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Abstract 

The high energy consumption for space heating in buildings and the need to reduce carbon 

emission point out the need for enhancing thermal insulation in buildings. Modern buildings 

normally have a good standard of insulation and the focus should be given to existing 

buildings towards enhancing the energy performance via retrofitting of buildings with 

upgradation of wall insulation. This thesis suggests and examines three different novel 

approaches towards measuring wall insulation and energy losses as well as estimating the 

benefits of retrofitting. 

The three approaches are: 

• Estimating energy losses due to working from home during Covid-19 pandemic and 

the difference between a poorly insulated house and a modern well-insulated house 

in terms of energy costings. 

• Estimating heat loss through external walls and benefits of retrofitting via the use of 

infrared thermography and Artificial Neural Networks (ANN). 

• Estimating the in-situ U-value of walls using a novel new device which combines 

infrared thermography with artificial neural networks. 

In the first approach, a mathematical model is developed which suggests that energy bills 

and CO2 emission during winter will be significantly higher in a poorly insulated house than 

that in a modern house when working from home due to Covid-19 pandemic situation and 

the lockdown. The findings also show that a family living in a well-insulated modern house 

and commute to work would make financial savings due to working from home as the 

commuting cost will be eliminated and the additional energy cost for heating and other 

daytime daily requirements will be minimal.  
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 In the second approach, two case studies are presented which demonstrate the suitability of 

combining ANN with infrared thermography, the optimum ANN architecture and the 

practical minimum monitoring period required for ANN to predict future heat losses through 

walls in buildings in quick time with a reasonable accuracy. A mathematical model is also 

developed to realize the theoretical monitoring period for this purpose.  

In the third approach, a novel product has been developed to estimate the in-situ U-value of 

buildings’ walls. The product can be calibrated by training an ANN with temperature profiles 

generated from infrared images which are obtained from monitoring sample walls under 

point heat in the laboratory environment. The results of the experimental work show the new 

device combined with ANN could provide a reasonable estimation of the U value. 

In general, the suggested three techniques have been found to be beneficial to estimate 

energy losses in buildings and evaluate thermal insulation to provide households with 

estimations of energy savings and payback period towards enhancing sustainability in 

buildings. In the first approach, heat loss in a building is estimated considering the U-value 

of walls; in the second approach, the heat loss is estimated from thermography and ANN 

without considering the U-value of wall; and in the third approach, the U-value of a 

building’s wall is determined with the help of thermography and ANN.  
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Chapter 1: Introduction 

1.1 Background 

The ongoing expansion of market economy is largely responsible for an increase in 

worldwide energy demand (OECD, 2011). The increased energy demand due to rapid 

urbanization triggers a massive release of greenhouse gases (Akpan and Akpan, 2012). In 

spite of significant growth (17%) in the renewable energy sector, the worldwide energy 

production is still heavily dependent on the use of fossil fuels (BP, 2018). As a result, the 

energy related greenhouse gas emissions reached the highest point in history in 2018 (IEA, 

2019). In order to mitigate the impact of climate change  due to global greenhouse gas 

emission, the Paris Agreement set the target to restrict the increase in global average 

temperature below 2oC of the pre-industrial level with a further vision to limit the increase 

in global average temperature within 1.5oC of the average global temperature of the pre-

industrial levels (United Nations Framework Convention on Climate Change, 2015). 

According to the Climate Change Act (2008), the UK Govt. sets the target of reducing 

greenhouse gas emission to 80% of 1990’s level by 2050. The target has been revised to net 

zero greenhouse gas emission by 2050 (Department for Business Energy & Industrial 

Strategy, 2019b).  Committee on Climate Change (2016) suggested that policies should be 

taken in order to make new buildings highly energy efficient; and existing buildings should 

be better insulated to achieve the goal of the climate change act. The built environment is 

responsible for half of the total greenhouse gas emission in the UK and therefore, the UK 

Government has adopted a strategy of limiting greenhouse gas emission from built 

environment to 50% of 1990’s level by 2025 in line with the achievement of the climate 

change act’s goal (Construction 2025, 2013). According to the UK Green Building Council 

(2017), infrastructure industry controls 16% of UK’s total carbon emission; and 37% of 
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UK’s total carbon emission is related to the use of infrastructure. In addition, The Sustainable 

Energy Association (b), (2017) estimated that 63% people live in their own house in UK and, 

around 94% of owner occupied homes have central heating resulting in 37% of UK’s total 

greenhouse gas emission from buildings. Haslett (2016) also added that the energy related 

CO2 emission due to the heating of residential buildings in UK is circa 17% of the total CO2 

emissions. Therefore, energy consumption in buildings is responsible for a substantial 

amount of greenhouse gas release to the environment and reducing energy consumption in 

buildings will cut down overall greenhouse gas emission. The domestic energy consumption 

was the second highest in 2017 after the transport sector ( Department for Business Energy 

& Industrial Strategy, 2018) and the trend continued to 2018 as well (Waters, 2019). 

According to the statistics from the Department for Business Energy & Industrial Strategy, 

the rise in overall energy consumption by 1.6% in 2016 was largely contributed by the 

domestic sector with the highest percentage increase of circa 3.1% (Department for Business 

Energy & Industrial Strategy and Waters, 2017). The major portion of overall household 

energy demand comprises of energy consumption for space heating and hot water, which is 

around 80% of overall domestic energy demand (Department for Business Energy & 

Industrial Strategy and Waters, 2017). The above statistics point out the need for 

development of strategies in relation to lowering the heating energy consumption in 

buildings. That would also improve the global carbon footprint as buildings are responsible 

for consuming circa 20% of overall energy produced in the world (U.S. Energy Information 

Administration, 2016).  Improving the wall insulation of a building could make it more 

energy efficient and henceforth reduce the energy demand. Considering the impacts on 

economy and environment, it is more sensible to act for  reducing energy demand instead of 

producing more energy (Adamczyk and Dylewski, 2017). However, it is found from 

literature that the energy savings due to the enhancement of wall insulation is subject to 
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many factors such as: local weather, types of insulation and the material used for insulation 

(Al-Habaibeh, Sen and Chilton, 2020). Biddulph et al. (2014) stated that evaluation of heat 

loss through external walls would be a key requirement for building energy simulations to 

enhance the quality of building design. The thermal performance of buildings’ wall is 

evaluated considering the thermal transmittance or U-value. The U-value of an uninsulated 

wall is higher than the U-value of an insulated wall. According to the building regulations 

for conservation of fuel and power, the limiting U-value of walls of newly designed buildings 

should be 0.30 W/m2K (‘L1A Conservation of fuel and power in new dwellings’, 2014). The 

U-value threshold for existing buildings’ wall is 0.70 W/m2K and the buildings with wall U-

values worse than the threshold value should undergo upgradation (‘L1B Conservation of 

fuel and power in existing dwellings’, 2015). It is also recommended by the same regulation 

that U-value after upgradation should be better than 0.30 W/m2K for walls with external or 

internal insulation and 0.55 W/m2K for walls with cavity insulation. In addition, the payback 

period of such upgradations should be limited to 15 years or less otherwise the U-value can 

be compromised up to 0.70 W/m2K for the sake of achieving less than or equal to 15 years 

payback period (‘L1B Conservation of fuel and power in existing dwellings’, 2015). 

Therefore, a prediction tool to rapidly estimate the future heat loss through buildings’ wall 

will help the stakeholders in quick assessment of the future energy savings and determination 

of the target U-value for such upgradation.  Several devices are available for measuring U-

value of a test specimen under laboratory condition as well as real buildings’ wall; however, 

Doran (2001) found that existing procedures of calculating U-value used for regulatory 

purpose in the UK frequently underestimate true heat losses for walls as high as 30% and 

above. In-situ estimation of U-value can greatly aid in identifying the actual U-value as well 

as the real energy efficiency of the existing buildings. In-situ U-value of wall refers to the 

estimated U-value of a wall obtained through a measurement survey. Up to the present date, 
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significant efforts have been made to estimate U-value under both laboratory condition and 

in-situ; however, all these methods have some limitations. Many a time, the reliable 

estimation of in-situ U-value in real buildings is difficult because of some constraints. These 

constraints are associated with installation of instruments, extended monitoring period, 

dependency on season, dependency on weather condition and impact of solar irradiation. 

Furthermore, there are complex and nonlinear relationships exist among these parameters 

which need to be considered for accurate estimation of U-value. One of the robust 

technologies for evaluating the thermal performance of buildings is Infrared thermography 

which can rapidly provide significant information regarding the thermal performance of a 

building’s wall. Artificial intelligence has a wide range of use in buildings’ energy 

performance studies. Therefore, integration of artificial intelligence and infrared 

thermography could be a novel approach for assessing the performance of wall insulation. 

The novel approach would overcome the previously mentioned limitations for the prediction 

of heat loss and estimation of in-situ U-value of walls in a building.   

1.2 Research Scope 

Building insulation and energy loss is critical to enhance sustainability, and U-value is 

considered one of the most useful measures to assess wall insulation. Current Covid-19 

pandemic situation compelled many people to work from home and there is a scope to 

conduct research on the role of wall’s U-value in the shift in energy demand among different 

dwelling types because of working from home in winter. The investment on retrofitting a 

building with improved insulation is recovered from the savings due to post retrofit reduced 

energy consumption. Simulation of future heat losses through a building’s wall would aid to 

estimate the future energy savings due to retrofitting. There are many simulation software 

available for this purpose; however it requires extensive computer modelling, high 

computation power and skilled manpower to operate the software. Infrared thermography 
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could rapidly generate significant information about the thermal performance of a building’s 

wall and ANN has been successfully used in prediction of energy demand; however, the 

integration of infrared thermography and ANN is yet to be investigated. U-value is the ratio 

of heat flux through a wall and the temperature gradient between indoor and outdoor 

environment. By measuring the heat flux, indoor temperature and outdoor temperature, it is 

possible to estimate the U-value. In an ideal condition, the U-value of a wall is constant and 

therefore, the amount of heat passing through the wall should linearly change with the 

temperature difference between the indoor and the outdoor environments. However, in real 

life it is not possible to achieve such ideal condition rather a very complex and nonlinear 

relation exists between the heat flux and the temperature difference. Hence, it requires a 

significantly high temperature gradient between indoor and outdoor environments to ensure 

a steady heat flux with a prolonged monitoring period of wall. Because of these, the existing 

U-value estimation methods are limited to perform in winter only. Applying a point heat 

from the internal side of a wall could create the temperature gradient required for the accurate 

measurement of U-value regardless of dependency on winter season. Another key limitation 

is the prolonged monitoring period. Infrared thermography can be used to overcome that as 

it is able to provide quick information about the thermal performance of a wall when the 

wall is exposed to heating from one side. However, there could be subtle variation in thermal 

responses which are difficult to identify with visual inspection of infrared images. Artificial 

Neural Network (ANN) is capable of mapping nonlinear and complex relationship among 

different parameters. However, there is limited information available regarding the use of 

ANN in combination with thermography to evaluate buildings’ thermal performance. As a 

result, there is a research scope to address the feasibility of combining ANN and infrared 

thermography with the application of heating from one side of a wall in relation to the 

estimation of thermal performance of a building’s wall as well as to evaluate the performance 
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of different ANN architecture in this regard. This thesis focuses on three approaches to assess 

energy losses via buildings’ walls and evaluate the financial losses and benefits as a result 

of that. These include the development of a mathematical model to estimate heat losses in 

different dwelling types with different U-values of wall and hence analyse its financial 

implications, and development of a novel use of infrared thermography and neural networks 

for the same purpose. It also investigates the design and testing of a new device to estimate 

the in-situ U-value of buildings’ walls. The aim and objectives of the research work is 

discussed in the next sections. 

1.3 Aim  

To develop novel techniques to evaluate the benefits of thermal insulation in buildings by 

estimating heat losses and financial costs via mathematical models, artificial intelligence and 

thermography, and experimental works.  

1.4 Objectives 

1. To conduct a comprehensive literature review on wall insulation, current U-value 

measuring systems, infrared thermography and how ANN is used for the evaluation 

of buildings’ energy and thermal performance. 

2. To evaluate the role of wall insulation for household energy consumption and carbon 

emission during winter when people are required to work from home due to the 

Covid-19 pandemic situation.  (This objective has been extended to consider the 

work from home situation due to Covid-19 pandemic in Summar 2020 with an 

assumption that work from home situation would continue in future.) 

3. To develop a tool for evaluation of buildings’ thermal performance in terms of heat 

loss by combining infrared thermography and ANN.  
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4. To conduct case study analysis on evaluation of buildings’ thermal performance 

combining infrared thermography and ANN. 

5. To design and develop a test rig to monitor specimen walls of different thickness 

from the internal side using infrared camera with the application of point heat source. 

6. To conduct experiments to capture infrared images and sensor signals using the test 

rig on different wall samples in laboratory environment and analyse the experimental 

data for categorisation of the test walls using ANN. 

7. To conduct experiments for in-situ assessment of the U-value walls in a real building 

and to analyse the in-situ data using ANN to estimate the U-value of walls in the real 

building. 

1.5 Research Questions 

In the previous sections, the background, scope, aim and objectives of the current research 

work is discussed. To accomplish the aim and objectives, the overall research question to be 

answered is: Is it possible to develop a system for assessment of wall insulation by 

combining infrared thermography and ANN? This leads to some specific research questions 

to be answered by the research work which are: 

1. What are the influences of buildings’ wall insulation in household energy demand 

and carbon emission?  

2. How ANN can be combined with infrared thermography for the evaluation of heat 

loss of buildings’ walls?  

3. What is the monitoring period required to successfully evaluate the future heat losses 

through a building’s wall?  

4. What are the suitable ANN architectures required to predict the heat loss through 

buildings’ wall?  
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5. What are the drawbacks of existing U-value measurement systems and, how infrared 

thermography and ANN can be used for in-situ U-value estimation of walls in 

buildings? 

6. How to develop a test kit to monitor the thermal performance of a wall using infrared 

camera with the application of point heat? 

7. How to process the infrared data for ANN analysis? 

8. What configuration of ANN would be suitable for the U-value estimation? 

 

1.6 Thesis structure 

 

Figure 1.1: The structure of the thesis. 

The thesis is organised into eight chapters consisting of introduction, literature review, 

methodology, influence of wall insulation on the change in energy consumption due to 

working from home, case studies on combining ANN and infrared thermography to evaluate 

buildings thermal performances, design and development of a test kit for U-value estimation, 

Chapter 4: The Role of Wall Insulation on 

Household Energy demand, Carbon 

Emission and Household Budget in English 

Dwellings due to Covid-19 Lock Down 

Situation During Winter

Chapter 5: Development of a 

Prediction Tool to Estimate 

Heat loss through walls using 

Infrared Thermography and 

Artificial Neural Network

Chapter 6: Development 

of U-value Estimation Kit

Chapter 1: Introduction

Chapter 2: Literature Review

Chapter 7: Experimental 

Work on Real Building

Chapter 3: Methodology

Chapter 8: Discussion and 

Conclusion
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experimental works on a real building’s walls with the test kit and conclusion of the thesis.  

The structure of each chapter is discussed below.  

Chapter one:  The background of the current research work in relation to need for U-value 

estimation is discussed at the beginning of the chapter. The research scope with the aim, 

objectives and the research questions are presented in later section of the chapter.    

Chapter two: A comprehensive literature review is conducted on wall insulation and its 

impact on buildings’ energy performance, infrared thermography, methods of existing in-

situ U-value estimation, Artificial Neural Network and its application in the evaluation of 

buildings’ energy performance are discussed. The limitations of existing U-value 

measurement methods are also summarised at the end of relevant sections. 

Chapter three:  The research methodology adopted for the current PhD research work has 

been presented in this chapter. The details of the three levels that comprise of the 

methodology is discussed with graphical representation of relevant flow charts.  

Chapter four: This chapter discusses the influence of insulation in the household energy 

consumption, effect on the household energy bills and net change in carbon emission due to 

working from during the winter of 2020-21 as a result of Covid-19 pandemic situation.  

Chapter five:  The development of an evaluation tool to predict heat loss in buildings using 

a novel approach of integrating infrared thermography and ANN is presented in this chapter. 

Two case studies are also included in the chapter to demonstrate the application of the novel 

heat prediction tool. 

Chapter six: The development of a novel U-value estimation kit by combining infrared 

thermography and ANN with the application of a point heat is presented in this chapter. The 

application of the newly developed kit in categorising wall samples is also included in the 

chapter. 
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Chapter seven: This chapter shows the implementation of the novel U-value estimation kit 

to estimate the in-situ U-value of walls in a real building.  

Chapter eight: The conclusion of the thesis is presented in this chapter showing the fulfilment 

of objectives, the key findings and the contribution to the knowledge made by the current 

research.  The chapter finishes with the recommendation for future research works.  

1.7 Summary 

This chapter begins with describing the current scenario of the energy consumption in 

domestic sector in the UK in response to the ambition of the UK Govt. to reduce greenhouse 

gas emissions. A key strategy in relation to this would be the retrofitting of existing buildings 

with added wall insulation to minimise the energy consumption for space heating. The need 

for U-value estimation prior to retrofitting is explained. Addressing to the limitations of 

existing U-value estimation methods, a novel approach of combining infrared thermography 

and ANN is proposed. The research scope, the aim and objectives of the thesis, and the 

research questions to be addressed by the thesis are presented in the later sections. The 

chapter ends with a brief summary of the structure of this thesis.  
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Chapter 2:  Literature Review 

2.1 Introduction 

Wall insulation significantly influences the thermal performance of buildings by lowering 

the U-value of buildings’ wall. However, prior to applying insulation on buildings’ wall to 

rectify the U-value of wall, it is necessary to identify the existing level of U-value of the 

wall. Infrared thermography has been successfully used to evaluate buildings’ thermal 

performance.  A number of research works are available regarding the effect of insulation in 

buildings’ thermal performances, use of thermography for the evaluation of buildings’ 

thermal performance as well as measuring the U-value of wall in buildings. Therefore, a 

comprehensive literature review about the wall insulation, infrared thermography and U-

value measurement in buildings are included in next three sections of this chapter. Following 

to that a detailed literature review about Artificial Neural Network and its use in the 

prediction of energy demand in buildings are presented.   

2.2 Insulation in Buildings 

Insulation in buildings broadly refers to the materials applied around a building’s envelop to 

restrict heat flow. Insulation materials are the materials with low thermal conductivity, which 

are used in buildings’ components to restrict heat flow between internal and external 

environments as well as reduce the U-value and to help maintain stable temperature within 

the building envelop in spite of fluctuations in external ambient temperature. As a result, it 

reduces energy consumption for heating and air-conditioning and consequently reduces 

burning of fossil fuels for electricity generation (Aditya et al., 2017).  

There is a diverse range of materials used for insulation these days. Different researchers 

have attempted to classify the commercially available insulting materials. Among them 

Papadopoulos, (2005) categorized the insulating materials into four different classes namely: 
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organic materials, inorganic materials, combined materials and new technology materials.  

A  very similar classification is done by  Sadineni, Madala and Boehm, (2011) who also 

classified insulation materials into four broad classes namely organic materials, inorganic 

materials, metallic or metalized reflective membranes and advanced materials. Organic and 

inorganic materials are further grouped into cellular/foamy material and fibrous material 

(Papadopoulos, 2005; Sadineni, Madala and Boehm, 2011). Tabrizi, Hill and Aitchison, 

(2017) conducted a hypothetical case study about the impact of energy consumption using 

six different types of insulation material belonging to the above mentioned organic and 

inorganic groups namely: Glass Fibre, Expanded Polystyrene (EPS) foam slab (40% and 

100% recycled), Cellulose Fibre, Rock Wool and Extruded Polystyrene (XPS). The study 

was conducted on a multi-storeyed residential building in Sydney and three different 

thicknesses (30 mm, 60 mm and 90 mm) of insulation layers were considered. The study 

showed that the variation in cooling energy consumption is only 2% among different 

samples; however, the heating energy consumption varied by 43% and Extruded Polystyrene 

showed the best performance in terms of saving heating energy.  As a result, selection of 

right insulation material is necessary to get optimum benefits of energy savings. However, 

there are other issues such as environmental impact, resistance to sound, moisture and 

catching fire, that need to be considered as well (Papadopoulos, 2005). Non-recyclable 

insulation materials commonly used in the market, may lead to release of more greenhouse 

gas during the disposal process at the end of their life resulting in forfeiting the benefits of 

the less greenhouse gas emission due to lower energy consumption from improved insulation 

(Asdrubali, D’Alessandro and Schiavoni, 2015). In a review on unconventional insulation 

materials, the authors found that recycled polyethylene terephthalate (PET) and recycled 

textile materials release 1.62-0.99 kg less CO2 than rock wool and kenaf material per 
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functional unit; where the functional unit refers to the mass of the insulation material 

required to attain a thermal resistance of 1 m2K/W.  

In a building, insulation can be applied on walls, roof, and floor as well. Significant amount 

of simulation study, experimental work and survey of real buildings show the benefits of 

wall insulation in terms of energy savings which are discussed in section 2.2.1. Other than 

wall insulation, floor and loft insulations also contribute to reduce heat loss through building 

envelop as well as to lower energy consumption for heating and air-conditioning. For 

example, Hong, Oreszczyn and Ridley, (2006) show that cavity wall and loft insulation could 

reduce 11% annual fuel consumption for space heating. Staszczuk, Wojciech and Kuczyński, 

(2017) show that floor insulation significantly reduces the heating energy demand during 

winter. As the current research is focused on the thermal performance of buildings wall the 

literature review is limited to explore the energy performance of wall insulation only.  

2.2.1 Impact of wall Insulation in energy consumption 

Insulation can be applied on both sides of wall. If the insulation is applied on the external 

surface of a building’s wall, it is called external insulation and, if it is applied on the internal 

surface of a building’s wall, it is called internal insulation. The U-value of wall does not 

depend on whether the insulation is applied internally of externally rather it depends on the 

thickness of the insulation layer in the wall.  However, the thermal performance of buildings’ 

wall after retrofitting with improved insulation vary based on whether they are internally or 

externally insulated as well as the climatic conditions where the buildings are located. 

Several studies report the effectiveness of external wall insulation over internal wall 

insulation while some researchers find internal wall insulation is more effective than external 

wall insulation. Some literatures are explored below to understand the energy performance 

of externally and internally insulated buildings’ wall as well as the change in energy 
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performance due to retrofitting buildings’ wall with improved insulation in different climatic 

zones. 

 Kossecka and Kosny, (2002) conducted a parametric equation-based simulation study to 

evaluate the energy performance of a residential building with six different combinations of 

wall insulation considering the metrological data of six cities in USA. The result shows that 

the model with purely external wall insulation has the least energy demand and the model 

with purely internal wall insulation has the highest energy demand. The authors further 

stated that the effectiveness of insulation depends on the climate zone where the house is 

located. On the contrary, a simulation study about the impact of different levels of external 

and internal wall insulation on the energy consumption and thermal comfort in a residential 

building in China showed that the model with purely internal wall insulation has least energy 

consumption and most thermal comfort hours during winter and summer however, for 

transitional periods the model with external insulation showed least energy consumption 

(Wang et al., 2016). Reilly and Kinnane, (2017) also reached to a similar conclusion from 

their simulation study and reported that an internally insulated buildings envelop consumes 

10% less energy than that of an externally insulated building. The authors explain the reason 

for that as the internal surfaces of building elements themselves absorb energy before 

reaching in equilibrium with the room temperature. The internal insulation on wall reduces 

the available indoor space; and therefore, the authors’ observation is that the trade-off 

between space requirement and energy demand reduction often go against the internal 

insulation. Furthermore, according to Wang et al., (2016), a building with external insulation 

has better thermal stability than a building with internal insulation. Another simulation study 

conducted by Kim and Moon, (2009) considering the impact of insulation in American 

buildings in cold and hot climate zone also showed that  external wall insulation can reduce 

25.5% energy consumption for space heating in colder climate areas; however, in the warmer 
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climate areas it could reduce around 0.14% of cooling energy consumption. Another 

evidence found in the favour of external insulation where the numerical simulation of energy 

performance in a typical residential building with 80 mm thick Expanded Polystyrene (EPS) 

insulation showed that the external wall insulation outperformed the internal wall insulation 

by 4% to 10% (Kolaitis et al., 2013). Although the energy consumption for space cooling 

with internal insulation is marginally less than that of external insulation, the energy 

consumption for space heating with internal insulation is substantially larger than that of 

external insulation. Two climatic conditions were considered: warm Mediterranean climate 

and moderate Oceanic climate and the result showed that both external and internal 

insulation drastically reduce the annual heating energy demand, however, there is a slight 

increase in annual cooling energy demand. Berger et al., (2016) conducted a simulation 

study about the impact of external insulation on energy consumption for heating and cooling 

in different types of office buildings at Vienna in Austria. The result shows that additional 

external insulation slightly increases the cooling energy demand in summer; however, the 

reduction in heating energy demand in winter is very large in compare to the cooling energy 

demand. The authors analyse the reason behind that would be the internal heat gain due to 

the ejected heat from electrical and electronics equipment installed in the buildings and 

therefore, recommend to use energy efficient electrical equipment to utilise the benefits of 

wall insulation in terms of energy savings.  Lee et al., (2017) draw a similar conclusion on 

the energy performance of external wall insulation supported by a simulation study in a 

building in South Korea; however, they recommend to carefully design the wall insulation 

rather than cutting down internal heat gain by using energy efficient electrical/electronic 

equipment. On the other hand, a  study to assess the energy savings due the external 

insulation in a residential building in Algeria shows that both the heating and cooling energy 

consumption are reduced by 20% during the coolest months in winter and 38% during the 
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hottest months in summer respectively (Derradji et al., 2017). The authors present another 

interesting finding that the insulated building has more stable room temperature (about 2oC 

variation) than that of uninsulated buildings in both winter and summer. This fact is also 

supported by an experimental work to find the impact of external wall insulation on the 

energy consumption of air-conditioning in tropical climate during summer and the result 

shows the variation in internal temperatures is around 0.4oC in the insulated building (Fang 

et al., 2014). The authors also found that an externally insulated building’s wall with 30 mm 

extruded polystyrene could reduce the energy demand for air-conditioning by 23.5% in the 

tropical climate zone during summer. Byrne et al., (2016) observed the thermal performance 

of Irish building before and after retrofitting with cavity wall and external insulation. The 

authors monitored the test buildings three times. Firstly, before retrofitting, secondly, after 

retrofitting those with cavity wall and finally, after retrofitting them with external insulation. 

The result shows that the cavity wall reduces heat flux through north and south walls by 52% 

and 50% respectively. With the addition of external insulation, the heat flux through north 

and south walls further decreases by 48% and 60% respectively. The authors conclude that 

as the cavity wall is done before external insulation the sole effect of external insulation may 

be higher percentage of heat flux reduction than observed in this case.  

The above review of literature regarding the performance of wall insulation establishes the 

fact that buildings’ wall insulation significantly contributes to the reduction of energy 

consumption; however, effectiveness of wall insulation is not consistent throughout different 

climate zones. Most of the studies found that externally insulated buildings have higher 

energy savings for space heating than space cooling in cold climatic areas. Some studies 

have found better energy performance of the internal insulation over the external insulation; 

however, those studies also point out the limitations of the internal insulation as it occupies 

some of the available indoor spaces and has poorer thermal stability compared to the external 
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insulation. External insulation is more expensive and has longer payback period than internal 

insulation (Kolaitis et al., 2013); however, it significantly reduces the household energy 

consumption for space heating and consequently improves the quality of inhabitants’ life 

(Adamczyk and Dylewski, 2017). The inconsistency in the energy performance of wall 

insulation in different climatic regions leads to the fact that it is difficult to generalise a 

standard for retrofitting buildings with improved wall insulation, rather different standards 

based on the local climate would be more efficient.  

2.3 Infrared thermography 

Infrared thermography refers to the technology that involves noncontact temperature 

measurement of any object by identifying heat radiation from that object. An infrared image 

could reveal significant information regarding the thermal radiation from different objects 

in that image. Every object radiates heat energy if that has a higher temperature than the 

surrounding environment and absorbs heat energy from surroundings if that has a lower 

temperature then the surrounding environment. This energy radiation occurs because of the 

continuous vibration of the molecules that constitute the object. When electrons in a 

molecule are accelerated due to rise in temperature, they release energy in the form of 

radiation. This exchange of heat energy takes place by the propagation of electromagnetic 

waves or photons. Within the full spectrum of the electromagnetic waves, the waves with 

wavelength ranges from 10-1 μm to 102 μm are responsible for thermal radiation and the 

thermal radiations that occur from 0.7μm to 102 μm wavelength range are called infrared 

thermal radiation (Incropera et al., 2011). The net heat transfer due to infrared radiation can 

be expressed using Stephan Boltzmann’s law as,  

𝐸 = 𝜀𝑘(𝑇𝑠
4 − 𝑇𝑐

4)     (2.1) 

Here E represents the net heat transfer, Ts and Tc are the surface temperature and the 

surrounding temperature, respectively. The symbol k stands for the Stephan Boltzmann’s 
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constant and normally the value of it is considered as 5.67x10-8 W/m2K4. The symbol ε 

represent the emissivity of the object of interest and the value of emissivity is considered 

equal to 1 for a perfect black body. For a grey body, the emissivity value is less than 1 and 

it depends on the texture of the object. For instance, the emissivity of a brick wall is between 

0.85 to 0.95 (CIBSE, 2006), and the emissivity of low emission glass window would be less 

than 0.07 (Hartig, K.W., Larson, S.L. and Lingle, P.J., 1996). An infrared camera is 

constructed with infrared sensitive elements organised as arrays of sensor. These infrared 

sensitive sensor arrays can measure the intensity of any incidental infrared ray and generate 

a response accordingly. An infrared image is constructed by combining these responses from 

the sensor arrays. The intensity of incidental infrared rays on the sensors is proportional to 

the surface temperature and based on that, the variation on surface temperatures can be 

clearly differentiated using different colours and intensity of colours with the help of a 

suitable colour coded scale. The resolution of an infrared camera depends on the number and 

orientation of arrays containing infrared sensors. Infrared cameras first came on the market 

in 1956 (Lisowska-Lis, Mitkowski and Augustyn, 2011). Available infrared cameras have a 

typical working range of 0.7 μm to 20 μm (Al-Habaibeh et al., 2010). The radiation captured 

by the sensors in an infrared camera is composed of three different emissions. They are 

emission from that surface, reflection of the emissions of the surroundings from the surface 

and emission from the atmosphere. The surface temperature of the object of interest can be 

obtained from equation 2.2 which combines these three emissions (Usamentiaga et al., 

2014). 

𝑇𝑠 =  √𝑊𝑡𝑜𝑡−(1−𝜀𝑠)𝜏𝑎𝑡𝑚𝑘(𝑇𝑟𝑒𝑓)
4

−(1−𝜏𝑎𝑡𝑚)𝑘(𝑇𝑎𝑡𝑚)4

𝜀𝑠𝜏𝑎𝑡𝑚𝑘

4

                              (2.2) 

Here Ts represents the surface temperature, 𝑊𝑡𝑜𝑡 represents the total radiation received by 

the camera, 𝜀𝑠 represents the emissivity of the surface, 𝜏𝑎𝑡𝑚 represents the transmittance of 
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the atmosphere and k represents the Stephan Boltzmann’s constant.  𝑇𝑟𝑒𝑓 and 𝑇𝑎𝑡𝑚 are the 

reflective temperature and the atmospheric temperature. The value of 𝜏𝑎𝑡𝑚 is close to 1, and 

therefore, the effect of atmospheric temperature is negligible. The infrared radiation from an 

object could easily propagate through air and that makes infrared thermography an useful 

tool to measure the surface temperature of buildings’ wall in a noncontact way from a short 

distance (Marino, Muñoz and Thomas, 2017). It is also useful to apply infrared 

thermography for the estimation of thermal transmittance of buildings’ windows (Baldinelli 

and Bianchi, 2014), heat loss through door openings (Al-Habaibeh, Medjdoub and Pidduck, 

2012) and characterisation of the thermal performance of buildings’ facade (Bienvenido-

Huertas et al., 2019). Moreover, study shows it is convenient to estimate energy savings due 

to retrofitting a building with improved insulation by comparing the infrared images 

captured before and after retrofit respectively (Al-Habaibeh and Siena, 2012).  O’Grady et 

al. (2017) show that infrared thermography can be used to estimate the heat flow rate through 

a thermal bridge and Ferrarini et al. (2016) show the use of thermography for the estimation 

of time shift values of temperature in building elements. It could also be used to investigate 

transient temperature response behaviour over the time (Xie et al., 2019). One of the 

advantage of using thermography in the field of evaluating buildings’ thermal performic is 

that the infrared images could be upgraded to higher resolution applying different 

mathematical algorithms to achieve higher precisions for the analysis of infrared data 

(Baldinelli et al., 2018). 

2.4 In-situ U-value Assessment 

In general, U-value represents the overall thermal transmittance of an object through its 

opposite surfaces. Mathematically, U-value is the reciprocal of summation of thermal 

resistances which represent the overall thermal transmittance of a solid object. Therefore, 

higher U-value of buildings’ walls means higher heat transfer through the walls. The 
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convention for estimating theoretical U-value or designed U-value of a building’s wall is 

governed by the regulation stated in BS EN ISO 6946 (Anderson, 2006). According to the 

BS EN ISO 6946, the U-value is represented as the reciprocal of the overall resistance of all 

layers of the wall (ISO, 2007 in Gaspar, Casals and Gangolells, 2016) and is expressed as  

𝑈 =  
1

𝑅𝑇
                                     (2.3) 

 where, 𝑅𝑇 =  𝑅𝑖 +
𝑑1

𝜆1
+

𝑑2

𝜆2
+ 

𝑑3

𝜆3
… … … . +𝑅𝑒 ; represents the overall thermal resistance of 

the wall. Here Ri and Re are the thermal resistance of air at the internal surface and the 

external surface, respectively. The parameters d1, d2, d3……. and λ1, λ2, λ3….., represent the 

thicknesses and the thermal conductivities of the respective wall layers. The theoretical U-

value would be good enough to use for the design purpose of new built buildings; however, 

to assess the thermal performance  of an existing building  before or after retrofit it may 

convey misleading information as the actual  U-value a building’s wall may change due 

several reasons such as: degradation of the wall materials due to prolonged exposure to the 

external environment, presence of void within the wall layers, deviation from the designed 

thickness due to poor craftsmanship and so on (Evangelisti et al., 2015). A research work 

comparing the designed U-value and the in-situ U-value among three different types of 

buildings in Italy, where one was a very old building, another was built in early 1950 and 

the third one was built in 2000’s, shows that the old building has 153% deviation, the early 

1950 building has 37% average deviation and the 2000’s building has 17% deviation with 

the designed U-value (Evangelisti et al., 2015). The findings of that research indicate that 

the material properties of old building would change over time and hence in-situ U-value 

measurement is necessary especially for old buildings. Furthermore, a field survey in 29 

different types of buildings shows that the in-situ U-value is higher than the calculated U-

value in most of the cases because the theoretical U-value calculation is based on the ideal 
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construction condition (Doran, 2001). A later study using data from 277 properties also 

reveals that the ratio between the in-situ U-value and the calculated U-value ranges between 

61% to 134 % depending on the wall types in a building. Rye (2010) conducted a research 

work to compare the in-situ U-value measured with the theoretical U-value calculated using 

BuildDesk v3.4 in English Heritage buildings and the result shows that the software 

overestimates the U-value in 79% cases.  

Several research works have been undertaken to measure the in-situ U-value of buildings’ 

walls. Among them, there are two major approaches found namely: Heat Flux Meter Method 

(HFM) and Infrared Thermovision Technique (ITT).  Besides these two, there is a laboratory 

based method where samples from different layers of a wall are collected by drilling holes 

and tested in laboratory to determine the actual thermal conductivity which is then used 

alongside the wall layers’ thickness to evaluate the in-situ U-value from equation 2.1 (Ficco 

et al., 2015). However, it is a destructive process and merely applied in existing buildings. 

Another approach mentioned by Ficco et al., (2015), is to consider historical data regarding 

the building characteristics and estimate U-value based on those data. However, the research 

of Lucchi, (2017) shows that this method tends to overestimate the actual U-value because 

of the inclusion of safety factors in the standard historical data as well as the change in 

material property due to aging. Therefore, the author suggests that in-situ U-value 

measurement is the best among all alternatives.  The HFM method uses a heat flux meter in 

conjunction with temperature sensors and the ITT method uses an infrared camera often 

accompanied with other temperature sensors. 

2.4.1 Heat Flux Meter 

Heat flow meter or heat flux meter is a device used to measure heat flux rate through any 

surface of an object. Heat flux rate refers to the amount of heat energy passing through unit 

area of a surface per second. In Table 2.1, the specification of heat flux meter in the reviewed 
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literature is listed and it is found that the most widely used heat flux meter for U-value 

measurement is HFP01 from Hukseflux. According to the user manual (Campbell Scientific, 

2012) the device contains mainly a thermopile, which measures temperature differences 

across a thin sensor body made of ceramic-plastic composite.  

Table 2.1: Heat flux meter and temperature sensors used in the reviewed research work. 

Serial  

No. 

Reference Heat Flux Meter Temperature Sensor  

1 Doran, 

(2001) 

Thermocouple-based 

heat flux meter 

N/A 

2 Gong and 

Huang 

(2006) 

Thermocouple-based 

heat flow meters and  

Thermocouple-based temperature 

sensors 

3 Baker 

(2008) 

Hukseflux HFP01 with 

Scientific CR1000 data 

loggers 

Campbell Scientific type 107 stainless 

steel-sheathed thermistors.  

4 Rye (2010) Hukseflux HFP01 with 

Scientific CR1000 data 

loggers 

Gemini TinyTag Plus 2 TGP-4520 

loggers 

5 Desogus et 

al. (2011) 

FE01-3B heat flux 

sensor for measuring 

heat flux and TGU2 data 

loggers for recording 

data. 

Resistive temperature detector (RTD) 

6 Biddulph et 

al. (2014) 

HuksefluxHFP01 heat 

flux meter 

Thermistor based temperature sensor 

7 Li et al. 

(2015) 

HuksefluxHFP01 heat 

flux meter with Eltek 

401 data logger 

Thermistor based temperature sensor 

8 Hulme and 

Doran 

(2015) 

HuksefluxHFP01 heat 

flux meter with Eltek 

401 data logger 

Thermistor based temperature sensor 

with Gemini Tinytag data logger 

9 Evangelisti 

et al. (2015) 

TESTO 435-2 N/A 

10 Gaspar et al. 

(2016) 

HFP01 from Hukseflux.  The inside air temperature was 

measured using T107 temperature 

sensor with CR850 acquisition system 

from Campbell Scientific, Inc. The 

outside air temperature sensor and its 

acquisition system used was TF-500 

and PCE-T390 from PCE Iberica, SL 

11 Lucchi 

(2017) 

HFS series (HFS-3 and 

HFS-4). 

Thermocouple-based temperature 

sensors 
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 A thermopile is made by connecting several thermocouples either in series connection or in 

parallel connection. Thermopile converts temperature difference into electric voltage. The 

temperature difference between two sides of sensor body can be determined from the voltage 

reading obtained by using a voltmeter. Dividing the temperature difference with thermal 

conductivity of the sensor body, the heat flux can be obtained. HFP01 is supplied with a 

sensitivity factor (calibration constant) and the voltage reading divided by that factor directly 

gives the heat flux in watt per square metre. Figure 2.1 shows a HFP01 heat flux meter from 

Hukseflux. Other than HFP01, there is HT-50 thermal flux meter from International Thermal 

Instrument Company. According to their website (International Thermal Instrument 

Company, no date), the HT-50 thermal flux meter is a flat metallic transducer and able to 

measure directly the heat flux of the surface where it is placed. The working principle of 

HT-50 is similar to the working principle of HFP01, i.e. to measure the temperature 

difference between two surfaces of the sensor using thermopile.  

  

Figure 2.1: HFP01 heat flux meter from Hukseflux (Campbell Scientific, 2012) 

The output voltage generated by the thermopile is converted to heat flux by multiplying that 

with a calibration constant to directly get the heat flux value in BTU/ft2hr. This calibration 

constant is supplied to consumer with every heat flux meter. Figure 2.2 shows a HT-50 heat 

flux meter from International thermal Instrument. Furthermore, Omega Engineering 

Œ
This
side
up
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produces heat flux sensor under HFS series (HFS-3 and HFS-4). According to the user guide 

(OMEGA Engineering, no date), the main part of the HFS Sensors is differential 

thermocouple. A thin foil containing a thermopile with more than 50 junctions is placed 

around a thermal barrier of known thermal characteristics. 

   

Figure 2.2: HT-50 heat flux meter from International thermal Instrument (International 

Thermal Instrument Company, no date) 

The thermal barrier is made using Kapton (polyimide film) and the junctions are created by 

combining copper and constantan on both sides of the barrier in series connection. The first 

junction on the upper surface and the last junction on the lower surface contains the copper 

outputs leads which can be connected to a voltmeter to get the voltage reading. Dividing the 

voltage reading by the sensitivity constant of the sensor gives heat flux in BTU/ft2hr. Figure 

2.3 shows an HFS series heat flux meter from Omega. 

    

Figure 2.3: HFS heat flux meter from Omega Engineering. (OMEGA Engineering, no date) 

Copper 

Output 
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Thermoelectric 
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2.4.2 U-value Estimation using HFM Method 

The standard guideline for HFM method is described in ISO 9869 Part 1 (ISO, 2014). 

According to the guideline the U-value is ratio of total heat flux with temperature gradient 

between indoor and outdoor environment and can be represented using equation 2.4 (Gaspar, 

Casals and Gangolells, 2016). 

𝑈 =  
∑ 𝑞𝑗

𝑛
𝑗=1

∑ (𝑇𝑖𝑗−𝑇𝑒𝑗)𝑛
𝑗=1

                                 (2.4) 

Here U represents the estimated U-value, q is the heat flux rate in watt per square meter, Ti 

an Te are the inner and outer temperatures in degree Kelvin respectively. The recommended 

duration for data acquisition in ISO 9869 guideline is at least 72 hours (Gaspar, Casals and 

Gangolells, 2018). However, analysis of survey data conducted by Doran (2001) 

demonstrates that to get a reliable estimation of U-value in HFM method, at least more than 

5 days observation is required and U-values measured over five days result in standard 

deviations ranging from 10% to 25% depending on the thickness of walls. Similar survey 

works have been carried out by Baker (2008) in a project for the Centre for Research on 

Indoor Climate & Health, Glasgow Caledonian University (GCU) to measure the U-value 

of 20 different types of walls in Scottish Buildings. The result shows that at least one week’s 

observation is required to limit the variation in the in-situ U-value within ±5% of the average 

value and it is recommended to have around 27 days data to determine the final value. In a 

more comprehensive survey containing data from 277 properties, Hulme and Doran (2015) 

recommend that the duration for the measurement of temperature should be for at least two 

weeks to  get an accurate result. The research of Gaspar, Casals and Gangolells, (2018) also 

shows that it is not possible to get a stable result in 72 hours as guided by ISO 9869 and two 

out of three case studies conducted by the author show that it requires more than 96 hours of 

observation to reach to a stable result.   
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Desogus et al. (2011) conducted research to observe the effect of temperature gradient 

between indoor and outdoor temperature in the estimation of U-values by using Heat Flux 

Meter (HFM) technique and endoscopic or destructive sampling method in a wall between 

two rooms of Architecture Department building in Cagliari, Italy. Two series of 

measurements were carried out by the author with 10oC difference between internal and 

external environment temperature in the first case and 7oC in difference between internal 

and external environment temperature the second case. The result showed that the U-value 

measured at 10oC temperature gradient using HFM methods had less than 10% uncertainty 

on the other hand U-value measured using destructive method had about 16% uncertainty. 

U-value measured using HFM method at 7oC temperature gradient had uncertainty of 13.5% 

and therefore the author concluded that measuring U-value using HFM method would be 

ideal for assessment of buildings’ wall thermal performance if that is performed in correct 

environment. Ficco et al. (2015) conducted a field investigation to evaluate in-situ U-value 

of seven different building components using four commercial heat flux meters. The 

comparison   of the field investigation results with U-value obtained using design data and 

the U-value obtained from endoscopic sampling show that low temperature difference (less 

than 10oC) and consequently low heat flow rate lead to unacceptable uncertainty in the U-

value estimation. The same authors also demonstrate that during summer, when the heat 

flow is reversed, the uncertainty in the estimated in-situ U-value goes as high as 50%; while 

during winter, when the temperature difference is more than 10oC between indoor and 

outdoor environments, the uncertainty in the estimated in-situ U-value drops to 8%. Gaspar, 

Casals and Gangolells (2016) also notice significant deviation in measured U-value if the 

temperature difference between indoor and outdoor environments drops below 10oC and the 

authors termed it as nonoptimal condition for in-situ U-value measurement. However, by 

adopting dynamic methods of calculation described in ISO 9869-1 (ISO, 2014 in Gaspar, 
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Casals and Gangolells, 2016), which consider temperature derivatives of all previous time 

steps could produce better estimation in case of nonoptimal conditions. In a comparative 

study between the average method and the dynamic method of in-situ U-value measurement 

using HFM method it is found that the difference in theoretical and in-situ U-value is less 

than 5% for average method and less than 1% for dynamic method in optimal condition (the 

average temperature difference between indoor and outdoor is higher than 10oC); however, 

in non-optimal condition, the difference between theoretical and in-situ U-values goes up to 

20% for average method and 10% for dynamic method respectively (Gaspar, Casals and 

Gangolells, 2016). The authors conclude that dynamic method of calculation should be 

adopted as it produces more precise estimation and a later study by the same authors also 

support the fact by achieving around 50% more precision with dynamic method of 

calculation than with average method of calculation (Gaspar, Casals and Gangolells, 2018). 

Gong and Huang (2006) attempted to improve the precision of the dynamic analysis method 

of U-value calculation described in ISO 6946 with Z-transfer function of discrete time series 

model used in dynamic calculation method and the result shows this approach reduces the 

estimation errors from 1.18% to 0.89%. Aiming to shorten the measurement period and 

reduce the influence of less than 10oC  difference between indoor and outdoor temperature 

in HFM method, Biddulph et al. (2014) propose to add a thermal mass parameter and use 

Bayesian statistical analysis for deriving estimated U-value. The authors show that addition 

of a single thermal mass parameter reduces the time required to stabilize the fluctuations in 

the measurement of U-value from 10 days to 3 days. Considering the stability in the 

estimated U-values the authors expect that the method could provide benefits in measuring 

U-value in non-optimal condition as well. Li et al. (2015) apply the model developed by 

Biddulph et al. (2014) to compare the in-situ U-values of solid walls with the U-values of 

solid walls quoted by the Chartered Institute of Building Service Engineers (CIBSE) and 
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reach to a similar conclusion as  Biddulph et al. (2014) made regarding the time required to 

get a reliable estimation of in-situ U-value in HFM method. The authors also state that U-

value measurement in occupied houses using heat flux sensor under predicts the U-value 

because of lack of good thermal contact between the solid wall and the heat flux sensor, 

difficulty in positioning the sensor at a suitable place on the wall and thermal bridge among 

adjacent partition walls; however, by using thermal mass model with Bayesian statistical 

analysis all these problem could be minimised to some extent. Gori et al. (2017) further 

extended the research of Biddulph et al. (2014) by adding two thermal masses instead of one 

and use two heat flux meters in internal and external surface of a wall respectively. The 

authors achieved further precision than that of Biddulph et al. (2014) and believe that their 

model could be useful in estimating U-values in summer condition as well. However, none 

of the above-mentioned authors attempt to verify the performance of their models in the 

summer condition. Sassine (2016) used Fourier series and Laplace transform to improve the 

accuracy of HFM estimation and the result of the experimental works conducted in 

laboratory showed that the deviation drops below 4%; however, the time required for the 

measurement is around six days and the method is not tested on real buildings. 

Therefore, from the above discussion the limitations of the HFM method can be summarised 

as: 

1. HFM method could not produce good result if the temperature difference 

between the internal and external environment is less than 10oC due to lack of 

adequate heat flow. 

2. HFM method does not produce good result if the heat flow is reversed i.e., under 

summer condition.  

3. HFM method needs at least 72 hours reading to estimate U-value.  
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2.4.3 U-value Estimation Using ITT Method 

The guidelines for ITT method is described in ISO 9869 Part 2 (ISO, 2018).  The basic theory 

behind the U-value calculation in ITT method is similar to that of HFM method and can be 

expressed as,  

𝑈 =
𝑃

𝑇𝑖𝑛𝑡−𝑇𝑒𝑥𝑡
                                            (2.5) 

Here U represents the estimated U-value, P is the total thermal power, Tint, represents internal 

environment temperature and Text represents external environment temperature. The thermal 

power represents the total heat passing through the wall from internal environment by 

conduction and dissipating to the external environment by radiation and convection. The 

radiation heat transfer can be explained with equation 2.1 and the convection heat transfer 

can be estimated from the temperature difference between the wall surface and the external 

environment multiplied by a constant called coefficient of convection (Hoyano, Asano and 

Kanamaru, 1999). Equation 2.6 express the quantification of convection heat.  

𝐻 =  𝛼𝑐(𝑇𝑠 − 𝑇𝑒𝑥𝑡)     (2.6)  

Here H represent the amount of heat transfer due to convection, αc is the coefficient of 

convection heat transfer, Ts is the wall surface temperature and Text is the environmental 

temperature. By combining equation 2.1 and equation 2.6 thermal power can be calculated. 

Different researchers attempt to quantify thermal power by combining radiation heat flux 

and convection heat flux with slight modification based on some assumptions. For instance, 

Madding (Madding 2008 in Nardi et al. 2016) used the following equation 2.7 to estimate 

thermal power and replace surrounding temperature with the reflective temperature and 

consider the third power of mean of the wall surface temperature and reflective temperature 

for the radiative part heat flux part.   
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 𝑃 = 4𝜀𝜎𝑇𝑚
3 (𝑇𝑠 −  𝑇𝑟𝑒𝑓) +  𝛼𝑐(𝑇𝑠 −  𝑇𝑖𝑛𝑡)            (2.7)  

Where, 𝑇𝑚 =  
𝑇𝑠+ 𝑇𝑟𝑒𝑓

2
 is the mean temperature of Ts an Tref. It is also noted that the author 

considers internal environment temperature in the convective heat flux part instead of 

external environment temperature. On the other hand, Albatici and Tonelli (2010) replaced 

the coefficient of convection heat flux with wind speed applying Jurges’ equation and 

consider Stephen Boltzmann’s law for grey body radiation for the radiative part of heat flux 

to estimate the thermal power which is presented in equation (2.8) 

𝑃 = 5.67𝜀𝑡𝑜𝑡 ((
𝑇𝑠

100
)

4

−  (
𝑇𝑒𝑥𝑡

100
)

4
) + 3.8054𝜈(𝑇𝑠 −  𝑇𝑒𝑥𝑡)             (2.8) 

Here, εtot is the emissivity on the entire spectrum, ν is the wind speed. However, in a later 

study (Albatici, Tonelli and Chiogna, 2015) the emissivity consideration has been conserved 

to the spectral range of the thermal camera rather than the entire spectrum. The initial study 

by Albatici and Tonelli (2010) shows that the U-value estimated by ITT method is 31% 

higher than the theoretical U-value whereas the U-value estimated by HFM method is 59% 

higher than the theoretical U-value. The author attributed some causes behind such high 

deviations in the result and commented that ITT method is much faster and accurate than 

HFM method, but it is limited to perform after sunset with overcast sky preferable to avoid 

the effect of solar reflection. Also, it is necessary to maintain more than 10oC temperature 

difference between indoor and outdoor. Nardi et al. (2014) conducted an experimental study 

to measure U-value using ITT method based  on the work of Albatici and Tonelli (2010) and 

compared the result with designed U-value and U-value measured using HFM method.  The 

result shows that the U-values measured using HFM method have deviations from 11% to 

29% with design value and the U-values measured with Infrared thermography have 

deviation from 16% to 29% with the designed value which refers that HFM and ITT produce 

similar sort of outcome. Furthermore, regarding the influence of solar radiation on the U-
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value in the same study it is found that U-value measured on a cloudy day has less than 2% 

deviation with HFM method U-value measured in a sunny day has 37% with HFM method.  

In a later comparison with the use of guarded hot box within laboratory environment by 

Nardi et al. (2015), it is found that the deviation between theoretical U-value and the U-value 

measured following HFM method is 10.71%, whereas the deviation between theoretical U-

value and the U-value measured following ITT method ranges from 3% to 7%. Albatici et 

al. (2015) conducted extensive experimental work on 10 different walls based on the theory 

developed in the previous research (Albatici and Tonelli 2010) to further verify the 

sensitivity of different parameters. The result of the study shows that the light walls have 

higher standard deviation (about 35% to 50%) than the heavier wall (about 10% to 18%) and 

therefore it could be concluded that the result’s accuracy depends on mass per unit area of 

the walls. The authors also find that the south facades walls which are more exposed to solar 

irradiation than the north facades have higher dispersion in the estimated U-values. In terms 

of the sensitivity of parameters such as wind speed, internal environment temperature, 

external environment temperature and external wall surface temperature, wind speed has the 

lowest sensitivity, which is 9%; however, low wind speed (less than 0.5 m/s) is preferable 

high wind speed could result in excess convective heat loss. The internal environment 

temperature has maximum sensitivity of 27% much lower compared with the external 

environment temperature sensitivity, which is about 50% for heavy walls and about 350% 

for light walls. Therefore, the authors suggest that the weather condition and the time of 

performing measurement play an important role in the deviation of U-value and overcast sky 

with a temperature difference of above 10oC between indoor and outdoor would minimize 

the deviation. Fokaides and Kalogirou (2011) use Madding’s (2008) equation for thermal 

power calculation in their study measure U-value using ITT method, however, they consider 

the third power of surface temperature instead of mean temperature used by Madding (2008).   
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The result of the study shows the percentage deviation between the theoretical U-value and 

U-value measured using ITT method is in the range of 10% to 20% which is higher than the 

deviation in U-value measured using HFM method. However, the authors argued that ITT 

result might be more accurate as this method considers the radiation effects that are ignored 

by other methods. Dall’O’, Sarto and Panza, (2013) simplified Albatici and Tonelli (2010)’s 

equation for calculating thermal power by neglecting the effect of radiative heat flux with 

the assumption that the outdoor air is in steady temperature with the wall surface and hence 

considers only the convective heat flux. The results of the study show a good agreement with 

the theoretical U-value of solid walls in old buildings’; however, for the modern building 

with well insulated wall the deviation tends to be above 50%. The authors attributed the 

reasons behind such deviation in well insulated wall to the low thermal inertia of the walls 

which leads to a small heat flux difference and argued in favour of ITT method that it 

produces overall closer estimation to the theoretical U-value compared to the HFM result 

which shows around 65% deviation from the theoretical values. Nardi et al. (2016) 

experimentally compared the theories developed by Madding (2008), Fokaides and 

Kalogirou (2011), Dall’O’ et al. (2013) and Albatici et al (2015) within the laboratory 

environment using guarded hot box. The designed or theoretical U-value measured 

according to ISO 6946 and U-value measured using HFM method according to ISO 9869 

are considered as the benchmark for the comparison. The results show that the U-values 

calculated using the equations developed by Madding (2008) and Fokaides and Kalogirou 

(2011) exhibit similar trend under various internal and external temperature differences as 

well as variation in reflected temperatures. It is also found that these two U-values are very 

close the theoretical U-value with around 2% deviation.  On the other hand, the U-value 

calculated using the equations developed by Dall’O’ et al. (2013) and Albatici et al (2015) 

exhibit similarity in trend under different variation of indoor and outdoor temperature. The 
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U-values calculated using the equation developed by Albatici et al (2015) have proximity to 

the U-value calculated using HFM method with around 12% deviation. The U-value 

calculated using equation developed by Dall’O’ et al. (2013) shows the worst performance 

because it is heavily dependent on the convective mode of heat transfer but inside the 

laboratory heat convection is limited due to stagnant air. The similarities in trend in the 

outcomes of the experiments are fairly expected as the equation developed by Fokaides and 

Kalogirou (2011) is based on the work of Madding’s work and the equation developed by 

Dall’O’ et al. (2013) is the modification of the work of Albatici and Tonelli (2010) with 

some assumptions. The difference between indoor and outdoor temperature has a significant 

impact on the result and it is found at 16oC temperature difference the variation among the 

U-values is 30% while at 20oC temperature difference the variation drops to 20%. The 

reflective temperature also has an important influence in the result; as the reflective 

temperature increases, the dispersion in U-values also increases. And this fact points out to 

the preference of overcast weather when the measurement is taken place. Tzifa et al. (2017) 

attempt to see the influence of thermal camera on the U-value estimation with using different 

thermal cameras for the U-value measurement of same wall, where the U-value calculated 

in HFM method and the theoretical U-value are considered as the benchmark for 

comparison. The result shows that change in thermal camera does not influence the U-value 

as long as the camera is accurately calibrated, and all the temperatures are measured with 

same camera. Danielski & Fröling (2015) combined HFM and ITT methods where the 

coefficient of heat convection is estimated from the total heat flux through a small sample 

wall measured using HFM method and the U-value of actual building is estimated using ITT 

method considering coefficient of heat convection obtained from the test on small wall. The 

authors validated the ITT result with the HFM result for both the small and the large wall 

and finds that the deviations between HFM and ITT results range from 4% to 11%; and 
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hence, the authors conclude in favour of ITT method because of its versatility in use for 

measuring large building area as well as the capability to point out imperfect areas on the 

wall and thermal bridges.  

ITT method could be considered as the cheapest and quickest technique for in-situ U-value 

estimation of a building’s wall (Nardi et al., 2018); however, the above literature review 

points out some limitations of it. These are: 

1. To get a reliable U-value, the temperature difference between internal and 

external environment should be more than 10oC and some researchers argue that 

it should be more 15oC. 

2. To avoid refection of solar radiation overcast condition is better for measurement 

and the readings are preferred to be taken before sunrise as walls gain heat due 

to solar exposure during the daytime.  

3. The wind speed is preferred to be less than 0.5 m/s to avoid heat loss due to 

convection. 

4. The deviation in the result varies with thickness of wall. Heavier walls used to 

produce less variation than lighter walls as the mass per unit area is higher in 

heavier walls.   

5. ITT method is not proven to work well under summer condition. 

2.4.5 Other methods of U-value estimation 

Sørensen (2010) developed a heat-loss measuring device called U-value meter that considers 

both conduction and radiation heat loss through the facades. The U-value meter consists of 

a copper plate, which works as a heat absorption sensor, and it is covered with highly 

insulating material to keep it separate from surrounding environment. A small air gap keeps 

the copper plate apart from the test wall surface and in that gap the heat emitted from the 

wall due to radiation as well as convection is trapped. That trapped heat in the gap is 
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conducted in the copper plate resulting in the change of temperature in the copper plate. The 

temperature of copper plate is measured continuously to obtain the energy change and 

thereby from the relative change of energy the U-value is calculated. A reflective foil behind 

the copper plate was used to reflect any radiation escaping from the copper plate. For data 

acquisition, the meter needs to be taken inside and outside the building. One of the 

limitations is that it requires some time to acclimatize. The other limitations are the effects 

of wind speed, solar radiation in the facades and the moisture content in the wall material. 

The author presented some example of data acquired by the U-value meter in Sørensen 

(2013) and the data was collected over three days from Energy Technological Development 

and Demonstration Program (EUDP) in typical residential houses built between 1960 and 

1970 in Denmark. The result shows that the average U-value has around 2.5% deviation 

from the theoretical U-value. It is also found from the results that the U-value meter is 

suitable for measuring light building materials and heavy walls do not show good results due 

to the unsteady nature of heat transfer process in the heavy walls. A further development of 

HFM method is made by  GreentTag AG (GreenTEG AG, 2019) with a software containing 

a comprehensive building catalogue that facilitates to estimate U-value in about an hour; 

however, it is still required to satisfy other conditions of HFM method. Another U-value 

measurement device is developed by TESTO that is able to determine the in-situ U-value 

from indoor temperature, outdoor temperature and wall surface temperature on three points 

on a wall using a dedicated software from the company (TESTO, no date). This method 

requires over 15oC temperature difference between indoor and outdoor environments, and it 

is recommended to conduct measurement for one day.  

2.5 Artificial Neural Network (ANN) 

Development of Artificial Neural Network (ANN) is a milestone in the history of artificial 

intelligence. In 1943 McCulloch and Pitts first develop the idea of initial neural network 
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which was extended by Hebb and Rosenblatt (Lippmann, 1987). ANN is a mathematical 

model used for information processing which mimics the work process of the biological 

nervous system. This system is very effective in understanding nonlinear behaviour between 

and a set of inputs and outputs.  To solve a problem a neural network is initially trained with 

a training data set where the known outputs are set as the targets for the ANN to attain from 

the features of input data set. The nonlinearity between the input and the output values are 

learned by the network and these learned features are used later to estimate the unknown 

output from the similar input data set. As like human brain, the network in ANN is composed 

of several neurons arranged in different layers. A simplest ANN contains at least three layers 

namely: input layer, hidden layer and output layer; however, in complex ANNs the hidden 

layer portion could be composed of multiple layers. The ANNs with multiple hidden layers 

are called Deep Learning Neural Network. Input layer is the first layer which receives inputs, 

and the output layer is the final layer that delivers the outputs. The hidden layer(s) are mainly 

responsible for learning the characteristics of input data and the relationship between inputs 

and outputs. The neurons in a layer parallelly process data and pass the processed data to the 

next layer. Usually, each neuron of one layer is connected with every neuron of the next 

layer except the first and the final layers. Inside a neuron, there are three functional 

transformations that occur. At first, the inputs are multiplied by a set of weights. The number 

of weights is equal to the number of inputs. Then a bias value is added with the weighted 

inputs. At that stage, the inputs are called net input and they are ready to be fed through a 

function called the transfer function. Finally, the net inputs are processed using a transfer 

function which generates the output of the network. Mathematically, the output vector Y of 

a neuron can be expressed as function of the input vector X, the weight vector W and the bias 

vector B as shown in equation 2.9. 

𝑌 = 𝑓(𝑊𝑋 + 𝐵)                                              (2.9)  
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The input data for ANN is organised in matrix form, and it can be categorised into two types, 

namely concurrent input, and sequential input. If all input data are fed together into a 

network, the input type is called concurrent input, and if input data are fed into the network 

in a particular sequence, then the input type is called sequential input. Concurrent input is 

used in static networks and sequential input is used in dynamic networks. However, there 

could be situations where the multiple sets of concurrent data are sequentially fed into the 

network. Similarly, output data in the output layer is delivered in matrix form. In general, 

the input and output layers contain the same number of neurons as the number data in the 

input and output matrix. The training process of ANN is an iterative process where each 

iteration is called an epoch. At the beginning of the training process an arbitrary value of 

weight and bias is assigned in each neuron. The weights and biases are updated after each 

iteration based on the gradient between the targets and the outputs generated in that iteration 

at an incremental rate. This incremental rate is called learning rate and the process of learning 

is known as back propagation technique. Generally, the iteration continues until the 

minimum gradient is reached, but there is provision to limit the number of epochs with a 

predefined value. Some networks, such as  recurrent network, have provision of using 

feedback data with a specific time delay, while others do not use feedback data, and are 

usually called feedforward networks (Kuan, 2008). Feedforward neural network is suitable 

for regression classification and pattern recognition tasks (Gori, 2018). Recurrent neural 

network is suitable for sequential data analysis such as handwriting and speech recognition, 

machine translation and so on (Witten et al., 2017). Dynamically driven recurrent neural 

network can be successfully applied to time series problems; however, there is a limitation 

of this method in terms of vanishing gradients i.e. the gradient become so small that it doesn’t 

effectively change the weights and biases inside a neuron (Haykin, 2000). To overcome this 

limitation, a special type of recurrent neural network is developed by Hochreiter and 
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Schmidhuber (1997) which is called Long Short Term Memory (LSTM) network. LSTM 

network is provided with memory blocks which process information through different gates 

such as forget gate, peephole, input gate and output gate; and these gates facilitate the 

memory blocks to either remember or forget information selectively which allow LSTM 

network to overcome vanishing gradient problem (Witten et al., 2017). Therefore, the LSTM 

network architecture is slightly different than other recurrent neural networks and it contains 

LSTM cells in the hidden layer instead of neurons.  

ANN can predict the complex and nonlinear relationship among independent and dependent 

variables without involving formal statistical models because the neurons inside the ANN 

learn these features through the iterative training process; however, there is a risk of 

overfitting (Tu, 1996). To minimise overfitting, a simple way is to retrain the network for 

several times. As the network’s initial weights and biases differ every time, the mean value 

of the network performance can give a generalised solution (Hudson Beale, Hagan and 

Demuth, 2017). The number of neurons on hidden layer(s) depend on the application and 

the desired performance level of the whole network. In generic sense, it could be speculated 

that more neurons in a layer will produce better output however, too many neurons may lead 

to the overfitting of output values. Therefore, it is necessary find out the optimum number 

of neurons required to perform a task smoothly and accurately. Unfortunately, there is no 

general rule for selecting optimum number of neurons. Rafiq, Bugmann and Easterbrook, 

(2001) suggested that the number of neurons sufficient for a particular network can be 

determined on the basis of root mean square (RMS) error and number of iterations required 

to reach at the desired acceptable error limit. The work of Yang, Yeo and Kim (2003) shows 

that for n neurons in the input layer, the least RMS value is obtained with 2n neurons in the 

hidden layer. However, Yang, Rivard and Zmeureanu, (2005) found the minimum RMS with 

2n+1 neuron in the hidden layer. Sheela and Deepa (2013) reported 10 different approaches 
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of determining optimum number of neurons; however, the authors could not finalise a single 

approach to be applicable in a generic level. Therefore, a sensitivity analysis before applying 

ANN would be useful to determine the optimum architecture. A network can be trained in 

two ways: incremental training and batch training. In incremental training, the weights and 

bias are updated at the rate of learning rate after every single input is fed into the network 

and generally it is used in recurrent neural networks. In batch training mode the weights and 

bias of the neurons are updated after all the input data are fed into the network. This 

technique is usually applied for feed forward neural networks. There are two types of 

learning processes, namely, unsupervised learning and supervised learning (Dalton and 

Deshmane, 1991). In the first process, the network constructs clusters of data with coherent 

statistical properties based on the network rules from the input training data sets and this 

knowledge is used to evaluate unknown input data; whereas in the second process, the 

network maps the relationship between input and target data sets, which is used to estimate 

output from an unknown input (Amin et al., 2008). Among these two approaches, supervised 

approach is good for predicting energy consumption in buildings (Zhao et al., 2019). ANN 

has been successfully used in many fields of study. In a review regarding the application of 

ANN, Abiodun et al. (2018) made a comprehensive list of ANN’s use in different fields of 

study including system control, optimisation, robotics, manufacturing, forecasting, signal 

processing and so on. In the following section some applications of ANN regarding 

buildings’ thermal and energy performances are reviewed from different literature.  

 2.5.1 Review of ANN’s application 

 Ben-Nakhi and Mahmoud (2004) assess the feasibility of general regression neural network 

for predicting cooling load of three different office buildings with different occupancy type 

and orientation in Kuwait. The author considered hourly external temperature of previous 

day as input to the ANN and the output is the predicted hourly cooling load for the next day. 
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The authors use a building energy simulation software called ESP-r to validate the result and 

it shows a very good agreement with ESP-r estimation with a coefficient of determinant (R2 

value) around 0.95. The authors also point out the advantage of ANN over ESP-r as ANN 

requires far less inputs, such as weather data, compare to the ESP-r software. Neto and 

Fiorelli (2008) compared the performance of feedforward ANN with the energy simulation 

software, EnergyPlus, to predict the daily energy consumption of a building. The authors 

considered two different ANN models with dry bulb temperature as the input data for the 

first model and dry bulb temperature, relative humidity, global solar radiation and diffused 

solar radiation as the input of the second model. In both cases, the output is daily energy 

consumption. The results show that ANN models achieve around 90% mean accuracy when 

compared to the actual consumption data and EnergyPlus models achieve around 87% 

accuracy. Moreover, both the models of ANN produce very close result that support the 

findings of Ben-Nakhi and Mahmoud (2004) regarding the capability of ANN in terms of 

producing accurate prediction with less inputs. Naji et al. (2016) also found similar 

agreement in the performance ANN compare to EnergyPlus result. Martellotta et al. (2017) 

combine ANN with EnergyPlus to predict energy consumption of any given house 

combining weather data and monitoring data from low-cost sensors where the house is 

modelled using EnergyPlus to generate training data and the ANN estimation is validated 

using energy bills. The result shows that the prediction accuracy of ANN is above 95% in 

92% cases. Similar approach of combining ANN with the software  called TRNSYS also 

shows very good result in favour of ANN with R-square value of more than 0.92 (Wang, 

Lee and Yuen, 2018). Yokoyama, Wakui and Satake (2009) obtained similar performance 

of ANN as Neto and Fiorelli (2008), where the hourly cooling energy demand of a 

commercial building has been predicted with 90% accuracy using a simple feedforward 

neural network containing single hidden layer. A feedforward neural network with similar 
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architecture (i.e., with single hidden layer) has been used to predict heating demand in 

Turkish houses where the result shows the ANN achieves very high accuracy ranging from 

94.83% to 98.51% (Ekici and Aksoy, 2009). Biswas, Robinson and Fumo (2016) showed 

that ANN is capable of predicting overall energy demand of a residential house with 

significant accuracy (R-square value between 0.87 to 0.91).  Zhang et al. (2015) attempted 

to project the thermal performance of a pre-retrofitted office building to estimate the energy 

savings due to retrofitting using a similar ANN architecture used by Ben-Nakhi and 

Mahmoud (2004). The authors compared three other regression models namely: change-

point regression model, Gaussian process regression model (GPM) and Gaussian Mixture 

Regression Model (GMM) with ANN. The result shows that significant accuracy is attained 

by all models. Although ANN’s performance was slightly lower (2.35%) than the other three 

models, the accuracy of it is found to be within the acceptable limit of current industry 

practice and hence the author argued in favour of ANN as it is easier and simpler to construct 

ANN model than other models which offset the reduction of accuracy compared to other 

methods. Deb et al. (2015) compared the performance of feedforward neural network and 

Adaptive Neuro Fuzzy Interface System (ANFIS) to predict cooling load consumption in 

three buildings in Singapore and it found both methods showed very high performance with 

R-square value of 0.98 and 0.97 for ANN and ANFIS respectively. The extended study by 

the same authors shows that ANN achieves more than 97% accuracy and it is possible to 

successfully predict the cooling load for next 21 days utilizing five days previous data as 

input to the ANN (Deb et al., 2016). Platon, Dehkordi and Martel (2015) compared the 

performance of ANN and Case Base Reasoning (CBR) for hourly electricity demand of up 

to 6 hours future span and it is found from the result that the ANN (7% error) is far better 

than CBR (13% error). The research of  Chae et al. (2016) shows that feedforward neutral 

network is capable of predicting electricity loads for 15 minutes future time span with an 
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accuracy of 90%. Farzana et al. (2014) use a recurrent neural network called Non-linear 

Auto Regressive neural network (NAR) to predict annual household energy consumption as 

well as annual household electricity consumption and compared the performance of neural 

network with the performance of different statistical model. The authors found that ANN 

has the best prediction accuracy with mean relative percentage error of 9% in both cases. 

Another use of recurrent neural network is found where a Nonlinear Auto Regressive neural 

network with exogenous input (NARX) is used to operate the control system of air handling 

units in an airport and the application of ANN reduces the energy consumption up to 28% a 

day and around 10% a month (Huang, Chen and Hu, 2015). Yildiz, Bilbao and Sproul (2017) 

conducted a comparative performance study among feedforward neural network, NARX, 

regression tree and Support Vector Machine (SVM) to predict hourly electricity demand. 

The result of the study shows that feedforward neural network achieves the best performance 

on daily peak load forecast and NARX neural network shows the best performance for 

hourly load forecast for one day in advance. Kim and Cho (2019) showed the successful use 

of LSTM neural network for predicting the household electricity consumption. Zheng, Chen 

and Luo (2019) showed that the use of LSTM neural network for predicting energy 

consumption by domestic electrical appliances could result in over 90% accuracy in some 

cases. Other than feedforward and recurrent models of ANN it also found some customized 

ensembled network capable of predicting electricity consumption with significant accuracy 

in buildings located in USA and China (Li et al., 2018; Wang, Wang and Srinivasan, 2018). 

ANN has been successfully used in modelling heat transfer in supercritical fluids (Chang et 

al., 2018) and estimating the thermal diffusivity coefficient of thermal insulating materials 

(Chudzik, 2012). The relationship between input variables and heating consumption is very 

complex and therefore, to estimate buildings’ energy consumption, which is essential for 

energy supply strategy and capital investments, energy industry can benefit from using 
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neural networks’ capability for this type of predictions (Jovanović, Sretenović and Živković, 

2015).  

2.6 Summary  

The literature review on wall insulation shows that the wall insulation has a vital role on the 

energy performance of a building however, the effectiveness of the wall insulation depends 

on the type of insulation used, local climate and the geographical location of the building. 

Infrared thermography is an effective tool to rapidly evaluate the thermal performance of a 

building in a noncontact way which is further established through the review of literature on 

infrared thermography in this chapter. From literature review on the different approaches of 

U-value measurement, it is found that significant efforts have been made to estimate U-value 

under both laboratory condition and in-situ. There are mainly two methods found for in-situ 

U-value measurement. These are Heat flux meter (HFM) method governed by ISO 9869 and 

Infrared Thermovision Technique (ITT). Apart from that Sørensen (2010) developed U-

value meter. All these methods have some limitations which is discussed at the end of 

relevant sections. The review on ANN shows that ANN is capable to map complex and 

nonlinear relationship among different parameters which is utilised to simulate the energy 

performance of buildings by many researchers. It is also found that ANN archives significant 

accuracy compared to the existing building simulation software in predicting the energy 

performance of buildings. However, there are limited research found in relation to 

integrating infrared thermography with neural networks. Therefore, there is a scope to 

develop a novel approach by combining thermography and ANN to overcome the limitation 

of existing U-value measurement methods.   
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Chapter 3: Methodology 

3.1 Introduction 

From previous chapter it is found that wall insulation has a positive impact on energy savings 

in buildings; however, the performance is not consistent. It is also revealed from the 

literature review that the existing U-value estimation methods have some limitations such as 

dependency on seasons, extended monitoring periods and so on. Moreover, there is a 

research gap that exists in relation to integrating thermography and Artificial intelligence for 

evaluating thermal performance of buildings as well estimation of U-value of buildings’ 

wall. Artificial Intelligence based prediction requires less physical information about the 

building which in turns makes it a faster and more economical process than conventional 

methods. A review on Artificial Intelligence based buildings’ energy consumption 

forecasting reports 25 case where ANN is used for building energy prediction which is 41% 

of the total study and hence ANN could be considered as the most widely used building 

energy prediction method (Wang and Srinivasan, 2017). Moreover,  Deb et al. (2017) state 

that the ANN is more suitable in buildings’ energy consumption prediction than 

conventional statistical methods because it has the capability of mapping complex 

relationship between inputs and outputs and it does not require any prior knowledge of input 

output relationship. In the current research the effect of wall insulation in the change in 

energy consumption due to working from home is mathematically modelled as well as the 

feasibility of integrating infrared thermography with ANN is investigated in relation to the 

development a novel evaluation tool to predict heat losses through buildings’ wall and the 

development of a novel product to estimate U-value of buildings’ wall. Considering the key 

limitations of the existing U-value estimation methods, the feasibility of the application of a 

point heat to create the necessary temperature gradient is also investigated. The following 
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two sections describe the detailed methodology to achieve the aim and objectives and the 

potential contribution to knowledge.  

3.2 Methodology of the Research 

The aim and objectives of the research is discussed in section 1.3 and 1.4 and the 

methodology adopted to achieve the objectives are discussed in this section. The 

methodology adopted for this research consists of three levels which is schematically 

presented in Figure 3.1. The first level includes the review of literature and evaluation of the 

influence of wall insulation in the household energy demand due to the Covid-19 pandemic 

situation where people are required to work from home.  

 

Figure 3.1: Schematic representation of the research methodology adopted for this PhD 

thesis. 

The second level includes the development of a tool to predict heat loss through buildings’ 

wall combining infrared thermography and ANN. The detailed steps of this level are shown 
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in Figure 3.2. The third and final level involves the development of a novel U-value 

estimation kit by combining infrared thermography and ANN with the application of a point 

heat and conduct experiments with this kit for the estimation of in-situ U-value in real 

buildings. The schematic arrangement of the U-value kit is shown in Figure 3.4 and the steps 

to conduct the experimental works are detailed Figure 3.5.   

3.2.1 Literature Review 

The literature review starts with review of wall insulation and its impact on heating and 

cooling energy savings, as wall insulation significantly lowers the U-value of buildings’ wall 

as well as heat flow through the walls. Next, the basic principle of infrared thermography is 

reviewed with some of the uses of it in the evaluation of buildings’ thermal performances. 

Afterwards detailed reviews on existing U-value measurements methods are conducted 

including the basic theory behind those methods and the common equipment used for those. 

The limitations of existing U-value measurement methods are summarised from these 

reviews so that these can be considered for the design and development of the novel U-value 

estimation kit. Finally, the basic principle of ANN, its application in the evaluation of 

building’s energy performance and the performance of ANN compared to other energy 

simulation software are reviewed.      

3.2.2 Role of Wall insulation in Energy consumption due to Covid-19 Situation  

Wall insulation in buildings contributes to reduce the household heating energy consumption 

during winter by restricting heat loss through walls. In a building, heat loss through the walls 

can be estimated from the product of the U-value of the wall, the wall surface area exposed 

to the external environment and the temperature difference between indoor and outdoor 

environment as presented in equation 3.1 (Moran et al., 2003). 

𝑄 = 𝑈𝐴(𝑇𝑖𝑛 − 𝑇𝑜𝑢𝑡)                                              (3.1) 
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Here Q refers to the heat loss through a wall for an hour, U refers to the U-value of the wall, 

A is the surface area of the wall exposed to the external environment and Tin and Tout are the 

indoor and outdoor temperatures, respectively. Assuming a suitable indoor temperature, for 

instance 21oC for an occupied house and 15oC for an unoccupied house, the difference in 

heat loss Eh between an occupied and an unoccupied house can be estimated using equation 

3.2. 

𝐸ℎ = ∑(𝑄21 − 𝑄15) × 10−3   𝑘𝑊ℎ                    (3.2)  

     

The range of summation can be selected based on the period of interest. For example, in 

current research Eh has been calculated by summing up the difference in heat loss between 

9.00 to 17.00 hours for the weekdays in a month. Assuming the heat loss through walls is 

equal to the heating demand, the heating energy bills can be estimated by multiplying Eh 

with the unit price of energy. Similarly, energy demand due to the use of electrical appliances 

Ee can be estimated from equation 3.3 and respective energy bills can be estimated by 

multiplying Ee with the unit price of energy. 

𝐸𝑒 = 𝑃𝑒 × 𝐻 × 𝐷 × 10−3  𝑘𝑊ℎ                           (3.3) 

 
 

Here, Pe is the power required for an electric appliance, H is the hours of operation for an 

electrical appliance per day and D is the number of days the appliance is in use in a month. 

The increase in household energy demand for different dwelling types in England with 

different U-values has been evaluated and compared considering that the Covid-19 pandemic 

situation would be forcing people to work from home during next winter. Also, the increase 

in carbon emission due the production of these excess energy is estimated by multiplying Eh 

and Ee with the unit rate of CO2 emission for the respective energy productions. The 

extended scenario of change in household budget and net carbon emission due to the 
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reduction in travelling is analyzed considering the drop in car milage, fuel cost and CO2 

emission rate per mile. 

3.2.3 Development of heat loss prediction tool  

Heat loss can be predicted by combining infrared thermography  and ANN with reasonable 

accuracy in short period of time (Al-Habaibeh, Sen and Chilton, 2020).  The steps involved 

in the development of heat loss prediction tool by combining infrared thermography and 

ANN is presented in Figure 3.2.  

  

 

Figure 3.2: Schematic representation of the research methodology adopted for this PhD 

thesis. 

To calculate the heat loss through per square meter of a building’s wall, the thermal power 

approach developed by Albatici and Tonelli (2010) is considered which is discussed in 

Chapter 2 and presented using equation 2.8.  

Step 1: Extract wall temperature from Infrared Image

Step 2: Calculate hourly and monthly heat losses using  historical 
temperature and wind speed data for N years.

Step 3: Split the calculated heat losses into training data set [ 1 to n 
years] and comparison data set [(n+1) to N years].
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𝑃 = 5.67𝜀𝑡𝑜𝑡 ((
𝑇𝑠

100
)

4

−  (
𝑇𝑒𝑥𝑡

100
)

4
) + 3.8054𝜈(𝑇𝑠 −  𝑇𝑒𝑥𝑡)             (2.8) 

In equation 2.8, which is presented above again, the outdoor temperature Text and the wind 

speed ν are extracted from the weather station observations database of the UK Met Office, 

(2019) on hourly basis. The external wall surface temperature Ts is obtained from an infrared 

image captured using a high-resolution infrared camera. Assuming the indoor temperature 

to be constant, the external wall surface temperature will vary linearly with the outdoor 

temperature. If we consider the indoor temperature in a building is constantly maintained at 

20oC throughout the year, the external wall surface temperature will be the same when the 

temperature in outdoor environment reaches at 20oC. Considering the external wall surface 

temperature with respect to the respective outdoor temperature at the time when the infrared 

image is captured as the first point and 20oC as the second point, a linear curve can be 

generated for any wall type as shown in Figure 3.3. The external wall surface temperatures 

required for the calculation of heat loss using equation 2.8 are extracted from this curve at 

different outdoor temperatures.  

 

Figure 3.3: Relationship between outdoor temperature and external wall temperature 
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The emissivity, 𝜀𝑡𝑜𝑡, for plastered brick wall is considered as 0.93 (CIBSE, 2006).  If 1 W/m2 

heat is radiated for one hour, it will be equivalent to 1 Wh/m2 of heat energy transfer. 

Therefore, the value of P for each hour, calculated from equation 2.8, can be considered as 

the hourly heating energy loss through per square meter of a building’s wall.  The average 

heat loss in any given hour i in a given month j through per square meter of a wall, 𝑃𝑖𝑗, can 

be expressed as: 

𝑃𝑖𝑗 =
1

𝑛
∑ 𝑃𝑖

𝐷
𝑛=1                                                   (3.4) 

Where, i= 00:00 to 23.00; and j = January to December. 

Here, D represents the number of days in jth month of a given year and Pi represent the heat 

loss at ith hour of each day in jth month obtained using equation 2.8. Similarly, the total heat 

loss in each calendar month in a year is the summation of hourly heat losses in that month 

and can be expressed as, 

𝑃𝑚 = ∑ ∑ 𝑃24
1

𝐷
1                                                   (3.5) 

Here Pm is the total heat loss through a building’s wall in a calendar month, D is the number 

of days in that month and P is the hourly heat loss obtained using equation 2.8. The hourly 

average heat loss and the monthly total heat loss for N years are calculated using the 

historical local weather data and these are split into training and test data sets respectively 

for the neural network analysis. The formation of training and test data set are made with 

different combinations starting from 2 years to N-1 years. For example, if the training data 

set is composed of 2 years’ data, the test data set is composed of N-2 years’ data; if the 

training data set contains 3 years’ data, the test data set contains N-3 years’ data and so on. 

The formation of different combinations of training and test data sets for ANN analysis 

facilitates to answer the fourth research question regarding the monitoring period required 

to evaluate the buildings’ heat loss characteristics. A mathematical model in relation to that 

is also develop which is presented in chapter 5. The training data set is used to train the 
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neural network and the test data set is used to test the performance of neural network. The 

performance evaluation is conducted considering percentage errors. The error and 

percentage errors are calculated using equation 3.6 and 3.7, respectively. 

𝑒 = ∑ (𝑌𝑖 − 𝑃𝑖)
𝑛
𝑖=1                                                              (3.6) 

𝑒𝑝 =
|𝑒|

∑ 𝑃𝑖
𝑛
𝑖=1

 × 100                                                             (3.7) 

Here e is error, ep is percentage error (PE), Y is ANN predicted heat loss and P is calculated 

heat loss from equation 3.4 for hourly averaged heat loss and the same from equation 3.5 for 

monthly total heat loss, respectively. The value of n is 288 (24 × 12) in case of hourly 

average heat loss and 12 in case of monthly total heat loss. A sensitivity analysis is done at 

the beginning to look at the best ANN architecture in terms of number of layers and the 

number of neurons in each layer for both hourly average and monthly total heat loss 

predictions. Two case studies have been conducted applying this methodology to predict 

heat loss in an insulated building and an uninsulated building in England which are presented 

in Chapter 5.  

3.2.4 Development of U-value Estimation Kit 

The proposed U-value kit monitors a test wall using infrared camera with the application of 

a point heat source as presented in Figure 3.4. During the application of point heat, the heat 

transfer through an uninsulated wall with high U-value will be higher than the heat transfer 

through an externally insulated wall with low U-value. As a result, the heat dispersion on 

the internal surface of the externally insulated test wall will be higher than that of the 

uninsulated test wall. The infrared images, captured from the internal side of a test wall at a 

constant interval, could provide information about the heat dispersion and those can be 

related to the prediction of U-value of the test wall. However, the visual inspection may not 

provide reasonable information always. Therefore, a suitable thermal profile generated from 
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the series of infrared images can be analysed with ANN to estimate U-value. The detailed 

development process of the U-value kit is presented in Chapter 6. 

 

 

Figure 3.4: Schematic diagram of the experimental setup. 

The steps followed for the experimental work are shown in Figure 3.5. The experimental 

works are conducted in two phases. In the first phase the experiments are conducted at 

laboratory on small scale test walls with different U-values. These data are used to train the 

neural network. The trained neural network is then used to analyse the infrared data obtained 

from the experiments conducted in real buildings’ wall for the estimation of U-value of those 

walls. The performance of neural network is evaluated in terms of absolute percentage 

deviation as presented in equation 3.8. 

 𝑒𝑑 =  
|𝑈𝑝−𝑈𝑐|

𝑈𝑐
× 100%                                 (3.8) 
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Here ed is the absolute percentage deviation, Up is the ANN predicted U-value and Uc is the 

calculated U-value determined using equation 2.3. The results of the experimental works 

with detailed discussion are presented in Chapter 7. 

 

Figure 3.5: Schematic representation of the experimental work with the proposed U-value 

kit. 

3.3 Potential Contribution to the Knowledge 

The potential contribution to the knowledge is listed below: 

1. A mathematical model to evaluate the influence of wall insulation on the change in 

household energy demand and related carbon emissions during winter where people 

are required to work from home due to Covid-19 pandemic situation. 

Conduct experiments on wall samples by applying point heat in the internal side of 

the walls in laboratory. 

Monitor the thermal response of the wall using infrared camera from internal side 

for 60 minutes.

Generate thermal profiles from the infrared images. 

Train ANN with the thermal profiles to learn the relationship between the thermal 

profiles and the theoretical U-value.  

Conduct experiments on a real building’s wall by applying point heat in the internal 

side of the wall. 

Monitor the thermal response of the wall using infrared camera from internal side 

for 60  minutes.

Generate thermal profiles from the infrared images of real building’s wall.

Use the trained ANN to estimate the theoretical U-value of the real building’s wall. 

Evaluate the performance of  ANN against the calculated theoretical U-value of the 

real building’s wall.



54 

 

2. A mathematical model to explain the monitoring period required for the successful 

prediction of heat loss through a building’s wall.   

3. Development of a tool to predict heat loss through a building’s wall by combining 

infrared thermography and ANN. 

4. Development of a novel U-value estimation kit combining infrared thermography 

and ANN with the application of a point heat. 

5. Evaluation of the performance of the novel U-value estimation kit.  

3.4 Summary  

This chapter presents the detailed methodology developed for the current PhD research 

work. The research aims to develop novel techniques for the assessment of the benefits of 

thermal insulation in buildings with the help of mathematical models, integration of 

thermography and ANN and development of a product that can estimate U-value of 

buildings’ wall by combining infrared thermography, ANN alongside the application of a 

point heat source. The methodology developed for the research contains three levels. The 

first level of the methodology includes a comprehensive literature review as well as 

evaluation of the change in household energy demand as a result of people working from 

home due to Covid-19 pandemic situation, its impact on household expenses and net carbon 

emission related to this. The second level explains the methodology of development of a 

prediction tool for heat loss through buildings’ wall by combining infrared thermography 

and neural network. In the third and final level, the development of the novel U-value 

estimation kit using infrared thermography and ANN as well as the steps to carry out the 

experimental works are presented. 
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Chapter 4: The Role of Wall Insulation on Household Energy 

demand, Carbon Emission and Household Budget in 

English Dwellings due to Covid-19 Lock Down Situation 

During Winter  

4.1 Introduction 

The rapid spread of novel corona virus disease is forcing Governments in many countries to 

impose lock down restrictions at various levels, and as a result, majority of people are in a 

situation to work from home to some extent. In cold countries, the heating energy demand 

rises significantly during winter as space and water heating is responsible for very high 

energy consumption. Considering a lock down situation that confines people to work from 

home during winter would further increase the heating energy demand and result in excess 

carbon emission due to consumption of these excess energy. The literature review shows 

that wall insulation significantly reduces heating energy demand by limiting heat loss 

through buildings’ wall. Therefore, people living in a well insulted house are expected to see 

minimum rise in energy demand and energy bills compared to those who are living in a 

poorly insulated house. However, the reduction in travelling to work would compensate the 

expenditure on energy bills as well as net carbon emission. As the new working pattern is 

still in its early stage, limited research has been conducted on the effect of household budget 

for energy consumption and carbon emission due to this. In this chapter, the change in 

household energy demand during winter in different English dwelling types with different 

U-values of wall is presented. Following that, the effect on household budget and net carbon 

emission due to the new work pattern has been analysed. The methodology adopted for this 

study is presented in Chapter 3. However, the assumptions and the equations associated with 
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the study are presented in next two sections. After that, the result and discussion are 

presented with a brief conclusion. 

 4 .2 Assumptions and reference values 

To estimate the heat loss though a building’s wall for the winter of 2020-21, the outdoor 

ambient temperature distribution is assumed to be same as 2019. The next assumption is that 

the indoor temperature is constantly maintained at 15oC when the house is unoccupied and 

at 21oC when the occupants are working from home. It is also assumed that all the buildings 

are centrally heated with gas fired boiler and heat loss through walls represent the heating 

demand. In this study, only the reference U-values of buildings’ walls presented in Table 4.1 

from BRE (2016) are considered.  

Table 4.1: Reference U-values of buildings’ wall BRE (2016). 

Wall Types U-value (W/m2K) 

Solid wall in very old buildings (pre 1900) 2.30 

Solid wall in old buildings (pre 1976) 1.70 

Unfilled cavity wall  1.50 

Solid wall with 100mm thick external insulation  0.32 

Filled Cavity wall with 100 mm thick external insulation. 0.25 

 

There are some reference values considered to facilitate the estimation process such as, unit 

prices of energy, CO2 emission rate due to the production and consumption of energy, 

electricity consumption by some electrical appliances and fuel cost for a car. These 

references and their relevant sources are listed in Table 4.2. One of the key parameters that 

influence the overall heat loss through walls in a dwelling is the wall surface area exposed 

to the outdoor environment. The average wall surface area exposed to the external 

environment for different dwelling types and the number of uninsulated solid wall dwellings 

in England are collected from the study conducted by Loucari et al. (2016). 
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Table 4.2: The reference values used in for estimation and their sources.  

Sl. 

no 

Assumptions Source 

1. The price of gas is 3.9 pence per kWh.  United Kingdom natural 

gas prices (no date). 

2. The price of electricity is 14.37 pence per kWh. UK Power (no date). 

3. The CO2 emission due to electricity consumption is 

0.277 kg/kWh. 

Department for Business 

Energy & Industrial 

Strategy (2019). 

4. The CO2 emission due to domestic space heating by 

burning natural gas is 0.203 kg/kWh. 

Campbell (2020) 

5. Fuel cost per mile for petrol is 12 pence and for 

diesel is 10 pence considering 1400 cc to 2000 cc 

engine. 

HM Revenue & Custom 

(2020). 

6. Average CO2 emission by a newly registered car in 

the UK is 121.3 grams/ km which is equivalent to 

0.195 kg/mile. 

Department for Transport 

Statistics (2015). 

7. Electricity consumed by a TV (42-inch LCD) is 120 

watts. 

Energy Use Calculator 

(2020) 

8. Electricity consumption for a desktop computer is 

150 watts. 

Smarter Business (2019) 

9. Electricity consumption for a laptop is 50 watts. Smarter Business (2019) 

10. Time required to boil 1litre water from room 

temperature with a 2-kW electric kettle is about 2 

minutes and 45 seconds or 0.046 hours. 

Shearman (no date) 

 

4.3 Equation used for the estimation of energy demand 

Equation 3.1, 3.2 and 3.3 from the methodology chapter are used to estimate the energy 

demands which are presented below: 

𝑄 = 𝑈𝐴(𝑇𝑖𝑛 − 𝑇𝑜𝑢𝑡)                                              (3.1) 
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𝐸ℎ = ∑(𝑄21 − 𝑄15) × 10−3   𝑘𝑊ℎ                     (3.2)  

𝐸𝑒 = 𝑃𝑒 × 𝐻 × 𝐷 × 10−3  𝑘𝑊ℎ                           (3.3) 

Equation 3.1 is used to estimate the heat loss a buildings wall. The type of the buildings 

considered are end terraced, mid terrace, semi-detached, detached and bungalow with the 

wall surface area of 138 m2, 103 m2, 159 m2, 257 m2 and 152 m2 exposed to the outdoor 

environment, respectively Loucari et al. (2016). The U-values considered in equation 3.1 are 

listed in Table 4.1. Equation 3.2 is used to work out the difference in heat loss if the indoor 

temperature of a building is maintained at 21oC and 15oC, respectively. Equation 3.3 is used 

to estimate the electrical power consumption due to the use of appliances such as TV, 

desktop, laptop, electric kettle and lighting a building. The reference values for the power 

consumption by those appliances are listed in Table 4.2. The average number of weekdays 

between 1st October and 31st March has been taken into consideration for the estimation of 

monthly average energy demand with 8 hours of working time each day between 9.00 to 

17.00.    

4.4 Effects on household energy demand and budget: 

The increase in heating energy demand in different dwelling types with different U-values 

are presented in Table 4.3. It is noticed from Table 4.3 that the solid wall dwellings with 

high U-values of wall tend to consume high energy and the externally insulated dwellings 

with low U-values of wall consume less energy for space heating. A high U-value of wall 

represents poor wall insulation that results in high heat loss through the wall and therefore, 

responsible for the consumption of high heating energy. On the other hand, the dwellings 

with low U-values consume far less heating energy as the low U-value of a building’s wall 

represents very good wall insulation.  
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Table 4.3: Increase in heating energy (gas) demand and energy bill per household because 

of working from home. 

House Type 
End 

terrace 

Mid 

terrace 

Semi 

detached 
Detached Bungalow 

Surface area exposed to external 

environment (m2)  
138 103 159 257 152 

Solid wall 

(U-value = 

2.3 

W/m²K) 

Average increase 

in energy 

demand 

(kWh/month) 

415.47 310.10 478.70 773.74 457.62 

Average increase 

in energy bill 

(£/month) 

£16.20 £12.09 £18.67 £30.18 £17.85 

Solid wall 

(U-value = 

1.7 

W/m²K) 

Average increase 

in energy 

demand 

(kWh/month) 

307.06 229.19 353.79 571.85 338.22 

Average increase 

in energy bill 

(£/month) 

£11.98 £8.94 £13.80 £22.30 £13.19 

Unfilled 

Cavity wall 

(U-value = 

1.5 

W/m²K) 

Average increase 

in energy 

demand 

(kWh/month) 

270.94 202.22 312.17 504.57 298.43 

Average increase 

in energy bill 

(£/month) 

£10.57 £7.89 £12.17 £19.68 £11.64 

Solid wall 

with 

external 

insulation 

of 100 mm 

(U-value = 

0.32 

W/m²K) 

Average increase 

in energy 

demand 

(kWh/month) 

57.80 43.14 66.60 107.64 63.66 

Average increase 

in energy bill 

(£/month) 

£2.25 £1.68 £2.60 £4.20 £2.48 

Filled 

Cavity wall 

with 100 

mm of 

external 

insulation 

(U-value = 

0.25 

W/m²K) 

Average increase 

in energy 

demand 

(kWh/month) 

45.16 33.70 52.03 84.10 49.74 

Average increase 

in energy bill 

(£/month) 

£1.76 £1.31 £2.03 £3.28 £1.94 

 



60 

 

Among the dwelling types, detached houses tend to consume more heating energy compared 

to the other dwelling types of same U-value, because a detached house is exposed to the 

outdoor environment from all four sides. On the other hand, the mid terrace houses of all U-

values are lest energy consuming dwelling types because they are exposed to the outdoor 

environment from two sides only. Looking at the energy bills it is found that the household 

living in a very old solid wall building with U-value of 2.3 W/m²K will spend 9 times more 

on heating energy bills than the household living in a modern and well insulated detached 

house with U-value of 0.25 W/m²K and the difference is around £27 per month. Similarly, 

in mid terraced houses, the difference in heating energy bills between a very old house with 

U-value of 2.3 W/m²K and a modern well insulated house with U-value of 0.25 W/m²K is 

£11 which is again 9 times higher. The end terrace houses, semidetached houses and 

bungalows also show similar trend in heating energy consumption and the difference in 

heating energy bills between dwellings with above mentioned U-values are circa £14, £17, 

and £18, respectively. From the above discussion it is realised that solid wall houses have 

the highest contribution in terms of consuming excess energy; and considering all the solid 

wall houses of different dwelling types in England, it is found that these houses are 

responsible for consuming circa 1500 GWh of excess energy for space heating (Table 4.4). 

The average U-value of walls for these houses are considered as 1.7 W/m²K  as this is the 

mean U-value of all solid wall houses in England (BRE, 2016). The household electricity 

demand would also rise due working from home as the occupant would use some electrical 

appliances, such as TV, desktop, laptop, and electric kettle, for longer hours than usual. 

Table 4.5 shows the excess electricity consumption due the use of these electrical appliances 

as well as lighting the house. It is found from Table 4.5 that the average increase in electricity 

consumption per household per month could be as high as 125 kWh. 
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Table 4.4: Increase in average monthly energy demand of dwellings with solid wall 

construction (U-value of 1.7 W/m²K) because of working from home. 

House Type 

Surface area 

exposed to 

external 

environment (m2) 

Number of 

dwellings with 

uninsulated solid 

brick walls  

Average energy 

demand 

(GWh/month) 

End terrace 138    874,000 268.37 

Mid terrace 103 1,725,000 395.34 

Semi detached 159 1,265,000 447.55 

Detached 257     598000 341.97 

Bungalow 152     138,000 46.67 

Total  1499.91 

 

This increase in electricity consumption will be responsible for £17.97 increase in electricity 

bills per month per household. Considering 23.95 million households in England 

(Piddington et al., 2020) the additional electricity demand per month would be as high as 

circa 2994.52 GWh per month as a result of people working from home due to the Covid-19 

situation. The total increase in energy demand per month due to working from home will be 

sum of increase in heating energy demand and increase in electricity demand which is plotted 

in Figure 4.1-a. Figure 4.1-b shows the associated expenditure on energy bills.  

Table 4.5: Increase in monthly electricity demand, electricity bills and CO2 emission per 

household because of working from home.  

Appliance Quantity 
Power 

(Watt) 

Duration 

(hours) 

Average 

electricity 

demand 

(kWh/month) 

Average 

electricity 

bill 

(£/month) 

CO2 

emission 

(kg) 

TV (42" 

LCD) 
1 120 8 20.96 £3.01 5.81 

Desktop 1 150 8 26.20 £3.76 7.26 

Laptop 2 50 8 17.47 £2.51 4.84 

Lighting 5 lights 60 8 52.40 £7.53 14.51 

Electric 

Kettle 

4 litres a 

day 
2000 0.046 8.01 £1.15 2.22 

Total 125.03 £17.97 34.63 
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Figure 4.1: Average increase per month in (a) household energy consumption, (b) 

household energy bills due to working from home in winter. 

The dotted line in Figure 4.1-a and 4.1-b represent the rise in electricity consumption and 

associated electricity bills, respectively. It is noticed from these two figures that for the 

family living in highly insulated houses, the major portion of the increase in total energy 

consumption as well as energy bills are due the rise in the electricity consumption. On the 

other hand, the family living in solid wall dwellings see that the significant portion of their 

energy bills rise is due to the increased heating energy consumption. The detached houses 

with solid wall and U-value of 2.3 W/m²K are the most severely affected houses in terms of 

energy bills with around £47 increase in energy bills per month. It is also noticed in Figure 

Electricity consumption

(a)

Electricity bills

(b)



63 

 

4.1-a and 4.1-b that the households living in dwellings with externally insulated wall (U-

value between 0.32 to .025 W/m²K) show similar pattern of energy demand and energy bills 

do not differ much based on the dwelling type. However, the pattern of energy demand and 

energy bills for the households living in dwellings with uninsulated wall (U-value between 

2.3 to 1.5 W/m²K) vary widely based on the dwelling types. These point out the benefits of 

wall insulation particularly to those dwelling types which have higher wall surface area 

exposed to the outdoor environment. The increase in energy bills could be recovered from 

savings due to reduced travelling. During the complete lock down situation between 24th 

March and 24th April 2020, the reduction in car travelling was around 67% (Department for 

Transport, 2020). On the basis of average car mileage (Yurday, 2020), a typical household 

with a moderate car (1400 to 2000 cc engine) could see 413.17 miles reduction in car 

travelling in a month and this reduction in mileage travelled by a car would save £41.32 - 

£49.58 a month on travel expense depending on the fuel type i.e., petrol or diesel. Figure 

4.2-a and Figure 4.2-b presents the net household savings for a family with 1 car and 2 cars, 

respectively. It is noticed from Figure 4.2-a that the family living in a very old detached 

house with U-value of 2.3 W/m²K and use one car for travelling spend almost all of their 

savings from reduced travelling to pay the energy bills. On the other hand, family living in 

modern externally insulated houses with U-value ranges between 0.32 to .025 W/m²K would 

experience net savings of £27-£30 due to reduced travelling from one car. If a family uses 

two cars for travelling, then the net savings ranges between £50-£70 for dwellings with wall 

U-value of 2.3 W/m²K and between £75-£80 for dwellings with wall U-value 0.32-0.25 

W/m²K. It is also noticed that the difference in net savings in mid terraced houses of different 

U-values ranges between £20 - £30 if the family use one car and between £68 -£80 if they 

use two cars. On the contrary, for detached houses of different U-values the net savings 

ranges between £0 to £27 if the family uses one car and between £50 to £77 if the family use 
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two cars. As a result, the reduction in savings for the household living in a poorly insulated 

detached house would be 3 times more than the household living in a poorly insulated mid 

terrace house.  

 

 

Figure 4.2: Average household savings per month for a family uses (a)1 car, (b) 2 cars for 

travelling. 

4.5 Effects on CO2 emission 

The excess energy production to meet the increased household energy demand in winter due 

to work from home would result in increased carbon emission to the atmosphere. Figure 4.3 

(a)

Average Household Savings per Month with 1 Car

(b)

Average Household Savings per Month with 2 Cars
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shows the CO2 emission per month due to the consumption of excess energy among different 

households listed in Table 4.1. 

 

Figure 4.3: Average increase in CO2 emission per month because of the excess household 

energy demand during winter 

It is found from Figure 4.3 that uninsulated houses with U-value ranges from 2.3 to 1.5 

W/m²K are responsible for releasing 80-195 kg of CO2 per month per household.  On the 

other hand, the insulated houses with U-values 0.32 to 0.25 W/m²K are responsible for 

releasing 40-60 kg of CO2 per month per household. As mentioned in Table 4.2, the solid 

wall houses in England would be responsible for consuming 1500 GWh of excess heating 

energy per month, the additional heating energy consumption will release circa 304.48 Mt 

(million ton) of CO2 in the environment. Similarly, the consumption of 2994.52 GWh excess 

electricity per month in English households would result in releasing circa 829.48 Mt of CO2 

in the environment. Therefore, the total increase in CO2 emission per month is circa 1134 

Mt. However, the 413.17 miles reduction in car travel per month contributes to 80.66 kg 

reduction in CO2 emission; and considering the 32.88 million registered cars in the UK 

(Driver and Vehicle Licensing Agency, 2020), the estimated total reduction in CO2 emission 

is 2652.30 Mt. Furthermore, the electricity consumption in commercial and industrial section 

Average Increase in CO2 Emission Due to Rise in Household Energy Consumption
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is reduced by circa 2457.85 GWh per month during the lock down situation from March to 

June (Department for Business Energy & Industrial Strategy, 2020). This reduction in 

electricity consumption results in the reduction of circa 680.83 Mt of CO2 emission per 

month. Although working from home increases the CO2 emission due to additional 

household energy consumption, the net CO2 emissions is expected to be less than the normal 

working situation due to reduced energy consumption in industrial and commercial sector as 

well as reduced travelling by car. Figure 4.4-a and 4.4-b shows the net change in household 

CO2 emission if a family uses one car and two cars, respectively.  

 

 

Figure 4.4: Net change in CO2 emission per month per household that uses (a) 1 car for 

travelling and (b) 2 cars for travelling 

Zero emission

Change in  Household CO2 Emission  per Month with 1 Car

(a)

Zero emission

Change in  Household CO2 Emission  per Month with 2 Cars

(b)
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It is found from Figure 4.4-a that end terraced, bungalow, semidetached and detached houses 

with uninsulated walls (U-value ranges from 2.3 to 1.5 W/m²K) do not contribute to net 

reduction of carbon emission and among them the detached houses are responsible for 50-

110 kg of CO2 release per month per household. Among the different wall U-values in mid 

terrace houses, only the very old house with U-value of 2.3 W/m2K is responsible to release 

CO2 and at the rate of circa 15 kg per month per household. The externally insulated houses 

with U-value ranges from 0.32 to 0.25 W/m²K significantly contribute to the net reduction 

of carbon emission by releasing 15 to 40 kg less CO2 per month per household than the 

normal working situation. From Figure 4.4-b it is found that the all the households using two 

cars for travelling contribute to the reduction in net carbon emission except the very old solid 

wall detached house with U-value of 2.3 W/m²K. The externally insulated houses with U-

value ranges from 0.32 to 0.25 W/m²K show the major contribution by reducing more than 

100 kg CO2 per month per household.  

4.6 Conclusion 

Working from home due the present Covid-19 situation leads to rise in domestic energy 

demand; however, family living in externally insulated houses will not experience 

significant increase in energy bills. Instead, they will experience budget savings from 

reduced travelling. However, if people either walk or use bicycle for travelling to their 

workplace, then they will not experience any savings from travelling expenses. Among the 

different dwelling types, the household living in uninsulated detached houses will experience 

the highest increase in energy bills as well as these houses are responsible for significant 

amount of CO2 emission in most of the cases. Modern and insulated homes will provide a 

much better financial advantage during lockdown situation (or during working from home) 

and the increase in heating bills will be as low as £1.31 for mid terrace houses and £3.28 for 

detached houses. The overall national energy demand may fall due the reduction in energy 
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consumption in commercial and industrial sectors. These as well as reduction in car 

travelling would result in a substantial amount of reduction in CO2 emission. Therefore, the 

current working patterns could be continued to some extent even after the end of the 

pandemic situation in the UK as a part of the strategy to achieve net zero carbon emission 

by 2050.  However, people living in uninsulated houses and already suffering from energy 

poverty will experience worse financial situation due to working from home hence require 

attention to their cases.   
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Chapter 5: Development of a Prediction Tool to Estimate Heat 

loss through walls using Infrared Thermography and 

Artificial Neural Network 

5.1 Introduction 

The energy consumption for space heating in a building largely depends on the thermal 

performance of the building’s wall. In previous chapter, the role of wall insulation in 

reducing heating energy consumption and restricting heat loss through buildings’ wall has 

been reviewed as well as the influence of insulation in energy consumption has been 

evaluated under the work from home condition. The need for retrofitting a building with 

improved wall insulation has been realised from those discussions. However, prior to that, 

the prediction of future energy savings due to retrofitting a building with improved insulation 

would be a key area of interest for the estimation of cost savings and payback periods. In 

this chapter, the development of a prediction tool for the estimation of heat loss through 

buildings’ wall using infrared thermography and ANN is presented. Infrared thermography 

has been used in many studies for the rapid evaluation of thermal performance of buildings 

and some of those are reviewed in chapter 2. The suitability of ANN for the prediction of 

energy demand in buildings are also reviewed in chapter 2 and in most of the cases the 

performance of ANN is very close to other popular simulation software. There is limited 

research found regarding combining ANN with infrared thermography to predict future heat 

loss in a building. In a publication as a part of the current PhD study, the use of ANN in 

combination with infrared thermography to predict future heat loss through insulated and 

uninsulated building’s wall has been established which is included in Appendix E (Al-

Habaibeh, Sen and Chilton, 2020). In continuation with that study, the development of an 

evaluation tool by integrating infrared thermography and ANN is demonstrated in this 



70 

 

chapter with two case studies. Moreover, the performances of different neural network 

architecture are compared in case of hourly and monthly heat loss prediction in insulated 

and uninsulated buildings.  

5.2 Implemented approach 

The methodology used in this work has been discussed in chapter 3. Infrared thermography 

is used to evaluate the thermal characteristics of buildings with insulated and uninsulated 

wall and to estimate heat loss through those walls. The historical heat losses are calculated 

to train ANN which is later used to predict future heat loss through insulated and uninsulated 

wall. The ANN predicted heat loss is compared with the calculated heat loss to evaluate the 

performance of ANN. The equations used to for the heat loss calculation and evaluation of 

ANN performance are presented again in the section below.  

5.2.1 Equations used for the study 

The heat loss through per square meter of a building’s wall is calculated using equation 2.8.  

𝑃 = 5.67𝜀𝑡𝑜𝑡 ((
𝑇𝑠

100
)

4

−  (
𝑇𝑒𝑥𝑡

100
)

4
) + 3.8054𝜈(𝑇𝑠 −  𝑇𝑒𝑥𝑡)             (2.8) 

The hourly heat loss in a given month is calculated using equation 3.4. 

𝑃𝑖𝑗 =
1

𝑛
∑ 𝑃𝑖

𝐷
𝑛=1                                                   (3.4) 

The monthly total heat loss is estimated using equation 3.5. 

𝑃𝑚 = ∑ ∑ 𝑃24
1

𝐷
1                                                   (3.5) 

The error and percentage errors are calculated using equation 3.6 and 3.7, respectively. 

𝑒 = ∑ (𝑌𝑖 − 𝑃𝑖)
𝑛
𝑖=1                                                   (3.6) 

𝑒𝑝 =
|𝑒|

∑ 𝑃𝑖
𝑛
𝑖=1

                                                              (3.7) 
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5.2.2 Assumptions  

The assumptions for this study are listed below. 

1. The buildings’ wall will behave as grey body and the emissivity of the wall is 

considered as 0.93 (CIBSE, 2006). 

2.  The emissivity value is constant within the range of working temperature of the 

camera as well as the spectral range of the thermal camera, which is 7.5-13 μm (Flir 

System, 2006).  

3. It is assumed that there is no effect of thermal bridge as the area of thermal bridge in 

walls are very small compared to the whole wall area. 

4. Heating is assumed to be switched on at any time throughout the year when the room 

temperature falls below 20oC.  

5.2.3 Heat loss calculation 

Equation 2.8 is used to calculate the heat transfer through the building’s wall in W/m2 for 

both case studies which is later converted into heat energy loss by multiplying with 1 as the 

amount of heat transferred in an hour through the building’s wall represent the heat energy 

loss in Wh/m2. The wall surface temperature Ts is initially extracted from infrared image and 

then interpolated against the external temperature for the estimation of historical heat loss. 

The outdoor ambient temperature Text and wind speed ν are obtained from weather stations 

observation. The historical hourly ambient temperature and hourly wind speed between year 

2004 and 2019 for the locality of the case studies are extracted from the database of the Met 

Office (2019) in order to calculate the hourly average and monthly total heat losses. The 

hourly average heat loss for a given hour in given month has been calculated by taking the 

average heat loss for all days for the given hour in that month. For instance, the hourly 

average heat loss at 1.00 am in January 2004 will be the average of heat loss values calculated 

using equation 2.8 for 1.00 am each day from 1st January to 31st January 2004. Similarly, the 
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monthly total heat loss for a given month is the summation of hourly heat loss of each hour 

and each day and the total heat loss in January 2004, for example, will be the sum of hourly 

heat loss from 1st January to 31st January 2004. The hourly average heat losses in Wh/m2 and 

monthly total heat losses in kWh/m2 are calculated for both insulated and uninsulated 

buildings. The historical heat loss values for a building, calculated using equation 3.4 and 

3.5, will represent the characteristics of heat loss for the building and ANN can learn those 

characteristics to predict future heat loss for that building. Although according to equation 

2.8, the heat loss depends on the external temperature and wind speed, the advantage of 

predicting heat loss over temperature and wind speed is that it simplifies and speeds up the 

prediction process by reducing the number of paraments to be forecasted and the uncertainty 

related to the prediction of temperature and wind speed.  

5.2.4 Mathematical model to determine the optimum monitoring period of a building 

Weather condition and occupants’ behaviour are responsible for the variation in heat loss in 

different years in a building. Therefore, it is necessary to determine the optimum period 

required to monitor a building for the accurate estimation of heat loss. A mathematical model 

is presented in the Al-Habaibeh, Sen and Chilton (2020) by the author of this thesis which 

is presented here again.  

Let us consider,  𝐸𝑖 = 𝑓(𝑤, 𝑏);   where Ei is the energy consumption of a building in a year, 

w is the weather condition and b represent people’s behaviour.  

Let, ∑ 𝐸𝑖
𝑁
1  is the energy consumption over N number of years. 

Hence, the average of annual energy consumption will be 
∑ 𝐸𝑖

𝑁
1

𝑁
 . 

If we choose to take another number of years M such that 𝑀 = 𝑁 + 𝑘, where 𝑘  is a positive 

constant; then average of annual energy consumption will be  
∑ 𝐸𝑖

𝑀
1

𝑀
. 



73 

 

When N reaches its optimum value then the addition of further years will not change the 

average annual energy consumption; or simply  

 
∑ 𝐸𝑖

𝑁
1

𝑁
 = 

∑ 𝐸𝑖
𝑀
1

𝑀
         (5.1) 

Hence,  
𝑀

𝑁
=

∑ 𝐸𝑖
𝑀
1

∑ 𝐸𝑖
𝑁
1

=  
(𝐸1+𝐸2+𝐸3+ …………+𝐸𝑀)

(𝐸1+𝐸2+𝐸3+ …………+𝐸𝑁)
             (5.2) 

Let, M =N+k, where k is the number of additional years, this gives: 

 
𝑁+𝑘

𝑁
=

(𝐸1+𝐸2+𝐸3+ …………+𝐸𝑁+𝐸𝑁+1+𝐸𝑁+2+ …………+𝐸𝑁+𝑘)

(𝐸1+𝐸2+𝐸3+ …………+𝐸𝑁)
 

=
∑ 𝐸𝑖+∑ 𝐸𝑖

𝑘
𝑁+1

𝑁
1

∑ 𝐸𝑖
𝑁
1

                                                                     (5.3)   

Simplifying equation (5.3) leads to: 

 1 +
𝑘

𝑁
= 1 +

∑ 𝐸𝑖
𝑘
𝑁+1

∑ 𝐸𝑖
𝑁
1

                                                                    (5.4) 

Subtracting 1 from each side in equation (5.4): 

𝑘

𝑁
=

∑ 𝐸𝑖
𝑘
𝑁+1

∑ 𝐸𝑖
𝑁
1

                                              (5.5)   

Re-arranging equation (5.5) leads to: 

∑ 𝐸𝑖
𝑘
𝑁+1 = (

𝑘

𝑁
) ∑ 𝐸𝑖

𝑁
1                                                (5.6)  

As k and N are finite numbers, the equality in the equation 5.5 is highly unlikely. Because it 

is almost impossible to get identical weather condition and occupants’ behaviour in 

successive years due to the stochastic and probabilistic natures of the variables to satisfy 

equation 5.5.  
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Since by definition:   
𝑀

𝑁
=

𝑁+𝑘

𝑁
    (5.7) 

If  𝑀 → ∞ then 𝑁 → ∞ as k is a constant and hence, 

   lim
𝑁→∞

𝑁+𝑘

𝑁
=  lim

𝑁→∞

𝑁

𝑁
+

𝑘

𝑁
𝑁

𝑁

  =       lim
𝑁→∞

1+
𝑘

𝑁

1
        =1     (5.8) 

Hence from (5.7) and (5.8) this leads to 
𝑀

𝑁
= 1  

or simply,  𝑀 = 𝑁                                                     (5.9) 

Equation 5.9 indicates that by monitoring the energy consumption of a building for finite 

number of years, it is impossible to reach to the equality of equation 5.3 given the changing 

nature of weather and people’s behaviour.  Therefore, from equation 5.3 the value of k should 

be equal to zero which implies that to guarantee the accuracy of estimation of the heat loss 

energy it requires to monitor a building for infinite number of years. The case studies 

presented in this chapter utilise 16 years heat loss data for the ANN analysis.  

5.2.5 ANN Prediction  

The successful use of feed forward neural network in predicting heat loss through insulated 

and uninsulated buildings is presented in Al-Habaibeh, Sen and Chilton (2020). The 

literature review in chapter 2 shows successful the use of some recurrent neural networks, 

such as NARnet, NARxnet and LSTM neural networks, for prediction of energy demand in 

buildings. In this chapter, these four neural networks are considered for ANN analysis using 

the hourly average and monthly total heat loss data. The historical heat losses calculated 

from 2004 to 2019 are divided into training and test data sets and these are done in different 

combinations ranging from 2 to 15 years. If the training data set contains 2 years data, for 

instance, heat loss data for the years 2004 and 2005, then test data set contains 14 years data 
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i.e., heat loss data for the years 2006 to 2019. On the other hand, if the training data set 

contains 15 years data i.e., heat loss data for the years 2004 to 2018 then the test data set will 

contain the heat loss data of the year 2019 only. Considering all other combinations between 

these two extreme cases, it is possible to construct 14 different combinations of training and 

test data sets. All these combinations are evaluated with the above mentioned four neural 

networks for both the hourly and monthly heat loss prediction. In each case the neural 

networks are used to predict the heat loss for the same length of data in test data set which 

is then compared against the test data to evaluate the performance of the neural network. In 

the training process of the hourly average heat loss prediction using feed forward neural 

network, hour, month, and year are the three parameters considered as inputs; and the hourly 

average heat loss obtained from equation 3.4 is considered as the output. In case of monthly 

heat loss prediction using feed forward neural network, month and year are the two input 

parameters to the neural network and monthly heat loss obtained from equation 3.5 is the 

output for the network. The recurrent neural network works slightly different than feed 

forward neural network where the output of previous time step is considered as additional 

input for the next time step. The training process of the recurrent neural network involves 

sequential training rather than batch training used by feed forward network. Time step is one 

of the default inputs for these networks and the hourly average heat loss (obtained from 

equation 3.4) for the previous time step is chosen as the other input in case of hourly average 

heat loss prediction. For monthly heat loss prediction monthly total heat loss, obtained from 

equation 3.5, is chosen as the second input instead of the hourly average heat loss. However, 

the NARxnet accepts additional inputs. Therefore, hour, month and years are chosen as the 

additional inputs in case of hourly average heat loss prediction and month and year are 

chosen as the additional inputs in case of monthly total heat loss analysis for NARxnet. The 

heat loss at the current time step is chosen as the output for all recurrent neural networks. 
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For hourly average heat loss prediction, it will be the heat loss value obtained from equation 

3.4; and for monthly total heat loss prediction it will be the heat loss value obtained from 

equation 3.5.    

5.3 Case study 1: Buildings in High Wycombe 

The first case study includes the evaluation of thermal performance and prediction of heat 

losses in an insulated and an uninsulated building in High Wycombe, England. Figure 5.1 

shows the infrared image of the insulated and uninsulated buildings that are considered for 

this case study.  

 

Figure 5.1: Infrared image of the insulated and the uninsulated house in High Wycombe. 

The insulated building has been deep retrofitted with 200 mm thick external insulation, 

improved glazing area and solar photovoltaic panel on the roof prior to the study (Harrall, 

2012). The material used for insulating the building is Styrofoam™A which is a very good 

insulating material with R-value of circa 6.45 m2K/W(Accolade for STYROFOAM as 

Greening-the-Box retrofit project wins Gold, 2012). The uninsulated building in Figure 5.1 

is a solid wall building near the insulated building. The infrared images of both the buildings 
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are taken using FLIR E25 thermal camera and then the pixel-by-pixel temperature values are 

extracted using ThermaCAM QuickReport software.  Afterwards, the infrared images (in 

Figure 5.1) are reproduced in same scale from the temperature data using Matlab software. 

Several images of both the buildings were taken during the thermal survey of the buildings 

between 28th March 11.15 pm and 29th March 9.30 am. The ambient temperature at the start 

of the survey was 9oC and at the end of the survey was 7oC. The indoor temperature of the 

insulated building was 19oC at the start of the survey and 20oC at the end of the survey. 

These temperatures are measured with a thermocouple-based temperature sensor. The early 

morning temperature (at 6 am) on 29th March was around 4oC when the infrared images of 

Figure 5.1 were taken. The pixelwise temperature values from the infrared images of both 

insulated and uninsulated buildings are extracted using Thermacam quick report software 

from FLIR.  

5.3.1 Infrared image analysis 

Figure 5.1 also shows the temperatures of door, windows, chimneys, and different parts of 

wall for both insulated and uninsulated buildings where the temperature of the green boxes 

is the average temperature of the area covered by the box in all cases. The wall surface 

temperature in insulated building ranges between 3.77oC to 3.94oC at different parts whereas 

the chimney temperatures is 28oC. On the other hand, the wall surface temperature in 

uninsulated building ranges between 9.42oC to 9.64oC at different parts and the chimney 

temperature is 14oC. The high temperature of the uninsulated building’s wall reflects the 

higher heat loss through the wall of the uninsulated building than the wall of the insulated 

building. The temperature of door gap in insulated building and the temperature in windows 

gap in uninsulated building is the same which is 12oC and therefore it can be inferred that 

the indoor temperatures in both the buildings are about same. The chimney temperature in 

insulated building is two times higher than that of the uninsulated building which points out 
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that there is very little heat loss through the walls of insulated building and therefore the 

temperature of the chimney is very high as most of the heat comes out of the building with 

the exhaust air and flue gas. On the other hand, a significant amount of heat loss occurs 

through the walls of uninsulated building and hence the chimney in that building is cooler 

than the chimney of the insulted building. The average temperatures of the door and the 

window in insulated building are 8.21oC and 8.50oC, respectively. Whereas the average 

temperature of the window in uninsulated building is 10.21oC. Therefore, the thermal 

performance of glazing area in the insulated building is better than that of the uninsulated 

building. Despite of the increase in overall glazing area due the retrofitting in insulated 

building, the overall thermal performance of the insulated building is better than that of the 

uninsulated building.  

 

Figure 5.2: Temperature profiles generated from infrared images of the insulated and the 

uninsulated house in High Wycombe. 
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Figure 5.2 shows the temperature profile through line ABC on the infrared images of both 

insulated and uninsulated buildings. The temperature values along AB and BC are extracted 

to plot the thermal profile for the insulated and the uninsulated building, respectively. It is 

noticed in the temperature profile of line AB that the wall temperature varies between 3oC 

to 5oC, the window temperature varies between 7oC to 9oC, and the door temperature varies 

between 8oC to 10.5oC in insulated building. In uninsulated building, the variation in 

temperature on wall sections and windows along the line BC are between 8oC to 10oC and 

between 9oC to 11oC, respectively. Naturally, the temperature distribution will not be 

constant throughout the wall, door, and window sections. However, the ranges of variation 

in those sections along the line ABC (in Figure 5.2) confirms that consideration of average 

temperatures for those sections would be a reliable estimation for further quantitative 

analysis. Therefore, the average temperature values of the wall sections are considered as 

the wall surface temperature for the heat loss estimation using equation 2.8.  

5.3.2 Hourly heat loss prediction:  

A sensitivity analysis regarding the number of hidden layers and the number of neurons in 

each hidden layer have been conducted prior to the heat loss prediction as suggest by the 

literature review. First four years data of the whole data set (year 2004-2007) is chosen for 

training the neural network and next four years data (year 2008-2011) is chosen as the test 

data set. Heat loss data for both insulated and uninsulated walls are included and mean of 

the percentage error (APE) is considered as the measure of performance. The percentage 

error (PE) is calculated using equation 3.7. The feed forward neural network could have 

several hidden layers with multiple neurons in each layer. Therefore, it is necessary to 

evaluate the sensitivity of both parameters i.e., the number of hidden layers and the number 

of neurons in each hidden layer. Figure 5.3-a and 5.3-b show the result of sensitivity analysis 

for feed forward neural network regarding the number of hidden layers and the number of 
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neurons in each hidden layer, respectively. It is found from Figure 5.3-a that the average 

percentage error decreases as the number of hidden layers increases up to six hidden layers 

and then it slightly goes up with seven hidden layers. Figure 5.3-b shows that the minimum 

average percentage error is obtained with three neurons in each hidden layer. Therefore, feed 

forward network composed of six hidden layers and three neurons in each hidden layer is 

found to be the best network architecture and this configuration is set for the hourly heat loss 

analysis with feed forward neural network.  

 

Figure 5.3: Sensitivity of feed forward neural network regarding (a) number of hidden 

layers and (b) number of neurons in each hidden layer for hourly heat loss prediction (case 

study 1). 

 

Figure 5.4: Architecture of feed forward neural network for hourly average heat loss 

prediction. 
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The schematic diagram of the feed forward neural network used for the hourly average heat 

loss prediction is presented in Figure 5.4. As, the recurrent neural networks follow 

incremental training process, those networks usually contain one hidden layer with several 

neurons in it. Therefore, the recurrent neural networks used in this study, namely NARnet, 

NARxnet and LSTM, are composed of only one hidden layer and the sensitivity analysis 

includes the sensitivity of number of neurons in the hidden layer which is presented in Figure 

5.5. 

 

Figure 5.5: Sensitivity of NARnet, NARxnet and LSTM neural network regarding number 

of neurons in hidden layer for hourly heat loss prediction. 

It is found from Figure 5.5 that the NARnet and the NARxnet shows the lowest APE with 

20 neurons in the hidden layer and then the APE gradually goes up until 160 neurons in the 

hidden layer. There is drop in the APE at 180 neurons in the hidden layer; however, it starts 

rising afterwards. For LSTM network, the minimum average percentage error is found with 

100 LSTM cells in the hidden layer. It is noted that the performances of all three recurrent 

neural networks are very poor compared to the performance of feed forward network. One 

reason could be small sample size of the training data set. Therefore, it would be worthy to 

look at the performance of those networks using the full data set.  
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Figure 5.6: Architecture of recurrent neural networks used in this study (a) NARnet (b) 

NARxnet and (b) LSTM neural network. 
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Hence, the NARnet and NARxnet with 20 neurons in hidden layer is selected for the hourly 

heat loss prediction. For LSTM network, the network with 100 LSTM cells in hidden layer 

is selected for the hourly heat loss analysis. Figures 5.6-a, 5.6-b and 5.6-c show the 

configuration of NARnet, NARxnet and LSTM networks used in this study. The 

performance of feed forward neural network which is trained using two years to fifteen years 

data is presented in Figure 5.7-a and 5.7-b for the insulated wall and uninsulated wall, 

respectively. There are two significant facts observed from the bar charts in Figure 5.7 that 

the percentage error reduces with the increase in number of years’ training data used and the 

heat loss prediction is more accurate for the near future than the remote future. ANN 

generalises the characteristics of heat loss through a building’s wall from the iterative 

training process. As the number of data points in training data set increases, an ANN can 

map the relationship between input and output with more accuracy. It is noticed in both the 

bar charts of Figure 5.7 that the ANN trained with 8 years or more heat loss data achieves 

significant accuracy and the ANN trained with 11 years or more heat loss data archives very 

high accuracy. It is also noted that the variation in PE is higher in the uninsulated wall than 

in the insulated wall because the heat loss through an uninsulated wall is higher than the heat 

loss through an insulated wall. Similar bar charts showing the percentage error of NARnet, 

NARxnet and LSTM neural networks for both the insulated and the uninsulated walls are 

included in Appendix A. The average of the percentage errors (APE) for the ANN trained 

with two years to fifteen years heat loss data is shown in Figure 5.8; where Figure 5.8-a 

represents the APE in heat loss prediction through the insulated wall and Figure 5.8-b 

represents the APE in heat loss prediction through the uninsulated wall for feed forward, 

NARnet, NARxnet and LSTM neural network. The feed forward neural network shows the 

lowest APE compared to all other neural networks for insulated wall. 
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Figure 5.7: Performance of feed froward neural network to predict hourly heat loss (a) 

insulated building and (b) uninsulated building. 
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For uninsulated wall, the APE of feed forward neural network is lowest between 4 years to 

14 years of training data. In both cases, the APE drops down to 10% with 8 years of training 

data and below 10% with 11 to 14 years of training data for feed forward neural network. 

With 15 years training data, the APE of feedforward neural network is below 10% for 

insulated wall; but close to 20% for uninsulated wall. 

 

Figure 5.8: Comparison of performances among feed forward, NARnet, NARxnet and 

LSTM neural network for hourly heat loss prediction in (a) insulated building and (b) 

uninsulated building in case study 1. 

The APE of all recurrent neural networks (NARnet, NARxnet and LSTM) never go below 

10%. However, the APE of NARxnet is found to be below 20% with 13 to 15 years of 
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training data for insulated wall; and the APE of LSTM neural network is found to be below 

20% for 12-15 years of training data for uninsulated wall. Therefore, it can be summarised 

from Figure 8.5 that NARnet, NARXnet and LSTM neural networks are not suitable for the 

hourly average heat loss prediction. Only feed forward neural network is able to predict the 

hourly average heat loss with acceptable accuracy if it is trained with 8 years or more heat 

loss data.  The ANN predicted heat loss curve and the calculated heat loss curve for the years 

2012-2019 is shown in Figure 5.9 for both the insulated and the uninsulated walls where the 

feed forward neural network is trained with 8 years of heat loss data from 2004 to 2011. It 

is found from Figure 5.9 that ANN predicted heat losses are very close to the calculated heat 

loss in most of the cases except few exceptions. For instance, the calculated heat loss is 

significantly higher in February and March of year 2013 and 2018.  

 

Figure 5.9: Comparison between the calculated heat loss and the ANN (feed forward) 

predicted heat loss for the years 2012 to 2019 
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The heatmap of average temperature in Figure 5.10 shows that the February and March in 

year 2013 and 2018 are cooler than the February and March in the other years. Similarly, the 

calculated heat loss is far less than the ANN predicted heat loss for the month of July in 2013 

and 2018. 

 

Figure 5.10: Heatmap representation of average temperature in each month from 2004 to 

2019 

Again, the heat map shows us a possible reason for the deviation is that in 2013 and 2018 

the month of July is exceptionally warmer than the month of July in other years.   In fact, 

the calculated heat loss curves show that there is negative heat loss or heat gain in the 

buildings due the solar irradiation during summer. ANN prediction does not capture the heat 

gain as the algorithm is developed to predict heat loss. This is more sensible because heat 

gain during the daytime in summer does not contribute to the heating energy savings which 

is a key aspect of estimating payback period of the investment for retrofitting a building with 

improved insulation.     
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5.3.3 Monthly heat loss prediction 

Similar to the hourly average heat loss prediction, a sensitivity analysis is conducted to 

determine the best configurations for all four neural networks used in the case study. 

Monthly total heat loss calculated using equation 3.5 for the years 2004 to 2007 is chosen 

for training neural networks and monthly heat loss data for the years 2008 to 2011 is chosen 

to test the networks’ performance. For feed forward neural network, the sensitivity of both 

the number of layers in the hidden layer and the number of neurons in each layer is evaluated 

which is shown in Figure 5.11-a and 5.11-b respectively.  

 

Figure 5.11: Sensitivity of feed forward neural network regarding (a) number of hidden 

layers and (b) number of neurons in each hidden layer for monthly heat loss prediction. 

The APE gradually falls as the number of hidden layers increses; however, the APE rises 

with the increase in the number of neurons in hidden layer. At eleven layers in the hidden 

layer the APE is found to be minimum and it reaches in stable state. Regarding the number 

of neurons in each hidden layer, two neurons in a hidden layer shows the minimum APE. 

Therefore, feed forward network with eleven layers and two neurons in each hidden layer is 

selected for the monthly total heat loss prediction. Figure 5.12 shows the sensitivity of 

number of neurons in the hidden layer for NARnet and NARxnet and number of cells in the 

hidden layer for LSTM neural network. For NARnet and NARxnet, 12 neurons in hidden 

Sensitivity of Number of Hidden Layers Sensitivity of Number of Neurons in Hidden Layers
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layer shows the minimum APE; however, it is around 60% which is significantly high 

percentage of error. However, it is worthy to see the performances of those networks with 

full data set. Hence these two neural networks with 12 neurons in the hidden layer are 

considered for the heat loss prediction. The LSTM network shows very high accuracy with 

APE less than 10% in cases. The minimum APE is found as 5.21% with 12 cells in the 

hidden layer. The APE gradually increases to 8.48 % with 96 cells in the hidden layer and 

then fall slightly. Therefore, the LSTM network with 12 cells in the hidden layer is selected 

for the monthly total heat loss prediction.   

 

Figure 5.12: Sensitivity NARnet, NARxnet and LSTM neural network regarding number 

of neurons in hidden layer for monthly heat loss prediction. 

The percentage errors of feed forward neural network, NARnet, NARxnet and LSTM neural 

networks trained with 2 to 15 years of heat loss data are included in Appendix B.  The 

average percentage error (APE) for those neural networks for 2 to 15 years of training are 

presented in Figure 5.13, where Figure 5.13-a insulated wall and Figure 5.13-b includes 

uninsulated wall, respectively. It is found from Figure 5.13 that the LSTM neural network 

shows the best accuracy in both the insulated and uninsulated walls with APE less than 10% 

Sensitivity of Number of Neurons in Hidden Layers

Number of neurons/cells in hidden layer
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for all combinations of training data set except with 5 years training data. The feed forward 

neural network also shows high accuracy with APE less than 20% with all combination of 

training data; however, the APE remains slightly higher than the LSTM neural network in 

all cases except for training with 5 years data. 

 

Figure 5.13: Comparison of performances among feed forward, NARnet, NARXnet and 

LSTM neural network for monthly heat loss prediction in (a) insulated building and (b) 

uninsulated building in case study 1. 

The NARnet and the NARxnet show very high APE which converges towards fifteen years 

training; however, the APE is still higher than the feed forward and LSTM networks. 

(a)

(b)
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Therefore, it can be concluded that NARnet and NARxnet are not suitable for the monthly 

total heat loss prediction as well. LSTM neural network show better accuracy over feed 

forward neural network and therefore, it is considered to compare the calculated heat loss 

and LSTM neural network predicted heat loss curves. Although using 2 to 4 years of training 

shows very high accuracy, there is a rise in APE with 5 years training for both the insulated 

and the uninsulated walls; and hence, the performance does not look consistent at this level. 

After that point, the next minimum APE is found with 8 years training data for both walls. 

It should be noted that a good consistency is also observed with 8 or more years of training 

in hourly average heat loss prediction.  

 

Figure 5.14: Comparison between the calculated heat loss and the ANN (LSTM) predicted 

heat loss for the years 2012 to 2019 in case of monthly heat loss prediction. 

Figure 5.14 shows comparison between the calculated and ANN predicted heat loss for 8 

years from 2012 to 2019 where the LSTM neural network has been trained with 8 years heat 

data from year 2004 to 2011. It is observed from the figure that LSTM neural network 

successfully generalised the characteristic of heat loss from training and the predicted heat 
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loss is close to the calculated heat loss in most of the cases. There are two instances where 

the calculated heat loss his notably higher in February-March of 2013 and 2018. This is 

because of very cold weather in February- March during those two years which is confirmed 

by the heatmap of historical average temperature in Figure 5.10. The heatmap in Figure 5.10 

also shows that the month of July in year 2013, 2014 and 2018 are significantly warmer than 

other years and therefore the calculated heat losses in the month of July for those three years 

are notably lower than the ANN predicted heat losses. The similar deviation is observed for 

hourly average heat loss prediction in Figure 5.9.   

5.4 Case study 2: Buildings in Nottingham 

The second case study has been conducted in an externally insulated mid terraced and an 

uninsulated end terraced building in Nottingham, England. Figure 5.15 shows the infrared 

image of the insulated and uninsulated buildings where the two buildings are adjacent to 

each other.  The infrared image of these two adjacent buildings is taken using FLIR T640 

thermal camera during a thermographic survey on 12th February at around 8.30pm. The 

ambient temperature during the survey was 5oC. Again, Thermacam quick report software 

from FLIR is used to extract the pixelwise temperature values from the infrared image of the 

buildings.   

5.4.1 Analysis of infrared image 

Similar to the approach followed in the first case study, the average wall surface temperature 

at different section in the insulated and uninsulated buildings are marked in Figure 5.15. The 

average wall surface temperature at different section in the uninsulated building ranges from 

8.19oC to 8.24oC. On the other hand, the wall surface temperature at different section in the 

insulated wall ranges from 6.55oC to 6.65oC. It is also noticed in Figure 5.15 that the 

insulated building is fitted with photovoltaic solar cell on the roof to make it more energy 
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efficient. The average wall surface temperature difference between the two buildings is circa 

1.6oC. Figure 5.16 shows the temperature profile along line ABCD on the infrared image 

where the temperature values along AB represents the wall surface temperature of the 

uninsulated building, BC represent the wall surface temperature of the insulated building 

and CD present the wall surface temperature of another uninsulated building next to the 

insulated one. 

 

Figure 5.15: Infrared image of the insulated and the uninsulated house in Nottingham 

The wall surface temperature in the uninsulated building along line AB ranges from 7oC to 

8.5oC. There are two rooms noticed in the uninsulated building where the heating looks 

switched of in the left-hand side room with wall surface temperature ranges between 7oC to 

7.5oC. The wall surface temperature in the right-hand side room ranges between 7.5oC and 

8.5oC and warmest area represents the position of radiator behind the wall. The temperature 

profile along line BC shows that the wall surface temperature in the insulated building varies 

between 6.5oC and 7oC the position of radiator behind the wall is represented by the warmest 

area with a temperature of 7oC. Therefore, the infrared image in Figure 5.15 and the 

temperature profile in Figure 5.16 reveal similar information as the infrared images in the 

6.65oC

6.57oC

6.55oC
8.21oC

8.24oC

8.19oC
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first case study that the walls of uninsulated buildings always remain warmer than the walls 

of insulated buildings. Similar to the first case study, the mean value of wall surface 

temperature is considered for the heat loss calculation using equation 2.8.  

 

Figure 5.16: Temperature profiles generated from infrared images of the insulated and the 

uninsulated house in Nottingham. 

5.4.2 Hourly average heat loss prediction 

Prior to the heat loss prediction, a sensitivity analysis has been conducted following the same 

procedure as it is performed in the first case study. Figure 5.17-a shows the sensitivity of the 

number of hidden layers and Figure 5.17-b shows the sensitivity of number of neurons in 

each hidden layer for feed forward neural network. Both the figures show similar trend as it 
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is found in the sensitivity analysis for hourly average heat loss analysis in the first case study. 

The minimum APE is observed for six hidden layer and three neurons in each hidden layer. 

Therefore, the similar configuration of feed forward neural network (presented in Figure 5.4) 

used in the first case study is selected to use for the current case study. The sensitivity of 

number of neurons in the hidden layer for NARnet and NARxnet and the sensitivity of the 

number of cells in the hidden layer for LSTM neural network is presented in Figure 5.18.  

 

Figure 5.17: Sensitivity of feed forward neural network: (a) number of hidden layers and 

(b) number of neurons in each hidden layer for hourly heat loss prediction in case study 2. 

 

Figure 5.18: Sensitivity NARnet, NARXnet and LSTM neural network regarding the 

number of neurons in the hidden layer for hourly heat loss prediction in case study 2. 

Sensitivity of Number of Hidden Layers Sensitivity of Number of Neurons in Hidden Layers

(a) (b)

Sensitivity of Number of Neurons in Hidden Layers

Number of neurons/cells in hidden layer
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The NARnet and NARxnet shows minimum APE with 20 neurons in the hidden layer which 

is again similar to that of the first case study. However, APE is also found to be minimum 

with 140 neurons in hidden layer for NARnet which is not observed in first case study. For 

LSTM neural network the minimum APE is found with 200 LSTM cells in the hidden layer; 

however, with 100 to 160 LSTM cells in the hidden layer the APE remains almost constant. 

The APE slightly decreases with 180 cells in hidden layer and decrease again with 200 cells 

in the layer to reach at the minimum APE. This is different from the sensitivity analysis in 

the first case study where the APE stared to increase after 100 cells in the hidden layer. 

Although, the minimum APE is found with 200 cells in the hidden layer, there is no 

significant improvement observed between 100 and 200 cells in the hidden layer. Moreover, 

the APE is significantly high for all configurations. Therefore, it is decided to choose the 

same configuration as it is used in the first case study for all three recurrent neural networks. 

The percentage error of all four neural networks for both the insulated and uninsulated walls 

are presented in Appendix C. Figure 5.19 shows the average of the percentage errors (APE) 

in hourly heat loss prediction with the feed forward, NARnet, NARxnet and LSTM neural 

networks trained using two years to fifteen years of heat loss data. Among all four neural 

networks, the feed forward neural network shows the lowest APE in all cases for the 

insulated wall except when it is trained with 15 year of heat loss data (shown in Figure 5.19-

a). The APE reached around 10% when the feed forward network is trained with 7 and 11 

years of heat loss data. For uninsulated wall, the APE of feed forward neural network is the 

lowest throughout all training cases (shown in Figure 5.19-b). The APE stays below 20% for 

both the walls when the feed forward network is trained with 7 years or more of heat loss 

data except with 10 years training.  When the feedforward network is trained with 10 years 

of heat loss data the APE goes slightly over 20% in case of insulated wall however, for 

uninsulated wall it jumps to around 40%. Except this aberration in the uninsulated wall, the 
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feedforward network is able to achieve 80% accuracy in all cases when it is trained with 7 

years or more of heat loss data. The APE of NARnet and NARxnet mostly stay above 50% 

except NARnet shows below 40% APE when it is trained with 13 years and 15 years of heat 

loss data, respectively.  

 

Figure 5.19: Comparison of performances among feed forward, NARnet, NARXnet and 

LSTM neural networks for hourly heat loss prediction in (a) insulated building and (b) 

uninsulated building in case study 2. 

(a)

(b)
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The LSTM neural network shows close to 20% APE when it is trained with 12 years or more 

of heat loss data with the lowest APE achieved by the network trained with 15 years of heat 

loss data. Therefore, similar conclusion as the first case study can be drawn based on the 

APE presented in Figure 5.19 which is NARnet, NARxnet and LSTM neural networks are 

not suitable for the hourly average heat loss prediction. The feed forward neural network is 

found to be capable of predicting the hourly average heat loss with more than 80% accuracy 

if it is trained with 7 years or more of heat loss data.  Figure 5.20 shows the feed forward 

neural network predicted heat loss curve and the calculated heat loss curve for the years 

2012-2019 for both the insulated and the uninsulated walls.  

 

Figure 5.20: Comparison between the calculated heat loss and the ANN (feed forward) 

predicted heat loss for the years 2012 to 2019 in buildings of second case study. 

Similar to the first case study, the feed forward neural network trained with 8 years of heat 

loss data from 2004 to 2011 is selected for the comparison. Again, the ANN predicted heat 
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losses are found to be very close to the calculated heat loss in most of the cases like in the 

first case study and similar type of deviations in the heat loss profile are observed as well.  

These deviations can be attributed to the variation in weather between the periods considered 

for training the ANN and predict the heat loss. 

5.4.3 Monthly heat loss prediction 

The result of sensitivity analysis regarding the number of hidden layers and the number of 

neurons in each hidden layer in a feed forward neural network for the monthly total heat loss 

prediction of this case is shown in Figure 5.21-a and 5.21-b, respectively.  

 

Figure 5.21: Sensitivity of feed forward neural network regarding (a) number of hidden 

layers and (b) number of neurons in each hidden layer for monthly heat loss prediction in 

the second case study. 

Again, it is found that with the increase in number of hidden layers the APE decreases and 

with the increase in number of neurons in a hidden layer the APE increses. However, the 

APE reached the minimum and remain stable from 10 hidden layers. Regarding the 

sensitivity of number of neurons in a hidden layer, the minimum APE is obtained with two 

neurons in each hidden layer. Therefore, the feed forward network configuration used in the 

monthly heat loss prediction in the first case study can be adopted in this case study as well.  

Figure 5.22 shows the result of the sensitivity analysis regarding the number of neurons in 

Sensitivity of Number of Hidden Layers Sensitivity of Number of Neurons in Hidden Layers

(a) (b)
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the hidden layer for NARnet and NARxnet and the number of cells in the hidden layer for 

LSTM neural network. Again, the APE of LSTM neural network is far lower than the APE 

of NARnet and NARxnet as found in the first case study. The minimum APE for NARnet 

and NARxnet is found to 60% with 12 neurons in the hidden layer, which is very poor 

prediction accuracy. However, these two networks are considered to use for the monthly 

heat loss prediction to further evaluate their performance with full data set. The APE of 

LSTM neural network is stable and remains below 10% with all different combinations of 

LSTM cells in the hidden layer. Therefore, the LSTM neural network with 12 cells in the 

hidden layer is selected for the current case study as the same configuration shows very good 

prediction accuracy in the first case study. Moreover, keeping the number of cells in the 

hidden layer as low as possible facilitates faster calculation in short time.    

 

Figure 5.22: Sensitivity NARnet, NARxnet and LSTM neural network regarding number 

of neurons in hidden layer for monthly heat loss prediction in second case study. 

The percentage error of all four neural networks used in the case study and trained with 2 

years to 15 years of heat loss data are included in Appendix D for both wall types. Figurers 

5.23-a and 5.23-b show the mean value of percentage errors in the monthly heat loss 

Sensitivity of Number of Neurons in Hidden Layers

Number of neurons/cells in hidden layer
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prediction for the insulated and the uninsulated wall for different networks where the 

networks are trained with 2 years to 15 years of heat loss data. Similar to the first case study, 

the LSTM neural network shows the best performance among all the neural networks used 

in the current case study. The APE of the LSTM neural network remains consistently less 

than 10% in all cases which is even better than that of the first case study.  

  

Figure 5.23: Comparison of performances among feed forward, NARnet, NARxnet and 

LSTM neural network for monthly heat loss prediction in (a) insulated building and (b) 

uninsulated building in case study 2. 

(a)

(b)
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In first case study the APE of the LSTM network trained with 5 years of heat loss data jumps 

to 20% which does not occur here. The APE of the feed forward neural network remains 

slightly higher than that of the LSTM network and it ranges between 10% and 20%. 

However, in some cases for instance when the network is trained with 9 years and 12 years 

of heat loss data for insulated wall, the APE is same for both the feed forward networks and 

the LSTM network. Another similarity in the APE between the feed forward network and 

the LSTM network is observed in case of uninsulated wall when the network is trained with 

8 years and 10 years of heat loss data. The performance of NARnet and NARxnet is far 

behind the performance of LSTM and feed forward neural network. Only the NARxnet 

shows below 20% APE when the network is trained with 15 years of heat loss data which 

also observed in the monthly heat loss prediction in the first case study. The NARnet shows 

the minimum APE when the network is trained with 13 years of heat loss data which is 

different than the first case study where NARnet achieves the minimum APE when trained 

with 15 years of heat loss data. As the NARnet and NARxnet show very high APE for most 

of the cases, they are considered unsuitable for monthly total heat loss prediction. It is 

decided to compare the LSTM neural network predicted heat loss curve with the calculated 

heat loss curve for the network that is trained with 8 years of heat loss data because the 

LSTM neural network shows the best prediction performance, and the first case study shows 

that the networks trained with 8 years of more of heat loss data are stable enough to learn 

the characteristics of training data with significant accuracy. Figure 5.24 shows the 

comparison between calculated heat loss and LSTM neural network predicted heat loss for 

both the insulated wall and the uninsulated wall; and it is found from the figure that both the 

actual and the ANN predicted heat loss curves show identical trend. Although there are some 

deviations noticed, for instance the higher calculated heat loss in February-March of 2013 
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and 2018, these are assignable to extreme weather as discussed in the first case study as well 

as in the hourly heat loss predictions.   

 

Figure 5.24: Comparison between the calculated monthly heat loss and the ANN (LSTM) 

predicted monthly heat loss for the years 2012 to 2019 in buildings of second case study. 

5.5 Energy savings 

The two case studies presented in this chapter demonstrate that feed forward neural network 

is suitable for hourly average heat loss prediction and LSTM neural network is suitable for 

monthly total heat loss prediction with a significant accuracy when the neural networks are 

trained with more than 8 year of heat loss data. However, it is worthy to look at the estimation 

of energy savings using the ANN predicted heat losses. Figure 5.25-a 5.25-b show the 

estimated energy savings in the insulated buildings for the first and second case study, 

respectively. The hourly average heat loss predicted by the feed forward network and the 

monthly total heat loss predicted by the LSTM neural networks are considered for energy 

savings estimation where all the networks are trained with 8 years of heat loss data. The 

difference in yearly total heat loss between the insulated building and the uninsulated 
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building represents the energy savings. The energy savings is calculated for the years 2012 

to 2019 for both case studies. The calculated heat loss in the years 2012 to 2019 for both 

buildings in both case studies are considered to compare with the ANN results. 

 

Figure 5.25: Comparison of energy savings among calculated heat loss, feed forward 

neural network predicted heat and LSTM neural network predicted heat loss: (a) case study 

1 and (b) case study 2 

It is found from Figure 5.25 that the difference between the ANN predicted energy savings 

and the calculated energy savings stays between ±35 kWh/m2 (±10%) in the first case study 

and between ±15 kWh/m2 (±10%) in the second case study for all the years except 2013. 

The deviation in 2013 is ±49 kWh/m2 (±12%) and ±22 kWh/m2 (±16%) for the first and 

Energy Savings: Case Study 1

Energy Savings: Case Study 2

(a)

(b)

LSTMFeed forwardCalculated

LSTMFeed forwardCalculated
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second case study, respectively. Looking at the heat map in Figure 5.10 it is found that the 

winter in 2013 is cooler than any other years in the heat map and the summer is warmer than 

any other years in the heat map. Therefore, the extreme weather in 2013 is responsible for 

the high deviation in the ANN energy savings. Therefore, the case studies confirm that the 

ANN can guarantee 84% accuracy to estimate energy savings despite the influence of 

extreme weather condition. It is highly unlikely to see extreme winter and summer like the 

year 2013 regularly and therefore, ANN is expected to achieve 90% prediction accuracy for 

estimation of energy savings in majority of cases. Figure 5.26 shows the payback periods 

which are estimated using the feed forward and LSTM neural network predicted heat loss as 

well the using the calculated heat loss for retrofitting an uninsulated building with improved 

insulation to achieve the performance of insulated building presented in the first case study. 

Considering the buildings are centrally heated using gas boiler and the price of gas is 3.9 

pence/ kWh ( United Kingdom natural gas prices, no date) the savings in energy bills can be 

calculated. According to that the average savings are listed in Table 5.1. 

Table 5.1: Average savings in energy bills per year. 

 Average savings 

per year (£/m2) 

Cost of 

Investment (£/m2) 

Actual calculation 13.08  

 

100 
Feedforward neural 

network prediction 

13.04 

LSTM neural 

network prediction 

13.48 

 

Assuming the cost of retrofitting is £100/m2 (The Green Age, 2016), the payback period for 

the calculated heat loss is found to 7 years and 7 months. With the similar assumptions, the 

payback period estimated using the LSTM neural network predicted heat loss is 7 years 5 

months and the payback period estimated using the feed forward neural predicted heat loss 

is 7 years 8 months. Therefore, the deviation in estimated payback period using the ANN 

precited heat loss is within ±2 months and that shows the practicability of using ANN to 
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predict heat loss and estimate the payback period of the investment on retrofitting buildings 

with improved insulation. 

 

Figure 5.26: Estimation of simple payback period for the retrofitted house in case study 1. 

5.6 Conclusion 

Real buildings experience variable weather conditions and complex occupants’ behaviour 

and therefore it is difficult to estimate exact energy savings in a building other than 

monitoring it for a long period. In fact, the mathematical model presented in this chapter 

confirms that the monitoring period is infinity. Hence, it is more practical to simulate the 

potential energy performance of a building using a simplified model with sufficient real data. 

In relation to that, a novel approach for predicting heat loss through a building’s wall 

integrating thermography and ANN is presented in this chapter and its application is 

validated with two case studies. The infrared image analysis of the buildings in both case 

studies shows the rapidness and practicability in evaluating a building’s thermal performance 

in a noncontact way. The sensitivity analysis of parameters regarding different ANN’s 

configuration in both case studies shows identical responses and indicates that configuration 

of the different ANN presented in Figure 5.4 and Figure 5.6 would be ideal to use for heat 

LSTMFeed forwardCalculated

Payback Period: Case Study 1

Zero line
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loss prediction. It is found from the result of the case studies that feed forward neural network 

with six hidden layers and three neurons in each hidden layer is the most suitable 

configuration for hourly average heat loss prediction and LSTM neural network with 12 

LSTM cells in the hidden layer is the most suitable configuration for monthly total heat loss 

prediction. Although the mathematical model suggests that a building should be monitored 

for infinite number of years, the case study results demonstrate that 8 years monitoring data 

is sufficient for the ANN to predict heat loss with reasonable accuracy. Regarding estimation 

of energy savings in an externally insulated building, the approach to predict hourly average 

heat loss using feed forward and the approach to predict monthly total heat loss using LSTM 

neural network show similar performance. However, the monthly total heat loss prediction 

approach is faster than the hourly heat average heat loss prediction approach as it requires 

less calculation during the training process of ANN. The payback period analysis 

demonstrates that using ANN prediction for energy savings estimation in a retrofitted house 

with improved insulation would be able to determine the projected payback period which is 

accurate up to the quarter of a year. The application of this novel approach can facilitate 

architects and engineers to evaluate the thermal performance of a building’s wall ahead of 

executing the building’s retrofits. This will also allow the investors to realise the rate of 

return on the investments for retrofitting a building before the investment is made. 

Considering the complex and variable environmental parameters such as temperature, wind 

speed, solar irradiation and uncertain people’s behaviour, monitoring a building for many 

years will not guarantee exact estimation of energy savings. Rather the use of the simplified 

approach presented in this chapter with some assumption would provide sufficient 

information about energy savings with reasonable accuracy.      

  

  



108 

 

Chapter 6:  Development of U-value Estimation Kit 

6.1 Introduction 

The literature review points out the limitations of existing U-value measurement methods 

and there is a research gap in applying ANN integrated with infrared thermography for the 

estimation of U-value of a building’s wall. In order to overcome the limitations of existing 

U-value estimation methods, the idea to develop a novel U-value estimation kit is presented 

in chapter 3. One of the key limitations of the current methods is the mandatory existence of 

a significant thermal gradient between indoor and outdoor environment and the novel 

product is designed to overcome this problem with the introduction of a point heat source 

from the internal side of a wall. Monitoring the walls during the application of point heat 

would provide significant information regarding the thermal characteristics of a wall. ANN 

can be employed to learn those thermal characteristics of a wall and identify the wall type 

based on that. In this chapter the development process of the novel U-value estimation kit is 

described. The next section describes the construction process of the proposed U-value kit 

followed by some initial experimental work with it. Section 6.3 includes the required 

modification made on the basis of the outcomes of those initial experiments. Section 6.4 

discusses the visual inspection of the infrared images obtained from monitoring some sample 

materials with the U-value kit followed by the introduction of ANN to analyse these data in 

section 6.5. The monitoring of some sample walls made of the materials used in real 

buildings’ construction are discussed in section 6.6. Section 6.7 includes the detailed process 

of developing key temperature profiles for ANN analysis based on the visual inspection of 

infrared images. In section 6.8 the categorisation of wall types using ANN based on the 

temperature profiles developed in section 6.7 is presented. A similar case study, as a part of 
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this PhD research, has been published in Sen and Habaibeh (2019) which is added in 

Appendix F. 

6.2 Construction of the U-value kit 

In order to construct the U-value estimation kit according to the schematic set up presented 

in chapter 3 (Figure 3.4), 3D CAD model of the major parts of it are developed using 

SolidWorks software.  

 

Figure 6.1: Schematic model of the proposed U-value kit with its major parts and 

assembly. 

Figure 6.1-a shows the major parts of the U-value kit and Figure 6.2-b shows the assembled 

3D model. A plastic box of dimension 37.7x27.7x27.8 cm is chosen as the main body of the 

U-value kit. IRISYS 1002 infrared camera is selected to capture infrared images at the initial 

phase of this product development as it is readily available in the laboratory. It is designed 

to fit the camera at the bottom of the plastic box. The plastic box and the infrared camera is 

Glow plug

Aluminium bar

Plastic box IR Camera

Assembled kit.

(a)

(b) (c) (d)

Plastic box.
IRISYS 1002 

infrared camera.
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shown in Figure 6.1-c and 6.1-d, respectively. IRISYS 1002 infrared camera is a low-

resolution infrared camera that is able to capture and save infrared images in 16x16 pixels 

format. A car engine glow plug is chosen to use as the point heater. The car engine glow 

plug operates with DC power supply and can generate very high heat at the tip of it. By 

controlling the input voltage, it is possible to control the amount of heat generated at the tip 

of the plug. The response of the glow plug is tested by supplying low voltage at different 

ranges using a variable DC power supply to determine the optimum operating voltage which 

is shown in Figure 6.2.  

  

Figure 6.2: The test of glow plug performance of with the help of a variable power supply. 

The tip temperature of the glow plug is measured by using a K-type thermocouple-based 

temperature sensor. It is found that at supply voltage 1V the tip temperature reaches at 70oC 

and at supply voltage 3V the tip temperature reaches at 150oC. This is a very high 

temperature, and it may risk burning of wall surface. However, the area of glow plug tip that 

comes in contact with the wall surface is very small. Therefore, it may not cause any damage 

to the wall surface. In order to find the effect of heating a surface with the glow plug, it is 

tested on a MDF board for about an hour (shown in Figure 6.3).  
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Figure 6.3: Test of the glow plug heating on MDF board for burning spot. 

After an hour of heating, it is found from visual inspection that the MDF board does not have 

any burning marks or spot. The absence of any burning mark or spot signifies that glow plug 

is safe to use as heater in the test rig. The glow plug is fitted in the plastic box with the help 

of an aluminium bar. A K-type thermocouple is also attached at the tip of glow plug to 

measure the tip temperature. This is to ensure that if the tip temperature becomes 

dangerously high at any point during the experimentation due to any electrical fault, the 

power supply could be cut off before it catches fire.   

 

Figure 6.4: Schematic diagram of (a) sample A (MDF), (b) sample B (MS) and (c) sample 

C (MS and MDF clamped together). 

13 mm 3 mm 3 mm + 13 mm = 16mm  

(a) (b) (c)
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For the initial experiment, it is planned to select two samples: one sample consists of a 

material with high thermal insulation and another sample consists of a with high thermal 

conductivity; so that their thermal responses after applying the point heat can be easily 

differentiated by visual inspection of respective infrared images. Afterwards, a third sample 

is added as combination of these two materials attached together. For that, a 13 mm thick 

Medium Density Fibre (MDF) board is selected as material with high thermal insulation 

which is named as sample A. A Mild Steel (MS) sheet of thickness 3 mm is selected as 

material with high thermal conductivity which is named as sample ‘B’. Sample ‘C’ is 

constructed as the combination of A and sample B by clamping them together. The thermal 

conductivity of MDF is 0.18 W/m.K (ISO 10456, 2007), and the thermal conductivity of MS 

is 50 W/m.K (Anderson, 2006). The samples are schematically presented in the diagrams of 

Figure 6.4. The detailed properties of these three samples are included in Table 6.1. The U-

values of these samples are calculated using equation 2.3. Equation 2.3 includes thermal 

resistances of air at internal and external wall surfaces. The layers of stagnant air near the 

wall surfaces limit the heat transfer to their resistance values. Hence, the air resistances at 

both sides need to be considered to avoid overestimation of the U-value. The heat generated 

by the glow plug is transferred through the wall from internal side to external side in two 

mechanisms. Firstly, direct conduction of heat at the point where the glow plug touches the 

wall. Secondly, the heat gained by the air in the internal side of the wall due to convection 

is conducted through the wall. In both cases, thermal resistance of the air in the external side 

needs to be considered for the U-value calculation due to the presence of stagnant air in the 

external side. For the first mechanism the thermal resistance of air in the internal side is not 

applicable as there is no gap between the glow plug and the wall. For the second mechanism 

the thermal resistance of air in the internal side needs to be considered as a stagnant layer of 

air present near the wall. In a 16x16 pixel infrared image, heat transfer by second mechanism 
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occurs at 255 points out of 256 and they require considering the thermal resistance of air in 

the internal side. The heat transfer by first mechanism occurs at only one point out of 256 

where the thermal resistance of air is not considered. As a result, neglecting the exclusion of 

internal air resistance for one point would simplify the calculation process without affecting 

the result. Therefore, the thermal resistance of air at internal surface and external surface is 

considered as 0.13 and 0.04 respectively for the entire wall (Anderson, 2006).  

Table 6.1: Properties of samples A, B and C 

Sample 

No 

Material  Thickness 

(mm) 

Thermal 

Conductivity 

(W/m.K) 

U-value 

(W/m2K) 

A MDF 13 0.18 4.128 

B MS 3 50 5.880 

C MS and MDF 

clamped together 

13 + 3 = 16 - 4.127 

 

The initial experiments conducted on sample A and sample B are shown in Figurer 6.5-a and 

Figure 6.5-b respectively. The infrared images are captured at 5 seconds interval. The tip 

temperature and external environment temperature are measured using a K-type 

thermocouple and the readings are logged with National Instrument’s USB-TC01 data 

acquisition system with an interval of 1 second. 

 

Figure 6.5: Initial test on (a) sample A (b) sample B. 

(a) (b)
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During the experiments, the samples are monitored for about an hour, and the infrared 

images are then visually analysed. Figure 6.6 includes the infrared images after 1 minute, 10 

minutes, 30 minutes and 50 minutes, respectively from the experiment on sample A and 

Figure 6.7 includes the infrared image at the same intervals from the experiment on sample 

B. The original low resolution images are enhanced to high resolution to facilitate visual 

inspection. In all infrared images, the bright area at the centre of the image represents the 

position of the glow plug heater. The bright area continuing from centre towards the left of 

the images represent only half portion of the aluminium bar that holds the heater. However, 

it is expected that the full aluminium bar to be represented in the infrared images because it 

is the same material in both sides and the glow plug is positioned at the centre of the 

aluminium bar. One possible reason for this unbalanced image is probably the presence of 

the wires that connects the heater with the power supply. As the wires are fixed on the left 

portion of aluminium bar, the heat coming out of the wires become prominent in the infrared 

images. Furthermore, because of these very bright areas at the centre of the images, the 

change in temperatures at the surrounding of the heater is difficult to detect. 

 

Figure 6.6: Infrared images of sample A from the initial test. 

Sample A

Image after 1 minute

50 100 150 200

50

100

150

200

20

21

22

23

24

25

26

27

28

29

30oC
50

100

150

200

50

100

150

200

50 100 150 200 50 100 150 200

50 100 150 200

50

100

150

200

Image after 10 minutes

Image after 30 minutes Image after 50 minutes



115 

 

 

Figure 6.7: Infrared images of Sample B from the initial test. 

To overcome this problem the aluminium bar and the rear portion of glow plug are insulated 

with rock wool. Figure 6.8-a shows the rock wool insulation on the aluminium bar and Figure 

6.8-b shows the wrapping on the insulation.   

 

Figure 6.8: (a) rock wool insulation of aluminium bar and glow plug and (b) the wrapping 

on the insulation. 

6.3 Experiment with the modified test kit 

After modifying the test rig, the same experiments are conducted again on sample A and 

sample B. The experimental set up is shown in Figure 6.9 for sample A and in Figure 6.10 

for sample B.  
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Figure 6.9: Test on sample A after modification 

The previous experiments show that it is sufficient to monitor the samples for 50 minutes to 

obtain the distinguishable features in infrared images by visual inspection. Therefore, in this 

occasion, the samples are also monitored for about an hour to ensure that at least 50 minutes 

data would be available for analysis. The infrared images are saved at interval of 5 seconds, 

and the tip temperature and external environment temperatures are recorded at intervals of 1 

second using K-type thermocouple and USB-TC01 data acquisition system.  Figure 6.11-a, 

6.11-b, 6.11-c and 6.11-d show the comparisons between infrared images of sample A and 

sample B after 1 minute, 10 minutes, 30 minutes and 50 minutes respectively from the 

experiments conducted with the modified test kit.   

 

Figure 6.10: Test on sample B after modification 

MDF 

board

Infrared 

Camera

Insulated 

aluminium bar 

Mild 

Steel 

Sheet

Infrared 

Camera
Insulated 

aluminium bar 

Point 

heater



117 

 

 

 

Figure 6.11: Infrared images of sample A1 and sample A2: (a) after 1 minute, (b) after 10 

minutes, (c) after 30 minutes and (d) after 50 minutes. 

It is noticed in the infrared images of Figure 6.11 that the glow plug heater is no more visible, 

and the aluminium bar is equally visible on both sides of the heater. As a result, the 

temperature changes in surrounding areas of heater are clearly detectable through visual 

inspection. The infrared images of sample A and B show that the surfaces get warm over the 

time due to application of point heat which is noticeable after 10 minutes. It is also observed 

from the infrared images that the temperature on the surface of sample A increases at a faster 

rate than that of the sample B which clearly reflects the difference in heat transfer through a 

highly conductive material and a highly insulated material. As sample A consists of a highly 

insulated material with low U-value, most of the applied heat could not pass through the 

surface which makes the surface very warm at the end of the monitoring period. On the other 
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hand, most of the applied heat passes through the surface of sample B as it is a highly 

conductive material leaving the surface cooler than that of the sample A. To evaluate the 

temperature distribution on the surface of a moderately conductive or moderately insulating 

material, the same experiment is repeated on sample C as shown in Figure 6.12. The infrared 

images obtained from this experiment are compared with the infrared images of sample A 

and sample B.  

 

Figure 6.12: Test on sample A3 after modification of test rig. 

6.4 Visual analysis of infrared images from samples A, B and C 

The 16x16 pixel infrared images, obtained from the experiments conducted on samples A, 

B and C are reproduced to 241x241 pixel image in MATLAB for better visual representation.  

The images are then placed adjacent to each other in one frame to visually inspect the 

difference among them. Figure 6.13-a, 6.13-b and 6.13-c show the infrared images of sample 

A, sample B and sample C respectively. In each infrared image, three areas are spotted where 

the temperature differences among the similar areas in other images can be visually 

differentiated based on the characteristics of brightness. These areas are marked with black 

circle in the images of Figure 6.13.  All the circled areas on the infrared image of sample A 

are brighter than same areas of two other infrared image. 
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Figure 6.13: infrared image of (a) sample A, (b) sample B and (C) sample C. 

The left and right circled areas on the image sample C are slightly brighter than the same 

areas of the image of sample B. However, the top-circled areas of these two images are not 

clearly distinguishable. MDF has a very low thermal conductivity compared to MS, and 

consequently less heat passes to the other side through the surface of the sample A than that 

of the samples B and C. Therefore, the surface temperature of sample A becomes higher than 

that of samples B and C, which is represented by high intensity of bright areas in the 

respective infrared image. The equivalent thermal transmittance or U-value of sample C is 

lower than that of sample B and but higher than the U-value of sample A. Therefore, intensity 

of brightness in the circled areas on the infrared image of sample C is higher than that of 

sample B but lower than that of sample A. In order to study the temperature profile through 

any point on an infrared image, the temperature values of a specific point on the first 600 

images are extracted for all three samples. These temperature values are plotted in pairs to 

visually compare the temperature profiles. Figure 6.14 shows the temperature profiles 

through same points on infrared images of sample A and sample B. Figure 6.15 and 6.16 

show the temperature profile comparison between the same points on infrared image of 

sample C vs sample B and sample A vs sample C, respectively. 
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Figure 6.14: Comparison of temperature profile through a specific point on infrared images 

of sample A and sample B. 

 

Figure 6.15: Comparison of temperature profile through a specific point on infrared images 

of sample C and sample B. 
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method of visual inspection confirms that by analysing the temperature profile through some 

specific points on a series of infrared images acquired under the application of a point heat, 

it is possible to identify the wall type. Therefore, the use of ANN in relation to the analysis 

of the infrared images with the temperature profiles generated through each point could 

enhance the identification process. 

 

Figure 6.16: Comparison of temperature profile through a specific point on infrared images 

of sample A and sample C. 
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the experiment on sample A. Therefore, total 48 sets of data from three different samples are 

available for analysis using ANN, and each data set contains 12800 (16x16x50) input 

elements. Each sample is defined as a class which is the target or output of the network, and 

the network will be trained to identify the correct class. The network consists of one hidden 

layer, one softmax layer and one output layer as shown in Figure 6.17.  

 

Figure 6.17: Neural Network Architecture for the classification of samples A, B and C 

[Source: generated using Matlab software] 

The hidden layer contains 10 neurons and the softmax layer contains three neurons. The 48 

set of data is randomly divided into two parts with 34 sets of data (70%) is used for training 

the network and rest of the data (14 sets) are used to test and validate the network. The initial 

performance of the network shows that it attains 100% accuracy for class identification. The 

visual inspection shows that the temperature profiles are clearly distinguishable and hence 

the high accuracy by the ANN is justified. However, the outcome of the ANN analysis 

signifies the potential application of ANN for identifying wall types with high accuracy from 

set of infrared images captured during the application of point heat. In the next step the 

experimentation is extended to brick and concrete block walls to see the response of ANN. 

6.6 Experiments on brick and concrete block walls 

Up on achieving favourable outcome from the experiments on sample A, B and C, it is 

decided to study the performance of the test kit on sample walls consisting of real building 

materials. For this, sample walls made of hollow brick and concrete block are selected to 
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monitor in laboratory. The thickness of the brick wall is 100 mm, and the thickness of the 

concrete wall is 95 mm. EcoTherm board with a thickness of 100 mm is chosen as the 

external insulation material for these walls. EcoTherm is a Polyisocyanurate based insulation 

material and the thermal conductivity of the material is 0.022 W/mK (EcoTherm insulation, 

no date). Therefore, four combination of specimen walls are prepared namely: brick wall, 

concrete block wall, insulated brick wall and insulated concrete block wall. The schematic 

diagrams of these wall sections are shown in Figure 6.18 -a, 6.18 -b, 6.18 -c and 6.18-d 

respectively.  

 

Figure 6.18: Schematic diagram of (a) sample D, (b) sample F (c) sample E and (d) sample 

G. 

These sample walls are named as sample D, sample E, sample F and sample G. The detailed 

properties of these samples are tabulated in Table 6.2. The thermal conductivity of brick wall 

is taken as 0.27 W/m.K (Antoniadis et al., 2012), and the thermal conductivity of concrete 

block is considered as 1.5 W/m.K (ISO 10456, 2007). Same as before the U-value of these 

samples are calculated using equation 2.8 considering the similar values of the thermal 

resistance of air at internal surface and external surface. Figures 6.19 and 6.20 show the 

experiment on sample D and F respectively. Same as previous experiments, the infrared 

images are captured at every 5 seconds, and the tip and external temperatures are recorded 

at every second using National Instrument’s USB-TC01 data acquisition system.  

100 mm 95 mm 100 mm + 100 mm = 200mm  95 mm + 100 mm = 195mm  

(a) (b) (c) (d)
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Table 6.2: Properties of samples D, E, F and G. 

Sample 

No 

Material  Thickness 

(mm) 

Thermal 

Conductivity 

(W/mK) 

U-value 

(W/m2K) 

D Brick 100 0.27 1.86 

E Brick insulated externally with 

Ecotherm 

100+100 =200 0.27 & 0.22 1.01 

F Concrete block  95 1.5 4.29 

G Concrete block insulated 

externally with Ecotherm 

95+100=195 1.5 & 0.22 1.45 

 

 

Figure 6.19: Experiment on sample D. 

 

Figure 6.20: Experiment on sample F. 
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Figure 6.21: Experiment on sample E. 

 

Figure 6.22: Experiment on sample G. 

The experiments on insulated brick wall and insulated concrete block wall are shown in 

Figure 6.21 and 6.22 respectively. The same experiment on each wall is conducted again on 

different days so that the first set of data can be used to train artificial neural network and 

the second set of data can be used to test the performance of the neural network. The data 

obtained from the second experiments on each wall are tagged as sample D1 for brick wall, 

sample E1 for insulated brick wall, sample F1 for concrete block wall and sample G1 for 

insulated concrete block wall. The physical and thermal properties of sample D1, E1, F1, 

and G1 remains same as that of sample D, E, F and G as presented in Table 6.2. All infrared 
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image and temperature data are recorded at similar intervals as it is in the previous 

experiments conducted on samples A, B and C. 

6.7 Visual analysis of infrared images obtained from samples D, E, F and G 

According to the findings from the experiments on sample A, B and C, the insulated brick 

walls and insulated concrete block walls should have higher temperature distribution on the 

internal wall surface areas than that of uninsulated brick walls and uninsulated concrete 

block walls. This is because insulated walls have lower U-value and hence major portion of 

heat could not pass through the walls. However, visual inspections of the images obtained 

from the experiments conducted on sample D, E, F and G do not support that. In some cases, 

the surface of insulated walls looks cooler than that of uninsulated walls. This could happen 

because of the higher ambient temperature at the time of conducting the experiment on 

uninsulated wall samples than that of the insulated wall samples.  

 

Figure 6.23: (a) Temperature profile of sample D and sample E through a specific point, 

(b) external temperature during the monitoring period of samples D and E. 
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b shows the distribution of external (ambient) temperature during the time of those 

experiments. Figure 6.23-b clearly shows that the ambient temperature remains higher 

during the monitoring period of sample D than the external temperature during the 

monitoring period of sample E. Hence, the temperature profile of sample E is found to be 

higher than that of sample D. To eliminate the effect of ambient temperature, the respective 

external temperature values are subtracted from the temperature values obtained at each 

pixel of an infrared image which is represented in equation 6.1. 

𝑇(𝑖,𝑗,𝑘)
𝑎 =  𝑇(𝑖,𝑗,𝑘) −  𝑇𝑘

𝑒𝑥𝑡                                                                (6.1)     

Here, 𝑇(𝑖,𝑗,𝑘)
𝑎  is the modified temperature value of pixel (i,j,k) on an infrared image, 𝑇(𝑖,𝑗,𝑘) is 

the original temperature value at pixel (i,j,k) on an infrared image and 𝑇𝑘
𝑒𝑥𝑡 is the external 

temperature when the infrared image is captured. Before calculating Ta according to equation 

6.1, the infrared images are synchronised based on the time at which the point heater is 

switched on so that the effect of application of the point heat is clearly distinguishable.  

Figure 6.24 shows the modified temperature profiles Ta of sample D and sample E. From the 

visual inspection of temperature profiles in Figure 6.24, it is difficult to clearly identify the 

difference between temperature profiles of sample D and sample E; however, it gives closer 

representation to the outcomes of previous experiments than the temperature profiles of 

Figure 6.23-a. Similar analysis is conducted for samples F and G; and it is repeated at three 

other specific points on top, right and bottom of the infrared images to see the response of 

Ta in other areas of wall. The visual comparisons in those Ta profiles show that the 

temperature profile of an insulated wall is higher than that of an uninsulated wall in 55% 

cases, and the temperature profile of an insulated wall is lower than that of an uninsulated 

wall in 20% cases. In 25% cases, it is not possible to differentiate between insulated and 

uninsulated walls from the visual inspection of the Ta profiles. 
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Figure 6.24: The profile Ta through a specific point on sample D and sample E. 

It is also noticed in the profiles in Figure 6.24 that the start point of the Ta profile of sample 

E is slightly below the start point of the Ta profile of sample D; however, finish point of the 

Ta profile of sample E is higher than that of sample D. This points out the fact that there is a 

difference in the gradient of temperature profiles in insulated walls and uninsulated walls. 

To evaluate the effect of difference in gradient of thermal profiles, the cumulative 

temperature difference between same points on two successive infrared images are 

calculated as shown in equation 6.2. 

𝑇(𝑖,𝑗,𝑘)
𝑏 = ∑[𝑇(𝑖,𝑗,𝑘+1) −  𝑇(𝑖,𝑗,𝑘)]

𝑘

1

                                                         (6.2) 

Here 𝑇(𝑖,𝑗,𝑘)
𝑏  is the cumulative temperature difference at pixel (i,j,k) and 𝑇(𝑖,𝑗,𝑘) is the original 

temperature value at pixel (i,j,k) on infrared image. Similarly, the cumulative difference of 

𝑇𝑎 between same points on two successive images can be calculated using equation 6.3. 

𝑇(𝑖,𝑗,𝑘)
𝑎𝑏 =   ∑[𝑇(𝑖,𝑗,𝑘+1)

𝑎 −  𝑇(𝑖,𝑗,𝑘)
𝑎 ]

𝑘

1

                                                         (6.3) 
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Here 𝑇(𝑖,𝑗,𝑘)
𝑎𝑏  is the cumulative temperature difference of modified temperature obtained from 

equation 6.1. The profiles 𝑇𝑏and 𝑇𝑎𝑏 through a specific point on sample D and sample are 

shown in Figure 6.25-a and 6.25-b, respectively. 

 

Figure 6.25: (a) Profiles of Tb and (b) profiles of Tab through a point on a brick wall 

(sample D) and an insulated brick wall (sample E). 

The profiles  𝑇𝑏 do not convey any discernible information to differentiate between insulated 

and uninsulated wall, and the profiles in Figure 6.25-b indicates that profile 𝑇𝑎𝑏 of 

uninsulated wall is higher than that of insulated wall. To further analyse the variability of 

those temperature profiles, five periods moving range is generated for profiles T, 𝑇𝑎,  𝑇𝑏 

and 𝑇𝑎𝑏, which are shown in Figure 6.26-a, 6.26-b, 6.26-c and 6.26-d respectively. None of 

the moving ranges produces noticeable differences that can be used to differentiate between 

insulated and uninsulated brick walls. Finally, the standard deviation of T,  𝑇𝑎,  𝑇𝑏 and 𝑇𝑎𝑏 

and the standard deviation of their five-period moving range are considered for analysis. The 

comparison of these standard deviations is shown in Figure 6.27-a and 6.27-b, respectively. 

Figure 6.27 points out that the standard deviations of those profiles of the insulated brick 

wall are higher than that of the uninsulated brick wall. The standard deviation of their moving 

range also expresses the similar information. From the different approaches of analysis 
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discussed above, three situations are observed. Firstly, profiles T and Tab of uninsulated brick 

wall are higher than that of insulated brick wall. Secondly, profiles Ta, Tb and five periods 

moving range of all profiles are not clearly distinguishable.  

 

Figure 6.26: (a) Five periods moving range of T, (b) five periods moving range of Ta, (c) 

five periods moving range of Tb, and (d) five periods moving range of Tab. 

Finally, the standard deviation of all profiles of insulated brick wall is higher than that of 

uninsulated brick wall, as well as the standard deviation of five periods moving range of all 

profiles of insulated brick wall is higher than that of uninsulated brick wall. 

 

Figure 6.27: (a) standard deviation of T, Ta, Tb and Tab (b) standard deviation of five 

periods moving range of T, Ta, Tb and Tab.  
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Figure 6.28: The result of visual inspection. 
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In each case, if the response of the profile or standard deviation of insulated wall is higher 

than that of uninsulated wall, it is considered as correct representation of profiles. If the 

profile or standard deviation of uninsulated wall is found higher than that of an insulated 

wall, it is considered as wrong representation; and the cases where it is not possible to 

differentiate between the two, is considered as undecided.  The outcome of the visual 

analysis is summarized using pie charts in Figure 6.28. The pie chart shows that standard 

deviation of T and  𝑇𝑏  provide the highest percentage of correct representations which is 

86% as shown in Figure 6.28-b and 6.28-h. It is also observed during the visual inspection 

that the standard deviation of T and Tb are always same because Tb is the cumulative first 

derivative of T and hence the dispersion of data in both cases are identical. However, they 

may have different mean values. The standard deviation of Tab provides second best correct 

representations which is 80% followed by the standard deviation of Ta which is 75% correct 

representations. Considering the two highest correct representation, standard deviation of Tb 

and standard deviation of Tab are selected to analyse using pattern recognition tool of ANN. 

Other than the standard deviation of profiles, profile Tb has the highest percentage of correct 

representation among all four profiles, which is 71% as found in Figure 6.28-g. This is also 

the fourth highest percentage of correct representation. In cases of standard deviation of 

moving ranges, the percentage of correct representations ranges from 59% to 63%. 

Therefore, profile Tb is also included for the ANN analysis as it shows the best percentage 

of correct recognition among all different temperature profiles. 

6.7.1 Readjustment of infrared images for accurate comparison 

A further problem is noticed while observing the infrared images, which is illustrated in 

Figure 6.29-a and 6.29-b. The position of the aluminium bar that holds the heater is not same 

for the brick wall and the insulated brick wall on the infrared images in some cases. The 

position of the aluminium bar in infrared image of insulated brick wall is at the middle line 
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of the image, which is shown by black line in Figure 6.29-b. However, the infrared images 

in Figure 6.29-a shows that the position of aluminium bar is slightly below the middle line 

of the image. Here, a black line represents middle line of the image and a blue line represents 

the position of the aluminium bar.  

 

Figure 6.29: (a) Infrared image of brick wall, (b) infrared image of insulated brick wall, (c) 

infrared image of brick wall with crop boundary and (d) infrared image of insulated brick 

wall with crop boundary. 

The aluminium bar is designed to be positioned at the middle of the test rig; however, the 

bar has been given some allowance to ensure that the point heater stays in continuous contact 

with the wall surface during the monitoring period. Sometimes the aluminium bar is 

displaced by the action of placing the test rig firmly against a wall surface. Therefore, it does 

not coincide with middle line in infrared image. The position of aluminium bar in infrared 

images can be considered as a reference line for the comparison of temperature profiles 

because the source of heating is located on this line and heat dispersion occurs on both side 
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of it. Consequently, this line contains the highest temperature values than any other lines in 

the infrared image. Therefore, it is necessary that the position of that bar should be identical 

on the infrared images in comparison. To overcome the problem the infrared images are 

cropped, keeping the position of aluminium bar at middle of the images, as shown in Figure 

6.29-c and Figure 6.29-d. These cropped images are used for analysis using ANN which is 

discussed in the next section. Also, this procedure to adjust the images is followed later 

where it is necessary. 

6.8 Categorisation of wall types using ANN  

To develop an ANN that is able to identify the correct wall type from the temperature profiles 

of the samples D, E, F and G, the pattern recognition tool in MATLAB is selected. As 

mentioned in section 6.6, each sample has been monitored twice to ensure obtaining two sets 

of data. Of them, the data obtained from the first instance of monitoring are used to form the 

training data set and the second instance of monitoring data are considered for the test data 

set.  Similar to the previous analysis with samples A, B and C, 600 infrared images captured 

at 5 seconds interval during the application of point heat are selected for each sample. Then 

those infrared images are divided in to 12 sets containing 50 images in each set and hence 

the time gap between two successive images in a set becomes one minute. Therefore, four 

different wall samples supplying 12 data set each produce 48 input data sets in total. Each 

input data set is composed of 9600 (12x16x50) input elements for profile Tb and 192input 

elements for the standard deviations of profiles Tb and Tab. The output data set contains 48 

elements of four classes where each class represent a sample wall. These 48 data sets from 

the first instance of monitoring all the samples construct the training data set. Similarly, the 

test data set is formed with the data obtained from the second instance of monitoring. The 

AAN designed in this occasion also consists of four layers as it is used for samples A, B and 

C. Apart from input and output layers there are one hidden layer and one softmax layer. The 
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output and the softmax layer contain 4 neurons as there are only four classes. The input layer 

contains 9600 neurons when profile Tb is used as input because there are 9600 elements in 

each input data set.  

 

Figure 6.30: Percentage error in categorisation of wall samples (a) profile Tb, (b) standard 

deviation of profile Tab and (c) standard deviation of profile Tb. 
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For the standard deviations of profiles Tb and Tab as input, the input consists of 192 neurons 

as there are 192 elements in each input data set. The number of neurons in hidden layer is 

varied from 10 to 45 with a step of five neurons to evaluate the optimum configuration of 

hidden layer for this type of categorisation problem. As discussed in the previous chapters, 

the ANN is trained and tested 25 times to generalise the outcome of ANN analysis and the 

mean performance of ANN is considered which is presented in Figure 6.30. Figure 6.30-a, 

6.30-b and 6.30-c show the percentage error in categorisation of wall samples using profile 

Tb, standard deviation of Tab and standard deviation of Tb respectively as input to the ANN. 

It is found from Figure 6.30-a that the ANN achieves very high accuracy of categorising 

sample E1 with less than 10% classification error; however, the percentage error in 

categorising samples D1 and G1 are over 90%. The percentage error gradually goes down 

for categorisation of sample F1 when as the number of neurons in hidden layer increases. 

The overall classification error ranges between 48% to 57%.  Figure 6.30-b shows that the 

ANN achieves more than 95% accuracy in categorising sample F1; however, the percentage 

errors in categorising samples E1 and D1 are significantly high. In fact, the ANN fails to 

identify sample E1 and predict wrong category for sample D1 in more than 80% cases. The 

percentage error in categorising G1 ranges from 55% to 90%. The overall percentage error 

considering all samples ranges between 59% to 70% where the least percentage error is 

found with the ANN contains 40 neurons in the hidden layer. In Figure 6.30-c, the ANN’s 

performance is found to be far better than other two cases with percentage error remains less 

than 40% for all samples.  The highest percentage error is 38% for categorising sample D1 

with the ANN containing 15 neurons in the hidden layer. The best overall performance is 

found with the ANN containing one hidden layer with 20 neurons in it. For that case, the 

classification error for sample D1, E1, F1 and G1 are 31.33%, 14.33%, 2% and 0.33% 

respectively. It is noticed that similar performance is also available from the ANN with 40 
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neurons in the hidden layer. In that case, the percentage error for classification of sample 

D1, E1, F1 and G1 are 26%, 19.67%, 3% and 4.67% respectively. The overall classification 

error for the ANN with one hidden layer consisting of 20 neurons is 12% and the overall 

classification error for the ANN with 40 neurons in hidden layer is 13.33%. The ANN with 

45 neurons in the hidden layer results in 16.33%, 26.33%, 8% and 5.33% error for 

categorisation of sample D1, E1, F1 and G1 respectively with the overall classification error 

of 14%. The range of variation in percentage errors among the samples D1, E1, F1 and G1 

are more even in the ANN with 40 neurons and 45 neurons with one hidden layer compared 

to the ANN with 20 neurons in one hidden layer. The overall performance is slightly better 

with the ANN with one hidden layer consisting of 20 neurons. Moreover, ANN with less 

neurons in the hidden layer consume less computation power and produce faster result.  

Therefore, ANN with one hidden layer consisting of 20 neurons could be considered as the 

best configuration for categorising wall types. It is found from the bar charts of Figure 6.30 

that using standard deviation of profile Tb as input to the ANN results in best classification 

performance among all three different inputs. The standard deviation of a profile represents 

the summary of variation in that profile and hence it is a key characteristic of that profile. 

As a result, the standard deviation of profile Tb represents the characteristic of variation more 

significantly than the profile itself. Moreover, when standards deviation of a profile is 

considered as input to the ANN, the ANN requires to handle 50 times less data compare to 

the original profile as input without losing the key characteristics of variations present in the 

data. Tab is constructed from profile Ta and which is developed by subtracting external 

temperature from the initial temperature profile. This process may diminish the magnitude 

of variation in profile and therefore the standard deviation of profile Tab does not represent 

meaningful characteristics for the ANN to learn.   
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6.9 Conclusion 

The novel design of U-value estimation kit presented in this chapter demonstrates the 

successful use of infrared thermography and ANN with the application of point heat for the 

categorisation of wall types based on their U-values. The approach to visually inspect the 

infrared images and hence to develop the modified temperature profiles considering the 

effect of ambient temperature and gradient of the temperature profile is a key step for 

integrating ANN with infrared thermography. The visual inspection of temperature profiles 

at a specific point on infrared images enables to understand how human brain would 

differentiate the wall samples used in the study by analysing the temperature profiles of 

thermal images. As ANN mimics work patters of a human brain, it would be able to 

categorise the wall samples by analysing the temperature profiles developed from the 

respective infrared images. The results of the ANN analysis presented in this chapter shows 

significant agreement with that. The ANN with one hidden layer consisting of 20 neurons, 

is able to categorise wall types with 88% overall accuracy and it is guaranteed to get 69% 

accuracy for any particular wall type. Two other important finding are the configuration of 

ANN and the choice of input elements. It is found that ANN with one hidden layer consisting 

of 20 neurons shows the best classification accuracy. In terms of input profiles, it is found 

that standard deviations of temperature profiles are much suitable to use as input to the ANN 

due their capability of capturing the key characteristics of the input data comprising of 

minimum data elements. These outcomes are carried forward to apply in the U-value 

estimation of walls in a real building which is presented in the next chapter.   
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Chapter 7:  Experimental Work on Real Building 

7.1 Introduction 

In the previous chapter (Chapter 6) the application of the novel U-value kit for categorising 

wall types based on their U-value has been investigated. In continuation to that, the 

estimation of the U-value in a real building’s wall using the novel U-value estimation kit is 

presented in this chapter. The U-value kit is calibrated in laboratory environment by training 

the ANN with the data obtained from monitoring different wall samples in laboratory. 

Afterwards the calibrated device is used to monitor walls in a real building to estimate the 

U-value of the real building’s wall.  A case study related to the estimation of the U-value of 

a wall in a real building is also available in an accepted manuscript which is included in 

Appendix I. In this chapter the extended case study in the same building is presented with 

which investigate the U-value estimation in walls of four different rooms in that building.  

7.2 Implemented approach  

The methodology used to conduct the measurement using the novel U-value estimation kit 

is described in chapter 3 (Figure 5.3). The novelty in the methodology is that the U-value kit 

is calibrated in the laboratory by training an ANN with the temperature profiles generated 

from monitoring a wall sample of known U-value so that the U-value kit can estimate the U-

value of an unknown wall from the temperature profile generated by the monitoring process 

of that wall. The four wall samples described in chapter 6, namely sample D, E, F and G, are 

considered for training the ANN. Another wall sample made of solid brick, tagged as sample 

H, is added with the set of above mentioned four samples for monitoring with the U-value 

kit in the laboratory environment. Therefore, five samples in together are prepared to monitor 

for the training of ANN. Four different walls in a three-bedroom flat are monitored with the 

U-value estimation kit between 7th and 21st February. All the experiments in the real building 
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are conducted between 8 pm and 11 pm as the effect of solar irradiation on the walls is 

minimum. The real building’s walls are tagged as sample I. To generalise the estimation, 

ANN is trained and tested for 25 times and the mean value of those 25 iterations is considered 

as the ANN predicted U-value.  

7.2.1 Equation Used 

The equations used to conduct the study in this chapter are presented below 

𝑈 =  
1

𝑅𝑇
                                                                                        (2.3) 

Where, 𝑅𝑇 =  𝑅𝑖 +
𝑑1

𝜆1
+

𝑑2

𝜆2
+  

𝑑3

𝜆3
… … … . +𝑅𝑒 ; with 𝑅𝑖 =0.13 and 𝑅𝑒 = 0.04. Equation (2.3) 

is used to calculate the U-value of sample walls. 

𝑇(𝑖,𝑗,𝑘)
𝑎 =  𝑇(𝑖,𝑗,𝑘) −  𝑇𝑘

𝑒𝑥𝑡                                                                 (6.1)  

𝑇(𝑖,𝑗,𝑘)
𝑏 = ∑ [𝑇(𝑖,𝑗,𝑘+1) − 𝑇(𝑖,𝑗,𝑘)]𝑘

1                                                  (6.2) 

𝑇(𝑖,𝑗,𝑘)
𝑎𝑏 =   ∑ [𝑇(𝑖,𝑗,𝑘+1)

𝑎 − 𝑇(𝑖,𝑗,𝑘)
𝑎 ]𝑘

1                                           (6.3) 

Equation (6.1), (6.2) and (6.3) are used to generate profiles Ta, Tb and Tab from the infrared 

images.  

𝑒𝑑 =  
|𝑈𝑝−𝑈𝑐|

𝑈𝑐
× 100%                                                                (3.8) 

Equation (3.8) is used to evaluate the performance of neural network.  

7.2.2 Wall Samples 

Six wall samples are used in this study and five of them, namely sample D, sample E, sample 

F, sample G and sample H, are considered for monitoring in the laboratory. Samples D, E, 

F, and G have the similar composition as described in the previous chapter. Sample E is a 

solid brick wall of thickness 230 mm and sample I represents the real building’s wall which 
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is a solid brick wall with mortar layer in both sides. The properties of the wall samples are 

listed in Table-7.1, The thermal conductivity of the materials in samples D, E, F and G 

remains the same as considered in the previous chapter. The thermal conductivities of the 

solid brick, the inner mortar layer and the outer mortar layers in samples H and I are selected 

from Anderson (2006).For solid brick it is 0.56 W/m.K for the inner leave and 0.77 W/m.K 

for the outer leave of the walls. For mortar layer the thermal conductivity is 0.88 W/m.K for 

inner layer and 0.94 W/m.K for the outer layer.   

Table 7.1: Properties of sample wall used to train and test the ANN  

Wall 

Sample  

Material  Thickness 

(mm) 

Thermal Conductivity 

(W/m.K) 

U-value 

(W/m2K) 

D Brick 100 0.27 1.86 

E Brick insulated 

externally with 

Ecotherm 

100+100 =200 0.27 & 0.22 1.01 

F Concrete block  95 1.5 4.29 

G Concrete block 

insulated 

externally with 

Ecotherm 

95+100=195 1.5 & 0.22 1.45 

H Solid Brick Wall 230 Inner layer: 0.56   

Outer layer: 0.77  

1.91 

I Inner mortar 

layer + Solid 

Brick Wall + 

Outer mortar 

layer 

15+230+20=265 Inner mortar layer: 0.88 

Brick wall: 0.56   

Outer mortar layer: 0.94 

1.62 

7.3 Experimental works 

The U-value kit is slightly improved by replacing the IRISYS 1002 infrared camera with 

CHINO TP-L0260EN thermal camera. The new thermal camera is smaller in size and lighter 

in weight than the older one. As a result, the portability of the U-value kit has been improved. 

Moreover, CHINO TP-L0260EN thermal camera is better compatible with Windows10 

operating system, and it can capture infrared images with higher resolution than the IRISYS 
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1002 infrared camera. This could enhance the quality of visual analysis; however, for ANN 

training the infrared images need to be downsized to 15 by 16 pixels. Similar to the previous 

case, the glow plug temperature and the ambient or room temperature are measured with 

thermocouples-based temperature sensor and NIUSB-TC01 data acquisition system is used 

to capture the temperature data. Figure 7.1 shows the monitoring of a solid brick wall 

(sample H) in the laboratory where the test kit is placed in the internal side of the wall.   

 

Figure 7.1: The monitoring of a sample wall in laboratory. 

The interval to capture infrared images are also considered as five seconds. The monitoring 

period has been extended to one hour instead of 50 minutes in the study presented in chapter 

6. As a result, 720 images per set up of the experiment are available for the ANN analysis. 

Figure 7.2-a shows the location of the building in Google map. The flat at which the 

monitoring of walls are conducted is situated on the first floor of the building. At the time 

of the experiments the ground floor was unoccupied. Figure 7.2-b shows the layout of the 

flat with locations where the monitoring is conducted. The flat consists of three bedrooms 

and a living room. The experiments are conducted in the master bedroom, near entrance, 

living room and bedroom 2, which are labelled in the layout of Figure 7.2-b with numbers 

1, 2, 3 and 4 respectively. The wall in location 1 is a southwest facing wall, the wall in 

location 2 is south east facing wall and the walls in location 3 and 4 are north west facing 
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walls. The southeast facing walls of the bedroom 3 and the master bedroom were 

inaccessible due to position of the furniture in the room.    

  

Figure 7.2: (a) Location of the building on Google Map (no date). (b) The schematic layout 

of the flat showing the location of monitoring the walls. 

 

 

Figure 7.3: The experimental setup at one of the locations in the building. 
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Figure 7.3 shows the experimental arrangement in one of the locations inside the building. 

The U-value test kit is mounted on a tripod and the infrared images as well as the glow plug 

and room temperatures are stored in a laptop to be used later for ANN analysis. The room 

heating is switched off at least one hour before the monitoring starts to ensure that there 

would be no interference of heat from the radiator.  

7.4 Results and Discussion 

7.4.1 visual inspection of infrared images 

Figure 7.4 represents the temperature profile and infrared image of samples E, H and I. It is 

noticed from the infrared images of Figure 7.4 that sample E has the warmest wall surface 

and sample I has the coolest wall surface. As sample E has the lowest U-value among the 

three samples shown in Figure 7.4, it is expected that there will be limited heat loss through 

the wall, instead most of the heat will be spread on the wall surface.  

 

Figure 7.4: Visual inspection of temperature profiles from sample E, H and I. 
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On the other hand, sample H has the highest U-value among those three samples and 

therefore it is expected to have the warmest wall surface. The infrared images of Figure 7.4 

represent the conflicting scenario. It is also found from Figure 7.4 that the temperature 

profile of sample E is located at the top followed by the temperature profiles of sample H 

and sample I. Based on the U-value of the wall samples, the temperature profile of sample 

H is expected to be located at the top followed by sample I and sample H. The primary reason 

behind this conflicting scenario seems to be the difference in ambient temperature during the 

monitoring periods of the wall samples. The start points of the temperature profiles in Figure 

7.4 indicate that the ambient temperature during the monitoring period of sample E is 26.5oC 

and the ambient temperature during the monitoring period of sample I is 18oC. Hence it is 

justified to include the modified temperature profiles Ta, Tb and Tab presented using equation 

6.1, equation 6.2 and equation 6.3, for ANN analysis.  

7.4.2 ANN prediction of U-value 

It is observed in the categorisation analysis presented in chapter 6 that standard deviation of 

a profile provides some advantage if selected as the input to the ANN in terms of rapidness 

and accuracy of estimation. This is mainly because standard deviation of a profile represents 

the variations present in the profile with a single variable. Therefore, standard deviation of 

profiles T, Ta, Tb and Tab are carefully chosen as input to the ANN. Figure 7.5 illustrates the 

configuration of the feed forward ANN used in this case.  

 

Figure 7.5: The ANN architecture used in this case study [Source: generated using Matlab 

software]. 
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By following similar procedure as in chapter 6, 12 sets of input data are constructed from 

each monitoring task. As the monitoring period is 60 minutes in this case, each data set 

consists of 60 images. As the infrared images are downsized to 15 by 16 pixels, each input 

data set contains 240 (15x16) elements. Considering the monitoring of five wall samples, 

the training data set contains 60 sets of input data. For test data set there are 12 sets data 

obtained for each of the locations. The previous study also shows that neural network with 

single hidden layer containing 20 neurons is the most suitable configuration for this type of 

analysis. Therefore, a feed forward neural network with one hidden layer and 20 neurons in 

the hidden layer is constructed using MATLAB where sigmoid function is considered as the 

transfer function in neurons of hidden layer and Levenberg-Marquardt backpropagation 

algorithm is chosen as the learning algorithm. The target for the neural network is the 

calculated U-value of wall samples included in Table 7.1. The input layer has 240 neurons 

as each input data set has 240 elements and the output layer has on neuron as there is only 

one element in output data.  Figure 7.6 presents the difference in training and test 

performance of the ANN. 

 

Figure 7.6: The comparison of training and test performance of the ANN. 

It is found from Figure 7.6 that the training performances of the ANN that use the standard 

deviation of profile T and Ta as input are very high with less than 5% absolute deviation. On 

Profile T Profile Ta Profile Tb Profile Tab

Comparison of Training and Test Performance of The ANN
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the contrary the test performances of these networks are very high with more than 48% 

absolute deviation. This fact indicates that the ANN which use standard deviation of profile 

T and Ta as input tend to overfit and hence may not be suitable for estimation of U-value. 

The difference between the training performance and the test performance in ANNs which 

use standard deviation of profile Tb and Tab as input much smaller than that of the ANNs use 

standard deviation of profile T and Ta as input. For the ANN that uses standard deviation of 

profile Tab as input has 12.73% and 32.14% absolute deviation during training and test, 

respectively; and for the ANN that uses standard deviation of profile Tb as input has 15.78% 

and 26.44% absolute deviation during training and test, respectively. Therefore, these two 

networks are expected to show significant accuracy which is also reflected in the bar charts 

of Figure 7.7. It is found from Figure 7.7-a that use of profile Ta as input to the ANN results 

significantly underestimated U-value for all four locations. The ANN that uses profiles T as 

input significantly underestimate the U-value of wall in location 1 and overestimate the U-

value of wall in location 4. For locations 2 and 3 it moderately overestimates the U-value of 

wall. This also reflected in the bar charts of Figure 7.7-b where the ANN with profile Ta as 

input shows over 60% of absolute percentage deviation for location 1,2 and 3. Although for 

location 4 the absolute percentage deviation is found 31.42 %, it is still a significant 

percentage of error. For the ANN with profile T as input shows over 70% absolute 

percentage error for location 1 and 4 however; it is 27.66% and 18.37% for location 2 and 

3, respectively.  The very high absolute percentage error of the ANN with profile Ta as input 

in 3 out of 4 locations indicates that profile Ta is not a suitable input for the ANN to estimate 

U-value of a building’s wall. The ANN with profile T as input shows less than 30% absolute 

percentage deviation in two of the four locations; however, in the other two locations it is 

more than 70% which indicates the instability of the network performance. The key reason 

behind the poor performance of the ANN with profile T and Ta as input is overfitting. The 
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bar chart in Figure 7.6 supports the fact by presenting very high differences between training 

and test performance of the neural networks. The ANN that uses profiles Tb as input produce 

a highly accurate estimation for location 1 and it slightly overestimates the U-value of wall 

in location 2 and 3 (shown in Figure 7.7-a).  

 

Figure 7.7: (a) ANN predicted U-values obtained using profiles T, Ta, Tb and Tab as input to 

the ANN and (b) percentage deviation of ANN predicted U-values. 
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highly accurate estimation for location 2 and 4 (shown in Figure 7.7-a) with absolute 

percentage deviation of 1.04% and 1.93 %, respectively. For location 1 it moderately 

overestimates the U-value of wall and for location 3 it moderately underestimates the U-

value of wall as shown in Figure7.7-a. The absolute deviations are 22.94 and 33.45%, 

respectively. the comparison between the training performance and test performance for 

these two neural networks presented in Figure 7.6 indicates that there are fairly low 

differences exists between the training and test performances and therefore there is no 

overfitting occurred. Considering all these facts it can be claimed that the ANN that uses 

either profiles Tb or profile Tab as input would be the most suitable to estimate U-value of a 

building’s wall if the wall is monitored with the novel U-value estimation kit used in this 

case study. The case study presented in the accepted manuscript in Appendix I also reach to 

the similar conclusion. However, in that case study a wall in location 2 has been monitored 

which has shown identical absolute deviation for the ANNs with profile Tb and profile Tab. 

The case study in this chapter includes similar monitoring process and analysis in four 

different locations. Considering the average of the absolute deviations of the four locations 

it is found that the ANN with profile Tb has 11.57% absolute deviation and ANN with profile 

Tab has 14.84% absolute deviation from the calculated U-value of walls in a real building. 

Hence the ANN with profile Tb as input is slightly ahead of the ANN with standard deviation 

of profile Tab as input. Similar observation is found in the study for categorisation of wall in 

chapter 6 where standard deviation of profile Tb as input to the ANN shows the best outcome. 

Combining these two studies, the feed forward neural network with standard deviation of 

profile Tb as input and 20 neurons with one hidden layer is the best approach to estimate U-

value of walls in real buildings.    
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7.5 Conclusion 

A novel approach of in-situ U-value measurement of wall in a real building using the novel 

U-value estimation kit is presented in this chapter where the U-value kit is calibrated by 

training an ANN with the help of infrared images obtained by monitoring material samples 

in the lab. It is found that the ANN trained with standard deviations in profile Tb achieves 

88.43% accuracy and ANN trained with standard deviations in profile Tab achieves 85.16% 

accuracy in predicting the U-value of multi-layered walls in a real building. As the 

performance of the ANN trained with standard deviation of profile Tb is slightly better than 

that of the ANN trained with the standard deviation of profile Tab, standard deviation of 

profile Tb could be accepted as the best approach for training an ANN to calibrate the novel 

product. Literature review explains that there is no ideal procedure to determine the most 

suitable configuration of a neural network. Therefore, based on the outcome of the ANN 

analysis presented in this chapter it can be stated that the configuration of ANN used could 

be an appropriate configuration for the in-situ estimation of U-values in real buildings’ wall. 

These results also show a good agreement with the previous case studies presented in Sen 

and Habaibeh (2019), in chapter 6 and in the accepted manuscript included in Appendix I. 

However, there are still scopes to research for the improvement of ANN’s accuracy using 

different configurations and architecture of ANN as well as including more monitoring data 

for training an ANN. Literature review shows that existing U-value estimation systems are 

limited to use in winter only. Although the monitoring work in the real building is conducted 

during winter, monitoring of wall sample in laboratory has been conducted in summer. 

Hence the novel U-value estimation kit is expected to be applicable well in summer also. 

There is research opportunity in terms of monitoring a real building in summer.   
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Chapter 8: Discussion and Conclusion 

8.1 Introduction 

Retrofitting a building’s wall with improved insulation is a key strategy in reducing energy 

consumption for space heating as well as cutting down carbon emission. However, it is 

sensible to evaluate the existing U-value of a building’s wall and the potential future energy 

savings before the retrofitting work is commenced. The aim of this research work is to 

develop novel techniques for evaluating the benefits of thermal insulation in buildings by 

estimating heat losses and financial costs with the help of mathematical models, artificial 

intelligence, thermography and experimental works addressing the research scopes 

presented in chapter 1. A comprehensive review of literature has been conducted to 

summarise the limitations of existing U-value estimation methods as well to understand the 

effect of insulation in energy consumption in a building, infrared thermography as rapid tool 

to evaluate thermal performance of a building and the application of ANN in the evaluation 

of buildings’ energy performance. A systematic methodology has been developed to 

accomplish the aim of the thesis with fulfilment of all objectives. The influence of wall 

insulation in terms of household expenditures, energy consumption and net change in carbon 

emission due to work from home is evaluated. In relation to the estimation of future energy 

savings and payback period of the investment for retrofitting, a prediction tool for estimating 

heat loss through a building’s wall is developed by integrating infrared thermography and 

ANN with the use of historical temperature and wind speed data. Two case studies in 

buildings in High Wycombe and Nottingham are presented to demonstrate the application 

of the heat loss prediction tool. For in-situ U-value estimation, a novel product has been 

developed by integrating infrared thermography and feed froward neural network with the 

application of a point heat in the internal side of a wall where the product is calibrated in 
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laboratory by training the neural network with the help of the monitoring data obtained from 

some sample walls. In this chapter the objectives of the research works are compared against 

the achievements and the contribution to knowledge as well as the key findings are 

summarised. The chapter finishes with the limitations of this research work with future 

recommendation about further research on this topic.   

8.2 Answer to the research questions with the achievement of the objectives  

To accomplish the aim of developing a novel product for the in-situ U-value estimation of 

buildings’ wall, the fulfilment of the objectives and answer to the related research questions 

presented in chapter 1 are established below.  

Objective 1: A comprehensive literature review has been conducted on wall insulation, 

current U-value measuring systems, infrared thermography and how ANN is used for the 

evaluation of buildings’ energy and thermal performance. The literature review on insulation 

points out that wall insulation significantly reduces energy consumption for space heat and 

cooling; however, the effectiveness of it depends on the geographical location, climate and 

the type of insulation applied in a building. The literature review on infrared thermography 

explains the working principle of infrared thermography as well as the rapidness of 

thermography in the evaluation of a building’s thermal performance. The literature review 

regarding in-situ U-value assessment elaborately describes the procedures of existing in-situ 

U-value estimation methods with a summary of the limitation of each method. The literature 

review on ANN explains the working principle of ANN and its efficiency in predicting 

energy demands in building compared to other simulation software.  

Objective 2: A methodology has been developed to estimate the change in household budget, 

energy demand and carbon emission due to work from home during winter in English 

dwellings. The study shows that people living in externally insulated house with low U-value 
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of wall do not experience significant increase in heating energy consumption as well as 

energy bills. Instead, those households enjoy significant savings from reduced travelling as 

well as they significantly contribute to cut down carbon emission. The family living in 

uninsulated solid wall houses with high U-value of walls suffer from increased energy bills 

as well as those households do not contribute to reduction in carbon emission unless they 

use more than one car for travelling.      

Objective 3: A novel prediction tool to estimate future heat loss through buildings’ wall has 

been developed by integrating infrared thermography and ANN where the ANN is trained 

with the heat loss data which is calculated using wall surface temperature obtained from 

infrared image and historical weather data.   

Objective 4: Two case studies are conducted in buildings in High Wycombe and in 

Nottingham where the novel prediction tool is used to estimate future heat losses in buildings 

with the help of infrared images captured in thermographic surveys. A mathematical model 

in relation to the optimum monitoring period for a building to get exact heat loss information 

has been developed. According to the mathematical model a building is required to be 

monitored for infinite period to obtain exact information about the heat loss through wall; 

however, the case studies show that ANN trained with eight years of monitoring data could 

predict future heat loss with reasonable accuracy. The case studies also show that a feed 

forward neural network is the most suitable architecture for predicting hourly average heat 

loss and LSTM neural network is the most suitable architecture for predicting monthly 

average heat loss.  

Objective 5: A novel U-value estimation kit is developed which can monitor wall using an 

infrared camera with the application of a point heat from the internal side of a wall as well 
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as record the ambient temperature and the temperature at the location of point heat source 

on the test wall surface.  

Objective 6: Several wall samples with different U-values are monitored using the novel U-

value kit and from the visual inspections of the infrared images obtained from the monitoring 

experiments, three modified temperature profiles have been developed to categorise the 

sample walls based on their U-values. A feed forward neural network is tested with different 

combination of neurons in its hidden layer to determine the optimum configuration for 

categorising the wall samples. The modified temperature profiles and their standard 

deviations are used as input to the ANN to select the best one among those.  The result shows 

that ANN composed of 20 neurons in one hidden layer and trained with the standard 

deviation of the cumulative gradient of temperature profile produce best classification 

accuracy.  

Objective 7: For in-situ estimation of U-value the experimental works in relation to 

monitoring walls have been conducted in four locations in a building. The result shows that 

a feed forward neural network consists of 20 neurons and one hidden layer is able to estimate 

U-value of walls in a real building with significant accuracy. It is also found from the 

outcomes of ANN analysis that the ANN trained with the standard deviation of the 

cumulative gradient of temperature profile produce the most accurate estimation of U-value 

in a real building’s wall.  

8.3 Contribution to knowledge 

The key contribution to the knowledge obtained from this research work is presented below: 

• The methodology to estimate the change in energy demand and carbon emission due 

to working from home during winter because of Covid-19 pandemic situation. 
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• The methodology to predict future heat losses through a building’s wall using 

infrared thermography and ANN. 

• A mathematical model showing the optimum the monitoring period of buildings for 

energy savings estimation.  

• The neural network architecture and configuration for the prediction of heat loss 

through buildings’ wall. 

• A novel product to estimate U-value of buildings’ wall combining infrared 

thermography and ANN with the application of point heat. 

• The methodology to conduct U-value measurement with the novel U-value 

estimation kit. 

• The neural network configuration for the U-value estimation with the novel U-value 

estimation kit. 

8.4 Key findings 

The main outcomes of the research are an evaluation tool for future heat loss prediction 

through walls in buildings and a novel product to estimate the U-value of a building’s wall. 

However, there are some key findings of this research which are presented below:  

• The thesis establishes the method of integrating infrared thermography and ANN for 

predicting heat loss through buildings’ wall and estimating U-value of buildings’ 

wall.  

• The wall insulation in a building has major impacts on household energy 

consumption and change in carbon emission due to working from home in winter.  

• The family living in an uninsulated house would consume approximately nine times 

more energy for space heating than the family living in a modern insulated house due 

to working from home during winter. 
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• There are significant savings in household expenditure and reduction in carbon 

emission due to reduced travelling in pandemic situation. People living in modern 

insulated houses and use one car for travelling will contribute to reduce carbon 

emission by releasing 15 to 40 kg less CO2 per month per household during winter 

because of working from home. On the other hand, family living in a poorly insulated 

detached house with wall U-value of 2.3 W/m²K and use two cars for travelling still 

release 30kg more CO2 than the normal working situation. 

• The mathematical model regarding the length of monitoring period for a building 

demonstrate that only lifelong monitoring of a building could provide exact 

information about the building’s thermal performance. 

• A feed forward neural network with six hidden layers and three neurons in each 

hidden layer is the most suitable configuration for hourly average heat loss 

prediction. The prediction accuracy of such neural networks ranges between 80% to 

90% when the ANN is trained with eight years or more of heat loss data.   

• LSTM neural network with twelve cells in the hidden layer is the best configuration 

to predict monthly total heat loss in buildings with over 90% prediction accuracy 

with two or more year of heat loss data required for training the ANN. 

• The case studies show that ANN guarantee 84% prediction accuracy for the 

prediction of future energy savings in buildings.  

• Payback period estimation considering ANN predicted energy saving for the 

investment on retrofitting could be accurate up to the quarter of a year. 

• Infrared images obtained by monitoring sample wall with the application of point 

heat can be integrated with ANN to categorise wall samples based on their U-value. 

•  A feed forward neural network with softmax layer and one hidden layer consisting 

20 neurons in it achieves 88% overall classification accuracy for categorising wall 
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samples with the minimum accuracy of 69% when the network is trained with the 

standard deviation of the temperature profile’s cumulative gradient. 

• Similar configuration of feed froward neural network can be used for the estimation 

of in-situ U-value in buildings’ wall and when the network is trained with the 

standard deviation of the cumulative gradient of a temperature profile obtained from 

monitoring a real building’s wall with the application of point heat, it would be able 

to estimate in-situ U-value of walls with more than 80% accuracy.  

• The training of ANN by the monitoring of wall samples in laboratory has been 

conducted in summer; and therefore, the novel U-value estimation kit is expected to 

be operational during summer which will overcome one of the key limitations of 

existing U-value estimation methods. 

8.5 Limitations and Future work 

The limitations of the current research are: 

• The payback period of the buildings in second case study could not be estimated as 

the payback period seems longer than 14 years which is beyond the size of weather 

data set available for this research work.   

• Only feed forward neural network is considered for the estimation of in-situ U-value 

and only one building is monitored. 

• The performance of the novel U-value estimation kit could not be compared with the 

performance of existing U-value estimation methods. 

Based on the limitations of the current study the future work could involve: 

• The ANN’s prediction of heat losses in buildings can be extended with larger set of 

weather data to facilitate the estimation of longer pay back periods. Also, the 
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performance of ANN can be compared with the historical energy bills of the 

buildings that are monitored.  

• The performance of other architecture of neural network can be investigated in 

relation to in-situ U-value estimation of buildings’ wall using the newly developed 

U-value kit. 

• The experimental work and the ANN training can be extended to monitor more wall 

samples on more buildings’ walls. 

• The performance of the novel U-value estimation kit could be compared with the 

performance of existing U-value estimation methods.  

• The design of the U-value estimation kit can be further improved considering surface 

contact heating instead of point contact heating.  

8.6 Summary  

Exact simulation of the thermal performance as well as the U-value of buildings’ wall require 

extensive data from prolonged monitoring of buildings. The simple realistic approach used 

in this thesis would facilitate the rapid estimation of the thermal performance and the U-

value of buildings’ wall with significant accuracy. This chapter summarises the discussion 

and conclusion of the thesis. The answers to the research questions with respect to the 

fulfilment of objectives are presented. Afterwards, the contribution to the knowledge and the 

key findings from the research work is summarised.  Finally, the limitations of the current 

research work are discussed with the recommendations for future research works. 
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Appendix: A 

Performance of different Neural Network Architecture for Hourly Heat 

Loss Prediction (Case Study 1) 
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Case study 1: Performance of Nonlinear Auto Regressive 

Neural Network with External Input (NARxnet) 
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Case study 1: Performance of Long Short Term Memory 

Network (LSTM) 
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Appendix: B 

Performance of different Neural Network Architecture for Monthly Heat 

Loss Prediction (Case Study 1) 
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Case study 1: Performance of Nonlinear Auto Regressive 

Neural Network (NARnet) 
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Case study 1: Performance of Nonlinear Auto Regressive 

Neural Network with External Input (NARxnet) 
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Case study 1: Performance of Long Short Term Memory 

Network (LSTM) 
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Appendix: C 

Performance of different Neural Network Architecture for Hourly Heat 

Loss Prediction (Case Study 2)
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Case study 2: Performance of Nonlinear Auto Regressive 

Neural Network (NARnet) 
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Case study 2: Performance of Nonlinear Auto Regressive 

Neural Network with External Input (NARxnet) 

Insulated wall

(a)

(b)

Uninsulated wall



191 

 

 

Case study 2: Performance of Long Short Term Memory 

Network (LSTM) 
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Appendix: D 

Performance of different Neural Network Architecture for Monthly Heat 

Loss Prediction (Case Study 2) 
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Case study 2: Performance of Nonlinear Auto Regressive 

Neural Network (NARnet) 
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Insulated wall

(a)

(b)

Uninsulated wall



195 

 

 

Case study 2: Performance of Long Short Term Memory 

Network (LSTM) 
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