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Abstract: Peter Day’s research group reported the first molecular superconductor containing paramag-
netic metal ions in 1995, β”-(BEDT-TTF)4(H3O)Fe(C2O4)3·C6H5CN. Subsequent research has produced
a multitude of BEDT-TTF-tris(oxalato)metallate salts with a variety of structures and properties, in-
cluding 32 superconductors to date. We present here the synthesis, crystal structure, and conducting
properties of the newest additions to the Day series including the first superconductor incorporating
the diamagnetic tris(oxalato)aluminate anion, β”-(BEDT-TTF)4(H3O)Al(C2O4)3·C6H5Br, which has a
superconducting Tc of ~2.5 K. β”-(BEDT-TTF)4(H3O)Co(C2O4)3·C6H5Br represents the first example of
a β” phase for the tris(oxalato)cobaltate anion, but this salt does not show superconductivity.

Keywords: molecular conductor; superconductor; metal; semiconductor; BEDT-TTF; tris(oxalato)metallate

1. Introduction

The first paramagnetic superconductor, β”-(BEDT-TTF)4(H3O)Fe(C2O4)3·C6H5CN,
was discovered in 1995 by the group of Professor Peter Day at the Royal Institution of Great
Britain [1]. The ability of tris(oxalato)metallate(III) anions, M(C2O4)3

3−, to bridge through
oxalate ions with monocations or metal(II) ions and form 2D sheets opened the door to a
huge variety of structures and properties in radical cation salts with BEDT-TTF [2]. This
family of salts includes not only paramagnetic superconductors, but also a ferromagnetic
metal [3], antiferromagnetic semiconductor [4], and proton conductor [5,6].

Most of the reported salts in the BEDT-TTF-tris(oxalato)metallate family are 4:1 salts
having the formula (BEDT-TTF)4(A)M(C2O4)3·G. The lattice consists of cation layers of
BEDT-TTF alternating with anion layers where hydrogen bonding between the terminal
ethylene groups of BEDT-TTF and the anion layer determine the donor molecule packing
arrangement. The anion layers are built up of M and A bridged by oxalate ligands to form
a honeycomb with guest molecules, G, contained within the hexagons.

The most widely studied 4:1 salts in this “Day series” are the β” salts, which crystallise
in the monoclinic C2/c space group, of which 32 are superconductors [1,2,7–30]. The
counter cation (A = H3O+/K+/NH4

+/Rb+) and the tris(oxalato)metallate metal centre
can be changed (M = Fe [1,7–19,25], Cr [20–25], Co [25], Al [25], Mn [17,26], Ga [24,27,28]
Ru [29], Rh [30]), which has a small effect on the electrical properties of the material
owing to the change in size of A and M. For example, β”-(BEDT-TTF)4(A)M(C2O4)3·G,
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where G = benzonitrile, sees a reduction of superconducting Tc to 5.5–6.0 K when M = Cr,
compared to when M = Fe 7.0–8.5 K. A more marked effect on the electrical properties
and the superconducting Tc [31] is observed when changing the guest molecule, G—the
solvent used for the electrocrystallization. Changing G from benzonitrile to different sized
and shaped guest molecules can alter the conducting properties from superconducting to
metallic or semiconducting [2,7–30]. The highest superconducting Tc values are obtained
when longer guest solvent molecules are used, which increase the b axis length the furthest,
e.g., G = benzonitrile, nitrobenzene [31].

When G = benzonitrile, crystals of an additional 4:1 orthorhombic phase are also
obtained when M = Fe or Cr. Crystals of this 4:1 orthorhombic phase are the only phase
obtained with G = benzonitrile when M = Co [25], Al [25], or Rh [30], and the β” phase
has not been reported. This semiconducting phase crystallises in the orthorhombic space
group Pbcn with a pseudo-κ donor packing. (BEDT-TTF+)2 dimers are surrounded by
neutral BEDT-TTF0 monomers. The –C≡N group of benzonitrile is disordered over two
positions directed towards A, rather than along the b axis towards M, as seen in the β”
salts. The chirality of the tris(oxalato)metallates in the anion layers differs between the
β” and pseudo-κ salts despite both having an overall racemic lattice. In the β” salts, each
anion layer contains only a single enantiomer of M(C2O4)3

3− with alternating layers being
of the opposing enantiomer. However, in the pseudo-κ salts, each anion layer is identical
with alternating rows of ∆ or Λ enantiomers.

When G is too large to fit inside the honeycomb cavity of the anion layer, a 4:1 triclinic
phase is obtained. The guest molecule in these salts protrudes on one side of the anion
layer and not on the other. The two different faces of the anion layer then lead to two
different packing modes of the donor layer within the same crystal, e.g., both α and β”
donor packing (G = PhCH2CN, PhN(CH3)CHO, PhCOCH3, or PhCH(OH)CH3) [32] or α
and pseudo-κ (G =1,2-Br2Ph) [33]. An α-β” salt has also been obtained with the inclusion
of a chiral guest molecule (G = sec-phenethyl alcohol, PhCH(OH)CH3) in both the chiral
S form and the racemic R/S form. A small difference in the metal–insulator transition
temperature is observed between the racemic and the chiral salts owing to the disorder,
which is found only in the racemate [34].

While the 4:1 salts make up the majority of BEDT-TTF-tris(oxalate)metallate salts,
some semiconducting 3:1 salts have been obtained when using smaller guest molecules
(G = DMF, acetonitrile, dichloromethane, nitromethane; cation = Li+, Na+, NH4

+;
metal = Fe [35], Cr [36–39], Al [39]). A 2:1 salt has also been reported in which an 18-crown-6
molecule is the guest in the honeycomb cavity, β”-(BEDT-TTF)2[(H2O)(NH4)2M(C2O4)3].18-
crown-6 (M = Cr, Rh, Ru, Ir). Both the Cr and Rh salts show a bulk Berezinskii–Kosterlitz–
Thouless superconducting transition [40–42]. Changing the counter cation A has produced
several salts where the packing of the anion layer differs from the aforementioned honey-
comb packing arrangement giving salts β’-(BEDT-TTF)5[Fe(C2O4)3]·(H2O)2·CH2Cl2 [43]
(A = tetraethylammonium), η-(BEDT-TTF)4(H2O)LiFe(C2O4)3 [35] (A = lithium), α”’-
(BEDT-TTF)9[Fe(C2O4)3]8Na18(H2O)24 [44,45] (A = sodium, α-(BEDT-TTF)10(18-crown-
6)6K6[Fe(C2O4)3]4(H2O)24 [45] (A = potassium), andα-(BEDT-TTF)12[Fe(C2O4)3]2·(H2O)n [46]
(A = potassium or caesium, n = 15 or 16). Changing the M(III) to Ge(IV) produces very
different structures in the semiconductors (BEDT-TTF)2[Ge(C2O4)3]·PhCN [47], (BEDT-
TTF)5[Ge(C2O4)3]2 [48], (BEDT-TTF)7[Ge(C2O4)3]2(CH2Cl2)0.87(H2O)0.09 [48], and (BEDT-
TTF)4Ge(C2O4)3·(CH2Cl2)0.50 [49].

We report here the synthesis, crystal structures, and conducting properties of the
first superconductor incorporating the tris(oxalato)aluminate anion, β”-(BEDT-TTF)4(H3O)
Al(C2O4)3·C6H5Br (Tc ~ 2.5 K), the first example of a β” phase for the tris(oxalato)cobaltate
anion (G = PhBr), and two new β” salts from tris(oxalato)ruthenate (G = PhCl or PhF).
Resistivity is also presented for β”-(BEDT-TTF)4(H3O)Ru(C2O4)3.PhBr, which shows a
superconducting Tc of 2.8 K, though the crystals were very thin and not suitable for a
publishable X-ray dataset.
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2. Results and Discussion

All salts β”-(BEDT-TTF)4(H3O)M(C2O4)3·G (M-G = Al-PhBr, Co-PhBr, Ru-PhCl, Ru-
PhF) are isostructural with the previously reported Day seriesβ”-(BEDT-TTF)4[(A)M(C2O4)3]·G.
Ru-PhBr is also isostructural, though the crystals were very thin and not suitable for a
publishable X-ray dataset. They crystallise in the monoclinic space group C2/c. The
asymmetric unit contains two crystallographically independent BEDT-TTF molecules, half
an M(C2O4)3− molecule, half a guest halobenzene molecule, and half a H3O+ molecule
(Table 1). The long-range structure consists of ordered alternating layers of BEDT-TTF donor
molecules and M(C2O4)3− anions (Figure 1). The two crystallographically independent
donor BEDT-TTF molecules form two-dimensional stacks along the a/b crystallographic axis
in a β” arrangement (Figure 2). A number of predominately side-to-side sulphur-sulphur
interactions below the sum of the van der Waals radii are present (Table 2). The estimated
charge on BEDT-TTF cations can be calculated via the method of Guionneau et al. [50]
from the central C=C and C–S bond lengths of the TTF core and results in a charge of
approximately +0.5 for each BEDT-TTF molecule, as expected (Table 3).

Table 1. Crystal data for β”-(BEDT-TTF)4(H3O)M(C2O4)3·G salts.

Salt Al-PhBr 290 K Al-PhBr 110 K Co-PhBr 150 K Ru-PhF 293 K Ru-PhCl 298 K

Formula C52H40AlBrO13S32 C52H40AlBrO13S32 C52H40BrCoO13S32 C52H40FO13RuS32 C52H40O13S32ClRu
Fw (g mol−1) 2005.65 2005.65 2037.60 2018.83 2035.28

Crystal System monoclinic monoclinic monoclinic monoclinic monoclinic
Space group C2/c C2/c C2/c C2/c C2/c

Z 4 4 4 4 4
T (K) 290 (2) 110 (2) 150 (2) 293 (2) 293 (2)
a (A) 10.2851 (2) 10.2520 (3) 10.2306 (3) 10.32786 (19) 10.32017 (19)
b (A) 19.9472 (4) 19.7919 (7) 19.7508 (5) 19.9521 (4) 20.0264 (4)
c (A) 35.597 (3) 35.4275 (11) 35.2520 (9) 34.9966 (6) 35.161 (3)
α (◦) 90 90 90 90 90
β (◦) 93.399 (7) 93.843 (7) 93.938 (7) 93.010 (7) 93.586 (7)
γ (◦) 90 90 90 90 90

Volume
(

A3) 7290.1 (6) 7172.3 (4) 7106.3 (3) 7201.5 (2) 7252.6 (6)
Density (g cm−3) 1.827 1.857 1.905 1.862 1.864

µ (mm−1) 1.553 1.578 1.806 1.209 1.235
R1 0.0547 0.0688 0.0431 0.0460 0.0442

wR (all data) 0.1401 0.1526 0.0914 0.318 0.1089

Table 2. S . . . S close contacts below the van der Waals distance in β”-(BEDT-TTF)4(H3O)M(C2O4)3·G salts.

Contact (Å) Al-PhBr 290 K Al-PhBr 110 K Co-PhBr 150 K Ru-PhF 293 K Ru-PhCl 298 K

S1 . . . S7 3.4069 (13) 3.3795 (19) 3.3683 (11) 3.4015 (14) 3.4283 (11)
S3 . . . S7 3.5046 (13) 3.458 (2) 3.4544 (11) 3.5369 (15) 3.5290 (11)
S2 . . . S9 3.3138 (14) 3.2838 (19) 3.2864 (11) 3.3744 (15) 3.3528 (11)

S2 . . . S11 3.3720 (13) 3.340 (2) 3.3413 (11) 3.3954 (15) 3.3842 (11)
S6 . . . S15 3.5231 (14) 3.463 (2) 3.4475 (12) 3.5236 (17) 3.5190 (13)
S8 . . . S15 3.5704 (15) 3.502 (2) 3.4904 (13) 3.6182 (17) 3.5869 (12)
S8 . . . S10 3.5889 (14) 3.550 (2) 3.5551 (13) 3.6169 (16) 3.6031 (13)
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Table 3. Average bond lengths (Å) in BEDT-TTF molecules with approximation of the charge on the molecules. δ = (b + c) −
(a + d), Q = 6.347 − 7.463δ [50].
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Figure 2. β” BEDT-TTF layer packing in Al-PhBr. The other salts reported in this paper are isostruc-
tural. The two crystallographically independent BEDT-TTF molecules are shown in different colours.
Hydrogens have been removed for clarity. The a axis is shown in red, the b axis in green, and the c
axis in blue.



Magnetochemistry 2021, 7, 90 5 of 12

The anion layer consists of a honeycomb arrangement of M(C2O4)3−, perpendicular
to the long axis of the BEDT-TTF molecules, resulting in a hexagonal cavity that is occupied
by the guest halobenzene molecule. Each anion layer contains a single enantiomer of
the tris(oxalato)metallate ion with adjacent layers containing the alternate enantiomer,
which gives an overall racemic lattice. The hexagonal cavity and the orientation of the
guest halobenzene molecule within it are shown in Figure 3 and Table 4. Distances a, b,
h, and w represent the dimensions of the hexagonal cavity. The latter two are the height
and width of the cavity, respectively, and δ is the angle of the benzene ring plane relative
to the plane of the hexagonal cavity (measured as the least-squares plane of the three
metal atoms making up three corners of the hexagon). For M = Rh, we see a reduction in
height (h) of the hexagonal cavity going from G = PhCl to the smaller PhF, accompanied
by a reduction in the length of the b axis of the unit cell. For salt Al-PhBr, we observed
a Tc of ~2.5 K (Figure 4), which is similar to previously published salts of β”-(BEDT-
TTF)4[(H3O)M(C2O4)3].G, where G = bromobenzene. When applying a magnetic field
along the c* axis, the critical field of the superconductivity at 0.7 K is about 0.2 T. This is
comparable to other salts in the Day series, for example: the Fe-DMF salt has a Tc of 2.0 K,
and Hc2 in a perpendicular field is ~0.1 T [51]. Higher Tc salts in the Day series have higher
Hc2 values (2–5 T) [52], and these quasi-2D superconductors are strongly anisotropic [53].
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Figure 3. Honeycomb cavity in the anion layer of β”-(BEDT-TTF)4(H3O)M(C2O4)3·G salts with
measurement parameters labelled (a–e, w = width, h = height). Carbon atoms are grey, hydrogen
atoms white, and oxygen atoms red. This image shows salt Al-PhBr, where aluminium atoms are
pink and bromine atoms brown.
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Table 4. Honeycomb cavity measurements in the anion layer (see Figure 3) of β”-(BEDT-TTF)4(H3O)M(C2O4)3·G salts.

Salt Temp. Al-PhBr 290 K Al-PhBr 110 K Co-PhBr 150 K Ru-PhF 293 K Ru-PhCl 298 K

Distances (Å)
a 6.269 (3) 6.255 (6) 6.249 (3) 6.292 (3) 6.312 (2)
b 6.387 (5) 6.111 (10) 6.286 (6) 6.380 (5) 6.377 (4)
c 4.5360 (16) 4.487 (3) 4.5212 (10) 4.804 (13) 4.331 (16)
d 1.894 (6) 1.905 (10) 1.902 (6) 1.377 (14) 1.737 (6)
e 4.401 (9) 4.338 (19) 4.296 (10) 4.786 (13) 4.543 (9)
h 13.560 (5) 13.481 (10) 13.464 (6) 13.572 (5) 13.649 (4)
w 10.2851 (2) 10.2520 (3) 10.2306 (3) 10.32786 (19) 10.32017 (19)

O4-cation 3.066 (5) 3.004 (11) 2.985 (6) 2.956 (6) 2.962 (5)
O6-cation 2.857 (3) 2.851 (6) 2.842 (3) 2.846 (6) 2.831 (3)
O1-cation 3.083 (5) 3.073 (9) 3.112 (5) 2.941 (5) 2.996 (4)

Angles (◦)
δ 33.522 (3) 33.378 (3) 33.60 (13) 33.74 (19) 32.677 (3)
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The Al3+ ion of tris(oxalato)aluminate is smaller than previous examples, where
M = Fe [13,17], Ga [28], Rh [30], and Ru [29] (Tc = ~3.8, ~3.0, ~2.9, ~2.8 K, respectively,
for G = bromobenzene), and the Tc is smaller for M = Al at ~2.5 K. A comparison of the
b axis length of these bromobenzene salts at room temperature showed that the M = Fe
salt has the longest at 20.0546(15) Å and also the highest ~3.8 K [13,17]; M = Rh has an
intermediate b axis of 20.0458(4) Å and a Tc of ~2.9 K [30]; while M = Al has the shortest b
axis of 19.9472(4) Å and the lowest Tc at ~2.5 K. A direct comparison with the M = Ga [28]
and Ru [29] salts cannot be made owing to A = Kx(H3O)1-x rather than H3O for these
salts. Salts with M = Cr [23] and Mn [17] have been reported with Tcs of 1.5 K and 2.0 K,
respectively, but crystal structures are not published for the comparison of the b axes. Our
crystals of Co-PhBr did not show superconductivity (Figure 5), with the b axis of this salt
being much shorter than all other PhBr salts at 19.7508(5) Å.
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There are thirty-two superconductors to date having the formula β”-(BEDT-TTF)4
[(A)M(C2O4)3]·G (M = Fe, Cr, Ga, Rh, Ru, Mn, G = guest molecule, A = H3O+/K+/NH4

+)
[1,2,7−30]. There is negligible π-d interaction in β”-(BEDT-TTF)4[(A)M(C2O4)3]. G salts
because the M3+ ions are located in the centre of the anion layer, distant from the BEDT-TTF
layer (Figure 1). This is confirmed by the similar Tcs that are observed for isostructural salts
with the same A and G, but which differ only in the presence of paramagnetic Fe3+ (S = 5/2)
or non-magnetic Ga3+ [53,54]. A much more marked effect on the value of Tc is observed
when changing the guest molecule, G. Changing M and G leads to a change in the length
of the unit cell dimensions. A correlation between the b axis length and superconducting Tc
has been observed through structural analysis [31]. The effect of chemical pressure through
changing G and M is mainly attributed to the guest molecule, G, which is oriented with
the R-group oriented in the b direction (Figure 3). The longest molecules, benzonitrile and
nitrobenzene, have the highest Tcs observed in the family, and the relationship between Tc
and the guest molecule size can be observed in the series of salts with halobenzene guest
molecules [31]. Only the higher Tc salts in this family show insulating behaviour just above
Tc owing to charge disproportionation in these salts [55–58].

Figure 6 shows the resistivity of β”-(BEDT-TTF)4(H3O)Ru(C2O4)3·G, where G = PhBr,
PhCl, or PhF. Ru-PhBr for A = Kx(H3O)1-x has previously been studied by
Prokhorova et al. [29] with a sample-dependent Tc in the range 2.8–6.3 K. Resistivity
measurements on our crystals of β”-(BEDT-TTF)4(H3O)Ru(C2O4)3.PhBr gave a Tc of 2.8 K,
which was as expected based on the b axis length [31]. Upon reducing the size of G from
PhBr to PhCl or PhF, no superconductivity was observed. Both Ru-PhCl and Ru-PhF
showed semiconducting behaviour (Figure 6). Both Ru-PhCl and Ru-PhF had shorter b
axis lengths compared to the Ru-PhBr salt. However, the b axis lengths in semiconduct-
ing Ru-PhCl and Ru-PhF were longer than that in superconducting Al-PhBr (Table 3).
This indicates that other factors, such as the shape and the electric dipole of the guest
molecule, may have minor influences even though the b axis length predominantly affects
the electronic state, including the Tc [31].
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3. Materials and Methods

Bromobenzene, chlorobenzene, fluorobenzene, ethanol, and 18-crown-6 were pur-
chased from Sigma Aldrich and used as received. BEDT-TTF was purchased from Sigma
Aldrich (Gillingham, Dorset, UK) and recrystallised from chloroform.

3.1. Synthesis

Ammonium tris(oxalato)aluminate and tri(oxalato)cobaltate were synthesised by the
method of Bailar and Jones [59]. Ammonium tris(oxalato)ruthenate was synthesised by the
method of Kaziro et al [60].

Al-PhBr: One-hundred milligrams of ammonium tris(oxalato)aluminate and 200 mg
of 18-crown-6 ether were dissolved in 10 mL 1,2,4-trichlorobenzene, 10 mL bromobenzene,
and 2 mL ethanol. The solution was then filtered into the cathodic side of the H-cell, while
20 mg of BEDT-TTF was added to the anodic side of the H-cell. The level of solvent was
allowed to equilibrate in the cell, and a platinum electrode was added to each side. A
constant current of 0.8 µA was applied across the H-cell which gave small black crystals of
Al-PhBr which were collected after 28 days.

Co-PhBr: One-hundred milligrams of ammonium tris(oxalato)cobaltate and 200 mg
of 18-crown-6 ether were dissolved in 10 mL 1,2,4-trichlorobenzene, 10 mL bromobenzene,
and 2 mL ethanol. Ten milligrams of BEDT-TTF were added to the anodic side of the H-cell.
A constant current of 0.6 µA was applied across the H-cell which gave tiny black crystals
of Co-PhBr which were collected after 14 days.

Ru-PhF: One-hundred milligrams of ammonium tris(oxalato)ruthenate and 200 mg of
18-crown-6 ether were dissolved in 10 mL 1,2,4-trichlorobenzene, 10 mL fluorobenzene,
and 2 mL ethanol. Ten milligrams of BEDT-TTF were added to the anodic side of the H-cell.
A constant current of 1.0 µA was applied across the H-cell which gave black block crystals
of Ru-PhF which were collected after 28 days.

Ru-PhCl: One-hundred milligrams of ammonium tris(oxalato)ruthenate and 200 mg
of 18-crown-6 ether were dissolved in 10 mL 1,2,4-trichlorobenzene, 10 mL chlorobenzene,
and 2 mL ethanol. Ten milligrams of BEDT-TTF were added to the anodic side of the H-cell.
A constant current of 1.0 µA was applied across the H-cell which gave black block crystals
of Ru-PhCl which were collected after 28 days.

Ru-PhBr: One-hundred milligrams of ammonium tris(oxalato)ruthenate and 200 mg
of 18-crown-6 ether were dissolved in 10 mL 1,2,4-trichlorobenzene, 10 mL chlorobenzene,
and 2 mL ethanol. Ten milligrams of BEDT-TTF were added to the anodic side of the H-cell.



Magnetochemistry 2021, 7, 90 9 of 12

A constant current of 1.0 µA was applied across the H-cell which gave thin needle crystals
of Ru-PhBr which were collected after 28 days. The crystals were very thin and not suitable
for a publishable X-ray dataset.

3.2. Single-Crystal X-ray Crystallography

Data were collected using a RigakuRapid II (Tokyo, Japan) imaging plate system with
the MicroMax-007 HF/VariMax rotating-anode X-ray generator and confocal monochro-
mated Mo-Kα radiation.

3.3. Conducting Properties

Out-of-plane electrical resistance was measured using the standard four-terminal AC
method with the current along the c* axis. Four gold wires were attached using carbon
paint on both plane surfaces of single crystals.

4. Conclusions

We reported the synthesis and characterization of β”-(BEDT-TTF)4(H3O)
Al(C2O4)3·C6H5Br (Al-PhBr), which represents the first superconductor in the Day se-
ries to contain the tris(oxalato)aluminate anion. This salt (M = Al) is isostructural with
bromobenzene salts where M = Fe, Ga, Rh, Ru, Mn, Cr. A relationship between the b axis
length and superconducting Tc has previously been observed in the Day series [31]. The b
axis length of these bromobenzene salts at room temperature showed that the M = Fe salt
had the longest b axis and also the highest Tc of ~3.8 K, while M = Al had the shortest b
axis and the lowest Tc of ~2.5 K. We also reported the isostructural M = Co salt (Co-PhBr),
which did not show superconductivity. The b axis of this salt was much shorter than all
other bromobenzene salts. Isostructural salts Ru-PhCl and Ru-PhF were presented in
which the b axes were longer than that observed in superconducting Al-PhBr, but these
two ruthenium salts did not show superconductivity. This indicates that even though the b
axis length predominantly affected the electronic state, including the Tc, other factors may
also be at work, such as the shape and the electric dipole of the guest molecules, which
may have minor influences on the electronic states.
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