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ABSTRACT 24 

In the face of climate change there is an urgent need to understand how animal performance is 25 

affected by environmental conditions. Biophysical models that use principles of heat and mass 26 

transfer can be used to explore how an animal’s morphology, physiology, and behavior interact 27 

with its environment in terms of energy, mass and water balances to affect fitness and 28 

performance. We used Niche Mapper™ (NM) to build a vervet monkey (Chlorocebus 29 

pygerythrus) biophysical model and tested the model’s ability to predict core body temperature 30 

(Tb) variation and thermal stress against Tb and behavioral data collected from wild vervets in 31 

South Africa. The mean observed Tb in both males and females was within 0.5°C of NM’s 32 

predicted Tbs for 91% of hours over the five-year study period. This is the first time that NM’s 33 

Tb predictions have been validated against field data from a wild endotherm. Overall, these 34 

results provide confidence that NM can accurately predict thermal stress and can be used to 35 

provide insight into the thermoregulatory consequences of morphological (e.g., body size, shape, 36 

fur depth), physiological (e.g. Tb plasticity) and behavioral (e.g., huddling, resting, shade 37 

seeking) adaptations. Such an approach allows users to test hypotheses about how animals adapt 38 

to thermoregulatory challenges and make informed predictions about potential responses to 39 

environmental change such as climate change or habitat conversion. Importantly, NM’s animal 40 

submodel is a general model that can be adapted to other species, requiring only basic 41 

information on an animal’s morphology, physiology and behavior. 42 
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1. INTRODUCTION 47 

Given the threat that global climate change poses to biodiversity (Pacifici et al. 2015, Urban et 48 

al. 2016) there is a pressing need to understand the fitness consequences of environmental 49 

changes from a physiological perspective (Fuller 2010). Endotherms employ a range of 50 

adaptations to cope with environmental challenges, and when unable to maintain their optimal 51 

body temperature range, animals can experience reduced cellular efficiency and fitness 52 

(Seebacher and Little 2017, Maloney et al. 2017). Homeothermy – maintaining a body 53 

temperature within a relatively narrow range despite environmental temperature variation – is 54 

achieved through a combination of physiological (autonomic) and behavioral processes. 55 

Physiological processes can be costly in terms of energy expenditure through increased 56 

metabolic heat production and water loss through evaporative cooling (Fuller et al. 2016, 57 

Levesque et al. 2016). To reduce the physiological costs of thermoregulation, individuals can 58 

also engage in behaviors that influence heat exchange with the environment, including changing 59 

activity patterns, postural adjustments or selecting thermally-advantageous microclimates 60 

(Speakman and Krol 2010, Huey et al. 2012, McFarland et al. 2015, Mason et al. 2017, 61 

McFarland et al. 2019, 2020). Behavioral thermoregulation, however, may take place at the 62 

expense of other behaviors critical to survival (e.g., feeding, drinking, traveling, and social 63 

activity; McFarland et al. 2014, Dunbar et al. 2009).  64 

Thermoregulatory mechanisms require time and resources that could otherwise be used 65 

for growth and reproduction. Therefore, fitness-related activities are essentially traded and 66 

prioritized according to social, ecological, and environmental factors. The fundamental challenge 67 

for an endotherm is to balance these activities—and their associated costs—without operating in 68 

a long-term negative energy or water balance. Species distributions are thought to be determined 69 
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by sublethal impacts of thermal stress on performance rather than physiological thresholds for 70 

direct temperature-related mortality (Buckley et al. 2012, Evans et al. 2015). Thus, being able to 71 

predict consequences of thermal stress can provide valuable insight into understanding current 72 

distributions and potential responses to climate change.  73 

The most common approach to modeling species’ distributions involves statistically 74 

relating a species’ occurrence locations with environmental predictors such as climate and land 75 

cover (Elith and Leathwick 2009). The resulting n-dimensional space that represents the range of 76 

environmental conditions at known presence locations is considered the animal’s bioclimatic 77 

“envelope”. These envelopes are then projected onto future climate scenarios to predict changes 78 

in distribution (Hijmans and Graham 2006). Taking a correlative approach to distribution 79 

modeling, however, provides little insight into how environmental predictors limit distributions, 80 

since the limiting processes remain implicit in the correlations (Dormann et al, 2012, Evans et al. 81 

2015). Correlative approaches also require extrapolation into novel environments, such as those 82 

created by climate change, increasing the risk of erroneous predictions (Buckley and Kingsolver 83 

2012, Pacifici et al. 2015). In contrast, mechanistic models explicitly model the processes 84 

thought to limit a species’ distribution. By explicitly modeling the processes, predicted 85 

distributions are based entirely on the model’s predictions of where survival is possible, 86 

independent of observed distributions. Mechanistic models are therefore more informative than 87 

correlative models and can be applied to novel conditions without extrapolation (for 88 

comprehensive comparisons of correlative and mechanistic approaches, see Kearney and Porter 89 

2009, Buckley et al. 2010).  90 

One mechanistic approach to understanding distributional limits is the use of biophysical 91 

models, which are based on fundamental principles of heat and mass transfer, and model how an 92 
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animal’s morphology, physiology, and behavior interact with its environment in terms of energy, 93 

dry mass and water balances to affect fitness and performance (Porter and Gates 1969; Kearney 94 

and Porter 2009). A biophysical model can thus be used to quantify thermal stresses incurred by 95 

an animal in any environment. These stresses include increased heat production and food 96 

requirements in response to cold stress, and increased evaporative water loss and/or reduced 97 

activity in response to heat stress. This quantification provides insight into how a species’ 98 

distribution is limited by environmental temperatures (Kearney and Porter 2009). In the context 99 

of climate change, biophysical models can be used to investigate the direct impact of higher 100 

environmental temperatures on an animal’s thermal performance and habitat suitability across 101 

the landscape. By modeling these consequences mechanistically, taking an animal’s specific 102 

characteristics into account, biophysical models can be used to examine how intraspecific 103 

variation in morphological and physiological traits, as well as behavioral responses, might allow 104 

a species to buffer the impacts of climate stress.  105 

Here, we build and test a vervet monkey (Chlorocebus pygerythrus) model with Niche 106 

Mapper (Porter and Mitchell 2006; hereafter, ‘NM’), a biophysical modeling software package. 107 

Local climates impose an important ecological constraint on primate distributions (Korstjens et 108 

al. 2010, Lehmann et al. 2010), so understanding how primates respond to changes in the thermal 109 

environment is essential if we are to assess how climate change will impact species survival in a 110 

taxon that is already facing substantial pressure (Estrada et al. 2017). NM has been used to 111 

accurately predict the energetic requirements and thermal stress as a function of environmental 112 

conditions for a wide variety of animals, including the following mammals: American pika 113 

(Ochotona princeps; Moyer-Horner et al. 2015), Japanese serow (Capricornus crispus; Natori 114 

and Porter 2007), giant panda (Ailuropoda melanoleuca; Zhang et al. 2018), elk (Cervus elaphus; 115 
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Long et al 2014), polar bear (Ursus maritimus; Mathewson and Porter 2013), and koala 116 

(Phascolarctos cinereus; Briscoe et al. 2016). However, to date no study has validated whether 117 

NM accurately predicts body temperatures (Tb) in wild endotherms. Tb is a key driver of NM’s 118 

calculations and thus validation of accurate Tb predictions will provide increased confidence in 119 

NM’s ability to accurately predict energetic requirements and thermal stress in wild 120 

environments.  121 

We aim to provide the first test of NM’s ability to predict core body temperatures (Tb) of 122 

a wild endotherm, the vervet monkey (Chlorocebus pygerythrus). Using a combination of direct 123 

measurements and information obtained from existing literature, we parameterize a vervet 124 

biophysical model. We first assess the vervet model in the controlled environment of a simulated 125 

metabolic chamber by evaluating whether the model predicts a reasonable thermoneutral zone. 126 

Next, we perform a series of sensitivity analyses to illustrate which morphological, physiological 127 

and behavioral inputs have the biggest impact on the model’s predictions of thermoneutral zone, 128 

metabolic heat production, and Tb. Finally, using a set of models parameterized to bracket the 129 

range of behaviors observed in a wild population of vervets, we use NM to make Tb predictions, 130 

and will compare those predictions to measurements taken in situ from the wild population. 131 

Given our multiyear dataset on the Tb, behavior, and local climate of a wild population, we are 132 

uniquely positioned to test NM’s ability to predict a wild endotherm’s thermal response to the 133 

environment. Vervets represent an excellent model to meet this objective, as they experience a 134 

wide temperature range in varied environments (Pasternak et al. 2012; McFarland et al. 2014), 135 

and possess a range of behavioral and thermoregulatory adaptations (McFarland et al. 2015, 136 

2019, 2020). 137 

 138 
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2. METHODS 139 

2.1 Study site, subjects, and wild animal data collection 140 

Between 2012 and 2016, we collected field data from a population of wild vervet monkeys living 141 

on the Samara Private Game Reserve in the Eastern Cape, South Africa (32°22’S, 24°52’E). We 142 

recorded local climate at an onsite weather station (McFarland et al. 2015). This semi-arid region 143 

has a seasonal climate, with hot, wet summers, and cold, dry winters. Annual rainfall is < 144 

400mm, while minimum and maximum air temperatures typically range between -5 and 40ºC 145 

(McFarland et al. 2014).  146 

As part of a long-term study of vervet monkey thermal physiology, we abdominally 147 

implanted 45 vervets with body temperature data loggers that recorded core Tb at five-minute 148 

intervals (mean = 16.4 r 10.6 months/monkey; Table A.1). Vervets were immobilized using 149 

blow darts filled with a combination of midazolam and ketamine, and following recumbence, 150 

were transported to a temporary operating theatre where they were weighed. A qualified 151 

veterinarian administered the appropriate analgesic, anti-inflammatory and antibiotic medication, 152 

and followed standard, ethically-approved, aseptic surgical techniques for the implantation of 153 

data loggers. The vervets were allowed to recover fully in cages before being released back into 154 

their group. Normal behavior resumed on the day after surgery, and no long-term sequelae were 155 

observed as a consequence of surgical intervention, as confirmed by regular behavioral 156 

monitoring by researchers and a veterinarian. See McFarland et al. (2015) for full details of the 157 

implantation procedure. Since NM performs energy balance calculations on an hourly basis (see 158 

section 2.2 below), we calculated the average hourly Tbs for male and female monkeys from the 159 

five-minute observational data, allowing us to directly compare observed Tb and NM’s predicted 160 

Tb. Vervet 24-hour Tb patterns follow a square wave pattern with lower and upper modal Tbs 161 
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(Lubbe et al. 2014). The lower modal Tb for the current study animals (based on 479,530 162 

individual vervet hour Tb measurements) was 37.1°C and the upper modal Tb was 38.6°C (Fig. 163 

A.1a). The modal Tbs were similar between sexes and across seasons (Fig. A.1b). 164 

We collected detailed morphometric data from four males and two females (2015) and 165 

two males (2016) during their respective animal captures. In 2015, we used a tape measure to 166 

measure the length and width of each animal’s head, torso, arms, legs and tails. In 2016, we used 167 

calipers to measure the fur depth and hair length on each of these same body parts, allowing us to 168 

calculate the hair length:fur depth ratios for two subjects. We used vervet pelt reflectance values 169 

measured by McFarland et al. (2016), where trapezoidal integration of each wavelength interval 170 

(5nm between 250-3500nm) was scaled according to the solar energy in that interval to calculate 171 

overall solar reflectivity. We measured hair diameter and density from two pelts (McFarland et 172 

al. 2016) using an ocular calibration grid and micrometer with a light microscope. 173 

All capture and surgical procedures were approved by the University of the 174 

Witwatersrand Animal Ethics Research Committee (Protocols # 2010/41/04 and 2015/04/14B), 175 

and all animals were treated in accordance with international ethical standards. Importantly, 176 

vervets were not exposed to the above surgical procedures for the purpose of the current project. 177 

These Tb data were collected as part of a longitudinal study of vervet monkey thermal 178 

physiology (see, e.g., Lubbe et al. 2012; McFarland et al. 2015, 2019, 2020; Henzi et al. 2017) 179 

and body temperature data collected during the study were opportunistically utilized for the 180 

current study.  181 

 182 

2.2 Modelling Methodology 183 

2.2.1 Niche Mapper - General Description 184 
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NM consists of a microclimate submodel and an animal submodel (Fig. 1). The 185 

microclimate submodel uses hourly interpolation of macroclimate data (maximum and minimum 186 

daily air temperatures, relative humidity, cloud cover, and wind speed), and substrate properties, 187 

vegetative cover, geographic location, topography, and time of year to calculate hourly 188 

environmental profiles from 2m height down to the ground surface using numerical integration 189 

of a one-dimensional finite difference equation in the vertical dimension. The microclimate 190 

submodel also calculates sky temperatures and incoming solar radiation incident on the ground 191 

that is available for absorption by the model animal. Separate environmental profiles are 192 

calculated for full sun and shaded microenvironments (see Fuentes and Porter 2013 for more 193 

details on the microclimate model calculations).  194 

The animal submodel uses morphological, physiological and behavioral information 195 

about the animal along with hourly microclimate submodel outputs (Fig. 1) to iteratively solve 196 

coupled heat and mass balance equations (Porter 2016) to find the metabolic rate needed for the 197 

animal to maintain its Tb, accounting for convective, radiative, evaporative and solar heat fluxes 198 

with its microenvironment for each hour of the day (see Mathewson and Porter 2013 for details 199 

on the heat balance calculations). Animal body parts are modelled as simple shapes (cones, 200 

cylinders, ellipsoids, spheres) with well-understood heat transfer properties that enable surface 201 

temperatures to be calculated based on a given Tb and body part dimensions. NM models heat 202 

flowing from the core to the skin surface, assuming distributed metabolic heat generation 203 

throughout the flesh of each body part. For bare body parts, heat fluxes with the environment are 204 

computed using the calculated skin surface temperatures. For furred body parts, heat is modeled 205 

as traveling through a porous fur layer composed of a matrix of air and keratin via parallel 206 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



conduction and radiative processes before heat exchange with the environment is calculated 207 

(Conley & Porter 1986). 208 

NM solves the animal’s heat balance for each hour of the day. Calculations for each hour 209 

begin by computing the metabolic heat production required for the animal to maintain its starting 210 

Tb (specified by the user, typically an average Tb;) in that hour’s environmental conditions. Other 211 

parameters that are allowed to be modified for thermoregulatory purposes (Fig. 1) also begin 212 

each hour’s calculations at their specified starting value. Thermoregulatory options are engaged 213 

if the required metabolic rate is above or below that hour’s target metabolic rate. Target 214 

metabolic rates are either resting metabolic rate (during hours when animals are assumed to be 215 

inactive) or a multiple of resting metabolic rate to simulate activity (during hours when animals 216 

are assumed to be active). The user specifies whether the model animal is active or inactive 217 

separately for diurnal, crepuscular, and nocturnal hours. Users can supply a species-specific 218 

resting metabolic rate if data are available; otherwise the model estimates resting metabolic rate 219 

using a generic mammalian regression equation based on animal mass (Gordon et al. 1972). 220 

 Behavioral thermoregulatory options of selecting a different microhabitat (e.g., shade 221 

seeking in the heat) or changing posture (e.g., curling/huddling up in the cold) are engaged first, 222 

followed by physiological options. To minimize metabolic heat production above the target 223 

range in cold environmental conditions, animals are allowed to increase pelage depth (to 224 

simulate piloerection), decrease flesh thermal conductivity (to simulate vasoconstriction) and 225 

reduce Tb. To maintain a metabolic rate in a hot environment, animals are allowed to increase 226 

thermal conductivity (to simulate vasodilation), increase Tb, and increase surface area that is wet 227 

(simulating sweating). Thermoregulation will proceed until a heat balance is reached with a 228 

metabolic rate within the target range or until the model has reached the maximum or minimum 229 
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value for the thermoregulatory options (e.g., the maximum or minimum Tb allowed by the user). 230 

If thermoregulatory options are exhausted before a metabolic rate within the user-specified 231 

tolerable error (here, ±2.5%) of the target metabolic rate is reached, the model will return the 232 

metabolic rate closest to the target value that satisfies the heat balance.  233 

 234 

2.2.2 Vervet Animal Model Parameterization 235 

Using the morphometric data described above, we modeled vervets with ellipsoids for the 236 

head and cylinders for all other body parts. Our over-arching objective is to validate NM’s ability 237 

to make accurate predictions of Tb. We use data collected from wild vervets to specify the 238 

model’s starting (i.e., average: 38°C), minimum (36°C) and maximum (41°C) allowable Tb.  239 

These minimum and maximum Tb values are outside the bimodal distribution (37-39°C) of body 240 

temperature observed in this species. Although the starting temperature we define will be the 241 

starting point for NM’s calculation of hourly heat balance, NM’s final Tb prediction is the value 242 

that allows the animal to reach an acceptable heat balance in those conditions; ranging anywhere 243 

between the specified minimum and maximum Tb values. As part of its thermoregulatory loop, 244 

NM can adjust Tb in 0.1°C increments in order to reach an acceptable heat balance (Fig. 1). 245 

Thus, any variation in predicted Tb from the user-supplied starting Tb is due to the model 246 

predicting that a Tb change is needed to either maintain the target metabolic rate (Tb increase) or 247 

avoid additional metabolic heat production (Tb decrease) in that hour’s environmental conditions. 248 

Daily Tb cycling is not programmed into the model. Any predicted Tb cycling is an emergent 249 

property of the hourly environmental conditions interacting with the animal model’s 250 

morphological, physiological, and behavioral traits. 251 

 252 
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2.2.3 Thermoneutral Zone (TNZ) Predictions 253 

Our first objective is an initial evaluation of model performance, investigating whether 254 

the environmental temperatures at which the male and female vervets models, parameterized as 255 

described above in section 2.2.3 to be used in the wild vervet Tb validations, predicts heat or cold 256 

stress (i.e., the upper and lower bound of its predicted TNZ) are reasonable. We define the upper 257 

critical temperature as the air temperature at which model vervets would not be able to maintain 258 

their resting metabolic rate without sweating (sensu Mitchell et al. 2018). We define the lower 259 

critical temperature as the air temperature at which model vervets would need to raise their 260 

metabolic heat production above the resting rate to maintain their Tb. In a real-world setting, air 261 

temperatures combine with ground and sky radiant temperatures, wind, humidity and solar 262 

radiation to create the effective temperature that the animal experiences. To identify the 263 

predicted upper and lower critical temperatures (i.e., the TNZ boundaries) more clearly, we 264 

placed the model animal into a simulated metabolic chamber in which all temperatures (i.e., air, 265 

ground, and sky) were set to the same value and then increased in 1°C increments, with no solar 266 

radiation, relative humidity set to 5%, and wind speeds set to 0.1m s-1. Given our definition of 267 

upper critical temperature, the model vervets were not able to sweat in the metabolic chamber for 268 

the purpose of identifying the predicted thermoneutral zone, since sweating would indicate that it 269 

was already outside the TNZ. For the purposes of the TNZ analysis, we held the Tb constant at 270 

38°C. All other morphological and physiological inputs were as listed in Table 1. Because 271 

experimental studies reporting TNZs rarely report the posture of the animal during the 272 

measurements, we simulated vervets in both a curled posture (simulated by combining the arms, 273 

legs, and torso into a single body part shape for the purposes of modeling heat exchange) and 274 

uncurled posture (all body parts available for heat exchange). 275 
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 276 

2.2.4 Sensitivity analyses 277 

Our second objective is to perform a sensitivity analysis of the vervet model’s 278 

biophysical inputs to examine which inputs have the greatest effect on the NM’s thermal stress 279 

predictions for the vervets. Relevant morphological and physiological NM input values (pelage 280 

properties, body part dimensions, body size, resting metabolic rate, Tb variability) were adjusted 281 

from the value listed in Table 1 to assess how they affected the model’s predicted upper and 282 

lower critical temperatures and whole-body thermal conductivity. Whole-body thermal 283 

conductivity was calculated as the slope of the predicted metabolic rate as a function of air 284 

temperature below the lower critical temperature (W °C-1). All analyses were conducted in a 285 

simulated metabolic chamber, as described in section 2.2.3 with vervets being simulated as being 286 

uncurled (i.e., standing with hands and feet on the ground). For all sensitivity analyses except the 287 

Tb variability analysis, we held the Tb constant at 38°C. 288 

 With three exceptions, when one parameter was being analyzed, all other inputs remained 289 

at their user-supplied values listed in Table 1. First, when analyzing the effect of body size, the 290 

radial and linear dimensions of the body parts were scaled up or down proportionally to ensure 291 

the same body part proportions and densities. Second, when analyzing the effect of body part 292 

linear dimensions, body part radial dimensions were automatically adjusted in or out to ensure 293 

constant body part density (e.g., increasing linear dimensions would result in longer, thinner 294 

body parts). Third, when analyzing the effect of allowable Tb fluctuation, minimum and 295 

maximum Tb were set at either ± 0, 1, 2, or 3°C from the 38°C starting point.  296 

 297 

2.2.5 Testing Niche Mapper’s Ability to Predict Body Temperature in Wild Vervets 298 
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 We simulated wild vervets for the data collection period (2012-2016) and compared Tb 299 

predictions to observed Tb from the wild vervet study population. These simulations allowed us 300 

to test NM’s ability to accurately predict Tb and identify thermally stressful conditions. We used 301 

hourly temperatures recorded at the on-site weather station (placed in an unshaded location: see 302 

Lubbe et al. 2014 for details) to parameterize the microclimate model.  Other microclimate 303 

model inputs are summarized in Table A.3. To bound potential microclimate conditions, we 304 

calculated microclimate conditions at animal height in the full sun (the hottest microclimate 305 

conditions) and in the full shade, with the ability to climb to a height where 2m climate 306 

conditions prevail (i.e., the coolest microclimate conditions). 307 

NM models will always thermoregulate to minimize deviations from the target metabolic 308 

rate (i.e., resting or active) and will behaviorally thermoregulate before physiologically 309 

thermoregulating, thereby minimizing variation in Tb changes from the starting Tb. Thus, user 310 

choice of allowable thermoregulatory options will affect Tb predictions. For example, if vervets 311 

were allowed to seek shade and assume any nighttime posture, NM would immediately attempt 312 

to seek shade when the animal is first heat stressed during the day and start to huddle when first 313 

cold stressed at night before changing its Tb. Furthermore, during any diurnal hour, NM will 314 

always assume the vervet is active unless it is unable to maintain a heat balance at the active 315 

metabolic rate.  316 

A real animal may behave in ways that affect metabolic rate and Tb for reasons unrelated 317 

to thermal stress. Therefore, a single set of model assumptions in terms of habitat choice, activity 318 

level, and posture is not universally applicable, and it would be inappropriate to evaluate NM’s 319 

performance using a single set of model assumptions. Thus, we performed the wild vervet 320 

simulations with a cold animal model and a hot animal model in order to bracket possible 321 
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predicted Tbs. We parameterized the cold model to provide the lowest predicted Tb for any given 322 

hour. For diurnal hours the cold model was assumed to be inactive (i.e., targeting resting 323 

metabolic rate) with access to shade and the ability to climb to a cooler temperature above the 324 

ground.  During nocturnal hours, the cold model was only allowed to use the least heat-325 

conserving, “stretched” posture, which models all body parts exposed for heat exchange 326 

(representing a solitary individual draped across a branch).  We parameterized the hot model to 327 

provide the highest predicted Tb for any given hour. During diurnal hours the hot model was 328 

assumed to be active with no access to shade or ability to climb to reach cooler temperatures. For 329 

each day within a given month we used the same activity multiplier as the active metabolic rate, 330 

with monthly multipliers varying from a low of 2.25x resting metabolic rate (RMR) in the 331 

summer to a maximum of 4.5x RMR in the winter. These multipliers were derived through a 332 

calibration process to obtain the closest fit between predicted and observed Tb for the 2012-2013 333 

field season simulations and correspond to a 24-hour field metabolic rate of 1.75x RMR in the 334 

summer and 2.46x RMR in the winter when accounting for seasonal differences in day lengths. 335 

This activity variation is consistent with observations of higher activity in the colder months 336 

(McFarland et al. 2014; see also Cantaloup et al. 2019).  337 

During nocturnal hours the hot model was allowed to use the most heat-conservative 338 

nocturnal body posture of huddling between other monkeys. Huddling was simulated by lumping 339 

multiple individuals together to reduce surface area available for heat exchange with the 340 

environment (Mathewson 2018) and is thought to be an important form of behavioral 341 

thermoregulation for vervets to minimize metabolic heat production overnight (McFarland et al. 342 

2015). We assumed a warm huddling scenario to provide an upper bound of predicted nighttime 343 

Tb: a vervet in between two other individuals with 75% of its torso in contact with neighbors. 344 
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 Other than the differences in behavioral parameters described above, the hot and cold 345 

models were parametrized identically (Table 1). For nocturnal hours (i.e., when the sun is below 346 

the horizon), the monkeys were simulated in both the hot and cold models as being inactive in a 347 

tree, where 2-m climate conditions determine the relevant microclimate. In both the hot and cold 348 

models, piloerection (allowing fur depth to increase to 50% of hair length), 349 

vasodilation/vasoconstriction, sweating (allowing up to 75% of the body to be covered in sweat 350 

for evaporative water loss), and Tb changes between the specified maximum and minimums were 351 

all allowed for thermoregulation.  352 

To evaluate the importance of shade access (McFarland et al. 2020), we ran an additional 353 

simulation where we modified the cold model to not allow the model to seek shade during 354 

diurnal hours. To evaluate the importance of huddling and overnight posture (McFarland et al. 355 

2015; Henzi et al 2017), we ran a final simulation where we modified the hot model so rather 356 

than huddling, it could only curl up at night. Curling up was simulated by combining the arms, 357 

legs, and torso into a single body part shape for the purposes of modeling heat exchange 358 

(representing a vervet curling its arms and legs into its torso).  359 

We compared the mean observed Tb for each hour to the maximum and minimum 360 

predicted Tbs and the average of the maximum and minimum predicted Tb. We also evaluated 361 

how well NM’s bracketed range of predicted Tbs captured the observed Tbs by calculating the 362 

number of hours that the mean observed Tb for each sex was between the minimum and 363 

maximum predicted Tb. Unless specifically noted when evaluating the importance of shade 364 

access or huddling, the maximum Tbs are from the hot model that allows huddling and the cold 365 

minimum Tbs are from the cold model that allows access to shade.  366 
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Finally, we calculated several daily metrics with both the observed and predicted Tb data: 367 

minimum Tb, maximum Tb, mean Tb, and 24-hour amplitude of Tb rhythm (difference between 368 

maximum and minimum Tb). For the observed data, we calculated these metrics based on hourly 369 

average Tbs for each sex, with the exception of 24-hour amplitude where individual amplitudes 370 

were calculated and an average for each sex was computed. For the predicted data, we calculated 371 

the ranges for each metric using the maximum and minimum Tb predictions from the hot model 372 

that allows huddling and the cold model that allows access to shade. 373 

 374 

3. RESULTS 375 

3.1 Thermoneutral Zone Prediction 376 

The predicted thermoneutral zone (TNZ) for the model vervets ranged from 18°C (males) 377 

and 19°C (females) to 28°C (both sexes) without any postural change (Fig. A.3).  Allowing a 378 

heat-conserving “curled” posture with arms and legs tucked into the torso reduced the lower 379 

critical temperature to 6°C (males) and 10°C (females) (Fig. A.3). 380 

3.2 Sensitivity analyses  381 

  NM was most sensitive to changes in assumed resting metabolic rate, fur depth, the hair 382 

length:fur depth ratio, body part length:width ratio and allowable Tb range (Table 2; Figs. A.4-383 

A.7). Increasing resting metabolic rate or any of the pelage inputs shifted the TNZ to lower 384 

temperatures, while increasing body part length:width ratio shifted the TNZ to higher 385 

temperatures. Upper and lower critical temperatures increased and decreased, respectively, by 1-386 

2°C for each degree the Tb was able to vary from 38°C (Fig. A.7).  The model was least sensitive 387 

to changes in hair diameter and density, although halving these values from the value used in the 388 

vervet model had a large effect on predicted critical temperatures (Fig. A.4).  389 
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3.3 Testing Niche Mapper’s Ability to Predict Body Temperature  390 

Examples of NM’s maximum Tb (active in the sun during diurnal hours; inactive and 391 

huddled during crepuscular and nocturnal hours) and minimum predicted Tb (resting in the shade 392 

during diurnal hours; inactive and uncurled alone during crepuscular and nocturnal) along with 393 

the range of observed Tb for a hot and cold month are shown in Figure 2.  394 

3.3.1 Diurnal Hours 395 

NM’s maximum, minimum and average (of the maximum and minimum, representing a 396 

mix of activity and shade use within the group) predicted Tbs during diurnal hours were 397 

compared to observed Tbs (Fig. 3). The minimum predicted Tb was typically lower than the 398 

observed Tb, while the maximum Tb prediction typically overestimated Tb compared to observed 399 

Tb. The average predicted Tb clustered around the observed upper modal Tb. NM’s Tb predictions 400 

were also compared with observed Tb for each hour of the day across each season (Fig. 4). For 401 

most hours, the average predicted Tb was close to observed Tb (see also Fig. A.8 showing how 402 

the average predicted Tb clustered around the upper modal Tb), there were times when the 403 

average predicted Tb over- or under-predicted the observed Tb by more than 1°C (5.8% of hours 404 

for females; 8.3% of hours for males). During the earliest diurnal hours, NM over-predicts Tb if 405 

any activity was assumed (e.g., average and maximum Tb predictions for hours 04:00-05:00 in 406 

Fig. 4). For other hours, most of the over-predictions occur in the warmer months during the 407 

warmest hours of the day when the minimum NM prediction (a resting vervet) were closest to 408 

the observed Tbs (e.g., hours 12:00-15:00 in Fig. 4). Similarly, most of the under-predictions 409 

occur in the colder months, when the maximum NM prediction (an active vervet) were closest to 410 

the observed Tbs. (e.g., hours 14:00-16:00 in Fig. 4). 411 

3.3.2 Nocturnal hours 412 
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NM’s maximum, minimum and average (of the maximum and minimum, representing a 413 

mix of postures within the group) predicted Tbs during nocturnal hours were compared to 414 

observed Tbs (Fig. 3). As expected, during nocturnal hours the minimum Tb prediction was 415 

typically lower than the observed Tb, while the maximum Tb prediction typically over estimated 416 

Tb compared to observed Tb. The average NM-predicted Tb clustered around observed lower 417 

modal Tb. During the first nocturnal hours, NM tended to under-predict Tb (hours 17:00-19:00 in 418 

Fig. 5), as the vervets were shifting from active phase Tb to inactive phase Tb. Once the lower 419 

modal Tb was reached (hours 21:00 to 06:00 in Fig. 5), the average NM predictions were similar 420 

to the observed Tb for spring/fall and summer months. During winter months, the observed Tb 421 

was closer to the maximum NM prediction (simulating huddled vervets) for much of the night. 422 

3.4.3 Bracketing Possibilities 423 

As illustrated in the results above, a single model is not appropriate for every given hour. 424 

However, the range of potential Tb predictions should encompass the observed Tb for any given 425 

hour if the model is accurately calculating Tb. Observed Tbs were within the range of predicted 426 

Tbs for >68% of hours and within 0.5°C of the range for >88% of the hours for both the male and 427 

female models (Table 3).  Removing access to shade (i.e., the minimum Tb prediction is for a 428 

vervet resting in the sun) causes a >17% reduction in the percent of diurnal hours for which the 429 

predicted range encompasses the observed Tb, resulting entirely from an increased number of 430 

overestimated Tb (Table 3). Not allowing huddling (i.e., the maximum predicted Tb is for a 431 

curled individual) reduced the percentage of nocturnal hours for which the observed Tb was 432 

within the predicted range by ~20% for both sexes. Not allowing curling or huddling resulted in 433 

the observed Tb being within 0.5°C of NM’s predicted Tb for an uncurled vervet for <20% of the 434 

time (Table 4). 435 
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Finally, we compared NM’s predictions to observed values for several daily Tb metrics 436 

(minimum, maximum and mean Tb; 24-hour Tb range) used to assess an animal’s thermal 437 

performance (e.g., McFarland et al. 2015, Henzi et al. 2017). NM’s predicted range was within 438 

0.5°C of observed values for >90% of the days for all of the daily metrics (Table 5). For days 439 

when the observed maximum Tb was outside of the predicted range, NM tended to over-predict 440 

maximum Tbs. For days when the observed minimum Tb was outside of the predicted range, NM 441 

tended to under-predict minimum Tbs. On days when the observed mean Tbs were outside the 442 

predicted range, the default models tended to under-predict mean daily Tb, driven by under-443 

predicting overnight Tb in the winter months. Not allowing the animals to seek shade or use 444 

different body postures at night reduced model performance (Tables A.4, A.5). 445 

4. DISCUSSION 446 

4.1 Metabolic Chamber and Sensitivity Analyses 447 

To initially assess NMs performance, we placed the vervet model in a simulated 448 

metabolic chamber to ensure that NM predicted a reasonable TNZ. We are unaware of any 449 

studies reporting a vervet TNZ. There are TNZs reported for several other primate species, and 450 

most of these report lower critical temperatures >25°C (Table A.6), higher than the 18-19°C 451 

LCT that NM predicted for vervets. However, most of these species are substantially smaller 452 

than vervets and/or live in tropical areas with less ambient temperature variability these vervets 453 

experience. Species within the Cercopithecidae family in Table A.6 are the most relevant points 454 

of comparison in terms of size, ecological, and taxonomic similarity. There is disagreement in 455 

the literature even within species, but at least one study for each Cercopithecidae species reports 456 

a LCT lower than NM’s prediction for vervets. This literature, together with the annual air 457 
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temperature range that vervets encounter in the wild (<0°C to >40°C), suggest that NM’s 458 

predicted TNZ (18/19-28°C) is not unreasonable.  459 

The sensitivity analyses show that most influential biophysical properties were fur depth, 460 

hair length:fur depth ratio and body part length:width ratio, and target metabolic rate. All pelage 461 

inputs used here were from direct measurements, so we can be confident in their use. The fur 462 

thermal conductivities calculated by NM using these fur properties is 0.05-0.07 Wm-1°C-1, 463 

depending on body part, consistent with the 0.03 (flattened pelt) - 0.07 (backcombed pelt) Wm-464 

1°C-1 range measured on a vervet pelt (McFarland et al. 2016). The hair length:fur depth ratio is 465 

implicated in NM’s simulated piloerection and is not relevant for species that lack the ability to 466 

piloerect. If this option is allowed, the simulated fur thickness is allowed to increase to 50% of 467 

the hair length. Thus, increasing the ratio would allow greater thermal benefits from piloerection. 468 

Regarding body sizes and body part dimensions, the sensitivity analyses illustrate how the model 469 

predicts that larger vervets or more compact animals will be more cold-tolerant. It is interesting 470 

that the uncurled male and female models are predicted to have a similar TNZ despite males 471 

being 45% larger than females. However, the females were more compact (smaller body part 472 

length-to-width ratios) and had relatively thicker fur, both of which appear to offset the thermal 473 

effect of smaller body size.  474 

Our resting metabolic rate is justified since NM’s default resting metabolic rate 475 

regression provides a good approximation of resting metabolic rates measured in haplorhine 476 

primates of similar size to vervets (3-6 kg), and interspecies variation is less than 10% from that 477 

regression line (Fig. A.2, Table A.2). However, the choice of monthly activity multipliers that 478 

dictate the target metabolic rate for the “active” simulations may affect our results. To analyze 479 

the effect of this parameter choice, we performed a sensitivity analysis comparing the results 480 
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using the activity multipliers as stated in the methods above to two alternate scenarios: 1) using a 481 

constant multiplier of 2.75x BMR for all months of the year, and, 2) muting the seasonal 482 

variation in activity multipliers to range from 2.5x BMR in the summer and 3.6x BMR in the 483 

winter (i.e., cutting the variation in half, as measured from deviations from the constant 2.75x 484 

BMR). The muted response reduced the number of diurnal hours where observed Tb was within 485 

the range of predicted Tbs by <5% and reduced the number of diurnal hours where the predicted 486 

range was within 0.5°C of the observed Tb by <2% (Table A.8). Assuming a constant activity 487 

multiplier throughout the year reduced the number of diurnal hours where observed Tb was 488 

within the range of predicted Tb s by 8-10% and reduced the number of diurnal hours where the 489 

predicted range was within 0.5°C of the observed Tb by <5% (Table A.8). Changing the activity 490 

multiplier assumptions has a similar effect on predicted daily maximum Tb, predicted daily mean 491 

Tb and 24-hour amplitude predictions (Table A.9). Given the seasonal variation in vervet activity 492 

patterns (McFarland et al. 2014) a constant activity multiplier is unrealistic, but these results 493 

nevertheless illustrate the effect of this parameter choice. Importantly, if we were to halve the 494 

seasonal variation in activity multipliers in our models, our primary conclusions would have 495 

remained the same. 496 

 The maximum winter activity multiplier results in a 24-hour activity level of 2.46x RMR, 497 

which would be on the higher end of daily activity levels reported from limited information on 498 

primates (Simmen et al. 2015). However, reducing winter activity multipliers results in NM 499 

under-predicting more diurnal Tbs in the winter. An alternative explanation is that there could be 500 

undetected seasonal changes in fur properties (e.g., thicker and/or denser fur in the winter vs. 501 

summer), which would allow NM to predict higher winter Tbs using a lower activity multiplier. 502 
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However, this appears unlikely, given the authors have not observed a visible change in vervet 503 

pelage between seasons. 504 

Our sensitivity analyses identified the biophysical properties that most strongly influence 505 

NM’s Tb and metabolic rate predictions. Gathering information on these parameters should 506 

therefore be a priority for other researchers interested in using biophysical models to examine the 507 

thermal performance of other species. To validate NM’s ability to predict body temperature in 508 

the current study, it was essential that we had detailed measures of, not only vervet morphology, 509 

but also accurate measures of core body temperature. However, since NM’s animal submodel is 510 

generic, and can be used for any species, our study’s validation should give confidence to those 511 

interested in using NM to make predictions, in the absence of such a detailed data set. Indeed, 512 

NM has been used to effectively examine the thermal performance of a range of species, 513 

including extinct species in historical climate scenarios (Porter et al. 2006, Wang et al. 2018, 514 

Lovelace et al. 2020). 515 

If study-specific information for particular model inputs were unavailable, the existing 516 

literature on a given, or closely-related, species, can often be used to provide reasonable 517 

estimates of resting metabolic rate, Tb, the ability to pant or sweat, posture, and microclimate 518 

options (e.g., shade-use). Similarly, pelage properties can often be found in the literature (or 519 

reasonably estimated from similar species with values in the literature). Museum or other 520 

taxidermic specimens are also good sources of obtaining necessary pelage property inputs. Body 521 

part dimensions, if unavailable in the literature, can be estimated based on animal photographs, 522 

that can be scaled up based on the known size of the animal (see e.g., Mathewson & Porter 523 

2013). 524 

 525 
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4.2 Body Temperature Predictions 526 

In this first test of NM’s ability to predict Tb in wild animals, predicted maximum and 527 

minimum Tbs bracketed the observed Tb for the majority of hours (Tables 3,4). Importantly, 528 

although Tbs in NM were allowed to fluctuate above and below the observed upper and lower 529 

modal Tbs observed in the wild vervets, the “average” predicted Tb clustered around the upper 530 

modal Tb during the day and the lower modal Tb during the night (Fig. 3). This finding indicates 531 

that NM was able to capture a vervet’s typical response to fluctuating environmental conditions 532 

and provides confidence that other outputs that are dependent on Tb, like metabolic rate and 533 

evaporative water loss, are also likely to be reliable. More fundamentally, it supports the idea 534 

that temporal Tb variability is an emergent property of animals trying to maintain a certain 535 

metabolic rate rather than animals modifying their metabolic rate to maintain a given Tb. 536 

Deviations >0.5°C between observed and the “average” predicted Tb were sometimes 537 

observed. However, they follow logical patterns based on the time of day and time of year. For 538 

diurnal hours, most of the over-predictions occurred in the warmer months when vervets have 539 

been observed to reduce activity (McFarland et al. 2014). Thus, the “average” prediction would 540 

be expected to over-predict Tb because the “resting” prediction would be more appropriate for 541 

these hours. Similarly, most of the under-predictions occur in the colder months. On the colder 542 

days vervets have been shown to increase activity and foraging time (McFarland et al. 2014), and 543 

it is unlikely there will be much shade-seeking in the winter. Thus, the “average” prediction 544 

would be expected to under-predict Tb because the “active” prediction would be more 545 

appropriate for these hours. Furthermore, the Tb cycling could be an entrained daily rhythm 546 

regardless of given day’s air temperature (Levesque et al. 2016), even at the potential cost of 547 

additional heat loss on the coldest days of the year. NM does not have a built-in Tb cycling. All 548 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



predicted deviations from the specified starting Tb (38°C) are due to responses to environmental 549 

conditions and the required metabolic rates to either minimize metabolic heat production (Tb 550 

reductions in cold conditions) or to maintain minimum metabolic heat production (Tb increases 551 

in hot conditions).  552 

 More activity than usual on a given day could also cause NM to under-predict daytime Tb 553 

because our modeling assumed the same activity level for all days within a month for its “active” 554 

prediction. NM’s Tb predictions also do not include the heat increment of feeding, potentially 555 

leading to under-predictions in post-feeding hours. Occasional swimming and drinking of cool 556 

water have also been observed in this group (McFarland et al. 2020), which could account for 557 

some Tb over-predictions in the warmer months. Finally, we do not simulate the effect of rainfall 558 

cooling the microenvironment or wetting the vervets’ pelage, which could result in some Tb 559 

over-predictions. 560 

Regarding nocturnal Tb, for the first hours after sunset, NM under-predicts Tb (hours 561 

17:00 and 18:00 in Fig. 5). This is likely due to NM assuming an immediate metabolic rate 562 

reduction from active to resting to occur at sundown. In reality, there may be some crepuscular 563 

activity of vervets in the trees as they settle down for the night, and vervets may have a more 564 

gradual metabolic rate reduction from active to resting. While the most common average 565 

nocturnal prediction was close to the observed Tb (see Fig. A.9) there are hours when the 566 

“average” prediction over- or under-predicts the observed Tb by >2°C. These discrepancies could 567 

result from the majority of individuals in the group choosing a more or less heat-conserving 568 

posture on certain nights, causing the “average” prediction to over-predict Tbs on hot nights (e.g., 569 

if most individuals choose to stretch out) or to under-predict Tbs on cold nights (e.g., if most 570 

individuals choose to huddle).  571 
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 Some over-predictions could also be due to the observed Tb cycling potentially being an 572 

entrained rhythm that occurs daily, even if the nighttime Tb reduction is not necessary to 573 

minimize heat loss on a particular day as discussed above with diurnal Tbs. Some under-574 

predictions could be due to vervets increasing metabolic rates to defend their lower modal Tb. 575 

For example, in some conditions it could be worth the extra metabolic expenditure to maintain a 576 

preferred Tb, provided that sufficient food resources are available to supply this additional 577 

energetic demand. In contrast, NM’s thermoregulatory decision-making always chooses to 578 

minimize metabolic heat production and will reduce Tb in such situations. Specific to females, 579 

female reproductive state or having a dependent infant could explain some discrepancies. 580 

Females with a clinging infant will have less heat loss to the environment, and gestational 581 

hypothermia was observed in pregnant females. 582 

4.3 Study implications 583 

Vervets, like all endotherms, must balance maintaining their body temperature with the 584 

thermoregulatory costs incurred to do so, all the while engaging in activities necessary for 585 

survival and reproduction. A biophysical model that can accurately model an animal’s 586 

fundamental energetic interactions with its environment allows quantification of 587 

thermoregulatory costs (e.g., increased metabolic heat production or evaporative water loss 588 

requirements, reduced activity time) and exploration of other questions about the fitness 589 

implications of a species’ morphology, physiology and behavior in relation to its environment.  590 

For example, our results here provide support for the ideas of Lubbe et al. (2014), McFarland et 591 

al. (2015, 2016), and Henzi et al. (2017), that the observed heterothermy and huddling help 592 

improve fitness by reducing energetic costs during the cold winters experienced by this vervet 593 

group (as evidenced by NM utilizing an overnight Tb lower than the starting point Tb to minimize 594 
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metabolic heat production needed to maintain resting metabolic rate and huddled model Tb 595 

predictions providing the best match to observed Tb in the winter). Such models can also provide 596 

insight into the importance of certain habitat characteristics, such as shade availability, to reduce 597 

heat-related costs or access to water to facilitate the use of evaporative cooling to thermoregulate 598 

(McFarland et al. 2020). 599 

As illustrated by our sensitivity analyses showing how body size and limb dimension 600 

affect thermal tolerance, such a model could also be used to investigate whether spatial variation 601 

in morphology across a species’ range could confer energetic advantages (e.g., Bergmann’s and 602 

Allen’s rule). Biophysical models could be also be used to explore how disparate morphology, 603 

physiology and/or behavior between sympatric species could play a role in niche partitioning. 604 

Since the microclimate model can be parameterized with any set of environmental conditions, 605 

similar analyses could be extended into the past to explore past distributions and/or 606 

morphological changes from present may have been necessary for the species to survive in past 607 

environmental conditions (e.g., Mathewson et al. 2017, Lovelace et al. 2020). Such 608 

investigations could provide insight into the evolutionary history of a species.  609 

Looking forward in time, having an accurate biophysical model can provide insight into 610 

species responses to changing environments, either from climate change or land cover changes. 611 

In some places natural forest is being replaced by monocrop tree plantations, presumably 612 

resulting in hotter and drier environments that may impose thermoregulatory stress on some 613 

animals and affect the likelihood that such environments could serve as suitable habitat (Spehar 614 

and Rayadin 2017). In the context of exploring species’ response to climate change, biophysical 615 

models enable a mechanistic approach to species distribution modeling. Such models allow 616 

researchers to investigate how direct effects of the climate on animals (e.g., enforced resting to 617 
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avoid heat stress) constrain distributions. Explicitly modeling the mechanism by which climate is 618 

thought to limit distributions may provide more accurate predictions of future distributions and is 619 

an important research area in need of development, particularly for endotherms (e.g., Buckley et 620 

al. 2012, Evans et al. 2015). 621 
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Table 1. Relevant biophysical properties used to parameterize Niche Mapper’s animal model for 800 
vervet monkeys. Data are sourced from the current study (mean±S.D.) unless marked with 801 
superscript. Variation is shown to demonstrate variability between individuals to provide 802 
additional context for the sensitivity analyses; mean values used in the modeling. These inputs 803 
were used in the thermoneutral zone and wild vervet Tb validation modeling and were the 804 
starting points for the sensitivity analyses. 805 

Parameter Female Male 
Body mass (kg)a 3.4-3.6 4.7-5.0 
Head  
Vertical/horizontal diameter (mm) 
Length (mm) 
Fur depth (mm) 
Hair length: fur depth ratio 

 
88±3/87±7 

122±3 
19±2 

2.1±0.1 

 
95±1/96±14 

133±10 
21±4 

2.1±0.1 
Torso 
Vertical/horizontal diameter (mm) 
Length (mm) 
Dorsal/ventral fur depth (mm) 
Dorsal/ventral hair length: fur depth ratio 

 
143±10/124±0 

350±10 
15±0/18±3 

2.1±0.6/3.2±0.4 

 
173±11/148±15 

390±7 
15±5/21±6 

2.1±0.6/3.2±0.4 
Arms 
Vertical/horizontal diameter (mm) 
Length (mm) 
Fur depth (mm) 
Hair length: fur depth ratio 

 
42±3/39±1 

180±0 
11±1 

2.7±0.5 

 
54±4/43±4 

215±11 
11±4 

2.7±0.5 
Legs 
Vertical diameter (mm) 
Horizontal diameter (mm) 
Length (mm) 
Fur depth (mm) 
Hair length: fur depth ratio 

 
72±15 
49±10 
220±20 
13±3 

3.6±0.1 

 
78±15 
55±6 

265±27 
13±6 

3.6±0.1 
Tail 
Vertical/horizontal diameter (mm) 
Length (mm) 
Fur depth (mm) 
Hair length: fur depth ratio 

 
24±10/24±1 

505±55 
7±4/26 
4.0±0 

 
25±0/28±2 
575±102 
7±4/26 
4.0±0 

Hair solar reflectivity (%)b 20±1.3 
Hair diameter (μm) 30 
Hair density (no. cm-2) 1600 
Resting metabolic rate (W)c 3.39 x mass (kg)0.75 
Core body temperatures (ºC)d Starting 38; Min: 36; Max: 41 
Flesh thermal conductivity (Wm-1°C-1)e Starting: 1.0; Min: 0.4; Max: 2.8 
O2 extraction efficiency (%)f 20 
Activity energy included in heat balance (%)g 80 
a Average body mass of the subset of study animals implanted varied by field season 
b Vervet monkey pelage heat-transfer characteristics (McFarland et al. 2016) 
c Regression for placental mammals (Gordon et al. 1972) used as a default in Niche Mapper. Provides a good fit with data 
from published studies of primate metabolic rates (Fig. A.2, Table A.2). 
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d Tb was held constant at 38°C for the thermoneutral zone modeling and all sensitivity analyses except the Tb variability 
analysis 

d Thermophysical property data on biological media, including a cold living hand (0.34 Wm-1C-1), very warm living skin 
(2.8 Wm-1°C-1) (Cho 1969).   
e Mammal O2 extraction efficiency is typically 20% (Lacombe 2002). 
f Based on measurements of mammalian muscle efficiency being ~20% as measured in rats and mice (Smith et al. 2005). 
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Table 2. Summary of vervet model sensitivity analysis results showing the changes in whole 847 
body thermal conductivity (WBTC), upper critical air temperature (UCT) and lower critical air 848 
temperature (LCT) in response to 10% and 25% changes in key biophysical parameters. Values 849 
shown are for the female model; similar trends were observed for the male model. NC= No 850 
change. 851 

  
10% 

Increase 
10% 

Decrease 
25% 

Increase 
25% 

Decrease 

Fur depth 
WBTC -3% 6% -13% +22% 
UCT -1° +1° -1° +2° 
LCT NC +2° -2° +3° 

Hair density 
WBTC -3% 3% -6% +9% 
UCT NC +1° NC +1° 
LCT -1° +1° -2° +2° 

Hair diameter 
WBTC -3% 3% -6% +9% 
UCT NC +1° NC +1° 
LCT -1° +1° -1° +2° 

Hair length: 
fur depth ratio 

WBTC -9% +9% -20% +34% 
UCT NC +1° NC +1° 
LCT -2° +2° -6° +5° 

Total body 
mass 

WBTC 2% 11% -8% +21% 
UCT NC +1° NC +1° 
LCT NC +1° -1° +2° 

Body part 
lengths 

WBTC +6% -9% +16% -17% 
UCT +1° -1° +2° -2° 
LCT +1° -1° +3° -5° 

Resting 
Metabolic 

Rate 

WBTC NC NC NC NC 
UCT -1° +1° -3° +3° 
LCT -2° +2° -6° +6° 

 852 
 853 
 854 
 855 
 856 
 857 
 858 
 859 
 860 
 861 
 862 
 863 
 864 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Table 3. Percentage of diurnal hours in the 2012-2016 field seasons (n=14,037) that the mean 865 
observed vervet body temperature (Tb) was within NM’s predicted Tb range (encompassing an 866 
active individual in full sun and an inactive individual with and without access to shade). Also 867 
shown are the percentage of hours that the observed Tb was within 0.5° or 1° C of the predicted 868 
range. In parentheses are the number of hours for which the predicted range was over/under the 869 
observed Tb. Removing shade access increased the number of hours that NM overpredicted Tb. 870 
 871 

  Shade Available No Shade Available 

Fe
m

al
es

 

Within Range 72.6% 

(1669/2018) 

54.4% 

(4108/2018) 

Within 0.5°C 93.7% 

(378/472) 

84.9% 

(1563/472) 

Within 1.0°C 99.4% 

(51/25) 

96.6% 

(437/25) 

M
al

es
 

Within Range 67.6% 

(1940/2418) 

48.8% 

(4466/2418) 

Within 0.5°C 91.3% 

(621/542) 

82.3% 

(1843/542) 

Within 1.0°C 98.8% 

(131/31) 

95.4% 

(587/31) 
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Table 4. Percentage of nocturnal hours in the 2012-2016 field seasons (n=13443) that the mean 890 
observed vervet body temperature (Tb) was within NM’s predicted Tb range (encompassing 891 
different body postures). Also shown are the percentage of hours that the observed Tb was within 892 
0.5° or 1°C of the predicted range. In parentheses are the number of hours for which the range 893 
predicted by NM was over/under the observed Tb. “Stretched only” refers to only modeling a 894 
lone, uncurled individual (no range); “Stretched + curled” refers the range of Tbs predicted 895 
between an uncurled individual and a curled (arms and legs tucked into torso) individual; 896 
“Stretched + curled + huddled” refers to the range of Tbs predicted between an uncurled 897 
individual and an individual huddled between two others. 898 
 899 

  Stretched + 

curled + huddled 

Stretched + 

curled 

Stretched only 

Fe
m

al
es

 

Within Range 70.4% 

(750/3230) 

45.7% 

(750/6553) NA 

Within 0.5°C 87.8% 

(215/1424) 

66.5% 

(215/4292) 

14.9% 

(215/11228) 

Within 1.0°C 98% 

(43/228) 

89.8% 

(43/1330) 

53% 

(43/6277) 

M
al

es
 

Within Range 73.4% 

(857/2715) 

53.1% 

(857/5450) NA 

Within 0.5°C 90.4% 

(256/1039) 

74.9% 

(256/3114) 

18.4% 

(256/10711) 

Within 1.0°C 98.1% 

(45/217) 

92.3% 

(45/989) 

60.2% 

(45/5308) 
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Table 5. Percentage of days in the 2012-2016 field seasons (n=1145) that the mean observed 915 
minimum, maximum, average, and 24 hour-amplitude vervet body temperature (Tb) was within 916 
the boundaries of NM’s predicted Tb between the coldest model (lone monkey stretched out at 917 
night; resting in shade during the day) and the warmest model (huddled at night; active in sun 918 
during the day). Also shown are the percentage of days that the observed metric was within 0.5° 919 
or 1°C of the predicted range. In parentheses are the number of days for which the range 920 
predicted by NM was over/under the mean observed metric.  921 
  Female Male 

M
in

im
um

 

T b
 

Within Range 82% (17/189) 87.3% (48/97) 

Within 0.5°C 91% (5/98) 97.4% (5/25) 

Within 1.0°C 99.1% (1/9) 99.7% (0/3) 

M
ax

im
um

 

T b
 

Within Range 78.4% (139/108) 72.8% (146/165) 

Within 0.5°C 96.2% (33/10) 94.9% (42/16) 

Within 1.0°C 99% (11/0) 99.1% (10/0) 

M
ea

n 
T b

 Within Range 90.4% (29/81) 91.3% (39/61) 

Within 0.5°C 99.8% (0/2) 99.6% (1/4) 

Within 1.0°C 100% (0/0) 100% (0/0) 

24
-h

ou
r T

b 

A
m

pl
itu

de
 Within Range 97.3% (15/16) 93.9% (2/68) 

Within 0.5°C 99.9% (0/1) 98.2% (0/21) 

Within 1.0°  99.9% (0/1) 99.7% (0/3) 
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Figure 1. Schematic showing the relationship between Niche Mapper’s microclimate and animal 938 
submodels as well as the inputs required by the respective submodel for Niche Mapper’s heat 939 
balance calculations.  940 
 941 
Figure 2.  Example plots of NM’s hourly predicted body temperatures (Tb) and hourly observed 942 
female Tb for a winter month (a; August 2014) and a summer month (b; December 2014). The 943 
maximum predicted Tb is for a monkey active in sun for diurnal hours and a huddled monkey for 944 
nocturnal hours. The minimum predicted Tb is for a monkey inactive in full shade for diurnal 945 
hours and for an uncurled monkey for nocturnal hours. The shaded gray area shows the range of 946 
observed Tb for a given hour. Air temperatures are also shown for reference. 947 
 948 
Figure 3. Plots of predicted vs. observed female body temperature (Tb). For diurnal hours, the 949 
minimum NM Tb is for a vervet inactive in the shade; the maximum NM Tb is for a vervet active 950 
in the sun. An average of the maximum and minimum Tb predictions, representing a mix of 951 
activity and inactivity, is also shown. For nocturnal hours, predictions are shown for different 952 
nighttime postures uncurled (minimum Tb prediction), curled, and huddled (maximum Tb 953 
prediction). The average prediction is the average of the maximum and minimum Tb nocturnal 954 
predictions. The darker the color of the hexagon, the greater the number of hourly Tb 955 
comparisons in that plot location. The dashed lines indicate the observed modal Tbs (lower 956 
overnight Tb and higher daytime Tb) of the wild vervets; the solid line indicates a 1:1 relationship 957 
between observed and predicted Tb. Similar trends were observed for the male model. 958 
 959 
Figure 4. The difference (±S.D.) between observed and predicted female body temperatures (Tb) 960 
for diurnal hours between 2012 and 2016. Data are broken down by hour (04:00-18:00) and 961 
season (summer = December-February; winter = June-August; spring=March-May; 962 
fall=September-November). The minimum NM Tb is for a vervet inactive in the shade; the 963 
maximum NM Tb is for a vervet active in the sun. The average prediction is the average of the 964 
maximum and minimum Tb predictions, representing a mix of activity and inactivity. For 04:00 965 
and 18:00 hours, daylight is only present for a summer month. Similar trends were observed for 966 
the male model (Fig. A.10). 967 
 968 
Figure 5. The difference (± S.D.) between observed and predicted body temperatures (Tb) for 969 
nocturnal hours between 2012 and 2016. The data are broken down by hour (17:00-06:00) and 970 
season (summer = December-February; winter = June-August; spring/fall=March-May; 971 
September-November). The minimum NM Tb is for a lone uncurled vervet; the maximum NM 972 
Tb is for a huddled vervet. The average prediction is the average of the maximum and minimum 973 
Tb predictions, representing a mix of postures. For 06:00, sunlight was absent only for a winter 974 
month. Similar trends were observed for the male model (Fig. A.11). 975 
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