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Abstract: Fused deposition modeling (FDM) is a capable technology based on a wide range of
parameters. The goal of this study is to make a comparison between infill pattern and infill density
generated by computer-aided design (CAD) and FDM. Grid, triangle, zigzag, and concentric patterns
with various densities following the same structure of the FDM machine were designed by CAD
software (CATIA V5®). Polylactic acid (PLA) material was assigned for both procedures. Surface
roughness (SR) and tensile strength analysis were conducted to examine their effects on dog-bone
samples. Also, a finite element analysis (FEA) was done on CAD specimens to find out the differences
between printing and simulation processes. Results illustrated that CAD specimens had a better
surface texture compared to the FDM machine while tensile tests showed patterns generated by
FDM were stronger in terms of strength and stiffness. In this study, samples with concentric patterns
had the lowest average SR (Ra) while zigzag was the worst with the value of 6.27 µm. Also, the
highest strength was obtained for concentric and grid samples in both CAD and FDM procedures.
These techniques can be useful in producing highly complex sandwich structures, bone scaffolds,
and various combined patterns to achieve an optimal condition.

Keywords: additive manufacturing; polylactic acid; fused deposition modeling; FDM; PLA;
3D printing

1. Introduction

The most common and environment-friendly additive manufacturing (AM) process
is fused deposition modeling (FDM) [1]. FDM has been widely used to 3D print highly
complex products in domestic and industry sections [2,3]. As shown in Figure 1, the FDM
machines consist of various components that are integrated to build parts quickly without
wasting material and tooling [4–6]. The process is started by designing and developing the
model in computer-aided design (CAD) software packages. Subsequently, the prepared
file must be changed into a readable format by FDM 3D printers. The usable format is
known as standard triangle language (STL) and exclusive software packages are required
to convert the CAD file into STL. The stepper motors feed and push the material, which
exists in the shape of a solid filament, through the nozzle. The extruder melts the material
at a specific temperature and deposits the molten material on the platform. The molten
material solidifies quickly and sticks to the platform. Then, the printer follows numerical
G-codes to repeat the procedure layer by layer [7,8].
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Figure 1. Schematic of FDM process. 

A wide range of materials such as low-temperature metal alloys and composites can 
be used in the FDM but the main materials in this process are thermoplastics and polymer-
based composites [9–11]. Achieving a satisfactory product with good mechanical proper-
ties is related to build orientation, infill pattern, infill density, nozzle temperature, nozzle 
diameter, printing speed, and layer thickness [12,13]. Non-optimal conditions and poor 
temperature lead to issues in printing procedures like warpage and shrinkage [13–15]. It 
should be noted that finding elongation at break, Young’s modulus, and tensile strength 
are crucial for isotropic and anisotropic engineering plastics to enhance mechanical prop-
erties [16,17]. The drawback of the FDM process produces support structures to avoid 
material drops and tightens the gaps to have better binding [18]. However, the support 
structure influences surface texture and the quality of areas with supports attached to 
them becomes poor and rough [19]. Another defect in FDM printed parts is the staircase 
effect that happens due to the layer binding behavior [20]. The final quality of their prod-
ucts is also not as good as other technologies such as the MJ process [21,22]. 

Over the past few decades, many studies have been conducted on the FDM parame-
ters to increase productivity and develop process capabilities [23–25]. Ziemian, et al. [26] 
found that the largest ultimate and yield strength of printed ABS400 was 93% of injection-
molded parts at 0° raster orientation [27]. Yang, et al. [28] using ANOVA, found that noz-
zle diameter and layer thickness parameters have the greatest effects on printing time, SR, 
and tensile strength [29,30]. Build orientation is an alternative factor that plays a crucial 
role because of its effects on surface texture, mechanical properties, dimensional accuracy, 
and printing time [31,32]. SR values (e.g., skewness (Sku), kurtosis (Rku), and average 
roughness (Ra)), printing time, and support structure were increased when the build angle 
was in perpendicular directions (5° to 85°) [33]. Samples with 0° orientation have the best 
surface texture compared to perpendicular and vertical specimens [34]. 

3D printed parts are hollow or solid from 0% to 100% and various patterns exist in 
the shape of linear, wiggle, honeycomb, triangle, etc. Finding an appropriate infill per-
centage and pattern generates strong parts with minimum weight [35]. Ćwikła, et al. [36] 
found that the strength and weight of printed samples were affected by the infill pattern 
and that honeycomb was the strongest among other patterns [37]. Flexural strength, ten-
sile strength, and stiffness of products depend on the infill density, so when the infill den-
sity increases, the printed parts become stronger [38,39]. Gyroid, Schwarz D, and Schwarz 
P examined cylindrical bio-inspired patterns [40] with a slicing strategy and build incli-
nation factor. A finite element analysis (FEA) via ANSYS® software was used based on the 
coefficient of variation (COV) when the extrusion angle was not aligned with the build 
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A wide range of materials such as low-temperature metal alloys and composites
can be used in the FDM but the main materials in this process are thermoplastics and
polymer-based composites [9–11]. Achieving a satisfactory product with good mechanical
properties is related to build orientation, infill pattern, infill density, nozzle temperature,
nozzle diameter, printing speed, and layer thickness [12,13]. Non-optimal conditions and
poor temperature lead to issues in printing procedures like warpage and shrinkage [13–15].
It should be noted that finding elongation at break, Young’s modulus, and tensile strength
are crucial for isotropic and anisotropic engineering plastics to enhance mechanical prop-
erties [16,17]. The drawback of the FDM process produces support structures to avoid
material drops and tightens the gaps to have better binding [18]. However, the support
structure influences surface texture and the quality of areas with supports attached to them
becomes poor and rough [19]. Another defect in FDM printed parts is the staircase effect
that happens due to the layer binding behavior [20]. The final quality of their products is
also not as good as other technologies such as the MJ process [21,22].

Over the past few decades, many studies have been conducted on the FDM parameters
to increase productivity and develop process capabilities [23–25]. Ziemian, et al. [26] found
that the largest ultimate and yield strength of printed ABS400 was 93% of injection-molded
parts at 0◦ raster orientation [27]. Yang, et al. [28] using ANOVA, found that nozzle
diameter and layer thickness parameters have the greatest effects on printing time, SR, and
tensile strength [29,30]. Build orientation is an alternative factor that plays a crucial role
because of its effects on surface texture, mechanical properties, dimensional accuracy, and
printing time [31,32]. SR values (e.g., skewness (Sku), kurtosis (Rku), and average roughness
(Ra)), printing time, and support structure were increased when the build angle was in
perpendicular directions (5◦ to 85◦) [33]. Samples with 0◦ orientation have the best surface
texture compared to perpendicular and vertical specimens [34].

3D printed parts are hollow or solid from 0% to 100% and various patterns exist in the
shape of linear, wiggle, honeycomb, triangle, etc. Finding an appropriate infill percentage
and pattern generates strong parts with minimum weight [35]. Ćwikła, et al. [36] found
that the strength and weight of printed samples were affected by the infill pattern and that
honeycomb was the strongest among other patterns [37]. Flexural strength, tensile strength,
and stiffness of products depend on the infill density, so when the infill density increases,
the printed parts become stronger [38,39]. Gyroid, Schwarz D, and Schwarz P examined
cylindrical bio-inspired patterns [40] with a slicing strategy and build inclination factor.
A finite element analysis (FEA) via ANSYS® software was used based on the coefficient
of variation (COV) when the extrusion angle was not aligned with the build angle [41].
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Dave, et al. [42] determined that porosity in samples at 60% infill density had the lowest
strength. Besides, concentric and rectilinear patterns indicated the highest tensile strength
in three directions, namely, flat, on the long edge, and on short edges.

Moreover, Burke, et al. [43] investigated the influence of orientation, nozzle diame-
ter, and infill percentage on SR in polylactic acid (PLA) samples. The lowest roughness
with the value of 12.4 µm was conducted for the flat angle, 0.2 mm nozzle diameter, and
5% infill density. In another study, Yadav, et al. [44] studied infill patterns and realized
maximum compressive strength for the Hilbert pattern with the value of 121.35 MPa.
Average SR values were the lowest, at 1.14 µm and 1.895 µm for 20% and 80% densities
for rectilinear pattern, respectively. Lalegani Dezaki and Mohd Ariffin [45] proposed a
novel method to combine solid, honeycomb, wiggle, grid, and rectilinear patterns in one
dog-bone PLA sample to analyze their effects on tensile strength with different build
orientations. In another study, the optimal condition was conducted in a sample with
0.5 mm layer thickness, 80% infill density and 65◦ raster angle by developing a mathemat-
ical model [46]. Gopsill, et al. [47] optimized honeycomb infill pattern in beam-shaped
products by various FEA scenarios to achieve the strongest design and density. Moreover,
Heidari-Rarani, et al. [48] showed that 80% infill density, 0.1 mm layer thickness and
40 mm/s printing speed were the appropriate conditions to achieve the best modulus of
elasticity and ultimate tensile strength.

While FDM 3D printers are capable of generating infill patterns with different densities,
designing patterns using CAD software packages has not been investigated yet. The main
aim of this study is to address this research question and make a comparison between infill
patterns with various densities generated by CAD and FDM printer in dog-bone shape
PLA parts. Besides, FEA is used to understand the behavior of interlayers under tensile
strength and find out the differences between printed and simulated CAD samples. The
effects of generated patterns by CAD on SR and mechanical properties were examined.
Then, CAD patterns were compared to the printed specimens by the FDM machine. Four
patterns with different percentages of infill density were chosen due to their capabilities in
being strong under different loads. The strength and SR analysis of these two batches were
examined to find out the differences.

2. Materials and Methods

FDM parameters and their effects on the strength and surface texture have been
examined in previous research [49–51]. In this case, infill pattern and density were the main
goals showing how they influence dimensional accuracy, material usage, and mechanical
properties. A broad range of patterns such as grid, honeycomb, wiggle, zigzag, and other
shapes have been generated and produced by FDM printers, but not many research works
have investigated designing patterns using the CAD process. Therefore, in this work, SR
analysis and tensile strength were performed to analyze the effects of these two pattern
batches in dog-bone samples. This sample was designed by following ISO/ASTM D638,
the standard test method for tensile properties of plastics. As shown in Figure 2, the base
structure was designed in CATIA V5® (Dassault Systèmes, Vélizy-Villacoublay, France),
and regarded as tensile strength standards Type 1.
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Concentric, grid, triangle, and zigzag patterns were chosen and designed as shown
in Figure 3. A solid sample was also designed for the FDM process that slicer software
followed the same pattern and density as the CAD procedure. Infill density was also
another factor that was required to be analyzed. Therefore, each pattern was 3D printed
with the same and different densities to investigate their effects for both groups (see Table 1).
Based on the previous research by Lalegani Dezaki and Mohd Ariffin [45], the line width
was set to 0.5 mm instead of 0.4 mm to avoid erroneous openings in the printed lines. The
shell thickness was 0.8 mm for all samples. In the design procedure, patterns must be
designed properly to avoid gaps and poor layer adhesion.
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dog-bone samples.

Table 1. Infill density in CAD and FDM.

Process Infill Pattern Infill Density (%) Process Infill Pattern Infill Density (%)

CAD

Concentric
20

FDM

Concentric
20

30 30

Grid
30

Grid
30

60 60

Triangle 10 Triangle 10
40 40

Zigzag 30 Zigzag 30
50 50

Due to the high capability of FEA, it is possible to examine parts’ behavior under com-
pression or tensile tests [52]. Infill patterns indicate specific behavior in printed samples
under different loads. Hence, analyzing samples is vital for finding the layer’s reaction
under tensile load. CAD samples were examined via Abaqus® (2020 version, Dassault
Systèmes, Vélizy-Villacoublay, France) due to the existence of infill patterns before the
printing process. The designed samples were converted to initial graphics specification
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(IGS) format in CATIA V5. Failures and von Mises in the simulation process were obtained.
The method elaborated to find out the differences between printed and simulated CAD
specimens. Static analysis, millimeter (mm) unit, and PLA material properties were as-
signed in the simulation procedure. The type of mesh used in this process was quadratic
tetrahedral elements of type C3D10. Features of each simulated CAD sample are provided
in Table 2.

Table 2. Specimens’ features in FEA process.

CAD Sample Concentric Grid Triangle Zigzag

Infill density (%) 20 30 30 60 10 40 30 60

Mesh size 3 3 3 3 3 3 3 3

Force (N) 2500 2500 2500 2500 2500 2500 2500 2500

No. of nodes 30,851 42,627 61,543 147,310 29,122 53,964 27,532 48,223

No. of elements 17,685 23,916 37,980 94,266 15,335 34,206 13,941 25,632

Boundary
condition
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Ultimaker 3 Extended machine (Ultimaker, Geldermalsen, Netherlands) with two
extruders was used to print all specimens. The biodegradable green PolyLiteTM PLA
material (Polymaker, Shanghai, China) with a 1.75 mm filament diameter was chosen due
to its reliable properties, good strength, and stiffness (see Table 3) [53]. Due to the influences
of build orientation on mechanical properties and SR in the FDM process, the 0◦ angle
which was printed on XY direction was picked because of its well-known effects with regard
to less material consumption, good mechanical strength, and SR [34,54,55]. Preparing the
STL file was done by Cura® (4.5 version, Ultimaker, Geldermalsen, Netherlands) to reach
suitable G-codes. All parameters were constant for CAD and FDM specimens as shown in
Table 4. A total of 16 dog-bone samples (each pattern was printed once) were 3D-printed
as shown in Figure 4.
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Table 3. PLA properties.

PLA Properties Value

Density (g/cm3) 1.17
Printing temperature (◦C) 190–230

Printing speed (mm/s) 40–60
Bed temperature (◦C) 25–60
Tensile strength (MPa) 46.6 ± 0.9

Young’s Modulus (MPa) 2636 ± 330

Table 4. Printing parameters for CAD and FDM specimens.

Process
Build

Orientation
(Degree)

Nozzle
Diameter

(mm)

Filament
Diameter

(mm)

Layer
Height
(mm)

Nozzle
Temp.
(◦C)

Bed
Temp.
(◦C)

Print
Speed
(mm/s)

Wall
Thickness

(mm)

Number
of

Top/Bottom Layer

CAD 0 0.4 1.75 0.15 200 60 80 1 7
FDM 0 0.4 1.75 0.15 200 60 80 1 7
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SR measurement was conducted to find out how surface quality varies based on pat-
terns generated by CAD and FDM. The value of Ra was recorded by the Mahr Perthometer
S2 machine (Mahr Inc, Göttingen, Germany). Various factors affect surface quality such as
waviness, peaks, and valleys. Hence, five points were chosen on the top side to analyze
patterns’ effects on surface texture in both procedures (see Figure 5). Tracing length with
the value of 5.6 mm, 4.0 mm evaluation length, and 0.8 mm cut-off wavelength were
chosen to achieve high accuracy and precision [56]. Meanwhile, to analyze the strength
and stiffness of the specimens, vertical INSTRON 3365 (Instron, Norwood, MA, USA)
with 5 kN capacity and 1000 mm/min maximum speed was employed. Displacements
and cracks were recorded for each sample to analyze dissimilarities. Controlled speed
via software for the upper jaw was 5 mm/min at room temperature to achieve maximum
strength. A microscopic view of selected specimens to see the pattern binding and structure
was done by Leica MS5 (Leica Microsystems Inc., Buffalo Grove, IL, USA) with a five-step
magnification changer up to 320x. The magnification of 10x was chosen to examine the
inside structure of patterns.
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3. Results and Discussion
3.1. Effects of Infill Patterns on SR

Weight measurement was conducted by Cura® software to examine differences be-
tween all samples. As shown in Table 5, the weight differences for patterns with the same
density were ±1 g accordingly. Designing the patterns to have better adhesion and avoid
gaps was the vital section of this research. Thus, patterns were modeled to be close to
patterns generated by the FDM 3D printer. Surface measurement was accomplished for
all samples whereas before that the issues of surface and layer binding were examined
to determine the effects of these two methods. All specimens’ quality represented purity
and clearness, however, defects were visible in the bottom layer in concentric samples
generated by CAD. Figure 6 shows the issue in these two samples. The binding between
layers was good but the initial layer (bottom layer) which was attached to the printing bed
was not perfect, and the printed line was not attached properly. This issue was caused due
to the poor temperature at the beginning of the process that led to weak bonding between
some parts of the bottom layers.

Table 5. Weight differences for CAD and FDM samples.

Process &
Pattern

Concentric 20%
Concentric 30%

Grid 30%
Grid 60%

Triangle 10%
Triangle 40%

Zigzag 30%
Zigzag 50%

CAD weight (gr) 12
15

15
18

10
15

12
17

FDM weight (gr) 12
14

14
18

12
16

14
17
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Table 6 illustrates the average SR for each sample. Surprisingly, the quality of patterns
generated by CAD was slightly better than those generated by the FDM machine. However,
for zigzag pattern samples, the value of average Ra for generated FDM (2.94 µm for 30%
infill density and 3.45 µm for 50%) was lower than CAD samples. This might cause the
non-optimum design in pattern layers. In contrast, CAD samples showed better average
Ra, and the surface texture was slightly superior compared to FDM parts. These results
showed infill pattern and infill density affected texture and surface integrity. Meanwhile,
the differences between CAD specimens are visible in Figures 7 and 8. The graphs were
created in MATLAB® to clearly show the range of average waviness values (from 2 µm to
7 µm). As shown in Figure 8, the zigzag samples have the worst surface quality among
samples while grid and concentric samples have the best surface texture in the CAD
procedure. This poor quality in the triangle sample was due to the design and classified
layers. On the other hand, Figure 7 shows the quality of each point for patterns generated
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by FDM machine. As can be seen, triangle patterns resulted in poor surface texture among
other samples. This means that the value of Ra for each point was higher. The grid sample
showed the best quality and the lowest average value among FDM printed samples, with
2.85 µm and 2.67 µm for 30% and 60%, respectively. The differences in SR were examined
and results showed patterns generated by CAD parts were slightly better compared to
the FDM machine. Also, grid samples had the best surface integrity compared to other
specimens. The surface texture was almost the same and the value of average waviness in
all specimens fluctuated in the same range.

Table 6. The average SR of printed samples.

Point
Grid Pattern Zigzag Pattern

Part Ra (µm) Part Ra (µm) Part Ra (µm) Part Ra (µm)

1

CAD
30%

2.37

FDM
30%

2.54

CAD
30%

6.78

FDM
30%

2.78
2 2.17 2.77 5.6 3.3
3 2.45 2.93 6.11 3.4
4 3.49 3.14 5.63 2.93
5 3.1 2.89 7.3 2.27

Average 2.72 2.85 6.28 2.94
Standard
deviation 0.56 0.22 0.74 0.45

1

CAD
60%

2.52

FDM
60%

3.07

CAD
50%

4.83

FDM
50%

3.73
2 2.19 3.57 4.88 3.81
3 2.25 2.42 4.5 2.94
4 2.78 2.02 4.7 3.47
5 2.54 2.3 4.3 3.26

Average 2.45 2.67 4.64 3.45
Standard
deviation 0.24 0.63 0.24 0.36

Concentric pattern Triangle pattern

1

CAD
20%

2.12

FDM
20%

3.11

CAD
10%

3.47

FDM
10%

3.12
2 2.86 3.33 2.64 3.7
3 2.4 3.25 3.78 4.17
4 2.78 3.61 3.4 4.96
5 2.62 3.17 2.77 3.81

Average 2.55 3.29 3.21 3.95
Standard
deviation 0.30 0.20 0.49 0.68

1

CAD
30%

1.97

FDM
30%

3.08

CAD
40%

2.83

FDM
40%

3.11
2 2.23 3.89 3.03 3.85
3 2.38 2.74 3.13 4.41
4 2.56 3.47 2.87 3.9
5 2.77 2.22 3.04 2.82

Average 2.38 3.08 2.98 3.62
Standard
deviation 0.31 0.64 0.13 0.64
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achieved by CAD design. The von Mises and stresses were examined with the same con-
dition under mentioned loads. Analysing stress-strain of CAD parts was done by choos-
ing one element in the middle of dog-bone samples. The maximum von Mises of 4 CAD 
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3.2. Effects of Infill Patterns on Mechanical Properties

This research is conducted to analyse the behaviour of infill patterns, various densities,
and layer bonding in dog-bone samples via CAD and FDM processes. Failures in each
printed specimen were recorded in both simulation and experiment procedures. Internal
structure and defects were examined properly to investigate material properties. The main
goal of FEA was to determine the patterns’ reactions under the tensile test. Sometimes,
slicing softwares are not able to generate specific patterns in printed products. Hence,
modifying personalized infill patterns with high strength and stiffness can be achieved by
CAD design. The von Mises and stresses were examined with the same condition under
mentioned loads. Analysing stress-strain of CAD parts was done by choosing one element
in the middle of dog-bone samples. The maximum von Mises of 4 CAD samples is recorded
in Table 7 to compare each infill pattern and find out the weakest and strongest under the
tensile test.
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As shown in Table 7, cracks and failures happened in interlayer bonding between
each layer inside the samples. Initially, internal patterns inside the samples started to
crack, followed by a failure in the area of the gauge length. Concentric and grid specimens
were the strongest samples, among others, under 2500 N force. This means weight can be
minimized by choosing an appropriate infill pattern without sacrificing strength. However,
increasing density in printed samples led to heavier and stronger products. It can be seen
that grid and concentric samples are the strongest while the zigzag and triangle with 10%
density samples are the weakest. It is also shown how infill density can affect products’
strength and stiffness. In spite of infill density effects, concentric samples have almost
corresponding strength. In brief, the grid sample with 60% infill density was the strongest,
followed by the concentric sample with 30% density.

Figure 9 shows failure (load-extension) for each pattern with different densities in the
printing process. A wide range of loads was applied to crack grid, concentric, triangle, and
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zigzag patterns in dog-bone samples. Figure 9b shows that concentric FDM specimens
are strongest, among other parts. Each sample cracked at a specific load which meant
pattern and density were effective in their mechanical properties. A concentric pattern with
30% infill density generated by the FDM printer was the strongest sample with 2731.65 N
maximum tensile load, which was close to that of the FEA process. The maximum stress
at this load was 30.02 MPa. In contrast, the zigzag pattern with 30% density generated
by CAD was the weakest part with 1264.45 N, among other 3D printed samples. Almost
every sample cracked around 2 mm extension, while a few parts were displaced more
because the infill patterns inside the parts stuck together. That was the reason to examine
the internal structure to achieve a reliable result and determine the differences with FEA.
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A comparison between all samples was conducted to show at what load specimens
started to crack. Figure 10 indicates concentric samples in both FDM and CAD had better
strength while the density was lower. The following strong pattern was a grid with different
densities, the same as the FEA procedure. Further, in triangle patterns, the FDM part with
10% density was almost as good as the CAD sample with 40% density. In contrast, as
shown in Table 8, the weakest CAD samples were for the zigzag pattern with 1264.45 N
and 1893.47 N for 30% and 50% density, respectively. All specimens cracked at the gauge
length area but the cracked lines in zigzag patterns generated by CAD were perpendicular
(see Figure 11). The cracks started from failure of the internal structure and subsequently
the bottom layers due to the poor binding that was mentioned before. The lower strength
in CAD samples might happen due to the non-optimized design and poor binding of
patterns in the internal structure. Subsequently, the top layer in samples cracked because
of strong binding between line width. Hence, this issue was investigated in the form of a
microscopic view inside the samples in the following section.
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Table 8. Stress, strain, and maximum load in the tensile test.

Pattern Infill
Density (%)

Maximum
Load (N)

Stress at
Max. Load

(MPa)

Strain at
Max. Load

(%)

Standard
Deviation

Grid

CAD 30 1736 19.08 6.65 198
FDM 30 1944 21.36 4.96 231
CAD 60 2263 24.87 4.99 110
FDM 60 2452 26.95 6.41 320

Concentric

CAD 20 1866 20.51 6.57 131
FDM 20 2342 25.74 5.92 98
CAD 30 2683 29.49 5.13 230
FDM 30 2732 30.02 5.79 399

Triangle

CAD 10 1357 14.92 4.57 130
FDM 10 1851 20.34 4.82 253
CAD 40 1873 20.58 4.55 167
FDM 40 2168 23.82 4.52 336

Zigzag

CAD 30 1264 13.9 5.42 200
FDM 30 2172 23.87 4.88 111
CAD 50 1893 20.81 7.78 367
FDM 50 2481 27.27 5.37 518
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printed parts.

Results showed that by increasing infill density, samples’ strength increased as well.
Lower density resulted in weaker parts but with lower weight. Undoubtedly, solid or
100% density is the strongest way to 3D print products but weight is maximum in the final
sample. Different crack lines occurred due to the pattern structures and various binding
behaviors. However, other elements are vital to enhance stiffness and strength, in this
study, infill effects were examined for two different production methods. In brief, patterns
that were generated by the FDM printer showed better strength and mechanical properties
compared to the CAD specimens. This means adhesion between layers was a little bit
weaker in CAD products. According to the infill structure, the microscopic view of printed
patterns was analyzed to identify issues inside the specimens.

Concerning the mechanical properties and strength of the 3D-printed sample, infill
structures were examined throughout the cracked areas. As shown in Figure 12, all CAD
and FDM printed samples follow the same structure. Layer printing structures were
totally visible inside the samples, which showed the reason why each part cracked at
specific loads. The reason why the concentric pattern tolerated higher tensile load was the
pattern generated in the same direction as the tensile load. The same thing happens in
FEA procedure, and internal layers started to crack in both procedure due to poor binding.
Apart from this, cracks occurred in internal layers in the FDM process due to poor binding.
This drawback might cause weaker samples in the CAD procedure. Besides, defects in
zigzag pattern generated by CAD with 50% density are shown in Figure 12b. Gaps and
voids were greater in the CAD process compared to the FDM printing procedure. This
obstacle led to lighter and weaker final products. Also, layer adhesion in the internal
structure was affected by this defect in CAD samples.
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In contrast, the triangle and grid patterns which are shown in Figure 12c,d are neat
and clear in both procedures. Finding an appropriate design and density was effective
in both ways. This means layer classification is crucial in achieving the highest stiffness.
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If each layer sticks to the previous one properly, the strength of the printed part becomes
better as well. This task can be done with optimum temperature and melting process. Poor
layer adhesion affected surface quality and strength due to the rough and not aligned
structure. Also, the attachment between internal patterns and wall thickness is important.
The gaps between these two sections lead to poor mechanical properties and weak samples.
Weight divergences were not excessive but density had a direct effect on weight. Further,
SR was slightly better in CAD samples compared to the FDM, but samples generated by
FDM were moderately stronger.

Both techniques were useful for building infill patterns. The differences between
simulated and printed items were not excessive, and both procedures resulted the same
strength and stiffness. As an example, FDM printers are not able to combine patterns in
one sample. Hence, it is not possible to develop a product with various infill designs. In
contrast, developing a highly complex pattern in a CAD system is difficult in some cases.
Hence, by eliminating obstacles in both operations, producing highly complex patterns
such as sandwich structures and bone scaffolds with maximum quality is achievable.

4. Conclusions

Infill pattern and infill density had direct effects on the surface quality and mechanical
properties of 3D-printed products. Two techniques were used for producing PLA dog-bone
samples. Four patterns, namely grid, triangle, zigzag, and concentric were picked and
designed in a CAD system with different densities. These pattern structures followed the
same structure as FDM machine-printed patterns in various conditions. Different densities
were also chosen to examine their effects on surface quality and mechanical properties.
FEA was used to examine the CAD samples under tensile load. Results indicated that CAD
specimens were slightly better in terms of surface quality. Grid and concentric patterns
had the best surface quality while the zigzag pattern was the worst due to its non-optimal
design and poor adhesion. Moreover, the tensile strength test and microscopic analysis
showed that a concentric pattern was the strongest in both the CAD and FDM techniques
while zigzag pattern had the worst mechanical strength, among others. Future studies
should be conducted on topology optimization of pattern design to reduce weight and
increase strength.
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