
The visual system is thought to be optimised to process natural images efficiently. Abstract artworks 
may be aesthetically pleasing as they are more easily processed, conversely uncomfortable images 
may be less efficiently processed. When physical contrast is controlled for, fractal dimension and 
steady-state visual evoked potentials predict discomfort and aesthetic judgements of abstract 
artworks, natural and uncomfortable images, although the relationship is not as clear as efficient 
coding theories suggest.
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Abstract 

It has been suggested that aesthetically pleasing stimuli are processed efficiently by the visual 

system, whereas uncomfortable stimuli are processed inefficiently. This study consists of a 

series of three experiments investigating this idea using a range of images of abstract 

artworks, photographs of natural scenes, and computer-generated stimuli previously shown to 

be uncomfortable. Subjective judgements, and neural correlates were measured using EEG 

(steady-state visual evoked potentials, SSVEPs). In addition, global image statistics (contrast, 

Fourier amplitude spectral slope and fractal dimension) were taken into account. When 

effects of physical image contrast were controlled, fractal dimension predicted discomfort 

judgements, suggesting the SSVEP response is more likely to be influenced by distribution of 
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edges than the spectral slope. Importantly, when effects of physical contrast and fractal 

dimension were accounted for using linear mixed effects modelling, SSVEP responses 

predicted subjective judgements of images. Specifically, when stimuli were not matched for 

perceived contrast, there was a positive relationship between SSVEP responses and how 

pleasing a stimulus was judged to be, and conversely a negative relationship between 

discomfort and SSVEP response. This is significant as it shows that the neural responses in 

early visual areas contribute to the subjective (un)pleasantness of images, although the results 

of this study do not provide clear support for the theory of efficient coding as the cause of 

perceived pleasantness or discomfort of images, and so other explanations need to be 

considered.

Introduction

It has been suggested that the goal of the visual system is to process visual information 

efficiently (Barlow, 1961), especially given the high metabolic cost of the cortex (Lennie, 

2003). In order to maximise efficiency, the human visual system is thought to be optimised 

for its environment (Field, 1987; Atick, 1992; Ruderman et al., 1998; Olshausen and Field, 

2004). The natural visual environment is not random, but contains statistical regularities, such 

as a typical spatial frequency amplitude spectrum (Burton and Moorhead, 1987, Field, 1993; 

Tolhurst et al., 1992; Olmos and Kingdom, 2004). Cells in the early visual cortex have been 

suggested to respond in a way that is similar to Gabor filters (Daugman, 1980; Field, 1993), 

and computational studies have shown that Gabor filters would provide one possible method 

to transmit the information typically contained in natural images in a sparse and 

metabolically efficient manner (Field, 1987; Field, 1994; Field, 1999; Brady and Field, 

2000). 
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Aesthetically pleasing images may further reduce processing redundancy (Ramachandran and 

Hirstein, 1999). Artworks may be aesthetically pleasing as they have spectral slope values 

even closer to the optimum for the visual system (Graham and Field 2007; Graham and Field 

2008; Redies 2007; Mather, 2013; Koch et al., 2010). It has been suggested that artists 

deliberately adjust the spectral slope of the subject matter for artistic effect (Mather, 2014). 

Moreover, it has also been shown that preferences for faces are related to their Fourier 

spectral properties (Menzel et al., 2015).

Natural images and artworks have typical, and therefore predictable, statistical properties, and 

are generally considered to be aesthetically pleasing. By contrast, images with properties very 

different to those of natural images can be judged uncomfortable to look at (Fernandez and 

Wilkins, 2008; Juricevic et al., 2010; O'Hare and Hibbard, 2011). Computational models 

have demonstrated that discomfort from such stimuli could arise from inefficient, and 

therefore metabolically costly, visual processing (Pennachio and Wilkins, 2015; Hibbard and 

O'Hare, 2015). Evidence for this non-natural structure of uncomfortable images has also been 

shown in the temporal domain, in the form of flicker (e.g. Yoshimoto et al., 2017). 

The amplitude spectrum is one predictable, statistical property of natural scenes. The 

alignment of local edges in an image (the phase spectra) of natural images also tend to have 

predictable properties that can be exploited for a sparse, efficient code (e.g. Field, 1993). The 

phase spectra of natural images tend to be statistically fractal patterns (Field, 1993), which 

are prevalent throughout natural scenes (Pentland, 1984). Although fractal patterns have 

amplitude spectra close to -1 (e.g. Field and Brady, 1997), not all images with 1/f amplitude 

spectra are fractal. A more direct measure is to estimate the fractal dimension by using 

methods such as “box-counting” (Li, 2009).
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Fractal dimension influences judgements of aesthetics for both natural (Aks and Sprott, 1993; 

Spehar et al., 2003) and computer-generated images (Spehar et al., 2003). Works of abstract 

artwork, such as Pollock's drip paintings, have also been found to have a fractal structure 

(Taylor et al., 1999). In addition, Hagerhall et al., (2015) showed that fractal dimension 

influences the electrophysiological response of observers, measured using EEG. 

Sarasso et al., (2020) showed using computer-generated images of varying slope exponent 

that the most aesthetically pleasing images were those with slopes of 1.8. The authors also 

showed a positive relationship between the C1 and N1 component amplitudes and aesthetic 

judgements. Additionally, fMRI evidence shows increasing activation in the occipital cortex 

in response to artworks that were judged to be more aesthetically pleasing compared to others 

(Vartian and Goel, 2004). This would be in conflict with the idea of efficient processing. It 

has been suggested that aesthetically pleasing stimuli might result in sensory enhancement in 

low-level visual areas could be due to the effects of attention (for a review, see Nadal, 2013). 

Stimuli with increased valence may recruit additional attentional resources and therefore 

result in an increased neural response. The idea of attentional enhancement is also supported 

with measures of task performance. Stimuli with spectral slope values of 1.8 were judged to 

be more aesthetically pleasing, and also showed reduced reaction times for a visual search 

task with these stimuli as a background (Sarasso et al., 2020). Additionally, for stimuli whose 

naturalness can be captured with low-level features, there seems to be a correspondence 

between faster reaction times and aesthetic judgements (Kardan et al., 2015). 

There is a large body of theoretical and computational work, but there are fewer studies 

directly comparing neural responses to art, natural and uncomfortable images to assess the 

idea of efficient coding. One previous study using a limited sample of images of artworks, 

natural and uncomfortable images showed a tendency for images of artworks to have both 

lower discomfort judgements, and lower ERP responses compared to uncomfortable stimuli 
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and natural images (O’Hare and Goodwin, 2018). Steady-state visual evoked potentials 

(SSVEP) is an alternative method that involves a rapid presentation of stimuli (“flickering”) 

for a period of time, for example 60 seconds, in order to evoke an oscillatory (steady-state) 

response, which has the benefit of an increased signal-to-noise ratio compared to other EEG 

methods (Vialette et al., 2010; Norcia et al., 2015). This means a wider selection of images 

can be included in the sample, increasing the robustness of the findings. 

The visual system varies in contrast sensitivity (Campbell and Robson, 1968) and this can be 

seen in EEG responses (e.g. Plant, 1983, Regan, 1987). The stimuli previously used were 

matched for perceived contrast (O’Hare and Goodwin, 2018), therefore Experiment 1 will 

again use the same stimuli that have been matched. Experiment 2 will investigate stimuli 

matched for physical (root-mean-squared, RMS) contrast. Lastly, Experiment 3 includes 

stimuli chosen based on the spectral slope exponent. 

Individual variation is a ubiquitous issue in work studying subjective judgements. Spehar et 

al., (2015) show that some elements of individual variation in preference could be related to 

the individual's sensitivity to that image attribute. Additionally, the relationship between 

fractal dimension and aesthetics judgements is not straightforward, and there is evidence of 

different subpopulations who show divergent patterns of responses – some preferring higher, 

others preferring lower fractal dimension values (Bies et al., 2016). As the relationship 

between subjective judgements and SSVEP responses is of interest, this relationship will be 

explored using linear mixed effects models. This allows for the random variation from 

individual differences to be included in the model, which is critical in this context, as well as 

including mediating effects such as low-level image statistics. In addition, as the 

interpretation of the specific word "discomfort" is unclear, observers will be asked to respond 

using a variety of slightly different phrasings, which will facilitate the generalisability of any 

consistent findings. If the efficient coding hypothesis is correct, the main hypotheses for the 
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current experiment are firstly, stimuli with statistical properties very different from those of 

natural images will be more uncomfortable than those with the statistical properties typical of 

natural images. Secondly, there will be a positive relationship between SSVEP response 

amplitude and the subjective discomfort of the images (conversely a negative relationship 

between how pleasing an image is and the amplitude of the SSVEP response). 

Materials and Methods

Apparatus

Stimuli were presented using an MSI (MS-7788) computer with i7-3990CPU Intel processor, 

NVida GeForce GTX 650 graphics card. The display used was a 22” Illyama Vision Master 

Pro 514 monitor set to a resolution of 1024 x 768 with a refresh rate of 85Hz. The display 

was calibrated using a Minolta LS100 photometer, mean luminance was 44.24cd/m2. A Bits # 

stimulus processor (Cambridge Research Systems) was used to convert the RGB signal to 

greyscale. Stimuli were presented using MATLAB (2015a) and the Psychtoolbox (Brainard, 

1997; Pelli, 1997; Kleiner et al., 2007). EEG recordings were made using a 64-channel 

Active-Two Biosemi system and a 10-20 system electrode cap for the placement of the 

electrodes. There were eight facial electrodes, two on the mastoids, two on the outer canthi, 

two supraorbital and two infraorbital, in order to record eye movements. 

Stimuli

Stimuli were artworks taken from the Guggenheim open collection 

(https://www.guggenheim.org/collection-online). These were one from each category of 

Bauhaus (Klee, In der Strömung Sechs Schwellen), Supremism (Malevitch, Untitled), 

Abstract Expressionism (Pollock, Untitled (Green Silver), de Stjil (Mondrian, Composition 
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no VII) and Orphism (Kupka, Study for Amorpha, Warm Chromatic and for Fugue in Two 

Colours Study for the Fugue). Images were converted to greyscale using the Matlab function 

“rbg2gray”. 

Bump images were the same as those used originally by (Fernandez and Wilkins, 2008), 

filtered noise patterns created using a raised radial cosine function (see equation 1). 

𝐻(𝑓) = 𝑇{ 𝑇
𝑇
2[1 + cos (

𝜋𝑇
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2𝑇

0
)]
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(|log (𝑓) ― log (𝑓0)| >
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Equation 1

Where T is 0.9, β is 0.5, f is the spatial frequency, and f0 is the centre frequency of the 

function, defining the peak of the ‘bump’. The centre frequency was set to 0.75, 1.5, 3, 6, 9 

cycles per degree. Natural images were five images chosen from the van Hateren image 

database (van Hateren and van der Schaaf, 1998). Fourier analysis was used to determine the 

spectral slope of the first 200 images of the van Hateren image database. The five images 
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with the spectral slope closest to 1 were chosen (image numbers 6, 65, 76, 84, 91). Stimuli 

were presented in a Gaussian-edged window. The radius of the window was 3.23ᵒ, and the 

Gaussian edge had a σ value of 0.2153ᵒ. 

For the first experiment, a pilot experiment was conducted to match stimuli for perceived 

contrast prior to the main EEG recording experiment. Briefly, this experiment involved five 

participants in a two-alternative forced choice (2AFC) task using the method of constant 

stimuli. Psychometric functions were fitted to obtain a Point-of-Subjective-Equality (PSE), 

the 50% point, for the contrast of each stimulus. These settings were then used to match the 

stimuli for perceived contrast. Further details of the contrast matching task, including the 

data, can be seen in the supplementary information of O’Hare and Goodwin, (2018). There 

were five from each stimulus category which included: five images of artworks, five natural 

images (with slopes close to 1), and five bump stimuli of varying peak spatial frequency. 

Figure 1 shows examples of the stimuli used in the study. These 15 stimuli used in 

Experiment 1 had all been previously matched for perceived contrast in the pilot experiment.

*************************figure 1 here *****************************

Observers and Ethical Statement

Twenty-six young observers with normal or corrected-to-normal vision took part in 

Experiment 1. EEG data from two observers were lost due to technical issues. All participants 

in all three studies gave their informed consent in writing at the time of participation. All 

experiments were conducted in accordance with the guidelines of the Declaration of Helsinki 

(2013) and were scrutinised by the University of Lincoln School of Psychology ethics 

committee, approval number: PSY1617334.

Procedure
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Participants were seated in an electrically insulated, sound-attenuated room. The viewing 

distance was 1 meter and head movements were restricted using a chinrest. Participants were 

asked to remain as still as possible during the recording. A mid-grey screen was presented, 

with a black fixation cross in the centre 0.8613ᵒ in diameter. Stimuli were “flickered” by 

increasing and decreasing in contrast with a frequency of 5Hz. Each flickering stimulus was 

displayed for 5 seconds (Experiment 1) 20 seconds (Experiment 2), or 10 seconds 

(Experiment 3). After this a mid-grey screen appeared again, asking the observer to rate the 

stimuli from 1-7 for discomfort, and secondly for how aesthetically pleasing the stimulus 

appeared to be (Experiment 1). Stimuli were presented in random order, and each stimulus 

appeared 10 times (Experiment 1), 3 times (Experiment 2) and 6 times (Experiment 3). 

Therefore, the total presentation time for each individual stimulus in Experiment 1 was 50 

seconds in total, 10 repetitions of a 5 second duration presentation time. For Experiments 2 

and 3, individual stimuli were presented for a total of 60 seconds each, for Experiment 2 this 

resulted from 3 repetitions of a 20 second presentation time, and for Experiment 3 there were 

6 repetitions of a 10 second presentation time.

For Experiments 1 there were three stimulus categories, artworks, bump stimuli and natural 

images, and each category consisted of 5 stimuli each (total 15 stimuli). For Experiment 2 

there were four stimulus categories, artworks, bump stimuli, striped patterns and natural 

images. There were 10 artworks, 5 bump stimuli, 5 striped patterns, and 10 natural images 

(total 30 stimuli). For Experiment 3 there were 9 artworks, 5 bump stimuli, and 10 natural 

images (total 24 images). 

Analysis

EEG data was analysed using EEGLAB (Delorme and Makeig, 2004). Data were re-

referenced to the linked mastoids and filtered using a 0.1 to 40Hz band-pass FIR filter, to 
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remove drift and line noise. Bad channels were removed using the EEGLAB built-in 

procedure using a standard threshold and removing those outside of this value. Data were 

divided into 2.5 second (Experiment 1) or two-second (Experiments 2 and 3) epochs. Blinks 

were removed using a thresholding procedure, removing any epoch ± 150μV. Eye 

movements were corrected using the Gratton-Coles (1983) correction procedure. This 

involved selecting the ocular channels for measuring eye movements, and calculating a 

propagation factor associated with eye movements, based on the following criteria – spikes in 

voltage in the ocular channels of 20mV for 200ms, and then the remaining channels are 

corrected for these values. This was performed using the EXG4 and EXG6 electrodes, which 

are adjacent to and below the right eye, respectively. The Gratton-Coles technique has the 

advantage of removing artefacts associated with eye movements whilst retaining much of the 

data. Figure 2 shows the scalp topography of the response for Experiment 1.

******************************figure 2 here ***********************

Epochs were averaged over image. Spectral analysis was performed using FFT to estimate 

the peak amplitude of the SSVEP. The frequency spectrum for Experiment 1 can be seen in 

Figure 3, showing the peak response at the fundamental frequency, and the harmonics. 

*****************************figure 3 here ***************************

SSVEP responses to the stimuli were pooled across electrodes recording over the early visual 

areas (O1, Oz, O2). The SSVEP response was defined as the peak response at the 5Hz 

fundamental frequency to the stimuli averaged across these electrodes. Epochs were grouped 

into three image categories and averaged: those containing all artworks, all bump stimuli, and 

all natural images for the main analysis. For the correlations with the subjective judgements, 
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each image was considered separately. The programme "R" (R Core Team, 2013) was used to 

analyse the data, using the package “afex” (Singmann et al., 2016), and quoting the 

generalised eta squared (Gη2) as an estimate of effect size. Greenhouse-Geisser correction 

was applied to adjust the degrees of freedom where assumptions of sphericity were not met. 

Least-squares means were reported as estimated group values, as well as model estimates for 

the contrasts between conditions with an indication of statistical significance at the level of p 

< 0.05. Linear mixed models were conducted using the package “lme4” (Bates et al., 2012). 

Bayes information criterion (BIC) was used to compare the strength of the evidence in favour 

of the linear mixed model in comparison to the null model, using the guidelines of Kass et al., 

(1995) to estimate the strength of the evidence. Generalisability of the model was estimated 

using cross-validation which is performed by splitting the data into a training set and test set, 

fitting the model on the training subset, and using this to predict the test (holdout) set (Song 

et al., 2021). This process is repeated to obtain an estimate of the generalisability of the 

model from the full data set (de Rooij and Weeda, 2020; Song et al., 2021). As the design had 

non-independent structure due to the repeated measures, cross-validation of the model was 

performed by removing data from one individual at a time to create the training and 

validation sets, (Colby and Blair, 2013). 

 

Results

Subjective judgments

Figure 4 shows the effect of image type on discomfort judgments (F(1.38,31.84) = 23.76, p = 

4.86 x 10-6, Gη2 = 0.35). Bump stimuli were rated as more uncomfortable compared to the 

other image categories, with a least-squares mean of 4.53 (SE = 0.26) compared to 2.57 (SE 

= 0.22) for artworks (estimate 1.95, SE = 0.34, p = 4.0 x 10 -6 ) and 2.58 (SE = 0.22) for 
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natural images (estimate 1.94, SE = 0.40, p = 0.0002). There was no statistically significant 

difference between discomfort judgements for artworks and for natural images, with least-

squares means of 2.57 and 2.58 respectively (estimate -0.01, SE = 0.20, p = 0.99).

**************************figure 4 here ************************

Figure 5 shows the effect of image type on judgements of how aesthetically pleasing the 

images were (F(2.00, 46.00) = 64.47, p = 4.54 x 10-14 , Gη2 = 0.61). Artworks were judged to 

be more aesthetically pleasing than the other image types, with a least-squares mean of 4.65 

(SE = 0.19) compared to 1.96 (SE = 0.16) for bump stimuli (estimate 2.69, SE = 0.24, p = 

3.25 x 10-11) and 3.35 (SE = 0.21) for natural images (estimate 1.30, SE = 0.24, p = 6.72 x 10-

6). Natural images were also considered an estimated 1.39 (SE = 0.24) times more 

aesthetically pleasing compared to bump stimuli, with least-squares means of 3.35 (SE = 

0.21) and 1.96 (SE = 0.16) respectively (p = 2.97 x 10-6). 

********************************figure 5 here ***********************

SSVEP responses

Figure 6 shows the effect of image type on SSVEP responses (F(1.55,35.76) = 19.67, p = 8.2 

x 10-6, Gη2 = 0.06). The SSVEP response for natural images (least-squares mean of 55.7, SE 

= 0.52) was lower than for images of artworks (least-squares mean of 56.8, SE = 0.57) 

(estimate -1.04, SE = 0.27, p = 0.002) and also bump stimuli (least-squares mean of 57.3, SE 

= 0.51) (estimate = -1.60, SE = 0.31, p = 0.0001). The response to bump stimuli (least-

squares mean of 57.3, SE = 0.53) was greater compared to images of artworks (least-squares 

mean 56.8, SE = 0.57) (estimate = 0.56, SE = 0.19, p = 0.012). 
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**************************figure 6 here **************************

Image statistics

Figure 7 shows the fractal dimension, spectral slope and RMS contrast of the three different 

image types. In this set of images, there was no statistically significant effect of image type 

on spectral slope (F(2,12) = 0.002, p = 0.99), on fractal dimension (F(2,12) = 0.12, p = 0.89), 

but there was a statistically significant effect of image type on RMS contrast (F(2,12) =3.95, 

p = 0.048) in the current set of images. Least-squares means were lower for bump stimuli 

(1.22 ± 0.02SE) compared to natural images (0.20, ± 0.02SE, estimate = -0.08, SE = 0.03, p = 

0.06), and artworks (0.19, ± 0.02SE, estimate = 0.07, SE = 0.03, p = 0.09) although the 

difference between natural images (0.20, ± 0.02SE) and artworks was much smaller (estimate 

= -0.01, SE = 0.03, p = 0.97). 

*****************************figure 7 here *********************

Although image statistics are related to one another, there were only weak correlations 

between the image statistics of the stimuli used in Experiment 1: Spearman’s rho (ρ) was 

used due to the non-normal distribution, and results showed only relatively weak correlations 

between spectral slope and fractal dimension (ρ (13) = 0.31, p = 0.25) and between spectral 

slope and RMS contrast (ρ (13) = -0.23, p = 0.41). There was no evidence of a relationship 

between fractal dimension and RMS contrast in the current set of images (ρ (13) = -0.03, p = 

0.91). Correlations can be seen in figure 8.

**************************figure 8 here**********************

SSVEP response amplitude was predicted by spectral slope (χ2 (1) = 47.67, p = 5.04 x 10 -12), 

SSVEP response amplitude increased with spectral slope by 1.32 (± 0.18 standard error). The 
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difference in BIC was 41.79, showing strong evidence in favour of the alternative model 

compared to the null model. This can be seen in Figure 9 (left). Cross validation showed the 

cross-validated R2 = 0.25, suggesting 25% of the variance explained, and cross-validated 

MSE of 10.13 indicates that on average, model-fitted results will deviate from observed 

results by √10.13. SSVEP response amplitude was predicted by fractal dimension (χ2 (1) = 

13.51, p = 0.0023). SSVEP amplitude increased with fractal dimension by 46.92 (± 12.64 

standard error), the difference in BIC was 7.62. This can be seen in Figure 9 (right). Cross-

validation showed R2 to be 0.18, suggesting 18% of the variance explained, and the cross-

validated MSE was 10.49, and so on average, model-fitted scores will deviate from the 

observed results by √10.49. RMS contrast did not statistically significantly predict SSVEP 

response amplitude (χ2 (1) = 1.49, p = 0.22). 

*********************************figure 9 here *********************** 

Relationship between subjective ratings and SSVEP responses

There were two linear mixed effects models conducted, one to predict discomfort 

judgements, and another to predict aesthetics judgements. Firstly, a linear mixed effect model 

was used to predict discomfort judgements. The model included SSVEP amplitude, spectral 

slope, fractal dimension and image type as fixed effects, and observer as a random intercept 

effect: 

discomfort ~ SSVEP + spectral slope + fractal dimension + RMS contrast + image type + (1 | 

observer) + error

This full model was compared to a null model omitting SSVEP response amplitude.  There 

was no statistically significant difference between the two models (χ2(1) = 0.0005, p = 0.98). 
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Similarly, there was also no statistically significant predictive effect of SSVEP response 

amplitude on judgements of how aesthetically pleasing the stimuli were (χ2 (1) = 0.0034, p = 

0.95).

As stimuli were matched for perceived contrast, but not physical (RMS) contrast, and 

contrast plays a role in discomfort judgements, the relationship between RMS contrast and 

discomfort was explored. RMS contrast predicted discomfort judgments (χ2 (1) = 45.80, p = 

1.32 x 10-11), contrast reducing discomfort judgements by -9.59 (± 1.37 standard error). The 

difference in BIC was 39.91, suggesting strong support in favour of the alternative model. 

The cross-validated R2 was 0.2, and so 20% of the variance was explained, and MSE was 

2.73, suggesting that on average, model-predicted scores will deviate from the observed 

results by √2.73.  Additionally, RMS contrast predicted aesthetics judgements (χ2 (1) = 51.99, 

p = 5.57 x 10-13), contrast increasing aesthetics judgements by 10.00 (± 1.33 standard error) 

the difference in BIC being 46.11. Cross-validation showed R2 to be 0.16, and cross-validated 

MSE to be 2.21. Figure 10 shows the bivariate correlations of the discomfort judgements and 

aesthetics judgements with SSVEP and each of the image statistics. 

***************************figure  10 here *************************

In addition to the linear mixed effects models, the SSVEP response amplitude to the most and 

least uncomfortable images were compared using a t-test. The most and least uncomfortable 

images were determined by obtaining an average over all observers for each image. This was 

then split into two groups based on the scores higher or lower than the median value, 

respectively. Welch’s two sample t-test was conducted due to unequal variances, which 

showed no statistically significant difference in the SSVEP response between the most and 

least uncomfortable images (t(9.68) = 1.49, p = 0.17). The same analysis was repeated for the 

aesthetics judgements, and again there was no statistically significant difference in the 
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SSVEP responses between the most and least aesthetically pleasing images (t(11.44) = -0.42, 

p = 0.68).

The SSVEP responses to the images with different fractal dimension values was also 

compared in the same manner. There was no statistically significant difference in SSVEP 

responses to images with higher or lower fractal dimension values (t(11.92) = 2.10, p = 0.06). 

Interim Discussion

The results of Experiment 1 showed that, in a limited set of perceptually-contrast matched 

images, the low-level image properties of images all affected SSVEP responses measured 

over early visual areas. SSVEP responses are predicted by spectral slope and fractal 

dimension, but not by RMS contrast. SSVEP responses did not predict subjective 

judgements, whether discomfort or aesthetics. However, RMS contrast did predict discomfort 

and aesthetics judgements. In Experiment 2, SSVEP responses were measured again, with an 

expanded image set that were matched for physical (RMS) contrast.

Experiment 2

Experiment 2 was conducted to estimate the SSVEP when stimuli equalised for physical 

contrast, rather than perceptual contrast. Physical contrast was determined as the root-mean-

squared (RMS) contrast of the stimuli. In addition, the study was to expand the range of 

artworks and natural images for comparison. This time the selection of natural images was 

chosen to avoid man-made structures, in order to have the stricter sense of "natural" images. 

In addition, vertical sine-wave stripe images were also included in the image set, as these 

have also previously been judged to be uncomfortable stimuli.
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Method

General method was as Experiment 1. Data from eight observers were included in the 

analysis, as one observer could not be included due to technical issues. Stimuli consisted of 

artworks, bump stimuli, stripe stimuli and natural images. The artworks were nine images of 

artworks held at the Museum of Art Trento and Rovereto, which have been used in previous 

studies (Yanulevskaya et al., 2012). These were images “Studio per il ciclo Protesta” by 

Vedova; “Oggetto ottico dinamico” by Dadamaino; “Omaggio alla vecchia signora” by 

Scanavino; “Circolarità rotatoria” by Senesi; “Intermedio cromatico” by Senesi; “Kleine 

Welten VI” by Kandinskij; “Untitled” by Collins; “Erik Satie” by Veronesi; and “Multiplo” 

by Bonalumi. As before, images were converted to greyscale using the Matlab function 

"rgb2gray". The bump stimuli were as before, with peak spatial frequencies of 0.375, 0.75, 

1.5, 3, 6cpd. Vertical sine-wave gratings were also included, with spatial frequencies of 

0.375, 0.75, 1.5, 3, 6cpd. In addition, 10 natural images from the van Hateren image database 

(van Hateren and van der Schaaf, 1998) were included, this time a list of all those images 

without man-made features was compiled by visual inspection. From this list, 10 images were 

chosen at random, the final image numbers included were 16, 31, 37, 53, 152, 155, 156, 190, 

192, 196. This time, stimuli were matched for RMS contrast. Stimuli were presented three 

times in total, for 20 seconds each, with a fixation cross presented in the centre of the screen. 

Observers were asked to rate how pleasing the images were. 

Results

Data were analysed as in Experiment 1.
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The effect of image type on how pleasing images were judged to be (F(1.91,13.37) = 5.81, p 

= 0.002, Gη2 = 0.31) can be seen in Figure 11. Natural images (least-squares mean = 4.46, SE 

= 0.22) were considered to be more pleasing compared to artworks (least-squares mean = 

3.47, SE = 0.32, estimate = 0.99, SE = 0.29, p = 0.04), bump stimuli (least-squares mean = 

2.68, SE = 0.55, estimate = 1.78, SE = 0.40, p = 0.01), and stripe images (least-squares mean 

= 2.74, SE = 0.43, estimate = 1.72, SE = 0.53, p = 0.05). Artworks (least-squares means = 

3.47, SE = 3.2) were considered to be more pleasing compared to bump stimuli (least-squares 

means = 2.68, SE = 0.55, estimate = 0.79, SE = 0.45, p = 0.37) and stripes (least-squares 

means = 2.74, SE = 0.43, estimate = 0.73, SE = 0.48, p = 0.47), although these comparisons 

were not statistically significant. Stripe images (least-squares means = 2.74, SE = 0.44) were 

not statistically significantly more pleasing compared to bump stimuli (least-squares means = 

2.68, SE = 0.55, estimate = 0.05, SE = 0.69, p = 0.99). 

*********************figure 11 here ******************

There was a statistically significant effect of image type on SSVEP response (F(1.49,10.28) = 

5.13, p = 0.036, Gη2 = 0.10). SSVEPs to artworks (least-squares mean = 58.1, SE = 0.52) 

were greater than to bump stimuli (least-squares mean = 56.7, SE = 0.42; estimate = 1.39, SE 

= 0.21, p = 0.001), and natural images (least-squares mean = 57.5, SE = 0.50; estimate = 

0.66, SE = 0.20, p = 0.04), but not statistically significantly different compared to stripes 

(least-squares mean = 57.5, SE = 0.73; estimate = 0.68, SE = 0.48, p = 0.53). SSVEPs to 

natural images (least-squares mean = 57.5, SE = 0.50) were greater compared to bump 

stimuli (least-squares mean = 56.7, SE = 0.42; estimate = 0.73, SE = 0.18, p = 0.02), and 

stripes (least-squares mean = 57.5, SE = 0.73; estimate = 0.02, SE = 0.41, p = 1.00), although 

this was not statistically significant in the current sample. There was no statistically 
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significant difference between stripes (least-squares mean = 57.5, SE = 0.73) and bump 

stimuli (least-squares mean = 56.7, SE = 0.42; estimate = 0.71, SE = 0.48, p = 0.50) in the 

current set of images. This can be seen in Figure 12.

***********************figure 12 here ***************************

Figure 13 shows the image statistics for each of the image categories in Experiment 2. There 

was a significant effect of image type on spectral slope (F(2,22) = 11.44, p = 3.39 x 10-4). 

Least-squares means showed natural images (-0.15, ± 0.17 SE) had a shallower slope 

compared to artworks (-1.05 ± 0.17SE, estimate = -0.90, SE = 0.23, p = 0.002) and bump 

stimuli (-1.33, ± 0.23SE, estimate = -1.18, SE = 0.29, p = 0.001). There was no statistically 

significant difference between artworks (-1.05 ± 0.17SE) and bump stimuli (-1.33, ± 0.23SE, 

estimate = 0.28, SE = 0.29, p = 0.61). Spectral slope was not included for sine waves as this 

is not possible to calculate. There was also a significant effect for fractal dimension (F(3,26) 

= 7.55, p = 8.58 x 10-4). Least-squares means were lower for artworks (1.83, ± 0.01SE) 

compared to bump stimuli (1.85 ± 0.01SE, estimate = -0.02, SE = 0.01, p = 0.04), stripes 

(1.86, ± 0.01SE, estimate = -0.03, SE = 0.01, p = 0.02), and natural images (1.86, ± 0.01SE, 

estimate = -0.03, SE = 0.01, p = 0.0008). There was no statistically significant difference 

between bumps (1.85 ± 0.01SE) and stripes (1.86, ± 0.01SE, estimate = - 0.002, SE = 0.01, p 

= 0.99) or natural images (1.86, ± 0.01SE, estimate = -0.006, p = SE = 0.01, p = 0.86), or 

between stripes (1.86, ± 0.01SE) and natural images (1.86, ± 0.01SE, estimate = -0.004, SE = 

0.01, p = 0.97). Stimuli were matched for RMS contrast. 

*****************************figure 13 here *********************

There was a positive relationship between spectral slope and fractal dimension in the stimulus 

set used in Experiment 2 (ρ(28) = 0.35, p = 0.08), see Figure 14.
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*******************************figure 14 here ******************

It was not possible to obtain spectral slope values for the sine waves, as these consist of only 

one frequency, therefore a reduced dataset excluding sine waves was created to investigate 

the relationship between spectral slope and SSVEP response amplitude. Image spectral slope 

does not statistically significantly predict SSVEP response amplitude (χ2 (1) = 0.01, p = 

0.90). Fractal dimension predicts SSVEP response amplitude (χ2 (1) = 42.87, p = 5.83 x 10-

11), reducing SSVEP by -81.92 (± 11.94 standard error). The difference in BIC was 37.40, 

suggesting strong evidence in favour of the alternative model. Cross-validation R2 was 0.19, 

suggesting 19% of the variance was explained, and MSE was 8.89, showing that on average, 

the fitted values deviate from the observed values by √8.89. This can be seen in Figure 15. 

RMS contrast was matched in these stimuli.

***************************figure 15 here *************************

A linear mixed effect model was used to investigate the predictive effect of SSVEP response 

amplitude on how pleasing an image was thought to be. As fractal dimension was predictive 

of subjective judgements, this was also included in the model: 

pleasing ~ SSVEP + fractal dimension + image type + (1|observer) + error

There was a statistically significant prediction of SSVEP on pleasing judgements (χ2 (1) = 

15.27, p = 9.31 x 10-5), increasing by 0. 17 (± 0.046 standard error). Fractal dimension 

reduced pleasing judgements by -1.41 (± 6.56 standard error). Cross-validation showed R2 to 

be 0.33 and MSE to be 1.63. The difference in BIC was 9.79 suggesting strong evidence in 

favour of the alternative model (Kass et al., 1995). Figure 16 shows the bivariate correlations 
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for judgements of how pleasing a stimulus was perceived to be against SSVEP, and the image 

statistics. 

***********************figure 16 here ************************

Again, SSVEP responses to most and least pleasing stimuli, determined by median split, were 

compared. Welch’s two-sample t-test showed significantly higher SSVEP responses for 

images that were judged to be more pleasing (mean = 58.16, SD = 2.61) compared to those 

that were less pleasing (mean = 56.53, SD = 1.61), t(23.33) = 2.63, p = 0.015.

There was no statistically significant difference in the SSVEP response to images with higher 

or lower fractal dimension values (t(25.39) = -1.22, p = 0.15).

Interim Discussion

Images matched for physical (RMS) contrast showed only a relatively small effect of image 

type on SSVEP responses, the only difference being between artworks and bump images. 

Importantly, when stimuli were matched for RMS contrast, there was no effect of spectral 

slope on the SSVEP response, only fractal dimension. However, SSVEP response amplitude 

in this stimulus set was predictive of how pleasing they were, the greater the SSVEP 

amplitude, the more pleasing the image was judged to be. In addition, the higher the fractal 

dimension, the less pleasing the image was judged to be. The combined results of Experiment 

1 and 2 show that when the effects of physical contrast are controlled for, subjective 

judgements can be predicted by SSVEP responses. Although spectral slope and fractal 

dimension are different, they are relatively closely related image statistics. To separate their 

contributions, the images for Experiment 3 were chosen to minimise the difference in spectral 

slope values between artworks and bump stimuli, whilst allowing fractal dimension to vary.  
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Experiment 3

The stimuli in Experiment 3 were chosen based on their spectral slope values, to reduce the 

differences in average spectral slope values between artworks and natural image categories. 

Method

General method was as Experiment 1. 21 young observers took part in the study. Spectral 

slope exponent, fractal dimension and RMS contrast were estimated for all stimuli in the 

MART stimulus set. The artworks were chosen based on having spectral slopes closest to 1 

out of the MART selection. This resulted in the following images being chosen: “Bandiera” 

by Bianco; “Concetto spaziale” by Fontana; “Teorema” by Belli; “Obliquo grigio” by Griffa; 

“Verticale” by Griffa; “Construzione SN 6” by Veronesi; “Ciclo 61/62 n. 8” by Vedova; 

“Gammature di colore” by Marchegiani; “Achrome” by Manzoni; and “Il movimento delle 

cose” by Dadamaino. Stimuli from the natural images were the following images, 100, 111, 

118, 124, 132, 155, 163, 175, 179, 198, chosen to match the artwork stimuli for spectral slope 

as closely as possible. Using an independent t-test, the difference between the spectral slope 

values for the images of artworks and natural images was marginally significant (t(249.38) = 

-1.98, p = 0.049). Bump stimuli were as before. Figure 17 shows the image statistics included 

in the final set. There was no statistically significant effect of image type on spectral slope 

(F(2,22) = 0.026, p = 0.97) or fractal dimension (F(2,22) = 2.59, p = 0.10), but there was a 

statistically significant effect of image type on RMS contrast (F(2,22) = 4.45, p = 0.024). 

Least-squares means showed there to be greater RMS contrast for natural images (0.18 ± 

0.02) compared to artworks (0.09 ± 0.02SE), but no statistically significant difference 

between the artworks (0.09 ± 0.02SE) and bump stimuli (0.12 ± 0.03SE), or bump stimuli 

(0.12 ± 0.03SE) and natural images (0.18 ± 0.02). This time observers were asked to rate 

stimuli on a scale of 1-5 for how uncomfortable they found the stimuli. 

Page 24 of 84



************************figure 17 here **************************

Results

Data were analysed as Experiment 1. Data from two observers were excluded from the 

analysis as there was insufficient data remaining after artefact rejection procedures.

Figure 18 shows a statistically significant effect of image type on discomfort judgements 

(F(1.97,35.54) = 30.91, p = 1.85 x 10-8, Gη2 = 0.39). Bump stimuli (least-squares mean = 

3.11, SE = 0.21) were more uncomfortable than artworks (least-squares mean = 2.49, SE = 

0.23; estimate = 0.63, SE = 0.21, p = 0.002), and natural images (least-squares mean = 1.56, 

SE = 0.12; estimate = 1.56, SE = 0.20, p = 9.24 x 10-8). Artworks (least-squares mean = 2.49, 

SE = 0.23) were considered more uncomfortable compared to natural images (least-squares 

mean = 1.56, SE = 0.12; estimate = 0.93, SE = 0.20, p = 0.0005). 

**************************figure 18 here *******************

There was no statistically significant effect of image type on SSVEP response amplitude 

(F(1.35,24.27) = 1.15, p = 0.31, Gη2 = 0.007). This can be seen in Figure 19.

***************************figure 19 here *****************************

Spectral slope was not completely matched, so a linear mixed effect model was used to 

estimate whether there was a predictive effect of spectral slope on SSVEP amplitude. No 

statistically significant effect was found (χ2 (1) = 0.03, p = 0.87). There was no statistically 

significant effect of RMS contrast on SSVEP response (χ2 (1) = 3.39, p = 0.07). However, 

once again, fractal dimension predicts SSVEP response amplitude (χ2 (1) = 7.47, p = 0.006), 
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reducing SSVEP by -14.30 (± 5.20 standard error). The difference in BIC was 1.35 in favour 

of the alternative model. Cross validation showed the R2 to be 0.09 and the MSE to be 9.27, 

and so the model does not generalise. This can be seen in Figure 20. 

******************************figure 20 here *******************

For the stimuli used in Experiment 3, there was only a weak relationship between spectral 

slope and fractal dimension (ρ(23) = -0.18, p = 0.38), or between spectral slope and RMS 

contrast (ρ(23) = -0.11, p = 0.61). However, there was a stronger positive relationship 

between fractal dimension and RMS contrast (ρ(23) = 0.60, p = 0.0016), see Figure 21.

****************************figure 21 here **********************

A linear mixed effect model was created to predict discomfort judgements, including SSVEP 

and image type, fractal dimension and RMS contrast as fixed effects, and observer as a 

random intercept effect:

discomfort ~ SSVEP + fractal dimension + RMS + image type + (1|observer) + error

 This was compared to a null model without SSVEP. There was a statistically significant 

effect of SSVEP amplitude in predicting discomfort judgements (χ2 (1) = 6.04, p = 0.014). 

Discomfort reduced with SSVEP amplitude by -0.04 (± 0.012 standard error). The difference 

in BIC of -0.12 suggests there is no evidence in favour of the alternative model (Kass et al., 

1995). Cross-validation showed there to be R2 to be 0.56 and MSE to be 0.41, and so the 

model does generalise well. Figure 22 shows the bivariate correlations of the predictors 

included in the model with discomfort judgements.

*************************figure 22 here *************************
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SSVEP responses to more and less uncomfortable images were determined by median split, 

and there was no statistically significant difference between these images according to 

Welch’s two-sample t-test (t(16.87) = -0.92, p = 0.37). Similarly, there was no statistically 

significant difference in the SSVEP response to images of higher or lower fractal dimension 

(t(19.18) = -1.88, p = 0.075). 

Interim Discussion

In images matched for spectral slope, the greater the SSVEP, the lower the discomfort 

judgements. This complements Experiment 2, where SSVEP increased judgements of how 

pleasing a stimulus was. RMS and perceived contrast were both free to vary in this 

experiment; natural images in this set had increased fractal dimension, but lower RMS 

contrast, and artworks had a lower fractal dimension, but increased RMS contrast. As in 

Experiment 1, there was no predictive effect of RMS contrast on SSVEPs in this experiment, 

however, both fractal dimension and RMS contrast were included in the model to control for 

their effects in predicting discomfort judgements. In this set of images, artworks were 

considered more uncomfortable than natural images, whereas in Experiment 1, no difference 

was seen between artworks and natural images. In both Experiment 1 and Experiment 3, 

natural images had the highest physical contrast value, but in Experiment 3 this difference 

was much bigger, and so this could account for the different findings. 

General discussion

Subjective judgements

This study directly compared artworks, uncomfortable images, and natural scenes, measuring 

both image statistics, subjective judgements (using a variety of phrasings, in order to 
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generalise findings) and occipital SSVEP responses, in three separate experiments with three 

different sets of observers.  Unnatural images were consistently judged as the most 

uncomfortable/least pleasing across all three experiments, supporting previous research (e.g. 

Fernandez and Wilkins, 2008; O'Hare and Hibbard, 2011). Discomfort judgements were 

influenced by physical RMS contrast in both Experiment 1 and Experiment 3. However, both 

SSVEP responses and fractal dimension can predict subjective judgements, once the 

influence of contrast has been reduced. 

Spectral slope

Overall, spectral slope did not predict discomfort judgements. Other researchers have also 

found there to be only a weak relationship between spectral slope and discomfort judgements 

(Ogawa and Motoyoshi, 2020). Estimates of spectral slope should reflect some aspect of 

contrast gradients in the image as a whole (Field and Brady, 1997). However, it is important 

for the application of global image statistics, such as spectral slope, that the image statistics 

do not vary substantially on a local level (Field, 1999). Whilst this constraint is true for 

natural images (Olshausen and Field, 2000), it may not be the case for abstract artworks, 

which are less constrained by subject matter. As spectral slope only indirectly captures some 

aspects of local contrast gradients (edges) it may not reflect certain local image statistics 

important for discomfort. For example, blurred images have differences in spectral slope and 

are also considered uncomfortable (e.g. O’Hare and Hibbard, 2013). However, it must be 

noted that background blurring (for example depth-of-field blurring) is well-tolerated by 

observers (e.g. O’Hare et al., 2013) and can even improve judgements of aesthetic appeal in 

photographs (e.g. Datta et al., 2006). Therefore, this general image statistic may miss 

important information regarding discomfort. 
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Spectral slope has been shown to relate to EEG responses to computer-generated stimuli, 

specifically, greater ERP amplitudes for images with slope exponents around 1.8, which were 

also considered the most aesthetically pleasing (Sarasso et al., 2020). Spectral slope values 

were predictive of SSVEP responses when stimuli were matched for perceptual contrast 

(Experiment 1), but not when they were matched for RMS contrast (Experiment 2). 

Therefore, it is possible that the relationship between SSVEP response amplitude and spectral 

slope depends on contrast.

Fractal dimension

In the current study, fractal dimension, but not spectral slope, was predictive of SSVEP 

amplitude in both Experiment 2 and Experiment 3. Additionally, fractal dimension was 

predictive of how pleasing an image was judged to be (Experiment 2). This indicates the 

importance of the distribution of edges in the scene. Fractal dimension reflects a different 

global image property that takes account some aspect of edge information, giving an estimate 

of "complexity" of the image. Complexity of representational artwork and natural scenes may 

well evoke feedback from higher visual areas, which has effects on neural responses from 

early visual areas (Murray et al., 2002; Bar et al., 2006). This could possibly relate to 

semantic content, but as fractal dimension is associated with art and aesthetics, even in 

abstract patterns (e.g. Taylor et al., 1999; Sephar et al., 2003), this would appear to be 

independent of image semantics. Increasing fractal dimension of abstract patterns also 

increases excitement judgements, and so the SSVEP response may be related to increased 

excitement, rather than discomfort (Abboushi et al., 2019).

There was also a relationship between SSVEP responses and fractal dimension for 

Experiment 1, this time a positive relationship, although weaker. It is unclear why this might 

be. Speculatively, the stimuli in Experiment 1 were matched for perceived contrast, and so 
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speculatively, this may have had an impact on the results, as fractal dimension is related to 

image contrast, specifically pixel variance (Shamsyeh Zahedi and Zeil, 2018). This can also 

be seen in the current study, when RMS contrast was controlled (Experiment 2) there was a 

positive relationship between spectral slope and fractal dimension – the higher the spatial 

frequency content, the more complex the image. When spectral slope was controlled 

(Experiment 3) there was a relationship between fractal dimension and RMS contrast – the 

more complex the image, the greater the physical contrast. SSVEP responses in Experiment 1 

were also related to spectral slope, as well as fractal dimension, which could indicate a 

possible role of contrast, which is a common factor in these two metrics. From the results of 

this study, it is not possible to draw firm conclusions about the reasons for this difference in 

direction, it might be possible to investigate this more thoroughly in future research, by 

creating artificial stimuli that vary in fractal dimension in a more controlled fashion. 

The importance of phase information

Phase information, and the exact location of edges, is important to visual discomfort. It has 

been suggested that text poses a challenging stimulus for the visual system due to its "striped" 

nature (Wilkins et al., 2007). In addition, op-art artworks, or op-art-based visual stimuli, that 

tend to consist of geometric patterns including stripes, have been shown to elicit illusory 

motion in observers (Wade, 1978; Troncoso et al., 2008; Zanker et al., 2003; Zanker, 2004; 

Zanker et al., 2010, Hermens et al., 2012), which is included in some definitions of visual 

discomfort (e.g. Wilkins et al., 1984). Aside from discomfort, Grebenkina et al., (2018) 

showed there to be effects on aesthetics judgments that could be predicted using edge-

orientation entropy. Phase-scrambled artworks show reduced EEG responses compared to the 

originals (Menzel et al., 2018). Therefore, although the amplitude spectrum is important to 

discomfort when the phase spectrum is random (e.g. Fernandez and Wilkins, 2008; Juricevic 

et al., 2010; O’Hare and Hibbard, 2011), when considering cross-category comparisons, the 
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phase spectrum may be more important. The exact location and perceived sharpness of edges 

in an image will contribute to subjective judgements, which are not entirely accounted for by 

RMS contrast or spectral slope but may be better captured by fractal dimension. 

Ecologically valid stimuli

The choice of using images of real artworks made the stimulus set relatively uncontrolled and 

less systematic than would have been possible by investigating purely computer-generated 

images. However, there is a need to use ecologically valid stimuli in research (Olshausen and 

Field, 2004), especially given the work by authors such as McManus et al., (1993), who 

showed that observers can reliably discriminate between real paintings by Mondrian and 

computer-generated ones in this style. This suggests that there are additional elements of 

image composition determining aesthetic judgements, which could not necessarily be 

recreated. Phase information relates to the semantic content of the image and is important in 

perception of visual stimuli (Oppenheim and Lim, 1981; Thomson 1999), and it is not clear 

which aspects of the phase spectrum is important. To investigate the phase spectra of images, 

it is possible to scramble the phase spectra of images (e.g. Dakin et al., 2002). However, it is 

much more complex to meaningfully and systematically vary this parameter. It would be 

possible to use wavelet filtering to systematically manipulate the amplitude spectrum of 

images, which has been used in the past (for a review, Simoncelli and Olshausen, 2001). 

However, there may be an unnatural quality imposed on images manipulated in this way, for 

example, images that have the spectral slope manipulated to reduce content at higher spatial 

frequencies can appear blurred, and this can itself affect discomfort judgements (O’Hare and 

Hibbard, 2013). Whitened images, those with an increase of higher spatial frequency content, 

can also look unnatural (Párraga et al., 2000). However, it is currently unclear how to 

systematically manipulate the fractal dimension of natural images at the present time. Using 

computer-generated images would allow these manipulations, however artificial images are 
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not the same as natural images, as outlined above. Therefore, the choice was made to use the 

less controlled, but more ecologically valid stimuli, relying instead on natural variation in 

phase spectra between the images. However, it would be beneficial in future research to 

investigate systematically varying the amplitude and phase spectra of natural images, using 

techniques such as wavelet filtering, or to create images of varying fractal dimension.

Relationship between SSVEP and subjective judgements

SSVEP responses were predictive of subjective judgements - there was a greater SSVEP 

response to pleasing stimuli (Experiment 2) and a reduced SSVEP response to uncomfortable 

stimuli (Experiment 3). At first glance, this appears to contradict the idea of efficient coding, 

as one would expect a reduced response to stimuli that were easier to process. An alternative 

explanation is that of attentional enhancement. Previous work has shown that aesthetically 

pleasing stimuli result in greater electrophysiological (e.g. Sarasso et al., 2020) and BOLD 

responses (e.g. Vartian and Goel, 2004) over the low-level visual areas, which is thought to 

be due to increased attentional processing of these more pleasing visual stimuli (Nadal, 

2013). These studies have demonstrated this positive relationship between aesthetics and 

brain activity within stimulus categories, the results of the current study could be interpreted 

as supporting this idea between stimulus categories - it could be the case that in this study the 

most aesthetically pleasing stimulus categories were also those with greater attentional 

resources allocated. It might be possible to test the allocation of attentional resources to 

aesthetically pleasing stimuli using methods such as eye tracking (Nayak and Karmakar, 

2019; Locher, 2020). 

However, recent work comparing SSVEP responses at 6Hz showed reduced SSVEP 

amplitude to unpleasant stimuli compared to neutral stimuli (Bekhtereva and Müller, 2015; 

and correction to original paper, Bekhtereva and Müller 2017). However, the opposite result 
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(an increase in SSVEP response to unpleasant stimuli compared to neutral) was found for 

different SSVEP driving frequencies of 3Hz, 4Hz, and 8.57Hz (Bekhtereva et al., 2018). The 

authors provided modelling work to support their suggestion that this paradoxical effect is 

due to a linear superposition of the transient ERP components that cause destructive 

interference in this particular range (5-6Hz) of stimulation frequency, which does not occur at 

the other frequencies used (Bekhtereva et al., 2018). The idea that the SSVEP signal may be 

paradoxically reduced, rather than increased, also occurs when stimuli are presented to one or 

two eyes – Wu, (2016) showed that the SSVEP response to one eye was greater than to both 

eyes. It might be expected that the stimulation of both eyes would lead to a greater response, 

as more of the network is involved in processing. However, as part of the network is shared 

in the case of the two-eye stimulation, and there is a limit to the response rate (due to the 

“axon hillock”), then the overlapping regions respond alternately, and so the signal is 

reduced.  Therefore the results of Wu, (2016) and Bekhtereva et al., (2018) suggest that the 

direction of the relationship may be more complicated than expected due to other factors such 

as destructive interference due to this particular choice of stimulation frequency. It would be 

necessary to conduct the experiment at different flicker frequencies in order to reconcile these 

findings with the previous ERP data on visual discomfort. Until this has been demonstrated 

empirically, alternative explanations such as attentional enhancement may provide a more 

parsimonious explanation. 

Conclusion

As predicted by efficient coding, stimuli without the statistical properties of natural scenes 

were found to be more uncomfortable, less pleasing, and less aesthetically pleasing compared 

to natural images and images of artworks. Fractal dimension, but not spectral slope, predicted 

subjective judgements when physical contrast was controlled for, demonstrating the 

importance of the phase spectrum when comparing images across categories. When 
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accounting for low-level image properties, there was a relationship between subjective 

judgements and SSVEP responses, although this is not in the correct direction to support 

efficient coding, and so it is possible that this reflects other processes, such as attentional 

enhancement instead. This provides evidence that responses in early visual areas contribute to 

judgements of how pleasing/uncomfortable an image is judged to be.
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Figure 1 shows some illustrative examples of the stimuli. Top row shows artworks, middle row shows the 
bump stimuli, bottom row some examples of the natural images, taken from the van Hateren image 

database (van Hateren and van der Schaaf, 1998). 
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Figure 2 shows the scalp topography of SSVEP activity for the three image categories (art, bump, natural 
images) in Experiment 1. Scale is in 10*log10(μV2/Hz). 
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Figure 3 shows log spectral power density of the three image categories (artworks, bump stimuli and natural 
images). There is a clear SSVEP peak at the fundamental frequency (5Hz) and also the first and second 

harmonics (10 and 15Hz). 
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Figure 4 shows boxplots of the discomfort judgements (the mean taken from each individual) for the three 
image categories in Experiment 1. Box boundaries indicate the 25th and 75th quartiles, whiskers indicate 
1.5 times the inter-quartile range from the quartiles. Outliers are indicated as separate points (in black). 

Points superimposed on the plot represent individual observer responses. 
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Figure 5 shows the aesthetics judgements (the mean taken from each individual) for the three image 
categories in Experiment 1. Box boundaries indicate the 25th and 75th quartiles, whiskers indicate 1.5 times 

the inter-quartile range from the quartiles. Outliers are indicated as separate points (in black). Points 
superimposed on the plot represent individual observer responses. 
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Figure 6 shows the SSVEP response (the mean for each individual) to the three image categories in 
Experiment 1. Box boundaries indicate the 25th and 75th quartiles, whiskers indicate 1.5 times the inter-
quartile range from the quartiles. Outliers are indicated as separate points (in black). Points superimposed 

on the plot represent individual observer responses. 
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Figure 7 shows boxplots of the image statistics for the three image types. Left shows spectral slope, centre 
shows fractal dimension, and right shows RMS contrast. Box boundaries indicate the 25th and 75th 

quartiles, whiskers indicate 1.5 times the inter-quartile range from the quartiles. Outliers are indicated as 
separate points. 
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Figure 8 shows the relationship between (top) spectral slope and fractal dimension, (middle) fractal 
dimension and RMS contrast, and (bottom) spectral slope and RMS contrast for the images used in 

Experiment 1. 
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Figure 9 shows model predictions of SSVEP responses from spectral slope (left) and fractal dimension 
(right), including image type as a fixed effect and observer as a random effect. 
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Figure 10 shows bivariate correlations of model predictors with the subjective judgements. Top row shows 
the model predictors for discomfort, (left to right) SSVEP, spectral slope, fractal dimension and RMS 

contrast. Bottom row shows model predictors for aesthetics judgements: (left to right) SSVEP, spectral 
slope, fractal dimension and RMS contrast. Individual observers are indicated as separate shades.   
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Figure 11 shows the judgements of how pleasing an image was thought to be (the mean from each 
individual) in Experiment 2. Box boundaries indicate the 25th and 75th quartiles, whiskers indicate 1.5 times 

the inter-quartile range from the quartiles. Outliers are indicated as separate points (in black). Points 
superimposed on the plot represent individual observer responses. 
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Figure 11 shows the judgements of how pleasing an image was thought to be (the mean from each 
individual) in Experiment 2. Box boundaries indicate the 25th and 75th quartiles, whiskers indicate 1.5 times 

the inter-quartile range from the quartiles. Outliers are indicated as separate points (in black). Points 
superimposed on the plot represent individual observer responses. 
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Figure 12 shows the SSVEP response (averaged over each individual) to the four image categories in 
Experiment 2. Box boundaries indicate the 25th and 75th quartiles, whiskers indicate 1.5 times the inter-
quartile range from the quartiles. Outliers are indicated as separate points (in black). Points superimposed 

on the plot represent individual observer responses. 
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Figure 12 shows the SSVEP response (averaged over each individual) to the four image categories in 
Experiment 2. Box boundaries indicate the 25th and 75th quartiles, whiskers indicate 1.5 times the inter-
quartile range from the quartiles. Outliers are indicated as separate points (in black). Points superimposed 

on the plot represent individual observer responses. 
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Figure 13 shows boxplots of the image statistics for the four image types. Left shows spectral slope, centre 
shows fractal dimension, and right shows RMS contrast. Box boundaries indicate the 25th and 75th 

quartiles, whiskers indicate 1.5 times the inter-quartile range from the quartiles. Outliers are indicated as 
separate points. RMS contrast was held constant in this experiment. 
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Figure 14 shows the relationship between spectral slope and fractal dimension for the images in Experiment 
2. 
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Figure 15 shows the model predicted SSVEP from fractal dimension. Image type was included as a fixed 
effect, and observer as a random effect. 
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Figure 15 shows the model predicted SSVEP from fractal dimension. Image type was included as a fixed 
effect, and observer as a random effect. 
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Figure 16 shows the bivariate correlations for each of the predictors included in the model against pleasing 
judgements. Top row shows SSVEP and spectral slope, bottom row shows fractal dimension and RMS 
contrast. RMS contrast was constant in this experiment. Each individual is represented with a different 

shade. 
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Figure 16 shows the bivariate correlations for each of the predictors included in the model against pleasing 
judgements. Top row shows SSVEP and spectral slope, bottom row shows fractal dimension and RMS 
contrast. RMS contrast was constant in this experiment. Each individual is represented with a different 

shade. 
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Figure 17 shows box plots of the image statistics for the three image types used in Experiment 3. Left shows 
spectral slope, middle shows fractal dimension, and right shows RMS contrast. Box boundaries indicate the 
25th and 75th quartiles, whiskers indicate 1.5 times the inter-quartile range from the quartiles. Outliers are 

indicated as separate points. 
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Figure 18 shows the average discomfort judgements (the mean from each individual) for the three image 
categories in Experiment 3. Box boundaries indicate the 25th and 75th quartiles, whiskers indicate 1.5 times 

the inter-quartile range from the quartiles. Outliers are indicated as separate points (in black). Points 
superimposed on the plot represent individual observer responses. 
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Figure 18 shows the average discomfort judgements (the mean from each individual) for the three image 
categories in Experiment 3. Box boundaries indicate the 25th and 75th quartiles, whiskers indicate 1.5 times 

the inter-quartile range from the quartiles. Outliers are indicated as separate points (in black). Points 
superimposed on the plot represent individual observer responses. 
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Figure 19 shows the SSVEP response to the three image categories in Experiment 3. Box boundaries indicate 
the 25th and 75th quartiles, whiskers indicate 1.5 times the inter-quartile range from the quartiles. Outliers 
are indicated as separate points (in black). Points superimposed on the plot represent individual observer 

responses. 
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Figure 19 shows the SSVEP response to the three image categories in Experiment 3. Box boundaries indicate 
the 25th and 75th quartiles, whiskers indicate 1.5 times the inter-quartile range from the quartiles. Outliers 
are indicated as separate points (in black). Points superimposed on the plot represent individual observer 

responses. 
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Figure 20 shows the model predicted SSVEP from fractal dimension. Image type was included as a fixed 
effect, and observer as a random effect. 
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Figure 20 shows the model predicted SSVEP from fractal dimension. Image type was included as a fixed 
effect, and observer as a random effect. 
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Figure 21 shows the relationship between (top) spectral slope and fractal dimension, (middle) fractal 
dimension and RMS contrast, and (bottom) spectral slope and RMS contrast for the images used in 

Experiment 3. 
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Figure 22 shows the bivariate correlations for each of the predictors included in the model against 
discomfort judgements. Top row shows SSVEP and spectral slope, bottom row shows fractal dimension and 

RMS contrast. Each individual is represented with a different shade. 
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Figure 22 shows the bivariate correlations for each of the predictors included in the model against 
discomfort judgements. Top row shows SSVEP and spectral slope, bottom row shows fractal dimension and 

RMS contrast. Each individual is represented with a different shade. 
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