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Abstract 

Error monitoring allows for efficient performance of goal-directed behaviors and successful 

learning. Furthermore, error monitoring as a metacognitive ability, may play a crucial role for 

neuropsychological interventions, such as rehabilitation. In the past decades, research has 

suggested two electrophysiological markers for error monitoring: the error related negativity 

and the error positivity, thought to reflect, respectively, error detection and error awareness. 

Studies on several neurological diseases have investigated the alteration of the error related 

negativity and the error positivity, but these findings have not been summarized. Accordingly, 

a systematic review was conducted to understand what neurological conditions present 

alterations of error monitoring event-related potentials and their relation with clinical measures. 

Overall, ERN tended to be reduced in most neurological conditions while results related to Pe 

integrity are less clear. ERN and Pe were found to be associated with several measures of 

clinical severity. Additionally, we explored the contribution of different brain structures to 

neural networks underlying error monitoring, further elaborating on domain-specificity of error 

processing and clinical implications of findings. In conclusion, electrophysiological signatures 

of error monitoring could be reliable measures of neurological dysfunction and a robust tool in 

neuropsychological rehabilitation. 
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1.Introduction  

Error monitoring is crucial to successfully perform goal-directed behaviors (Ullsperger et al., 

2014) and for adaptive control in daily life (Krönke et al., 2018; Overmeyer et al., 2021). Over 

the last decades, error processing has captured the attention of clinical research, showing that 

deficient error monitoring characterizes various mental disorders (for example Clayson et al., 

2020; Meyer, 2016; Riesel et al., 2019). Moreover, error monitoring, as a metacognitive ability 

involved in online cognitive control, is thought to contribute to the emergence of self-awareness 

(Morris and Mograbi, 2013).  

According to the Cognitive Awareness Model (Agnew and Morris, 1998; Mograbi and Morris, 

2014), performance monitoring plays a key role in in the integrity of metacognitive awareness. 

Error monitoring impairments, underlying frontal cortico-subcortical loops can occur at 

multiple levels and result in anosognosia, that is defined as the lack of awareness of symptoms 

or deficits in clinical conditions, such as neurological disorders (Mograbi and Morris, 2018). A 

central dysfunction of monitoring mechanisms would result in executive anosognosia while 

domain-specific impairments would lead to local, domain-specific unawareness, such as 

anosognosia for hemiplegia. 

Self-awareness has been extensively investigated in neurodegenerative diseases and acquire 

brain injury (Amanzio et al., 2020; Chavoix and Insausti, 2017; Leung and Liu, 2011; 

Mazancieux et al., 2019; Prigatano and Sherer, 2020). Crucially, impaired self-awareness in 

neurological conditions can hinder rehabilitation (Medley and Powell, 2010; Ownsworth and 

Clare, 2006; Trahan et al., 2006) and community reintegration (Kelley et al., 2014). Self-

awareness, and specifically error awareness, is believed to be essential for successful 

rehabilitation of cognitive functions (Dockree et al., 2015; Leung and Liu, 2011). Common 

approaches in rehabilitation are errorless and error-based learning. In the first case, the training 

consists of observing and practicing only correct actions, through the support of the therapist 
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who prevents the patient from performing errors (Haslam and Kessels, 2018). This approach 

has been shown to be effective for memory impairments (Clare and Jones, 2008; Dunn and 

Clare, 2007; Ehlhardt et al., 2008). Instead, error-based learning training focuses on a trial-and-

error process, including prompt and feedback provided by the psychotherapist, allowing self-

correction and facilitating strategy use (Toglia, 2011).  Recently, it has been shown that error-

based learning can be more effective than errorless learning approaches in rehabilitation for 

brain injury patients, improving patient’s self-awareness and allowing skill transfer 

(Ownsworth et al., 2017), thus highlighting the relevance of error detection and correction for 

clinical conditions. Critically, Overmeyer et al. (2021) showed that ERN can predict self-

control in real life behavior. Assessing error-related integrity in brain injury patients may be 

indicative of self-monitoring abilities within specific cognitive domains and thus guide the 

choice of rehabilitation techniques. Therefore, functional brain biomarkers of error monitoring 

could potentially become a robust tool for clinical assessment and rehabilitation. 

Electroencephalography (EEG) research has identified two event-related potentials (ERPs) 

underpinning error processing: the error-related negativity (ERN) and the error positivity (Pe).  

The ERN is a negative deflection occurring around 50ms over fronto-central sites following 

error commission (Gehring et al., 1993). According to the Mismatch Theory, the ERN reflects 

the mismatch between action efferent copies and top-down representations of intended (correct) 

and actual response (Dehaene, 2018; Falkenstein et al., 1991; Gehring et al., 1993; Scheffers 

and Coles, 2000). Alternatively, it has been proposed that the ERN represents the degree of 

conflict between competing representations (Conflict Monitoring theory; Botvinick et al., 2001; 

Yeung et al., 2004).  

The neural generator of the ERN has been localized in the anterior cingulate cortex (ACC; 

Brázdil et al., 2005; Debener et al., 2005; Dehaene et al., 1994; Reinhart and Woodman, 2014; 

Van Veen and Carter, 2002). According to Reinforcement Learning theory, the ERN is 
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mediated by changes in levels of phasic dopaminergic activity in the basal ganglia resulting in 

inhibitory error signaling from the basal ganglia to the ACC (Holroyd and Coles, 2002).  

According to the Predicted Response-Outcome (PRO) model (Alexander and Brown, 2011), 

learning processes relying on medial prefrontal cortex function follow standard rules of 

probability. The authors also proposed that error effects may reflect the comparison between 

actual and intended outcomes, while conflict derives from the prediction of multiple responses 

and their outcomes. Evidence from behavioral studies, focusing on post-error slowing, 

suggested that unexpected events (either correct responses or errors) elicit a maladaptive shift  

of the attention away from the ongoing task (Notebaert et al., 2009). A more recent account of 

error processing is the adaptive orienting theory (Wessel, 2018), which posits that errors, as 

unexpected events, trigger a series of  adaptive automatic processes, including rapid motor and 

cognitive suppression, and subsequent attentional reorienting. This is supported by further 

research on the association between the ERN and attentional post-error adjustments, showing 

temporal proximity between ERN and subsequent attentional reallocation, and that the strength 

of post-error adjustments varies with ERN amplitude (Steinhauser and Andersen, 2019).  The 

consensus among different theoretical accounts is that the ERN indexes a performance 

monitoring system, that enables learning and behavioral adjustments (Weinberg et al., 2015).  

The Pe is a later positive component, peaking at centro-parietal sites between 200-500ms after 

error commission (Falkenstein et al., 1991; Overbeek et al., 2005). It has been shown that ERN 

and Pe represent two independent systems of error monitoring (Di Gregorio et al., 2018; 

Overbeek et al., 2005). However, the functional role of Pe is still debated.  It has been proposed 

that Pe is a P3b-like component, associated with motivational significance of the response 

(Overbeek et al., 2005; Ridderinkhof et al., 2009), that may reflect working memory updating 

(Donchin and Coles, 1988; Polich, 2007). In this context, post-error processing has been 

associated with locus coeruleus-norepinephrine system activity (Nieuwenhuis et al., 2005; 
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Overbeek et al., 2005; Ridderinkhof et al., 2009), as one possible input into the salience network 

(Wessel, 2018).  Error awareness and processing of salience have been shown to rely on 

overlapping neural networks, involving the anterior insula, dorsal ACC, thalamus, 

supplementary motor area, and parietal regions (Harsay et al., 2012). Previous studies have 

demonstrated a relationship between Pe and conscious perception of errors (Endrass et al., 

2007; Murphy et al., 2012; Nieuwenhuis et al., 2001). In line with the Accumulation Account, 

the Pe reflects error awareness, which emerges from a process of evidence accumulation about 

the erroneous response (Steinhauser and Yeung, 2012, 2010; Ullsperger et al., 2010; Wessel et 

al., 2011). Error awareness is believed to emerge from the integration of different input signals, 

such as cognitive, sensory, proprioceptive and interoceptive inputs (Ullsperger et al., 2010; 

Wessel et al., 2011). Ullsperger et al. (2010) also suggested that the neural network underlying 

error awareness and the Pe involved structures such as ACC, anterior insula and, somatosensory 

areas.  

The aim of this review is to understand whether ERN and Pe alterations are specific to certain 

neurological conditions and examine their relation with clinical factors. Furthermore, this 

evaluation will provide insights to elucidate the role of different brain areas in neural networks 

underlying error monitoring.  

 

2.Methods 

2.1 Search strategy 

Article selection was conducted according to the Preferred Reporting Items for Systematic 

Reviews and Meta-Analyses (PRISMA; Moher et al., 2009) guidelines. A flowchart of this 

selection process is displayed in Figure. 1. PubMed, Scopus and Web of Science databases were 

systematically searched for eligible studies from inception to January 31st, 2021. The search 

terms used were: ERP OR “event related” OR “event-related” OR “evoked potential” OR 
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“evoked-potential” AND “error related negativity” OR “error-related negativity” OR ERN OR 

Ne OR “error positivity” OR Pe. Reference lists from detected studies were also checked for 

additional unidentified studies. 

 

2.2 Study selection 

Only English-language studies were included. Eligible studies fulfilled the following criteria: 

1) the study design was cross-sectional; 2) the study included a clinical group with a 

neurological condition and a control group, as determined by neurological diagnosis; 3) all 

participants were adults; 4) each group was composed of at least 5 participants; 5) the amplitude 

and/or the latency of the ERN and/or the Pe were measured by ERP technique. Studies without 

group-level statistics were excluded. Studies including neurodevelopmental diseases were 

excluded.  Reviews and conferences papers were also excluded. 

 

2.3 Quality assessment 

A quality assessment form was devised which focused on sampling, measurement of outcomes 

and analysis (Table 1). In accordance with the Cochrane Collaboration recommendations 

(Higgins and Green, 2008), an overall score was not generated, with a risk of bias judgment of 

“yes”, “no” or “unclear” being given instead for individual domains. Study quality was assessed 

by two independent reviewers If a study received more than two “no” or three “unclear” 

judgments, the study was considered as having poor quality and was excluded from the review.   

 

2.4 Data extraction  

The following data were extracted by two independent reviewers: authors, publication year, 

diagnosis, sample size, task (experimental task and stimuli description), results comparing 
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patient and control behavioral performance and ERPs measures, and correlations between ERPs 

measures and other measures. 

  

Please insert Table 1 here 

 

Please insert Figure 1 here 

 

3.Results 

A total of 41 studies met inclusion criteria and were selected for review. Of these, 39 measured 

the ERN and 23 the Pe, with 21 measuring both ERPs. ERN and Pe were typically measured at 

midline electrodes. The most common recording sites of interest were Fz, FCz, Cz and Pz.  

 

The most common  task (n studies=23) to investigate error monitoring was the Flanker Task, 

which relies on the conflict between task-relevant and task-irrelevant stimuli (Eriksen and 

Eriksen, 1974). Other tasks based on interference suppression were the Stroop Task (n=3), 

Letter Discrimination Task (n=1), Simon-type Task (n=1) and the Error Awareness Task (n=1). 

The Error Awareness Task is a paradigm developed by Hester et al.(2005) and is an adapted 

version of the Stroop Task, incorporating a Go/NoGo component and a button press response 

to signal error awareness. Paradigms involving response inhibition included the Go/NoGo 

(n=3), the Oddball Task (n=1), and the Stop Signal Task (n=3).  The remaining paradigms relied 

on a variety of cognitive tasks. In the Anti-saccade Task (n=3), participants are asked to quickly 

perform a saccade to the opposite direction of a cue stimulus presentation (Hallett, 1978). In 

the Lexical Decision paradigm (n=2), participants are asked to decide whether a string of letters 

is a word or not (Rubenstein et al., 1971). The Picture-Name Verification task (n=1) consists 

of the presentation of a word followed by a picture. Participants are then asked to decide 
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whether they semantically matched or not (Wingfield, 1968). Finally, a visual search (n=1) and 

a visual short-term memory task (n=1) were also employed as experimental paradigms.  

 

Neurological conditions included Alzheimer’s disease (n=2), Tourette syndrome (n=3), 

multiple sclerosis (n=1), amyotrophic lateral sclerosis (n=1), Parkinson’s disease (n=11), 

Huntington’s disease (n=4), cerebellar ataxia (n=1), cerebellar degeneration (n=1), focal lesions 

(n=9+ 1 cerebellar lesion) and traumatic brain injury (n=8). ERPs findings are reviewed by 

disorder. Cerebellar ataxia, cerebellar degeneration and one study involving cerebellar lesion 

were grouped together as “Cerebellar Dysfunction”. Results of single studies are displayed in 

Table 2. 

 

3.1 Alzheimer’s disease (AD) 

Both studies showed lower ERN amplitude in AD patients compared to healthy controls (Ito 

and Kitagawa, 2005; Mathalon et al., 2002), with the former reporting longer ERN latency in 

AD. One study reported no difference between AD and controls for Pe amplitude (Mathalon et 

al., 2002), while Ito and Kitagawa (2005) showed decreased Pe amplitude and prolonged 

latency in AD. Mathalon et al., (2005) used a Picture-Name Task Verification, while Ito and 

Kitagawa (2005) a Lexical Decision Paradigm.  

 

3.2 Tourette Syndrome (TS) 

All studies reported higher ERN amplitude in TS as compared to controls (Johannes et al., 2002; 

Schüller et al., 2018; Warren et al., 2020). No differences in ERN latency were reported by 

Johannes et al., (2002). Pe amplitude was measured in only one study (Schuller et al., 2018), 

which indicated lower amplitude in TS than healthy controls. No significant correlation was 

reported between ERPs amplitude and clinical parameters (Schuller et al.,2018; Warren et al., 



Error monitoring in neurological diseases 

 10 

2020) or neuroepileptic medication (Schuller et al., 2018). Tasks used were the Oddball task 

(Johannes et al., 2002), Stop Signal Task (Schuller et al., 2018) and the Flanker Task (Warren 

et al., 2020). 

 

3.3 Multiple Sclerosis (MS) 

Only one study investigated error monitoring in MS (López-Góngora et al.,2015) using a 

Flanker Task with an inhibition of response variant (“Stop task”). They reported higher ERN 

amplitude in MS as compared to healthy controls. Additionally, correlational analyses showed 

a negative association between ERN amplitude and time since last relapse and a positive 

association between ERN amplitude and Multiple Sclerosis Severity Score (MMSS) and 

Expanded Disability Status Scale (EDSS). 

 

3.4 Amyotrophic Lateral Sclerosis (ALS) 

Only one study using the Flanker task to measure error related ERPs in ALS was found (Seer 

et al., 2017a). Results showed no differences in ERN amplitude between ALS and controls. 

Further analyses on subgroups showed that ALS patients with low executive performance had 

lower ERN amplitude than ALS patients with high executive performance and controls with 

low executive performance, while ERN did not differ between controls with low executive 

performance and controls with high executive performance. Correlational analyses revealed 

that executive performance negatively correlated with ERN amplitude in the ALS group. 

 

3.5 Cerebellar Dysfunction  

A study on patients affected by cerebellar ataxia (CA; Tunc et al., 2019) reported no differences 

in ERN amplitude between CA and controls, while two studies conducted by the Peterburs 

group revealed lower ERN in amplitude in patients with cerebellar lesion (CL; Peterburs et al., 
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2012) and cerebellar degeneration (CD; Peterburs et al., 2015). No alteration of ERN latency 

was reported in CL (Peterburs et al., 2012). Peterburs et al., 2015 reported that ERN amplitude 

negatively correlated with grey matter volume in the cerebellum right lobule V and left lobule 

VIIb/VIIIa. Moreover, Pe amplitude was found to be lower in CA patients (Tunc et al.,2019) 

and higher in CL patients (Peterburs et al., 2012) as compared to healthy controls. No 

differences in Pe amplitude between CD and controls were reported (Peterburs et al., 2015). 

Shorter Pe latency in CL was reported (Peterburs et al., 2012). Peterburs et al. (2015) reported 

that Pe was positively correlated with grey matter volume in the right posterolateral cerebellum. 

The task used in the study on CA by Tunc et al. (2019) was a Flanker task while the Anti-

saccade Task was the experimental task for CL and CD studies  (Peterburs et al., 2012, 2015) 

 

3.6 Parkinson’s Disease (PD) 

Eight studies reported reduced ERN amplitude in PD (Beste et al., 2009; Falkenstein et al., 

2001; Ito and Kitagawa, 2006; Rustamov et al., 2014; Seer et al., 2017b; Stemmer et al., 2007; 

Willemssen et al., 2008; Willemssen et al., 2009). Two studies reported no ERN amplitude 

differences between PD and controls (Holroyd et al., 2002; Verleger et al., 2013). ERN latency 

was shown to be unaltered in PD in five studies while Falkenstein et al. (2001) reported no 

differences for Flanker task performance and shorter latencies for Go/NoGo and Simon-type 

tasks. 

Further analyses have been conducted on medication state in PD. Stemmer et al. (2007) and 

Beste et al. (2009) found no differences in ERN amplitude between drug-naïve and medicated 

PD. Another study on treated PD patients (Willemssen et al., 2008) revealed no difference 

between on- and off-medication groups. Seer et al., (2017b) reported reduced ERN amplitude 

in on-medication PD as compared to off-medication PD. Although the on-medication group 
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presented reduced ERN amplitude as compared to healthy controls, no differences were found 

between off-medication PD and control groups. 

Correlational analyses showed that BDI scores were positively associated with ERN amplitude 

in PD (Willemssen et al., 2009). Seer et al (2017b) reported that in the PD off-medication group, 

ERN amplitude was inversely associated with higher scores in apathy, depression, psychiatric 

status, and schizotypal scales and positively associated with health status. In the on-medication 

group reduced ERN amplitude was associated with higher apathy scores.  

Pe was measured in only two studies. Ito et al. (2006) showed that Pe amplitude is reduced in 

PD while Pe latency did not differ between PD and controls. The other study reported no 

differences in Flanker task and Simon-type task performance, while Pe amplitude was found to 

be lower in Go/NoGo performance (Falkenstein et al., 2005). Ito et al. (2006) used a Lexical 

Decision Paradigm; Falkenstein et al. (2001, 2005) applied three paradigms: Flanker task, 

Simon type task, Go/NoGo task. The other ten studies employed the flanker task. 

 

3.7 Huntington’s Disease (HD) 

ERN amplitude was shown to be lower in HD as compared to healthy controls (Beste et al., 

2009) and pre-clinical HD (pHD;  Beste et al., 2008, 2009). No differences in ERN amplitude 

between pHD and healthy controls were found (Beste et al., 2007). Beste et al. (2009) reported 

that ERN amplitude did not differ between pHD and young controls, and that was higher in 

pHD as compared to old controls. Correlation analyses revealed that CAG-index was inversely 

associated with ERN amplitude (Beste et al., 2006). Additionally, medial frontal gyrus grey 

matter volume was found to be correlated with ERN amplitude (Beste et al., 2008) No group 

difference for ERN latency was reported when comparing HD and healthy controls (Beste et 

al, 2006, Beste et al.,2009), HD and pHC, or pHC and controls (Beste et al., 2009). Beste et al. 
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(2008) did not find Pe amplitude differences between HD and pHD. All studies used a Flanker 

Task as the experimental paradigm (Beste et al., 2006, 2007, 2008, 2009). 

 

3.8 Focal Lesions  

Studies investigating error related ERPs included lesions of the ACC (1), lateral prefrontal 

cortex (n=4), orbitofrontal cortex (n=1), frontopolar cortex (n=1), temporal cortex (n=1), basal 

ganglia (n=1), thalamus (n=2), and left hemisphere regions (n=1). Patients with ACC lesions 

showed reduced ERN amplitude as compared to healthy controls and a participant group (brain 

damage control) with brain lesions not involving the ACC (Maier et al., 2015). No between 

group differences in Pe amplitude and latency were found. 

One study involving patients presenting basal ganglia lesions showed reduced ERN and Pe 

amplitude, while no differences in latency were found as compared to healthy controls 

(Ullsperger and Von Cramon, 2006). Three studies on lateral prefrontal cortex (PFC) lesions 

showed lower ERN amplitude as compared to controls (Ullsperger et al., 2002; Wessel et al., 

2014; Ullsperger and Von Cramon, 2006). In contrast, Gehring and Knight (2000) reported no 

differences in ERN amplitude between lateral PFC lesions and control groups. No differences 

in ERN latency were found (Ullsperger and Von Cramon, 2006; Ullsperger et al., 2002). Pe 

amplitude was found to be reduced in lateral PFC patients (Ullsperger and Van Cramon, 2006; 

Ullsperger et al., 2002). Solbakk et al. (2014) reported reduced ERN amplitude and higher Pe 

amplitude in orbitofrontal lesion patients as compared to healthy controls. The study by 

Ullsperger et al. (2002) involving a frontopolar and temporal lesion group reported no 

differences in ERN amplitude and latency and Pe amplitude between lesion groups and 

controls. Studies on thalamic lesions revealed reduced ERN amplitude (Peterburs et al., 2011; 

Seifert et al., 2011) and Pe amplitude (Seifert et al., 2011). 
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Finally, Niessen et al. (2020) reported no differences either in ERN or Pe amplitude and latency 

between patients with a left hemisphere lesion and healthy controls. Moreover, they found a 

correlation between ERN latency and lesion size. Peterburs et al (2011) used an anti-saccade 

task as experimental task, Gehring and Knight used a letter discrimination task, Solbakk et al. 

(2014) used a stop signal task and Niessen et al. (2020) a Go/NoGo Task. All the other studies 

used a Flanker task. 

 

3.9 Traumatic Brain Injury (TBI) 

Five studies reported reduced ERN amplitude in TBI patients (De Beaumont al., 2013; Larson 

et al., 2009; Larson et al., 2007; Pontifex et al., 2009). Two studies showed no differences in 

ERN amplitude between TBI patients and healthy controls (Larson et al., 2012; Shen et al., 

2020). Olson et al. (2018) reported higher ERN amplitude in TBI as compared to controls. No 

differences in ERN latency between TBI and controls were found (Larson et al., 2007; Larson 

et al., 2009; Shen et al.,2020). 

Seven studies reported no difference in Pe amplitude between TBI and healthy controls (De 

Beaumont et al., 2014; Larson et al., 2009; Larson et al., 2012; Logan et al., 2015; Olson et a., 

2018; Pontifex et al., 2009; Shen et al., 2020). One study showed reduced Pe amplitude in TBI 

(Larson et al., 2007). 

While Larson et al. (2007) reported no differences in Pe latency between TBI and controls, 

Shen et al. (2020) found longer Pe latency in TBI. 

Correlational analyses showed that the ERN was negatively associated with number of prior 

incidents (Pontifex et al., 2009) and concussions (De Beaumont et al., 2014). Moreover, 

negative affect was inversely correlated with ERN amplitude (Larson et al., 2009). ERN latency 

was found to be inversely associated with prior TBIs (Larson et al.,2012) 
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Pe amplitude associated with length of post-traumatic amnesia, and negatively associated with 

time since injury (Larson et al., 2012). Shen et al., (2020) reported that probability of inhibition 

(likelihood of response inhibition for Stop trials) negatively correlated with Pe latency and 

positively correlated with Pe amplitude. 

Two studies used a Flanker task (Olson et al., 2018; Pontifex et al., 2009), The Stroop task was 

used in three studies (Larson et al., 2007,2009,2012). The Error Awareness Task was used by 

Logan et al (2015). Shen et al. (2020) employed a Stop signal task while De Beaumont et al. 

(2014) employed a visual search task variant and a visual short-term memory task. 

 

Please insert Table 2 here 

 

4.Discussion 

This systematic review included 41 articles assessing the ERN and the Pe in neurological 

disorders including Alzheimer’s disease, Tourette’s syndrome, multiple sclerosis, amyotrophic 

lateral sclerosis, Parkinson’s disease, Huntington’s disease, cerebellar ataxia, cerebellar 

degeneration, focal lesions and traumatic brain injury, in comparison with controls. Overall, 

ERN amplitude tended to be reduced in clinical conditions, with the exception of Tourette 

syndrome and multiple sclerosis, which seemed to be characterized by enhanced ERN 

amplitude. Pe amplitude was investigated in fewer studies and did not present a consistent 

pattern of alteration across different neurological disorders. ERN and Pe latency were generally 

unaltered with the exception of a few individual studies across different clinical groups. The 

Flanker Task was the most commonly employed experimental task across neurological 

conditions, but the use of other paradigms relying on different cognitive processes needs to be 

considered to discuss contradictory results. 
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One of the aims of this review was to understand whether alterations of error monitoring are 

specific to certain neurological conditions, examining the contribution of different brain 

structures to error monitoring. ERN alterations can be consistently observed in neurological 

disorders affecting core structures involved in error monitoring. In line with the PRO model 

(Alexander and Brown, 2011), the medial prefrontal cortex plays a crucial role in error 

processing. Patients with lesion of the ACC, which is thought to be the ERN neural generator 

(Brázdil et al., 2005; Debener, 2005; Dehaene et al., 1994; Reinhart and Woodman, 2014; Veen 

and Carter, 2002), were found to present reduced ERN (Maier et al., 2015). Similar findings 

were found in studies in AD (Ito and Kitagawa, 2005; Mathalon et al., 2002), in which ACC 

dysfunction is well documented (Rosenberg et al., 2015). Interestingly, previous research 

associated ACC alterations with self-awareness in AD (for a review, see Lenzoni et al., 2020), 

thus confirming its crucial role in self-monitoring alterations in these patients. According to the 

Reinforcement Learning theory (Holroyd and Coles, 2002), error signaling relies on 

mesencephalic dopaminergic activity from the basal ganglia to the ACC. Neurodegenerative 

disorders affecting basal ganglia and dopamine regulation consistently presented alteration of 

the ERN. The ERN was shown to be reduced in PD (Beste, et al., 2009; Falkenstein et al., 2001; 

Ito and Kitagawa, 2006; Rustamov et al., 2014; Seer, et al., 2017b; Stemmer et al., 2007; R. 

Willemssen et al., 2008; Willemssen et al., 2009) and in HD (Beste et al., 2006; Beste et al., 

2009), while higher ERN amplitude was found in TS (Johannes et al., 2002; Schüller et al., 

2018; Warren et al., 2020). Moreover, the ERN was found to be reduced in patients with a focal 

basal ganglia lesion (Ullsperger and Von Cramon, 2006). These findings show that changes in 

dopamine levels mediate performance monitoring processes, as previously suggested by 

research reporting the impact of dopamine antagonists (Forster et al., 2017; Zirnheld et al., 

2004) and dopamine receptors genotypes (Biehl et al., 2011; Krämer et al., 2007) on the ERN. 

Focal thalamic lesions were also associated with reduced ERN (Peterburs et al., 2011; Seifert 
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et al., 2011). Crucially, the thalamus plays a key role in the generation and updating of mental 

representation (Wolff and Vann, 2019), and is considered a relay of efferent copies (or corollary 

discharge) of motor commands (Sommer, 2003). Therefore, thalamic alterations may have a 

disruptive impact on the cognitive conflict between competing representations and their 

“translation” into the appropriate motor commands to be selected during task performance.  

 

Interestingly, even when the “core” neural network underlying error monitoring is not directly 

affected, the ERN may be altered. When analyzing the studies involving these neurological 

conditions, contradictory results can be found and no clear pattern can be defined. However, 

considering the interaction between the experimental task and the lesion localization, it can be 

hypothesized that the ERN does not merely rely on the integrity of the structures involved in 

conflict processing and error detection, but also on the alteration of those cognitive processes 

mediating the generation of the competing representations. Two studies showed reduced ERN 

in participants affected by cerebellar dysfunctions (Peterburs et al., 2012, 2015). Peterburs et 

al. (2012) included patients vascular focal damage to the cerebellum. By comparison, Peterburs 

et al (2015) patient group, that we labeled cerebellar degeneration, included pathologies that 

primarily affect the cerebellar cortex, such as spinocerebellar ataxia, sporadic adult onset ataxia, 

and autosomal dominant ataxia. In both studies the paradigm used was the Antisaccade Task. 

The third study reported spared ERN amplitude in cerebellar ataxia (Tunc et al, 2019), which 

includes different types of spinocerebellar ataxia. The task used was the Flanker Task. 

Therefore, online performance monitoring in patients affected by cerebellar dysfunction results 

to be impaired for cognitive abilities that rely on cerebellar integrity, such as saccadic eye 

movement generation, as shown by the Peterburs group. In contrast, error monitoring appears 

to be spared for functions that are not prominently mediated by cerebellar activation, such as 

for the Flanker Task. Similarly, the ERN was shown to be reduced in patients with a lateral 
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PFC lesion during the Flanker Task performance (Ullsperger et al., 2002; Ullsperger and Von 

Cramon, 2006; Wessel et al., 2014), while it was unaltered as compared to controls when 

performing a letter discrimination task (Gehring and Knight, 2000). Furthermore, the ERN was 

found to be larger in patients with orbitofrontal lesions during a Stop Signal Task (Solbakk et 

al., 2014) but was shown to be unaltered during the Flanker Task performance (Ullsperger et 

al., 2002). This suggests the presence of domain-specific mechanisms underlying error 

monitoring, that may selectively affect task performance. Beyond a domain-general “core” 

network, domain-specific neural signals contribute to the generation of competing 

representations, and therefore, mediate error processing. This notion would imply the existence 

of domain-specific alterations of representations (and their correctness), supporting theoretical 

accounts such as the Mismatch Theory ((Dehaene, 2018; Falkenstein et al., 1991; Gehring et 

al., 1993; Scheffers and Coles, 2000) and PRO model (Alexander and Brown, 2011), that 

emphasize the pivotal role of multiple competing representations and their response outcome 

during performance monitoring, rather than a general mechanisms of response conflict, as 

proposed by the Conflict Monitoring hypothesis (Botvinick et al., 2001; Yeung et al., 2004). 

Although, domain-specificity of metacognitive processes, such as self-monitoring, have been 

previously discussed (Mograbi and Morris, 2014) and supported by behavioral (Bellon et al., 

2020; Chapman et al., 2018; Dentakos et al., 2019) and neuroimaging (Morales et al., 2018) 

studies, it is yet to be investigated in ERP research. Nonetheless, inconsistent findings within 

neurological conditions may be also mediated by heterogeneity in methodology, such as task 

instructions (Morris et al., 2006), number of error trials (Fischer et al., 2017), or task difficulty 

(Riesel et al., 2015), and individual differences, such as motivation (Boksem et al., 2006), 

affective state (Wiswede et al., 2009), or stress (Hu et al., 2019) that may modulate the ERN 

differently across clinical and healthy populations. 
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A smaller proportion of the studies included analyses of the Pe. Overall, the results are in line 

with a functional distinction between ERN and Pe (Di Gregorio et al., 2018; Overbeek et al., 

2005) as demonstrated by the lack of unidirectional changes across many different neurological 

conditions. Pe was shown to be unaltered in the presence of ERN reduction (Beste et al., 2008; 

De Beaumont et al., 2013; Larson et al., 2009; Maier et al., 2015; Olson et al., 2018; Peterburs 

et al., 2015; Pontifex et al., 2009), thus supporting the idea that ERN and Pe represent 

independent systems of error monitoring. Critically, in most of the neurological conditions 

considered in this review, we have evidence on the Pe from one study only. Therefore, it is 

more difficult to draw major conclusions about Pe integrity within individual conditions.  

 

However, it is important to observe that the ACC may not have a prominent role in Pe 

generation, as shown by unaltered Pe in patients with ACC lesion (Maier et al., 2015) and AD 

(Ito et al., 2005). Among basal ganglia disorders, Pe was reduced in focal lesion (Ullsperger 

and Von Cramon, 2006) and TS (Tunc et al., 2019) patients. It should be noted that the 

Ullsperger group reported reduced Pe in lateral PFC lesion patients, and in 5 out of 7 patients, 

the lesion extended to the insula (Ullsperget et al., 2002; Ullsperger and Von Cramon, 2006). 

Contradictory results were found in PD patients. Ito et al. (2006) reported a reduction in Pe, 

while another study involving three experiments found no differences in Pe amplitude between 

PD and controls for Flanker Task and Simon-type task performances, and reduced Pe during a 

Go/NoGo task (Falkenstein et al., 2005). Findings from cerebellar dysfunction are also 

contradictory, but an association between Pe amplitude and dystonia severity was found in 

cerebellar ataxia patients (Tunc et al., 2019), suggesting a relation between motor dysfunction 

and decrease in Pe.  
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According to the Accumulation Account (Steinhauser and Yeung, 2010; Ullsperger et al., 2010), 

the Pe emerges when sufficient evidence about error commission has been accumulated. This 

would involve the integration of conflict/response information, proprioception, interoception, 

and sensory inputs (about action performance). It has been hypothesized that brain structures 

involved in the emergence of error awareness includes cingulate structures, somatosensory 

areas and anterior insula (Ullsperger et al., 2010; Klein et al., 2013; Hester et al., 2005).  

Importantly, peripheral and visceral signals could contribute to the generation of the Pe and 

such factors must be considered in central and peripheral nervous system pathologies that could 

affect sensorimotor processing. It could be hypothesized that motor diseases, including those 

affecting the peripheral nervous system, may suffer from changes in sensorimotor information 

processing that could contribute to accumulation processing underlying error awareness. The 

anterior insula, integrating signals ascending from peripheral pathways, plays a key role in 

interoceptive awareness (Chen et al., 2021), and the ACC are key nodes of the salience network 

(Uddin, 2015). In line with Adaptive Orienting  theory, the salience network, as well as the 

frontobasal ganglia network, are involved in post-error processing (Wessel, 2018). Recent 

evidence on cross-network interactions involved in cognitive control suggests that that salience 

network may play a crucial role in real-life self-control by initiating switching between default 

mode and executive networks (Krönke et al., 2020), thus underlining the critical involvement 

of anterior insula and ACC in self-monitoring and self-regulation. 

 

Nevertheless, error awareness and its relation with the Pe has not been explored in neurological 

conditions, except for Logan et al. (2015). In their study, they used the Error Awareness Task 

which allowed to investigate ERPs differences for aware and unaware errors in TBI patients. 

Although they found no differences between patients and controls, a significant effect of 

awareness on Pe amplitude in both groups was observed. Such experimental manipulations can 
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be critical in the analyses of the Pe, by potentially revealing differences otherwise undetectable, 

and exploring the differential association between aware and unaware errors with other 

measures.  

 

Moreover, we explored whether lesion lateralization was associated with error monitoring 

system dysfunction; one recent study’s sample included only patients with left hemisphere 

lesion (Niessen et al., 2021), reporting no group differences in either ERN or Pe. In the rest of 

the studies, the patient group included either both hemispheres lesions or bilateral lesions, and 

in the first case, no subgroup analyses exploring lateralization effect was conducted. Therefore, 

considering the heterogeneity of lesion localization and size in the study by Niessen et al. 

(2021), it is difficult to discuss any potential hemispheric asymmetry of the performance 

monitoring system. 

 

Importantly, some methodological issues need to be acknowledged when considering the 

presence of inconsistent findings across and within neurological conditions. The studies 

reviewed present relevant differences in sample size (ranging from 6 to 36 for the clinical 

group), experimental manipulations (Fischer et al., 2017; Mathewson et al., 2005; Morris et al., 

2006), and quantification of ERP-related metrics (Overbeek et al., 2005). Moreover, a large 

part of the studies employed the Flanker task (n=23/41), and the number of studies focusing on 

specific neurological disorders is unbalanced, with, for example, wider research on Parkinson’s 

disease (n=11) and TBI (n=8) and limited investigation of multiple sclerosis (n=1), amyotrophic 

lateral sclerosis (n=1).  

 

The second aim of this review was to investigate the associations between error-related ERPs 

and clinical factors. Overall, across different neurodegenerative disorders, we can observe that 
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ERN and Pe are associated with disease severity measures (n=14/17 including correlational 

analysis). Pe amplitude was shown to be associated with dystonia severity in CA patients (Tunc 

et al., 2019) and both ERN and Pe with cerebellar GWM in CD (Peterburs et al., 2015). In MS 

patients, ERN correlated with time since last relapse and disease severity measures (Lopez-

Gongora et al., 2015). In HD, the ERN correlated with size of CAG repetitions (Beste et al, 

2009), which is typically used as a severity index (Duyao et al., 1993; Rosenblatt et al., 2006), 

and with medial frontal grey matter volume (Beste et al., 2008). This suggests that error 

monitoring ERPs may represent a reliable measure of neurodegeneration processes.  

 

Given the heterogeneity of neurological profiles,  clinical outcomes and recovery trajectories 

in TBI patients (Azouvi et al., 2017; Bigler, 2001; Chastain et al., 2009; Green et al., 2008; 

Perlbarg et al., 2009; Rabinowitz et al., 2018), it is cautious to say that we cannot establish 

whether ERPs alterations are specific for this neurological condition.  However, this line of 

research provided relevant knowledge about the association between clinical factors and error 

monitoring. Several measures of trauma severity were found to be associated with the ERN 

across many studies. ERN amplitude and latencies were shown to be associated with higher 

number of TBIs (De Beaumont et al., 2013; Larson et al., 2007; Pontifex et al., 2009) and Pe 

amplitude was found to be correlated with post-traumatic amnesia length and time since the 

injury (Larson et al., 2012). Among others, post-traumatic amnesia is considered a strong 

predictor of clinical outcomes (Ponsford et al., 2016), thus suggesting that error-related ERPs 

may not only index injury severity but also predict outcomes after TBI. Importantly, self-

awareness impairments are very common in TBI (Prigatano, 2005; Sherer et al., 2003, 1998) 

and multi-dimensional measures of self-awareness, including error monitoring, play a critical 

role in TBI interventions (Robertson and Schmitter-Edgecombe, 2015; Simmond and Fleming, 

2003). In TBI patients, performance monitoring deficits were found to be associated with 
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activity of the dorsal ACC and anterior insula (Ham et al., 2014), supporting the relevance of 

these areas for error processing.  

 

Moreover, the relations between the ERN and depression (Willemssen et al., 2008; Seer et al., 

2017b), negative affect (Larson et al., 2009) and psychiatric symptoms (Seer et al., 2017b) point 

out the critical relevance of error monitoring in clinical profiles of neurological disorders. 

Extensive research on psychiatric conditions identified impairment of error processing, as  

reflected by ERN alterations. For example, the ERN has been proposed as endophenotype of 

internalizing disorders (Olvet and Hajcak, 2008; Weinberg et al., 2015), specifically of 

obsessive-compulsive disorder (OCD; Riesel, 2019), anxiety (Riesel et al., 2019), and as 

candidate biomarker of depression (Clayson et al., 2020).  Reduction of reduction of error-

related ERPs have also been reported in psychopathy (Vallet et al., 2021), schizophrenia (e.g., 

Bates et al., 2002; Foti et al., 2012; Simmonite et al., 2012), and bipolar disorder (Minzenberg 

et al., 2014; Morsel et al., 2014). Further research is needed to extend the knowledge about 

overlapping neural networks underlying performance monitoring in neurological and 

psychiatric disorders. For instance, TS and OCD have been suggested to share 

pathophysiological mechanisms, possibly reflecting similarities between tics and repetitive 

behaviors associated with cortico-striato-thalamo-cortical circuitry dysfunction (Hartmann and 

Millet, 2018). Moreover, OCD is often present of comorbidity of TS (Sheppard, 1999). 

Although performance monitoring in these two clinical populations has never been directly 

compared, previous research showed that the ERN is typically enhanced, suggesting 

hyperactive error signals in both conditions (Johannes et al., 2002; Riesel, 2019; Schüller et al., 

2018; Warren et al., 2020). Warren et al. (2020) observed that increased ERN in TS may reflect 

compensatory mechanisms that allow successful behavioral performance.  
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As shown by the current review, all the studies (n=3) including TS showed higher ERN 

amplitude but comparable behavioral performance as compared to healthy controls. A similar 

phenomenon has been highlighted by Lopez-Góngora et al. (2015) concerning error monitoring 

in multiple sclerosis. However, this hypothesis is not supported by findings from other 

neurological disorders, in which no systematic pattern linking ERN to task performance, 

especially for accuracy and reaction times, can be identified. A limited number of studies within 

and across neurological disorders included measurea of post-error adjustments, such as post-

error slowing (n=16) and post-error accuracy (n=4). Nonetheless, no consistent association 

between post-error measures and ERPs was found. 

 

In conclusion, these findings highlight the link between error monitoring networks, self-

awareness, and neurocognitive rehabilitation outcomes. Error-related ERPs may be employed 

in assessment protocols to evaluate patient ability to monitor their own functioning and 

understand the severity of their conditions. Error monitoring ERPs can also be important 

measures for rehabilitation effectiveness, because error detection and correction can be critical 

for (re)learning mechanisms (Ownsworth et al., 2017).  

 

Future research should investigate domain-specificity of error monitoring and the role of 

functional disconnection within performance monitoring networks. This would extend our 

knowledge on brain processes underlying error monitoring and provide useful information on 

specific cognitive deficits for neuropsychological assessment and rehabilitation. Furthermore, 

future studies investigating error monitoring in neurological disorders would benefit from 

including: 1) both ERN and Pe amplitude and latency analyses; 2) experimental manipulations 

to distinguish aware and unaware errors in order to explore the relation between Pe, error 

awareness, and other variables; 3) clinical and neurocognitive measures, and assessment of 
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psychiatric comorbidities; 4) subgroup analyses exploring differences between left and right 

hemisphere lesion; 5) behavioral measures of post-error adjustments. Finally, combining EEG 

with non-invasive brain stimulation techniques could offer new perspectives to elucidate the 

relative contribution of different brain structures in error monitoring and potential tools for error 

processing and self-awareness rehabilitation.  
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