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Abstract: Scheduling plays a pivotal role in the competitiveness of a job shop facility. The traditional
job shop scheduling problem (JSSP) is centralized or semi-distributed. With the advent of Industry
4.0, there has been a paradigm shift in the manufacturing industry from traditional scheduling to
smart distributed scheduling (SDS). The implementation of Industry 4.0 results in increased flexibility,
high product quality, short lead times, and customized production. Smart/intelligent manufacturing
is an integral part of Industry 4.0. The intelligent manufacturing approach converts renewable
and nonrenewable resources into intelligent objects capable of sensing, working, and acting in a
smart environment to achieve effective scheduling. This paper aims to provide a comprehensive
review of centralized and decentralized/distributed JSSP techniques in the context of the Industry
4.0 environment. Firstly, centralized JSSP models and problem-solving methods along with their
advantages and limitations are discussed. Secondly, an overview of associated techniques used in the
Industry 4.0 environment is presented. The third phase of this paper discusses the transition from
traditional job shop scheduling to decentralized JSSP with the aid of the latest research trends in this
domain. Finally, this paper highlights futuristic approaches in the JSSP research and application in
light of the robustness of JSSP and the current pandemic situation.

Keywords: smart distributed system; job shop scheduling; Industry 4.0; smart factory; flexible job
shop scheduling

1. Introduction

Scheduling plays a pivotal role in the production facility, as it maximizes the efficiency
while minimizing various costs, lead time and cycle time, etc. Several studies have been
conducted which analyzed the impact of the flow shop and job shop scheduling problem
(JSSP) on manufacturing systems [1–3]. JSSP includes job operations with different machine
sequences that have different processing times. The scheduling of machine operations
can be done under various criteria; for instance, processing time, lead time, makespan,
free float, or due dates, etc. [4]. Geyik & Cedimoglu (2004) [5] classified JSSP as an NP-
hard optimization problem where different machines are assigned to various jobs while
minimizing any of the applicable predefined criteria. Various algorithms and problem-
solving techniques (such as first come first serve (FCFS), shortest processing time (SPT),
earliest due date (EDD), etc.) have been developed and used over the years to solve
JSSP [6–13]. However, as these optimization algorithms usually concentrate on centralized
scheduling, these techniques are mainly focused on small-scale problems. While scaling up
the problem, significant challenges arise in terms of computational time and cost [14,15].
Therefore, researchers and practitioners have gradually shifted their focus from traditional
scheduling arrangement to smart-distributed scheduling (SDS) aided with technological
pillars of the Industry 4.0 environment, such as Cyber-Physical Systems (CPS), Big data,
Artificial Intelligence (AI), Internet of Things (IoTs), and Social, Mobile, Analytics, Cloud
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computing (SMAC). The transition from traditional scheduling to SDS faces two major
research challenges: the integration of conventional JSSP scheduling techniques with SDS,
and the development of new problem-solving techniques required for SDS.

Various models for JSSP have been proposed for improving the operational efficiency
of a job shop production facility. Figure 1 presents the classification of JSSP models with
varying complexity based on the inclusion of various operational parameters. It is evident
from Figure 1 that there is a drive toward the development of smart factories integrated
with Industry 4.0. A detailed review of the literature reveals that several studies have
reviewed the integration of JSSP with Industry 4.0. Chaudhry & Khan (2016) [16] performed
an extensive review of literature from 1990 to 2014 and highlighted various techniques and
approaches used to solve the JSSP problem. Their study argued the importance of flexible
JSSP, especially in large-scale problems. The study also highlighted that the majority of
the studies focused on algorithm development rather than solving real-world application
problems. Parveen & Ullah (2010) [17] surveyed the literature to analyze the multi-objective
scheduling in the context of flow shop and job shop scheduling environments. Their study
highlighted the use of multi-criteria decision-making (MCDM) techniques along with
mathematical optimization models to analyze the JSSP. A comprehensive review of job
shop scheduling models, algorithms used for JSSPs, and the integration of techniques used
in Industry 4.0 for solving JSSP were conducted by Zhang et al. [18]. Their study analyzed
solving methods for various JSSPs in the Industry 4.0 environment.
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Figure 1. Job shop Scheduling Models and Classifications.

However, the studies discussed above are limited to the generic literature review and
have not focused on the emerging trend of robustness and smart scheduling. The review
presented in this paper builds on the previous research and contributes by reviewing the
up-to-date JSSPs and solving techniques to highlight their current usages and challenges for
SDS in the context of Industry 4.0. The research also provides an outlook for the integration
of job shop scheduling with the medical industry in wake of the current pandemic situation.

The paper proceeds as follows: Section 2 includes the research objectives of the
study; Section 3 includes the review methodology; Section 4 presents the research design
used for the comprehensive analysis of the published literature; Section 5 includes the
detailed literature review of the articles based on existing models, methodologies, and
their advantages along with the limitations of the centralized JSSP problem; Section 6
presents the analysis of decentralization techniques for solving JSSP problems that are used
in the Industry 4.0 environment; Section 7 focuses on the analysis of the latest publications
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on smart scheduling for JSSP; Section 8 presents the robustness in job shop scheduling
integrated with Industry 4.0 environment in recent years; Section 9 includes the future
research directions; Section 10 includes the conclusion of the study.

2. Research Objectives

Since the development of the first Job Shop Scheduling Problem (JSSP) [19], scheduling
has been a research topic of interest amongst researchers and practitioners. JSSP is an
NP-hard problem and extensive research has been done to solve its various classifications
and complexities. However, there exist limited articles that comprehensively analyze
different approaches developed by past researchers. Therefore, this study aims to examine
the state-of-the-art literature available on JSSP for channeling it towards the Industry 4.0
implementation. In this regard, the following research questions have been addressed in
this study:

• What is the existing research status of JSSP?
• How are JSSP models classified?
• What techniques/algorithms have been used for solving various JSSP classifications

and what are their limitations?
• How JSSP can be integrated with the technological pillars of Industry 4.0?

3. Review Methodology

A systematic literature review-based study is conducted to address the above research
questions. Peer-reviewed articles in ISI indexed journals in the context of JSSP (solving
techniques/algorithms and integration of JSSP with Industry 4.0) are studied. Three
selection criteria for the papers were considered, including (1) paper must be written in
English; (2) paper must include the Job Shop Scheduling and Industry 4.0; (3) paper must
include quantitative research methodology.

Published papers in international journals among electronic bibliographical sources in-
cluding Scopus, Google Scholar, and Web of Science were searched by using a combination
of different keywords.

In the first stage, keywords and sentence strings—‘Job Shop Scheduling’, ‘Flexible
Job Shop Scheduling’, ‘Smart Factory’, ‘Job Shop Scheduling and Industry 4.0’—were
employed to identify the relevant literature. The results obtained were then cross compared
for possible overlap and checked for duplication.

The second stage of the process involved reviewing and screening the articles based
on the above-stated criteria. This involved conducting an initial check with regard to the
titles and keywords identified in the articles. From this, a total of 238 papers were identified.
The third stage entailed reviewing the abstracts and conclusions of all 238 articles. This
reduced the number of articles to 122.

4. Research Design

The research on scheduling in the context of Job Shop can be divided into two main
categories: (1) problem modeling and (2) problem-solving techniques. JSSP is first classified
based on model structures used in the literature. Characteristics of traditional JSSP model
structures are analyzed in the context of Industry 4.0. Secondly, the classification and
review of algorithms that are used for solving JSSP are done by taking into account both
single and hybrid algorithms. Advantages and disadvantages, along with the limitations of
the algorithms used in conventional scheduling are analyzed. The challenges of algorithms
for using smart distributed scheduling are then highlighted. The driving forces such as
IoT, deep learning, AI, cloud computing, and big data are analyzed for smart distributed
scheduling. An analysis of the robustness of scheduling in the context of Industry 4.0 is also
presented. Figure 2 presents the holistic framework of the research design for this study.
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5. Literature Review

Johnson [19] did the pioneer work on scheduling by formulating the mathematical
model with two machines. Garey et al. [20] classified JSSP with more than two machines as
an NP-complete problem. The JSSP, as defined by Geyik & Cedimoglu [5], is a set of jobs Ji,
where i = 1, 2, 3, . . . , n need to be scheduled on a set of machines Mj, where j = 1, 2, 3, . . . ,
m to minimize the makespan under some defined constraints. Some of the commonly used
constraints are as follows Chen et al. [21]:

1. Each job will be assigned to different machines with a specified processing time;
2. Each machine can perform only one job at a moment;
3. The processing time of the job is fixed, and once the job is started it cannot be

interrupted for each machining operation [22].

In advance scheduling techniques, the additional constraints such as machine capacity,
labor productivity, resource availability, inventory, stock levels, and costs, etc., are also
included [23].

5.1. Scheduling Model Structures

Scheduling can be done based on available resources, assigned jobs, and associated
machines. Some review studies [24,25] on scheduling and model structures have analyzed
diversified aspects of the scheduling models. The job shop scheduling models can be
mainly classified into five types, i.e., performance measures, number of machines, pro-
duction environment, resource constraint, and processing operations [26]. Based on the
literature, JSSP was reclassified into five various types of structures as shown in Figure 3.
The basic JSSP problem is an NP-hard problem with a specified operation on a specific ma-
chine/machining tool. It is an optimization problem employed to minimize the makespan,
maximum lateness, and total weighted tardiness whilst achieving an optimum operation
sequence. The Flexible Job Shop scheduling problem (FJSSP) tends to minimize expected
makespan and balance the workloads on the selected machines for the optimized solution
of an operation sequence [27]. In FJSSP, some or all the machines can be chosen by the
algorithm for the desired solution [28]. Both JSSP and FJSSP are frequently used while
implementing the algorithms. In Multi resource FJSSP, makespan, cost, and resource con-
sumption are minimized by balancing the workloads [29]. It includes both renewable
resources such as machinery and labor, etc., and non-renewable resources such as fuel
and material. This type of problem is analyzed either by using disjunctive graphs or
by developing the mathematical model [30]. In multi-plant-based FJSSP, multiple plants
and transportation among them are also considered while minimizing makespan, costs,
tardiness, and transportation distance [31]. This increases complexity and requires high
computational power and time to achieve the optimized solution for the operation se-
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quence with selected resources and plants. Due to its dynamic behavior, rescheduling is
also required to achieve the optimum solution. The first four structures (i.e., basic type,
multi-machine, multi-resource, and multi-plant) models are centralized scheduling models
and are not effective for real-time dynamic changes [32]. As all four models are NP-hard
problems, the incorporation of the actual dynamics results in increased cost, time and a
long recovery period for disruptions in the manufacturing process. To incorporate the dis-
ruptions and stochastic environment related to orders, delivery times, machine breakdown,
tool failure, and emergency events, etc., smart factory solutions are required in the future.
In today’s mass customization and adaptive manufacturing environment, there is a need
for smart agents with the features of self-organization and decision making that should be
used for scheduling the manufacturing processes. In a smart distributed scheduling prob-
lem, the problem is divided into small parallel sub-problems and solved separately either
by using a mono or multi-objective approach, using the exact or approximate algorithm.
The separated sub-problems simultaneously require less computational time rather than
concentrated JSSP to achieve better results.
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5.2. Classification of Scheduling Algorithm

Various algorithms have been employed in the literature for solving JSSP. Both exact
and approximate algorithms are classified, compared, and analyzed in various types of
JSSP [33,34]. Tables 1 and 2 enlist some relevant research to classify the algorithms used in
the JSSP problem.

JSSP can also be classified on the basis of machine tools, i.e., single and multi-machine
shops. Various studies analysed the JSSP in the context of performance measures, i.e., cost,
lead time, makespan, etc. Production environment also plays a pivotal role in JSSP. It is
characterized as deterministic and stochastic. The addition of constraints and characteristics
such as the number of plants, types of resources (i.e., renewable and nonrenewable) and
type of operations would further classify the JSSP along with increasing the complexity
and solution space of the problem.
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Table 1. Exact Optimization Algorithms for JSSP.

Scheduling Algorithm Study Objective Problem Type Description

Efficient Rule Approach
[19] Min. Makespan 2-Machines JSSP

problem
• Rules-based on input data to find an

exact optimized solution

[35] Min. Makespan 2-Machines JSSP
problem

• Development of Longest remaining
first Algorithm.

Mathematical
Programming Approach

[36] Min. Makespan 3-Machines JSSP
problem

• Integer linear programming model to
find a solution without loss of
optimality

[37] Min. Makespan 2-Machines JSSP
problem

• Mixed-integer linear programming
with binary variables to solve
large-scale scheduling problems.

Branch & Bound Method [38–40] Min. Makespan 3-Machines JSSP
problem

• Branch and Bound heuristic approach
to find an optimal solution [41].

Table 2. Approximate Optimization Algorithms for JSSP.

Scheduling Algorithm Study Objective Problem Type Description

C
on

st
ru

ct
iv

e
M

et
ho

d

Priority Dispatch Rule
Method [42] Min. CPU Time &

Makespan
10-Machines JSSP

problem

• Priority rules are used to
schedule the machining
operations

Insert Algorithms [43,44] Min. Makespan 5-Machines JSSP
problem

• Construction of partial schedule
incorporated with priority rule

Bottleneck Based
Heuristics Method [45–48] Min. CPU Time &

Makespan
Multiple machines

& jobs
• Subdivision of multiple machine

problems

A
rt

ifi
ci

al
In

te
ll

ig
en

ce
1

Constraint Satisfaction
Technique 2 [49,50] Min. CPU Time &

Makespan

Multiple numbers
of machines in JSSP

• Reduction in search space using
value ordering heuristics

Neurons Networks 3 [51,52]
Min. Earliest

Starting time &
Makespan

Multiple machines
JSSP problem

• Training & Testing input data
[53,54].

Expert System and
Knowledge-based

Method
[10,55] Min. Makespan Multiple Machines

in JSSP problem

• Combination of priority rules,
heuristics, and process
information

Fuzzy Logic [56,57] Min. CPU Time &
Makespan

Large scale JSSP
problem

• Solving uncertainties of the
stochastic environment in JSSP
[58].

Lo
ca

lS
ea

rc
h

M
et

ho
d Simulated Annealing

(SA), Genetic Local
Search (GLS), Iterative

Improvement (IM).

[59–61] Min. CPU Time &
Makespan

3-Machines JSSP
problem

• Split search space into small
packets for local and global
optimal solutions [62], result in
the increment of CPU time and
cost [63]

M
et

a
H

eu
ri

st
ic

s
M

et
ho

d
4

Genetic Algorithm (GA)
5, Tabu Search (TS) 6, Ant

colony Optimization
(ACO) 7, Fire fly

Algorithm (FA) 8, and
Particle Swarm

Optimization (PSO) 9 etc.

[6,7,9,29,64–70] Min. CPU Time &
Makespan

Multiple machines
with multiple jobs

• Random number search
technique used to solve large
scale problems with large search
space

1. AI is a field of computer science use for the development of programs that tends to replicate human intelligence [71]. 2. The work
of [72,73] can be used for understanding and detail review of constraint satisfaction techniques. 3. Hybrid Approaches also used in neural
networks (NNs) on the basis of three major factors: Arc weights, network structure and learning technique [74]. 4. Recent trends show
the use of hybrid approach(s) in the approximate optimization models to solve the FJSP (see for example: [64,75,76]. 5. GA is a stochastic
search algorithm that intimate the mechanics of natural selection and natural genetics [77]. 6. TS is a multi-iterative method that store
values from the previous iteration to gain the global optima. 7. In ACO, the algorithm widely analyzes the search space by the set of agents
called artificial ants to find the optimum solution. 8. Real random numbers based on the global communication among the swarming
particles are mainly used to find global optima. 9. In PSO, the particles also referred as potential solutions move (fly) in the problem space
while following the current global optima [78,79].
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5.3. Characteristics, Limitations, and Challenges of Exact and Approximate Optimization Methods

As highlighted in Tables 1 and 2, optimization methods can be classified into exact and
approximate solution approaches. The exact optimization method solves the optimization
problem with an effort that grows polynomially with the problem size. It includes efficient
rule approaches, mathematical programming approaches, branch definition methods, etc.
For NP-hard problems such as JSSP, the exact approaches require exponential effort [80]. In
contrast, the approximate optimization method used a dynamic environment with multiple
dependent and independent variables. The approximate methods include constructive
methods, artificial intelligence, local search, and meta-heuristic algorithms. Approximate
methods do not guarantee finding optimal solutions. They are usually designed for
a particular problem and tend to exploit problem-specific knowledge. Therefore, the
performance of the problem can be often increased by increasing problem specificity and
narrowing the application scope [81]. Figure 4 presents the characteristics, limitations, and
challenges of optimization algorithms used for JSSP problems.
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6. Decentralization

With decentralization taking over the manufacturing industry, flexible manufacturing
systems have become a top priority which are smart as well as decentralized, and provide
the opportunity to achieve autonomist manufacturing [82]. This approach is unlike the
centralized and semi-centralized traditional JSSP. With Industry 4.0 making its shift towards
smart manufacturing, the traditional JSSP application is expected to be utilizing smart
scheduling along with optimization techniques. In the models based on the futuristic
approach, the job, resource, system, and plant objectives are allotted to the smart agents.
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These objectives act as the prime optimization objective for the smart agents for accessing
smart distribution scheduling. Optimization through smart agents is based on distributed
optimization algorithm feedback. The feedback is related to predefined parameters, system
rules, and objectives. With this decentralized approach, Industry 4.0 has emerged as a
pioneer in producing faster and easier operation schedules and sequences with predefined
resources [83].

6.1. Industry 4.0 Mainspring for Smart Distributed Scheduling

The shift in the production processes to decentralization is obtained through the
exchange of information among resources, plants, jobs, and machines [84]. The frequent
exchange of information has brought various important aspects under research and imple-
mentation, such as: smart factories, cyber-physical systems, cloud computing, and Internet
of Things. Artificial Intelligence utilization through deep learning has also emerged as an
important solution for solving fast, self-decision problems for smart agents in job shop
scheduling.

6.1.1. Internet of Things (IoT)

In the context of a job shop, Internet of Things (IoT) helps in connecting all the desired
aspects of the manufacturing systems for the creation of big data [85]. The inclusion of IoT
in the job shop scenario has made manufacturing smarter since it has made it more real
through the use of real-time data and integration of network information of resources, tools,
machines, and personals [86]. This has led to the optimization of the supply chain through
improvisation of the production process, meeting demands, and performing jobs quickly.

6.1.2. Cyber-Physical Systems (CPS)

CPS merges the virtual world (computing stimulated process) and the real-world
(physical process). Through this system, the physical process and parameters govern the
scheduling through virtual models, where the embedded systems, control, and computing
technologies govern production through optimized scheduling [87]. The futuristic CPS has
become highly advanced and reduced computation and data storage by using advanced
tools such as RFID, network gateways, and other tools. Such systems, contrary to traditional
CPS, are highly efficient since data analysis is a distributed task, whereas, for the latter
case, service agents are required for these tasks [88].

6.1.3. Smart Factory

Smart factories are based on CPS and IoT. In the smart factory concept, employing
modules, CPS is more efficient as compared to IoT since it communicates among modules
more effectively thus making decentralization possible in many aspects. The difference
between traditional centralized job shop scheduling and smart decentralized job shop
scheduling is the incorporation of the concept of a smart factory [89]. In a smart factory,
a smart agent can decide the scheduling and its assignment based on its plan, choice,
goals, current condition, and machining history. Therefore, flexible job shop scheduling
models with multi-resources, multi-plants, transportation, and smart factory (SFFJSP) have
emerged as a solution to scheduling problems [90].

6.1.4. Cloud Computing

Cloud computing has provided a structure for scheduling in manufacturing. It has
provided a service and information sharing platform which has proved to be very fruitful
for optimization during scheduling [91]. Cloud computing has enabled the incorporation of
multi-plants, multi-suppliers, and multi-logistic providers in the scheduling of optimization
procedures [92]. Cloud manufacturing has also eased parallel computing, which reduces
the workload, enables distributed decisions for agents, and makes the solution of local
problems possible through the use of computing power and big data [93,94].
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6.1.5. Deep Learning

Deep learning, in recent years, has emerged as one of the mainstream subjects in
machine learning and artificial intelligence. It applies nonlinear models of complex nature
for the representation of the relationship between data [95]. It employs big data for the
analysis and determination of end relationships between data. Deep learning applies the
first come, first serve rule for scheduling in a job shop. The system, either randomly or
by optimization, schedules the preliminary sorting. This sorting, with the deep learning
technology, leads to self-determination for each job, whether it adjusts to the queue or
not [96]. This practice covers two scenarios for each job. In the first scenario, each job
judges the preliminary sorting against its delivery time and, if the delivery time is not
met, then the job self-decides to override the sequence to achieve its target. In the second
scenario, if the preliminary sorting guarantees the delivery time of the job, the job uses
deep learning technology with autonomous decision-making for forecasting efficiency,
cost, machine utilization, etc. Deep learning and improved learning techniques enable
the system to predict failures. As a preventive measure, it enables the system to issue
maintenance instructions, keep a record of machine maintenance, measures the jobs in-
volved in the scheduling, and choose their process resources and orders in response. This
self-decision process is realized when there is an information transfer among smart jobs
and machines. Automated driving technology based on a combination of deep learning
with incremental learning makes the logistics transport resourcing smart. Each vehicle
and robot can perceive its environment in real-time, choose the shortest route, and avoid
congestion dynamically [97]. This decision-making process is realized when there is an
information transfer among smart jobs and smart multi-resources. This predictive model
is constantly improved through deep learning and data-driven techniques, where data is
obtained from the stimulated machining processes and the actual machining processes.

6.2. Implementation Steps of JSSP Structure with SFFJSP

The original centralized scheduling problem can be turned into smart agents-based
problems. Framework for the solution of the JSSP problem under Industry 4.0 as summa-
rized by Zhang et al. [18] is shown in Figure 5, and its related SFFJSP implementation is
shown in Figure 6.
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7. Latest Research Trends in SFFJSP

After the first industrial revolution, the concept of industry 1.0 emerged, which is
mainly focused on a one-dimensional parameter (i.e., Product Demand). In industry 2.0,
the manufacturing facilities focused on product volume and variety. In industry 3.0, the
manufacturing facilities shifted from analog to digital controls while considering the three
parameters (i.e., product demand, product variety, and product delivery time). Many indus-
tries are still undergoing these three revolutions. In Industry 4.0, the technological boom
overlapped with all of the conventional approaches to manufacturing and attracted the
focus of production managers, researchers, and various governments as well. Scheduling
is the pivotal module of production management. Job shop scheduling is one of the most
frequently used types of scheduling in manufacturing facilities. In recent years, various
research has been conducted to analyze the integration and impacts of the Industry 4.0
environment on job shop scheduling.

7.1. Use of IoT

Leusin et al. [22] embedded MAS into CPS to solve complex dynamic JSSP. IoT is
used in that model for extracting real-time data from the shop floor. The fluctuations in
work in process (WIP) can be reduced by implementing the approach in the production
environment. The conceptual framework proposed is based on a multi-agent system that
can be used in numerous stochastic environments for achieving agility and high flexibility
in the scheduling of jobs in the production facility.
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7.2. Use of Genetic Algorithm

Niehues et al. [98] highlighted the importance of adaptive job shop control under a
stochastic environment. The disruptions are included at each stage in the FMS, operated
under the JSSP environment. The order shifting by scheduling the timeline is analyzed
using a genetic algorithm by the development of a system that is capable of detecting the
deviations with the help of location-based data acquisition (DAQ).

7.3. Decision Support System

Grieco et al. [99] presented the application of big data in the production facilities of
Bottega Veneta. The job shop scheduling environment is analyzed based on the Decision
Support System (DSS). The constraint and mixed-integer linear programming models
incorporated with big data technology are used to provide insight for the production
managers regarding delivery times and costs. Zhong et al. (2017) [100] did a comprehensive
review of studies related to the applications of Intelligent Manufacturing Systems (IMS) on
job shop scheduling.

7.4. Decentralization Outperformance

Mehrsai et al. [101] analyzed the JSSP problem under various considerations. It in-
cludes a centralized flow environment, FMS with multiple flow possibilities, decentralized
sequencing of jobs with a central delivery system, decentralization for real-time data, and
decentralization for real-time on-ground and historical data based on multiple agents.
Their study concluded that the decentralization offered a substantiating result in JSSP.

7.5. Use of Semi Hierarchal Configuration

Guizzi et al. [102] evaluated the robustness of the JSSP by introducing a semi hierarchal
configuration inspired by a cyber-physical system that will result in the combination of
proactive and reactive approaches to JSSP. The system sub-divided the actual complex
scheduling problem into three small problems. It is then solved at various stages, i.e.,
several jobs to be produced by the machine with Enterprise Resource Plan (ERP), the
sequencing and routing of jobs with the help of CPs, and the identification of jobs at each
stage with CPs.

7.6. Use of Heuristic Approaches

Sousa et al. [103] evaluated various heuristic approaches to find the optimal solution
for makespan and total weighted tardiness. The Big Data technique is used with the help
of various sensors at the facility which provide updated information. The Industry 4.0
environment, along with the conventional approximate method, is used for continuous
scheduling of the operations in FMS. The study concluded that the shifting bottleneck
algorithm outperformed various algorithms.

7.7. Maximizing Hamiltonian Function

Ivanov et al. [104] solved the multi-stage JSSP problem under FMS. The additional
time-dependent processing speeds and machine availability constraints are used for eval-
uating job lateness and makespan using the optimal control method and maximized
Hamiltonian function for a dynamic environment.

7.8. Use of CBJSP

Liu et al. [105] investigated the combined buffer job JSSP problem by formulating
the mathematical model and solved using established heuristics techniques. The FJSSP
instances are evaluated using the CBJSP. The results of the proposed methodology showed
significant performance over the conventional methodology.
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7.9. Use of RFID Based IoT

Ding & Jiang [106] provided insight for analyzing the data obtained by RFID-based
production control. In their model, IoT facilities were used for extracting the data from
the job shop. The three machines JSSP problem is solved using RFID-based IoT enabled
smart JSSP. Their model intended to help the production manager to cope with the routine
disruptions that occur in the production facility by incorporating smart factory technologies
established under Industry 4.0.

7.10. Industry 4.0 in SFFJSP

Ahuett–Garza & Kurfess [107] highlighted the use of various techniques of Industry 4.0
for achieving the smart manufacturing environment. Applications of SFFJSP are analyzed
in accordance with various applications to bring insight to the reader.

7.11. Use of Firefly Algorithm

Lunardi et al. [108] implemented the firefly algorithm using the mixed-integer linear
programming (MILP) model to extract the smart solutions for FJSSP. Various instances of
FJSSP are evaluated using the proposed methodology integrated with fixed and non-fixed
availability constraints [109].

7.12. Use of Lagrange Relaxation Method

Yan et al. [110] estimated near-optimal schedules for large-scale JSSPs by developing
tightened MILP with constraint & vertex conversion and vertex projection processes with
the help of the Lagrange relaxation method. The convergence and complexity were reduced
exponentially by the development of the decomposition and coordination method.

7.13. Use of AGVs

Heger & Voß [111] evaluated the mean flow time and mean tardiness of FJSSP based
on various priority, routing, and dispatching rules. The multi-purpose autonomous guided
vehicles (AGVs) are used in the model to estimate the complex manufacturing system. The
study concluded that the use of AGVs in the model along with rules reduces the mean flow
time up to 70%.

7.14. Use of HSTL

Dolgui et al. [112] analysed the JSSP by applying the optimal control techniques
with the additional hybrid structure terminal logical (HSTL) constraints for optimizing
multi-criteria, i.e., cost, delivery time, and makespan. In this model, both control and
state variables are defined for a dynamic environment in the supply chain (i.e., multiple
suppliers and multiple factories). Process structures are individually highlighted for
various customer orders and manufacturing processes. The Flexible Manufacturing System
(FMS) is used to execute the operations at multiple workstations.

7.15. Use of DSS with Big Data

Turker et al. [65] offered a framework that comprises of decision support system (DSS)
equipped with big data, along with the frequently used dispatching rules such as shortest
processing time, early due date, shortest slack time, etc., to increase the performance of
job shop under dynamic scheduling. The schedule updates instantaneously based on the
criticality of the queue of jobs waiting for the assignment of the workstation. Their study
concluded that the contribution of big data fills the gap between theory and practice by
considering the real-time dynamic behavior of jobs and machines.

7.16. Development of Standard Dataset

Weber et al. [113] made a major contribution by developing the standardized data set
for the JSSP problem. The authors argued that the present data set contains uniformity to
some extent and that there is a time of need to create a comprehensive random dataset that



Sustainability 2021, 13, 7684 13 of 19

can be used not only by operation research (OR) researchers but by production managers.
In today’s environment, where Industry 4.0 brings a solution to most of the problems that
were not considered while analyzing the JSSP problem, the dataset for comprehensive
analysis is needed.

7.17. Use of Q-Learning Algorithm

Zhao et al. [114] proposed a Q-learning algorithm to solve the FJSSP by considering
the machine failures. The Q-learning algorithm works on the preemptive strategy and
evaluates the consequences of the selected solving approach by the agent. The agent-based
approach is used to select the best priority rule that can be used at the instance for selecting
the machines and operations when the machine failure occurs.

7.18. Use of RRCF

Liu et al. [115] proposed an operator-based robust right coprime factorization (RRCF)
approach to deal with demand fluctuations while maximizing the robustness of the system.
The proposed RRCF stabilized the job shop by solving bottlenecks at each stage while
considering constant demands and reducing work in process (WIP). To evaluate the ef-
fectiveness of (RRCF), the results are compared with the proportional-integral-derivative
(PID) controller. Their study concluded that the proposed RRCF outperformed PID and
showed low overshoots and more steady-state behavior.

8. Robustness in Job Shop and Industry 4.0

Robustness in the Job Shop environment has been viewed as a concern and a constraint
in the past. However, it has been found that, among the robustness and energy efficiency,
there exists a clear relationship and there is a tradeoff not only among robustness and
makespan but also among energy efficiency and makespan [116]. It can be analyzed and
incorporated in the scheduling problem if the processing times are modeled as fuzzy
numbers and scheduling is performed through a Hybrid Genetic Algorithm which leads to
minimized makespan [117].

Inclusion of additional measures in the robustness problem such as maximal machine
workload and makespan objective functions along with uncertainty, when solved through
Modified Multi-Objective Evolutionary Algorithm based on Decomposition (m-MOEA/D),
leads to a better convergence to the problem as compared with the Multi-Objective Opti-
mization Evolutionary Algorithms (MOEAs) for a Multi-Objective Stochastic Flexible Job
Shop Scheduling Problem (MOSFJSSP) [118].

Consideration of pre-defined/predicted disruptions in a JSSP for robustness indicated
that small-scale problems give solutions through both the mathematical model and the
branch and bound algorithm. For large-scale problems, the aforementioned methods were
not found to be viable since the time to solution considerably increased. For large-scale
problems, beam search algorithm and particle swarm optimization were found to be better
performing. However, a single method could not be singled out for solving the scheduling
problem, since each method outperformed the other in different scenarios [119].

Recent studies indicated the effects of robustness in the real time scenario of machine
breakdowns. Robustness in the multi-objective optimization with the inclusion of machine
breakdowns along with makespan leads to the development of meta-models which, when
solved through MOEA, indicates a better convergence and diversity in Pareto solution sets
as compared to the slack-based surrogate measures [120,121].

9. Future Research Agenda

The scope for research in JSSP in the context of Industry 4.0 is still largely untapped
and its utility and viability in various applications is still to be explored further. Figure 7
presents the future research agenda of JSSP augmented with Industry 4.0.

• Incorporation of customized decision-making criteria for machine learning-based
decentralized operating systems.
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• Industry 4.0 also provides room for human-machine collaboration where smart ma-
chines can assist humans to achieve efficient solutions, as discussed in Berti et al. [122].
Moreover, involvement of human input in decision-making for efficient and sustain-
able decisions directed towards Industry 5.0 framework.

• Development of customized smart sensors for manufacturing performance criteria
assurance and assessment.

• Development of specialized sensors and quality assurance procedures for decentral-
ized JSSP for medical-grade manufacturing.

• Implementation of blockchain and distributed ledger technologies in a manufacturing
environment for sharing and retrieving data of machines functions between agents.

• Determination of sustainability indices for decentralized JSSP.
• Implementation of sustainability indices and other decision-making criteria for ap-

plication in decentralized JSSP focused on the concept of Industry 5.0 (fueled by
Information Technology and Environmental Sustainability).
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10. Conclusions

In the first phase of this paper, the JSSP problem is summarized based on the structural
framework and scheduling algorithms. Various studies are classified based on solving
algorithms. The advantages and limitations of existing solving methods and challenges for
the implementation in the Industry 4.0 environment are highlighted. In the second phase,
the futuristic approaches to solving JSSP problems under Industry 4.0 environment are
presented with their potential advantages. A framework is presented through which the
original centralized scheduling problem can be turned into smart agents-based problems.
In the third phase of this study, the latest studies from the year 2017–2021 are analyzed to
provide an overview of the latest research trends in SFFJSP.
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1. Integration of FJSSP with Industry 4.0 provides a conducive solution regarding com-
putational time, makespan, tardiness, lateness, etc.

2. The latest research trends indicate that conventional JSSP is no more practical to study.
3. Multi machines, multi operations, multi resources with multiple factories and logistics

centers should be incorporated in conventional JSSP to evaluate the actual dynamics
of the system.

4. Currently, the research focus is on approximate algorithms rather than exact algo-
rithms for solving JSSP and FJSSP. The global and local optimum solution is evaluated
with the aid of multi-objective optimization techniques.

5. The metaheuristics approaches have acquired great popularity for solving the JSSP
and FJSSP. Recent studies show that hybrid approaches are vastly used for solving
JSSP under the Industry 4.0 environment.

6. The use of PID controllers, RFIDs, and barcodes has become a great source of integrat-
ing actual plant with its digital part.

7. Recent studies indicate the use of smart agents to determine the efficient sequencing
of jobs while minimizing the complexity of JSSPs, is a competitive approach adopted
by many scholars.

8. The merger of AI, CPS, deep learning, cloud computing, etc., in JSSPs has outper-
formed the conventional approaches of finding optimal solutions.
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