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ABSTRACT

The detection of moving objects is a trivial task performed by vertebrate retinas, yet a complex
computer vision task. Object-motion-sensitive ganglion cells (OMS-GC) are specialised cells in the retina
that sense moving objects. OMS-GC take as input continuous signals and produce spike patterns as
output, that are transmitted to the Visual Cortex via the optic nerve. The Hybrid Sensitive Motion Detector
(HSMD) algorithm proposed in this work enhances the GSOC dynamic background subtraction (DBS)
algorithm with a customised 3-layer spiking neural network (SNN) that outputs spiking responses akin
to the OMS-GC. The algorithm was compared against existing background subtraction (BS) approaches,
available on the OpenCV library, specifically on the 2012 change detection (CDnet2012) and the 2014
change detection (CDnet2014) benchmark datasets. The results show that the HSMD was ranked overall
first among the competing approaches and has performed better than all the other algorithms on four of the
categories across all the eight test metrics. Furthermore, the HSMD proposed in this paper is the first to use
an SNN to enhance an existing state of the art DBS (GSOC) algorithm and the results demonstrate that the
SNN provides near real-time performance in realistic applications.

INDEX TERMS SNN, HMSD, retinal cells, object motion sensitive ganglion cells, background subtrac-
tion, object motion detection

I. INTRODUCTION

The retina is a tiny tissue of about 1mm depth at the back of
the eye, and it is responsible for the first stage of biological
image processing. All vertebrate retinas possess a variable
number of the same type of retinal cells, namely, photore-
ceptors (rods and cones), horizontal, bipolar, amacrine and
ganglion cells [1], [2]. Light stimuli are sensed by the pho-
toreceptors, which trigger electrical and chemical signals that
propagate through the retinal cells and are transported via the
optic nerve to the Visual Cortex. Retinal photoreceptors are
sensitive to dim light (rods), colour vision (cones) and bright
light (cones), and connect to bipolar and horizontal cells.
Horizontal cells are responsible for regulating the signals
triggered by neighbouring rods and cones. Bipolar cells

receive process and transmit signals from groups of rods and
cones to ganglion cells. Amacrine cells interact with groups
of neighbouring bipolar cells to regulate signals transmitted
to the ganglion cells, responsible for collecting the visual
signals and propagating them to the visual cortex via millions
of parallel channels in the optic nerve [1], [2]. The types
of retinal cells vary in concentration, functionality and size.
There are thousands of retinal circuits formed by types and
sub-types of retinal cells wired together [1]. Different retinal
circuits trigger different functionalities such as light detec-
tion, motion detection and discrimination, object motion,
identification of approaching motion (looming), anticipation,
motion extrapolation and omitted stimulus-response [3].
Vertebrate retinas are notable for i) incorporating millions of
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these retinal circuits, ii) being extremely efficient (the whole
human brain consumes approximately 20 Watts) and iii) still
displaying the capability to outperform any state-of-the-art
computer [4].

In computer vision, object motion detection is traditionally
performed using BS methods, where the foreground (pixels
or group of pixels whose light intensity values have suffered
an abrupt variation) are compared with the previous image or
background model [5]–[8]. BS can be static, subtracting the
current image frame from the first image frame, or dynamic,
subtracting the current image frame from previous image
frame(s) [2], [9]–[13]. BS methods can be classified as 1)
Mathematical, 2) Machine Learning and 3) Signal processing
[7], [8]. Mathematical theories are the simplest way to model
backgrounds using temporal average, temporal median and
histograms, which can be improved using refined models
(such as a mixture of Gaussians, kernel density estimation,
etc.) and require low computational resources [8]. Machine
learning models are more robust for performing BS, but they
must be trained on the target visual features and require
significant computational resources [7]. Signal processing
models used to model the background using the temporal
history of pixels as 1D signals and usually require moderate
computational resources [8]. Although less robust, the clas-
sical mathematical BS models are better suited for real-time
on near real-time applications. As real-time processing is a
key objective of this work, we focus only on mathematical
models in this paper.
The Hybrid Sensitive Motion Detection (HSMD) model
reported in this paper was inspired by the object motion
functionality exhibited by vertebrate retinas, in which ob-
ject motion-sensitive retinal cells (OMS-RC) determine the
difference between a local patch’s motion trajectory and
the background [3]. An improved version of DBS using
Local Singular Value Decomposition (SVD) Binary Pattern
(mathematical model) [14], [15] is enhanced by a 3-layer
spiking neural network (SNN), forming a hybrid architecture.

The main contributions of the work reported in this paper
are i) an object motion detection model inspired by the OMS-
RC designed to work with commercial-of-the-shelf (COTS)
cameras, ii) enhancement of the dynamic BS (mathemati-
cal model) using the 3-layered SNN and iii) optimisation
of the proposed method for processing live capture feeds
in near real-time. The algorithm was tested on the 2012
change detection (CDnet2012) [16] and 2014 change detec-
tion (CDnet2014) benchmark datasets [17] and compared
with classical BS algorithms (discussed in sections II and
IV). The HSMD can detect motion using commercial-off-
the-shelf camera feeds and/or video clips using Spiking
Neural Networks (SNN), as opposed to cameras exploiting
dedicated custom architectures.
The remainder of the paper is structured as follows: related
work on object detection using classical computer vision and
bio-inspired computer vision is briefly reviewed in section II;

the HSMD is described in section III; the training details, use-
case scenarios and HSMD parameterisation are described in
section IV; the results are reported and analysed in section V;
and the discussion and future work are presented in section
VI.

II. LITERATURE REVIEW
Reliable and optimised object motion detection in videos
and live streams are an essential feature for a wide range
of computer vision applications such as object tracking, in-
trusion detection, collision avoidance, etc. Motion detection
is performed by analysing/tracking the variation of light
intensities between a set of image frames.
Camera, background and foreground are three factors that
affect the quality of the BS [18]. Current BS challenges
include (i) abrupt illumination changes, which impact the
pixel intensity values and may increase the number of false
positives; (ii) dynamic objects, where background object
movement may interfere with motion detection of static BS;
(iii) relative motion, where both the camera and the object
move at the same time, creating dynamic backgrounds; (iv)
challenging weather conditions such as fog, rain, snow, air
or turbulence generates errors; (v) camouflage, where cam-
ouflage regions occur when the foreground and background
light intensity pixels are similar; (vi) occlusion, when another
object or fixed structure obstructs the object of interest; (vii)
irregular object motion - objects that suddenly increase or
decrease in speed; (viii) noise, possibly arising from dirty
lenses, dust, extremely high/low light intensity, etc. which
decrease the quality of the detection; (ix) bumps and jitter
artefacts which occur when the camera is moved; (x) image
compression, where lossy compression produces a loss of
information, with a consequent reduction in performance.

The OpenCV library [19] is one of the most frequently
used computer vision libraries and is the reference library for
computer or robot vision researchers. It includes several BS
algorithms. Stauffer & Grimson [20], and KaewTraKulPong
& Bowden [21] suggest modelling each pixel as a mixture
of Gaussians (MOG) where the Gaussian distributions of the
adaptive mixture model are analysed for determining which
ones are likely to belong to the background process. All the
pixel values that do not fit in the background distributions
are considered foreground [20]. Zivkovic [22] proposes an
efficient adaptive algorithm using the Gaussian mixture prob-
ability density (MOG2) for enhancing the MOG algorithm.
MOG2 selects automatically the number of components
per pixel which results in full adaptation to the observed
scene. Zivkovic & Heijden [23] identified recursive equations
for updating the parameters of the MOG, and proposed
an enhanced algorithm using K nearest neighbours (MOG-
KNN) for the automatic selection of the pixel components.
The Gaussian mixture based algorithms (MOG, MOG2 and
MOG-KNN) show good robustness when exposed to noise
and losses due to image compression but lack sensitivity
to intermittent object motion, moving background objects
and abrupt illumination changes. In 2016, Sagi Zeevi [24]
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proposed the CNT algorithm, which performed better on the
CDnet2014 and targets embedded platforms (e.g. Raspberry
PI). The CNT uses minimum pixel stability for a specified
period for modelling the background; this can vary from 170
ms (default for swift movements) up to hundreds of seconds
(the 60s is the default value) [25].

Godbehere et al. [26] suggested a single-camera statistical
segmentation and tracking algorithm (GMG) by combining
per-pixel Bayesian segmentation, a bank of Kalman filters
and Gale-Shapley matching for the approximation of the
solution to the multi-target problem. The proposed GMG
algorithm is limited when processing video streams sus-
ceptible to camouflage, losses due to image compression
and noise. Guo et al. [27] reported an adaptive BS model
enhanced by a local singular value decomposition (SVD)
binary pattern (LSBP) for addressing illumination changes.
The proposed LSBP algorithm enhances the robustness of the
motion detection to illumination changes, shadows and noise.
However, it is less effective when processing video streams
susceptible to camouflage, losses due to image compression
and noise. More recently, in 2017, OpenCV released an
improved version of the LSBP algorithm, also known as
GSOC [15], [28], developed during the Google Summer of
code, which enhances the LSBP algorithm by using colour
descriptors and various stabilisation heuristics [14], [15]. The
GSOC algorithm demonstrates better performance on the
CDnet2012 and CDnet2014 datasets [14], [29] when com-
pared to other algorithms available on the OpenCV library.
The OpenCV’s BS algorithms (i.e. MOG, MOG2, CNT,
MOG-KNN, GMG, LSBP and GSOC) were designed for
modelling the dynamic background changes (i.e. about two
hundred frames are required to train the background model)
and classifying all the background outliers as foreground. In
this paper, the HSMD algorithm uses GSOC for performing
the first stage of BS before enhancement by the SNN. The
GSOC algorithm was selected over the other BS algorithms
available on the OpenCV library because it is the algorithm
that has performed better in the target datasets (i.e. CD-
net2012 and CDnet2014) [14], [29].
Spiking neural networks have also been exploited for object
motion detection. Wu et al. [30] proposed a bio-inspired spik-
ing neural network to detect moving objects in a visual image
sequence. The SNN was trained to extract the boundaries of
moving objects from grey images. Cai et al. [31] expanded
this work in [30] and mimicked the basic functionality of
motion detection with axonal delays. These two SNN archi-
tectures [30], [31] were to perform basic detection of moving
objects, but neither can process moving objects in real-time.

Lichsteiner et al. [32] introduced the concept of an
Address-Event Representation (AER) silicon retina chip ca-
pable of generating events proportional to the log intensity
changes. Farian et al. [33] proposed an in-pixel colour pro-
cessing approach inspired by the retinal colour opponency,
using the same AER concept. Brandli et al. [34] proposed
a new version of the AER camera reported by Lichsteiner
[32] called the dynamic, active pixel vision sensor (DAVIS),

which exploits the efficiency of the AER protocol and intro-
duces a new synchronous global shutter frame concurrently.
In this current paper, the authors used the HSMD algorithm
in conjunction with a DAVIS 240C camera and a standard
RGB device, and compared the resultant performance in an
object tracking scenario.

Kasabov et al. [35] proposed the deSNN that combines
the use of Spike Driven Synaptic Plasticity (an unsuper-
vised learning method for learning spatio-temporal repre-
sentations) with rank-order learning (supervised learning for
building rank-order models). The deSNN was tested on data
collected by an Address-Event Representation (AER) silicon
retina chip [32] (which generates spiking events in response
to changes in light intensity) for recognising moving objects.
Although able to recognise moving objects, the deSNN was
designed to work specifically with AER cameras. Unlike
the deSNN, the HSMD has been designed to work with
commercial-off-the-shelf RGB cameras. More recently, Jiang
et al. [36] proposed an SNN based on the Hough Transform
to detect a target object with an asynchronous event stream
fed by an AER camera. The algorithm [36] was able to
process up to 40.74 frames per second on an Intel i7-
4770 processor, accelerated by an Nvidia Geforce GTX 645.
However, it is unclear whether the algorithm would work
with regular commercial-of-the-shelf (COTS) cameras.

Similar to AER silicon retina chip, the HSMD algorithm
mimics the basic functionality of OMS-GC with the differ-
ence that HSMD works with any COTS camera. Moreover,
the HSMD uses a 3-layer SNN to enhance the GSOC algo-
rithm, which has the best results when tested against CD-
net2012 and CDnet2014 datasets. To the best of the authors’
knowledge, the HSMD is the first SNN-based algorithm
capable of processing image streams in near real-time(i.e.
720×480@13.82fps [CDnet2014] and 720×480@13.92fps
[CDnet2012]) as a consequence of the parallel optimisations
performed in terms of making use of the 96 hyper-threaded
cores available the Intel(R) Xeon(R) Platinum 8160 CPU @
2.10GHz that was used in this work.

III. HSMD ARCHITECTURE
The HSMD is a combined BS/SNN Network to create a
hybrid model for detecting motion, emulating the elementary
functionalities of the object-motion-sensitive ganglion cells
(OMS-GC) as described in [3].
The architecture of the HSMD is shown in Figure 1. There
are five layers to the overall architecture. Layer 1 performs
the DBS using the GSOC algorithm (described in section IV).
The resulting DBS frames are fed into Layer 2 of the Spiking
Neural Network (SNN), where the pixel intensity values
are converted into currents that are proportional to the light
intensity (see III-C). The DBS-converted currents are fed to
the Layer 2 neurons via a 1:1 synaptic connectivity. Layer 2
neurons are synaptically connected to Layer 3 neurons, which
performs the first stage of motion analysis; Layer 3 neurons
connect to the Layer 4 neurons via 1:1 synaptic connectivity.
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Layer 4 neurons perform precise motion detection. A median
filter filters their spikes to exclude random neuron activities.

A. SPIKING NEURON MODELS
The Leaky-Integrate-and-Fire (LIF) was the spiking neuron
model used in this work because of its simplicity, compu-
tationally efficiency and suitability for processing images
in near real-time. The LIF spiking neuron model exhibits
similar, but less complex, dynamics compared to real bio-
logical neurons [37]. More complex spiking neuron models
are available, e.g. Hodgkin-Huxley, but require significant
computational resources and have a higher impact on the
computational performance (e.g. Izhikevich [38]). The LIF
neuron’s dynamics are described by equation 1.

τm
δVm
δt

= −Vm +RI (t) (1)

where τm = RC is the time constant, R the membrane re-
sistance, C the membrane capacitance, Vm(t) the membrane
voltage and I(t) is the current at time t. The membrane
potential Vm is reset to the reset membrane potential (EL)
and a spike event is generated when Vm(t) crosses the Vth
(threshold voltage).

B. INPUT LAYER: DBS AND REDUCTION
Each n × m image frame (i.e. camera, video sequence or
image sequences) is converted into grayscale.

The GSOC [28] delivers an adaptive DBS using colour
descriptors and various stabilisation heuristics [14], [15]
while processing the frames pixel-wise and leveraging the
parallelism inside OpenCV [14].

C. LAYER 2: PIXEL INTENSITIES TO CURRENTS
ENCODING
Pixel intensity values are converted into proportional currents
and fed into the spiking neurons in Layer 2 via a 1:1 con-
nectivity. The Layer 1 neurons were trained to trigger spike
events proportional to the pixel intensity values, as described
by equation 2.

ic(x, y) = I(x, y).c (2)

where ic(x, y) is the corresponding current for the image
light intensity value I(x, y) at coordinates x and y, and c is
a conversion constant obtained experimentally (in our case,
c=17.5).

D. LAYER 3: MOTION STABILITY
Layer 3 is used to perform motion stabilisation through the
creation of local buffers by delaying the propagation of spike
events. A delay is created when a given neuron of layer 2
connects to a neuron in layer 3, before being passed to Layer
4, instead of the direct Layer 2 to Layer 4 connection. Spike
events passing through Layer 3 are buffered by neurons in
Layer 3 for one simulation time-step (δt, in this work δt =

10 ms) and presented to the neurons in Layer 4. N[n] in the
following simulation time-step.

The neurons in Layer 2 are connected to the Layer 3
neurons via a 1:1 connectivity. Finally, the Layer 3 neurons
connect to the Layer 4 neurons via a 1:1 connectivity as
shown in Figure 2. All synaptic weights from Layer 2 to Lay-
ers 3 and 4 have a value of 1370 (obtained experimentally).

FIGURE 2. HSMD connectivity. In this example, it can be seen that the neuron
1 (N1) of each layer connects to the N1 of the subsequent layer.

E. LAYER 4: MOTION DETECTION
The Layer 4 neurons receive synaptic connections from the
neurons in Layer 2 and Layer 3 via excitatory synapses and
exploit these spiking events to detect motion. Spike events
generated by Layer 4 neurons result from dynamic changes
between sequential image frames. Signals received directly
from Layer 2 neurons enable detection of changes between
the current image frame n and the previous image frame n-
1. In contrast, those routed via Layer 3 neurons compare the
image frame n-1 with the image frame n-2. Layer 4 spike
events are mapped into the corresponding area in the origi-
nal image captured from the camera. The synaptic weights
obtained experimentally are 1370 for all the synapses. The
Layer 2 to Layer 4 weights were tuned to forward all the spike
events generated in Layer 2. The Layer 3 to Layer 4 synaptic
weights were tuned to produce spike events from the Layer
4 neurons for each group of two sequential spike events.
The main goal is to give high importance (larger weight) to
new spike events (frame [n] - frame [n-1]) and to give lower
importance to older spike events (frame [n-1] - frame [n-2]).

F. LAYER 5: FILTERING
The Layer 4 neurons’ spike events matrix is mapped into a
motion matrix Md of the same size as the captured image
(i.e. n ×m). The events in the Md matrix are filtered using
an averaging filter described by equations 3 and 4:

H(u, v) =
1

u.v

w0, 0 ... w0, u

... ... ...
wv, 0 ... wv, u

 (3)

Yd(x, y) =Md(x, y) ∗H(u, v) (4)

where Yd(x, y) is the filtered motion detection matrix,
H(u, v) is the averaging filter, u and v are the convolution
window length and height respectively, ∗ is the convolution
operator, w is the filter window.
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FIGURE 1. HSMD with (i) n × m image input followed by DBS, three spiking neuronal layers and filtering. Layer 1: DBS, Layer 2: pixel intensity to spike events
encoding, Layer 3: Motion stability, Layer 4: motion detection and Layer 5: filtering.

IV. METHODOLOGY
The HSMD was implemented in C++ using the C++ Standard
Template Library 17 (C++17) [39] (implementation of data
structures), Boost 1.71 [40] (file management) and OpenCV
4.5.0 [19] (which provides common computer vision func-
tionalities such as resize, capture and display images) in
Ubuntu 20.04 LTS1.

A. HSMD SETUP
The HSMD initial setup includes the following steps:

Step 1 - Select between live capture, video analysis or
image sequences: The user can opt to run the algorithm
directly on images being captured by the camera or provide
the path of a video or set of image sequences for motion
analysis.

Step 2 - Create the Layer 2 to Layer 4 neural network:
Read the first image and compute the size of the image.
The number of neurons is computed automatically from the
dimensions of the first image in a sequence of images.

Step 3 - Set the neuronal parameters: The LIF parame-
ters recommended in the references [41], [42] and frequently
used in LIF SNN circuits, were used to configure the SNN.
Therefore, the simulation was configured with a time step
of δt=10 ms and the default neuron parameters as follows:
initial Vm=-55.0 mV,EL = -55.0 mV, Cm = 10.0 pF,Rm=1.0
MOhm, Vreset=-70.0 mV, Vmin=-70.0 ms, Vth=-70.0 mV,
τm=10.0 ms, tref=2 ms, wsyn = 1555.0 (neurons L3 and L4)
and wp2i=8.0 (L2 neurons only).

Step 4 - Start the image acquisition : Images are col-
lected from devices, video streams or obtained from folders
with sequences of images while the HSMD algorithm is
being executed. The pseudo-code of the main algorithm is
described in Algorithm 1.

1Available online http://releases.ubuntu.com/20.04/, last accessed
12/11/2020

B. DATASETS AND METRICS

1) Datasets

The CDnet2012 [16] (cited more than 379 times2) and
CDnet2014 [17] (cited more than 300 times3) benchmark
datasets were designed for benchmarking BS algorithms.
While the HSMD algorithm has been designed as an object
detection algorithm and not a BS algorithm, nevertheless
these two datasets provide challenging scenarios for robust
comparable assessment of the proposed algorithm and net-
work. Within the two benchmark datasets tyhe HSMD was
compared with the following state-of-the-art BS algorithms
available on the OpenCV library: MOG [20], MOG2 [22],
MOG-KNN [23], GMG [26], LSBP [27], CNT [24] and
GSOC [15] methods. The OpenCV BS algorithms were used
because they are highly optimised, reliable, and publicly
available to anyone who wants to test or compare their
algorithms.

Each of the benchmark videos in the CDnet2012 [16] and
CDnet2014 [17] are considered under one or more challenge
categories as follows:

CDnet2012 and CDnet2014

• Baseline - reference videos which are relatively simple
to classify; some videos contain very simple movements
from the next four categories.

• Dynamic Background - videos that have both fore-
ground and background motion (e.g. water movement
and shaking trees).

• Camera Jitter - videos captured with cameras installed
on unstable structures.

2Retrieved from, https://ieeexplore.ieee.org/abstract/document/6238919,
last accessed: 12/10/2020

3Retrieved from, https://ieeexplore.ieee.org/document/6910011, last ac-
cessed: 12/10/2020
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Algorithm 1 HSMD main algorithm pseudo-code
1: newImage = capture_image_camera
2: newImageGrey = colour2grey(newImage)
3: set_number_neurons_from_newImageGrey_shape

4: build_neuronal_network
5: load_pretrained_weights
6: while frames available do
7: reset_spike_events
8: newImage = capture_image_camera
9: newImageGrey = colour2grey(newImage)

10: newImageReduced = newImageGrey
11: dynSubImage = newImageReduced −

previousImage
12: previousImage = newImageReduced
13: for I in dynSubImage do
14: if dynSubImage[I]< Threshold then
15: dynSubImage[I] = 0.0
16: end if
17: currents = convP ixel2Current(dynSubImage)

18: for i:=0 to timestep do
19: apply_currents_to_neurons_L2
20: compute_L2_neuron_spikes;
21: convert_L2_neuron_spikes_to_currents;
22: compute_L3_neuron_spikes;
23: convert_L3_neuron_spikes_to_currents;
24: compute_L4_neuron_spikes;
25: end for
26: spikes = get_sumSpikeEventsPerL4Neuron()

27: masked_spikes =
applyAveragingF ilter(spikes)

28: spikes = normalise(spikes)
29: display(newImage)
30: display(spikes)
31: end for
32: end while
33: Display_spike_rates

• Shadow - videos containing narrow shadows from solid
structures or moving objects.

• Intermittent Object Motion videos that include ob-
jects that are static for most of the time and suddenly
start moving.

• Thermal - videos that exhibit thermal artefacts (i.e.
bright spots and thermal reflections on windows and
floors).

CDnet2014 only

• Challenging Weather: Outdoor videos showing very-
low visibility winter storm conditions.

• Low Frame-Rate: videos capture at varying frame rates
between 0.17 and 1 fps;

• Night: includes traffic videos with low visibility and

strong headlights.
• Pan, Tilt and Zoom (PTZ): videos recorded with cam-

eras exposed to PTZ movements.
• Air Turbulence: videos filmed from distances of 5 to

15 km exhibiting air turbulence and frames distortion.
The BS algorithms were configured with the default OpenCV
settings [19] and compared against the HSMD algorithm.The
ground-truth provided by the datasets is composed of the
following labels [16], [17]:

• Static - grayscale value 0;
• Shadow - grayscale value 50;
• non-Region of Interest (RoI) - grayscale value 85;
• Unknown - grayscale value 170;
• Moving - grayscale value 255;

The static and moving classes contain pixels that belong to
the background and foreground, respectively; The shadows,
one of the most challenging artefacts, should be classified
as part of the background; The unknown region should not
be considered either background or foreground because it
contains pixels that cannot be accurately classified as back-
ground or foreground. The non-ROI pixels serve to exclude
frames from being classified because some BS algorithms
require several pixels for the model to stabilise (i.e. create
the background model) and for preventing corruption by
non-related activities to the considered category [16], [17].
Figure 3 shows the 5 class regions.

FIGURE 3. Raw image frame (left) and its respective ground-truth (right). The
ground-truth images show the annotations using the datasets labels. Adapted
from [16]

.

2) Metrics
The average performance obtained for each category using
each BS method and the HSMD algorithms is characterised
via eight metrics, as shown below. TP is the number of true
positives, TN the number of true negatives, FN the number
of false negatives, and FP the number of false positives [16],
[17].

1) Recall (Re): Re =
TP

TP+FN ;
Re: rank by descending order order;

2) Specificity (Sp): Sp = TN
TN+FP ;

Sp rank by descending order order;
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3) False Positive Rate (FPR): FPR = FP
FP+TN ;

FPR rank by ascending order order;

4) False Negative Rate (FNR): FNR = FN
FN+TP ;

FNR rank by ascending order order;

5) Wrong Classifications Rate (WCR):
WCR = FN+FP

TP+FN+FP+TN ;
WCR rank by ascending order order;

6) Correct Classifications Rate (CCR):
CCR = TP+TN

TP+FN+FP+TN ;
CCR rank by descending order order;

7) Precision (Pr): Pr = TP
TP+FP ;

Pr rank by descending order order;

8) F-measure (F1): F1 = 2× PR.RE
PR+RE

F1 rank by descending order;

These eight metrics contribute to the overall average ranking
(R) and overall average ranking across all categories (RC).

Average Ranking (R):R = Re+Sp+FPR+FNR+WCR+CCR+F1
nMet ;

R rank by ascending order;

Average Ranking across all Categories (RC):
RC = RE+SP+FPR+FNR+WCR+CCR+F1

nMet ;
RC rank by ascending order;

where nMet is the number of metrics (8 in this case).

V. RESULTS
The HSMD was tested on both datasets under the same con-
ditions to ensure an accurate and rigorous comparison. The
results are presented both as overall results and per category
to understand better the specific performances obtained per
method. The overall results for each method are presented
in section V-A and the results per method and category in
section V-B.

Please note that in the tables (1 to 3), the ↑ means that the
highest score is the best result and the ↓ that the lowest result
is the best result. The best results are highlighted using light
grey for all the methods except the HSMD results highlighted
in dark grey. Re is the Recall, Sp is the Specificity, FPR
is the False Positive Rate, FNR is the False Negative Rate,
WCR is the Wrong Classifications Rate, CCR is the Correct
Classifications Rate, Pr is the Precision, F1 is the F score or
F-measure, R is the Average Ranking and RC is the Average
Ranking across all Categories.

Figure 4 shows the results obtained for each of the five
categories common to both CDnet2012 and CDnet2014.

A. OVERALL RESULTS
Tables 1 and 2 present the overall results obtained per method
and per metric, ranked by RC (average ranking across all

categories, first column) in ascendant order.
From Table 1 (2nd column), it may be seen that the HSMD

algorithm ranks in first place across all eight methods with
which it is compared when tested on the CDnet2012 dataset.
Although the HSMD performed very well in 5 of the eight
metrics, it is essential to highlight the WCR, CCR and F1
metrics results. The results show that the HSMD is sensitive
to object motion due to the highest correct counts and lowest
wrong counts rate, which contribute to getting the highest
F-score and the second-best Precision. Furthermore, it is
possible to conclude that the HSMD has improved the perfor-
mance of the GSOC algorithm compared to when it is used
alone when tested on the six categories of the CDnet2012.

The HSMD has also performed very well when tested on
the CDnet2014 (see Table 2).

Table 2 shows that the HSMD algorithm was ranked in
first place in the Average Ranking across all Categories
column when tested on the CDnet2014 dataset. The HSMD
performed very well in 7 of the eight metrics and exception-
ally well on the Precision metrics. It can also be seen that
there was a slight decrease in the HSMD performance when
tested on the eleven categories available on the CDnet2014 as
compared to the original six of the CDNet2012 dataset. The
result is to be expected; none of the methods has excellent
performance across all metrics.

B. RESULTS OBTAINED PER CATEGORY
The Average Ranking (R) for each of the methods per cate-
gory is shown in Table 3.

Figures 5 and 6 show the variation of the ranks obtained
per category and per method.

From the analysis of the results shown in Table 3 and
Figures 5 and 6 it is possible to infer that the HSMD is sensi-
tive to intermittent object motion, night vision, baseline and
turbulence; These categories share the fact that they relate
to moving objects that have high contrast, which is ideal for
sensing by the spiking neurons. The HSMD has improved
the results of the GSOC in 8 of the 11 categories, except for
the low frame rate, dynamic background and camera jitter
categories. It is also easy to visualise that the HSMD exhibits
the lowest R variation, which justifies why the HSMD was
ranked in the first place.

C. RESULTS ANALYSIS
The HSMD performed very severely in the dynamic back-
ground and low frame rate categories, suggesting that the
spiking neuron model is not ideal for distinguishing the type
of motion. i.e. the spiking neurons detect motion but are
unable to distinguish between a shadow or the object itself.
This result is probably because, in vertebrate retinas, only
the ganglion cells are spiking cells suggesting that distinction
between the main object and shadows is probably performed
by other non-spiking cells. Nevertheless, the creation of the
new approach incorporating both the GSOC algorithm and
the SNN, which emulates the basic OMS-GC functionality,
clearly improves the accuracy of the GSOC algorithm.
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FIGURE 4. Results obtained for each of the five categories common to both CDnet2012 and CDnet2014 datasets. Column A: baseline; B: camera jitter, C: dynamic
background; D: dynamic object motion; E: shadow and F: thermal. Row 1: RGB image; 2: ground-truth; and 3: HSMD binarised. The raw images, shown in the first
row, demonstrate the scenarios that can be found in both datasets. The corresponding ground truth images, presented in the second row, show the 5 labels,
namely, i) static [grayscale value 0], ii) shadow [grayscale value 50], iii) non-ROI [grayscale value 85], iv) unknown [grayscale value 170] and v) moving [grayscale
value 255]. The corresponding binarised images generated by the HSMD are shown in the third row.

TABLE 1. CDnet2012 overall results

Method RC ↓ Re ↑ Sp ↑ FPR ↓ FNR ↓ WCR ↓ CCR ↑ F1 ↑ Pr ↑
HSMD 2.8 0.52 0.994 0.006 0.23 0.024 0.976 0.77 0.62
GSOC 3.5 0.54 0.993 0.007 0.25 0.024 0.976 0.75 0.63
MOG2 3.8 0.37 0.995 0.004 0.24 0.026 0.974 0.76 0.50
GMG 3.9 0.20 0.998 0.002 0.21 0.033 0.967 0.79 0.32
KNN 4.3 0.39 0.995 0.005 0.26 0.025 0.975 0.74 0.51
MOG 4.5 0.32 0.996 0.004 0.26 0.030 0.970 0.74 0.44
CNT 6.1 0.73 0.927 0.073 0.71 0.081 0.919 0.29 0.41
LSBP 7.3 0.57 0.90 0.096 0.80 0.109 0.891 0.20 0.29

↑: the highest score is the best.
↓: the lowest result is the best.
Best HSMD results are highlighted using dark grey, while best results per category are highlighted with light grey for other methods. Re is the Recall, Sp is
the Specificity, FPR is the False Positive Rate, FNR is the False Negative Rate, WCR is the Wrong Classifications Rate, CCR is the Correct Classifications
Rate, Pr is the Precision, F1 is the F score or F-measure and RC is the Average Ranking across all Categories.

The CDnet2012 and CDnet2014 datasets are composed of
image files of different resolution, and accordingly, the pro-
cessing times vary. The HSMD takes approximately 72.4ms
(CDnet2014) and 71.9ms (CDnet2012) to process images
of 720×480 on a 96-cores Intel(R) Xeon(R) Platinum 8160
CPU @ 2.10GHz equipped with 792 GB of DDR4 and 12.7
TB of disk space. The slight variations are related to other ap-
plications running in the background. Therefore, the HSMD
is capable of processing images of 720×480 at an average
speed of 13.82fps (CDnet2014) and 13.92fps (CDnet2012).
Finally, the HSMD is the first hybrid SNN algorithm capable
of processing images at such a frame rate, as far as the authors
are aware.

VI. CONCLUSION AND FUTURE WORK
A bio-inspired hybrid spiking neural network (HSMD) has
been proposed to detect object motion and assess against

the CDnet2012 and CDnet2014 datasets. These incorporate
video sequences of many moving objects under various chal-
lenging environmental conditions and are widely used for
benchmarking BS algorithms. The CDnet2012 is composed
of 6 categories of movements, and the CDnet2014 augments
the initial 6 to 11 categories of movements. Eight metrics,
utilised as standard in the CDnet datasets, were used to
assess and compare the quality of the HSMD algorithm.
The HSMD algorithm performed overall best in both the
CDnet2012 and CDnet2014 while performing better than
all the tested DBS algorithms in the intermittent object
motion, night videos, thermal and turbulence categories,
second best in the bad weather category and the third-best on
the baseline and shadow categories. The comparatively good
results are a consequence of using the SNN for emulating
the basic functionality of OMS-GC, which improves the
sensitivity of the HSMD to object motion. The HSMD is
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FIGURE 5. CDnet2012 overall results per category and method. The highest bars show the higher ranks, and it is clear that none of the methods had the best ranks
in all the categories. Furthermore, it is possible to see that the HSMD achieved high ranks across all the categories with the exception of dynamic background.

FIGURE 6. CDnet2014 overall results per category and method. The highest bars show the higher ranks, and it is clear that none of the methods had the best
ranks in all categories. Furthermore, it is possible to see that the HSMD achieved high ranks across most of the categories except dynamic background and low
frame rate.
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TABLE 2. CDnet2014 overall results

Method RC ↓ Re ↑ Sp ↑ FPR ↓ FNR ↓ WCR ↓ CCR ↑ F1 ↑ Pr ↑
HSMD 2.9 0.55 0.993 0.007 0.35 0.018 0.982 0.65 0.60
GSOC 3.0 0.40 0.995 0.005 0.38 0.017 0.983 0.62 0.48
KNN 3.5 0.34 0.996 0.004 0.32 0.019 0.981 0.68 0.45
GMG 4.3 0.24 0.997 0.003 0.36 0.022 0.978 0.64 0.35
MOG 4.4 0.58 0.991 0.009 0.39 0.019 0.981 0.61 0.60
MOG2 4.5 0.39 0.994 0.006 0.42 0.018 0.982 0.58 0.47
LSBP 6.5 0.58 0.945 0.055 0.79 0.064 0.936 0.21 0.31
CNT 7.0 0.72 0.930 0.070 0.80 0.075 0.925 0.20 0.32

↑: the highest score is the best result.
↓: the lowest result is the best.
Best results per category are highlighted using dark grey for the HSMD and light grey for other methods. Where Re is the Recall, Sp is the Specificity, FPR is
the False Positive Rate, FNR is the False Negative Rate, WCR is the Wrong Classifications Rate, CCR is the Correct Classifications Rate, Pr is the Precision,
F1 is the F score or F-measure and RC is the Average Ranking across all Categories.

TABLE 3. Results per category

IntObjMotion shadow cameraJitter badWeather dynamicBackground nightVideos PTZ thermal baseline lowFramerate turbulence
Method R↓ Method R↓ Method R↓ Method R↓ Method R↓ Method R↓ Method R↓ Method R↓ Method R↓ Method R↓ Method R↓
HSMD 3.875 MOG2 2.375 LSBP 1.875 CNT 2.125 LSBP 1.75 HSMD 2.625 CNT 1.75 HSMD 3.25 MOG2 2.625 GSOC 2.25 HSMD 2.875
LSBP 4.125 CNT 3.5 CNT 2.625 HSMD 2.5 MOG 2.375 LSBP 3.625 MOG 3.0 MOG 3.375 MOG 3.125 GMG 3.0 MOG2 2.875
GMG 4.125 HSMD 3.875 GSOC 4.125 KNN 3.5 KNN 3.625 MOG2 4.0 LSBP 4.25 GSOC 3.625 HSMD 3.625 CNT 3.375 LSBP 3.875
GSOC 4.5 KNN 4.25 HSMD 4.5 GMG 3.75 CNT 4.125 GSOC 4.25 MOG2 4.875 KNN 3.75 GMG 4.0 LSBP 4.875 KNN 4.375
MOG2 4.875 MOG 4.375 GMG 4.625 GSOC 5.5 MOG2 5.5 MOG 5.25 HSMD 4.875 CNT 4.75 GSOC 4.875 MOG2 5.125 CNT 4.375
MOG 5.0 GMG 5.5 KNN 4.875 LSBP 5.875 GMG 5.875 CNT 5.25 KNN 5.5 LSBP 5.25 KNN 5.875 MOG 5.25 GSOC 5.375
KNN 6.375 GSOC 6.0 MOG 6.625 MOG2 6.125 GSOC 6.25 GMG 5.5 GSOC 5.5 GMG 5.25 LSBP 5.875 KNN 5.5 MOG 6.0
CNT 6.75 LSBP 6.125 MOG2 6.75 MOG 6.625 HSMD 6.5 KNN 5.5 GMG 6.25 MOG2 6.75 CNT 6.0 HSMD 6.625 GMG 6.25

↓: the lowest result is the best.
The HSMD results are highlighted using dark grey for the HSMD, and the best results of other methods are highlighted using light grey.
R is the average Ranking.

also the first hybrid SNN algorithm capable of processing
video/image sequences with near real-time performance (i.e.
720×480@13.82fps [CDnet2014] and 720×480@13.92fps
[CDnet2012]).
Future work includes optimising the HSMD algorithm to
detect and track motion in challenging scenarios (e.g. low
frame rate, dynamic background and camera jitter) and an
investigation to verify if the SNN improves the output for all
the remaining methods. Furthermore, the authors will also
test if the SNN can enhance other BS algorithms available
on the OpenCV library. The authors also aim to design
and implement the HSMD approach on Multi-Processor
System-on-Chip (MPSoC) technology and high-end Field-
Programmable Arrays (FPGA) hardware to accelerate the
HSMD algorithm and b) reduce the power consumption for
embedded applications.
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