3	
4	
5 6	
7	
8	
9 10	
11	
12	
13 17	
15	
16	
17 18	
19	
20	
21	
22	
24	
25	
20 27	
28	
29	
30	
32	
33	
34 35	
36	
37	
38	
40	
41	
42	
44	
45 46	
40	
48	
49 50	
51	
52	
53 54	
55	
56	
ว/ 58	
59	
60	

1 The influence of phylogeny, social style, and sociodemographic factors on variation in

- 2 macaque social networks
- 3 Balasubramaniam, K. N.^a, Beisner, B. A.^{a,b}, Berman, C. M.^c, De Marco, A.^d, Duboscq, J.^{e, f}, Koirala, S.^g, Majolo, B.^h,
- 4 MacIntosh, A. J. J.^{e, f}, McFarland, R.ⁱ, Molesti, S.^j, Ogawa, H.^k, Petit, O.¹, Schino, G.^m, Sosa, S.ⁿ, Thierry, B¹, de Waal,
- 5 F. B. M^{.o,} & McCowan, B. J.^{a,b}.
- 6 ^a Department of Population Health & Reproduction, School of Veterinary Medicine, UC Davis, Davis, CA, USA;
- 7 ^b California National Primate Research Center, University of California Davis, Davis, CA, USA;
- 8 ^c Department of Anthropology, Graduate Program in Evolution, Ecology and Behavior, University at Buffalo, Buffalo,
- 9 NY, USA;
- 10 ^d Fondazione Ethokios, Radicondoli, Italy:
- 11 ^e Wildlife Research Center, Kyoto University, Inuyama, Japan;
- 12 ^f Primate Research Institute, Kyoto University, Inuyama, Japan;
- 13 ^g Small Mammal Conservation and Research Foundation (SMCRF), Kathamandu, Nepal;
- 14 ^h School of Psychology, University of Lincoln, Lincoln, UK;
 - ⁱDepartment of Anthropology, University of Wisconsin-Madison, 1180 Observatory Drive, Madison, WI, USA:
 - ^j Université Toulouse Jean Jaurès, Toulouse, France
 - ^k School of International Liberal Studies, Chukyo University, Toyota, Japan;
 - ¹Centre National de la Recherche Scientifique, Université de Strasbourg, Institut Pluridisciplinaire Hubert Curien, Strasbourg, France
 - ^m Istituto di Scienze e Tecnologie della Cognizione, Consiglio Nazionale delle Ricerche, Rome, Italy;
- $\begin{array}{c} 15\\16\\17\\18\\12\\22\\23\\22\\22\\26\\\end{array}$ ⁿ Anthropology Department, Sun-Yat sen University, Guang Zhou, China;
- 27 ^o Psychology Department, Emory University, Atlanta, GA, USA
- 28 Corresponding author:
- 29 Dr. Krishna N. Balasubramaniam
- 30 Department of Population Health & Reproduction
- 31 School of Veterinary Medicine
 - 32 University of California at Davis
 - 33 One Shields Avenue
- 34 Davis CA 95616 USA
- 35 Phone: 1-513-417-4538
 - 36 E-mail: krishnanatarajan@ucdavis.edu

37	Abstract:

i uge o oi	00	American ocarnal of Amatology
1		Balasubramaniam et al. 2
3 4	37	Abstract:
5 6 7	38	In group-living animals, social network approaches capture group-level
7 8 9	39	characteristics of social structure that emerge from interactions between individuals.
10 11	40	Despite their recent application in animal behavioral research, the evolutionary
12 13	41	underpinnings of social network variation in primates remain debated. Here we assess
14 15 16	42	whether interspecific variation in aspects of female macaque (genus: Macaca) social
17 18	43	network structure derived from dominance and grooming relationships show
19 20 21	44	phylogenetic signals, and co-vary with each other and/or hypothetical species-typical
22 23	45	social style grades. We also examine whether social networks co-varied with
24 25	46	sociodemographic characteristics, specifically group size, sex-ratio, and current living
26 27 28	47	condition. We assembled 38 datasets of female-female dyadic aggression and
29 30	48	allogrooming among captive and free-living macaques representing 10 species. We
31 32	49	calculated dominance (transitivity, certainty) and grooming (centralization of dominants,
33 34 35	50	density, clustering coefficient) network metrics. Computations of K statistics on multiple
36 37	51	phylogenies extracted from the 10ktrees website revealed strong phylogenetic signals in
38 39 40	52	dominance metrics, but weak signals in grooming metrics. GLMMs showed that
40 41 42	53	grooming metrics strongly co-varied neither with dominance metrics, nor with species'
43 44	54	social style grade. On the other hand, grooming density and clustering coefficient, but not
45 46 47	55	centralization of dominants, were strongly predicted by group size independent of their
48 49	56	living condition, with larger groups showing more clustered, sparser networks than
50 51	57	smaller groups. These findings reveal that across female macaques, dominance networks
52 53 54	58	may be phylogenetically conserved, whereas grooming networks may be more labile to
55 56	59	one or more sociodemographic/ecological factors. They narrow down the evolutionary
57 58 59		
60		
		Jonn wiley & Sons

61 two core aspects of macaque social structure. Future directions include using

62 phylogeographic approaches, and addressing the challenges in comparing the effects of

63 socioecological factors on primate social network structures.

64 Key words:

65 Social networks, phylogenetic signals, social style, group size, macaques

66 Introduction:

In group-living animals, diversity in sociality may be characterized by variation in social structure, i.e. the patterning and distribution of different types of interactions (e.g. competitive, affiliative, cooperative) and relationships among group members (Hinde, 1976). Variance in social structure thus emerges from individual-level preferences for interacting with (or avoiding) specific partners such as kin, age peers, and alliance partners (Kappeler & Van Schaik, 2002). Lately, Social Network Analysis (hereafter SNA: (Farine & Whitehead, 2015; Sueur, Jacobs, et al., 2011) has provided novel approaches to quantitatively describing variation in social structure. Yet our ability to understand the evolution and ecological factors producing diverse social structures remains limited. Specifically, the extent to which such sociality and network structure may have been influenced by species' ancestral relationships, or alternatively may be more labile to variation in current conditions, remains debated (Clutton-Brock & Janson, 2012; Kasper & Voelkl, 2009; Koenig et al., 2013; Thierry, 2004). Here we assess whether variation in aspects of social networks among multiple species of macaques (genus: Macaca) is influenced by species-typical intrinsic characteristics, specifically by their phylogenetic relatedness (Balasubramaniam et al., 2012a; Blomberg et al., 2003;

American Journal of Primatology

Thierry, 2007; Thierry et al., 2008), and by tendencies for behavioral traits to co-evolve in suites or packages that are consistent with their social styles (de Waal & Luttrell, 1989). We also investigate the extent to which two sociodemographic characteristics. group size and sex-ratio, may influence this co-variation (Kasper & Voelkl, 2009; Sueur, Petit, et al., 2011). Across a wide range of animal taxa (e.g. bottlenose dolphins, elephants, bats, and primates), SNA has enabled the detection of higher order aspects of group- or species-typical social structure that emerge from the patterning of both direct and (more pertinently) indirect connections among individuals that are not just based on direct interactions (reviewed in (Farine & Whitehead, 2015; Kasper & Voelkl, 2009)). In other words, SNA expands the description of social structure to beyond simple outcomes of dyadic relationships, by recognizing inter-individual and inter-dyadic dependencies not as obstacles but rather as key factors contributing to group-level social structure. This is particularly evident for core aspects of primate social structure that emerge from agonistic encounters (dominance: (Bernstein, 1976)), and from the patterning of affiliative relationships (allogrooming: (Henzi & Barrett, 1999)). For instance, dyadic wins and losses in agonistic encounters have traditionally been used to compute group-level outcomes of dominance relationships, specifically dominance gradient (hierarchical steepness: (de Vries et al., 2006; Gammell et al., 2003)) and dominance asymmetry (Directional Consistency Index: DCI: (de Vries, 1998)). However, a recently developed network approach, dominance certainty, considers dyadic interactions as well as direct and indirect pathways of dominance, thereby (1) reducing the potential errors due to

chance-interactions by individuals that avoid one another, and (2) incorporating the roles

106	of both interacting and non-interacting dyads ((Fujii et al., 2013; Fushing et al., 2011);
107	see Methods)). Similarly, social networks of allogrooming relationships, in addition to
108	characterizing well-developed, consistent dyadic interactions, also capture the formation
109	of subgroups of individuals that interact preferentially with one another, such as close kin
110	and/or coalitionary supporters (e.g. clustering coefficient, community modularity:
111	(Griffin & Nunn, 2012; Kasper & Voelkl, 2009; Sueur, Petit, et al., 2011)). Finally, SNA
112	techniques that combine information from dominance and grooming relationships may be
113	better able to describe the roles of both peripheral and central individuals in group social
114	structure (e.g. degree and eigenvector centrality coefficient: (Sueur, Jacobs, et al., 2011))
115	(see also Methods and Supplementary Table 1). For these reasons, the most recent
116	comparative studies of nonhuman primate social structure have used SNA to compare
117	various types of societies (Griffin & Nunn, 2012; Kasper & Voelkl, 2009; Pasquaretta et
118	al., 2014; Sueur, Petit, et al., 2011). Here we also use SNA methods to assess
119	interspecific variation in macaque dominance and grooming networks (de Waal &
120	Luttrell, 1989; Thierry, 2007).
121	A major explanatory framework for the evolution of variation in primate social
122	networks is related to species' ancestry or phylogenetic closeness (Blomberg et al.,
123	2003). According to this framework, aspects of sociality may be expected to show
124	phylogenetic signals, i.e. exhibit greater similarity among more closely related compared
125	to more distantly related species (Blomberg et al., 2003). Ecological adaptation is not
126	ruled out but rather hypothesized to occur minimally, or in response to novel, drastic
127	environmental changes (Chan, 1996; Matsumura, 1999). In the past, proponents of
128	phylogenetic signals have often referred to them as outcomes of phylogenetic constraints

American Journal of Primatology

Balasubramaniam et al. 6

129	or phylogenetic inertia (Blomberg & Garland, 2002). However, more recent theory
130	recognizes that phylogenetic signals may be the observed pattern of trait similarity, rather
131	than one or more evolutionary processes, including Brownian motion or random genetic
132	drift, stabilizing selection, pleiotropy, or low rates of evolution, via which such patterns
133	may arise (reviewed in (Kamilar & Cooper, 2015)). Rather than attempt to distinguish
134	between possible processes or the rates at which they occur, here we simply aim to
135	identify strong and weak phylogenetic signals in order to determine the extent to which
136	social network structure co-varies with macaques' phylogenetic closeness.
137	Across animal societies, behavioral traits are more labile to evolutionary change
138	in comparison to morphological and/or physiological characteristics (Blomberg et al.,
139	2003). Primates are no exception, with traits like brain size, body mass and canine
140	dimorphism exhibiting stronger phylogenetic signals than those such as social
141	organization and activity budgets (Kamilar & Cooper, 2015). As such, phylogenetic
142	signals for aspects of primate social network traits have been hard to identify. Kasper and
143	Voelkl (2009) established that several aspects of affiliative social networks, including
144	community modularity or the tendency for sub-group formation, mean centrality in the
145	connectedness of individuals, and density of network connections all showed greater
146	variation between closely related than between distantly related species, indicating weak
147	phylogenetic signals and a greater effect of ecological or demographic factors. Similarly,
148	(Pasquaretta et al., 2014) found no effect of phylogenetic signals on the efficiency of
149	information flow through affiliative social networks of primates, including humans. Tests
150	for phylogenetic signals in aspects of sociality within specific primate families and
151	genera have revealed inconsistencies. In the genus Eulemur, group size and sex-ratio both

strongly correlated with phylogenetic distances (Ossi & Kamilar, 2006). Yet among both
baboons (genus: *Papio*) and squirrel monkeys (genus: *Saimiri*), interspecific variation in
multiple forms of social organization seem to be strongly linked to ecological factors like
food distribution, predation pressure, and intergroup feeding competition (Barton et al.,

156 1996; Boinski, 1999; Henzi & Barrett, 2003).

Nevertheless, among all primate genera, phylogenetic signals in social traits have been most consistently detected within the genus Macaca. Macagues constitutes 23 species of Old-World primates, with wide-spread geographic distributions in nature (Abegg & Thierry, 2002; Cords, 2013). Although all species show a predominantly similar social organization, living in multi-male, multi-female social groups in which females are philopatric and males disperse (Thierry, 2007), they show broad inter- and intraspecific variation in several aspects of female social structure (Thierry, 2007). Specifically, traits like post-conflict affiliation, rates of affiliative contact (Thierry et al., 2008), the steepness of dominance hierarchies (Balasubramaniam et al., 2012a), and asymmetry in aggression (Balasubramaniam et al., 2012a; Thierry et al., 2008) all showed phylogenetic signals (Blomberg et al., 2003; Kamilar & Cooper, 2015), whereas grooming kin bias showed a weak signal (Thierry et al., 2008). These finding have led some proponents of phylogenetic explanations to posit that core aspects of macaque social structure may also be structurally linked, co-varying with each other at the species level (Petit et al., 1997; Thierry et al., 2008). Thierry (2007) has characterized this tendency to co-vary by assigning macaque species to positions on a four-grade social style scale that is broadly consistent with phylogenetic lineage splits (Thierry, 2007). At one extreme, 'grade-1' species (e.g. rhesus macaques (Macaca mulatta), Japanese

American Journal of Primatology

175	macaques (<i>M. fuscata</i>)) of the Fascicularis lineage are hypothesized to show 'despotic'
176	social structures, characterized by steep and asymmetric dominance hierarchies, low
177	levels of post-conflict affiliation, and intense affiliative kin-bias. At the other extreme,
178	'grade-4' species (e.g. Tonkean macaques (M. tonkeana), crested macaques (M. nigra))
179	belonging to the Sulawesi lineage are hypothesized as being more 'tolerant' or
180	'egalitarian', showing shallower dominance hierarchies with more frequent counter-
181	aggression from subordinates towards dominants, high proportions of post-conflict
182	affiliation, and more even distributions of grooming relationships across kin and non-kin
183	(Balasubramaniam et al., 2012a; Berman & Thierry, 2010; de Waal & Luttrell, 1989;
184	Thierry, 2007; Thierry et al., 2008). The systematic variation hypothesis posits that a
185	species that shows a single behavioral trait associated with a particular social style will
186	display all other traits (Castles et al., 1996; Petit et al., 1997). However, this extent of co-
187	variation has not always been found. Rather, most work (but see (Thierry et al., 2008))
188	thus far has revealed marked differences between species at the extreme ends of the
189	social style scale (grade-1 and grade-4 macaques), but inconsistencies in the positions of
190	macaques in intermediate grades (reviewed in (Balasubramaniam et al., 2012b)). Only
191	one study of this sort has focused on social network traits: (Sueur, Petit, et al., 2011)
192	revealed marked differences across four species of macaques that represented grades 1
193	and 4 that were consistent with their social style grades. Specifically, grade-1 'despotic'
194	species showed more clustered or modular and less dense affiliative networks in which
195	grooming was more centralized among dominants, i.e. individuals formed sub-groups or
196	communities with preferred partners, and rarely interacted with partners outside these
197	communities, whereas grade-4 tolerant species showed the opposite characteristics. In the

198	present study, we expand on the above findings by (Sueur, Petit, et al., 2011) by assessing
199	phylogenetic signals and co-variation across 10 species of macaques representing all four
200	social style grades, and groups from both captive and free-living conditions. Given the
201	inclusion of free living groups, we also examine whether sociodemographic factors,
202	specifically group size and living condition, influence social network metrics in addition
203	to, or instead of social style or phylogenetic closeness. Broadly, theoretical
204	socioecological models predict that among free-living primates, larger group size, on
205	account of either heightened levels of contest competition for resources (Koenig et al.,
206	2013; Sterck et al., 1997; van Schaik, 1989) and/or increased temporal constraints
207	(Berman & Thierry, 2010; Dunbar, 1992; Korstjens et al., 2010), may be expected to
208	influence the evolution of more despotic social network structures characterized by
209	steeper, asymmetric dominance hierarchies, and highly centralized, clustered grooming
210	networks. On the other hand, smaller groups may be expected to show greater within-
211	group social tolerance characterized by more reversals in dominance interactions and de-
212	centralized, denser grooming networks. Such effects may also be influenced by the
213	spatial constraints imposed by captive housing that may result in more frequent social
214	interactions among individuals with a potentially wider range of partners (Duboscq et al.,
215	2013; McCowan et al., 2008).
216	We first ask whether aspects of female dominance and grooming networks (Q1)
217	show strong phylogenetic signals and further, whether grooming networks co-vary with
218	(Q2) dominance networks and/or (Q3) hypothesized social style grades across macaques.

219 Despotic species tend to show steeper dominance hierarchies with more decided,

220 asymmetric dominance outcomes compared to tolerant macaques (Balasubramaniam et

American Journal of Primatology

Balasubramaniam et al. 10

221	al., 2012a; Thierry, 2007). Given this, we predict that macaque species that have more
222	transitive, decided and/or certain dominance relationships will also show despotic
223	grooming networks, including greater tendencies for more high-ranking individuals to
224	occupy more central positions in less dense and more clustered grooming networks,
225	compared to those with less transitive and/or uncertain dominance relationships. Further,
226	we predict that phylogenetic shifts from more despotic (e.g. grade-1) to more tolerant
227	(e.g. grade-4) social styles will be correlated with systematic decreases in the
228	centralization of grooming among dominants, as well as less clustered but denser
229	networks. Finally, we also examine (Q4) the potential impact of sociodemographic
230	factors on networks and patterns of co-variation. In accordance with socioecological
231	models, we examined whether group size was positively associated with both the
232	centralization of grooming among dominants and with clustering of grooming networks,
233	but negatively associated with grooming density. We also tested the potentially
234	confounding effect of living condition on such relationships. Finally, we explored the
235	impact of a third sociodemographic characteristic, female-to-male sex ratio, on such co-
236	variation.
237	Methods:
238	We first assembled behavioral and phylogenetic datasets from various sources –
239	published literature, personal data, and personal donations from other researchers (Table
240	1). Below we describe these data, the computation of social network metrics, and
241	statistical analyses.

242 Datasets – macaque social behaviors and phylogenetic trees:

243	To compute dominance network metrics, we assembled a total of 38 behavioral
244	datasets on dyadic aggressive interactions among adult female macaques (individuals \geq
245	3.5 - 4 years of age, depending on species-typical ages of maturity) from groups living in
246	captive and free-living (free-ranging and wild) conditions (Table 1). These encompassed
247	20 populations representing 10 macaque species from all four social style grades. Except
248	for stumptailed macaques (M. arctoides) and bonnet macaques (M. radiata), we acquired
249	at least two datasets for each species; these were either from different social groups or
250	from the same social group during different long-term study-periods. In the latter case,
251	each study period represented a time period during which group composition or other
252	sociodemographic factors (e.g. group size, age-class and/or sex ratios) were stable. To
253	compute grooming network metrics, we obtained data from 34 (out of the 38) datasets
254	from nine species (Table 1). We chose datasets collected using focal-animal, all-
255	occurrences, and/or scan sampling methods (Altmann, 1974). Given differences in
256	observation times across datasets (Table 1), we computed all grooming metrics from
257	unweighted networks. Out of 38 datasets, the majority (27, or 71%) was from free-living
258	groups of macaques. We found significant differences in group size (ANOVA: $F_{1, 32}$ =
259	6.04, $p = 0.02$) and sex ratios (ANOVA: $F_{1, 32} = 12.07$, $p < 0.01$) between captive vs.
260	free-living macaques. Hence, we either conducted separate assessments for only free-
261	living groups (Q1), or directly examined the effect of living condition in our analyses (Q2
262	- Q4).

In order to assess and control for the effects of phylogenetic signals, we extracted and used a Bayesian consensus tree (Supplementary Figure 1) and a tree-block of 10 trees from the online resource for primate phylogeny *10KTrees* (Arnold et al., 2010). All 11

phylogenies showed proportional branch-lengths, and identical topologies that were also
consistent with previously constructed macaque topologies using parametric approaches
(e.g, (Chatterjee et al., 2009; Tosi et al., 2003)). We therefore report the results of tests
performed using the consensus phylogeny, with those from the tree-block submitted as
supplementary material (Supplementary Table 3).

271 SNA – Dominance and Grooming Metrics:
272

Supplementary Table 1 provides the definitions and details of the dominance and grooming network metrics that we computed. We computed dominance network metrics from winner-loser dominance matrices in which non-diagonal cells contained data on the frequencies of dyadic contact and non-contact aggression from animals in the rows to animals in the columns. Acts of bi-directional or counter-aggression were scored twice, once on either side of the diagonal for each interactant. We computed two metrics – triangle transitivity and dominance certainty (Fujii et al., 2013; Fushing et al., 2011) – that have not been used in previous comparative studies of primate social networks (see Supplementary Table 1 for definitions). These metrics, particularly dominance certainty, enable the detection of patterns of group-specific dominance network architecture that, unlike traditional aspects of dominance structure such as hierarchical steepness (de Vries et al., 2006) or DCI (de Vries, 1998), are based not only on both dyadic interactions but also indirect pathways. They therefore capture more global aspects of a dominance hierarchy that steepness or DCI are not likely to capture. They are also less susceptible to error due to the numbers of non-interacting dyads present in the dataset than steepness (Balasubramaniam et al., 2012a). Rather, dominance certainty specifically incorporates the presence of non-interacting dyads in its calculation (Supplementary Table 1) by

290	weighting both the total number of direct wins by an individual 'A' against an individual
291	'D' (A \rightarrow D), as well as imputed wins incurred via the likelihood of traversing longer
292	paths (e.g. $A \rightarrow B \rightarrow C \rightarrow D$) through the dominance network. In doing so, the certainty
293	measure characterizes the network-level flow-structure of dominance information,
294	thereby accounting for hidden elements in dominance structure such as avoidance
295	between individuals (Fujii et al., 2013; Fushing et al., 2011) (Supplementary Table 1).
296	We constructed grooming networks (Figure 1) and calculated network metrics
297	using the statnet, sna and igraph R packages (Csardi & Nepusz, 2006; Handcock et al.,
298	2006). We calculated network centrality metrics from unweighted, directed networks
299	(Farine & Whitehead, 2015; Sueur, Jacobs, et al., 2011), i.e. where individuals
300	represented by nodes were connected by edges that represent the directions of
301	interactions between initiators and recipients (Figure 1). Unweighted networks were used
302	to account for the potential impact of differences in observation times across comparative
303	datasets (Griffin & Nunn, 2012; Kasper & Voelkl, 2009). Specifically, we calculated
304	standardized degree centrality (the number of an individual's direct grooming
305	connections) and <i>eigenvector centrality</i> (the number of an individuals' direct and indirect
306	grooming connections, indicating its access to social capital or support (Farine &
307	Whitehead, 2015) for each individual in a dataset. Reviews of the utility of animal social
308	networks agree that these metrics are among the most biologically meaningful of the
309	centrality metrics (Farine & Whitehead, 2015; McCowan et al., 2008; Sueur, Jacobs, et
310	al., 2011). Specifically, they are more indicative of individuals' social status than
311	measures of betweenness and closeness among taxa such as primates that have more
312	complete rather than sparse social network graphs (Kasper & Voelkl, 2009). From

American Journal of Primatology

individual scores, we calculated group-level centrality distributions and coefficients that
also take into consideration the dominance status of individuals (as in (Sueur, Petit, et al.,
2011); see Supplementary Table 1 for definitions). We also calculated two other grouplevel grooming network metrics – density and clustering coefficient (a correlate of group
substructuring or modularity: (VanderWaal et al., 2013)) – from *unweighted* but *undirected* networks (Supplementary Table 1 for details and definitions). Supplementary
Table 2 shows the values of the various network metrics computed for each dataset.

320 Statistical Analyses:

To examine evidence for phylogenetic signals (Q1) in dominance and grooming network metrics at the species level, we used the Phytools R package (Revell, 2012). For each metric, we computed Blomberg's Kappa (K) coefficient (Blomberg et al., 2003) as the ratio between the Mean-Squared Errors (or MSE) of the raw, species-means of behavioral metrics over the MSEs of metrics that have been phylogenetically transformed using tree-specific branch-length information. The K coefficient therefore indicates the strength of the phylogenetic signal and further, is scaled by a similar ratio of MSEs calculated assuming a Brownian motion model of evolution (Blomberg et al., 2003). We considered K > 1 from the randomization test as indicative of a "strong" signal that exceeds the amount of signal expected under a Brownian motion model of evolution (Blomberg et al., 2003). Values of $0.8 \le K \le 1$ were considered to be indicative of a "moderate" signal, while values that are ≤ 0.8 indicate a weak signal, i.e. greater plasticity on account of adaptation to current conditions in a trait (Blomberg et al., 2003). These assignments were based on previous comparative studies of nonhuman primate behavioral traits that also examined phylogenetic signals among smaller numbers of

336	species (Balasubramaniam et al., 2012a; Thierry et al., 2008). We avoided splitting
337	terminal species' nodes into multiple nodes to represent groups within species. Although
338	doing so offers the potential advantage of increased statistical power, it would also
339	artificially inflate phylogenetic signals (Blomberg et al., 2003; Thierry et al., 2008).
340	Blomberg's K generates identical results to Pagel's Lambda (λ : (Pagel, 1997, 1999)), an
341	alternate indicator of phylogenetic signal. However, since K is more useful in informing
342	about trait variation relative to Brownian evolution (Kamilar & Cooper, 2015), we chose
343	to estimate and report this statistic. In addition, we conducted randomization tests to
344	compare the MSE of phylogenetically transformed data to those computed from 1000
345	randomized datasets generated by scattering the behavioral scores randomly on a
346	phylogeny. In addition to handling the intrinsic dependency of the data, such tests
347	indicate whether any observed phylogenetic signal is greater than that expected by
348	chance. We recognize that for sample sizes of 7-10 species, randomization tests yield a
349	low statistical power of 20-35% (Blomberg et al., 2003). They have nonetheless been
350	used in estimations of phylogenetic signals in previous studies with similarly small
351	sample sizes (Balasubramaniam et al., 2012a; Thierry et al., 2008).
352	To examine whether grooming network metrics were linked to dominance metrics
353	(Q2) or by social style scale (Q3) across species, and to assess the potential impact of
354	sociodemographic factors and living-condition (Q4) on such co-variations, we
355	constructed General Linear Mixed-effects Models (GLMMs: (Bates et al., 2016)). We
356	implemented an Information-Theoretical approach (Burnham et al., 2011; Grueber et al.,
357	2011) using the <i>lme4</i> and <i>MuMIn</i> R packages. Given the relatively small number of
358	species, we were not able to account for interspecies phylogenetic distances via

359	Phylogenetic Least Squares regression (PGLS: (Nunn, 2011)). Instead, we indirectly
360	tested for the effects of phylogeny by assessing the effect of social style, since social style
361	and phylogeny have been shown to be strongly correlated across macaques (Thierry et
362	al., 2000). We first generated 6 global models, one for each grooming network metric
363	treated as the outcome variable. Centralization indices followed a Normal or Gaussian
364	distribution (e.g. degree coefficient: Shapiro-Wilk test: $w = 0.96$, $p = 0.25$; eigenvector
365	distribution: $w = 0.98$, $p = 0.64$), but grooming density and clustering coefficient were
366	log-transformed to fit a Gaussian distribution (log(clustering coefficient): $w = 0.95$, $p =$
367	0.16). As recommended by I-T approaches (Burnham et al., 2011; Grueber et al., 2011),
368	our global models were constructed by the inclusion of just those co-variates that catered
369	to testing our specific predictions (Q2-Q4), with species set as a random effect to avoid
370	pseudoreplication issues. They were defined as:
371	Grooming metric (e.g. log(density)) ~ transitivity + dominance certainty + factor(social style) + group size +
372	factor(living condition) + group size*living condition + sex ratio + (1 Species)
373	We next used the <i>arm</i> package in R to z standardize ($\mu = 0$, SD = 1) the
374	predictors in the global model, which is essential for interpreting parameter estimates
375	after model averaging (Gelman et al., 2009). We next used the automated 'dredge'
376	function in the MuMIn R package to generate a 'complete' set of 80 models from
377	multiple possible combinations of predictors from the global models (Grueber et al.,
378	2011) (Supplementary Tables 4-9). This included a 'null' or an intercept-only model with
379	just species as a random effect for the sake of comparison. For models with multiple
380	predictors, we performed collinearity diagnostics by (a) checking correlation matrices
381	and (b) assessing variance inflation using the. Models with multiple predictors met
382	diagnostic criteria that ruled out multicollinearity issues; they were neither strongly

correlated to each other (r < 0.8 for all pairs) nor had high generalized variance inflation factors (GVIF < 4) (*car* package in R: (Fox & Weisberg, 2011)). From each full model set, we identified candidate models that included only models whose dAICc scores were < 4 from the model with the lowest AICc score (Burnham et al., 2011) (models in bold font in Supplementary Tables 4-9). We then determined parameter estimates by model-averaging each set of candidate models using the zero-averaging approach (Burnham & Anderson, 2002; Grueber et al., 2011). This approach weakens the effect sizes of predictors that only appear in a minority of models within the candidate set. It is therefore more useful (than the natural averaging method) in cases where the aim is to determine which (among multiple) factors have the strongest effect on a response variable (Grueber et al., 2011; Nakagawa & Freckleton, 2010). For all parameter interpretations, we set the alpha level at 0.05. **Results:**

396 (Q1) Tests for phylogenetic signals:

Mean species-level scores of both dominance network metrics -- transitivity and dominance certainty -- showed moderate phylogenetic signals (Table 2). When we repeated the analyses including only free-living groups (27 datasets across 7 species), the results showed a strong phylogenetic signal for dominance metrics (K statistics >>1: Table 2). Grooming metrics appeared to show weak phylogenetic signals, although some metrics (eigenvector distribution, density, clustering coefficient) showed moderate signals among free-living groups only (Table 2). Given the relatively small number of species, our tests of phylogenetic signals lacked statistical power ($\sim 20-35\%$). Yet, results from the randomization significance tests were mostly consistent with our estimations of

the strength of the signals from the K statistic (Table 2). Moreover, they were also robust to phylogenetic branch length variation, with results from the consensus phylogeny being largely consistent with those across a tree 'block' of 10 phylogenetic trees extracted from the *10KTrees* website (Supplementary Table 2). (Q2-4) The effect of dominance metrics, social style, and sociodemographic factors on grooming metrics: Table 3 shows the zero-averaged coefficients and parameter estimates from candidate GLMM sets (dAICc < 4 from the model with the lowest AICc score) shortlisted from the complete model sets for grooming density and clustering coefficient. Our criterion shortlisted 9 models for groom density, and 16 for groom clustering coefficient, and did not include the 'null' or 'random effect only' model which had a dAICc > 7 or higher from the candidate sets (Supplementary Table 8, 9). Model averaged coefficients revealed that group size strongly influenced both grooming density and clustering coefficient in the predicted directions. Specifically, model-averaged coefficients from the shortlisted candidate GLMMs for density and clustering coefficients revealed that larger groups showed less dense, but highly clustered or sub-structured grooming networks in comparison with smaller groups (Table 3A, 3B; Figure 2). Further to the highest effect sizes, group size was also the variable with the highest relative importance in both candidate sets, specifically 100% for groom density and 91% for clustering coefficient (Table 3A, 3B). Living condition was the second most important predictor (50% for both metrics), but its effect was not significant. Neither were the effects of female to male sex ratio, or the interaction between group size and living condition. Finally, neither dominance metrics nor social style scale predicted grooming

429 density or clustering coefficient (Table 3A, 3B). In fact, models including social style as430 a predictor failed to make the candidate set shortlist for groom density.

In contrast to groom density and clustering coefficient, candidate model selection for the complete model sets for grooming centrality indices failed to eliminate the 'null' or 'random effect only' model (Supplementary Tables 4-7). Zero-based model averaging revealed that none of the predictors had a strong effect on these indices (Supplementary Table 10-13).

Discussion:

In group-living animals, SNA has provided novel approaches to assess variation in aspects of social structure. They improve on traditional approaches based on dyadic interactions alone by addressing higher-order social structure and also by accounting for variation in the extents to which individuals choose to interact, remain peripheral, or engage in social avoidance (Sueur, Jacobs, et al., 2011). Here we examined the impact of phylogenetic relatedness, specifically phylogenetic signals and trait co-variation, as well as sociodemographic factors like group size and living condition on interspecific variation in dominance and grooming social network structure across macaques. We found that while dominance networks showed strong phylogenetic signals, grooming networks showed weak signals and further, were not strongly co-variant with social style or with dominance metrics. Rather, some aspects of grooming networks - density and clustering coefficient – were strongly influenced by group size independent of their current living condition. Below we discuss our findings in depth, and offer avenues for future comparative assessments of primate social network structure.

Previous studies among macaques have established strong phylogenetic signals in

some aspects of social structure (e.g. dominance steepness and counter-aggression: (Balasubramaniam et al., 2012a)), but moderate-to-weak signals in others (e.g. kin-bias: (Thierry et al., 2008)). Consistent with this pattern, we found moderate to strong phylogenetic signals for aspects of female dominance networks, but weak signals for grooming networks. Specifically, both transitivity and dominance certainty exhibited degrees of signal that are close to what is expected under a Brownian motion model of evolution (Blomberg et al., 2003). This finding extends earlier findings of strong phylogenetic signals on group-level aspects of dominance structure based on dvadic interactions (e.g. hierarchical steepness, counter-aggression: (Balasubramaniam et al., 2012a)), to broader patterns of triadic motifs (transitivity), and indirect connections that reflect the flow structure of dominance pathways between both interacting and non-interacting individuals (dominance certainty: (Fujii et al., 2013; Fushing et al., 2011); see Methods).

Phylogenetic signals were even stronger when we analyzed only free-living groups of macaques, despite a reduction in sample size from 10 to 7 species (Blomberg et al., 2003). This may be due to the differences in living conditions between groups of closely related species. In captivity, spatial constraints and/or management strategies may force animals to interact that might avoid one another after one or two decided outcomes (Duboscq et al., 2013; McCowan et al., 2008). This may result in greater than expected degrees of reversals in agonistic success and hence, greater uncertainty in dominance relationships. Unfortunately, limited datasets prevented an analysis of phylogenetic signals among captive groups alone (11 out of 38 datasets: 5 species). Nevertheless, the detection of strong phylogenetic signals among free-living macaques (27 out of 38

475	datasets: 7 species) builds on previous studies that have either included both captive and
476	free living groups (Balasubramaniam et al., 2012a) or only captive groups (Sueur, Petit,
477	et al., 2011; Thierry et al., 2008). It is unlikely that the observed signals are 'artifacts' of
478	correlations between phylogeny and current conditions, since previous comparative
479	studies across primates have shown a general lack of correspondence between phylogeny
480	and socioecology (Koenig et al., 2013; Ménard, 2004; Okamoto & Matsumura, 2002).
481	Further, the signals were detected despite the fact that a fraction of the free-living groups
482	in our dataset were exposed to food provisioning by humans (Table 1), although
483	predation pressure, another socioecological factor (van Schaik, 1989), was either very
484	low or absent. This suggests that phylogeny predicts a major component of the variance
485	in dominance structure among free-living macaques, in spite of being exposed to varying
486	socioecological factors such as resource distribution (Sterck et al., 1997; van Schaik,
487	1989). Nevertheless, our findings don't entirely rule out an adaptive component. For
488	instance, the concept of social reaction norms proposes that aspects of social structure
489	may change dynamically by responding to socioecological and environmental factors, but
490	within the limits posed by a species- or lineage-typical range of responses that may be
491	linked to phylogenetic closeness (Berman & Thierry, 2010). Moreover, phylogenetic
492	signals, rather than being linked to ancestral genetic splits, may be outcomes of
493	adaptations by ancestral species dispersing into historically similar environments
494	(Kamilar & Cooper, 2015). We suggest that future assessments of the bases of
495	phylogenetic signals in social network traits focus on phylogeographic approaches
496	(Lemey et al., 2009; Ree & Smith, 2008). A comparison of the reconstructed social
497	networks and geographic ranges of ancestral primate taxa may provide better insights into

American Journal of Primatology

498 whether phylogenetic signals in primate social networks are indeed 'artifacts' of adaptive499 responses in their evolutionary past.

In contrast to dominance metrics, grooming networks showed weak phylogenetic signals and further, did not co-vary with dominance metrics. A possible explanation is that co-variation between social network traits isn't always linear or systematic (but see Thierry et al.'s (2008) findings on co-variation between traits associated with conciliatory tendencies across macaques). Further, it may be discernible at levels of organization other than species, for instance across lineages (Thierry, 2000). Yet the lack of a strong effect of species-typical social style on grooming networks, consistent with the detection of weak phylogenetic signals since social style and phylogeny are correlated (Thierry et al., 2000), may be seen as evidence to refute this argument. A more likely explanation is that grooming metrics may come under the influence of current socioecological and/or sociodemographic factors.

Among all the primate genera, macaques are presently unique in the extent to which interspecific variation in social traits is consistent with phylogeny and social style (Balasubramaniam et al., 2012a; Sueur, Petit, et al., 2011; Thierry et al., 2008; Thierry et al., 2000). Yet we found that group size, and not dominance metrics or species-typical social styles, strongly influenced aspects of grooming networks. Specifically, larger groups of macaques showed more clustered but less dense grooming networks than smaller groups. It is possible that the effect of group size could be an artifact of differences in living condition, since captive groups were significantly smaller than free-living groups (see Methods). Yet grooming metrics were neither strongly influenced by living condition, nor by an interaction between group size and living condition (Table

521	3A, 3B). This suggests that the effect of group size on grooming metrics may more likely
522	have socioecological underpinnings. Specifically, one school of thought is that living in
523	larger groups and/or environments where resources are clumped or seasonal heightens
524	levels of within-group contest competition (or WGC) for resources (Koenig et al., 2013;
525	Sterck et al., 1997; van Schaik, 1989). This may lead to despotic, nepotistic primate
526	societies characterized by both steep and transitive dominance structure (Majolo et al.,
527	2009), and more modular, sparsely connected grooming community structures (Griffin &
528	Nunn, 2012). In comparison, smaller groups may show weaker WGC and the opposite
529	characteristics that are indicative of greater social tolerance. An alternative perspective is
530	that individuals in large groups may also face spatial or time constraints on their abilities
531	to interact consistently with all other group members (Berman & Thierry, 2010; Dunbar,
532	1992; Korstjens et al., 2010). This may in turn result in modular or clustered but sparser
533	social networks in larger groups, in which individuals may come into contact with each
534	other less frequently (Griffin & Nunn, 2012). Given the lack of a clear association
535	between group size and dominance networks in our dataset (Pearson's correlation: Group
536	size vs. transitivity: $n = 38$, $r = -0.08$, $p = 0.61$; group size vs. dominance certainty: $n =$
537	38, $r = 0.02$, $p = 0.88$), our findings point to a spatiotemporal rather than a resource-
538	competition based explanation. Yet final conclusions await the expansion of our dataset
539	to include additional groups and species, and comparable operational measures of
540	resource distribution (see below).
541	Unlike grooming density and clustering coefficient, grooming centralization

541 indices were not influenced by dominance metrics, social style, or sociodemographic
543 factors. This lack of concordance could be because of how these indices were computed.

American Journal of Primatology

Balasubramaniam et al. 24

For instance, the exclusion of males from our grooming networks may have masked skew in grooming centrality towards dominants. In despotic macaques, high-ranking males may be among the most attractive grooming partners for females who may gain benefits such as access to social support and/or resources (Schino, 2001; Silk et al., 2003; Sueur, Petit, et al., 2011). To ensure uniformity across datasets, we computed centrality metrics from unweighted relationships based on all female-female grooming connections. It is possible that rather than their overall connectedness, female dominance status could be related to their degree and/or eigenvector centrality based on *specific types* of grooming connections; for instance grooming connections with non-kin or that are directed up the hierarchy may provide access to rank-related benefits such as resource tolerance and support in conflicts, and/or reciprocally in the short or long-term (reviewed in (Henzi & Barrett, 1999)). Should comparative data be available, such assessments may generate centralization indices that better reflect affiliative social network structure among female primates.

Our findings should lead naturally to future work that assesses the influence of additional socioecological factors on grooming network structure. Yet such assessments may prove complicated. For instance, we currently lack a consistent operational measure of resource abundance and distribution that may be used in comparative contexts across a wide range of taxa (Clutton-Brock & Janson, 2012). Another challenge is assessing the effects of infectious disease risk on social networks. For instance, increased parasite infection risk may select for individuals to engage fewer partners and hence, lead to the evolution of more clustered or modular networks in larger groups (Griffin & Nunn, 2012; Nunn, 2012; Nunn et al., 2015). At the same time, possessing more connections/ social

567	partners also seems to have clearly-documented benefits of socially buffering individuals
568	against infectious risk in some societies via stress mitigation and/or the enhancement of
569	immune function (e.g. free-living Barbary macaques: (Young et al., 2014); captive rhesus
570	macaques: (Balasubramaniam et al., 2016)). The spatial distribution of females may also
571	influence male reproductive tactics, i.e. the extent to which males show reproductive
572	skew by being able to monopolize mating opportunities which may in turn influence
573	female social networks (Schülke & Ostner, 2013). Stemming from this consideration, the
574	'paternal relatedness hypothesis' posits that in species where male reproductive skew is
575	high, the emergence of numerous kinship ties both from maternal and paternal sides will
576	generate denser, less clustered, and decentralized social networks indicative of greater
577	social tolerance, in comparison to species where male reproductive skew is low (Schülke
578	& Ostner, 2008, 2013). Across eight species of macaques, (Schülke & Ostner, 2008)
579	conclude that male reproductive skew co-varies with species-typical social style grade.
580	More definitive conclusions await the ability to draw interspecies links between
581	reproductive skew and female social networks, and indeed male-male social
582	relationships. Finally, comparative studies on intraspecific variation in primate sociality
583	are fewer in comparison to those on interspecific variation (Clutton-Brock & Janson,
584	2012). Thus, future work should attempt to extend the validity of our findings by
585	examining the impact of both epigenetic and socioecological factors on intraspecific
586	variation in dominance and affiliative social network structure.
597	Aaknowladgements

- 587 Acknowledgements:
- 588 We thank C. Young, C. Desportes, L. Marechal, P. Fedurek, J. Micheletta, Y.
 589 Februanti, V. Romano, R. O'Hagan, T. Suzumura, A. Takahashi, E. Polizzi di Sorrentino,

2 3	590	B. Tiddi, M. S. Chaitra, R. Cozzolino, C. Demaria, F. Dessi-Fulgheri, S. Geminiani, M.
4 5		
6 7	591	L. Gong, M. Haque, S. Hardie, C. S. Ionica, K. Jones, N. F. Koyama, M. Li, J. Sloan, R.
8 9	592	Ventura, and L. Zhang for their participation in collecting the datasets used in the study.
10 11	593	We acknowledge Matthew Cooper, Irwin Bernstein, Antje Engelhardt, and Marina
12 13 14	594	Butovskaya for sharing their data. We are grateful to the following personnel:
15 16	595	Muhammad Agil, Mewa Singh, Jinhua Li, Suchinda Malaivijitnond, Yuzuru Hamada,
17 18	596	Mukesh Kumar Chalise, Mohamed Qarro and Ellen Merz, and organizations: the
19 20 21	597	Cooperative Research Program of Kyoto University's Wildlife Research Centre, the
22 23	598	Caribbean Primate Research Center, the Macaca Nigra Project, the Haut Commissariat
24 25	599	aux Eaux et Forêts et à la Lutte Contre la Désertification of Morocco, the Rome Zoo
20 27 28	600	(Bioparco), the Huangshan Monkey Management Centre, and the Barbary Macaque
29 30	601	Project, for facilitating the collection of these datasets. Finally, we wish to thank Dr.
31 32 33	602	Heish Fushing for his input regarding the computation of dominance network metrics.
34 35	603	Authors KNB, BAB and BJM were supported by the University of California at Davis,
36 37	604	the National Institute of Health (NIH: R01-HD068335), and the National Science
38 39 40	605	Foundation (NSF: NSF-V451CNH). The research was approved by the International
41 42	606	Animal Care and Use Committee of the University of California at Davis.
43 44 45	607	References:
45	608	Abegg, C., & Thierry, B. (2002). Macaque evolution and dispersal in insular south-east Asia.
47	609	Biological Journal of the Linnean Society, 75(4), 555-576. doi:10.1046/j.1095-
48	610	8312.2002.00045.x
49	611	Altmann, J. (1974). Observational study of behavior: sampling methods. Behaviour, 49, 227-
50	612	266.
51	613	Arnold, C., Matthews, L. J., & Nunn, C. L. (2010). The <i>10kTrees</i> website: a new online
52 53	614	resource for primate phylogeny. <i>Evolutionary Anthropology</i> , 19, 114-118.
54	615	Balasubramaniam, K. N., Beisner, B. A., Vandeleest, J., Atwill, E. R., & McCowan, B. (2016).
55	616	Social buffering and contact transmission: network connections have beneficial and
56	617	detrimental effects on Shigella infection risk among captive rhesus macaques. PeerJ,
57	618	4:e2630. doi: <u>https://doi.org/10.7717/peerj.2630</u>
58		
59		
60		

3	619	Balasubramaniam, K. N., Dittmar, K., Berman, C. M., Butovskava, M., Cooper, M. A., Majolo, B.,
4	620	de Waal, F. B. M. (2012a). Hierarchical steepness and phylogenetic models:
5	621	phylogenetic signals in <i>Macaca</i> . Animal Behaviour, 83, 1207-1218.
0 7	622	Balasubramaniam, K. N., Dittmar, K., Berman, C. M., Butovskava, M., Cooper, M. A., Majolo, B.,
7 8	623	De Waal, F. B. M. (2012b). Hierarchical steepness, counter-aggression, and
9	624	macaque social style scale. <i>American Journal of Primatology</i> , 74, 915-925.
10	625	Barton, R. A., Bryne, R. W., & Whiten, A. (1996). Ecology, feeding competition and social
11	626	structure in baboons. <i>Behavioral Ecology and Sociobiology</i> . 38, 321-329.
12	627	Bates, D., Maechler, M., Bolker, B., Walker, S., Christensen, R. H. B., Singmann, H.,, Green, P.
13	628	(2016). Linear mixed-effects models using 'eigen' and S4. Retrieved from
14	629	https://github.com/lme4/lme4/ http://lme4.r-forge.r-project.org/
15	630	Berman, C. M., & Thierry, B. (2010). Variation in kin bias: species differences and time
16 17	631	constraints in macaques. 147(13), 1863-1887. doi:doi:10.1163/000579510X539691
17 19	632	Bernstein, I. S. (1976). Dominance, aggression and reproduction in primate societies. <i>I.</i>
19	633	Theor. Biol., 60, 459-472.
20	634	Blomberg, S. P., & Garland, T. (2002). Tempo and mode in evolution: phylogenetic inertia.
21	635	adaptation, and comparative methods. <i>Journal of Evolutionary Biology</i> , 15, 899-910.
22	636	Blomberg, S. P., Garland, T., & Ives, A. (2003), Testing for Phylogenetic Signal in Comparative
23	637	Data: Behavioral Traits are more Labile. <i>Evolution</i> . 57, 717-745.
24	638	Boinski, S. (1999). The social organizations of squirrel monkeys: implications for ecological
25	639	models of social evolution. <i>Evolutionary Anthropology</i> , 8, 101-112.
26	640	Burnham, K. P., & Anderson, D. R. (2002). <i>Model Selection and Multimodel Inference: A</i>
27	641	Practical Information-Theoretic Approach, 2nd edn. Berlin: Springer.
20 20	642	Burnham, K. P., Anderson, D. R., & Huyvaert, K. P. (2011). AIC model selection and
30	643	multimodel inference in behavioral ecology: some background, observations, and
31	644	comparisons. <i>Behavioral Ecology and Sociobiology</i> , 65, 23-35.
32	645	Castles, D. L., Aureli, F., & de Waal, F. B. M. (1996). Variation in conciliatory tendency and
33	646	relationship quality across groups of pigtailed macaques. <i>Animal Behaviour</i> , 52, 389-
34	647	403.
35	648	Chan, L. K. W. (1996). Phylogenetic interpretations of primate socioecology: with special
36	649	reference to social and ecological diversity in Macaca. In E. P. Martins (Ed.).
37	650	Phylogenies and the Comparative Method in Animal Behaviour (pp. 324-360). Oxford:
30	651	Oxford University Press.
40	652	Chatterjee, H. J., Ho, S. Y. W., Barnes, I., & Groves, C. (2009). Estimating the Phylogeny and
41	653	Divergence Times of Primates Using a Supermatrix Approach. BMC Evol. Biol., 9.
42	654	259-277.
43	655	Clutton-Brock, T. H., & Janson, C. H. (2012). Primate socioecology at the crossroads: past,
44	656	present, and future. <i>Evolutionary Anthropology</i> , 21, 136-150.
45	657	doi:10.1002/evan.21316
46	658	Cords, M. (2013). The behavior, ecology, and social evolution of Cercopithecine monkeys. In
47	659	J. C. Mitani, J. Call, P. M. Kappeler, R. A. Palombit, & J. B. Silk (Eds.), <i>The Evolution of</i>
40 70	660	Primate Societies (pp. 91-112). Chicago and London: The University of Chicago
50	661	Press.
51	662	Csardi, G., & Nepusz, T. (2006). The igraph software package for complex network research,
52	663	Interjournal.
53	664	de Vries, H. (1998). Finding a dominance order most consistent with a linear hierarchy: a
54	665	new procedure and review. Animal Behaviour, 55, 827-843.
55	666	de Vries, H., Stevens, J. M. G., & Vervaecke, H. (2006). Measuring and testing the steepness of
56 57	667	dominance hierarchies. Animal Behaviour, 71, 585-592.
5/ 59		
59		
60		

1		DalaSubi allialiali et al. 20
2		
3	668	de Waal F B M & Luttrell L M (1989) Towards a Comparative Ecology of the Cenus
4	669	Macaca: Different Dominance Styles in Phasus and Stymptrailed Macaques Am L of
5	670	Drimatel 10.92.100
6	070	Prinnului, 19, 05-109.
7	6/1	Duboscq, J., Micheletta, J., Agii, M., Hodges, K., Thierry, B., & Engelhardt, A. (2013). Social
8	6/2	tolerance in wild female crested macaques (<i>Macaca nigra</i>) in Tangkoko-Batuangus
9	673	nature reserve, Sulawesi, Indonesia. <i>Am. J. Primatol., 75</i> , 361-375.
10	674	Dunbar, R. I. M. (1992). Time: a hidden constraint on the behavioural ecology of baboons.
11	675	Behavioral Ecology and Sociobiology, 31, 35-49.
12	676	Farine, D. R., & Whitehead, H. (2015). Constructing, conducting and interpreting animal
13	677	social network analysis. Journal of Animal Ecology, 84, 1144-1163.
14	678	Fox, J., & Weisberg, S. (2011). An R Companion to Applied Regression. Sage: Second Edition.
15	679	Fujii, K., Fushing, H., Beisner, B. A., & McCowan, B. (2013). Computing power structures in
10	680	directed biosocial networks: flow percolation and imputed conductance. <i>Technical</i>
10	681	Report Department of Statistics IIC Davis
10	682	Fushing H McAssey M P Beisner B & McCowan B (2011) Banking network of a cantive
20	683	rhesus macaque society: a sonhisticated cornorative kingdom PLoS ONF 6 e17817
20	684	Cammoll M P. do Vrice H. Jonnings D J. Carlin C M. & Haydon T J. (2002) David's Scores
22	605	A More Appropriate Dominance Deplying Method then Clutter Breek et al 'a Index.
23	600	A more Appropriate Dominance Kanking Method than Clutton-Drock et al. S muex.
24	000	Animai Benaviour, 66, 601-605.
25	687	Gelman, A., Su, Y. S., Yajima, M., Hill, J., Pittau, M. G., & Kerm, J. (2009). arm: data analysis
26	688	using regression and multilevel/hierarchical models. <i>R package, version 9.01</i> .
27	689	Griffin, R. H., & Nunn, C. L. (2012). Community structure and the spread of infectious disease
28	690	in primate social networks. <i>Evolutionary Ecology, 26</i> (4), 779-800.
29	691	doi:10.1007/s10682-011-9526-2
30	692	Grueber, C. E., Nakagawa, S., Laws, R. J., & Jamieson, I. G. (2011). Multimodel inference in
31	693	ecology and evolution: challenges and solutions. Journal of Evolutionary Biology, 24,
32	694	699-711.
33	695	Handcock, M., Hunter, D., Butts, C., Goodreau, S., & Morri`s, M. (2006). Statnet: An R package
34	696	for the statistical analysis and simulation of social networks. University of
35	697	Washington: http://www.csde.washington.edu/statnet.
36	698	Henzi, S. P., & Barrett, L. (1999). The value of grooming to female primates. <i>Primates</i> , 40(1).
37	699	47-59
38	700	Henzi S P & Barrett I. (2003) Evolutionary ecology sexual conflict and behavioral
39	700	differentiation among baboon populations. Evolutionary Anthropology 12, 217-230
40	701	Hinda D. A. (1076). Interactions, Bolationships and Social Structure Man. 11, 1, 17
41 42	702	Kamilan I. 8 Cooper N. (2015). Dhylogonetic signal in primate hebryiour coolegy and life
43	703	history Dhiles Trans D. Cos D. 200 20120241
40	704	$\begin{array}{c} \text{Instory. Philos. Irans. R. Soc. B., 368, 20120341.} \\ \text{Instory. Philos. Irans. R. Soc. B., 368, 20120341.} \end{array}$
45	705	Kappeler, P. M., & Van Schaik, C. P. (2002). Evolution of Primate Social Systems. <i>Int. J. of</i>
46	/06	Primatol., 23, 707-740.
47	707	Kasper, C., & Voelkl, B. (2009). A social network analysis of primate groups. <i>Primates, 50</i> ,
48	708	343-256.
49	709	Koenig, A., Scarry, C. J., Wheeler, B. C., & Borries, C. (2013). Variation in grouping patterns,
50	710	mating systems and social structure: what socio-ecological models attempt to
51	711	explain. Philosophical Transactions of the Royal Society B-Biological Sciences, 368,
52	712	20120348. doi:10.1098/rstb.2012.0348
53	713	Korstjens, A. H., Lehmann, J., & Dunbar, R. I. M. (2010). Resting time as an ecological
54	714	constraint on primate biogeography. Animal Behaviour, 79(2), 361-374.
55	715	doi:http://dx.doi.org/10.1016/j.anbehav.2009.11.012
56	716	Lemey, P., Rambaut, A., Drummond, A. I., & Suchard, M. A. (2009). Bayesian Phylogeography
57	717	Finds Its Roots, <i>PLoS Comp Biol.</i> 5(9), e1000520, doi:10.1371/journal.ncbi.1000520
58	, 1,	
59		
00		

2		
3	718	Maiolo B. Ventura B. Kovama N. F. Hardie S. M. Jones B. M. Knapp I. A. & Schino G.
4	710	(2000) Analyzing the Effects of Group Size and Food Compatition on Japanese
5	719	Magague Social Polotionshing, <i>Pologicur, 146</i> , 112, 127
6	720	Macaque Social Relationships. <i>Benaviour</i> , 140, 115-157.
7	/21	Matsumura, S. (1999). The evolution of egalitarian and despotic social systems among
8	722	macaques. Primates, 40, 23-31.
9	723	McCowan, B., Anderson, K., Heagarty, A., & Cameron, A. (2008). Utility of social network
10	724	analysis for primate behavioral management and well-being. Applied Animal
11	725	<i>Behaviour Science, 109,</i> 396-405. doi:10.1016/j.applanim.2007.02.009
12	726	Ménard, N. (2004). Do ecological factors explain variation in social organization? . In B.
13	727	Thierry, M. Singh, & W. Kaumanns (Eds.). <i>Macague Societies: a Model for the Study of</i>
14	728	Social Organization (nn. 157-185). Cambridge: Cambridge University Press
15	729	Nakagawa S. & Fracklaton R. P. (2010). Model averaging missing data and multiple
16	720	imputation, a gase study for behavioural coology. Debavioral Ecology and
17	730	iniputation: a case study for benavioural ecology. <i>Benavioral Ecology and</i>
18	/31	<i>Sociobiology</i> , 65, 103-116.
19	/32	Nunn, C. L. (2011). The Comparative Approach in Evolutionary Anthropology and Biology.
20	733	Chicago: Univ of Chicago Press.
21	734	Nunn, C. L. (2012). Primate disease ecology in comparative and theoretical perspective.
22	735	American Journal of Primatology, 74(6), 497-509. doi:10.1002/ajp.21986
23	736	Nunn, C. L., Jordan, F., McCabe, C. M., Verdolin, J. L., & Fewell, J. H. (2015). Infectious disease
24	737	and group size: more than just a numbers game. <i>Philos. Trans. R. Soc. B.</i> , 370.
25	738	20140111
26	739	Okamoto K & Matsumura S (2002) Intergroup encounters in wild moor macaques
27	740	(Macaca maurus) Primatos 43 119-125
28	740	Occi L & Kamilar I M (2006) Environmental and phylogenetic correlator of Eulemur
29	741	Ussi, J., & Kannar, J. M. (2006). Environmental and phylogenetic correlates of Euleniur
30	742	benavior and ecology (Primates: Lemuridae). Benavioral Ecology and Sociobiology,
31	/43	61, 53-64.
32	744	Pagel, M. (1997). Inferring evolutionary processes from phylogenies. <i>Zool. Scripta, 26</i> , 331-
33	745	348. doi:10.1111/j.1463-6409.1997.tb00423.x
34	746	Pagel, M. (1999). Inferring the historical patterns of biological evolution. <i>Nature, 401</i> , 877-
30	747	884. doi:10.1038/44766
30 07	748	Pasquaretta, C., Levé, M., Claidière, N., van de Waal, E., Whiten, A., MacIntosh, A. J. J.,
37 20	749	Sueur, C. (2014). Social networks in primates: smart and tolerant species have more
30 20	750	efficient networks. Scientific Reports 4, 7600, doi:10.1038/srep07600
39 40	751	Petit O Abegg C & Thierry B (1997) A Comparative Study of Aggression and Conciliation
40	752	in Three Corconothesine Monkows (Masaca fuscata, Masaca niara and Panio nanio)
41	752	Dehaviour 124 415 422
42	755	Denaviour, 134, 415-452.
40	/34	Ree, R. H., & Smith, S. A. (2008). Maximum likelihood interence of geographic range
45	/55	evolution by dispersal, local extinction, and cladogenesis. Systematic Biology, 51, 4-
46	756	14. doi:10.1080/10635150701883881
40	757	Revell, L. J. (2012). phytools: An R package for phylogenetic comparative biology (and other
48	758	things). <i>Methods Ecol. Evol., 3</i> , 217-233. doi:10.1111/j.2041-210X.2011.00169.x
49	759	Romano, V., Duboscq, J., Sarabian, C., Thomas, E., Sueur, C., & MacIntosh, A. J. J. (2016).
50	760	Modeling infection transmission in primate networks to predict centrality-based
51	761	risk. American Journal of Primatology. 78, 767-779.
52	762	Schino, G. (2001), Grooming, competition and social rank among female primates; a meta-
53	763	analysis Animal Rehaviour 62 265-271
54	761	Schülke O. & Ostner I (2008) Male reproductive skow paternal relatedness and female
55	765	social relationships Am L of Drimatel 70 60E 600 doi:10.1002/siz 20EAC
56	105	social relationships. Ani. J. OJ Frinkulol., 70, 035-030. U01:10.1002/ajp.20540
57		
58		
59		
60		

1		Dalasubi allallalli et al. 50
2		
3	766	Schülke 0 & Ostner I (2013) Ecological and social influences on sociality <i>The Evolution of</i>
4	767	Drimate Societies (nn. 195-210), Chicago and London: The University of Chicago
5	760	Droce
6	700	
7	/69	Silk, J. B., Alberts, S. C., & Altmann, J. (2003). Social bonds of female baboons enhance infant
8	770	survival. <i>Science, 302</i> , 1231-1234.
9	771	Sterck, E. H. M., Watts, D. P., & van Schaik, C. P. (1997). The evolution of female social
10	772	relationships in non-human primates. Behavioral Ecology and Sociobiology, 41, 291-
11	773	309.
12	774	Sueur, C., Jacobs, A., Amblard, F., Petit, O., & King, A. J. (2011), How can social network
13	775	analysis improve the study of primate behavior? <i>American Journal of Primatology</i>
14	776	73 703-719
15	777	Sucur C. Datit O. Da Marca A. Jacoba A. T. Watanaha K. & Thiarry P. (2011) A
16	770	Sueur, C., Petri, O., De Marco, A., Jacobs, A. T., Watanabe, K., & Thierry, D. (2011). A
17	//8	comparative network analysis of social style in macaques. Animal Benaviour, 82(4),
18	//9	845-852. doi:10.1016/j.anbehav.2011.07.020
19	780	Thierry, B. (2000). Covariation of conflict management patterns across macaque species. In
20	781	F. Aureli & F. B. <mark>M. de</mark> Waal (Eds.), <i>In: Natural Conflict Resolution</i> (pp. 106-128).
21	782	Berkley, CA: University of California Press.
22	783	Thierry, B. (2004). Social Epigenesis. In B. Thierry, M. Singh, & W. Kaumanns (Eds.),
23	784	Macaque Societies: A Model for the Study of Social Organization (pp. 267-290).
24	785	Cambridge: Cambridge University Press
25	786	Thierry B (2007) Unity in diversity: lessons from macaque societies <i>Evolutionary</i>
26	787	Anthronology 16, 224-228, doi:10.1002/oven.20147
27	707	Thiorry P. Auroli F. Nunn C. I. Datit O. Abaga C. & do Waal F. P. M. (2009) A
28	700	Componentius Study of Conflict Desolution in Messagues, Insights into the Nature of
29	709	Comparative Study of Connect Resolution in Macaques: Insights into the Nature of
30	790	Covariation. Animal Benaviour, 75, 847-860.
31	791	Thierry, B., Iwaniuk, A. N., & Pellis, S. M. (2000). The influence of phylogeny on the social
32	792	behaviour of macaques (primates: cercopithecidae, genus <i>Macaca</i>). <i>Ethology, 106,</i>
33	793	713-728.
34 25	794	Tosi, A. J., Morales, J. C., & Melnick, D. J. (2003). Paternal, Maternal, and Biparental Molecular
36	795	Markers Provide Unique Windows onto the Evolutionary History of Macaque
37	796	Monkeys. <i>Evolution, 57</i> , 1419-1435.
38	797	van Schaik, C. P. (1989). The ecology of social relationships amongst female primates. In V.
30	798	Standen & R. A. Foley (Eds.), <i>Comparative Socioecology</i> (pp. 195-218): Blackwell
40	799	Scientific. Oxford.
41	800	VanderWaal, K. L., Atwill, E. R., Hooper, S., Buckle, K., & McCowan, B. (2013). Network
42	801	structure and prevalence of Cryptosporidium in Belding's ground squirrels
43	802	Rehavioral Ecology and Sociobiology 67(12) 1051-1050 doi:10.1007/s00265-012-
44	Q02 Q02	
45	003	1002-X Young C. Maiala D. Haistarmann M. Sahülla O. 8 Octuar I. (2014). Basmanasa ta sasial
46	004	Young, C., Majolo, B., Heistermann, M., Schuike, O., & Osther, J. (2014). Responses to social
47	805	and environmental stress are attenuated by strong male bonds in wild macaques.
48	806	<i>PNAS, 111</i> , 18195-18200.
49	807	
50	808	
51	809	
52	810	
53	Q11	
54	011	
55	012	
56	813	
57	814	
58		
59		
60		

815 Table 1: Macaque datasets analyzed in the study

<u>Group</u> ID	<u>Species</u> (Macaca)	<u>Social</u> <u>Style</u>	<u>Study</u> Location	Source or Citation	<u>Group</u> <u>Size</u>	<u>Adult</u> Females	<u>Living</u> Condition ^b
1	fuscata ^a	1	Yakushima, Japan	Ventura et al. (2006)	25	8	Free-living
2	fuscata ^a	1	Yakushima, Japan	Ventura et al. (2006)	50	21	Free-living
3	fuscata	1	Koshima, Japan	Duboscq et al. (2016); Romano et al. (2016)	45	21	Free-living
4	fuscata	1	Koshima, Japan	Duboscq et al. (2016); Romano et al. (2016)	45	20	Free-living
5	fuscata	1	Koshima, Japan	Duboscq et al. (2016); Romano et al. (2016)	45	20	Free-living
6	fuscata	1	Rome Zoo, Italy	Schino et al. (2007)	57	23	Captive
7	fuscata	1	Rome Zoo, Italy	Schino et al. (2007)	57	23	Captive
8	fuscata	1	Paris Zoo, France	Petit et al. (1997)	22-24	9	Captive
9	mulatta	1	University of Cambridge, Madingley, UK	Desportes & Thierry (unpub)	16	7	Captive
10	mulatta	1	Cayo Santiago, Puerto Rico	Balasubramaniam et al. (2014)	135	30	Free-living ^c
11	mulatta	1	Cayo Santiago, Puerto Rico	Balasubramaniam et al. (2014)	33	10	Free-living ^c
12	mulatta ^a	1	Yerkes Primate Center, USA	de Waal & Luttrell (1989)	51-62	13	Captive
13	assamensis	2	Tukreshwari Temple, Assam, India	Cooper & Bernstein (2008)	28	14	Free-living ^c
14	assamensis	2	Tham Pla Temple, Thailand	Ogawa (unpub)	47	14	Free-living ^c
15	assamensis	2	Shivapuri Nagarjun National Park, Nepal	Ogawa & Koirala (<i>unpub</i>)	25	8	Free-living
16	fascicularis	2	Primatological Station, Kassel University, Germany	Butovskaya et al. (1995)	9	7	Captive
17	fascicularis	2	Primatological Station, Kassel University, Germany	Butovskaya et al. (1995)	13	9	Captive
18	thibetana	2	Mt. Huangshan, China	Balasubramaniam et al. (2011)	39	8	Free-living ^c
19	thibetana	2	Mt. Huangshan, China	Balasubramaniam et al. (2011)	42	9	Free-living ^c
20	thibetana	2	Mt. Huangshan, China	Balasubramaniam et al. (2011)	42	9	Free-living ^c
21	thibetana	2	Mt. Huangshan, China	Balasubramaniam et al. (2011)	52	10	Free-living ^c
22	thibetana	2	Mt. Huangshan, China	Balasubramaniam et al. (2011)	49	10	Free-living ^c

Balasubramaniam et al. 32

23	thibetana	2	Mt. Huangshan, China	Balasubramaniam et al. (2011)	37	10	Free-living ^c
24	arctoides ^a	3	Yerkes Primate Center, USA	de Waal & Luttrell (1989)	14	12	Captive
25	radiata	3	Mysore, India	Cooper et al. (2007)	41-49	13	Free-living ^c
26	sylvanus	3	Middle Atlas Mountains, Morocco	McFarland & Majolo (2011)	19	8	Free-living
27	sylvanus	3	Middle Atlas Mountains, Morocco	McFarland & Majolo (2011)	29	10	Free-living
28	sylvanus	3	Middle Atlas Mountains, Morocco	Molesti & Majolo (2013)	18	7	Free-living
29	sylvanus	3	Rocamadour, France	Sosa (2014)	55	24	Free-living ^c
30	sylvanus	3	Rocamadour, France	Sosa (2014)	55	24	Free-living ^c
31	sylvanus	3	Rocamadour, France	Sosa (2014)	55	24	Free-living ^c
32	nigra	4	Tangkoko Reserve, Indonesia	Duboscq et al. (2013)	50	18	Free-living
33	nigra	4	Tangkoko Reserve, Indonesia	Duboscq et al. (2013)	80	21	Free-living
34	nigra	4	Tangkoko Reserve, Indonesia	Duboscq et al. (2013)	80	21	Free-living
35	nigra	4	Tangkoko Reserve, Indonesia	Duboscq et al. (2013)	80	24	Free-living
36	tonkeana	4	Primatology Center, Strasbourg, France	Thierry (1985); Demaria & Thierry (2001)	16	9	Captive
37	tonkeana	4	Orangerie Zoo, Strasbourg, France	De Marco et al. (2010)	21	7	Captive
38	tonkeana	4	Primatology Center, Strasbourg, France	Thierry (1985); Demaria & Thierry (2001)	29	11	Captive
317 318 319 320 321 322 323 324 325 326 327	^a Groups exclud availability of da ^b Criteria for des unfenced area on ^c Free-living gro Codes for Socia Tolerant	ed from c ata, or (b) iignation o utside of t ups that v l Style (T)	omputation and analyses of groomi too few (< 7) individuals of group's living-condition: Free-liv heir natural geographic distribution vere regularly food-provisioned by hierry, 2007): (1) Highly Despotic,	ng network metrics on accoun ving: within their natural geogu y; Captive: housed within a fen humans (2) Mildly Despotic, (3) Mildl	t of either raphic dist iced enclos	(a) non- tribution, o sure t, (4) High	r an ly
828							

American Journal of Primatology

829 Table 2: Results of tests for phylogenetic signals among macaque dominance and

830 grooming social Network metrics. K: Blomberg's Kappa coefficient; P: significance

831 from Randomization tests (Blomberg et al. 2003)

Behavioral Metric	All Datas	sets $(n = 10)$	Only Dataset living Group	$\frac{1}{1} s \text{ of Free-}{1} s (n = 7)$
	K	Р	Κ	Р
	<u>Dominan</u>	ce Metrics		
Transitivity	0.892	0.081	1.704	0.022*
Dominance Certainty	0.893	0.078	1.634	0.023*
Gi	rooming Ne	etwork Metrics		
Degree Coefficient	0.689	0.200	0.625	0.283
Eigenvector Coefficient	0.654	0.205	0.722	0.238
Degree Distribution	0.367	0.673	0.396	0.523
Eigenvector Distribution	0.364	0.716	0.837	0.111
Density	0.691	0.183	0.846	0.120
Clustering Coefficient	0.406	0.567	0.836	0.165
Modularity	0.448	0.533	0.605	0.323

Bold font: K values (> 1) indicate strong phylogenetic signals

834 * P < 0.05; (*) 0.05 < P < 0.1

Phylogenetic tree used was the Bayesian MCMC consensus tree from the 10ktrees website (Arnold et al. 2010)

6

Table 3: Summary of zero-averaged coefficients of the predictors from the

candidate models (dAICc < 4 from the model with the lowest AICc score) for (A)

groom density and (B) groom clustering coefficient.

842	(A)						
040			<u>B</u> ^a	<u>Adj SE</u>	<u>Z</u>	<u>Pr (> z)</u>	<u>Importance</u>
843		(Intercept)	0.03	0.18	0.16	0.87	
844		Group Size	-0.63	0.16	3.84	<0.01**	1
845		Living Condition (Captive vs Free-living)	-0.32	0.36	0.87	0.38	0.55
246		Dominance Certainty	0.16	0.27	0.57	0.57	0.3
540		Sex Ratio	-0.02	0.10	0.21	0.84	0.13
47		Living Condition* Group Size	0.01	0.10	0.07	0.95	0.05
848		Transitivity	0.00	0.04	0.08	0.93	0.04
349							
250	(D)						
550	(D)		B	Adj SE	<u>Z</u>	<u>Pr (> z)</u>	Importance
51 52		(Intercept)	-1.67	0.27	6.12	<2e-16***	
53 154		Group Size	0.62	0.32	1.94	0.05*	0.91
55 56 57		Living Condition (Captive vs Free living)	0.40	0.54	0.73	0.46	0.5
		Social Style	0.21	0.40	0.54	0.59	0.36
58 59 60		(Grade 1 vs Grade 2)					
58 59 60 61 62 63		(Grade 1 vs Grade 2) Social Style (Grade 1 vs Grade 3)	0.14	0.41	0.33	0.74	
58 59 61 62 63 64 65 66		(Grade 1 vs Grade 2) Social Style (Grade 1 vs Grade 3) Social Style (Grade 1 vs Grade 4)	0.14 -0.35	0.41 0.60	0.33 0.59	0.74 0.55	
58 59 60 661 662 663 665 665 666 667		(Grade 1 vs Grade 2) Social Style (Grade 1 vs Grade 3) Social Style (Grade 1 vs Grade 4) Dominance Certainty	0.14 -0.35 -0.22	0.41 0.60 0.44	0.33 0.59 0.51	0.74 0.55 0.61	0.3
58 59 661 662 663 665 666 669 669 671		(Grade 1 vs Grade 2) Social Style (Grade 1 vs Grade 3) Social Style (Grade 1 vs Grade 4) Dominance Certainty Living Condition* Group Size	0.14 -0.35 -0.22 -0.02	0.41 0.60 0.44 0.20	0.33 0.59 0.51 0.10	0.74 0.55 0.61 0.92	0.3 0.06
358 359 360 361 362 363 364 365 366 366 366 366 366 366 370 371 272		(Grade 1 vs Grade 2) Social Style (Grade 1 vs Grade 3) Social Style (Grade 1 vs Grade 4) Dominance Certainty Living Condition* Group Size Sex Ratio	0.14 -0.35 -0.22 -0.02 0.00	0.41 0.60 0.44 0.20 0.13	0.33 0.59 0.51 0.10 0.00	0.74 0.55 0.61 0.92 1.00	0.3 0.06 0.1

** p < 0.01

Data are based on 34 groups representing 9 species of macaques

(Balasubramaniam et al. 2014; n = 29 individuals), and a (B) Sulawesi crested macaque
(*M. nigra*) (Duboscq et al. 2013; n = 19 individuals) group. Circles represent individual
adult females, and lines connecting them represent unweighted edges of grooming

887 relationships between females

891 macaque datasets representing 9 species

1	
2	
3	• We examined the evolutionary bases for variation in macaque social networks
4	• We examined the evolutionary bases for variation in indeaque social networks
5	
6	 Dominance networks showed phylogenetic signals, but grooming networks were
7	
8	linked to group size
9	linked to group size
10	
11	• Social networks may be influenced by both ancestry and socioecology
10	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
20	
2 4 25	
20	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
20	
30	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
50	
52	
00 F 4	
54 5-5	
55	
56	
57	
58	
59	
60	
	John Wiley & Sons

177x177mm (150 x 150 DPI)

John Wiley & Sons

John Wiley & Sons

177x177mm (150 x 150 DPI)

135x120mm (150 x 150 DPI)