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Abstract:

The use of pesticides has historically helped improve agricultural productivity, although
their continued use may have unforeseen effects upon the natural environment when
not applied appropriately. Metaldehyde is a commercial pesticide widely used to
reduce crop losses resulting from terrestrial mollusc damage. However, following
precipitation and runoff it frequently enters waterbodies with largely unknown
consequences for aquatic fauna. This study represents one of the first attempts to
examine its potential effects on aquatic macroinvertebrate communities at sites known
to have experienced elevated metaldehyde concentrations alongside unaffected
control sites. In addition, a series of laboratory exposures specifically examined the
effects of metaldehyde on the survivorship of non-target aquatic mollusc species.
When the entire aquatic macroinvertebrate community and aquatic mollusc community
were considered, limited differences were observed between metaldehyde affected
and control sites based on field data. Laboratory exposures highlighted that for the
molluscs examined, gastropods (Bithynia tentaculata, Planorbis planorbis, Radix
balthica and Potamopyrgus antipodarum) had a greater tolerance to metaldehyde than
bivalves (Sphaerium corneum and Corbicula fluminea). However, the concentrations
required to reduce survivorship of all species were much greater than those ever
recorded historically under field conditions. The results suggest that the differences in
the community composition recorded between sites exposed to elevated metaldehyde
concentrations and control sites were probably due to nutrient loading (N and P from
agricultural fertilizers) rather than metaldehyde. However, these results do not negate
wider concerns regarding metaldehyde use, particularly issues caused when ingested

by vertebrate wildlife, livestock or children and pets in domestic settings.

Capsule:
Metaldehyde, a pesticide, frequently enters agricultural water bodies in excess of safe

drinking water levels but has limited effects upon non-target invertebrate organisms.

Keywords: Molluscicide, invertebrate, aquatic mollusc, field study, laboratory

exposure.
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Introduction

Pesticides are a valuable tool in modern agriculture that have historically helped
improve productivity (Handford et al. 2015). However, in some instances their use has
raised concerns for human health, food and drinking water resource safety (World
Health Organization and United Nations Environment Programme, 1990;
Nicolopoulou-Stamati et al., 2016; Deng et al., 2019) and more widely in terms of
unintended environmental effects (van der Werf, 1996; Carvalho, 2017; Wood and
Goulson, 2017). The use of pesticides is heavily regulated in some regions (Karabelas
et al. 2009; Handford et al. 2015), such as Europe where the European Union Water
Framework Directive 2000/60/EC mandates a maximum permissible concentration of

pesticides in drinking water of 0.1 pg/L for a single pesticide (Dolan et al. 2013).

The agricultural sector has benefitted from the use of modern agrochemicals and the
availability of plentiful freshwater resources for irrigation, which have collectively
helped increased crop yields and minimised damage by pests (FAO 2004; Stewart and
Roberts 2012; DEFRA 2013; Handford et al. 2015). However, these practices
potentially threaten aquatic biodiversity by reducing water availability, changing the
sediment regime and nutrient dynamics, and via the poorly managed use of pesticides
(Dudgeon, 2010; Reid et al., 2019; Jiao et al., 2020). Given that biodiversity is a key
measure of aquatic ecosystem health (Natural England 2008; Environment Agency
2018), and an important component of freshwater ecosystem service provision (MEA
2005; DEFRA 2011; Parker and Oates 2016; IPBES 2019; UNEP: TEEB 2019), there
is an ongoing need to monitor and understand any effects of pesticide use on non-

target organisms.

One of the most widely utilised pesticides in the arable agricultural sector is the
molluscicide metaldehyde (IUPAC: 2,4,6,8-tetramethyl-1,3,5,7-tetroxocane: Castle et
al., 2017). Metaldehyde has been used for over a century and is known to be highly
effective against target terrestrial gastropods (slugs and snails), but there have been
limited documented effects upon other terrestrial invertebrates (e.g. Lumbricus
terrestris (Linnaeus 1758): Langan and Shaw 2006; Edwards et al. 2009). In aquatic
environments, ECso-60 of 100->200 mg/L have been reported for the gastropods L.
stagnalis (Linnaeus 1758), Planorbarius corneus (Linnaeus 1758) and the bivalve

Dreissena polymorpha (Pallas 1771) (Putchakayala and Ram, 2000; European Food
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Safety Authority, 2010; Hallett et al., 2016). However, the tolerances of other aquatic
taxa and the effects of metaldehyde upon the wider aquatic ecosystem have not been

widely quantified.

Metaldehyde use is permitted throughout the European Union, however, during 2018
the UK Department for Environment, Food and Rural Affairs (DEFRA) announced
plans to ban metaldehyde from Spring 2020, owing to the “unacceptable risks
[posed...] to birds and mammals” (DEFRA, 2018). This proposal was subsequently
overturned in the UK courts due to lack of evidence regarding metaldehyde’s impact
upon non-target organisms. Real world studies of metaldehyde pollution have almost
exclusively focused on water security concerns (e.g. Kay and Grayson 2014), with
most biological studies being undertaken in the laboratory. As a result, limited field
studies examining the biological effects of metaldehyde have been undertaken,
making it difficult to assess metaldehyde’s legacy at the landscape scale. Given that
freshwater aquatic molluscs (largely gastropods and bivalves) are evolutionarily and
physiologically similar to their terrestrial counterparts (Saleuddin and Wilbur 1983;
Thorp and Covich 2009; Moreau et al. 2015; Pyron and Brown 2015) it has been
hypothesised that these faunal groups may be disproportionately affected by
metaldehyde pollution (e.g. Calumpang et al. 1995; Horgan et al. 2014). As a result,
the effect of metaldehyde concentrations recorded in surface freshwater bodies upon
aquatic molluscs and the frequency at which these concentrations may be reached
needs to be established. Therefore, this study examined a six-year ecological
monitoring data set from the east of England (UK) alongside laboratory exposure
studies to determine the effects of metaldehyde upon macroinvertebrate communities

and specific non-target gastropod and bivalve species.

Methods

Data collection

Field Observations

10 sites in the east of England (53.061025°N, 0.195007°W) were selected for detailed
investigation in the county of Lincolnshire (Figure S1.). The area has a predominantly
arable land use and is serviced by a dense drainage network. Peaks of metaldehyde
that exceeded drinking water guidelines (0.1 ug/L) were frequently detected between

2012 and 2018 at five locations (D1-D5), with five control sites where metaldehyde had
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not exceeded drinking water guidelines in the historical record, but with comparable
physical characteristics also being identified (C1-C5) to provide direct comparisons
during analysis. The five metaldehyde-affected sites identified were among those
monitored by the Environment Agency (the regulatory body for England) during 2014,
the year in which 81% of pesticide pollution events in England involved metaldehyde
(Pesticides Forum 2016). During 2015, 100% of serious pesticide-related pollution
incidents in England involved metaldehyde, 60% of which occurred within the study

area (upstream of D4 and D5) (Pesticides Forum 2017).

A total of 114 aquatic macroinvertebrate samples (60 from D1-5, 54 from C1-5),
collected by the Environment Agency via the kick sampling methodology (see Murray-
Bligh, 1999) between 2012 and 2018, were available for investigation. Invertebrates
were identified to species level, except Diptera larvae which were primarily identified
to family level and Ostracoda, Cladocera, Hydracarina and Oligochaeta which were
identified as such. Water temperature (°C), pH, conductivity (uS/cm), dissolved oxygen
(DO) (mg/L, %), chloride (mg/L), nitrate (ug/L), orthophosphate (mg/L), phosphorus
(mg/L) and metaldehyde (ug/L) data, matched to corresponding date and locations of
macroinvertebrate samples, were made available for detailed analysis by the

Environment Agency and Anglian Water Plc.

Laboratory exposures

In order to advance understanding of the effects on specific non-target organisms, a
series of laboratory exposures were also undertaken to test mollusc survivorship rates
upon exposure to metaldehyde under controlled conditions. Six taxa were used in the
controlled laboratory exposures: four native species i) Bithynia tentaculata (Linnaeus,
1758), ii) Planorbis planorbis (Linnaeus, 1758), iii) Radix balthica (Linnaeus, 1758) and
iv) Sphaerium corneum (Linnaeus, 1758) and two non-native species i) Potamopyrgus
antipodarum (Grey, 1843) and ii) Corbicula fluminea (Muller, 1774) that are widely
distributed. Organisms were collected from waterbodies around Loughborough, UK
(51.395918°N, 0.734332°W) using a standard kick net (mesh size 1mm) prior to the
commencement of an experimental cycle. All organisms were held in aquaria for
approximately 12 h prior to use in the experiment to confirm all individuals were alive
and healthy. Exposure tanks were set up and run for 24 h prior to the introduction of

organisms to allow the stabilisation of internal conditions.
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Each exposure tank contained either 15.0 | of dechlorinated water (control) or 15.0 | of
dechlorinated water and a known concentration of metaldehyde (Doff® Slug Killer:
1.5% metaldehyde — all concentrations used were calculated based on reported active
ingredient per-unit mass of pellets provided by the manufacturer). Each exposure tank
was fitted with an aerator to supply oxygen to the organisms within. Temperature was
held at ambient conditions (18-22 °C) within the River Science Laboratory at
Loughborough University. At the start of the experiment 20 adult individuals from one
of the six tested species were introduced into each exposure tank. All experiments had
a 24-hr duration given that metaldehyde peaks 20.1 pg/L did not typically exceed this
duration in the field data series and reflected typical environmental exposure
conditions. On completion of the experimental period, organisms were transferred into
a clean aquarium and directly observed over a 3-hr period to determine survivorship
rates. Each of the six species was tested at four metaldehyde concentrations, with
three replicates of each concentration providing a total of 72 individual experiments.
All organisms were first tested at 100 mg/L, reflecting ECso-60 concentrations recorded
by Putchakayala and Ram (2000), the European Food Safety Authority (2010) and
Hallett et al. (2016). If survivorship at 100 mg/L was >80%, the four test concentrations
were 0, 100, 200 and 300 mg/L (B. tentaculata, P. planorbis and P. antipodarum). If
survivorship at 100 mg/L was <50%, the four test concentrations were 0, 25, 50 and
100 mg/L (C. fluminea). One species (S. corneum) had a mean survivorship of 58% at
100 mg/L so was tested at 0, 50, 100 and 200 mg/L. R. balthica, demonstrated a
marked decline in survivorship between 100-200 mg/L, and was therefore tested at 0,
100, 150 and 200 mg/L.

Data analysis

Unless otherwise stated, R Studio v.3.5.1 (R-Studio Team 2016) was used to perform
statistical analyses and visualise plots. All faunal and environmental matrices were
square root transformed in order to satisfy the assumptions of further statistical
analyses and facilitate the use of Vegan package in R language for environment and
statistical computing v.2.5.3 (Oksanen et al. 2018; R Core Team 2018).

Field Observations
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Spring and autumn macroinvertebrate samples from 2012-2018 with corresponding
chemical data were extracted for ordination in Canoco v.5.0 (ter Braak and Smilauer
2012). Data was plotted in two groups, the first containing the entire faunal community.
The second group considered only aquatic molluscs reflecting the fact that there may
be more pronounced effects upon this section of the community. Given that both the
entire faunal community - all taxa (0.1) and the mollusc community (1.1) displayed
linear distributions, Redundancy Analysis (RDA) was conducted with a Monte Carlo
random permutations test (n=999) to determine the statistical significance of

environmental (water chemistry) variables (Lep$ and Smilauer 2003).

To quantify heterogeneity between metaldehyde detected and control sites for the
period of known metaldehyde pollution (2012-2018), analysis of similarity (ANOSIM -
utilising the Bray-Curtis dissimilarity metric) was conducted on the entire faunal
community (114 samples), and a subset containing only aquatic mollusc taxa (114
samples). Subsequently, similarity percentages analysis (SIMPER) was undertaken
on the two ANOSIM groups (all fauna and aquatic molluscs) to determine the species

responsible for any observed heterogeneity.

Laboratory exposures
For laboratory experiments, mean survival rate across the three replicates for a given

concentration were calculated and plotted for each species.

Results

Field data

A total of 52,286 individuals were recorded from all samples. The relative abundance
and number of taxa was lower at control sites (C1-5; mean 415 individuals; 201 taxa)
compared to metaldehyde detected sites (D1-5; mean 466 individuals; 245 taxa). The
most abundant taxon at sites C1-5 was Asellus aquaticus (Linnaeus 1758), followed
by Crangonyx pseudogracilis (Bousfield 1958), Oligochaeta and Hydracarina. The
most abundant taxon at sites D1-5 was also A. aquaticus followed by P. antipodarum,
B. tentaculata, C. pseudogracilis, Pisidium nitidum (Jenyns, 1832), Oligochaeta,
Cladocera and Chironomidae. Molluscs comprised 18.9% and 19.7% of the taxa
recorded at control and metaldehyde detected sites and 27% and 32% of the relative

abundance respectively. Pisidium subtruncatum (Malm, 1855) (801), Anisus vortex



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249

(Linnaeus 1758) (789) and B. tentaculata (661) were the most frequently recorded
mollusc taxa at control sites with P. antipodarum (1,856), Pisidium nitidum (1,080) and
B. tentaculata (1,062) being the most frequently occurring mollusc taxa at sites where

metaldehyde had been detected.

Redundancy Analysis (RDA) indicated that water chemistry data from samples
collected at metaldehyde detected and control sites accounted for 16.8% of the total
variance in the faunal data. Orthophosphate was identified as the most significant
variable influencing the community composition (Table 1a.). Metaldehyde, accounted
for only 2.1% of the community variation and was strongly correlated with Axis 2 along
with orthophosphate and phosphorus (Figure 1.). Cumulatively these three variables
accounted for 6.7% of the variance in the faunal community data. Metaldehyde,
orthophosphate and phosphorus were negatively correlated with DO, temperature and
pH. Samples from sites where metaldehyde had been detected (particularly D2 and
D4) predominately plotted in the upper quadrants of the ordination. In contrast,
samples from control samples typically plotted on the negative end of Axis 2. However,
ANOSIM indicated a high degree of similarity among the assemblages recorded at
control and metaldehyde detected sites (ANOSIM R= 0.265: P= 0.001). SIMPER
highlighted that 30.7% of the dissimilarity observed was attributable to 10 taxa, three
of which were molluscs (P. nitidum, P. antipodarum and Valvata piscinalis (Muller,
1774)) (Table 2a.). Hydracarina was the most significant taxon driving dissimilarity
between control and metaldehyde detected sites (4.1%) followed by A. aquaticus
(3.8%).

The 10 environmental variables were able to account for 21.6% of the total variance in
the community composition of mollusc communities from control and metaldehyde
detected sites. Orthophosphate accounted for the greatest amount of variance (5.0%
- Table 1b.); being strongly associated with both phosphorus and metaldehyde
concentrations (Figure 2.). Metaldehyde was the least significant variable accounting
for only 1.2% of the variance in the mollusc data. Most control site samples (with the
exception of samples from C3) cluster together and were characterised by higher DO,
pH, temperature and conductivity. Many samples from sites D2 and D4 were
characterised by higher metaldehyde concentrations. A significant ANOSIM, indicated

a higher degree of heterogeneity between metaldehyde detected and control samples
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(ANOSIM R= 0.467: P= 0.001) for the mollusc community compared to the equivalent
analysis for the entire faunal community. SIMPER attributed 60.1% of the dissimilarity
to 10 taxa (Table 2b.), the most influential of being P. nitidum (9.4%), P. antipodarum
(9.1%) and V. piscinalis (7.5%). All the mollusc taxa identified by SIMPER, with the
exception of Physa fontinalis (Linnaeus 1758), were more common at metaldehyde
detected sites. Both gastropods and bivalves were identified in the SIMPER, indicating
both were significantly associated with differences between communities from control

and metaldehyde detected sites.

Laboratory exposures

Gastropods displayed higher survivorship than bivalves when exposed to metaldehyde
under controlled laboratory conditions. Operculate gastropods consistently displayed
a higher mean survivorship than pulmonates at metaldehyde concentrations <200
mg/L; above this threshold results were more variable. The mean survivorship of C.
fluminea declined rapidly with only a 7% survivorship at metaldehyde concentrations
of 100 mg/L (Figure 3a.), while S. corneum had a survivorship of 3% at 200 mg/L
(Figure 3b.). The most rapid decline in survivorship for both C. fluminea and S.
corneum occurred at concentrations >50 mg/L. The operculate gastropod P.
antipodarum had a 100% survivorship at metaldehyde concentrations <200 mg/L, but
this declined rapidly to a 35% survivorship at 300 mg/L (Figure 3c.). B. tentaculata
displayed very little reduction in survivorship at increased metaldehyde concentrations
(Figure 3d.) with >90% survivorship at metaldehyde concentrations of 300 mg/L.
Whilst P. planorbis displayed a similar response to that of B. tentaculata at
metaldehyde concentrations up to 100 mg/L, the species had lower mean survival
rates at concentrations >100 mg/L (Figure 3e.). R. balthica displayed the most marked
response and lowest survivorship of the gastropods studied at metaldehyde

concentrations >100 mg/L (Figure 3f.).

Discussion

Metaldehyde poses a potential threat to water security and terrestrial vertebrates
(Lapworth et al., 2012; Castle et al., 2017; Pesticides Forum, 2017, 2018), however,
its potential impact upon aquatic communities has remained largely unexplored until
now. Concentrations of metaldehyde in European rivers have exceeded WFD limits for

safe drinking water over the past decade (Lazartigues et al., 2012; Kay and Grayson,
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2014), although research on the response of aquatic fauna remained rooted in
laboratory studies. This study therefore sought to utilise field data from sites known to
exceed metaldehyde drinking water standards to examine the legacy of metaldehyde
in agricultural catchments upon non-target aquatic macroinvertebrate communities
and specifically mollusc species. This research is particularly timely given the recent
reversal of the ban on metaldehyde use across the agricultural sector in the UK (Water
UK, 2019).

Aquatic macrofaunal community composition at metaldehyde detected and
control sites

Differences in macroinvertebrate communities from control sites and sites where
elevated metaldehyde had been recorded were marginal, but statistically significant.
Control sites were more homogenous than sites subject to elevated metaldehyde
concentrations. Three species were recorded in higher abundances at sites subject to
elevated metaldehyde concentrations (A. aquaticus, C. pseudogracilis and P.
antipodarum), and are noted for their association with nutrient enrichment (Dick et al.,
1999, 1998; Sim¢€i¢ and Brancelj, 2006; Alonso and Castro-Diez, 2008). Detailed
examination of the mollusc community indicated even larger differences between
control sites and those sites subject to greater metaldehyde concentrations than for
the entire macroinvertebrate community. Analysis of environmental (water chemistry)
variables using the Monte Carlo random permutations test, for both the entire faunal
community and the mollusc community, indicated that metaldehyde did not appear to
have a significant effect. This analysis indicated that, rather than metaldehyde,
phosphate and orthophosphate (probably originating from agricultural fertilisers), and
differences in pH and DO were the primary drivers of community composition; with the

effects being more pronounced on the mollusc community.

Aquatic molluscs have previously been shown to display limited response to pesticide
pollution events (Raven and George, 1989). The maximum metaldehyde concentration
recorded during this study (4.4 pg/L) was 22,523 times lower than the >100 mg/L
concentration at which lethal effects have previously been observed (e.g. Hallett et al.
2016). Therefore, it is likely that the impact of a single metaldehyde pollution event
upon the aquatic mollusc community was limited. Increased duration of molluscicide

exposure can increase mollusc mortality (Doherty and Cherry, 1988), however, the

10
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duration of metaldehyde peaks =0.1 ug/L recorded in the field were short (c. 24 h).
Operculate and bivalve taxa have been shown to seal their shells to withstand short
term exposure to pesticides (Wallace 1990; Gosling 2004; Pandey and Kulkarni 2007).
In contrast, pulmonates do not have an operculum and, therefore, may be at greater
risk of mortality, even during short-term pollution events. It is however likely that some,
if not most, pulmonate taxa possess the ability to withstand high concentrations of
metaldehyde over an extended period, with Hallett et al. (2016) noting the ability of L.

stagnalis to internally detoxify metaldehyde.

Acute impacts of terrestrial molluscicide pollution upon aquatic mollusc species
under laboratory conditions

To date, few authors have attempted to quantify the effect of metaldehyde upon non-
target aquatic mollusc species. Increasing metaldehyde concentrations reduced the
survivorship of all six species examined, although the effect was highly variable. There
are three factors most likely to be responsible for the variability observed, reflecting
species differences in: (1) feeding mode, (2) respiratory mode, and (3) metaldehyde

excretory efficiency.

Feeding mode is potentially of significance, as ingestion has previously been noted to
affect the behaviour of aquatic molluscs (Egeler et al. 2007; European Food Safety
Authority 2015). Mills et al. (1992) reported that ingestion of metaldehyde resulted in a
reduction in feeding and thus the rate at which metaldehyde could be consumed prior
to a lethal concentration being reached within an organism. The four gastropod species
examined feed via a radula (an arrangement of small teeth located in the mouth:
Mendel and Bradley 1905; Saleuddin and Wilbur 1983). This is in contrast to the
bivalve taxa, both of which feed predominately via filtration (Thorp and Covich 2009;
Pyron and Brown 2015). S. corneum and C. fluminea displayed lower survivorship
rates at lower metaldehyde concentrations. Filter-feeding may have resulted in large
volumes of metaldehyde contaminated water passing directly through the organism,
thus potentially elevating the effects at lower concentrations. As filtration rates are
noted to vary as a function of size in many bivalves (Wagner 1976; Riisgard 2001;
Sylvester et al. 2005), it is likely that larger volumes of metaldehyde entered larger
individuals more quickly and increased mortality. Further investigation would be

required to determine if there is a relationship between body size, filtration and the

11
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effects of metaldehyde. The two gastropod species observed to directly ingest
metaldehyde pellets (P. planorbis and R. balthica) demonstrated significant reductions
in survivorship at concentrations <200 mg/L suggesting that ingestion may be an

important factor in determining mollusc survivorship.

Differences in mode of respiration may also help explain the difference in response of
the taxa examined. Across the six species examined, two modes of respiration are
utilised. First, gills allowing gaseous exchange over an internal membrane to obtain
oxygen, are utilised by S. corneum, C. fluminea, B. tentaculata and P. antipodarum
(Thorp and Covich 2009). Pulmonates (P. planorbis and R. balthica), also utilise
gaseous exchange across membranes underwater via highly vascularised tentacles
but can also breathe atmospheric air via a primitive lung when aquatic conditions are
unfavourable (Pyron and Brown 2015). However, no difference in survivorship /
tolerance was observed in the laboratory exposures and no pulmonate individual
attempted to emerge from the water after metaldehyde was added to the exposure
tank. This is likely to be because cues which prompt an escape response relate more

closely to oxygen availability than a response to a potential biocide.

In addition to the ingestion of metaldehyde, the rate of excretion is likely to influence
survivorship. Studies examining the ability of molluscs to excrete metaldehyde are
limited. Research on the pulmonate gastropod L. stagnalis suggested that it was able
to internally detoxify metaldehyde with no observable effect up to 36 mg/L (Hallett et
al. 2016); although the mechanism by which detoxification and excretion occurred was
not specified. The results of the current investigation demonstrate similarly high
survivorship at 36 mg/L, particularly for gastropod taxa with the most marked
reductions occurring at concentrations over 100 mg/L for gastropod species. The
concentration was an order of magnitude higher than those reported for UK rivers
(<10.0 pg/L: Kay and Grayson 2014). Therefore, the results of the laboratory
exposures clearly demonstrate that much higher concentrations of metaldehyde than
the maximum observed in the field (4.4 pg/L) would be required to reduce the

survivorship of molluscs.

Conclusion

12
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The results of field-based research at sites where the greatest concentrations of
metaldehyde have be recorded indicate that its effects on non-target aquatic
macroinvertebrates within an agricultural setting were so minor that they could not be
detected. Although metaldehyde concentrations exceeded drinking water guidelines
on multiple occasions at sites examined during the study period, these concentrations
were orders of magnitude lower than those documented to influence aquatic faunal
communities and individual aquatic mollusc species. The results recorded suggest that
the differences observed between metaldehyde detected and control sites probably
reflects differences in nutrient concentrations (orthophosphate) resulting from land use
practices associated with specific crops (e.g., brassica where agricultural fertilisers and
metaldehyde may be used more frequently). Laboratory exposures examining
individual mollusc species highlighted a wide range of tolerances. These findings also
highlight that real-world metaldehyde concentrations and exposure times recorded in
UK rivers were almost certainly lower that those required to have a lethal effect on non-
target aquatic macroinvertebrates. The overall results of this research drawing on field
based ecological monitoring and laboratory exposures highlight that metaldehyde
poses a limited threat to non-target aquatic faunal communities based on current levels
of exposure. However, it should be stressed that these results do not negate wider
concerns regarding metaldehyde use, particularly issues caused when ingested by
vertebrate wildlife, agricultural livestock and domestic pets or the genuine public health
concern when accidentally ingested by children when the pesticide is used in a

domestic setting.
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Figure captions

Figure 1. RDA biplot of chemical variables and community samples from control
(black) and metaldehyde detected (white) sites.

Figure 2. RDA biplot of chemical variables and mollusc community samples from

control (black) and metaldehyde detected (white) sites.
Figure 3. Mean survival rate of (A) Corbicula fluminea, (B) Sphaerium corneum, (C)
Potamoprygus antipodarum, (D) Bithynia tentaculata, (E) Planorbis planorbis and (F)

Radix balthica upon exposure to differing metaldehyde concentrations.

Figure S1. Study sites within Lincolnshire, North-Cambridgeshire and Rutland, UK.
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668 Table 1. Monte Carlo Permutation results of chemical variables impacting (A) all taxa
669 and (B) mollusc taxa recorded 2012-18.

A. Entire faunal community B. Mollusc community
Variation Variation

Name explained (%) pseudo-F P Name explained (%) pseudo-F P
Orthophosphate 3.3 21 0.016 Orthophosphate 5.0 3.3 0.004
Chloride 33 22 0.020 Chloride 35 23 0.010
Conductivity 26 1.8 0.040 Phosphorus 31 21 0.026
Metaldehyde 2.1 14 0.166 pH 2.7 1.9 0.044
Temperature 24 1.6 0.078 Nitrate 2.0 14 0152
DO (%) 16 1.1 0.328 Temperature 1.7 12 0.270
DO (mglL) 22 15 0.104 DO (mg/L) 15 1.0 0.372
Nitrate 21 15 0.088 DO (%) 3.8 28 0.008
pH 1.1 0.8 0.600 Conductivity 1.6 12 0.300
Phosphorus 1.3 09 0574 Metaldehyde 1.2 0.8 0.556
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696

Table 2. Taxa responsible for the largest proportion of dissimilarity (SIMPER) between
metaldehyde detected and control sites for the (A) entire faunal community, and (B)
the mollusc community.

A. Entire faunal community B. Mollusc community

Cumulative Cumulative

Taxa dissimilarity Taxa dissimilarity
accounted for (%) accounted for (%)

Hydracarina 4.1 Pisidium nitidum 94
Asellus aquaticus 79 Potamopyrgus antipodarum 18.5
Oligochaeta 11.7 Valvata piscinalis 26.0
Chironomidae 14.8 Bithynia tenticulata 325
Ostracoda 17.9 Anisus vortex 38.8
Crangonyx pseudogracilis 20.8 Physa fontinalis 44.9
Pisidium nitidum 23.7 Radix balthica 49.7
Potamopyrgus antipodarum 264 Theodoxus fluviatilis 54.0
Valvata piscinalis 28.6 Sphaerium comeum 57.9
Sigara dorsalis 30.7 Sphaerium rivicola 60.1
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