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Abstract: In the last few years, Low-Power Wide-Area Network (LPWAN) technologies have been
proposed for Machine-Type Communications (MTC). In this paper, we evaluate wireless relay
technologies that can improve LPWAN coverage for smart meter communication applications. We
provide a realistic coverage analysis using a realistic correlated shadow-fading map and path-loss
calculation for the environment. Our analysis shows significant reductions in the number of MTC
devices in outage by deploying either small cells or Device-to-Device (D2D) communications. In
addition, we analyzed the energy consumption of the MTC devices for different data packet sizes
and Maximum Coupling Loss (MCL) values. Finally, we study how compression techniques can
extend the battery lifetime of MTC devices.

Keywords: compression; small cell; NB-IoT; energy consumption modeling; huffman; Lempel-Ziv-
Welch; latency; LPWAN

1. Introduction

Until recently, cellular communication technologies have been designed to support
traffic for human communications called Human-Type Communication (HTC). It is worth
saying that Machine-Type Communications (MTC) is distinct from HTC in terms of the
data traffic pattern, required latency and deployment density [1]. The main parameters
to be considered in MTC communications for the underlying radio technologies are low
data rate, scalability, wide-area coverage and low power consumption. Considering such
requirements, most of the well-known short-range communications systems such as Wi-Fi,
ZigBee and Bluetooth low energy will not be applicable for the metering infrastructure.
At the same time, long-range wireless cellular technologies such as third generation (3G)
and fourth generation (4G) cannot easily be used in this context because of high energy
consumption, the high cost of equipment and because they have been designed for high-
speed human-centric communications.

Due to all these considerations, low-power wide-area networks (LPWAN) will be the
most suitable option for smart metering in the context of the smart grid [2]. As LPWAN
communication technologies have been standardized in the last few years, they are very
attractive for both smart grid and wider internet of things (IoT) applications. Different
properties and aspects of emerging LPWAN technologies have been discussed in these
references [3,4] in more detail. The third-generation partnership project (3GPP) introduced
its LPWAN solution, narrow-band IoT (NB-IoT), in its LTE Release 13 [5]. The use of NB-IoT
technology [2] has been studied recently for smart metering or smart grid applications.
Some comparative studies regarding deployment cost, latency, range and other aspects
have been summarized in [4]. Simple energy consumption and throughput modeling of
NB-IoT in comparison with general packet radio service (GPRS) technologies has been
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discussed in [6]. Compared to other LPWAN technologies, using NB-IoT is advantageous
due to the low-cost chipset, better building penetration and lower power consumption
due to the simpler waveform. Due to these advantages will be the best option for static
IoT devices such as smart meters. In [7], a prototype system including NB-IoT devices,
an IoT cloud platform, and an application server has been tested. Other important aspects
of NB-IoT which needs to be addressed are the capacity and coverage which are discussed
in [8]. Finally, in [9], the authors conducted NB-IoT network performance analysis in a
real-world indoor environment. The small cell concept has been defined as low-power
access points that operate in licensed spectrum to improve cellular coverage and capacity
and can be deployed in homes and enterprises [3]. Small cells can enhance MTC device
coverage and provide a backhaul link over an internet connection to the core network.

This paper significantly extends the initial research work in [3]. We have improved
our simple evaluation in that paper using more realistic model for small cell propagation
using a more precise path-loss models and using a realistic correlated shadow-fading
map. Moreover, we also study device-to-device (D2D) communications to improve MTC
device range. Furthermore, the energy consumption of the MTC devices using NB-IoT
technology has been analyzed precisely, and compression techniques have been proposed
to increase the lifetime of the battery. The remainder of this paper is structured as follows.
Section 2 discusses system modeling and the communications scenario. Section 3 discusses
simulation results for the impact of deploying small cells or D2D methods to improve
coverage area for MTC devices. In addition, Energy consumption analysis is also given
that considers the benefits of compression techniques. Section 4, discusses results from
testbed for implementation of compression algorithms and impact of these algorithms
on improving latency using wireless cellular technologies. Finally, Section 5 presents the
paper conclusions.

2. System Modeling

NB-IoT has been designed specifically for IoT applications by 3GPP by modifying the
basic functionalities of LTE. However, NB-IoT requires 20 dB more maximum coupling
loss (MCL) for serving end node devices. Several LTE protocols have been modified to
achieve this gain, such as new signaling and control channels for NB-IoT. Furthermore,
LTE uses Frequency Division Duplexing (FDD) supporting full-duplex mode while NB-
IoT uses the same techniques in half-duplex type-B. This reduces the complexity of the
MTC device, but it means that it cannot transmit (uplink) and receive (downlink) data
simultaneously [5].

Two important critical factors that need to be considered in designing wireless commu-
nication systems are achievable data rate and signal coverage. By defining key parameters,
we can characterize the wireless communication channel. As a result, we can calculate the
received signal quality using a propagation model for a given distance from the transmitter.
The 3GPP standard path-loss model [10] has been used in this paper to model cellular IoT
devices. Maximum Coupling Loss (MCL) or the communication link budget is used for
simulation of downlink (DL) and uplink (UL) to identify the coverage issues. Different
parameters such as receiver sensitivity, shadowing, path loss, etc. affect the attenuation
between the eNodeB antenna ports and the MTC device, dictating a limiting value for the
MCL. The required MCL value is 164 dB [5] for MTC devices in NB-IoT cellular networks
and can be defined as:

MCL(dB) = EIRP − LTotal + GRX (1)

where GRX is the receiver antenna gain to fulfil the target signal threshold, EIRP is the
effective isotropic radiated power which comprises the transmitter antenna gain plus
transmitter power. Finally, LTotal includes effective noise power and all losses, including
path loss.

Our communications scenario is as can be seen in Figure 1. In this scenario we
deployed small cells such as femto and pico-cells in the area covered by main macro-cell
base station to improve the coverage for cellular IoT end-users in outage. We define
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a user in an outage when the user cannot communicate data, and the MCL calculated
using Equation (1) is higher than that required for NB-IoT: therefore, a user in outage
has an MCL > 164 dB. Then we can calculate the received signal power to the UE device
from the BS using path-loss models presented in Equations (2)–(4). The study of cellular
communications systems requires us to consider the main parameters such as multi-path
fading, path loss and shadow fading, which can attenuate the wireless signal between the
base station and end-user devices.

2.1. Path Loss

The large-scale path-loss model for the communication link between Base Station (BS)
and user equipment (UE) according to Annex A of 3GPP standard [5] for the deployment
scenario of Cellular IoT is as follows:

LBS-UE = 120.9 + 37.6 log10(d)(dB) (2)

where: d is the separation distance (km) between the base station and the user equipment
and has been studied in [3]. In continue, we studied different standardized path-loss models
in the international telecommunication union (ITU) and 3GPP documents to find the most
suitable path-loss model, including the critical factors that affect signal attenuation. Finally,
we chose the path-loss models shown in Equations (3) and (4) respectively from the ITU [11],
and 3GPP [12] as both models provide an appropriate mathematical representation indoor
pico-cell of radio propagation. The ITU basic path-loss model is:

Lpico = 20 log10 f + N log10 d + L f (n)− 28(dB) (3)

where: d is the separation distance (m) between the base station and the user equipment,
N is distance power loss coefficient, f is the frequency (MHz), n is the number of floors
between base and portable and L f is the floor penetration loss factor (dB). The values of N
and L f for different frequencies has been given in [11]. The microcell propagation model
has been obtained from 3GPP 36.814 standard [12], and it has the following form:

Lmicro = max(38.46 + 20 log10 R2 + 0.7d2D,indoor + Low, 15.3 + 37.6 log10 R2)(dB) (4)

where d2D,indoor is the distance inside the house, R2 is the distance between receiver and
transmitter, and finally Low is the penetration loss of one outdoor wall which is 10 dB.

Macro-Cell

Micro-Cell

Pico-Cell

Femto-Cell

Smart Meter

20m10m

Figure 1. Small Cell Deployment Scenarios.

In Figure 1 three possible propagation scenarios exist which are described as follows:
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1. The user Equipment (UE) such as a smart meter is inside the same house as a small
cell (Femto cell or Pico-cell) Base Station (BS);

2. The UE is outside of the building;
3. The UE is inside a different house which will add Low,1 and Low,2 to the path-loss

model for the wall attenuation in buildings one and two, respectively.

The distances of UEs from different BSs is calculated on based on the scenario in
Figure 1 for each building (20 m) and street (10 m) and the number of walls applied in the
path-loss model. In this scenario we have assumed that femto cells (range of <30 m) are
only installed inside building but for pico-cells (range of <100 m) we have possibility to
install them both inside and outside.

2.2. Shadow Fading

The final step to complete the small cell deployment in our model is to consider a
realistic model for shadow fading [13]. In [3] we have considered shadow fading with a
simple log-normal shadowing value but here we replaced that model with the method
in [13] which generates a correlated shadow fading map. In the proposed model, correlated
shadow fading can be described simply with normalized correlation function:

r(x) = e−αx, x ≥ 0 (5)

where x is the distance and e−α is the correlation coefficient between two UE locations
spaced by 1 m using the suggested value of α = 1/20. Using this value of α means that the
shadow-fading correlation reduces to a value of 0.5 when the UEs are spaced by a distance
x of approximately 14 m. . In our simulation we therefore assumed the shadow fading
is unchanged over a distance of 10 m and therefore we construct our map with square
micro-cells with length of 10 m. Figure 2 shows one realization of a Monte Carlo simulation
with a shadow-fading map integrated into the simulation scenario shown in Figure 1. To
generate the correlated fading map in Figure 2, we used two-dimensional space using four
neighbors (each neighbor and square of 10 m) to create correlation matrices as explained in
the Appendix of [13]. In Figure 2 we have a large square map around a macro-cell base
station at the center of map with length and width of 6 km. Based on the interpretation of
the map, the value of shadow-fading attenuation can be calculated between the macro-cell
base station and each UE and then used in the simulation of the coverage analysis.
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Figure 2. Applying Shadow Fading Map to our simulation analysis.

Our Monte Carlo simulation steps can be summarized as follows:

• A shadow-fading map is created using the algorithm in the Appendix of [13]. The BS
is located at the center of the map with randomly spread UE devices around the map
as can be seen in Figure 2.
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• Then the physical BS/UE locations in Figure 1 are mapped to the shadow-fading
values shown in Figure 2. This process allows the simulation to identify where the
UE has been located and if any walls are present in the BS-UE link that need to be
accounted for in the path-loss calculation.

• According to the geometry of the UE and BS and the path-loss model, we measured
the received signal power level in the location of the UE devices.

• Finally, we calculate the percentage of UE devices in outage. Then we implement the
D2D communication scenario or add small cells randomly to the map. Again, we
calculate the received signal level from nearby UE devices for the D2D communica-
tion scenario or the small cell assisted scenario. Using the data provided below in
Section 3, the MCL can be computed for the D2D/small cell wireless links to identify
the improvement of outage for UE devices.

2.3. NB-IoT Energy Consumption Modeling Based on 3GPP Standards

As shown in Table 1 [14], the total energy consumption can be broken down into four
main blocks for an IoT device to operate: ECommunication required energy to communicate
the data, which is typically 60% of the total; ECollection for collecting (6–20% of the total)
and EProcessing (15–30%) for processing collected data. Furthermore, a small portion of the
energy (1–6%), which we can call Esystem, is consumed to wake up the machines periodically
or run a real-time operating system. Summing all these energy terms together expresses
the total consumed energy of the devices EDevice as can be seen in the following expression:

EDevice = ECommunication + ECollection + EProcessing + ESystem (6)

In order for the IoT device to perform the tasks, it needs to wake up each time and
complete collection, processing, and communication of data in a particular time that we
can call TRecording. Additionally, Tmessaging can be defined as the required time that IoT
devices need to communicate the processed message.

The data processing and communications operations for the smart metering applica-
tion can be split into three steps:

• Energy consumption measurement of each circuit in the building;
• Applying compression techniques to the collected data to reduce the size of data using

smart meter hardware
• Updating the Energy Data Center (EDC) information by transmitting the compressed

data or detecting an unusual situation to activate an alarm, by creating a data packet
of duration Message Tmessaging.

2.4. Network Power Consumption Modeling

Essential requirements such as lifetime, available energy, and reduced cost need to
be considered in modeling IoT applications’ energy consumption. To the best of our
knowledge, for modeling network energy consumption, there are two main scenarios:

1. Point-to-Point Communications (PPC) [15]
2. Time Synchronized Networks (TSN) [16]

We have used the PPC model for our simulations, considering parameters such as
interference-free and a single hop communication scenario. Additionally, in our simulation,
we have assumed the Medium Access Control (MAC) layer is ideal. This assumption means
that co-channel interference and packet collisions can be neglected, so that any transmitted
data packet can be assumed to reach the receiver correctly. The energy consumption in
this scenario should be calculated separately for each MTC device. According to Figure 3,
the device should consume energy EDatapacket for the Kth transmitted data packet, including
all energy consumed in Figure 3 in a time of TDatapacket(K). As a result, for transmitting all
the NDataPacket messages, the average power consumption can be expressed as:
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Figure 3. Protocol flow for the uplink of NB-IoT showing an example of possible energy consumption.

PNetwork = (1/NDataPacket)
NDataPacket

∑
K=0

EDatapacket

TDatapacket(K)
(7)

For different wireless communication technologies, as shown in Equation (7), EDatapacket
is a changing parameter. The two main terms of Equation (7) that can impact total energy
consumption are the radio power and transmission time. Although the maximum radio
transmit power is limited, the transmission time varies by applying different modulation
and coding techniques, changing the data transmission speed over time. In conclusion,
energy consumption is affected by the main three parameters for each data transmission
process as follows:

1. The Packet Repetition Factor
2. The Radio Power
3. The Number of Retransmissions

2.5. Power Consumption Modeling for Data Processing

The simulations have considered a simple scenario, including different data processing
algorithms using IoT device hardware which applies data compression techniques [17,18],
to collect the data. Estimating the number of operations performed to do a specific task to
calculate energy consumption is necessary to create a realistic simulation model. To estimate
the consumed energy for all collected data, we need to calculate the number of operations by
the required number of clock cycles to perform that operation using a particular hardware
and processing unit.

Table 1. Communication Power consumption for NB-IoT model and devices (ECommunication).

NB-IoT 3GPP Model [5] Actual Devices [19]

Standby 0.015 mW 0.013–0.035 mW

Sleep 3 mW 21–23 mW

Transmit 480 mW 716–840 mW

Receive 75 mW 213–240 mW

2.6. Power Consumption Modeling of Data Acquisition

The power grid status in the smart grid can be estimated and observed by monitoring
the collected data. Monitoring applications of power systems can be categorized into two
main parts:
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1. Monitoring regularly the power system which can happen periodically with a fixed
time interval in between;

2. Monitoring power systems in an event-driven way, observing exceptional cases that
happen randomly or due to alarms.

2.7. Modeling of Energy Consumption for NB-IoT according to 3GPP Standards

Essential requirements such as lifetime, available energy, and reduced cost need to be
considered in modeling IoT applications energy consumption. For example, the power con-
sumption of NB-IoT devices for a battery with 5Wh capacity and certain traffic conditions
has been predicted in [5]. The assumption of the analysis is that UE periodically transmits
a single data packet of a given size. For example, the battery life of UE, communicating
200-bytes of uplink data per day on average with this MCL can last for up to 10 years [5].

Our simulation using a Point-to-Point Communications (PPC) [15] model for a com-
munication scenario with an Ideal MAC layer, an interference-free channel and a single
hope data link. We worked on the 3GPP power consumption model, which is well under-
stood by the research community and discussed in several papers. For example, in [19]
the authors presented the first empirical NB-IoT power consumption model to measure
the battery lifetime. According to this published paper, the power consumption in the
first generation of NB-IoT devices is slightly higher than the 3GPP model. As a result,
the authors measured a 10% shorter battery lifetime for this generation of NB-IoT hardware.
We proposed D2D links and small cell deployment to improve the coverage for users in
outage and increase the battery lifetime by reducing the required power to communicate to
BS via a nearby device or small cell.

In addition, data compression techniques including Lempel-Ziv-Welch (LZW) and
Huffman have been evaluated in our simulations and practical implementation for their
processing time and compression performance.

(1) Lempel-Ziv-Welch (LZW): This compression method is an algorithm that taking
advantage of symbol repetition to compress data [20]. It operates by creating a “dictio-
nary” of symbols and associated codewords both for compression and decompression.
The process of data size reduction in LZW is straightforward; it assigns a codeword for
each string and using single codewords instead of repeated strings based on the primary
dictionary, and adding new codewords to the existing dictionary with the unique reference
number. Therefore, by compression of each new string, the LZW dictionary is updated with
new codewords for incoming longer strings, and it replaces them with smaller codewords.
By continuing to compress the data in this way, the LZW algorithm can compress data
on the fly. LZW performs very well for compression of data sequences with repetitive
substrings such as text and numeric files.

(2) Huffman (Huff): The basic principle of Huffman coding is to allocate bit patterns to
characters according to their repetition frequency [21]. Therefore, two passes are required
for compressing the file—one pass to find the rate of recurrence of each character and
generate the Huffman tree and a second pass to actually compress the file. Huffman coding
suffers from the fact that the decoder needs to have knowledge of the mapping of bit
patterns to the characters. Sending this information with the codewords increases the
overall bit rate. Conversely, if this information is unavailable, it will not be possible to
decode the compressed data. In this practical implementation, for simplicity, we have
implemented the Huffman compression technique. Still, in our other research work [17,19],
to solve the problems associated with this technique, we have used an improved variant of
Huffman coding called Adaptive Huffman (AH).

3. Simulation Results

In this section, simulation results from different communication scenarios and energy
modeling approaches that have been discussed in the previous section will be described.
Key simulation settings are shown in Table 2.
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In the first step, our simulation analyzed how D2D communications assists the outage
users communicate to the BS or a small cell via other users located within the coverage
area of the macro-cell BS for the scenario in Figure 1. There are two issues in this scenario,
the first one is the security of data transmissions with multi-hop communications between
MTC devices and the second one is the increased energy consumption. Regardless of the
security issue, which is not in the scope of this paper, we considered an energy efficient
scenario where only one extra hop is allowed to extend the coverage to the users in outage.
For the proposed model, the users in outage discover nearby MTC devices within the
coverage area of the BS or small cells and measure the required energy to transmit the
data packets to those devices. Then the network will choose the most energy efficient
communication link to one of the nearby devices for data transmission.

Table 3 shows the baseline coverage analysis for both LTE and NB-IoT devices. Table 3
depicts that NB-IoT with an extra 20 dB of permitted MCL can reduce the percentage of
users in outage to half of that for devices using LTE communication technology in the
same size macrocell. As can be seen in Figure 4, the total percentage of outage users for
NB-IoT is around 30% without deploying small cells or D2D. By increasing the number of
MTC devices within the macro-cell coverage region, the proportion of outage users can be
improved to 27% and to 10% with 100 and 1000 D2D enabled users, respectively. The result
shows that D2D communication can also be considered an effective solution to improve
coverage if the issues associated with energy consumption and security are resolved for
MTC devices.

Table 2. Simulation Key parameters.

Parameters Values

NB-IoT Macro-cell Radius 6 km

Path-loss model Base Station-IoT Device distance:
d(km) Equations (3) and (4)

Log-normal fading standard deviation from shadow-fading map

Femto eNB EIRP 20 dBm

Pico eNB EIRP 35 dBm

Maximum Transmit Power of MTC device 23 dBm

Maximum Transmit Power of Main BS 46 dBm

Number of Small Cells Up to 200

Number of MTC Devices 300 and up to 1000 for the D2D scenario

fc for NB-IoT 900 MHz

Table 3. Comparison of the number of outage users in NB-IoT and LTE (4G) technologies .

Communication Technology Percentage of Users in Outage

LTE 71

NB-IoT 28.6
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Figure 4. Device-to-Device communications to reduce the number of outage users.

In Figures 5 and 6 and Table 4, the results of the small cell communication scenario
described in Figure 1 has been shown. Using the path-loss models and shadow-fading
values for small cells, we simulated the coverage impact of pico-cells and femto cells.
First, we analyzed the improvement of coverage for users in outage as can be seen in
Figures 1 and 2 for the path-loss model shown in Equations (2) and (3) .

Figure 5. Simulation of macro-cell in the presence of Femto cells with Path-loss model—Equation (2).

Figure 6. Simulation of macro-cell in the presence of Pico-cells with Path-loss model— Equation (2).
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Table 4. Results from Equations (3) and (4) for Femto and Pico-cells deployment and remaining users
in Outage in each scenario.

No. of Small Cells 20 60 100 140 180 200

% Average Outage Users 28 28 28 28 28 28

Equation (3) Femto Cell 24.6 18.7 14.41 11.2 8.4 7.3

Equation (3) Pico-Cell 23.7 18.4 14.1 10.7 8.4 7

Equation (4) Femto Cell 23.6 18.3 13.9 10.5 8.2 6.8

Equation (4) Pico-Cell 23.4 17.7 13.2 9.8 7.5 6.1

An interesting point is about how results differ from [3]. First of all, the number of
outage users does not decrease significantly for a small number of 20 femto cells. Still,
for both path-loss models in Figure 2, around 25% of users will remain in outage. On the
other hand, by increasing the number of femto cells to 200 femto cells, we can improve the
coverage and the number of outage users will be reduced significantly when compared to
the simple model in [3]. The results in Figure 5 and Table 4 show that only 7.3% and 6.8%
of users will remain in the outage for two path-loss models, respectively.

The results for deploying pico-cells are different. In contrast to [3] which has less than
15% of users in outage for deploying only 20 pico-cells, the results in Figure 6 and Table 4
do not show significant outage reduction with this number of pico-cells. This is regardless
of their being inside the buildings or outside the building for a realistic shadow-fading
map. By deploying many pico-cells (200 pico-cells), the percentage of outage users reduces
to 7% and 6.1% of user devices in the macro-cell for the path-loss models.

Using Equation (6), the energy consumption for data collection can be modeled
using our simulator, based on how many samples have been collected by the acquisition
hardware and the reporting requirements for the control center. As an example, in Figure 7
we analysed the NB-IoT battery lifetime for transmitting short data packets of 50 bytes
and 200 bytes versus the number of reporting intervals per day for different values of the
maximum coupling loss (MCL) based on [5]. From the figure it can be seen that battery
lifetime for NB-IoT user devices can be increased by the shortening the data packets and
by reducing the number of reporting times per day. For example, the lifetime of the battery
for a single data transmission of 50 bytes per day with an MCL of 164 dB is 20 years, while
the lifetime of the battery will reduce to 15 years for one transmission per day of 200 bytes
with the same MCL. One way to shorten the data packets is using lossless compression
techniques described in [17]. Results for this approach making use of a realistic testbed
system based on Raspberry Pi computers is described in the next section.

Evaluation of the required energy consumption for data compression in real hardware
is necessary to count the energy consumption of user devices which can significantly impact
the battery lifetime of NB-IoT devices. Compression of NB-IoT data packets, in addition to
increasing lifetime of the battery, can reduce the latency and increase reliability through
using smaller data packets at a particular time. The energy consumption and compression
of data is very important especially if the UE acts as a D2D node to extend the coverage
of cellular IoT BS to outage users. By compressing data packets and the reducing the
reporting interval to once or twice per day we can successfully increase the battery lifetime
of MTC devices.
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Figure 7. NB-IoT battery lifetime analysis for short data packets of 50 bytes (B) and 200 bytes (B) for
Different MCL.

4. Testbed Results

In this section, we move on to discuss results from a smart grid experimental testbed.
This uses a Laptop PC as a network controller and low-cost Raspberry Pi computers to
emulate client-side devices that can implement advanced smart grid applications, such as
demand response. This system makes use of the UK internet network to emulate a practical
smart grid system.

Impact of Compression on Cellular Communications Latency

One of the most critical parameters in smart grid communications is latency. Be-
sides coverage analysis of NB-IoT technology, this new IoT technology’s latency charac-
teristic is an essential factor in designing systems based on NB-IoT. As NB-IoT is not yet
rolled out widely, we have tested the compression technique on the fourth generation (4G)
and the third generation (3G) of cellular communication technologies in reality. In this
paper, we have measured the one-way latency experimentally, which is defined as the
time required for a data packet to be communicated from the transmitter to the receiver,
including data compression if used.

It is worth mentioning that NB-IoT is based on the Long-Term Evolution(LTE) tech-
nology used in the 4G cellular network. Therefore, experiment related to 4G can provide a
measure to evaluate the closely related technologies such as NB-IoT.

Data transmission in an IoT network has been emulated by creating a short data packet
size from 50 bytes to 10 Kbytes which communicated from the client platform (Raspberry
Pi 3B) to the server platform (Laptop PC) using 3G and 4G communication systems. Data
sources in smart grid applications vary a lot, but for the purpose of demonstration the data
used here was taken from the MIT Reference Energy Disaggregation Dataset (REDD) [22].
This dataset comprises a set of power consumption measurements from six houses, which
is converted into energy consumption values recorded every 10 min—more details can be
found in [17].

The impact of compression techniques on latency has been studied using two lossless
compression algorithms, Huffman coding and Lemple–Ziv Welch(LZW). The performance
of data reduction of two algorithms has been compared by calculating the space-saving
ratio for those compression techniques as shown in Equation (8) and Table 5.

Space-Saving Ratio = 1 − Compressed Data
Uncompressed Data

(8)
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Table 5. Percentage of Space saving.

Platform/Data Size 50 B 100 B 500 B 1 KB 2 KB 4 KB 6 KB 8 KB 10 KB

Huffman 55 65 77 79 80 80 80 80 80
LZW −91 −46 −3 22 32 50 57 59 62

It is essential that keep in mind by applying a compression algorithm while reducing
the data size, it will increase the processing time both for compression and decompression
of the data packet size, as is depicted in Equation (9).

Total Latency = Compression Time + Transmission Latency + Decompression Time (9)

Table 6, showing the compression and decompression processing time in a client
platform (Raspberry Pi 3B+) for the selected lossless compression techniques. This type of
processor is representative of what may be used in an advanced client device implementing
sophisticated smart grid functions such as demand response [23]. In simpler devices such
as smart meters, it is more common to use lower power microcontroller devices, which
would require a longer processing time. Nonetheless, the relative comparison of the two
methods would still be reasonable. The LZW and Huffman coding algorithm’s processing
time is different on a hardware platform such as RPi as a client. Table 6 shows that the
LZW compression time is much higher than the Huffman coding compression time and
vice versa; the LZW decompression processing time is much less than that for the Huffman
coding algorithm.

We need to keep in mind that the performance of the compression algorithm would
change according to the type of data as discussed in [24]. As seen in [24], the Huffman
algorithm can achieve a high compression ratio regardless of the data type considered,
such as temperature data, humidity data, ECG data, and text files. At the same time,
the LZW has poor performance on numerical data types such as temperature, humidity
and ECG data, while it can perform better on compressing text files. The dataset we used
in our work from [22] is an alphanumeric data type including date, time, circuit number
and power consumption. For a server platform using a strong PC, the compression and
decompression algorithm differences are not too much for both compression techniques.
From Table 6, it can be predicted that using the Huffman algorithm on client platforms
with weak hardware can be much more efficient than LZW. Based on the evaluation results
described above , a 60–80% reduction in data packet size can be achieved with the Huffman
coding algorithm which requires less than 20 ms processing time for data packet sizes up
to 2 KBytes.

In this research work, we have compared wireless last-mile communication tech-
nologies as shown in Table 7, based on estimated latency and data rate values that can
be found from the literature and previous research work [23,25]. According to the refer-
ences [23,26,27] MCL (signal strength) can impact significantly on the value of the latency.
The latency for two standard protocols—the transmission control protocol (TCP) and user
datagram protocol (UDP)—have been simulated for a smart grid IoT network in [28].
Our experimental results are for 3G and 4G links using a standard TCP implementation
with Nagle’s algorithm activated. Results with and without compression techniques with
different data packet sizes are illustrated in Figures 8–10. Our prediction for NB-IoT is
based on our experiments on 3G and 4G technologies.

Table 6. Compression (ComT) and Decompression (DeComT) Time (ms).

Platform/Data Size 50 B 100 B 500 B 1 KB 2 KB 4 KB 6 KB 8 KB 10 KB

RPi (LZW-DeComT) 2 2 6 9 13 16 14 17 20
RPi (LZW-ComT) 3 5 13 24 42 75 91 100 106

RPi (Huff-DeComT) 2 2 11 24 47 78 89 101 116
RPi (Huff-ComT) 1 1 2 5 12 23 34 40 39
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Figure 8. 3G (a) and 4G (b) median latency without and with Huffman and LZW compression
techniques (CTS stand for Client-to-Server (Uplink)).
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Figure 9. CDF plot for different data packet size both for 3G (a) and 4G (b) using Huffman Compression.
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Figure 10. CDF plot for different data packet size both for 3G (a) and 4G (b) using LZW Compression.
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Table 7. Characteristics of 3GPP standardized wireless technologies used in the testbed.

NB-IoT 4G 3G

Typical Latency 300 ms [27,29]-few seconds [27,30] 50 ms 100 ms

Data Rate (bps) <150 K 15–50 M 1.5–8 M

This prediction has been proved from a practical experiment applying two compres-
sion algorithms on different data packet sizes shown in Figure 8. This figure shows the
median latency value and compares latency measurements for different data packet sizes
using the TCP protocol with and without applying compression techniques. Figure 8a,b
show that using Huffman coding, especially for data packet sizes less than 4kbytes, are
much more efficient than using LZW on the client side.

Figures 9 and 10 show the Cumulative Distribution Function (CDF) of collected latency
measurement from the testbed in detail for both 3G and 4G cellular network using LZW
and Huffman coding algorithms. The red line plotted in the figures represents a 90%
confidence latency value for the obtained results.

The 4G test TCP results in Figures 9 and 10, for both Huffman coding and LZW
shows more predictable behavior than the 3G results. It can be seen that Huffman coding
generally provides a 10–20% lower latency than the LZW method and the uncoded case.
Increasing the size of the data packet will increase the latency values. The very high latency
results for 3G wireless technologies in Figures 9 and 10 mainly is because of higher data
packet loss that in detail has been presented in [23] for transmitted data without using
compression techniques.

5. Conclusions

In this research work, different research questions have been answered using simu-
lation and experimental approaches to increase the efficiency of future IoT technologies.
This includes methods to improve coverage and reduce the probability of communications
outage, increasing battery lifetime using compression techniques, and reducing latency. We
proposed small cell deployment and D2D communications to improve coverage for UEs
experiencing outage conditions and compression algorithms to improve communications
efficiency. Thus, we could conclude the paper in two parts; simulation and empirical parts.

In the simulation section, we have studied coverage using different path-loss models,
and realistic shadow-fading maps to evaluate cellular coverage for NB-IoT data services,
a significant reduction in the proportion of outage users by deploying pico-cells—from
30% for no small cells to around 5–7% for 200 pico-cells—has been shown as one of
the main results of this paper. Furthermore, we used a realistic power consumption
model to study how energy consumption can be reduced by compressing data packets
or reducing the reporting interval when using NB-IoT. Additionally, we proposed the
Huffman compression technique to reduce the data volume and increase the battery lifetime
of IoT devices. Moreover, we have analyzed the performance of NB-IoT for different smart
grid applications as an LPWAN communication technology in terms of coverage area, data
packets and the active number of smart meters in a Macro-cell.

Finally, in the experimental section, we have explored the characteristics of Huffman
and LZW compression algorithms on 3G and 4G cellular communication technologies,
and the impact of these compression algorithms on latency has been evaluated. It was
found that Huffman coding generally performed better than LZW and could offer a modest
reduction in communications latency of up to 10–20%. But for data packets close to the
maximum transmit unit (MTU) in TCP, the Huffman performance will increase 30–40%.
This better performance is because communicating one MTU in TCP protocol can be
transmitted in a single network-layer transaction.

In future research, alternative compression methods need to be investigated, consider-
ing the impact of packet loss and errors on communication systems. Additionally, the realis-
tic energy consumption of devices using LPWAN technologies (especially NB-IoT) need to
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be investigated considering joint compression and retransmission mechanisms to provide
a high probability of successful transmission in the proposed communication architecture.
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