^), we propose a move to state Xj — (M j , 0 ^ ) ,  by drawing Xj 

from an arbitrary, convenient distribution p(xj\xi). With probability min{l, A}  we 

accept the move; otherwise we reject the move, where

The above expression for the acceptance probability in (8.3) is rather obscure.

forward method for constructing the moves between models. We describe Green’s

In this section, we describe this reversible jump Markov chain Monte Carlo method.

The parameter vector of model Mi is denoted by 0®. The dimensions of the 0 ^

(8 .1)

(8.2)

A = min < 1 (8.3)

Green gave another more intuitive expression for (8.3) which also provides a straight-
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construction of between model moves as follows. Suppose we choose the move from 

(M^ 9 ^ )  to (M j , 6 with probability p ( i , j ) .  This move is suggested with proba­

bility p ( i , j ), at any particular iteration, starting from anywhere in (Mi, 9 ^ ) .  We 

consider the case n* < rij first. We need to generate a vector u ~  p(u) of length 

rij — rii so that 9®  — f (9^  , u) for some invertible function / .  Green proved that 

such a move would be accepted with probability min{l, A}, where

09®_  P ( M j , 9 { j ) ) p ( j ,  i )

d ( 9 ^ ,u )
(8.4)

p(Mi,9{t))p(i,j)p( u)

See Green (1995) for more details. The reverse move from (M j , 9 ®) to (M i ,9 ^ )  

would then be accepted with probability m in{l,l/A }. With this algorithm, we 

construct a Markov chain, which includes both the within model moves and between 

model moves, with the desired stationary distribution.

Green (1995) called the between model moves a “birth-death pair” , which in­

creases the dimension rii to rij, or reduce it from rij to rii, when rii < rij, i < j  in the 

change-point model. Richardson and Green (1997) called the move “split” when the 

move is from state (Mi, 9 ^ )  to state (Mj, 9 ^ )  with n* < rij; “combine” if rii > nj .

The “reversible jump” approach is flexible and the details change depending on 

the models to be discussed. We have two expressions for A  which determine the 

probability of accepting a move between models. In the following, we try to apply 

Green’s reversible jump sampler to our problem using different expressions for A  in

(8.3) and (8.4).

8.2 Structural Break M odel

We are now going to discuss the problem of choosing between different structural 

break models (with different number of unknown components) so that Green’s ap­

proach can be used.
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8.2.1 T he m odel

The structural break model can be written as

Vt =  <

a i  +  P it +  £t, t  <  T\T]

&2 +  P2I +  £ti TlT  <  t  <  T2T]
(8.5)

+  fim+lt +  St, TmT  <  £,

with m  structural break points at r^T, i = 1,2, . . . , m  and is nd N(0, <r2), t =

0 ,1,. . . ,T.  The sample size is T  +1. We suppose that all the m structural break 

points are located within the measuring time interval (0, T)  so that we have

0 < Ti < 7*2 < • • • < r m < 1. (8.6)

We further suppose that the maximum value m  can take is kmax, that is, 0 < m  <

kmax'
For convenience of the following description, we put the parameters (except a) 

into groups like (ai,/?i,7i), {a2 ,p 2 ,T2): . . . ,  (am+i, An+i, Tm+i), where rm+1 =  1. So 

the structural break model with m  structural break points has m +1 structural break 

components, for example, the ith. structural break component would be 

i — 1,2 , . . . ,  m  +  1.

There are two special cases for the structural break model. First when rm —»■ 1, 

the number of structural break points decreases from m  to m  — 1. Secondly when 

m  — 0, we define yt as

Vt — <%i +  Pit +  t £ [0,T]. (S.7)

In this special case, yt reduces to a simple linear regression model.

In order to introduce matrix notation for description, we rewrite the structural 

break model as m+l
yt = + pit)i{Ti -1 T<t<TiT) +  St, (8.8)

*=1

where tq =  0, rm+i =  1 and I  is the indicator function that equals to 1 when the 

condition is true; 0 when the condition is false. We should notice that the last term 

in the above summation, when i =  m  +  1, is (a;m+i +  Pm+it)I{TmT<t<Tm+iT}> which 

includes the right edge point rm+iT — T  in the set, rather than the expression in
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the above summation, otherwise we will lose the last datum from the sample. For 

the convenience of notation, we still use the expression (8 .8).

The structural break components consist of segments over different intervals 

such as [7j_iT,TtT), i =  1,2, . . .  , m +  1. Each line needs two points to determine 

its position without a disturbance term. At the point of Bayesian prior, we do not 

need any constraint in the number of data points to estimate one structural break 

component. In order to avoid too many “short” structural break intervals which are

not interesting to economists and may cause inefficiency of our approach, we suppose

that at least two points fall in each interval fa-iT,  r^T), that is, t{T -  n - i T  > 2. If 

we denote At* =  -  T;_i, A t  =  min{T; -  r*_i, i = 1 ,2 , . . . ,  m +  1}, then we have

A r > (8.9)

In order to use matrix notation to simplify the expressions, we introduce the 

following symbols:

1. I n  is a column vector of length T  +  1 with j th  element 

I{Ti-iT<j—i<TiT} 5 j  lj 2 , . . . ,  T  H~ 1, i 1 ,2, . . . ,  m -f- 1;

2. 112 is a column vector of length T  + 1 with j th  element

(j -  ty l^xTKj-KnT} ,  j  =  1, 2 , . . .  , T  +  1, i =  1, 2 , . . .  ,m +  1;

3. A  is a ( T + l )  x (2m+  2) matrix A  =  ( I n , . . . ,  I {m+1)1 , 1 12l. . . ,  I (m+i)2);

4. e =  (eo,£i, . . .  ,£t)']

5- ft (c îj • • • > QWfl? ft 15 - • * j An+l) !

6 . y =  (yo, yi, - - -, 2/t) ' is the sample data; 

then the model can be rewritten as

y - A / 3  +  e, (8 .10)

and the likelihood function can be written as

P(y\m, X, (3, a) oc ^  exp j - - “2 ^  +  (^ “  P ) 'X 'X (p  -  fi) | .  (8 .11)

where v — T  -  1 -  2m, (3 = (X 'X )~ lX ' y  and i/s2 =  (y -  Xj3)'(y -  X/3). It is easy

to see that under conditions (8 .6) and (8.9), X ' X  is invertible.
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8.2.2 Priors

The choices of prior always play an important role in the Bayesian approach, because 

the posterior distributions for the parameters in the model and the posterior model 

probabilities in the model selection problem could be sensitive to the choice of prior 

distribution. One choice is to seek experts’ opinions, to translate experts’ beliefs 

into the prior distribution for the model parameters (see Kadane and Wolfson, 1998 

and O’Hagan, 1998).

The alternative is to use distributions which produce mathematically attractive 

posterior distributions. For example, the conjugate prior, the Jeffreys’ prior, the 

reference prior etc (see Bernardo and Smith, 1994, Zellner, 1987 and Ibrahim and 

Chen, 2000). The “diffuse” prior (vague prior) distributions are frequently used to 

represent very few prior information about the parameters in the model, for exam­

ple, the noninformative prior. The Monahan’s prior which is used in the previous 

chapters is a “diffuse” proper prior and can be used in model selection. We continue 

to use Monahan’s prior in this chapter.

Suppose we want to choose from a collection of structural break models denoted 

as {Mm : m  — 0 ,1 , . . . ,  kmax} where Mm indicates a structural break model with 

m  structural break points. The parameter vector in the model Mm is denoted by 

0^m\  so a state, the model indicator Mm and the associated parameter vector 0^m\  

is denoted by (Mm, 0 ^ ) .

We choose the prior distribution for model Mm as
 1

p{Mrn) — <
7. . 1 j m £ {0,1, . . . ,  kmax};
Kmax i
0, otherwise,

(8 .12)

and the prior for (3 in model Mm as

p t f \ M m,o) = (27rtr2)m+1 exp ( -----  - ( 8 . 1 3 )

where V  is a 2m +  2 order matrix with element k% on the diagonal and 0 elsewhere. 

We choose an inverted gamma distribution as prior for <j  in model Mm

a\U  2 1
T(6/2) '

where a = b = 1/128 and kv — 16 so that the prior for <j is “diffuse” (see section 7.2 

on page 99).

p(ff|M”) = !W2T(i)6/2̂ T exp{ -2 ^ } ’ (8-14)
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We choose the even-numbered order statistics from 2m -1- 1 points uniformly 

distributed on (0, 1) for r  =  (n , r2, . . .  ,Tm)' in model Mm

m+l
p(r\Mm) =  ( 2m+ l ) !  J J Or i - T i - i )  (8.15)

i = l

X-̂ {ti<t2<—<rm}-

This was suggest by Green (1995) in order to avoid too many “short” steps with 

Tj+1 — Tj small which can arise if a uniform prior is used for r  on (0,1).

We suppose ((3, a) and r  to be a priori independent conditional on model Mm 

so that we have the prior for the state (Mm, 0 ^ )  as

p{Mm, 0 (m)) =  p(Mm)p((3\Mm, a)p{a\Mm)p{r \Mm). (8.16)

8.2 .3  P osterior D en sities

With the prior distributions for the model indicator Mm, parameter vector 0^m\  

a priori independence and the likelihood above, the posterior density for the state 

(Mm, 0 ^ )  is then

p{Mm, (3, a, r \y )  oc p(y\Mm, 0{m))p(Mm)p((3\Mm, a)p{cr\Mm)p(T\Mm). (8.17)

The posterior densities for parameters under model (Mm, 0^ )  are complicated. 

We can still make use of the full conditional posterior densities for (3 and cr. The 

full conditional distribution for (3 is a multivariate normal distribution,

p(/3|y, Mm, 0f>) (X exp { - T ( / 3  -  p y v t (J3 -  3 ) 1 ,  (8.18)

where 0p represents all the parameters except /3, Vi =  X'X- \-V~x and =  V p lX 'y .  

The full conditional distribution for o is an inverted gamma distribution,

1 f vs2 1
p{a\y , Mm, 9a)oc g7.+H2m+3 exp ’ (8’19)

where 0 a represents all the parameters except a and
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8.3 Sam pling Strategy for Structural Break M odel

Now we can construct our own algorithm for a reversible jump MCMC for the 

structural break model selection problem. The parameters to be sampled are Mm, 

)3, r  and o. The moves of the Markov chain consist of two kinds: between model 

moves and within model moves. For simplicity of the algorithm, we restrict the 

between model moves by changing the number of the structural break components 

by 1 in each step (the number of parameters of the model changes by 3 in each step). 

Each sweeping cycle consists of the following move types:

1. updating r ;

2. updating cr;

3. updating /3;

4. updating the structural break components from m  to m  — 1, or from m  to 

m + l;

Moves 1 to 3 are within model moves, which can be carried out with traditional 

MCMC methods like the Metropolis-Hastings sampler and the Gibbs sampler. Move 

4 consists of between model moves that involves changing the model dimension and 

the corresponding model parameters. We make use of the full conditional distribu­

tions of a and (3, conditional on the other parameters, using a Metropolis-Hastings 

sampler.

8.3.1 B etw een  m odel m oves

We use the RJMCMC sampler for the between model moves. We write (i, j )  to 

denote the proposal for the move where the present state is the model with i- 

component structural breaks, (Mi, 0 ^ ) ,  and we propose a move to the state with 

j-component structural breaks, (M j , 0 ^ ) ,  with probability p(i, j).  As indicated 

above, in each between model move, we change the number of structural break 

components by 1 (i.e. i — j  =  ±1), with equal probabilities for an increasing or 

decreasing proposal, that is, p(m, m  ±  1) =  0.5.
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If we suggest a move from the present state (Mm, 0 ^ )  to new state 

with the number of structural break points increasing by one, then according to 

Green’s equation (8.3), we accept this move with acceptance probability min{l, A }, 

where
A =  P ( M ™+1’ <?(m+1))pM ra + 1)

p {M m ,0 <m))p(?ri +

where p(m  +  l|m ) is an arbitrary distribution density, proposing the new state

(Mm-\-1)
0 (m+1)) conditional on the present state (Mm, 0 ^ ) .  p(m\m-h  1) is the distribution 

density proposing the reverse move. Alternatively

Q Q ( m + l )A _ p ( M m+u0 ^ +l'>)
d{0 (m\ u )

(8 .21)
p{Mm,0W )p(  u)

if we generate u from a specific proposal density p(u) =  p(u\Mm+1, Mm, 0^ ) ,  which 

depends on the present state (Mm, 6 ^ )  and the new model Mm+1.

The reverse proposal, m +1 —> m, will be accepted with probability min{l, 1/A}. 

We suggest two methods for proposing the between model moves corresponding 

to the different expressions for A  in (8 .21) and (8.20), and call these method I and 

method II respectively.

M ethod I

The first method is to use the expression of A  in (8 .21) with the corresponding 

method for construction the between model moves. This method is widely used, for 

example, Green (1995) applies this method to the change-point model, Richardson 

and Green (1997) apply this method to the mixture model of univariate normal 

distributions, Robert, Ryden and Titterington (2000) apply this method to their 

hidden Markov model and Yan and Brooks (2000) applied this method to model 

the prehistoric corbelled domes. We will apply this method to our structural break 

model and follow Brooks, Giudici and Roberts (2000) suggestions for efficient con­

struction of reversible jump MCMC proposal distributions.

Suppose we are currently in the state (Mm, 0 ^ )  with m  structural break points. 

We update the number of structural break components by increasing it by one or 

decreasing it by one randomly, with probability 0.5, in one step.
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When we suggest a move which includes an additional structural break com­

ponent, we select a component and split it into two. We need to generate new 

parameters for the new component. Green (1995) suggested that the parameters for 

the present state (a j , f i j , T j ) should not be completely discarded because the present 

state is typically well-supported in the posterior distribution. See Green (1995), sec­

tion 4; Richardson and Green (1997), section 3.2. We adopt this strategy in what 

follows.

If we have chosen a decreasing proposal, that is to reduce the number of structural 

break components by 1, then we randomly choose a label j ,  j  — 2 ,3 , . . . ,  m  + 1 , and 

combine the two structural break components (ctj-i, f t - i ,  7y_i) and (aj,/3j,Tj) to 

give a new component labelled j* with component parameters

ty  =  Tj, (8.22)
_  ( Tj - 1  ~ ~  ( r j  —  Tj - i ) a jLXj* —  ,

Ti  -  T j - j

a  _  f a - 1  -  +  (Tj -  T j- 0 f t
f j j*  ---

Tj  -  T j —2

We accept this proposal with probability min{l, 1 /A )  where A  will be defined below 

after we consider the proposal for increasing the number of structural break com­

ponents. If the decreasing proposal is accepted, we need to relocate the structural 

break components to satisfy the order in (8.6).

The increasing proposal for the structural break components starts with the 

random choice of a label j  from {1,2, . . . , m  +  1}. We then try to increase the 

dimension by splitting the component ( o t j ,  T j )  into two new components, denoted 

as (erf,/?*,r*) and (aj,/?2>T2)- this move, the degrees of freedom increase by 3, 

so we need to generate three independent random variables u =  (wi,u2, u3) with 

distribution densities
U(0,1);

u2 ~  N(0,cr2); (8.23)

u3 ~  N(0, (jy).
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The two new components are defined by choosing the parameters 

n* =  rj - i  +  —

r2* =  Tj,

(8.24)

where /3j(rj — rj_i)T  is the range of change for aj +  fijt over t 6 fo-iT , r^T).

If we select j  =  1, then Tj_i =  r0 =  0; if we select j  =  m + 1, then =  rm+i =  1. 

It is easy to see that t {  e  T j ) .  We need to reallocate r;, i  —  1 , 2 , . . . ,  m, i  

j  — l fj  and r f , r j  so as to label them in ascending order as in equation (8.6). Also the 

parameters cxit Pi, i  =  1,2, . . . ,  m+1, i  ^  j —l , j  and ck*, /?j, /?J nee<̂  reallocated 

correspondingly for the next move. We will continue to use non-reallocated variable 

symbols in the following for convenience.

In the move that increases the number of structural break components, all the 

parameters except (aj,Pj,Tj) are fixed with the same values as before this move. 

The Jacobian of the transformation from (6^m\  u) to is

The acceptance probability for the increasing proposal for the structural break 

components is min{l,A} where

\J\ =  iTj ~  Tj-i)2T 2Pj(r +  V O 2*

and the vector u  =  (ui,u2, u3)' has the densitywhere r

(8.25)

A — likelihood ratio (8.26)

2 nk 2a2

x ( 2  m  +  2 )  ( 2 m  +  3 ) ^ -- -- -- - E A J U .
Tj ~  Tj -1

(at ) 2 + (P{ ) 2 +  (a*2 ) 2 +  m 2 -  a 2 -  P) 
2 k2a2

3) (n* -  T-j-Ofa -  t* )

~̂ +  1A)2
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In (8.26), the first line is the ratio of (8.11) (details will be given below), the second 

line is the ratio of the priors for (3 conditional on the model indicator and cr, and 

the third line is the ratio of priors for r .  All these ratios are for the new parameters 
Qipi+i) for ^  qj(j parameters #(m). The last line is | J |/p (u ).

If we denote Ij = { t : Tj-i < t < Tj}, if j  ^  m +1, or Jm+1 =  {t : rm < t < rm+1}, 

i f ^  — { t  : Tj-i < t <  t * } ,  i f  ̂ = {t G  Ij : t i f f ,  then we can write the likelihood 

ratio in (8.26) as

likelihood ratio =  exp  ̂ ~ ' ^ ~ 2 y  f u t  ~  («! +  m 2 +  ~ (a 2 +  )y
r(l) r(2)

L i  J

- E ( yt ~ ( aJ ft*))5

For a decreasing move in (8.22), that is, the removal of a break component, the 

acceptance probability is m in { l,l/5 } , the expression for B  will be given in the 

following.

Suppose the current state is (Mm, 9^ )  and we propose a decreasing move. We 

randomly select a label j  from 2,3 , . . . ,  m  -f 1 and are to combine the two struc­

tural break components (ay_i, f t - i ,  Tj-i) and (aj,/3j,Tj) to give a new one with 

parameters (tx/*, /?j*,Tj*) generated by (8.22) and the new state is (Mm_i, 0^m_1 )̂. 

Let us consider the corresponding reverse move, from state (Mm_l5 6 (m_1)) to state 

(M™,#^) ,  which splits ( (Xj * J (3j *, Tj-*) into two (aj_i, /%_i, Tj_i) and (aj,/3j,Tj). In 

this reverse move, we generate three random variables «i, u2 and u3 in order to 

generate (« j-i, (3j-i, 'L-i) and so that we have

ui = Tj~l — Tj~2, (8.27)
U ~ U- 2

u2

U3

a,- — a j *

s(3*(tj -  T j_ 2 ) T ’

_  fij — /3j* 
s (3 j*

where s = y  -----3—^~. Then we have the acceptance probability for the corre­

sponding increasing move from (cKj*, ft-*, Tj*) to (cvj-i, (3j-i, Tj_i) and (aj,pj,Tj)  as
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min{l, B}  where

B  — likelihood ratio 

x ^ exp{
(a,--.i)2 +  ( f t- i )2 +  (aj ) 2 +  {fij) 2 -  a 2* -

2trkfo2 

x 2 m( 2 m  -j-1)

2 kla 2 }

(8.28)

( j i -1 -  Tj-2 )(Tj, -  7J_i)

x27ra2exp fa .  -  rj _2)2T 2/9?,(S +  1/s)2.

In (8.28), the first line is the ratio of (8.11) for parameters to that for pa­

rameters 9^m\

likelihood ratio exp
2cr2 J2(yt - (ty-1 +  f t - i t))2 +  Yl(y* ~ (ao +  / ¥ ) ) '

( 1) r ( 2 )

J2 (y t  -  (a3* +

where Jj =  {t : Tj_2 < t < Tj}, if j  ^  m  +  1, or Jm+i =  {t : rm < t < rm+i}, 

/ j 1̂ — {t : Tj_2 < t < T j * } ,  I j2>) =  {£ G Ij : t Other lines have the similar

interpretations as in (8.26) with ratios for parameters to that for parameters

0(m).

So the decreasing move, from state (Mm, 6 ^ )  to state (Mm_i, 0(m-1)), will be 

accepted with probability {1,1 /B} .

“B irth” or “death” of structural break components

When the current state is (Mo, 0 ^ ) ,  which means no structural break point, the 

structural break component is a single unbroken line over [0, T]. If we choose to 

increase the number of breaks, we need to generate the new structural break com­

ponent from a simple line. We call this kind of move a “birth”. On the other 

hand, when the current state is (Mi, 6 ^ )  and we choose to decrease the number of 

structural break components, we will delete the only structural break point in the 

model, leaving a model with no structural break point. We call this kind of move 

a “death” . So “birth” and “death” moves are special cases of the between model 

moves for updating the number of structural break components and can be done in 

a similar way to the updating moves discussed above.
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The “birth” moves happen when the current state is (Mo, 0 ^ )  and we choose 

to increase the number of structural break components. In the state (Mo,0 ^ ) ,  we 

have yt — Q>i T Pit +  t G [0,T]. The “birth” move can be carried out as in 

equations (8.25) with the special values Tj- i  =  0, Tj — 1, j  — 1 and m =  0. We 

accept the “birth” move with probabilities min{l, Abirth} where Aunh — A  with 

Tj-1 =  0, Tj = 1, j  =  1 and m — 0 substituted in the expression for A  in (8.26).

“Death” moves can occur when the current state is (M i , 0 ^ )  and can be easily 

undertaken by deleting the only structural break point with probability min{l, 1/Bbirth}, 

where Bi^th is the probability of acceptance for a “birth” move in (8.28) with j  = 1 

and m  =  1 substituted in (8.28).

Choosing cru

In order to obtain the acceptance probabilities that are as high as possible for both 

increasing and decreasing moves, we need to choose the value for uu carefully, see 

the discussion in Brooks, Giudici and Roberts (2000). Brooks, Giudici and Roberts 

gave some advice on choosing the variances of the random variables which are used 

to generate new parameters in a split move, such as Ui, u2 and 113. For convenience, 

we choose the uniform distribution over (0 , 1) for Ui, normal distributions for u2 and 

u3 and set equal variances for u2 and W3. However, in theory, we can choose any 

suitable distributions for iq, u2 and us- In the following, we consider choosing au 

according to the suggestion from Brooks, Giudici and Roberts (2000).

From the above discussion we know that the acceptance probability for between 

model moves is determined by A. The simplest idea from Brooks, Giudici and 

Roberts (2000) is that we should choose values for the parameters in the proposal 

distributions which satisfy A  =  1 for some “representative” point, in order to in­

crease the acceptance probabilities for both the increasing and decreasing moves. 

Brooks, Giudici and Roberts (2000) considered choosing the parameters for the pro­

posal distributions by imposing some constraints upon A  and suggested that higher 

order derivatives of A  are worth consideration. A traditional method of increasing 

the acceptance probabilities is to tune these parameters in the proposal distribu­

tions in a “pilot run” of the reversible jump Markov chain, in order to enhance 

the acceptance probabilities of between model moves. Brooks, Giudici and Roberts
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method is straightforward and sometimes easy to apply while the “tuning” method 

is somewhat expensive in time and lacking in direction. Brooks, Giudici and Roberts 

showed that sometimes simple application of their method gives parameters for the 

proposal distributions which achieve at least as good results as that of the more 

computational intensive “tuning”, see the examples given by Brooks, Giudici and 

Roberts (2000). A good suggestion for optimal scaling of random walk metropolis 

algorithms can be found in Roberts, Gelman and Gilks (1997) and the references 

therein. Roberts, Gelman and Gilks (1997) suggested that we should “tune the 

proposal variance so that the average acceptance rate is roughly 1/4” . But their 

suggestion does not apply for RJMCMC, and in our experience, acceptance proba­

bilities for between model moves in a RJMCMC sampler are usually much less than

In our structural break model, the expression for the acceptance probability is 

complex and it is not easy to impose constraints on higher order derivatives of A. 

We only impose the constraint that A — 0 on some “representative” point. We 

denote the “representative” point for the three random variables u as u0. We set 

u0 =  E (u) =  (0.5,0,0)'. We then set A|Uo =  1 at the “representative” point to 

choose the “optimal” values for au. Given these values, we obtain

When we run the reversible jump Markov chain constructed as above, using 

Method I, we experienced difficulty. The Markov chain has a very poor acceptance 

rate for the between model moves, which is less than 0.1%. This causes trouble in 

the convergence of the chain. So we carry on to discuss another method, Method II 

and present the results for Method II in the following.

M ethod II

As a possible alternative to the between model moves suggested in method I, we 

propose method II which uses the full conditional posterior for (3 in (8.18) and A  in 

(8.20) for the between model moves.

We first discuss the move which increases the dimensions of the parameter space. 

Suppose that we suggest a move from the present state to a new state

25%.

— ... . —------------------ exp
y/  (2m +  3) (2m +  2 )pj{jj — 7y_i)T

kva c o?j +  /3| i 
I 4fcJo-2 J
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(Mm+i, We will generate the new state (Mm+i, from an arbitrary

where 1) =  0.5, the probability for the increasing proposal. The choice of

an appropriate proposal distribution, q, is important for the between model moves. 

For the move (Mm, 0 m̂)) to (Mm+1,0(m+1))5 we fix a and randomly select a j ,  

j  G {1,2, . . . ,  m}, then we split the j th  component of the structural break (a^, f t ,  Tj) 

into two structural break components, denoted as ( f t ,  f t ,  f t)  and ( f t ,  f t ,  f t)  where 

f t  ~  rj • The parameters for all the other structural break components in the current 

model are fixed. In this case, the proposal distribution for the increasing move will 

be q — g (ft, f t ,  f t ,  f t ,  f t  |Mm+i, Mm, 0 m̂\  y), which can be written as

For q(r^\Mm+i, Mm, 6 m̂\ y ) ,  the posterior distribution for this is too complex to 

use so instead we use the uniform distribution over (rj_i, Tj), that is,

As for q(a{, f t ,  (ft, f t | f t ,  Mm+1, Mm, 0(m), y), we can use the posterior density for (3 

in (8.18) provided that t G [tj-iT, t jT),  which corresponds to (3 = ( f t , f t ,  (ft, f t) .

(3 =  ( f t ,  f t ,  f t ,  f t) ',  and y =  (y*i,. . . ,  ^ , yt2, . . . ,  y ^ ) ' .  The proposal distribution 

for ( f t ,  f t ,  f t ,  f t ) ' is the multivariate normal distribution in (8.18) with X , V  and 

y defined above.

proposal distribution p(m +  l|m ), conditional on the present state (Mm, 0 ^ ) ,  that 

is,

p(m +  l|m ) =  p(Mm+i ,0 {m+1)|Mm,0 (m),y) 

=  g(0(m+1)|Mm+i,M m,0 (m),y)p(rn,rn +  1),

(8.30)

q = <?(ft, ft*, f t ,  f t  |f t, Mm+1, Mm, 0<m), y)g(ft |Mm+1, Mm, 0<TO>, y). (8.31) 

g(ft |Mm+i ,Mm, 0 (m),y) =  U ^ - . i ,^ ) .

If we denote t G [t^-iT, ftT ) =  { t \ , t

and define

1 0 0 \

X  =
1 0  t 0 

0 1 0 t\

C l  0  0 0  ̂

0 ^ 0 0  

0 0 ^ 0  

V 0 0 0
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The acceptance probability for the move from state (Mm, 0 ^ )  to state (ilfm+i, 

0(m+1)) will also depend on the proposal p(m\m + 1) for the corresponding opposite 

move from state (Mm+i, 0<m+1)) to state (Mm, 0 ^ ) ,  see (8.20).

The proposal p(m|m +  1) for the corresponding opposite move will also make 

use of the full conditional for (3 in (8.18). The opposite move would combine the 

two structural break components (denoted in the notation of the state (Mm, 0 ^ ) )  

and ( c r ^ ^ , ^ )  into one (o ^ ft- ,^ ) , where Tj =  r | .

The proposal for this decreasing move is

p(m|m +  l) =  p(Mm,0 (m)|Mm+i ,0 (m+1),y) (8.32)

=  g(0(m)|Mm+i,M m,0 (m+1),y)p(rn +  l ,m),

where p(m +  1, m) = 0.5, the probability for the decreasing proposal. Here we have

q ( 0 ^ \ M m+1 ,M m, 0 ^ +1\ y )  =  <?(<*,•> (8.33)

For the proposal f t|M m+i, Mm, 0 (m+1\y), we can use the posterior density for

13 in (8.18) provided that t e  [tj-i, T j )  — {£]., t2, . . . ,

( I t A

1 t2
, V

K  o 

o kl

y 1 tn J

and y =  (ytli yt2, . . . ,  ytJ .

We accept the above increasing move with probability {1,^4}, where

p{Mm+1, 0 ^ ) q ( a j , 0<m+1>, y)
A =

p{Mm, 0{m))q(a\,f t , <4 , f t | f t , Mm+i ,M m, 0<” >,y)g(n*|Mm+1, Mm, 0<™>, y ) '
(8.34)

The between model move which decreases the dimensions of the parameter space 

can be carried out as follows. Suppose the current state is (Mm, 0 ^ ) ,  we suggest 

a move to the state (Mm_i, 0^m_1 )̂. We select j  randomly from {2,3, . . . ,  m  +  1}, 

and combine the two adjacent structural break components (cty_i,/?J-_i,Tj_i) and 

(aj, fij, Tj) to obtain a new one (aj, t*) where r j  =  Tj. We accept this move with 

probability {1,1/A}, where A  is obtained for the above increasing move in (8.34), 

with some corresponding different substitutions.
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8.3 .2  W ith in  m odel m oves

For within model moves, we make use of the full conditional distributions for (3 and 

cr, which are multivariate normal and inverted gamma distributions respectively, 

using the Gibbs sampler to update (3 and a. For updating r ,  we use the Metropolis- 

Hastings’ sampler. We update t  — (ti, . . . ,  rm) in turn. For example, we will update 

Tj, the proposal replacement value is r*, drawn uniformly on (tj_i, Tj+i), and we 

accept this proposal replacement value with acceptance probability

min J 1, likelihood ratio x i S t l — T  lE zll \  , (8.35)
I KB+i ~  W V j ~  r3-i)  J

If we denote I  as the set of t which are between rfT  and r*T (exclusive and 

r*T if they are integral), then we have the likelihood ratio as

likelihood ratio =  exp
sgn(r* -  Tj)

— (aj+1  +  /3j+it)Y
L I

2<r2

-  -  ( « j + fat))'
i

where sgn(:r) is the sign function which is 1 if x > 0; —1 if x < 0 and 0 if x  =  0.

8.4 Em pirical A pplications

In this section, we will illustrate the approach we discussed above. We apply our 

approach to two real data sets. The first is the annual data on US real GNP for the 

period 1909-1970 (61 observations). This data set was used in the paper by Nelson 

and Plosser (1982). Busetti and Harvey (2001) fit a structural break model with one 

or two breaks in the trend to this data. They argued that there were quite a number 

of places where a break or a set of breaks can be introduced. The break in trend can 

be in level or slope or both. Busetti and Harvey (2001) found that two breaks happen 

in 1929 and 1945 respectively. In our approach, we do not fix the number of breaks 

a priori but let the reversible jump Markov chain select the number of breaks and 

the corresponding locations. The second data set concerns the US consumer price 

index data, from 1860 to 1970 (111 observations), which was also used by Nelson 

and Plosser (1982). Harvey and Mills (2000) used the double smooth transition 

model to fit this series. Nelson and Plosser (1982), Harvey and Mills (2000) and
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Busetti and Harvey (2001) focus on testing the null hypothesis of a unit root. If their 

null was rejected, then the model would be fitted with deterministic trend and a 

stationary error. The trend could consist of smooth transition components (Harvey 

and Mills, 2000) or structural break components (Busetti and Harvey, 2001). We 

use our approach to fit these data sets with variable number of structural break 

components and white noise error.

We use the second approach, that is, method II, because method I has a very 

much lower acceptance rate for the between model moves. For example, for the US 

real GNP data set, the acceptance rate for the between model move of method I is 

less than 0.1%, much less than that of method II, see Table 8.1 in the following.

The performance of the RJMCMC consists of two essential elements, mixing 

of the chains over the model indicator Mm and mixing for parameters within each 

model. It is difficult to make assessments of the convergence of the chains con­

structed by RJMCMC. In fact, the chains constructed by Richardson and Green 

(1997) were examined by Brooks (1997) who found that the chain for the model 

indicator have not reached the convergence using any of the diagnostics proposed 

by Gelman and Rubin (1992), Raftery and Lewis (1992), Geweke (1992) and Yu 

(1995). Robert, Ryden and Titterington (2000) and Fan and Brooks (2000) did 

not use any of the above diagnostics to examine the convergence of their chains. 

Nevertheless, we follow the arguments of Richardson and Green (1997) and check 

the stability of the chain by comparing the estimated model probabilities against 

the sweeping times after the burn-in and at the end of the chain.

For each of the two data sets, we generate 1 million sweeps, following a burn-in 

period also of 1 million sweeps. We choose the maximum possible number of breaks 

to be kmax — 10. We believe that in sample of about 100 observations, allowing for 

10 breaks should be big enough and in fact kmax =  10 is never reached in our sweeps 

for the two data sets.

The estimated model probabilities against the sweeping times (after the burn- 

in of 1 million sweeps) for both series are presented in Figure 8.1 (Figure 8.1(a) 

and Figure 8.1(b)). The solid lines are the estimated posterior model probabilities 

against the sweeping times (after the burn-in) and the dotted lines are the estimated 

posterior model probabilities obtained at the end of the chain. We select the 100,000
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sweeps after the burn-in to estimate the posterior model probabilities against the 

sweeping times and plot these posterior model probabilities with lag 500 (one in every 

500 sweeps). We found the obvious stability of the estimation for the posterior model 

probabilities after the burn-in for both time series. Notice that in Figure 8.1(a), the 

estimated posterior model probabilities (against the sweeping times and at the end 

of chain) for m = 3 and m =  0 are all so close to 0 that they are not distinguishable 

from each other.

F r o m  t o p  t o  b o t t o m  
m  =  2

=  O

O 5 0 100 1 5 0 200
t

(a) The US real GNP series

F r o m  t o p  t o  b o t t o m  
m  =  4  
m  =  5  
m  =  6

O 5 0 100 1 5 0 200
t

(b) The US consumer price index 

Figure 8.1: Estimated model probabilities after the burn-in.

The estimated posterior model probabilities are listed in Table 8.1. For conve­

nience, we denote the posterior model probability p(Mm |y) as p(m\y).  In each of
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the two data sets, there are several competing values for the number of structural 

break components.

From Figure 8.1(a) we notice the rapid “cut-off” of the moves between models 

with different orders. The reason for this is, from Table 8.1, the very low acceptance 

rates for the between model moves. These low acceptance rates show the Markov 

chains we generated are not so easy to move between different state spaces. The 

RJMCMC algorithm is not so efficient for updating the structural break model, 

or the RJMCMC algorithm we designed is not so efficient because the RJMCMC 

algorithm has a lot of flexibility we have not tried yet. Usually the RJMCMC 

algorithm is easy to be constructed for nested models or hierarchical models. For 

other models, especially those changing a large number of variables at one between 

model move, the RJMCMC is hard to achieve high efficiency (see Brooks, Catchpole, 

Morgan and Harris, 2002). For the structural break model, we need to increase or 

decrease at least 3 variables at one between model move.

Different prior or different hyperparameters in the “diffuse” prior could be con­

sidered. For example, we could use economists’ opinion to elicit prior for model Mm, 

which is dependent of which economic time series we would like to make inference. 

For example, for the US real GNP series, economists usually believe that there are 

one or two structural breaks. (See Busetti and Harvey, 2001.) We might allocate 

bigger prior probabilities for the models with 1 or 2 structural break points than the 

others. However, since the posterior model probabilities with 1 or 2 structural break 

points are much bigger than the others, this change of priors for models would have 

no effect on the “mixture” of the Markov chains. Other consideration such as using 

uniform distributions for r  made no significant difference on the posteriors.

For the US real GNP data, the posterior distribution for m  favours 1 or 2 struc­

tural break components, which coincides with the discussion of Busetti and Harvey 

(2001). The posterior model probabilities for US real GNP data concentrate on 

m  = 2, which means we favour two structural breaks rather than any other number, 

with a probability of about 0.94.

For the US consumer price data, the posterior distribution for m  favours be­

tween 4 and 6 structural break components. The posterior probability for m  =  5 is 

much higher than the others, so our approach strongly favours 5 structural break
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components in the US consumer data set.
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Data

set

Sample

size

p{m\y) Acceptance

ratio

real 61 p(0) = 0.000048 P ( ! ) =  0.060929 0.2490%

GNP p( 2) =  0.938760 P ( 3 ) -  0.000263

consumer 111 p{ 4) =  0.060147 p ( 5 ) =  0.925994 0.5135%

price p{ 6) =  0.013859

Table 8.1: Posterior distribution of m  for two data sets.

The predictive means of yt, E(yt |y) for the US real GNP data, conditional on 

different numbers of structural breaks are plotted in Figure 8.2. It is difficult to 

distinguish between predictive means for m = 2 and m  ~  3 from the graph since 

both follow the actual data very closely.

real data
m=0
m=1
m=2
m=3

CO

qid

1929 19691909 1919 1939 1949 1959
t

Figure 8.2: US Real GNP and fitted trend with different number of structural breaks.

We also plotted the predictive means of yt, E(yt \y), for the US consumer price 

index series as estimates of the trend conditional on different dimensionalities of 

model together with the US consumer price index series in Figure 8.3. The predictive
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means follows the real data closely for m  =  5 and m  =  6 and it is difficult to 

distinguish between them. The plot of the predictive means for m  =  4 is a little 

away from the real data.

real data
m=4
m=5in

CO

1860 194019001880 1920 1960
t

Figure 8.3: US Consumer price and fitted trend with different number of structural 

breaks.

We can also obtain the posterior densities for parameters of different models with 

different dimensionalities. We presented the posterior means, standard deviations 

and 95% posterior probability intervals for parameters of our preferred model (which 

has the largest posterior model probability) for both the US real GNP and the US 

consumer price index series in Table 8.2. For the US real GNP series, the posterior 

means of t\ and r2 in the preferred model (with 2 structural break points) are 

0.3686 and 0.5965, corresponding to the years 1931 and 1945 respectively. For the 

US consumer price index series, the preferred model has 5 structural break points. 

The posterior means for 7*, i — 1,2, . . . , 5  are 0.04467, 0.3386, 0.5224, 0.653 and

0.7873, corresponding to 1864, 1897, 1917, 1931 and 1946 respectively.

We plotted the posterior densities for parameters of the preferred model with 

two structural breaks in Figure 8.4, for the US real GNP data. We notice that the 

support of the posterior density for t\ concentrates on the interval [0.361,0.377],
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US real GNP US Consumer price

probability probability

mean sd intervals (95%) mean sd intervals (95%)

ai 4.743 0.03308 (4.68, 4.81) 3.223 0.05581 (3.12, 3.34)

Oi2 3.087 0.1745 (2.76, 3.44) 3.795 0.03716 (3.72, 3.87)

as 4.342 0.1172 (4.12, 4.58) 2.578 0.1547 (2.26, 2.87)

a\ 3.908 0.4022 (3.22, 4.75)

OJ5 1.543 0.5889 (-0.287, 2.38)

as 2.424 0.2381 (1.97, 2.84)

Pi 0.02405 0.002592 (0.019, 0.0292) 0.1262 0.03119 (0.045, 0.173)

P2 0.07822 0.005927 (0.0664, 0.0894) -0.01664 0.001723 (-0.0201, -0.0136)

Ps 0.03705 0.002352 (0.0323, 0.0416) 0.01613 0.003208 (0.0101, 0.0226)

Pa 0.0004104 0.006358 (-0.013, 0.0111)

Pb 0.02863 0.007279 (0.018, 0.0508)

Pe 0.02066 0.002368 (0.0164, 0.0252)

Tl 0.3686 0.005511 (0.361, 0.377) 0.04467 0.009509 (0.0231, 0.0596)

T2 0.5965 0.01113 (0.575, 0.611) 0.3386 0.02112 (0.301, 0.378)

Ts 0.5224 0.00411 (0.515, 0.527)

n 0.653 0.01657 (0.639, 0.721)

r 5 0.7873 0.01556 (0.773, 0.839)

G 0.08127 0.007656 (0.068, 0.098) 0.06879 0.004915 (0.06, 0.0793)

Table 8.2: Posterior means and standard deviations for the parameters in the pre­

ferred models for two US series.
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corresponding to 1930 to 1931.
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Figure 8.4: Posterior densities of 2 structural break model for US real GNP series.

Finally we obtain the posterior densities for parameters in the model for the US 

consumer price series, with the largest posterior model probability, that is m  =  5, 

and present plots in Figure 8.5 (Figure 8.5(a) and Figure 8.5(b)).
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Figure 8.5: Posterior densities of model with 5 structural breaks for US consumer

price index.
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Figure 8.5: Posterior densities of model with 5 structural breaks for US consumer

price index.
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C onclusion

In this thesis we have discussed two kind of structural change models, the two-phase 

model and the structural break model for the abrupt structural change at some 

point (s); the smooth transition model for the gradual structural change over a period 

of time. We obtained posterior densities for parameters in these models, which were 

used to make inferences about parameters, and posterior model probabilities which 

were used to select between models. Different priors were adopted as well as noise 

terms and different Markov chain Monte Carlo sampling methods were used such as 

the Gibbs sampler, the Metropolis-Hastings sampler, the slice sampler, the adaptive 

rejection Metropolis sampling and the reversible jump Markov chain Monte Carlo.

In Chapters 2 and 3, we discussed the two-phase models. We adopted different 

priors for parameters and considered the noise term both as a white noise and an 

AR(1) process.

From Chapter 4 to Chapter 6, we discussed the smooth transition model, starting 

with the simple one with one smooth transition component. We considered the noise 

term as both a white noise and an AR(1) process. We have obtained the posterior 

model probabilities which were used for model selection and posterior densities for 

the parameters in the model which were used for parameter estimation. As an 

alternative to obtaining a closed expression for the posterior densities for all of 

the parameters, we used Markov chain Monte Carlo methods to sample directly 

from the posterior joint density of the parameters. The slice sampler was used 

for the sampling and both Raftery and Lewis and Gelman and Rubin diagnostics 

were used to make an assessment of the convergence of the Markov chains. Other
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supplementary tools including autocorrelation functions and the sample paths of the 

chains were also considered to assist the diagnostics. We fitted the smooth transition 

model to two real time series, the British industrial production index and the US 

quarterly GDP series.

In Chapter 7, we discussed the double smooth transition model, which has two 

smooth transition components. In order to apply our approach to fit the model 

to some real data (which might have a wide range of values for the parameter 7 ), 

we developed an Adaptive Rejection Metropolis Sampling (ARMS) to sample from 

the marginal posterior densities for the two speed parameters and the two midpoint 

parameters. A reparameterisation of the speed parameters was adopted in order not 

to impose any limit on the range of speeds.

In Chapter 8 , we applied the reversible jump Markov chain Monte Carlo (RJM­

CMC) to the structural break model with an unknown number of structural break 

points. The structural break model consists of segments which change their levels 

and slopes between the structural break points. In our approach, several methods 

of MCMC were adopted including the Gibbs sampler for parameters whose full con­

ditionals are standard distributions, the Metropolis-Hastings sampler for the break 

point parameter r  and the reversible jump Markov chain Monte Carlo sampler for 

updating the number of breaks in the model. So our approach can be called a hybrid 

sampler in the terminology of Tierney (1994). We fitted the structural break model 

to the US real GNP series and the US consumer price index series. Our approach 

automatically selects the order of the dimensions of the model for each of these 

real time series by providing the estimated posterior model probabilities. We also 

obtained the posterior density, mean, standard deviation and 95% probability inter­

val for each parameter in the preferred model (the one with the largest estimated 

posterior model probability). The predictive means are used to fit the model to the 

two real time series.

Further work could include the following: An AR(p) process as noise term could 

be explored for both the structural break model and the smooth transition model. 

Although our approach for the double smooth transition model in Chapter 7 was 

successful, a further consideration would be to address the problem of an efficient 

Metropolis-Hastings sampler for the parameters (7 , r ) . The convergence properties
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of the Metropolis-Hastings sampler will not automatically apply to those of the 

ARMS sampler because the ARMS sampler lacks time homogeneity. A possible 

justification of the ARMS, suggested in Robert and Casella (1999), pp250-~251, is 

to revert to homogeneous chains by fixing the proposal distributions after a burn-in 

period. Other details that could be addressed are: how long a burn-in could be 

needed and how to fix the proposal distribution because in an ARMS sampler, the 

proposal distributions vary from step to step. A good Metropolis-Hastings sampler 

for 7 , r  could make it possible to apply the reversible jump Markov chain Monte 

Carlo method to the smooth transition model with unknown number of components. 

Choosing between the structural break model and smooth transition model with 

unknown number of components for both models could also be addressed since we 

have found that the smooth transition model can behave like a structural break 

model when the speed 7  is very large (see Chapter 4).
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A ppendix

A .l  Probability  D istribution  Functions

Here we provide some probability distribution functions (pdf) used in this work for 

reference.

A . 1.1 U nivariate P robability  D istrib u tion  Functions  

T he B eta  P D F

A random variate, x, is distributed in the beta form, if and only if it has the following 

probability density function (pdf)

p(x; a, b) =  ^  * a;ffl~1(1 -  x )b~l , (A.l)

where x G  ( 0 , 1 ) ,  a ,  b > 0  and B(a, b) is the beta function as

B(a,b) — f  xa~l (l — x)b~l dx. (A.2)
«/o

The mode is £ m 0 d  — , if a ,  6  > 1 .  The mean is ^  and the variance is
 ab_______

T h e B ilatera l Chi P D F

A random variate, £, is distributed in the bilateral chi form, if and only if, it has 

the following pdf:
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where 6, c > 0, and E(x) =  a, var(rr) =  cb2.

155

T he Inverted G am m a P D F

A random variate, a, is distributed in the inverted gamma form, if and only if, it 

has the following pdf:

2 ( i , s * Y / 2 1
P^ V' s) = W j 2 ) \ ^ )  o ^ ~ ^ '  <A'4>

where a > 0, v, s > 0 are two parameters and denoted by IG (v ,vs2). The first
r / a r [( i / -  l ) / 2]two moments about zero oi (A.4) are fii =  —L J s , v > 1 and

vs2n2 —  v > 2 . Generally we have the moments about zero of order r as
v — 2

F[{v -  r)/2] f  vs2 \ r ^2

‘tr =  r (i//2) V Y '  ’ " > r -
We sometimes use another form of the inverted gamma distribution by letting

x = a, a — and b = ^-,
' v s 2 2 ’

2 i
p(* M )  =  r ( f r K ^ - H e~ ^ ’ (A-5)

where a; > 0, a, 6 > 0. The first two moments about zero of (A.5) are (i\ =

r ( 6 ) v ^ ’ 6 >  and ^  =  0(6 -  1) ’ b > h

T he G am m a P D F

A random variate, 7 , is distributed in the gamma form, if and only if, it has the 

following pdf:
i y a — l p —'y / b

p (7 M )  =  ^ r > r  (A'6)
where 7  > 0 and the two parameters a > 0, b > 0. The mean is F (7 |a, b) — ab, the 

variance is var(7 |a, b) — ab2 and the mode mode(7 |a, b) = (a — 1)6, for a > 1 . We 

denote it as G(a, 6).

The gamma distribution has a simple property which is sometimes used in gen­

erating sample data from a gamma distribution. If we have X  ~  G(a, 1), then 

Y  = bX ~  G(a, 6). So we can always generate data from G(a, 1) and then multiply 

the data by 6.

The relationship between gamma distribution and inverse gamma distribution is 

simple. If we have X  is distributed in gamma, X  ~  G(a, 6), then 1 / X  is distributed
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in inverse gamma. In order to obtain the inverse gamma form in equation (A.4), we 

have to set the transformation of the variable and two parameters as a — 1 /y/X , 

v = 2 a, vs2 =  2/6, then we have a ~  IG(v, vs2).

T he L ogistic P D F

A random variate, t , is distributed in the logistic form, if and only if, it has the 

following pdf:
b(t a)

(1 + e-W-^yp(t; a, 6) =  -  ; , (A.7)

7T2
where —oo < t < oo, 6 > 0. E(t) =  a and var(i) =

A . 1.2 M ultivariate P robability  D istrib u tion  F unctions  

T he M ultivariate N orm al P D F

A random vector, x =  ( x ix 2, . . . ,  xm) is distributed in the multivariate normal form

if, and only if, it has the following pdf:
I y'|—1/2 r i ^

p(x|6»,S) =  - ^ - ^ e x p | - - ( x - 6 ) ) 'S - 1( x - e )  j , (A.8)

where —oo < Xi < oo, i =  1 ,2 , . . . ,  m  and 9 =  (9\, 02, . . . ,  0m)', with —oo < $i < oo, 

i =  1 ,2 , . . . ,  m  and £  =  (cr^) is an m  x m  positive definite symmetric (PDS) matrix. 

We have E(x\0, £) =  9 and Cov(x|0, £) =  Oij. If we set £ _1 =  ~ V ~ l , a is a
<T

constant, then we have

p(x \a ,9 ,V )  =  m exp | - ^ ( x  -  0 )V ~ x(x -  fl) j . (A.9)

We denote F  =  (%•), £  =  <r2F , so ofy =  . We have Cov(x|a, 9, V) =  cr2Vij.

T he M ultivariate S tudent t  P D F

A random vector, x ' =  (x 1}x2, . . .  ,rcm) is distributed in the multivariate student t 

form if, and only if, it has the following pdf:

p « » .  r ,  *■») -  «,)V (S  _ « ) ] - . - « » ,  (A J0)

where v > 0, V  is an m  x m  positive definite symmetric (PDS) matrix, and 9' — 

(0i, 0 2, . . . ,  9m), with —oo < 9i < oo, i — 1,2, . . . ,  m.
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A .2 R esu lts o f M ultivariate N orm al R egression

Here we list some results of multivariate normal regression as formulae because we 

will use them frequently. These formulae can be found in Zellner (1987), p66.

With the multivariate normal regression model

y =  X(3 +  u, (A .ll)

where X  is an n x k matrix, with rank k , of observations on k independent variables, 

(3 is a k x 1 vector of regression coefficients, u is an n x 1 vector of disturbance (error 

terms) which are iid N(0, a 2).

The likelihood function for the model is

p(y|X,/3, a) oc ~  exp j - ^ 2  (y “  X P)'{Y ~  X P )}  • (A-12)

Sometimes in order to highlight the structure of (3, we can rewrite the likelihood

as

p (y \X ,0 ,a )  oc 1 J  1
^ e xpr ^ vs2 + { 1 3 - P) ' Xan y 2 cr2

where v = n — k, (3 = ( X 'X ^ X 'y  and vs2 — (y — X/3)'(y — X(3)

(A.13)

A. 3 Formulae

When we use Bayesian method to analysis model, we always need to calculate the 

posterior density which is proportional to the likelihood times the prior. In a lot 

of cases, the posterior densities for some of the parameters, if not all of them, 

conditional on the others, are multivariate normal distribution. In the following, we 

write down the formulae which have been used frequently in this thesis and give a 

derivation for one of them. For simplicity, we only write out the exponential part of 

the conduction, since complete formulae are easy to be given out with these results. 

We have two expressions of the likelihood functions above, so we give out two cases 

of the conduction accordingly. These two formulae are used in this work frequently.

A . 3.1 Form ula 1

We have the following denotes as yi, y2 are rii x 1, n2 x 1 vector respectively, j3 is 

a h l  vector and X l5 X 2 are n\ x k, n2 x k matrix respectively. Then we have the
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first formula as

(yi -  Xi/3),(y1 -  X xf3) +  (y2 -  X2/3)'(y2 -  X 2&)
(A.14)

=  I/S2 +

where
v  =  x ;x !  + x r2x 2,

P  =  V - \ X [ y 1 +  X ' t f 2),  

v s2 =  (yi -  Ar,/3)'(yi -  Ai/3) +  (y2 -  A2/3)'(y2 -  X 2/3 ), 

v  — m  +  n 2 — A;.

This formula can be found in Zellner (1987), p71.

A .3.2 Form ula 2.

Here we provide another form of the above formula as formula 2. Usually, if a prior 

for parameter vector is a multivariate normal distribution, the density function is 

presented in the second form of the likelihood function in (A. 13) so that formula 2 

presented below sometimes is more frequently to be used, for example, in my works. 

Formula 2 is as

( / » - / 9 i W ( / 9 - / 8 1) +  ( / 9 - j 8 2)'Vi G 8 - a 1)
(A.15)

=  vs +  (/3 — fi0 )V (f)  — f}0).

where V) and V2 are k x  kpositive definite symmetric matrix, /3 is a k dimension 

vector variable, /3, and /32 are two k dimension constant vectors and

V = V !+ V 2,

P 0 = V~ 1 (V1I31

us2 =  (/30 -  -

= (fio _ Pi)'V\{02 ~  Pi)-
We will derive the expressions for V, /30 and vs2, in the mean time, derive formula 

2 .

We have
C a - ^ y v x  0 8 - / 3 , )

=  (0 -  /30 +  /30 -  P J 'V tip  /30 +  /30 -  /3j) 

= 03 -  3o)'U03 -  Po) + 2(3o -  P i ) % { P  -  j®o) 
+ ( 3 o - /3 1)V1(/30 - / 3 1),



APPENDIX A. APPENDIX  159

because V{ =  Vi is a symmetric matrix. Notice that (3 only appears in the first two 

terms in the last equation. Similarly, we have

(P -  p 2y v 2(p -  p 2)
=  (P  ~  Po +  Po — p 2 ) 'V ‘i{(3 — fio +  (30 — (32)

=  ( ( 3 -  (30y v 2(f3 -  (30) +  2O0o -  P 2) % { P  -  (3,)

+ (P o

In order for the formula to be established, we need to select suitable value of p Q so 

that

2 (/3 0 -  P 1) 'V 1(P  ~ Po) +  2 (/3 0 -  P 2) % ( P  ~  Po) =  0,

for any vector variable (3. This is equivalent to

W o  -  P i ) 'V i  +  {Po -  P 2yV2]{P -  Po) =  0.

The following condition is sufficient for the above equivalence to be valid

{Po -  P l Y V i  + {Po -  p2)'V2 = 0,

which leads to

Po =  (U  +  V2) ~ 1{ V iP l  +  V2f t ) .

So we have

(9 -  ft)'Vx(/3 -  ft) + ( p -  -  2)
=  ( P - P o ) ' ( V l +  V2) ( p - p 0)

+ ( f t  -  f t ) ' U ( f t  -  P i )  f t ) .

Substitute ( f t  — f t ) '! 7) with — ( f t  — P 2)'V2,we obtain

(0 -  f t) 'U (/8  -  f t )  +  (P  -  f t )

=  (P  - ft) '(V i +  V2)(/3 -  f t )  +  ( f t  -  f t ) V 2( f t  -  f t ) .

Or substitute ( f t  — P 2) 'V 2 with —(/ft — ft) 'V i, we obtain

(/3 -  /SxVVxO -  f t )  + ( P -  -  f t )

=  09 -  f t ) '( U  +  V2)(/3 -  f t )  +  ( f t  -  f t ) 'U ( f t  -  f t ) .

This is the formula we want to obtain.
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A .4 B ritish  industrial production index

Here is the British industrial production index, from year 1700 to year 1913, with 214 

observations, described in the text which incorporates the Hartley-Lewis revisions.1 

Sometimes it is not so easy to obtain actual data especially those historical data. 

For convenience of the reader, the author list the data in Table A.l.

seq. index

1 1.82 2.24 1.53 1.87 1.92 2.03 1.65 1.69 1.92 1.93

2 1.82 1.82 1.82 2.01 2.10 2.24 2.46 2.58 2.55 2.38

3 2.47 2.43 2.76 2.72 2.19 2.59 2.52 2.47 2.29 2.32

4 2.48 2.38 2.43 2.72 2.39 2.67 2.64 2.46 2.86 2.70

5 2.47 2.27 2.50 2.39 2.74 2.62 2.81 2.90 3.16 2.83

6 3.12 3.14 3.13 3.18 3.14 3.18 2.88 2.98 2.96 2.90

7 2.86 3.02 2.90 2.93 3.11 3.05 3.27 3.54 3.39 3.59

8 3.51 3.60 3.72 3.60 3.21 3.33 3.50 3.51 3.65 3.33

9 3.46 3.63 3.56 3.78 4.08 4.06 4.03 4.22 4.21 4.34

10 4.36 4.52 4.85 4.55 4.45 4.55 4.71 4.64 4.75 5.38

11 5.32 4.98 5.25 5.30 5.48 5.60 5.65 5.87 5.58 5.72

12 6.22 6.54 6.15 6.20 6.31 6.85 6.70 7.32 7.62 7.37

13 7.56 7.88 8.30 8.75 9.22 10.10 9.19 10.40 11.10 10.7

14 11.7 11.9 11.8 12.5 13.2 13.7 15.1 14.3 15.6 16.9

15 16.6 16.8 16.0 16.9 19.1 20.0 20.0 19.0 21.0 21.7

16 21.7 22.6 24.0 26.0 26.4 26.3 28.1 29.1 28.5 30.0

17 31.7 31.7 32.4 32.5 35.0 37.3 38.7 36.4 36.4 35.8

18 40.2 43.5 44.8 45.3 46.4 46.7 47.5 47.4 47.3 45.6

19 50.3 53.5 55.7 56.5 54.4 52.1 51.0 55.1 58.3 62.4

20 63.3 64.1 61.0 60.0 63.5 66.5 71.4 73.4 77.0 80.1

21 80.1 80.3 81.7 80.0 81.0 85.7 82.5 85.6 83.8 86.0

22 88.6 92.1 96.1 100.0

Table A.l: British industrial production index, from 1700 to 1913.

1 Source: Crafts, Leybourne and Mills (1989).
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