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Abstract

Brain interictal and pre-ictal epileptiform discharges (EDs) are transient events occurred between two

or before seizure onsets visible in intracranial electroencephalographs. In the diagnosis of epilepsy and

localization of seizure sources, both interictal and ictal recordings are extremely informative. For this

propose, computerized intelligent spike and seizure detection techniques have been researched and are

constantly improving. This is not only to detect more EDs from over the scalp but also to classify

epileptic and non-epileptic discharges. Tensor factorization and deep learning are two advanced and

powerful techniques which have been recently suggested for ED detection. Here, our main contribu-

tion is to review recent ED detection methods with emphasis on multi-way analysis and deep learning

approaches. These techniques have opened a new window to the epilepsy diagnosis and management

spheres.

Keywords: Brain epileptiform discharges, deep learning, EEG, multi-way analysis, tensor

factorization.
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Advances in Epilepsy Monitoring by Detection and Analysis of Brain Epileptiform

Discharges

Epilepsy is a common neurological condition affecting more than 50 million people globally.

It is a chronic brain disease characterized by epileptic seizures occurring due to excessive discharges

of a group (or groups) of neurons in the cerebral cortex or hippocampus. The mainstay of diagno-

sis remains detection of interictal or pre-ictal epileptiform discharges (EDs) which occur between two

seizure onsets. ED signatures can be captured using electroencephalography (EEG) (Sanei, 2013).

ED identification can establish a guideline for pre-ictal state monitoring, seizure prediction,

treatment and surgical planning. Seizure prediction mitigates taking regular anticonvulsants, prelim-

inary surgical interventions for identification of ED generators, and the hazards of fall injury. In the

traditional seizure prediction methods, the increase in synchrony and decrease in the chaotic behav-

ior of cortical activities have been the main quantification parameters, regrettably, with low accuracy

and insufficient consistency in terms of seizure types and across the subjects. Now, identification of

the EDs from the scalp EEG (sEEG) up to sufficient accuracy has raised hopes for developing a new

direction for more concise seizure prediction. The techniques used in this research involve many ad-

vanced signal processing techniques and their associated mathematics. Here, recent research in multi-

way analysis (based on tensor factorization) and deep neural networks (DNNs) for ED detection is re-

viewed.

In terms of their morphology, EDs can fall into five groups: (1) spike, lasting for 20-70 ms and

detectable from the background activity; (2) sharp wave, the same as spikes but lasting for 70-200 ms;

(3) sharp-and-slow-wave complex, comprised of a sharp wave followed by a slow wave; (4) spike-and-

slow-wave complex, consisting of a spike followed by a slow wave; and (5) multiple spike-and-slow-wave

complexes, the same as spike-and-slow-wave complex but with two or more spikes associated with one

or more slow waves (Kane et al., 2017). In addition, depending on the location of seizure sources, spa-

tial distribution of EDs vary.

There are several challenges in using scalp-recorded data to automatically detecting EDs. The

first challenge is that studies conducted on concurrent sEEG and intracranial EEG (iEEG) recordings

have revealed that standard electrodes record only a relatively small proportion of spikes detectable

from over the scalp or at the cortical surface. Nayak and colleagues recorded simultaneously sEEG

(using 20 standard scalp electrodes) and iEEG (using 12 foramen ovale (FO) electrodes) from patient

suffering from temporal lobe epilepsy during 1990 to 1998 (Nayak et al., 2004). Their study has shown

that only 9% of EDs are observable over the scalp without averaging across ED segments or concur-

rent iEEG recording. Less than thirteen percent (12.8%) of EDs were detectable over the scalp as a

small transient by referring to concurrent iEEG as a ground truth, and 59.7% of EDs were identified

over the scalp by referring to simultaneous iEEG and averaging across ED segments. Finally, 18.7% of
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EDs showed no signal or signature on the scalp. Later, Yamazaki el al. compared dense EEG (dEEG)

and iEEG for interictal spike detection (Yamazaki et al., 2012). dEEG was recorded using 256 stan-

dard electrodes and, for recording the iEEG, from 48 to 102 subdural strip and grid electrodes were

implanted over the mesial and lateral temporal lobe. They showed that 45% of spikes can be detected

over dEEG. However, by reducing the number of channels to 19 according to 10-20 system, they de-

tected only 22% of spikes over the scalp. Nayak et al. (2004) and Yamazaki et al. (2012) obtained dif-

ferent results in terms of the percentage of visible EDs from over the scalp. This can be due to the

recording systems since Nayak et al. (2004) recorded the signal much earlier than Yamazaki et al.

(2012). This challenge has been addressed in very few studies (Antoniades et al., 2018; Abdi-Sargezeh

et al., 2021b,c). One way to solve this problem is to record the sEEG and iEEG signals simultane-

ously, then use iEEG as ground truth for ED annotation and detect EDs from sEEG recordings (Abdi-

Sargezeh et al., 2021b,c). Another way is to derive iEEG from sEEG signals. Antoniades et al. (2018)

employed DNN algorithms to map sEEG to iEEG recordings (in other words, estimated iEEG from

sEEG recordings).

The second challenge in automatically detecting EDs is that they are similar to many nor-

mal brain activities and artifacts such as extracerebral potentials from muscles, eyes, heart, and elec-

trodes. Eye blink and heart beat artifacts also resemble spike waves. However, they differ from EDs in

terms of source location and frequency range. Therefore, analysis of EEG signals in frequency domain

and involving space diversity can suppress such artifacts. Through multi-way analysis, spatial and fre-

quency components were analyzed and used for detecting epileptic spikes (Thanh et al., 2020).

The final challenge in ED detection is uncertainty in annotating a waveform as ED. There is

a huge disagreement among expert epileptologists as to whether a wave is an ED or not. Webber and

colleagues conducted a research to find out how electroencephalographers (EEGers) interpret EEG sig-

nals (Webber et al., 1993). Eight EEGers scored EDs in twelve short EEG records. Only 18% were

marked as EDs by all the EEGers and 38% by only one EEGer. Quite recently, Halford performed

a research to evaluate the neurologist performances in ED detection (Halford et al., 2018). Thirty-

five EEGers participated in the research and were supposed to annotate the EDs in 200 EEG seg-

ments each with the length of 300 seconds. The number of events marked as EDs was different among

EEGers from 6 to 212 (with the mean of 67.7). Quite recently, in an effective approach, for the first

time the uncertainty in labelling the EDs has been incorporated in an ED detection system via multi-

way analysis (Abdi-Sargezeh et al., 2021b).

Here, at first, ED datasets and performance metrics are described; then, the traditional meth-

ods employed for ED detection are briefly reviewed. Finally, we further elaborate on our recent contri-

butions in the field which are application of multi-way analysis and DNNs in ED detection.
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ED Data

There is no public scalp ED dataset and each research group has used their own private dataset

for detection of EDs from over the scalp. However, an intracranial ED dataset (Janca et al., 2015)

is publicly available at https://isarg.fel.cvut.cz/downloads/spike-detector/. Table 1 summarizes the

datasets used in some previous studies. Here, the most used private ED dataset and the public in-

tracranial ED dataset are described in detail.

A research group led by prof. Saeid Sanei has been working on concurrent scalp and intracra-

nial recordings (Spyrou et al., 2015, 2016, 2018; Antoniades et al., 2016, 2017, 2018; Abdi-Sargezeh

et al., 2021b,c). sEEG and iEEG signals were simultaneously recorded at the sampling rate of 200 Hz

at the Department of Clinical Neurophysiology at the Maudsley and Kings College Hospitals. Eigh-

teen (18) standard silver chloride electrodes and 12 FO electrodes (Wieser et al., 1985) were respec-

tively used for recording sEEG and iEEG signals from 25 patients suffering from mesial temporal lope

epilepsy. Scalp electrodes were implemented according to the ‘Maudsley’ electrode placement sys-

tem (Torre et al., 1999; Nayak et al., 2004). The Maudsley system is superior to the standard 10–20

system in capturing EDs signatures from those suffering from seizures arising from mesial temporal

structures. This system is essentially similar to 10– 20 system (the electrodes have the same name)

except that mid-temporal, posterior-temporal and occipital electrodes in the Maudsley system are ap-

proximately 20 mm lower than that in the 10–20 system. Therefore, it provides more extensive cover-

age of the lower part of the cerebral convexity and adapts itself to cranial asymmetries (Binnie et al.,

1982), increasing the sensitivity for recording from basal sub-temporal structures. In terms of intracra-

nial recordings, FO electrodes are introduced through the infraorbital foramen and directly placed on

the exposed mesial temporal structures. Thus they not only enable capturing ED signatures with ex-

tremely high sensitivity but also provide a unique opportunity to simultaneously record sEEG and

iEEG without disrupting the brain coverings. Figure 1 shows the lateral and basal X-radiographs of

scalp and intracranial FO electrodes.

The public intracranial ED dataset (https://isarg.fel.cvut.cz/downloads/spike-detector/) con-

sists of recordings from seven patients with refractory epilepsy who underwent invasive exploration as

a part of the presurgical examination. The number of electrodes was different among subjects (the me-

dian number of electrodes was 65). However, to avoid human labelling bias, only 15 electrodes with

the highest spike rate were selected from each dataset. Five-minute iEEG recordings of each subject

were analyzed and made publicly available. Three neurophysiologists with at least 10-year experience

reviewed the data and labelled the spikes. Each spike was labeled as either obvious or ambiguous.

Waveforms associated with any kind of hesitation and/or doubts were classified as ambiguous. Obvi-

ous and ambiguous spikes on which two or more readers agreed were selected as gold standard spikes

(GS). Table 2 presents the patient characteristics (sex, age, number of GS, epilepsy location, seizure
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duration, and pathology) for each of the seven patient.

Performance Metrics

To evaluate the performance of an ED detection system, different metrics have been utilized.

They are accuracy (ACC), sensitivity (SEN), specificity (SPC), false positive per minute (FP/min),

and area under the receiver operating characteristic curve (AUC). Accuracy presents how accurately

the EDs and non-EDs are detected. SEN shows the ability of a system in correctly detecting EDs.

SPC shows the ability of a system in correctly detecting non-EDs. FP/min illustrates the number of

non-ED segments recognized as ED segments in a minute. AUC measures the entire two-dimensional

area underneath the entire receiver operating characteristic (ROC) curve, which is a probability curve

showing the performance of a classifier for different thresholds. ROC curve is plotted with SEN against

(1-SPC) where SEN is on the y-axis and (1-SPC) is on the x-axis.

ACC, SEN, and SPC are defined as follows:

ACC =
TP + TN

TP + FP + TN + FN
× 100%,

SEN =
TP

TP + FN
× 100%,

SPC =
TN

TN + FP
× 100%,

where TP is the number of ED samples classified correctly in the ED class, TN represents the num-

ber of non-ED samples recognized accurately as non-ED samples, FP indicates the number of non-ED

samples detected incorrectly as ED samples, and FN indicates the number of ED samples categorized

wrongly in the non-ED class.

Traditional Methods in ED Detection

Whilst several methods and approaches have been developed for automatically detecting EDs,

the current review presents some of the most popular approaches.

Component Analysis

Principal component analysis which exploits uncorrelated components was employed to the

decorrelation of epileptic and normal EEGs (Wang et al., 2010). Independent component analysis

(ICA) as a powerful tool in signal processing has been widely applied to ED detection (Kobayashi

et al., 2001, 1999; Hesse and James, 2006). Lucia and colleagues developed a model based on ICA to

discriminate the epileptiform activities from eye blink artifacts (De Lucia et al., 2008). During the

last decade, epilepsy researchers have paid much attention to sparse representation (Yuan et al., 2014,
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2016). A sparse representation of data is a representation in which only few samples in a signal seg-

ment are not zero. The train of spikes emitted from individual neurons in the brain can be considered

sparse in some domains such as time and space domains. One of the interesting characteristics of EDs

is their sparsity in the time domain. Quite recently, a model was proposed to detect epileptic EEG

spikes based on sparse representation (Jiang et al., 2020).

Template Matching

In template matching method, an ED template is manually selected from EEG recordings

and a waveform is recognised as ED whenever its cross-correlation with the template exceeds the pre-

defined treshold value. Since 1972, when the template matching was used for the first time for seizure

detection (Stevens et al., 1972), this method has been broadly used for ED detection (Lodder et al.,

2013; Lodder and van Putten, 2014; Thomas et al., 2017).

Feature Representations

In addition to detection of EDs from a single channel, temporal and spatial information are of

paramount importance to neurologists in identifying a waveform as an ED. In feature representation

methods, some features are extracted and used for ED detection.

Mimetic Technique

In this approach, the necessary features used by neurologists for identifying EDs are extracted.

The distinctive characteristics of EDs such as slope, height, duration, and sharpness are compared

with the benchmark values presented by the neurologists (Tzallas et al., 2012). The most popular

method in the mimetic technique category is to decompose the EEG waveforms into a couple of half-

waves and extract the mimetic features from them (Gotman and Gloor, 1976; Faure, 1985; Webber

et al., 1994; Wang et al., 2020). Quite recently, a multi-step ED detection algorithm was proposed

(Wang et al., 2020). In the feature extraction step, the authors decomposed EDs into two half-waves

and extracted some waveform features (i.e., the amplitude, duration and slope of left and right half-

waves of spike, etc). The major drawback of this particular method is that it ignores the ED spike

shape variations across subjects, ages, and even trials.

Time-frequency Representation

Effectiveness of time-frequency representation in EEG signal processing has been shown. Time-

frequency representation separates the main components of EDs from the background activity. Wavelet

(Sartoretto and Ermani, 1999; Göksu, 2018; Indiradevi et al., 2008), Fourier (Polat and Güneş, 2007),

and Hilbert transforms (Zhu et al., 2015) have been investigated in ED literature.
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A large proportion of EDs are invisible over the scalp (Nayak et al., 2004; Yamazaki et al.,

2012). In an effective approach, Spyrou and colleagues detected EDs from the concurrent sEEG us-

ing time-frequency features (Spyrou et al., 2016). The sEEG and iEEG signals were simultaneously

recorded. The iEEG recordings were used as ground truth for ED annotation by an expert EEGer.

The authors employed the spectrogram method (which is a way of representing the signal strength

over time at various frequencies) to extract time-frequency features from the sEEG. Finally, both scalp-

visible and scalp-invisible EDs were detected from over the scalp.

Classification of Nonlinear Features

Nonlinear features such as correlation dimension and largest Lyapunov exponent have been

used in ED and seizure detection (Corsini et al., 2006; Iasemidis et al., 1990; Gajic et al., 2015). Gajic

and colleagues developed a method based on time-frequency and nonlinear features to detect EDs

(Gajic et al., 2015). Not only some features from time, frequency, and time-frequency domains were

extracted but also the correlation dimension and the largest Lyapunov exponent were obtained as non-

linear features to boost the robustness and performance of the model.

Advanced Techniques in ED Detection

These days, computers have superb computational power, which enables data scientists par-

ticularly neuro-engineering researchers to tackle challenges that once were hard to achieve. Therefore,

multi-way analysis and DNNs requiring high computational complexity have recently attracted the

attention of scientists and researchers. Multi-way analysis (i.e., tensor factorization) makes the data

diversity is taken into account towards achieving efficiency and optimality. It can effectively exploit

the data variations in different domains such as time, frequency, space, subject, and trial all together

in their formulation (Abdi-Sargezeh et al., 2021a; Spyrou et al., 2015). Furthermore, DNNs exploit the

significance of each individual data sample in learning features which wouldn’t be achieved through

the use of “traditional classifiers” (i.e., those classifiers — such as support vector machines, linear dis-

criminant analysis, and decision tree — that only map input features to a category and are unable to

learn the features from the input data). Here, the aim of this paper is to review the recent literature in

ED detection that enjoyed tensor factorization or DNNs in designing their models.

Multi-way Analysis

Mathematically, matrix is a two-dimensional array while tensor is multidimensional which can

best accommodate the diversity (e.g. time, frequency, space, trial, and subject) in the data. Table 3

summarizes studies employing multi-way analysis for ED and epileptic detection. Type of recording
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(sEEG or iEEG), tensorization method, decomposition method, the used features for classification,

and the performance of methods are illustrated.

There are different methods for decomposing a tensor (Kolda and Bader, 2009). The most

popular methods which have been employed for ED detection are CANDECOMP/PARAFAC decom-

position (CPD) (Abdi-Sargezeh et al., 2021b) and Tucker decomposition (TD) (Spyrou et al., 2015).

CPD decomposes a tensor into the sum of rank-one components. Suppose we are given a three-

way tensor X ∈ RL×M×N . According to CPD problem, the tensor X can be formulated as:

X ≈
R∑

r=1

ar ◦ br ◦ cr, (1)

where the symbol ‘◦’ represents the vector outer product, R is a positive integer and ar ∈ RL, br ∈

RM , and cr ∈ RN for r = 1, . . . , R. This is illustrated in Figure 2.

The factor matrices are constructed from the combination of the rank-one tensors, i.e., A =

[a1 . . .aR]. Following the “Kruskal operator” (Kolda, 2006), (1) can be modified to

X ≈ [[A,B,C]] ≡
R∑

r=1

ar ◦ br ◦ cr. (2)

where A ∈ RL×R and B ∈ RM×R, and C ∈ RN×R are factor matrices. The problem of computing

CPD (2) can be formulated as a least-square optimization problem:

A,B,C
min f ≡ 1

2
‖X − [[A,B,C]]‖2 . (3)

On the other hand, TD decomposes a tensor into a core tensor multiplied by a matrix along

each mode. In the three-way case where X ∈ RL×M×N , the aim is to find a tensor X̄ ∈ RL×M×N ,

having rank1(X̄ ) = P , rank2(X̄ ) = Q, and rank3(X̄ ) = R, that minimizes the least-squares cost

function

j(X̄ ) =
∥∥∥X − X̄

∥∥∥2

. (4)

The tensor X̄ can be decomposed to

X̄ = G ×1 Ā×2 B̄×3 C̄, (5)

where Ā ∈ RL×P , B̄ ∈ RM×Q, and C̄ ∈ RN×R, all with orthonormal columns, are factor matrices. G ∈

RP×Q×R is the core tensor and its entries present the level of interaction between the factor matrices.

Note that ×i shows the i -th mode product. The reader is referred to De Lathauwer et al. (2000) for

more details. The schematic of TD is shown in Figure 3.
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After decomposition, the core tensor and factor matrices can be either individually used for

classification or projected onto the main data for classification. For instance, in Abdi-Sargezeh et al.

(2021b), the authors concatenated ED segments Xn ∈ RL×M , n = 1, . . . , N, into a three-way ten-

sor X ∈ RL×M×N — where L, M , and N are the number of time samples, EEG channels, and ED

segments. After decomposing the tensor into factor matrices via CPD (3) and obtaining the temporal

A ∈ RL×R, spatial B ∈ RM×R , and segmental C ∈ RN×R factors, the data is projected onto the

spatial factors, Yk = XkB, where Xk ∈ RL×M (k = 1, . . . ,K) is an ED or non-ED segment from the

training or test data and Yk ∈ RL×R(k = 1, . . . ,K) is the projected ED or non-ED segment used for

classification.The schematic of the proposed method in Abdi-Sargezeh et al. (2021b) is illustrated in

Figure 4.

Much research has been undertaken recently for detection of epileptic seizure through multi-

way analysis (Hunyadi et al., 2017; Acar et al., 2007b; Ontivero-Ortega et al., 2015; Aldana et al.,

2018; Yuan et al., 2020). Acar et al. (2007b) employed continuous wavelet transform (CWT) — which

is an efficient way of presenting signal variations in both time and frequency using some well-known

basis waveforms called wavelet — using Mexican-hat wavelet (a low-oscillation wavelet) as the mother

wavelet to obtain the time-frequency features. Then, a three-way tensor with the dimension of time,

scale, and channel was constructed. Finally, N-way partial least squares (N-PLS) was employed to ex-

tract features in multi-dimensions. Aldana and colleagues employed CPD and BTD to detect noncon-

vulsive epileptic seizure (Aldana et al., 2018). To expand EEG recordings into a tensor, the authors

decomposed EEG recordings using CWT or Hilbert-Huang transform (HHT) and construct a three-

way tensor with the dimension of frequency × time × channel. They followed four configurations;

CWT-CPD, CWT-BTD, HHT-CPD, and HHT-BTD. Overall, HHT outperformed CWT. The best

performance was obtained using HHT-CPD through the spatial features, closely followed by HHT-

BTD through the frequency features. There was no significant difference between two types of tensor

factorization methods used in their research. They achieved different performances depending on the

feature space. CPD outperformed when the spatial features were used and BTD outperformed when

the frequency features were applied for the classifications. In Yuan et al. (2020), the authors employed

modified Stockwell transform to obtain frequency features. TD was applied to decompose the tensor

into its factors and the core tensor. Finally, the core tensor was vectorized and used as the EEG fea-

tures for seizure detection.

In addition to employing tensor-based methods in epileptic seizure detection, tensor decom-

position has been applied for seizure source localization. Acar et al. (2007a) and De Vos et al. (2007)

employed CPD for localizing seizure sources. Hunyadi and colleagues introduced BTD to detect the

seizure source zone (Hunyadi et al., 2014). The authors compared their proposed BTD-based method

with a CPD-based model. BTD-based method localized seizure sources better than CPD-based method.
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In Hunyadi et al. (2014), each EEG channel was normalized using z-score normalization method. How-

ever, generally, the normalization of channel separately affects the spatial and temporal information

and consequently the localization process fails. Therefore, z-score normalization of each channel and

also employing common average reference as an artifact removal method can cause error in tensor-

based EEG analysis.

Tensor decomposition was applied for ED detection for the first time in Spyrou et al. (2015).

The authors employed their proposed model to detect EDs from iEEG. The spectrogram method was

applied to obtain time-frequency features. Then, they constructed a four-way tensor with the dimen-

sion of channel, time, frequency, and segment (illustrated in Figure 5) employed TD to decompose

the tensor into spatial, temporal and spectral factors. Finally, spatial factors were used as features for

ED detection. Later, the same authors employed TD to detect EDs from sEEG (Spyrou et al., 2018).

They detected EDs in two different approaches, namely within-subject and leave-one-subject-out ap-

proaches. In addition, different feature spaces (the core tensor and spatial factors in the within-subject

approach and temporal and spatial features in the leave-one-subject-out approach) were used in ED

detection. Quite recently, Thanh et al. (2020) introduced nonnegative TD (NTD) with a novel ten-

sor formulation to detect the spikes. At first, the authors decomposed the EEG channels using CWT.

Then, they constructed a four-way tensor by incorporating channel, time, frequency, and spike seg-

ment. The tensor decomposed using NTD to obtain the factor matrices and the core tensor. Finally,

both spike and non-spike segments from the training and test datasets were projected onto the factor

matrices to extract the features for classification. The main differences between Spyrou et al. (2015,

2018) and Thanh et al. (2020) algorithms are: (1) NTD was used in Thanh et al. (2020) while TD in

Spyrou et al. (2015, 2018) and (2) only epileptic spikes were concatenated to a forth order tensor in

Thanh et al. (2020) while in Spyrou et al. (2015, 2018) all ED and non-ED segments were utilized.

Since different datasets were used in the mentioned papers, making a comparison between the two

methods is difficult. In Thanh et al. (2020), only the sEEG was recorded and analyzed, meaning that

only scalp-visible spikes were detected. Meanwhile, sEEG and iEEG were simultaneously recorded in

Spyrou et al. (2018) and all scalp-visible and scalp-invisible EDs were detected from the concurrent

sEEG.

Uncertainty in labelling biomedical signals and images is a crucial factor which may seriously

affect the diagnosis (Abdi-Sargezeh et al., 2021b,c). In the case of seizure, the EDs are similar to some

normal brain activities or artifacts (e.g., eye blink artifacts). In Abdi-Sargezeh et al. (2021b), a tenor-

based model has been developed to incorporate the probability of a waveform being an ED in an au-

tomatic ED detection system. An expert epileptologist provides a score showing his confidence level in

labeling each ED. Figure 7 shows the EDs with different scores. Concurrent iEEG (channels R1 to R6

and L1 to L6) and sEEG recordings have been analyzed to detect both scalp-visible and scalp-invisible
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EDs. From Figure 7, there is no sign of epileptic spikes in EDs scored 1 to 3 in the scalp channels. In

the EDs scored 4 and 5, there are epileptic spikes in both intracranial and scalp channels. For auto-

matically detecting EDs, the authors have constructed a three-way data tensor of time samples, chan-

nels, and ED segments and a three-way probability tensor based on the EDs scores. Then, a CPD

weighted optimization algorithm (Acar et al., 2011) effectively exploits the uncertainty levels and de-

composes the data and probability tensors to achieve the related tensor factors. Finally, both EDs and

non-EDs are projected into the spatial factors to achieve the discriminative features.

Deep Neural Networks

Shallow neural networks (SNNs) have been broadly used in ED detection from the appearance

of neural networks. Some researchers used raw EEG signals for ED detection (Eberhart et al., 1989;

Özdamar and Kalayci, 1998), others extracted some features (mimetic features, time-frequency repre-

sentation, etc.) from ED or spike segments and applied them to an SNN to be classified (Gabor and

Seyal, 1992; Argoud et al., 2006; Tzallas et al., 2006). However, SNNs are inefficient when the dataset

is noisy.

DNNs, as a state-of-the-art method in artificial intelligence, have been used in data science

particularly for biomedical signal processing (Procházka et al., 2020; Craik et al., 2019; Jarchi et al.,

2020) and ED detection. The studies using DNN algorithms for ED detection are summarized in Table

4. Among DNN algorithms, convolutional neural networks (CNNs) are the most popular ones.

CNNs are mainly comprised of three types of layers: convolutional layers, pooling layers and

fully-connected layers. A CNN architecture is formed by stacking these layers. A simplified CNN ar-

chitecture is shown in Figure 6. The convolution layer applies a convolution to the previous layer data

and forwards the result to the next layer. It is followed by a non-linear activation function. The pool-

ing layer simply performs downsampling along the spatial dimensionality of the given input, whereby

the number of parameters is reduced within that activation. Finally, the fully-connected layer performs

like standard neural networks.

Antoniades et al. (2016) and Johansen et al. (2016) introduced DNNs to detect EDs from

EEG for the first time, though DNNs were already employed to predict epileptic seizures (Mirowski

et al., 2008). Two CNNs with different topologies were trained for detecting EDs from iEEG by An-

toniades et al. (2016). On the other hand, CNN was employed to detect EDs from sEEG by Johansen

et al. (2016). Since the mentioned studies evaluated their proposed models via different recordings,

making a comparison between them is difficult. In another study, EDs were given a score according

to their morphology as well as their spatial information captured through multichannel recording, and

a CNN was employed to detect EDs with different scores from iEEG (Antoniades et al., 2017) by de-

veloping a multiclass ED detection model. Abou Jaoude et al. (2020) developed a CNN-based method
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to detect the mesial temporal lobe EDs from a single bipolar intracranial channel. The authors aver-

aged the CNN outputs of multiple bipolar channels to determine whether the test segment is related

to an ED event or not. Thomas and colleagues detected the scalp EDs using a 1D CNN through a sin-

gle channel approach (Thomas et al., 2020). The EDs were labeled separately for each channel and

1D CNN was trained to detect EDs from a single channel. Finally, the channel outputs were combined

to produce a single value used as an index to identify an ED segment. They evaluated their proposed

method in three different ED datasets.

Recording sEEG and iEEG simultaneously provides an opportunity to detect the scalp-visible

and scalp-invisible EDs from over the scalp. Furthermore, mapping sEEG to iEEG ameliorates the

model performance. This approach significantly outperformed other compared methods. In a promis-

ing approach, the researchers estimated the intracranial samples using scalp recordings via DNNs (An-

toniades et al., 2018). A concurrent sEEG and iEEG recordings were analyzed. The authors developed

an asymmetric-symmetric autoencoder (ASAE) to map sEEG to iEEG. Then, a CNN was applied to

the mapped signal to detect EDs. Figure 8 shows the topology of ASAE. An autoencoder (AE) re-

quires a weigh matrix since it is symmetric and the same weight is employed for encoding and decod-

ing. The developed asymmetric AE (AAE) requires two weight matrices with different dimensions, We

and Wd for encoding and decoding operations respectively. For mapping sEEG into iEEG, the devel-

oped AAE was followed by an AE to enhance the estimated pseudo-iEEG. The estimated signals are

shows in Figure 9. A leave-one-subject-out approach was used for ED detection. The iEEG recordings

of training subjects were only used in training the model. In other words, only the sEEG recording

of test subject was used to detect the EDs. The model achieved 68% accuracy. The same dataset was

used in Spyrou et al. (2016), in which only sEEG signals were employed to detect EDs. The accuracy

of 65% was achieved, 3% less than the accuracy obtained in Antoniades et al. (2018).

In Tjepkema-Cloostermans et al. (2018), LSTM and CNN networks were applied to detect

focal EDs. Five different architectures, namely 1D CNN, 2D CNN, LSTM, combined 1D CNN and

LSTM, and combined 2D CNN and LSTM, were implemented. In 1D CNN, the filters were defined for

each channel separately, while, in 2D CNN, the filters were two-dimensional involving temporal and

spatial information. 2D CNN outperforms 1D ones. As a consequence, the combination of temporal

and spatial information in the convolutional layers may boost the model performance. However, the

model did not provide a good sensitivity although the authors trained 346 different neural networks to

achieve the best result. They used 2-second ED segments which is unnecessarily long. The length of

ED segments is usually selected to be less than 500 ms in most of ED detection studies (Spyrou et al.,

2016; Thanh et al., 2020; Spyrou and Sanei, 2016) since the length of an ED waveform is not longer

than 200 ms (Halford et al., 2013). Therefore, using too long ED segments leads the model to fit over

non-ED segments.
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Prasanth and colleagues applied frequency sub-bands – Delta (1 to 4 Hz), Theta (4 to 8 Hz),

Alpha (8 to 13 Hz), and Beta (13 to 30 Hz) – and the raw EEG as input to a DNN model to detect

EDs (Prasanth et al., 2020). They concatenated frequency sub-bands in two ways: (1) by concatena-

tion of frequency sub-bands horizontally into a long vector, i.e., the dimension of new feature vector

was R1×(L×N), where L and N are respectively the number of time samples and sub-bands, and (2)

the concatenation of frequency sub-bands vertically into a matrix with the dimension of RL×N . 1D

CNN was used in the first implementation and 2D CNN in the second one. 1D CNN outperformed

2D CNN, meaning that the model performance was deteriorated when the information from different

sub-bands in the convolution layers were combined. Most of the ED information lie in the high fre-

quency bands. Therefore, by dividing the EEG into sub-bands, the ED morphology changes and conse-

quently the model performance deteriorates. The obtained results of each sub-band in Prasanth et al.

(2020) proves this issue. The best false positive rate per minute (FP rate/min) provided via sub-bands

was 85 while the raw EEG provided 0.36 FP rate/min. Though combined all sub-bands and raw EEG

achieved higher FP rate/min 0.23 compared to only raw EEG, the result of combination of only sub-

bands were not reported, which may be significantly worse than that achieved by using raw EEG. Fur-

thermore, the minimum length of spikes is 20 ms and can be as long as 50 Hz. Meanwhile, the Gamma

band (> 30 Hz) was completely suppressed in Prasanth et al. (2020) which is likely to have significant

information regarding the spikes particularly in iEEG recordings (Medvedev, 2001). Due to this fact,

in some studies only Gamma band has been used for ED detection (Bourien et al., 2004). However,

Gamma band has been suppressed in few ED detection studies (Fukumori et al., 2019). Xuyen and

colleagues divided the EEG signals into frequency sub-bands as well (Le et al., 2018). However, they

extracted Gamma band (30-50 Hz) together with other sub-bands. They employed CWT to extract

the time-frequency features and deep belief network (DBN) to detect EDs.

To detect epileptic spikes, Fukumori et al. (2020) developed a CNN model based on a bank of

linear-phase finite impulse response filters, performing as bandpass filters that extract biomarkers of

EDs without destroying waveforms because of linear-phase condition. Quite recently, an LSTM-based

model with self-attention was proposed to detect epileptic spikes that were not temporally aligned

(Fukumori et al., 2021). The hypothesis of authors was that a neural network embeding a temporal

self-attention mechanism enables extraction of the locations and ranges of particular interest within an

EEG segment for epileptic spike detection.

Conclusion

Detection of EDs plays a crucial role in epilepsy diagnosis and management. The development

of powerful computers and effective algorithms pave the way to detect more EDs from over the scalp.

Tensor factorization and DNNs have attracted researchers in both bioengineering and neuroscience.
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This is mainly because the diversity in the data is best exploited by the use of multi-way systems.

Here, the application of multi-way analysis (i.e., tensor factorization) and DNNs are reviewed in detail.

Among tensor factorization methods, TD-based methods are more popular for ED detection and CPD

algorithm have been commonly employed to detect seizure and localize the seizure sources. Among

DNN algorithms, CNN and LSTM are the most popular methods employed for ED detection. Though

detecting the EDs particularly from over the scalp is extremely challenging due to the similarity be-

tween the EDs and many brain activities and artifacts such as eye blink, the development of tensor

factorization and DNNs lead the detection models to be more precise. Convolutional LSTM (Shi et al.,

2015) and convolutional tensor-train LSTM (Su et al., 2020) have been recently developed to capture

spatio-temporal features of a sequential data. By deploying these algorithms to detect EDs in which

the spatio-temporal information is of paramount importance, computer-aided epilepsy diagnostic sys-

tems may progress more than ever.

Additionally, more work needs to be done to distinguish between seizure related EDs and the

EDs with non-epileptic origin. These non-seizure related EDs include but not limited to sleep spindles

and those spikes related to tumors, infarct, and encephalitis. This requires more intelligent systems

which glue the advances in both signal processing and machine learning.
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Figure 1
Lateral and Basal X-radiographs Showing Scalp and Intracranial Foramen Ovale (FO) Electrodes. Red
Arrows Point to FO Electrods (Spyrou et al., 2016).
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Figure 2
CANDECOMP/PARAFAC Decomposition of a Three-way Array.
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Figure 3
Tucker Decomposition of a Three-way Array.
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Figure 4
The ED Detection System Proposed for the Subject-dependent Classification Approach Adopted from
Abdi-Sargezeh et al. (2021b). X Includes the ED Segments only, N . CPD Is Applied to X to Decom-
pose it to Temporal, Spatial, and Segmental Factors. Xk(k = 1, . . . ,K) Is an ED or Non-ED Segment
from the Training or Test Data Which Is Projected onto the Spatial Components B. Yk Represents the
Same Segment after Projection.
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Figure 5
Representation of a 4-way Tensor (Spyrou et al., 2015).
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Figure 6
Schematic Diagram of a Basic Convolutional Neural Network Architecture.
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Figure 7
Samples of Epileptiform Discharge (ED) Waveforms with Scores 1 to 5 and a Non-ED Waveform. (a)
The non-ED Segment, and (b)-(f) Respectively the ED Segments with Scores 1 to 5 for Lowest (High-
est Uncertainty) to Highest (Lowest Uncertainty) Probability Respectively. Channels R1 to R6 and L1
to L6 Correspond to Intracranial EEG Recordings. The EDs Start at 160ms. In the Figure, IED Is the
Written Abbreviation of Interictal Epileptiform Discharges. The Figure Is Adopted from Abdi-Sargezeh
et al. (2021b).
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Figure 8
Topology of Asymmetric-Symmetric Autoencoder Network. x Is the scalp EEG (sEEG), y1 Is the Hid-
den Layer of the Asymmetric Autoencoder (AAE), z1 and z1 Are the Estimated Sources of intracranial
EEG (iEEG), y2 Is the Hidden Layer of the Autoencoder (AE), We and Wd Are the Weights of the
AAE and W Are the Tied Weights of the AE (Antoniades et al., 2018).
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Figure 9
Estimation of Intracranial EEG (iEEG) from the Scalp Epileptiform Discharges (EDs) and Non-ED
Segments (Averaged Over All Channels) Using Asymmetric Autoencoder (AAE) and Asymmetric-
Symmetric Autoencoder (ASAE) (Antoniades et al., 2018). In the Case of ASAE, the Additional Sym-
metric Layer Led to a Smoother Estimation of the Intracranial Data. The ED Started from the 32nd

Sample.
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Table 1
Some Datasets Used in Epileptiform Discharge (ED) Detection Studies.

Study Recording Num. of
channels

Num. of
subjects

Num. of EDs/spikes

Indiradevi et al. 2008 sEEG 18 22 684

Le et al. 2018 sEEG 32 19 1491

Lodder et al. 2013; Lodder and
van Putten 2014

sEEG - 23 723

Wang et al. 2020 sEEG 21 7 4850

Thanh et al. 2020 sEEG 19 7 1442

Abou Jaoude et al. 2020 iEEG 4 46 13959

Johansen et al. 2016 sEEG 19 5 7500

Thomas et al. 2017, 2020; Pras-
anth et al. 2020

sEEG 19 50/545 8929/14170

Fukumori et al. 2019, 2020, 2021 sEEG - 5/50 2897/15899/16008

Janca et al. 2015; Geng et al. 2021 iEEG 15 7 1956

Spyrou et al. 2015, 2016, 2018;
Antoniades et al. 2016, 2017, 2018;
Abdi-Sargezeh et al. 2021b,c

Concurrent
sEEG and
iEEG

20 scalp and
12 FO elec-
trodes

25/24/18 7831/6609/2776

***sEEG: Scalp EEG; iEEG: Intracranial EEG; FO: Foramen Ovale.
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Table 2
Summary of Patients’ information Used in the Public Intracranial Epileptiform Discharges Dataset,
Adopted from Janca et al. (2015).

Patient Age (sex) Num. of GS Epilepsy location Seizure duration
(years)

Pathology

1 24(F) 613 Right frontal 6 No abnormality

2 37(F) 453 Left frontal 28 No abnormality

3 17(F) 21 Left temporal 2 FCD Ib

4 8(F) 3 Right frontal 3 FCD IIb

5 14(F) 319 Right multilobar 8 HS, FCD Ia

6 31(M) 335 Right frontal 27 FCD IIb

7 10(M) 212 Left multilobar 3 FCD IIa

***M: Male; F: Female; GS: Golden Standard Spikes; FCD: Focal Cortical Dysplasia; HS: Hippocampal Sclerosis.
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Table 3
Studies Employing Multi-way Analysis Methods for Seizure or Epileptiform Discharge (ED) Detection.

Study Application Recording Tensorization Decomposition Features for classifica-
tion

Performance

Acar et al.
2007b

Seizure
detection

sEEG CWT N-PLS The component ma-
trices extracted from
N-PLS model

ACC = 77% -96% for dif-
ferent subjects

Spyrou
et al. 2015

ED
detection

iEEG Spectrogram TD Spatial factor matrix
extracted from TD

ACC = 86%

Spyrou
et al. 2018

ED
detection

sEEG Spectrogram TD Factor matrices and the
core tensor extracted
from TD

Different performance was
obtained by projecting the
test data onto the different
factors

Aldana
et al. 2018

Seizure
detection

sEEG CWT/HHT CPD/BTD Factor matrices ex-
tracted from CPD or
BTD

ACC = SEN = SPC =
99%

Yuan et al.
2020

Seizure
prediction

iEEG Stockwell
transform

TD Core tensor extracted
from TD

SEN = 88% for the seizure
occurrence period of 30
min; SEN = 97% for the
seizure occurrence period
of 50 min

Thanh
et al. 2020

Epileptiform
spike
detection

sEEG CWT NTD Projecting spikes and
non-spikes into factor
matrices extracted from
NTD

ACC = 90%, SEN = 80%,
SPC = 90%

Abdi-
Sargezeh
et al.
2021b

ED
detection

sEEG ED segment CPD Projecting ED and
non-ED segments into
spatial factors extracted
from CPD

ACC = 80%, SEN = 77%,
SPC = 82%

Abdi-
Sargezeh
et al.
2021c

ED
detection

sEEG ED segment CPD Projecting ED and
non-ED segments into
spatial factors extracted
from CPD

ACC = 79%, SEN = 71%,
SPC = 87%

***sEEG: Scalp EEG; iEEG: Intracranial EEG; ACC: Accuracy; SEN: Sensitivity; SPC: Specificity; TD: Tucker Decomposition;
CPD: CANDECOMP/PARAFAC Decomposition; BTD: Block Term Decomposition; N-PLS: N-way Partial Least Squares; CWT:
Continuous Wavelet Transform; HHT: Hilbert-Huang Transform.
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Table 4
Studies Employing Deep Learning Algorithms to Detect Epileptiform Discharges (EDs).

Study Application Recording Algorithm Input features of
algorithm

Performance

Antoniades
et al. 2016

ED detection iEEG CNN The spectrogram of iEEG ACC=87%

Johansen
et al. 2016

Epileptiform
spike detection

sEEG CNN Raw EEG AUC=0.94

Antoniades
et al. 2017

Multiclass ED
detection

iEEG CNN Raw EEG ACC=89%

Antoniades
et al. 2018

ED detection Concurrent
sEEG and
iEEG

ASAE and CNN Estimated iEEG from
sEEG

ACC=68%

Tjepkema-
Cloostermans
et al. 2018

ED detection sEEG CNN, LSTM,
stacked CNN and
LSTM

Raw EEG SEN=47%, SPC=98%

Le et al.
2018

Epileptiform
spike detection

sEEG DBN Wavelet features ACC=87%, SPC=97%,
AUC=0.95

Medvedev
et al. 2019

Spike and rip-
ple detection

iEEG LSTM Power spectrogram of
sub-bands from 4 to 236
Hz

ACC > 90% for all subjects

Fukumori
et al. 2019

Epileptiform
spike detection

sEEG CNN, LSTM,
GRU

Frequency sub-bands ob-
tained using DWT

0.49<AUC<0.96 for differ-
ent subjects and models

Abou Jaoude
et al. 2020

ED detection iEEG 1D CNN A single bipolar channel 0.49<AUC<0.96 for differ-
ent subjects and models

Thomas
et al. 2020

ED detection sEEG 1D CNN Raw EEG FP/min=0.2 when
SEN=80%

Prasanth
et al. 2020

ED detection sEEG CNN Raw EEG and frequency
sub-bands

FP/min=0.23 when
SEN=90%

Fürbass
et al. 2020

ED detection sEEG Fast R-CNN Raw EEG ACC = 80%, SEN = 89%,
SPC = 70%

Fukumori
et al. 2020

Epileptiform
spike detection

sEEG Linear phase
CNN

Raw EEG AUC>0.9 in most subjects

Fukumori
et al. 2021

Epileptiform
spike detection

sEEG LSTM based on
self-attention

Raw EEG ACC=90%

Wei et al.
2021

ED detection sEEG A framework
based on CNN
and GRU

Raw EEG ACC=95%, SEN=93%,
SPC=96%, AUC=0.97

Geng et al.
2021

ED detection iEEG LSTM and the
proposed AC-
GAN

Real and synthetic EEG AUC>0.93, ACC>93%

***sEEG: Scalp EEG; iEEG: Intracranial EEG; ACC: Accuracy; SEN: Sensitivity; SPC: Specificity; AUC: Area Under the
Receiver Operating Characteristic Curve; FP/min: False Positive per Minute; DWT: Discrete Wavelet Transform; CNN:
Convolutional Neural Network; Fast R-CNN: Fast Region-based CNN; DBN: Deep Belief Network; GRU: Gated Recurrent Units,
LSTM: Long Short-term Memory; AC-GAN: Auxiliary Classifier Generative Adversarial Network; ASAE: Asymmetric-Symmetric
Autoencoder.


