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In wireless sensor networks, energy is a precious resource that should be utilized wisely to improve its life. Uneven distribution of
load over sensor devices is also the reason for the depletion of energy that can cause interruptions in network operations as well.
For the next generation’s ubiquitous sensor networks, a single artificial intelligence methodology is not able to resolve the issue of
energy and load. Therefore, this paper proposes an energy-efficient routing using a fuzzy neural network (ERFN) to minimize the
energy consumption while fairly equalizing energy consumption among sensors thus as to prolong the lifetime of the WSN. The
algorithm utilizes fuzzy logic and neural network concepts for the intelligent selection of cluster head (CH) that will precisely
consume equal energy of the sensors. In this work, fuzzy rules, sets, and membership functions are developed to make
decisions regarding next-hop selection based on the total residual energy, link quality, and forward progress towards the sink.
The developed algorithm ERFN proofs its efficiency as compared to the state-of-the-art algorithms concerning the number of
alive nodes, percentage of dead nodes, average energy decay, and standard deviation of residual energy.

1. Introduction

Wireless sensor network (WSN) is referred to as a collection
of smart sensor nodes that collects data and taken appropri-
ate decisions [1–3]. WSN environment is comprised of smart
sensor nodes for detecting some unusual (RFID enabled) that
collects data from the confined condition and forward it to
the base station. WSN is a group of smart sensor nodes that
collect data from encompassing conditions and forward it
to the base station for future actions [4–6]. It also overloads
the data on cloud applications that are downloaded by users
for processing. The sensing field is a sensor-enabled environ-
ment that is used in almost all the fields for smart monitoring
purposes, such as human or animal tracking, medical, mili-
tary, automobile industries, natural hazard, environmental
monitoring, seismic detection, agriculture, navigation, and
surveillance environments [7, 8]. The sensor nodes have a

limited range of energy that is used to communicate and
computation. It is highly difficult to recharge these smart
nodes or to provide some alternate power source [9–11]. In
WSN, few nodes deplete their energy more quickly than
may cause degrading the lifetime of the network. The authors
proposed an energy efficiency approach where ANT colony
with Huffman coding is used to conserve the energy of
WSN [12]. Therefore, this paper will look after energy and
load of sensor nodes to improve the lifetime of WSN. A load
of sensor nodes must be evenly distributed or scheduled to
obtain the defined goal. The proposed approach schedules
the load among nodes having higher transmission capabili-
ties and computational power.

Routing using route-centric parameters is also a support-
ing approach used in the past to tackle energy consumption
balancing issues. In this approach, the routing is performed
into a small network region, and in each region, one sensor
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is selected as next hop that will forward the data from other
sensors of a sink [13, 14]. Parameter-centric routing further
applies geocast techniques to reduce delay and improve the
packet delivery ratio. The next-hop plays a significant role
in scalable routing to load balancing, enhancing network life-
time [15]. The major feature used for designing a parametric
centric routing is optimal selection techniques for next hop
sensor for forwarding the data to the sink. Advanced sensor
networks are becoming complex day by day; therefore, tradi-
tional mathematical models for next hop selection are not
appropriate. A fuzzy inference system provides applicable
solutions to fabricate a model for the selection of next hop,
as it processes the detailed part of general human apprehen-
sion in absence of any mathematical tools. In 1965, the basic
theory of fuzzy is explained by Zadeh [16]. Then, Takagi and
Sugeno followed the fuzzy system and proposed a fuzzy logic
modeling to evaluate the mess of different pragmatic applica-
tions, namely, as control, inference, prediction, and estima-
tion [17]. There are some advantages with fuzzy modeling
like as the capacity to translate immanent indecisive of
human feature into linguistic variables and apprehension of
outcomes in natural rule portrayal way and in simple aug-
mentation rule with the help of the extension of new postu-
lates and usefulness of the system. The fuzzy logic is also
affected with some disadvantages of no proper method to
explain human practical knowledge into fuzzy logic data-
bases. It only analyses the rule database. It cannot think out
of the box, or we can say, generalization in fuzzy is a little dif-
ficult. It is high time to obtain a generalized solution, to tune
the membership function to alleviate error rates in order to
enhance the accomplishment index, a generalized solution
is required. The artificial neural network (ANN) model pro-
posed by McCulloch and Pitts trained various variants of the
ANN model as adaptive liner neuron, which is known as
adaptive linear element algorithm [18]. The ANN is an
analytical model for “connectionist” which analyses by logic
neurons of the human cerebrum. Such models acquire
knowledge from trained data vectors and input-output of
the system [19–24]. It depicts the weight function concerning
the problem including the error rate of the system to make a
more efficient system. To enlarge the learning algorithm with
generalization ability of fuzzy environment is the incorporat-
ing concept that is followed here [25]. It obtains logical inter-
pretation to rectify the issues. A hybrid system named neuro-
fuzzy system is proposed by Jang, Lin, Berenji, and Nauck
[26–33].

In this context, we propose an energy-efficient routing
using soft computing-based hybrid system by combining an
adaptive neural network and a fuzzy inference system to find
an appropriate next hop sensor from the neighboring sen-
sors. The election of next hop relies upon residual energy of
each sensor, node degree, and forward progress towards the
sink. In each round, a new next hop is selected which sup-
ports equalizing the energy consumption to meliorate the
lifetime of the network by altering the path each time. The
followings are the main contribution of the paper:

(1) First, a system and energy model is presented to
explain the topological configuration of WSN and

to analyze the energy required for transmitting and
receiving data throughout the network

(2) To optimize the performance of the sensor network,
routing centric parameters are derived focusing on
expected energy consumption, expected node degree,
and expected forward progress towards the sink

(3) Fuzzy-Neural networks have been used which jointly
combine three routing centric parameters to efficient
next hop selection

(4) A fuzzy neural network-assisted energy-efficient
routing framework is developed based on the energy
model and routing centric parameters

(5) The proposed routing framework is simulated to
comparatively evaluate the performance against
state-of-the-art routing providing metrics related to
sensing environments

The remaining part of the paper is organized as fol-
lows: the section presents a review of energy-centric rout-
ing with and without heuristics approaches. Section 3
presents energy-efficient routing using a fuzzy neural net-
work for WSN. Section 4 explained the simulation results
and analysis for the proposed routing. The conclusion is
presented in section 5.

2. Related Works

2.1. Energy Centric Routing without Heuristics. The first hier-
archical clustering algorithm is LEACH (low energy adap-
tive clustering hierarchy) which supports two stages for
each clustering round [34]. One deals with cluster head
(CH) selection and with cluster formation in a network.
Another stage deals with data transmission to CH. When a
cluster is formed, all the sensor nodes are assigned with
some probability through a probabilistic model to elect
CH. A predefined threshold value is defined which plays
an important role in electing CH. An arbitrary value
between 0-1 is generated for every sensor node which is fur-
ther compared to the threshold value for electing CH in a
particular round. To avoid intercluster interface, each CH
floats a message using CSMA. Now the sensor nodes are
able to make the decision regarding the data transmission
that to which CH they wish to connect. After this, CH piles
up data from its member nodes and claims data aggregation
technique to lessen data redundancy and forward the filtered
data to the intended base station. This is how the LEACH
algorithm takes fair decisions for CH selection, and each
node gets equal opportunity to become a CH [35]. But the
critical concern with the LEACH algorithm is that the
energy consumption of the nodes is not considered which
is our prime concern. Moreover, LEACH does not look after
the asymmetric classification of clusters in networks, and
multihop data transmission is also not allowed. Therefore,
to overcome the mentioned issues of LEACH, hybrid energy
efficiency distribution (HEED) is introduced [36]. This algo-
rithm also supports a probabilistic model for CH selection
where the probabilistic is increased twice in between the
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rotations. But this algorithm (HEED) has its own issues. In
HEED, few sensor nodes are exempted for the selection of
CH, and few nodes are not even a part of any cluster and
are freely available. To focus on the conservation of energy,
a power-efficient gathering in sensor information systems
(PEGASIS) is launched that uses greedy. In PEGASIS, every
node acquires data from its near node and forwards it to
another neighbor node, and fused [37]. The fused data is
transmitted to the base station from a specified node. After
a specified time slot, random nodes are selected for the des-
ignated role. Hence, all the nodes participate equally and
deplete their energy evenly. The average energy consump-
tion in each rotation is abated.

2.2. Energy Centric Routing with Fuzzy-Heuristics. A fuzzy
logic system plays a significant role in the selection of CH
in sensor-enabled IOT environment. Gupta et al. introduced
fuzzy logic approach to select CH nodes based on current
energy level, the centrality of node, and density [38]. This
approach is different from the traditional LEACH approach,
as in this scheme the base station is simply accountable for
the election of CH node and base station further processes
the data using Mamdani type fuzzy inference system that
provides output as a plunge to decide favorable node, appli-
cable for CH. After this stage, all the operations are similar
to LEACH. CHEF is proposed as a new CH selection scheme
that observes the residual energy and local distance as param-
eters [39]. The local information about the node is gathered
from neighboring nodes. This mechanism is localized within
a cluster. The base station does not gather information or
select CH. LEACH and CHEF share a common set-up phase.
CHEF works in residual energy and local distance. Another
protocol came which is an improvised version of traditional
LEACH names as LEACH-FL (low energy adaptive cluster-
ing hierarchy protocol based on fuzzy logic) [40]. It analyses
three parameters as fuzzy variables such as node density,
energy level, and distance to base station. The base station
collects data and applies Mamdani type fuzzy inference sys-
tem to make decision for CH. Here, expected residual energy
and actual residual energy are used to determine the chance
of being a CH. This approach is also similar LEACH. The
nodes which have extra residual energy along with expected
residual energy have high chance of becoming a CH node.
For energy prediction technique with fuzzy logic for homoge-
neous WSN, LEACH-ERE is introduced by Lee and Cheng
[41]. This approach presents a concept considering the dis-
tance to the base station, concretion of node leads to bumpy
energy utilization over a network. The fuzzy logic-based clus-
tering algorithms for wireless sensor networks are presented
in papers [42–46]. In this approach [42, 43], the base station
is not static and aggregated data is not transmitted to mobile
station. This scheme proposed a super CH (SCH), which for-
wards data to the base station. This approach also makes use
of probabilistic model in each CH selection round. Hence,
CH is selected through Mamdani type fuzzy inference sys-
tem. Three main fuzzy descriptors such as residual energy,
mobility, and centrality are used for making a decision on
CH selection. The node with the highest value of summation
of centrality and battery power will get a chance to be CH.

The centrality varies upon mobility if the base station, there-
fore, fuzzy labels are as additives. The node with a greater
probability of becoming a CH will become a super CH. The
super CH decreases the transmission value and hence
decreases the node dead time, as the number of rounds
increases and improves the network survivability. In [43],
the improved LEACH has been proposed to enhance the net-
work lifetime and reduce packet loss for mobility-oriented
services for WNS. In [44], authors have proposed to enhance
clustering hierarchy (ECH) method to improve the energy
efficiency using the sleep-wake up duty cycling approach
for the sensors which sensed redundant data due to coverage
overlapping. In [45], authors have suggested a cluster head
selection method using fuzzy logic aiming at energy saving
of the sensors to improve the WSN lifetime.

Nayak et al. exhibit the importance of IoT in WSN [46].
All the applications of IoT use different energy-efficient
model for enabling various services. The WSN-based envi-
ronment works in two stages, one is to establish cluster-
based model for service followed by designing an energy
aware model. This scenario is not performance effective for
IoT-enabled environment because IoT devices are consid-
ered dynamic in nature. Therefore, it is high time to impro-
vise the algorithms and emphasize fuzzy-based technique
with an adaptive neural network that can adapt to a dynamic
network as well. An analytical hierarchy process with a
fuzzy-based energy management system is proposed for
industrial equipment management that displays as an
exposer of numerous case studies [47]. A fuzzy-based vehic-
ular physical system is also observed that combines fuzzy
and Markov chain for optimizing location-oriented channel
access delay. To measure the channel density, two parame-
ters such as signal to inference ratio and channel access delay
are used [48]. Qitu et al. also proposed an IoV enabled set-
up for communication using fuzzy logic. Here, the velocity
of the vehicle, vehicle nearly nodes, and height of antenna
are taken as parameters for selection of CH. In this approach,
an optimal number of CHs is elected to bridge the communi-
cation and enhances the overall throughput [49, 50]. A
genetic-based virtualization technique is proposed to tackle
the torrent delay and reduce the energy utilization [51]. Kai-
wartya et al. [52] developed similar approach for agriculture
purposes which works on seven metrics to quantify the quan-
tity measurement of sensor nodes. INDRIYA is a testbed
experiment that is used to examine the effectiveness of this
algorithm.

The abovementioned approaches are fuzzy logic-based
approaches which show promising results for load balancing
and energy conservation but these are not suitable for weight
fuzzy descriptor to adapt to the environment. In real-time
applications where input-output pair changed with the envi-
ronment, such approaches are not suitable [53]. Therefore,
the purpose of introducing a novel energy-efficient routing
using fuzzy neural network in WSN is to address the issue
of the leaning rate of membership function, reducing energy
consumption, and improving the survivability of the sensor
networks. The routing approach has potential newer areas
of applications including E-mobility route planning [54]
and information sharing in traffic environment [55].
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3. Energy-Efficient Routing Using Fuzzy Neural
Network (ERFN)

In this section, the detail of the proposed ERFN is presented
focusing on routing centric parameters. First, the network
and energy model of WSN is discussed. Second, the routing
centric parameters: residual energy, node degree, and for-
ward distance towards sink are presented. We have concen-
trated in-depth on constructing the mathematical model of
these routing parameters using a probabilistic modeling
approach. Thus, the route forming approach by selecting a
next hop at each step using a fuzzy neural network is
presented.

3.1. Network and Energy Model.We consider that there areN
sensors that are placed arbitrarily in network field to monitor
the place and its physical features periodically. Each sensor
has neighboring sensors, and it transmits data to one of the
neighboring sensors. We assume immobile sensors with
equal initial energy. The computation capabilities of each
sensor are identical. Symmetric radio links are considered
between any two neighboring sensors. The sink is located
inside the network region. Let the maximum transmission
of each sensor is R. Adaptive transmission is considered by
using distance between any two neighboring sensors.

The first order radio model to analyze the energy con-
sumption of the proposed routing is discussed. Let m is the
size of packet in bits. The energy is needed for transmitting
a m bits of packet across d unit distance between a sender
sensor and one of its neighboring sensor is expressed by

ETX m, dð Þ =
m ∗ Eelect +m ∗ εf sp ∗ d2 if d < do,

m ∗ Eelect +m ∗ εmpf ∗ d4 if d ≥ do:

8<
:

ð1Þ

To receive a m bits of packet, the energy requirement is
given by

ERX mð Þ =m ∗ Eelect, ð2Þ

where ESelect denotes statistics about the energy dissipate for
transmitting electrons per bit. Several factors such as accept-
able bit-rate, digital coding, and modulation affect the ESelect.
The εf sp and εmpf represent the need of energy in the free-
space path and multipath environment, respectively. When
two neighboring sensors for which energy usage is calculated
are separated with the distance less than or equal to lo
(lo =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E f sp/Emp

p
), the radio model applies (1) otherwise (2)

to calculate the energy need for transmitting the data.

3.2. Routing Metric Computation

3.2.1. Degree Distribution of Sensor. The essential feature of a
sensor inWSN is the degree of connectivity with neighboring
sensors. A sensor with zero degrees cannot transmit data in
the network. A sensor with higher degree is healthier against
link failure, and it hikes the chances of the data transmission
in the network. A neighboring sensor with a higher degree

will be preferred for next hop selection. Here, we compute
the degree distribution of a sensor. Let N number of sensors
are placed in the network field. The degree of each sensor is
the sum of N − 1 independent random variables, which fol-
lows a binomial distribution. Let p is the probability of a link
being present, and the α is representing a random variable of
degree. The degree is distribution is given by

P α = kð Þ =
N − 1
k

 !
pk 1 − pð ÞN−k−1: ð3Þ

The quantity
N − 1
k

 !
is the number of ways of choos-

ing k link, out of the possible N − 1 links, and pkð1 − pÞN−k−1

is the probability that the k selected links are present and the
remaining N − k − 1 are not.

(1) Expected Degree. Since N is large, replacing N − 1 by N
does not cause much error. The expected degree of a sensor
is given by

E αð Þ ≈ pN: ð4Þ

For very small p, the probability Pðα − kÞ tends to Poisson
distribution and expressed as

P α = kð Þ ≅ N − 1ð Þpð Þk
k!

e− N−1ð Þpð Þ: ð5Þ

The probability of at least node having one degree is
defined as

P α ≥ 1ð Þ ≅ = 1 − e− N−1ð Þpð Þ: ð6Þ

Now the question is how to compute link probability p,
for that we uniform sensor deployment over a network field
of the area A. The P be influenced by the broadcasting region
of each sensor. The region covered by each sensor is given by
AB = πR2 . Thus, the probability of a link being present is
given by

p = AB
T

A
A

≈
πR2

A
: ð7Þ

The expected degree of a sensor can be determined by
substituting p in (4) and is not counting the border sensors.

3.2.2. Forward Progress. The proposed routing selects a next
hop sensor from the neighboring sensors which lie in its for-
ward search space. The forward search space is transmission
region of a sensor which belongs to the direction of the sink
(see Figure 1, red shaded region). To minimize the unneces-
sary transmissions, here, we define a forwarding search space
(FSS) as a region that is a half-circle towards sink as depicted
in Figure 1. Now we calculate which neighboring sensor node
nj of a sensor ni lies in its FSS. Let a point niðxi, yiÞ represents
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that the sensor ni is located at a position ðxi, yiÞ, another
point njðxj, yjÞ denotes the position of the sensor nj (cf.
Figure 1). The sink s is position at ðxs, ysÞ, represented by a
point sðxs, ysÞ. Equation of line passing through two point
niðxj, yjÞ and sðxs, ysÞ is given by

a1x + b1y + c1 = 0
a1 = yi − ys

b1 = xs − xi

c1 = yi xi − xsð Þ + xi ys − yið Þ

9>>>>>=
>>>>>;
: ð8Þ

Find the projection of the point njðxj, yjÞ on the line
given in eq. (8) to decide its progress towards sink. The pro-
jection of njðxj, yjÞ is an intersection point between the line
given in eq. (8) and a perpendicular drawn from the point
njðxj, yjÞ to the line (8). The equation of the perpendicular
is given by

a2x + b2y + c2 = 0
a2 = xi − xs

b2 = yi − ys

c2 = xj xs − xið Þ + yj ys − yið Þ

9>>>>>=
>>>>>;
: ð9Þ

The projection Pðxp, ypÞ of the point njðxj, yjÞ on the line
given in eq. (8) is calculated as

xp, yp
� �

= b1c2 − b2c1
a1b2 − a2b1

, a2c1 − a1c2
a1b2 − a2b1

� �
: ð10Þ

A sensor nj is belonging to the FFSi of a sensor ni if the
following inequality is satisfied.

nj ∈ FSSiif f , ð11Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xi − xj
� �2 + yi − yj

� �2r
< r2

andffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xs − xp
� �2 + ys − yp

� �2r
<

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xs − xið Þ2 + ys − yið Þ2

q

9>>>>>>=
>>>>>>;
,

ð12Þ
where r is the radius of the circle that represents the

transmission range of the sender sensor ni.

(1) Forward Progress. It is defined as distance travel a packet
from sensor ni to a sensor nj towards sink. It is calculated as
the distance between the points niðxi, yiÞ and ðxp, ypÞ. It is
given by

Fij =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xi − xp
� �2 + yi − yp

� �2r
: ð13Þ

(2) Expected Forward Progress. To drive expected forward
progress of a packet towards sink, let there are nh number
of neighboring sensors are lying in the FSS of a sensor, which
has data to send to the sink. Let di is distances between the
sensor and neighboring sensors, and each neighboring sensor
is located at the angles θi from the sender to the destination.
The forward progress of each neighboring towards destina-
tion is Xi where i = 1, 2⋯ nh. To calculate the expected for-
ward, the probability distribution of distance X need to be
computed. The neighboring sensor lies anywhere in the
range of 0 to r, and 0 to π/2 . Let the probability density func-
tion (pdf) f Xθðx, θÞ of the distance ðxÞ and angle ðθÞ is
expressed by

f Xθ x, θð Þ = 2x
πr2

, ð14Þ

where 0 ≤ x ≤ R, and 0 ≤ θ ≤ π/2 . The pdf x can be com-
puted as

f X xð Þ =
ðπ

2

0

2x
πr2

d θ = x
r2
: ð15Þ

Sender sensor Sensor 

S (xs, ys)

nj (xj, yj)

ni (xi, yi)
P (xp, yp)

Next hop Sink

Figure 1: Forwarding search space.
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To maximize the forward progress for neighboring
sensor, a farthest neighboring sensor from the sender sen-
sor is preferred as relay for transmitting the packets. Since
all xi are identical independent random variables, each
with pdf f XðxÞ, the pdf of x is

f Xm
xð Þ = nh FX xð Þð Þnh f X xð Þ = nh

x2nh−1

r2nh
, ð16Þ

where FXðxÞ is the cdf of x. The expected forward prog-
ress (EFP) of the Xm is

EFP = E Xmð Þ =
ðr
0
x f Xm

xð Þdx = nh
2nh + 1 r: ð17Þ

3.2.3. Residual Energy. The residual energy of each is
remaining amount of energy after a transmission occurred.
In this work, we prefer a neighboring sensor that acts as
next hop which has the highest energy. A sensor with
more energy lives longer. Let initial energy of Ei and after
receiving and transmission of a packet of size m bits, the
residual energy ER of a sensor can be given by

ER = Ei − ETX m, rð Þ + ETR mð Þð Þ: ð18Þ

(1) Expected Energy Consumption. The expected energy
consumption EðEtotalðm, rÞ Þ for transmitting of m bits data
from a sensor to its next hop sensor using (11) can be
expressed as

E Etotal m, rð Þ = ETX m, rð Þ + ETR mð Þð Þ

= 2eelect + eef p
nh

2nh + 1 r
� �2

" #
m:

ð19Þ

3.3. Single Metric Using Fuzzy Neural Network. Initially, in
ERFN, all the routing centric metrics: residual energy, degree
of a sensor, and forward progress towards sink are jointly
assumed for the purpose of searching the next hop sensor
from the FSS. Let NH is considered as a single metric for
choosing a next hop from the FSS. The NH is determined
by an adaptive neuro-fuzzy inference system (ANFIS). It is
much superior than fuzzy logic inference system (FIS),
attributable to in contrast to another ANN, ANFIS has
higher functionality to follow situational’s changes in the
learning practice and updates the weight of membership
function of FIS and minimizes error rate in deciding the
rules in fuzzy logic. Supervised learning is used in ANFIS
for the learning process. The ANFIS employs the learning
method of the Takagi-Sugeno fuzzy inference system [50].
The simple structural design of ANFIS with three input
parameters residual energy (ER), sensor degree (α), forward
progress (Fij), and one output single metric (NH) is shown
in Figure 2. Each routing metric has a membership function
agreeing to the Takagi-Sugeno fuzzy inference model, which
consists of 27 rules. A five-layer architecture of ANFIS that

consists of fuzzy layer, T-norm layer, normalized layer, de-
fuzzy layer, and aggregated layer is presented in Figure 2.
The first fuzzy layer (is called also called membership/
antecedent layer) and fourth de-fuzzy layer (is also known
as the consequent layer) are dynamic since they are mod-
ified agreeing to results achieved and the rest layers are
static in nature.

We define the linguistic variables of the routing centric
metrics as residual energy ðERÞ = fbelow, fair, highg and is
symbolized by {E1, E2, E3}, sensor degree ðαÞ = fdeficient,
medium, compactg that is represented by fα1, α2, α3g,
forward progress ðFijÞ = fadjacent, midway, distantg is
dented as {F1, F2, F3}, and output single metric ðNHÞ = f
weakest, weaker, weak, medium, strong, stronger, strongestg
as {H1,H2,H3,H4,H5,H6,H7}. The ANFIS consists of 27
if-then rules related to three linguistic variables of three input
variables, and these rules are developed by inspiring from
Takagi-Sugeno fuzzy inference system shown in Table 1.
These rules can also be expressed as

Rule 1= if ER is E1, Fij is F1, and α is α1, then H1 = q1
ER + r1Fij + s1α + t1.

Rule 2= if ER is E1, Fij is F1, and α is α2, then H2 = q2
ER + r2Fij + s2α + t2:

Rule 27= if ER is E3, Fij is F3, and α is α3, then H7 = q27
ER + r27Fij + s27α + t27.

Where E1, F1, and α1 are the values of the membership
function of input parameters ER, Fij, and α in antecedent
(If) part, the q1, r1, s1, and t1 denote linear parameters of
consequent (then) part of Takagi-Sugeno model. The work-
ing process of ANFIS to produce a single metric output NH
is defined by layer wise as follows.

3.3.1. Fuzzy Layer. It includes a number of nodes which are
shown by square in Figure 2 and are dynamic in nature dur-
ing backward pass. Every node in this layer contains a mem-
bership function which takes input as routing metrics and
generates output as the degree of membership in the range
0 and 1. The triangular, trapezoidal, Gaussian, and general-
ized bell membership function can be used by nodes of this
layer. This uses Gaussian (Eq. function). The membership
function for adaptive node ER can be given by

μEk ERð Þ = exp −
ER − zk
2xk

� �2
" #

: ð20Þ

Similarly, the membership functions μαkðαÞ and μFk
ðFijÞ

for adaptive nodes α and Fij can be determined. Where xk
and zk are Gaussian membership functions parameters, con-
trol the shape, and slop of the functions and k = 1, 2, 3.

3.3.2. T-Norm Layer. This layer consists of a number of
nodes, each of them is static in nature, that are shown by
circle labeled with π (cf. Figure 2). At each node of this layer,
the incoming signals (membership functions from layer 1)
are multiplied to generate the output. The AND operator is
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used by each node in the T-norm layer to compute the ante-
cedents/output as

Tk = μEk
ERð Þ ∗ μαk αð Þ ∗ μFk

Fij

� �
, k = 1, 2, 3: ð21Þ

3.3.3. Normalized Layer. This contains the nodes which are
nonadaptive in nature, which is also recognized as normal-
ized node, shown by a circle labeled as N (cf. Figure 2).
Each node computes the output by taking the ratio of the
kth rule generated at T-norm layer to the summation of
all rules produced by T-norm layer. The output at this layer
can be given as

Tnk =
Tk

∑kTk
, k = 1, 2, 3: ð22Þ

3.3.4. Defuzzy Layer. This layer contains the nodes, which
are adaptive in nature and are shown by square with label
R (cf. Figure 2). Each node produces the output as the
product of normalized firing strength and out of individual
rule. The output is given by

THk
nk = Tnk Hk = Tnk qkER + rkFij + skα + tk

� �
: ð23Þ
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Figure 2: ANFIS for NH selection.

Table 1: Fuzzy rules.

Rule
If then

Rule
If then

ER Fij α NH ER Fij α NH

1. E1 F1 α1 H1 15. E2 F2 α3 H4

2. E1 F1 α2 H2 16. E2 F3 α1 H1

3. E1 F1 α3 H3 17. E2 F3 α2 H2

4. E1 F2 α1 H1 18. E2 F3 α3 H2

5. E1 F2 α2 H1 19. E3 F1 α1 H5

6. E1 F2 α3 H2 20. E3 F1 α2 H6

7. E1 F3 α1 H2 21. E3 F1 α3 H7

8. E1 F3 α2 H1 22. E3 F2 α1 H4

9. E1 F3 α3 H1 23. E3 F2 α2 H5

10. E2 F1 α1 H3 24. E3 F2 α3 H6

11. E2 F1 α2 H4 25. E3 F3 α1 H5

12. E2 F1 α3 H5 26. E3 F3 α2 H7

13. E2 F2 α1 H3 27. E3 F3 α3 H7

14. E2 F2 α2 H3
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3.3.5. Aggregated Output Layer. This layer contains a single
nonadaptive node. The out at this node is estimated by tak-
ing the summation of all the incoming inputs to this layer
[53]. The aggregated output is given by

NH =〠
k

Tnk Hk =
∑kTkHk

∑kTk
: ð24Þ

We present Algorithm 1. NH selection algorithm is
using neuro-fuzzy to explain the working of ANFIS. The
gradient descent and least mean square-assisted hybrid
learning algorithm have been used to train the premise
and consequent parameters in two passes, namely, forward
pass and backward pass. The nodes of fuzzy and defuzzy
layers are updated over time. In the forward pass, the fixed
premise parameters {ER, Fij, α } are static and passed
through fuzzy layer to defuzzy layer in the proposed Algo-
rithm 1. The least mean square method is used to update
these fixed premise parameters. After getting the fourth
layer’s output which is termed ad consequent parameter,
the actual output is analyzed with fourth layer’s output,
and the error is noted. The prime aim is to minimize the
error recursively. With the backward pass, this error is sent
back to fuzzy layer and membership function of fixed pre-
mise parameters is updated by employing the gradient
descent method simultaneously. One execution round of
the hybrid learning process (including both forward pass
and backward pass) is called epoch. The algorithm is exe-
cuted till it converges (the error becomes infinitesimal
small) or till the maximum number of epoch (Mepoch).

3.3.6. Neuro-Fuzzy Routing Approach. The proposed neuro
computes the aggregated output routing in which each sen-
sor selects a next hop to forward the data packets. In this
routing, packets are sent to sink via different routes. For each
packet, a new route might be constructed which reduces
energy utilization of all sensors in the WSN. The neuro-
fuzzy routing approach contains three phases: neighbor dis-
covery, metric calculation, and next hop selection using
NHSN. Each sensor executes the routing algorithm to search
next hop till the sink is reached. The routing algorithm is
given as Algorithm 2.

(i) Neighbor Discovery. Each sensor ni broadcasts
HELLO packets comprising its location information
in its vicinity. Each sensors nj, which gets this
HELLO packet, answer with “ECHO” packets with
its position information. On the reception of these
ECHO packets, each sensor constructs its neighbor
list. The only sensors which lies in the respective
FSS will be added to the list

(ii) Metric Calculation. The sensor ni calculates forward
progress for each sensor nj ∈ FSSi. Each sensor nj

∈ FSSi sends containing its residual energy and
degree information to the sender sensor ni. The sen-
sor ni estimates NHij fusing Algorithm 1 or all the
sensors nj ∈ FSSi

(iii) Next Hop Selection. For the NH selection, the only
sensors lie in FSS of the sender sensor contributes
in the selection process. The sensor ni appoints a
sensor as NH which has the highest NHij value. This
NH is used to forward the packet to the next NH
until the packet reaches to the sink

3.3.7. Time Complexity Analysis of NHSN and FNA
Algorithms. NHSN algorithm uses the ANFIS algorithm
which combines the fuzzy algorithm and neural network.
When Algorithm 1 was supplied a number of inputs, to
obtain the optimum values of the parameters, it is updating
the weights of the parameter continuously. The proposed
rules used to modify the weight were dominant in the com-
plexity of the algorithm. The time required to run the ANFIS
algorithm depends on the number of inputs (k). The asymp-
totic time complexity of the algorithm is OðkÞ.

In the FNA algorithm, the neighbor discovery phase and
the running of time of this phase take OðnmÞ where n is the
number of sensors in a route and m is the average number
of neighbor sensors. The metric calculation needs the run-
ning time Oðm + kÞ. The next hop selection phase takes the
time of OðmÞ. Thus The asymptotic time complexity of the
Algorithm 2 is Oðnm + kÞ.

4. Simulation Results and Analysis

In this portion, the proposed ERFN routing for WSN is
evaluated by conducting large–scale simulation employing

Input: ER, Fij, α and Mepoch

Process:
for m=1 toMepoch

Input the fixed premise {ER, Fij, α } to fuzzy layer of Takagi- Sugeno inference engine
Fuzzy layer produces μEk

ðERÞ, μαk ðαÞ and μFk
ðFijÞ for each node according to Eq. (19).

Tune the firing strength Tk of each node using Eq. (21)
Computes the firing strength Tnk of each node using Eq. (22).
Performs defuzzification the consequent parameter of each node using Eq. (23).
Computes the aggregated output NH using Eq. (24).

Output: NH

Algorithm 1:NH selection algorithm using neuro-fuzzy (NHSN).
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MATLAB fuzzy logic simulator tool neuro-fuzzy designer to
trained ANFIS. We customize the fuzzy inference system by
adding new membership functions for devised routing cen-
tric metrics to predict the next hop. The area of network field
is assumed to be 300 × 300m2, and 200 sensors are placed
randomly in this field. The sink is placed in the center of
the field. The initial energy of each sensor is 2 J. The values
of Eelect and εf sp are taken as follows: 10 (nJ/bit) and
20 pJ/bit/m2. The length of data packet transmitted and
received by each sensor is set as 64 bits. The location of the
sink node is (200, 200). The cycle time is 60 microseconds.
The packet rate is 200 packets/s. The sensing and transmis-
sion ranges of each sensor are assumed to be 10m and
20m, respectively. Each simulation result is taken by averag-
ing of 10 runs of each simulation, thus, measuring the perfor-
mance of the ERFN.

The proposed ERFN is compared with similar position-
based routing: eBPR [6] and EeBGR [9] to show its effective-
ness. A number of performance metrics are deliberated to
assess the performance of the developed routing approach.

4.1. Network Lifetime. It is defined in many depending on
applications WSN including the time until a certain percent-
age of sensor dies or the time until sensors are not capable to
send data to sink. This paper terms the lifetime of the net-
work by means of the time until 50% of sensors die. The sim-
ulation process goes on till 90% of nodes are dead.

4.2. Average Residual Energy. It is defined as the ratio of the
sum of the remaining energy of all alive sensors to the num-
ber of alive sensors in the network after each round. Let Ei

R is
residual energy of ith sensor. The average residual energy of
all the sensors for the next rounds is calculated as

Eav =
1
N

〠
i ϵN

Ei
R: ð25Þ

4.3. Average Energy Consumption. It is defined as the ratio of
the sum of the amount of energy consumed by all sensors to
the number of sensors after each round.

4.4. Standard Deviation (SD) of Residual Energy. It is a statis-
tical measure defined as the square root of the variance of
residual energy of all the sensors. The SD of residual energy
is a square root of the variance of residual energy is given by

σ ERð Þ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

〠
i ϵN

Eav − Ei
R

� �2s
: ð26Þ

4.4.1. Network Lifetime. Figure 3 shows the lifetime in the
terms of the number of alive sensors which are involved in
the routing process in different rounds. The results are
obtained for the proposed ERFN and compared with the
state-of-the-art routing approaches: EeBGR and eBPR. At
the beginning, all sensors are alive. When the routing algo-
rithms run in rounds, sensors drain their energy, and the
number of alive sensors reduces. It is noted that as the num-
ber of rounds increases, the number of alive sensors for the
proposed ERFN is comparatively more than that of EeBGR
and eBPR. In the proposed ERFN, the first sensor dies in
about 250 rounds, whereas in EeBGR, first sensor dies at
about 200 rounds, and in eBRP, the first sensor dies at about
180 rounds. Further, it is also noted that after 1000 rounds,
the number of alive sensors in the proposed ERFN is about
180, whereas the number of alive sensors for EeBGR and
eBPR is 150 and 170, respectively. After 2000 rounds, the
number of alive sensors EeBGR, eBPR, and ERFN is about
35, 60, and 75, respectively. It is due to the fact that the pro-
posed ERFN selects the next hop using the neuro-fuzzy sys-
tem, increasing to a much longer lifetime of the network.

Figure 4 exhibits sensor death percentage for different
number of rounds. It is witnessed that the proposed ERFN
performs better as compared to EeBGR and eBPR. The

1. Neighbor discovery:
I. Each sensor ni ∈N advertises HELLO packet to discover all neighbors nj

II. for each neighbor nj of nido
III. Sensor nj obtains its position information ðxj, yjÞ using any localization techniques
IV. If point ðxj, yjÞ satisfies Eq. (11) then
V. Add nj to FFSi
VI. end if
VII. end for

2. Metric calculation:
I. for each sensor nj ∈ FSSido
II. Sensor ni computes Fij using Eq. (13)
III. ni gets ER, Fij, α
IV. Sensor ni computes NH for nj using NHSN

end for
3. Next Hop selection:
I. NH nj =argmax(NHij), nj ∈ FSSi
II. Sensor ni sends data packet to the NH nj

Algorithm 2: Neuro-fuzzy routing (FNA) algorithm.
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sensor death percentage of all the considered routing
approaches is gradually increasing up to about 400 rounds.
After that, the death percentage for both EeBGR and eBPR
is increasing sharply as compared to that of ERFN. For
example, at 700 rounds, the death percentages for both
EeBGR and eBPR are 20% and 18%, respectively, whereas
for ERFN, it is 5%. It is noted that the sensor death rate
for ERFN is slower than that of the state-of-the-art
approaches. It is due to the fact that the proposed routing
uses supervised learning approach minimizes the error rate
in selecting the next hop.

4.4.2. Energy Consumption. Figure 5 displays the average
residual energy of all sensors for the different number of
rounds. All sensors have equal that is 2 joule initially energy.
As the all considered routing approaches run in rounds,
after some rounds, it is seen that the ERFN saves more
energy as compared to both EeBGR and eBPR. For example,
after 500 rounds, the average residual energy for the ERFN

is about 1.8 joule; however, at the same number of rounds,
the average residual energy for both EeBGR and eBPR is
1.4 joule and 1.6 joules. It is because of the ERFN changes
the routes frequently by using ANFIS where the state-of-
the-art approaches do not use any learning algorithms.
Thus, the ERFN conserves more energy, increasing the net-
work lifetime.

Figure 6 displays the average energy consumption for all
the sensors for different rounds. The average energy con-
sumption is likely to be constant for ERFN and eBPR up
to 250 rounds whereas it is high for EeBGR. But the ERFN
consumes less energy as compared to both approaches. For
example, after 500 rounds, the ERFN exhausts 0.1 joules
energy, and both EeBGR and eBPR exhaust 0.25 and 0.4
energy, respectively. It noted that as the execution rounds
increase, the energy consumption for all the routing also
increases but this increment is less for the ERFN. It is clear
that the proposed routing consumes less energy which is
essential for network lifetime enhancement.
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4.4.3. Standard Deviation for Residual Energy. When WSN
starts operating, each sensor begins exhausting a different
amount of energy, and the SD of residual energy changes.
Figure 7 exhibits the SD for residual energy among all the
nodes in WSN. Low SD indicates better energy consumption
balancing. Initially, all the routing approaches consume
under one mean, indicating good energy consumption balan-
cing among sensors. However, as the rounds increase, the
SDs of residual energy for all considered routing approaches
change. The SD with the proposed ERFN is lower than that of
both EeBGR and eBPR. For example, at 500 rounds, the SD
for ERFN is 0.23 whereas both EeBGR and eBPR give 0.30
and 0.38. The SD of eBPR is much closer to the ERFN as
compared to EeBGR, and it is because both ERFN and eBPR
take the same routing metrics. It is observed that ERFN gives
much flatter graph over EeBGR and eBPR, and it is due to the
fact that the ERFN uses ANFIS to select next hop which fre-

quently changes path for the data packets in each round. It is
clearly noticed the ERFN achieves better energy consump-
tion balancing than the state-of-the-art approaches.

Figure 8 displays SD of residual energy for different num-
bers of alive sensors. It is observed that in all cases of alive
sensors, the SD for the proposed ERFN is less than that of
EeBGR and eBPR. For example, 80 numbers of alive sensors,
the SD for ERFN is 0.018 whereas for EeBGR and eBPR, the
SDs are 0.02 and 0.025, respectively. It indicates that the
ERFN obtained a better energy balance compared to EeBGR
and eBPR. Further, it is observed that the proposed ERFN
achieved the highest energy balance for the alive sensor
equals to 80 for all the routing approaches. Thus, the pro-
posed routing outperforms both EeBGR and eBPR in the
term of SD of the residual energy.

5. Conclusion and Future Perspective

This paper proposes a new energy-efficient routing using
fuzzy neural network in wireless sensor networks. Specially,
an adaptive neuro-fuzzy inference system has been employed
to combine the three routing-centric metrics: residual energy,
forward progress, and sensors degree. The next hop selection
algorithm using neuro-fuzzy to assign duty of packet forward
to a neighboring sensor as next hop is presented. The neuro-
fuzzy routing algorithm is presented to route the packet from
source sensor to the sink. Simulation has been conducted
using MATLAB fuzzy logic simulator tool neuro-fuzzy
designer. The results indicate that ERFN outperforms the
EeBGR and eBPR in the terms of lifetime, energy consump-
tion, and SD of residual energy. In the future, the proposed
routing will be studied using other machine learning algo-
rithms for newer areas of applications including E-mobility
route planning and information sharing in traffic environ-
ment. More energy-saving technical ideas will be incorpo-
rated such as employing duty cycling approaches in the
sensor-oriented wireless communication environment.
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corresponding author considering research collaboration
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