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1 Blue Brain Project, École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland, 2 University

of Aberdeen, Aberdeen, United Kingdom, 3 Nottingham Trent University, Nottingham, United Kingdom,

4 University of Latvia, Rīga, Latvia

‡ MWR and RL are co-senior authors on this work.

* michael.reimann@epfl.ch

Abstract

In motor-related brain regions, movement intention has been successfully decoded from in-

vivo spike train by isolating a lower-dimension manifold that the high-dimensional spiking

activity is constrained to. The mechanism enforcing this constraint remains unclear,

although it has been hypothesized to be implemented by the connectivity of the sampled

neurons. We test this idea and explore the interactions between local synaptic connectivity

and its ability to encode information in a lower dimensional manifold through simulations of a

detailed microcircuit model with realistic sources of noise. We confirm that even in isolation

such a model can encode the identity of different stimuli in a lower-dimensional space. We

then demonstrate that the reliability of the encoding depends on the connectivity between

the sampled neurons by specifically sampling populations whose connectivity maximizes

certain topological metrics. Finally, we developed an alternative method for determining

stimulus identity from the activity of neurons by combining their spike trains with their recur-

rent connectivity. We found that this method performs better for sampled groups of neurons

that perform worse under the classical approach, predicting the possibility of two separate

encoding strategies in a single microcircuit.

Introduction

Advances in experimental techniques have allowed us to record the in-vivo activity of hun-

dreds of neurons simultaneously. This has gone along with new processing techniques to

extract information from such spike trains. Some are based on the manifold hypothesis [1],

which describes the high-dimensional spiking activity of large neuron populations as deter-

mined by a lower-dimensional space whose components may be aligned with behavioral (such

as movement direction) or stimulus variables. The reconstruction of the underlying space can

then improve the decoding of such variables.
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The manifold hypothesis posits that activity is limited to the lower-dimensional space due

to constraints imposed by the synaptic connectivity [1], however, details of this relation remain

unclear. One identified constraint is that neurons with a large number of synaptic connections

tend to spike at the same time as the population at large, while fewer connections allow neu-

rons to spike when others are silent. Beyond this result, information on how the structure of

synaptic connectivity shapes the neural manifold are scarce. This is in large part due to a lack

of data: While a large number of neurons can be simultaneously recorded from, it remains

challenging to determine the microstructure of their synaptic connectivity at the same time.

Conversely, in a model of a neural circuit, we have complete knowledge about connectivity

as well as activity and can try to understand their relation. However, in order to study how

connectivity shapes the structure of the neural manifold in biology, it is crucial that the con-

nectivity of the model matches biology as closely as possible. Furthermore, to study this spe-

cific question, one additional requirement must be fulfilled: Encoding a lower-dimensional

space in high-dimensional spike trains implies that the spiking activity is highly redundant.

Such redundancy is often a means to overcome the presence of noise in a system [2]. Indeed,

there are various sources of noise affecting neural activity and it has been demonstrated to be

often unreliable [3–6]. Consequently, a model to study the structural implementation of a neu-

ral manifold needs to include these noise sources, to fully understand its function.

One such model is the rat neocortical microcircuit model of Blue Brain (NMC-model, [7]).

It includes detailed synaptic connectivity that replicates a number of biologically characterized

features [8, 9] and recreates a diverse set of experimentally characterized features of cortical

activity [10–12]. It models morphological detail in the form of 55 morphological types of neu-

rons and type-specific synaptic transmission between them [13]. Crucially, the model of syn-

aptic transmission includes short-term plasticity [14–16] and both spontaneous release [17,

18] and synaptic failure [19], both important sources of noise in neural microcircuit [3, 20].

We first tested whether a lower-dimensional manifold could be used to describe the emer-

gent activity of the model. To that end we used the model in a classification task: We subjected

the model to a number of repeated synaptic stimulus patterns, recording the responses of all

neurons. Then we used established techniques to reconstruct the neural manifold from the

spiking activity and tested whether the values of its components were sufficient to classify the

identity of the stimulus pattern injected at any given time.

Next, we investigated the dependence of classification accuracy on the connectivity of a

neuronal population, thereby determining which local connectivity features give rise to a

robust manifold capable of encoding information about the structure of a stimulus. We found

significantly different numbers of motifs of three neurons in high-performing than in low-per-

forming populations. To expand on this, we sampled neuronal sub-populations with uncom-

monly structured synaptic connectivity between themselves or to the rest of the population.

Based on the results, a method to predict the classification accuracy of any sub-population

based on a number of topological parameters was used. Finally, we developed an alternative

method to reduce the dimensionality of spike trains that allowed us to reliably decode stimulus

identity from the activity of populations where the classical technique failed.

Results

Detailed microcircuit model encodes stimuli in a lower-dimensional space

We began by investigating whether the manifold hypothesis, i.e. the hypothesis that spiking

activity of a neuron depends on a linear combination of latent variables, can describe the

results of simulations of the NMC-model. To that end we ran a simulation campaign subject-

ing 219,422 neurons (185,979 excitatory, 33,443 inhibitory) in the model to eight different
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synaptic input patterns (Fig 1A and 1B). The stimuli were injected by activating thalamo-corti-

cal afferent fibers that in turn activated synapses placed onto modeled dendrites according to a

layer-specific density profile from the literature [21]. Each stimulus activated a random 10%

subset of the fibers with an adapting, stochastic spiking process for 200 ms (see Methods). An

adapting process leads to spike trains qualitatively matching the event-like structure [22]

observed across thalamic systems, resulting from predominantly biphasic temporal filtering

[22, 23] while requiring only few parameters. We chose a 200 ms inter-stimulus-interval, as we

found that the population response to each stimulus decayed after a strong initial response

back to a baseline firing rate within 100 ms (Fig 1C). Each stimulus was immediately followed

by the next stimulus, randomly picked from the eight patterns, resulting in an uninterrupted,

random stream. Each repetition of a pattern used the same synaptic input fibers, but different

Fig 1. Synaptic input patterns applied to the detailed microcircuit model. A: The modeled microcircuit includes 2170 input fibers grouped into 100

bundles of nearby fibers modelling thalamo-cortical afferents. B: Spike trains are prescribed to the fibers to serve as stimulus patterns. Each pattern is

associated with 10 randomly selected bundles of fibers. Each repetition of a pattern activates the associated fibers with an adapting Markov process, i.e.

repetitions of a pattern use the same fibers, but with different stochastic spike trains. We apply a stream of 4495 repetitions of one of 8 stimulus patterns

in random order (bottom) and simulate the microcircuits response (top). Raster plot of spiking responses is sorted by the layer of the simulated neuron,

with layer 1 at the top and layer 6 at the bottom C: PSTHs of the input (bottom) and population spiking response (top) for each stimulus. D: Random

sampling: We sample at random offsets by randomly picking 600 neurons from all neurons within a given radius and consider their spike trains for

further analysis.

https://doi.org/10.1371/journal.pone.0261702.g001
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randomly instantiated spike trains. In total, 4495 stimuli were presented, each pattern used

562 ± 4 (mean ± std) times.

Since connectivity in the model is distance-dependent, neurons near the edge of the mod-

eled volume have fewer connections that would be filled in by neurons outside the volume. We

restricted further analyses to the 31,346 most central neurons as they are least likely to be

affected by this edge effect. Additionally, when analyzing how synaptic connectivity shapes the

manifold of neuronal activity, the sign of a connection (excitatory or inhibitory) needs to be

taken into account. To avoid this restriction on analysis methods, we analyzed only the excit-

atory population. Thus, all further analyses are applied only to the 26,567 most central excit-

atory neurons.

To approximate the recording of spike trains with extracellular electrodes, we sampled neu-

rons within a given radius from points within the model and recorded their spike trains for

further analysis (Fig 1D). The points were randomly picked from within a cylinder with a

radius of 200μm and a height of 600μm placed at the geometric center of the model and ori-

ented orthogonal to layer boundaries. Initially, we performed 25 such samplings within

175μm. The number of samplings was set to conform with our second, structural sampling

method presented in the next section. There, most of our sampling parameters display a pro-

nounced change in their distributions around the value 25 [24].

We then analyzed the samples according to the manifold hypothesis by first extracting the

hidden components through factor analysis (time bin size 10 ms, first 12 components

extracted, see Methods). We then investigated whether the values of these components can be

used to distinguish between the stimuli. Exploratory analysis revealed that within three of the

strongest components different stimuli followed different average trajectories (Fig 2A),

although individual trajectories were subject to a large amount of noise (S4 Fig).

Next, we wanted to understand which of the twelve extracted components contained infor-

mation about the identity of the presented stimulus. The time course of a component during a

single stimulus followed a simple trajectory of rapidly rising to a maximum (or negative mini-

mum) value and decaying back to zero (Fig 2A). This allowed us to collapse the time course to

the value furthest away from zero with minimal loss of information. We found that most of the

time, this value differed significantly for the different stimulus patterns, with mean values for a

given stimulus up to 1.6 standard deviations from the mean over all repetitions of all stimuli

(Fig 2B). In other cases however, components never strayed more than half a standard devia-

tion away from the overall mean.

We tried to quantify these differences by calculating for each component its expected use-

fulness for distinguishing between stimuli. To that end, we calculated the negative logarithm of

the p-value of a Kruskal test against the null hypothesis that the mean value was identical for

different stimuli (Fig 2C). This confirmed that pattern identity strongly affected the values for

over half of the components in most volumetric samples. For some samples though, pattern

identity affected only few and weaker components (Fig 2C, e.g. samples #8, #15, #19, #23).

Finally, we performed a classification task attempting to discern stimulus pattern identity from

the trajectories of the first 12 components. The linear classifiers were 6-times cross validated

with a split into 60% training data and 40% validation data (see Methods). We found that the

resulting classification accuracies partly reflected the differences between the samples. Where

accuracies exceeded 80%, stimulus identity affected the trajectory of most components at very

strong significance levels. Yet, the relation was more complicated in lower performing samples,

where some samples classified better than others despite overall lower scores of its components

(#16 vs. #17). This is likely because the information revealed by pairs of components can be

partly redundant, which would not be captured by the test above.
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We conclude that our simulations, combined with a volumetric sampling method lead to

results that are comparable to the literature in the sense that different stimuli lead to different

trajectories in a lower-dimensional manifold. However, the degree to which the manifold

encodes stimulus identity varies between samples. According to the manifold hypothesis, the

nature of the manifold is constrained by and therefore depends on the connectivity of the par-

ticipating neurons [1]. We therefore aim to identify what feature of connectivity leads to more

or less successful stimulus encoding.

We began by considering the presence of triad motifs in the volumetric samples. For each

sample, we counted the occurrences of each possible motif of three connected neurons, and

calculated their over- or under-expression compared to an Erdos-Renyi control model with

the same number of neurons and connections (Fig 2D, bottom). When we compared the

degree of expression of individual motifs to the classification accuracy, we found significant

correlations for 11 out of 13 motifs. Specifically, for highly connected motifs with four or more

Fig 2. Analysis of volumetric samples according to the manifold hypothesis. A: Trajectories of three components for an

exemplary volumetric sample with a radius of 175μm. Responses to different stimuli are indicated in different colors (mean of

562 ± 4 (mean ± std) repetitions each). B: Mean of the most extreme value taken by individual components during a stimulus

presentation, normalized as a z-score relative to the distribution over all trials and stimuli. Indicated for four random neuron

populations, volumetrically sampled with a radius of 175μm. Green outline indicates the three components shown in A. C: Left:

For 25 volumetric samples with radius 175μm: Negative decimal logarithm of the p-values of a test against the null hypothesis

that their extreme values as in B have identical means (Kruskal test, n = 4495 stimulus repetitions). Green outlines indicate the

samples shown in B. Right: Mean accuracy of a classifier of stimulus identity based on the trajectories of the 12 main

components of the indicated volumetric samples (see Methods). D: Bottom: triad motif over- and underexpression in 125

volumetric samples with radii between 125 and 325 μm, relative to ER. Samples are sorted by classification accuracy (right).

Top: Correlation between expression of a specific motif and classification accuracy in the samples (pearsonr).

https://doi.org/10.1371/journal.pone.0261702.g002
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connections, over-expression was associated with higher accuracy and under-expression with

lower accuracy. One apparent exception was the fully connected motif. However, we note that

the actual and expected counts for this motif were extremely low, with 72% of samples having

either zero or one instance. This difference of a single instance already marked the difference

between strong under- or overexpression, making the analysis weak against noise and leading

to a statistically non-significant result. While the result warrants further investigation, we can-

not draw a conclusion on the effect of this motif yet. For weakly connected motifs with only

two connections, this trend was largely reversed. As the degree of expression of motifs was

normalized to the total number of connections in the sample, this indicates that strongly clus-

tered connectivity leads to increased accuracy in the classification task. Unfortunately, the

observed trend was very similar for all highly connected motifs, ruling out more fine-grained

observations. Therefore, we explored a different approach to study the effect of connectivity.

A classification task in samples with uncommon connectivity reveals the

significance of local graph structure

The hypothesis that differences of the connectivity between volumetric samples explain their

different accuracies in the classification task leads to the following prediction: A neuron sam-

ple with an uncommon pattern of connectivity is more likely to depict an outlying classifica-

tion accuracy—either very low or very high. To confirm this, we used a technique introduced

in [24] to generate such samples with uncommon connectivity. We call this neuron sampling

methodology neuron-neighborhood sampling and have recently validated it in a multiple mea-

surements scheme [25].

Briefly, any of the 31,346 neurons in the model can be considered a center and its associated

neighborhood contains in addition all neurons that are directly synaptically connected to it

(Fig 3A). To find neighborhoods with uncommon connectivity, we defined 18 topological

parameters that measure the structure of connectivity within, to, and from a neighborhood

(see Table 1). We then sample the 25 neighborhoods containing at least 50 neurons and with

the highest values for a parameter as the champions of that parameter.

The champions of a parameter were indeed outliers, with values that fell far outside the

bulk of the distribution of the parameter over all neighborhoods (Fig 3B). To confirm that the

connectivity of the champion samples deviated from the overall structure of the model, we

first quantified the over- and underexpression of triad motifs in the volumetric samples (Fig

3C). We then compared the result to the expression of triad motifs in the champion samples

and found large differences for all champions (Fig 3D). For each champion the prevalence of

at least one motif was over five standard deviations from the mean of the volumetric samples.

However, the profiles of over- and underexpression were very similar for some pairs of

parameters, indicating that their associated champions were redundant. We therefore

removed champions and parameters with too strongly correlating triad profiles, reducing the

number of parameters to 11 (see Methods, S3 Fig, Table 1).

We then repeated the stimulus pattern classification task, but this time using spike trains

from the champion samples. As predicted, the resulting classification accuracy varied drasti-

cally between champions of different parameters, possibly reflecting their differently struc-

tured connectivity (Fig 4A). However, while the volumetric neuron samples always contained

600 neurons, the size of the champion samples depended on the connectivity of their centers

and consequently varied. When we compared the size of the samples to the classification accu-

racies, we found a strong correlation (Fig 4B, grey diamonds and blue dots).

This led to two questions: First, is this observed difference in accuracy a result of different

connectivity—in this case, a lower combined in- and out-degree of the center—or simply an
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Fig 3. Neuron-neighborhood sampling with uncommon connectivity. A: Neuron-neighborhood sampling: Any

neuron can be a center. Its associated neighborhood comprises the center, all synaptically connected neurons, and the

connections between them. We then calculate various topological parameters of the neighborhood’s connectivity. B:

Blue violinplot: Distribution of various topological parameters, normalized between 0 and 1. Orange dots: Location of

the champions, i.e. the 25 neighborhoods of at least 50 neurons with the highest values for a parameter. C: Frequency of

triad motifs in volumetric samples with a 175μm radius relative to an Erdos-Renyi graph with the same number of

nodes and edges. Grey: 25 volumetric samples; Black: their mean. D: Over- and under-expression of triad motifs in the

connectivity of champion samples of various parameters, normalized with respect to mean/std of the volumetric

samples.

https://doi.org/10.1371/journal.pone.0261702.g003
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artifact of the analysis—i.e. a consequence of using fewer spike trains in the classification task?

And second, do the various topological metrics capture relevant features of connectivity

beyond simply the size of the sampled neighborhood?

To address the first question, we repeated the pattern classification task for the three largest

champions at reduced sizes. That is, we used only 90%, 70%, 50%, 25% or 15% of the neurons

in the champion neighborhoods of ED, ID and OD for classification (see Methods). The classi-

fication accuracies of these subsampled champions was only slightly reduced compared to the

performance of the complete sample (Fig 4B, red markers). Importantly, the subsampled

champions performed at the top end or better than complete champions of comparable size.

This indicates that for complete champions of smaller size (such as relative boundary), the

lower number of spike trains being analyzed does not fully explain their reduced classification

performance. Instead, the smaller size indicates weaker connectivity of the center to the rest of

the population, which may reduce the neighborhood’s ability to successfully encode stimulus

identity.

To address the second question, we first generated a large number of additional neighbor-

hood samples. This time, we sampled 1276 neighborhoods by picking up to 25 centers ran-

domly from each of the 55 morphological types of neurons in the model [7, 26]. We then

subjected the samples to the stimulus pattern identification task (S5 Fig). This provided us

with a large number of additional data points that were not biased towards extreme connectiv-

ity patterns, but represented typical connectivity of the model, while still providing variable

classification accuracy. As before, classification accuracy in these samples depended on the

Table 1. Topological parameters used.

Parameter Shorthand Explanation Type

Adjacency spectral gap (high) Difference between two largest moduli of eigenvalues of adjacency matrix Recurrent

Adjacency spectral gap (low) ASG Lowest nonzero modulus of an eigenvalue of adjacency matrix Recurrent

Adjacency spectral radius Maximum modulus of an eigenvalue of adjacency matrix Recurrent

Extension Number of neurons connected to but not in neighborhood

Afferent extension AE � for afferent connectivity Afferent

Efferent extension EE � for efferent connectivity Efferent

Betti numbers Betti numbers of the neighborhoods

Betti two Second Betti number Recurrent

Betti three Third Betti number Recurrent

Chung spectral gap Smallest eigenvalue of largest strongly connected component of neighborhood Recurrent

Euler characteristic EC Euler characteristic of the neighborhood Recurrent

Density coefficients Number of k-simplices, divided by number of k-1-simplices and normalized

Second density coefficient � for second dimension Recurrent

Third density coefficient � for third dimension Recurrent

Fourth density coefficient 4DC � for fourth dimension Recurrent

Fifth density coefficient 5DC � for fifth dimension Recurrent

In-degree ID Total in-degree of the center Afferent

Out-degree OD Total out-degree of the center Efferent

Normalized Betti coefficient NBC Sum of normalized Betti numbers, Recurrent

Relative boundary RB Number of connections into neighborhood, divided by connections within neighborhood Afferent

Transitive clustering coefficient TCC Number of directed 3-cliques containing the center, divided by number of possible such cliques Recurrent

Type denotes which connections determine the parameter: Only recurrent connections within the neighborhood, or additionally afferent connections into the

neighborhood, or efferent connections. Parameters without a shorthand assigned were removed for being redundant. For details, see Methods.

https://doi.org/10.1371/journal.pone.0261702.t001
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sizes of neighborhoods, in particular we found a linear relation to the neighborhood size aver-
age (NSA), i.e. the mean over all neurons in a sample of the size of the associated neighborhood

(Fig 4C, grey dots). Corresponding data points for champion samples matched the fit, indicat-

ing that it captured the effect of neighborhood size we found earlier (Fig 4C, green dots). We

performed a linear fit of the data (Fig 4C, black line) that allows us to predict the effect of NSA

Fig 4. Classification accuracy in champion samples. A: Accuracy of a linear classifier to decode stimulus identity from the spike trains of the

champion samples. Blue dots: Accuracies of 6-times cross validation for 25 champions (see Methods); bar and errorbars: mean and standard

deviation. B: Size of champion neighborhoods against their decoding accuracy. Blue dots: individual neighborhoods; grey diamonds and

errorbars: mean and standard deviation of champions of a parameter. Red markers: For the three largest classes of champions as in the legend,

subsampled at 90%, 70%, 50%, 25% and 15%. C: Values of the neighborhood size average measurement (see Methods) for champion (green)

and randomly picked (grey) neighborhoods against their classification accuracy. Black line: Linear fit to both; indicated in blue: residual of the

fit. D: Efferent extension against the residual accuracy indicated in C for randomly picked neighborhoods. Grey dots: 1276 random

neighborhoods; black line: linear fit. E: Left: Slopes of linear fits of residual accuracy against normalized values of the indicated parameter for

randomly picked neighborhoods. Right: Fraction of variance of the residual accuracy that is explained by the linear models over a model that

takes only the morphological type of the center into account (see Methods). Black stars indicate Bonferroni-corrected significance

(���: p< 0.0001).

https://doi.org/10.1371/journal.pone.0261702.g004
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on classification accuracy. Subtracting the prediction from the measured accuracies yields the

residual accuracy, i.e. the accuracy with the effect of neighborhood sizes largely removed (Fig

4C, blue). As the NSA measure does not depend on the presence of a center in the sample, we

will later be able to generalize this concept to the volumetric samples.

We studied the relation between values of the various topological parameters and the resid-

ual accuracy using data from the randomly sampled neighborhoods (for an example see Fig

4D). Specifically, for a given topological parameter, we pooled the data from all random neigh-

borhoods and used them to fit a linear model of the combined effects of the parameter values

and the morphological types of their centers. We then calculated the additional fraction of var-

iance this model explained over one only taking the morphological type into account (Fig 4E,

right). This additional step let us rule out explanations where connectivity patterns captured

by the topological parameters are merely correlated with the morphological types and have no

direct effect on residual accuracy. Additionally we considered the slope of the linear fit in each

parameter to assess the direction of its effect. We found statistically significant effects for all

parameters except the fifth density coefficient (t-test, p< 0.0001 Bonferroni-corrected; Fig

4E). This indicated that the topological parameters were capable of measuring features of con-

nectivity conducive to encoding the identity of a stimulus pattern in a lower-dimensional

space. The largest impact could be found for measures impacted by both recurrent connectiv-

ity within the sample and its connectivity to the rest of the population (RB, AE, EE). The posi-

tive impact of the AE measurement indicates that a sample requires strong external input, but

the negative impact of RB shows that strong internal connectivity is even more important.

Strong effects also of ID and ED reinforce a general trend of more synaptic connectivity

increasing performance, but also a number of parameters measuring structure rather than

quantity (ASG, EC, 4DC, NBC) had significant effects.

Predicting classification accuracy based on topological parameters in

volumetric samples

Finally, we tried to generalize our ability to predict the classification accuracy from the topol-

ogy of synaptic connectivity to the volumetric samples. As before, we calculated the mean of

the sizes of neighborhoods associated with neurons contained in the samples, but this time for

volumetric samples with radii between 125μm and 325μm. Based on this, we predicted their

classification accuracies using the linear fit from before, and subtracted the prediction to gain

residual accuracies. We then calculated the values of the topological parameters based on the

connectivity of the samples (Fig 5A, left) and analyzed their relation to the residual accuracies

as in the previous section. However, the parameters in-degree, out-degree and transitive clus-

tering coefficient were defined with respect to the center of a neighborhood (see Table 1) and

consequently undefined for volumetric samples. We instead used the mean of in-degree, out-

degree and clustering coefficient over all neurons in a sample. Most parameters calculated this

way had no significant effect on the residual accuracies with only three exceptions (Fig 5B). It

thus appears as if the ability of most topological parameters to capture significant connectivity

patterns is linked to neighborhood structure of the samples we used before.

Therefore, we developed the following method to generate a synthetic value of a topological

parameter for a volumetric sample that takes its neighborhood structure into account. First,

calculate the relative size of the overlap between each neighborhood in the model and the sam-

ple. Next, find the N neighborhoods with the strongest overlap (Fig 5A, right for an example

with N = 3). Note that the center of a neighborhood does not need to be contained in the sam-

ple for a strong overlap. Finally calculate the synthetic value as the weighted mean of parameter

values of the N neighborhoods, where the weights are proportional to the relative overlap sizes.
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For each topological parameter, an optimal value for N was determined that maximized the

correlation between the resulting synthetic values for volumetric samples and their residual

classification accuracies (see Fig 5C for an exemplary result). Using this method, all but two

investigated parameters provided a statistically significant effect (t-test; p< 0.0001 Bonferroni-

corrected; Fig 5D; S7A Fig).

The optimal number of neighborhoods to include in the weighted mean (N above) tended

to be low, under 300 neighborhoods for most parameters, with larger numbers leading to a

gradual decline in correlation with classification accuracy (S7B Fig). Exceptions were TCC, EE

and OD, where the optimal solutions were weighted means including all 31,346 neighbor-

hoods. Curiously, this was accompanied by a switch of the sign of the correlation as more

neighborhoods were included (compare Figs 4E to 5D). This indicates that at least these two

classes of parameters capture different ways in which connectivity affects the performance of a

neuron sample in the classification task.

Fig 5. Topological parameters in volumetric samples. A: Two ways of calculating values for topological parameters in volumetric samples. Left:

Values are calculated directly on the synaptic connectivity within the sample (blue neighborhood). Right: Generation of “synthetic” values of

topological parameters that take the neighborhood structure of the sample into account: The size of the overlap of each possible neighborhood

with the sample is calculated, then a weighted average of the parameter value for the N = 3 strongest overlapping neighborhoods is used (red,

yellow, and green neighborhoods with relative overlaps of 3/4, 2/3, and 3/5 respectively). B: Left: Slopes of linear fits of residual accuracy against

normalized parameter values that were directly calculated. Right: Fraction of variance of the residual accuracy that is explained by the linear

models over a model that takes only the radius of the sample into account (see Methods). Black stars indicate Bonferroni-corrected significance

(���: p< 0.0001). Shorthand parameter names see Table 1. C: Comparing directly calculated parameter values (blue) to weighted mean-based,

“synthetic” values of the fourth density coefficient. D: As in B, but for synthetic values of topological parameters.

https://doi.org/10.1371/journal.pone.0261702.g005
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In summary, we found that our method to predict the classification accuracy of a sample

from synaptic connectivity can also be employed in the less artificial volumetric samples. A

strong predictor for high accuracy is the presence of strongly interconnected motifs formed by

a neuron and most of its neighborhood (small value of RB combined with large values of 4DC,

5DC, TCC). Incoming rather than outgoing connectivity is helpful (opposite effects of AE and

ID vs. EE and OD).

An alternative decoding method for low-performing populations, based on

graph topology

Having identified the connectivity patterns that improve a population’s ability to encode stim-

ulus patterns, the question remains what the role of the low-performing populations might be

in the neural computations of a microcircuit. These are populations containing neurons form-

ing small neighborhoods, that is, neurons with structurally weak coupling to the rest of the

population. A dichotomy between weakly and strongly coupled neurons has been character-

ized before in the form of soloists that spike when the rest of the population is silent, and cho-
risters that spike together with the rest [27]. This was characterized in terms of the coupling
coefficient of a neuron, calculated as the correlation of its binned spike train with the firing rate

of the rest of the neurons (see Methods). Neurons with a value below / above a control distri-

bution calculated from shuffled spike trains are considered soloists / choristers. We therefore

investigated whether the low-performing samples and neighborhoods contained a larger

amount of soloists.

We began by calculating the coupling coefficient of all excitatory neurons in the population

and comparing its distribution to two controls with shuffled spike trains: One that preserved

only the overall firing rate of the entire population and one that preserved firing rates of

individual neurons (see Methods, Fig 6A). We confirmed that in our simulation both

soloists and choristers, that is, neurons with an unexpectedly low or high coupling coefficient

emerged. Next, we investigated whether this property depended on the size of the neighbor-

hood that a neuron is the center of (Fig 6B). We found a strong, positive correlation

between these properties, albeit only for centers in layers 1 to 5. Curiously, for centers in layer

6 the relation reversed, with larger neighborhoods apparently reducing the coupling coefficient

of their neighborhood. At the same time, neurons in layer 6 depicted the highest coupling

coefficients.

Having found that the size of a neighborhood affects both classification accuracy and cou-

pling coefficient, it was no surprise that we also found a strong correlation between the cou-

pling coefficients of neurons in a neighborhood and its classification accuracy (Fig 6C).

However, once again, neighborhoods with centers in layer 6 reversed this correlation. For the

volumetric samples, we analyzed the effect of mean coupling coefficient on residual accuracy,

finding the same strongly positive correlation as for layers 1 to 5 (Fig 6D). The coupling coeffi-

cient explained over 30% of the variance of residual accuracy, more than any of the topological

parameters (compare inset to Fig 5D). Taken together, this confirmed that neurons with an

uncommonly low coupling coefficient below 0.1 were more prevalent in neighborhoods and

volumetric samples that did not perform well in the classification task.

In order to further explore the ways in which stimuli are encoded in microcircuit activity,

we employed an alternative decoding method based on topological featurization (Fig 6E [24]).

Similar to the manifold-based method, it begins by binning the spike trains of individual neu-

rons in a neighborhood into 10-ms time bins. However, the way the dimensionality of this

result is reduced, differs drastically. In each time bin, we consider all neuron members of a

neighborhood that are spiking, and the connections between them. We can then calculate any
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Fig 6. Coupling coefficient and topological featurization. A: Distribution of the coupling coefficient, as in Okun et al., 2015, of all excitatory

neurons in the model. Blue: data; grey lines with errorbars: Shuffled controls that keep or shuffle mean firing rates of individual neurons.

Neurons with an unexpected low coefficient are “soloists”, a high coefficient indicates a “chorister”. B: Neighborhood size against the coupling

coefficient of the center for center neurons in layers 1–5 (blue) and in layer 6 (orange). Dashed lines: linear fits. C: As in B, but coupling

coefficient against classification accuracy of the neighborhoods. D: Mean coupling coefficient of neurons in a volumetric sample against its

residual classification accuracy, as in Fig 5C. Inset: Fraction of variance explained as in Fig 5D. E: Classification based on topological
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parameter of the graph of the spiking sub-network, yielding a time series of parameter values

that represent the time course of activity of the neighborhood (see Methods). We used as

parameter the Euler characteristic (EC) of the flag complex, which has been identified as one

of the most promising in [24]. This can be thought of as a measure of the structure of synaptic

connectivity between concurrently active neurons. As this reduced the dimensionality to a sin-

gle dimension with twenty time steps for a neighborhood, we grouped 25 neighborhoods

together and used their pooled time series in the same linear classification method as before.

The neighborhoods pooled together were either champions of the same parameter, or their

centers randomly picked from the same morphological type.

As for manifold-based classification, the results depended on the type of neighborhood. For

neighborhoods based on picking centers randomly from a given morphological type, we found

an overall gradient from accuracy around 80% for centers in superficial layers, to under 50%

for centers in layer 6 (Fig 6F, left). For pooled champions, the accuracy varied comparably

between 40% and 80%, depending on the topological parameter they were champion of

(Fig 6F, right).

Astonishingly, the results were almost completely the inverse of the manifold-based classifi-

cation: neighborhoods that performed well in the manifold performed poorly for topological

featurization and vice versa (Fig 6G). Only some neighborhoods with centers in layer 6 and

the champions of the transitive clustering coefficient performed equally badly for both meth-

ods. This indicated that topological featurization is a classification method more suitable for

the samples that performed poorly in manifold-based classification, that is, samples with a

large number of soloist-type neurons. Indeed, we found a strong negative correlation between

the mean coupling coefficient of a neighborhood and its topological featurization-based classi-

fication accuracy (Fig 6H). We therefore predict that soloists employ an alternative scheme for

encoding information in their spike trains; one that can be more readily read out when in

addition to their spiking activity their synaptic connectivity is taken into account.

While we have demonstrated that topological featurization performs good classification for

soloists, the question remains: Why does it fail for choristers? One of the defining features of

choristers was their overall larger degree, leading to large associated neighborhoods. We there-

fore hypothesized that these larger neighborhoods were also more strongly overlapping, lead-

ing to more similar EC time series. As such, the information in the time series would be more

redundant—each neighborhood conveying the same information. To test this, we further

investigated to what extent the 25 champion samples belonging to the same parameter were

overlapping and how similar their EC time series were. To that end, we computed the mean

relative overlap of pairs of neighborhoods using the Szymkiewicz-Simpson coefficient [28], i.e.

the relative number of common neurons shared by a pair of neighborhoods. Likewise, we

computed the mean correlation coefficients (Pearson) between all pairs of pooled EC time

series averaged over trials, referred to as feature correlation. We found a strong positive corre-

lation between feature correlation and samples overlap in champion samples (Fig 7A), indicat-

ing that a higher number of shared neurons is linked to a higher correlation in the

corresponding feature time series. Two examples of pairwise feature correlation matrices of

featurization: For a given neighborhood, we consider in each 10 ms time step only the subset of neurons that are firing. We then calculate the

value of the Euler characteristic (EC) of the graph of connectivity between them. We classify stimulus identity based on the EC time series of 25

centers. F: Left: Results of the classification for centers randomly picked from the various morphological types in the model. Errorbar: std of

cross validation. Right: Same, for the various champions. G: Mean classification accuracies using the manifold-based method against accuracies

based on topological featurization. Red/blue dots: Random centers as in F; green dots as labelled. H: Accuracies as in F against the mean

coupling coefficient of neurons in the neighborhoods. Errorbars: std over coupling coefficients.

https://doi.org/10.1371/journal.pone.0261702.g006
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the parameters with the lowest and highest mean correlations respectively are illustrated (Fig

7B). Our next question was whether such a redundancy in the feature time series would lead to

reduced classification accuracies. And indeed we found a negative correlation between featuri-

zation-based mean accuracies (over 6-times cross validation) and mean feature correlations

(Fig 7C).

To summarize, our results align with the earlier distinction between soloists and choristers

and their respective connectivity trends, adding the prediction that these two populations

appear to encode information using different strategies. The soloists’ strategy fails in choristers

due to excessive redundancy of information. This indicates that the two codes differ in the way

they employ redundancy to make the code reliable (see Discussion).

Employing the alternative decoding in volumetric samples. As before, our next aim was

to apply this technique to the volumetric samples. A straight-forward approach to this simply

uses the active sub-networks of 25 samples, pooling their EC time series (Fig 7D1). However,

Fig 7. Feature correlation and topological featurization in volumetric samples. A: Mean relative overlap of pairs of

neighborhoods that are champions of the same parameter against the mean correlation coefficient of their Euler

characteristic time series (feature correlation). B: Pairwise feature correlations of the champions of two exemplary

parameters. C: Mean feature correlation of champions against their performance in feature-based classification. D1:

Feature-based classification for volumetric samples can be performed using the active sub-networks of each sample in

each time step, then pooling over samples. D2: Alternatively, the 25 largest neighborhoods can be found within a single

volumetric sample, which are then analyzed as other neighborhood samples. E1: Mean feature correlation for

volumetric samples of various radii when the technique in D1 is employed. E2: Same, when the method outlined in D2

is employed. Only data from one volumetric sample are shown. F: Feature-based classification accuracies for

volumetric samples using the purely volumetric (blue) or sub-neighborhood-based (red) techniques, or a random

control for sub-neighborhoods (yellow). For sub-neighborhood-based and random conditions, we pooled data from all

25 volumetric samples. Black stars indicate Bonferroni-corrected significance (volumetric vs. sub-neighborhoods:

Wilcoxon rank-sum test; sub-neighborhoods vs. random: Wilcoxon signed-rank test; n.s.: not significant, �: p< 0.01,
��: p< 0.001, ���: p< 0.0001). G: Feature correlation against classification accuracy for volumetric samples using the

purely volumetric (blue; Pearson’s r = −0.954, p = 0.012) or sub-neighborhood-based (red; Pearson’s r = −0.811,

p = 0.096) technique.

https://doi.org/10.1371/journal.pone.0261702.g007
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as we found earlier that taking the neighborhood structure of a sample into account led to bet-

ter results, we also used an alternative approach: Using only the neurons in a single volumetric

sample, we extracted the 25 largest neighborhoods that could be found within a single volu-

metric sample, referred to as sub-neighborhoods, which were then analyzed as the other neigh-

borhood samples (Fig 7D2).

In the first approach, when applying the featurization directly on volumetric samples, we

found a clear dependence of the mean feature correlation on the sampling radius, with larger

radii resulting in higher feature correlations (Fig 7E1). This was expected, as larger radii natu-

rally resulted in larger overlaps of samples volumes. In the second approach, when applying

featurization on sub-neighborhoods, the resulting feature correlation seemed to be rather

independent of the sampling radius (Fig 7E2).

Astonishingly, when comparing the featurization-based classification accuracies of both

approaches, we found that the sub-neighborhoods-based approach clearly outperformed the

volumetric approach for large radii (Fig 7F). We found opposite dependencies of the mean

accuracies on the sampling radii, reaching highest values for large radii in the sub-neighbor-

hoods-based approach and for small radii in the volumetric approach respectively. So,

although the sub-neighborhoods-based approach only used information extracted from a sin-

gle volumetric sample instead of pooling several of them, it clearly performed better for 225μm
and above. This finding cannot be fully explained by applying the featurization on smaller sub-

samples disregarding any neighborhood structure, as we found significantly lower perfor-

mance when generating random subsamples with exactly the same sizes as the corresponding

sub-neighborhoods. As before, we again found a negative correlation between accuracies and

feature correlation values for both approaches (Fig 7G). Taken together, our results show that

featurization can be used to decode information also in volumetric samples, with highest accu-

racy when taking the neighborhood structure within a volume into account.

Discussion

We have confirmed that the emergent activity of the NMC-model can be described according

to the manifold hypothesis, that is, as determined by a lower-dimensional space; and that the

values of those dimensions encode information about inputs given to the model. We have fur-

ther demonstrated that within the morphological, electrical and synaptic diversity captured by

the model, some neuronal populations are more useful in reconstructing the lower-dimen-

sional space and using it to decode information about a stimulus. We found that these differ-

ences can be largely explained by the synaptic connectivity of neurons in the populations.

A large component of this finding was that neurons that are strongly connected to the rest

of the population tend to be of the “chorister” type [27] and provide better capability for

decoding stimulus identity, when using manifold-based techniques. This is not surprising, as a

chorister is defined by spiking together with many other neurons and is consequently aligned

with the stronger components of the underlying manifold. Thus, their spike trains carry infor-

mation about those strong components.

However, we also found topological features of connectivity influencing the manifold that

go beyond merely adding more synaptic connections and instead capture the specific structure

of them. We demonstrated that topological parameters such as density coefficients and cluster-

ing coefficients can be used to predict the success of a stimulus classification task. The cluster-

ing coefficient measures the tendency of the connectivity to form tightly bound assemblies and

the density coefficients measure the tendency to form specific types of clusters called directed

simplices [29]. Their effect can be explained as follows: While synaptic input strongly con-

strains neuron activity, this effect is weakened by the presence of noise, especially synaptic
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noise. At the same time, it has been demonstrated that correlations in synaptic input diminish

the effect of noise [30]. This means that a neuron participating in connection motifs that gen-

erate correlated input, will be less subject to noise, and constrained more tightly to the mani-

fold, improving the value of its spike train in decoding the manifold. Directed simplices have

been shown to generate such correlations before [3]. The way in which other topological

parameters influence classification accuracy is less clear. This is a challenging problem due to

the abstract nature of the parameters. While we are not able to link the parameters to existing

neuroscientific concepts at this point, this warrants follow-up study.

We found that the distinction between “well-classifying” and “poorly-classifying” neurons

parallels the split into “soloists” and “choristers” that has been found before [27]. When we fur-

ther investigated the emergent activity, we employed an alternative, topology-based method to

reduce the dimensionality of spike trains of large neuronal populations [24]. With this “topo-

logical featurization” technique, previously poorly-classifying neurons provided sufficient

information to classify stimuli with high accuracy. Topological featurization required the pool-

ing of information from multiple neuron samples, unlike the manifold-based approach that

kept them separate. Therefore, it arguably used more information for classification, potentially

explaining its superior performance under some circumstances. This is however contradicted

by the fact that the samples performing well with featurization were the ones that were individ-

ually small, and the larger samples performed more poorly. Further, for volumetric samples,

the approach that took only a single sample instead of pooling over 25 samples had superior

performance.

A code needs to provide both reliability and bandwidth. These aims stand largely in

oppositions, as for a given level of noise, reliability can be increased by adding redundancy in

the form of correlation, thereby reducing bandwidth. While the manifold-based technique

required local connectivity that increased correlations of synaptic inputs, featurization was

negatively impacted by excessive correlations. This explains its prevalence in samples of

loosely connected “soloists”-type neurons. Taken together, this indicates that a qualitatively

different coding scheme in soloists represents an alternative solution to the dilemma of finding

a balance between the two aims. While the featurization technique cannot currently be

employed in-vivo, as it requires information about the local connectome, advances in connec-

tome reconstructions from electron-microscopy will allow us to validate our predictions in the

future.

Does this mean that there exists neural circuitry that reads out the Euler characteristic of

another population? While such a claim would certainly be premature, we at least want to con-

sider whether such circuitry could be implemented with known biological mechanisms. The

Euler characteristic is the sum of the counts of directed n-cliques for increasing n with alternat-

ing signs (see Methods). This would require, for each n-clique σ one additional readout neuron

bσ receiving input from all neurons in σ. Where bσ should fire only when receiving input from

all neurons in σ simultaneously, forming conceptually an AND conjunction and indicating

that the entire n-clique is active. This could be achieved through clustering of inputs from σ
onto adjacent locations on the dendrite of bσ such that their concurrent activation triggers den-

dritic nonlinearities while individual activations remain local. Both cooperativity between

nearby synapses [31, 32] and functional clustering of synapses with similar receptive properties

[33] has been observed experimentally. Topologically, bσ would extend the n-clique to an n
+ 1-clique and indeed we have found before that n-cliques are part of an unexpectedly high

number of n + 1-cliques [29].

The final readout EC would be a neuron receiving input from all bσs, with a sign that

depends on the size (value of n) of the clique that it reads from (see S8 Fig in S1 File). That

would mean that readouts from even-sized cliques would all need to be inhibitory, readouts
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from uneven-sized cliques excitatory. There is no evidence for such strict motifs, nor for mech-

anisms that would lead to their formation. But it is possible that a less strictly alternating sum

could provide similar information as the Euler characteristic. In summary, a neural readout

circuitry implementing the Euler characteristic is possible, but only some of its possible build-

ing blocks have been found experimentally.

These results were obtained in a highly detailed model, albeit one of only an individual

microcircuit acting alone. The nature of biological neural manifolds is likely determined as

well by long-range connections and dynamic interactions between different brain regions,

meaning a purely local view is limited [34, 35]. Yet, our results provide predictions on the gen-

eral principles that may be employed to encode information in lower-dimensional neural

manifolds.

Methods

Network simulations

Simulation methods are based on a previously published model of a neocortical microcircuit

of the somatosensory cortex of the two week-old rat, here called the NMC-model [7]. Synaptic

connectivity (with apposition-based connectome) between 219,422 neurons belonging to 55

different morphological types (m-types) was derived algorithmically starting from the apposi-

tions of dendrites and axons, and then taking into account further biological constraints such

as number of synapses per connection and bouton densities [8]. Neuronal activity in the

NMC-model was then simulated in the NEURON simulation environment (www.neuron.yale.

edu/neuron/). Detailed information about the circuit, NEURON models and the seven con-

nectomes of the different statistical instantiations of the NMC-model analyzed in this study

are available at bbp.epfl.ch/nmc-portal/ [13].

We simulated evoked activity of the model described above for 900 seconds. After one sim-

ulated second (at t = 0 ms, as we discard the first second) we started applying thalamic stimuli

through synapses of 2170 VPM fibers that innervated the microcircuit. The stimuli were a

stream of eight different input patterns, where each pattern activated 10 randomly picked bun-

dles (clusters) of nearby VPM fibers for 75 ms with an adapting, stochastic spiking process

starting at 75 Hz and decaying to zero with a time constant of 100 ms. Bundles of VPM fibers

were obtained by grouping all fibers into 100 spatially adjacent partitions using k-means clus-

tering. The stream consisted of repetitions of the eight patterns in random order, presenting

one pattern every 200 ms. Repetitions of the same stimulus used the same fibers, but with dif-

ferent stochastic instantiations of the spiking process. Additionally, each of the 2170 fibers was

activated with a poissonian background firing rate of 0.5 Hz. As for each stimulus the pattern

was chosen randomly, the total numbers of presentations differed slightly between patterns:

Pattern 0: 558 repetitions; pattern 1: 559; pattern 2: 566; pattern 3: 568; pattern 4: 561; pattern

5: 560; pattern 6: 557; pattern 7; 566.

The simulation campaign was performed on 3072 processor cores of an HPE SGI 8600

supercomputer (BlueBrain5). Execution of the campaign took a total of 155 hours on this

machine in 31 separate chunks. At the end of a chunk the entire internal state of the simula-

tion, including associated random number streams, was saved and restored at the beginning of

the next chunk.

Topological methods

Abstractly, the brain can be viewed as a directed graph G ¼ ðV;EÞ, consisting of a set of vertices
V, corresponding to the neurons, and a set of directed edges E. The elements of the edge set E
are all pairs (i, j), where i and j are vertices in V, such that there is a synaptic connection from
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neuron indexed i to neuron indexed j. Reciprocal edges between any pair of vertices i and j
(namely both pairs (i, j) and (j, i)), are allowed, but no more than one edge in the same direc-

tion. Loops, namely pairs (i, i) corresponding to edges whose start and end point is the same

are also excluded.

If G ¼ ðV;EÞ is a directed graph and v 2 V is a vertex, then the closed neighborhood of v in
G is the set of all vertices in G that are connected to v (in either direction) and the vertex v itself.

In the mathematical literature the phrase ‘the closed neighborhood of v in G’ sometimes refers

to the subgraph of G that is induced by the closed neighborhood of v, namely where not only

the vertices v and all its neighbors, but also all the edges in G between pairs of vertices in the

neighborhood are included. In cases where this may cause confusion, we shall attempt to clar-

ify what we mean by referring to the closed neighborhood of v (vertices only) as the neighbor-
hood of v and to the subgraph it induces as the neighborhood graph of v, omitting the word

closed in both cases.

A collection of n-vertices v1, . . ., vn 2 V of a graph in which every pair of vertices is con-

nected by an edge is called an n-clique. If G is a directed graph then a subgraph on n vertices

such that every pair of them is connected by an edge in G, and which does not contain as a sub-

graph a 3-clique that is oriented cyclically, is called a directed n-clique. If G is a directed graph

then one can construct a topological space that is made out of the directed n-cliques in G. This

topological space is called the directed flag complex of G [29].

If v is a vertex in a directed graph G, then the neighborhood graph of v in G and any graph

invariants one may associate with that subgraph provide graph theoretic and combinatorial

information about the vertex v and its neighbors. Similarly, the directed flag complex of the

neighborhood graph and associated topological invariants give higher dimensional informa-

tion about v and its neighbors. Notice that since the directed flag complex of a directed graph

is completely determined by the graph itself, it makes sense to talk about topological invariants
of a neighborhood without an explicit mention of the directed flag complex, although the actual

topological invariants do require us to consider the directed flag complex, as without it they

cannot be defined. For a more comprehensive mathematical explanation of these concepts and

the associated invariants the reader is referred to [24].

We now describe the parameters from Table 1 in a topological setting. In the S1 File we give

more heuristic explanations to complement the mathematical definitions.

In-degree and out-degree. If G is a directed graph and v is a vertex in G, the in-degree of v
in G is the number of directed edges in G that end at v, and the out-degree of v in G is the num-

ber of directed edges that emanate from v in G. The degree of v in G is the sum of its in-degree

and out-degree. Note that the degree of v in G is one less than the number of vertices in the

closed neighborhood of v. Degrees of all the vertices in a graph, and associated degree

sequences, characterize properties of the graph [36]. In- and out-degree of a single vertex in a

graph are, however, very local parameters, and in themselves do not inform on global structure

of the graph. Note that a directed n-clique is characterized by having one vertex with in-degree

zero (within the clique), called the source, and one vertex with out-degree zero (within the cli-

que), called the sink.

Transitive clustering coefficient. The clustering coefficient at a vertex v in a graph G is

a measure of how interconnected the vertices of the neighborhood of v are. This coefficient

has been widely studied, initially by Watts and Strogatz [37] in undirected graphs and by

Fagiolo [38] for directed graphs. We use a variation called the transitive clustering coefficient,
which appeared in [24], and is more suitable to our context, since in our topological

analysis we only consider directed cliques in the construction of the directed flag complex, and

therefore in neighborhoods. The transitive clustering coefficient of a vertex v in a directed
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graph G is defined by

C2ðvÞ ¼
the number of directed 3-cliques that contain v

the number of possible directed 3-cliques that could contain v
: ð1Þ

Any pair of edges that are incident to v could theoretically form one or two directed 3-cliques

depending on their orientation. Therefore, the numerator in the definition is the number of

actual directed 3-cliques that contain v, while the denominator is the maximum number of

theoretically possible directed 3-cliques that contain v. The difference between this definition

and that of Fagiolo is that in his definition all possible 3-cliques are considered (including the

cyclical ones), where in our definition the cyclical cliques are omitted from the count. The

number of possible directed 3-cliques at a vertex v in a directed graph is calculated as a func-

tion of the in-degree and out-degree of v, as well as the number of reciprocal connections it

forms [24].

Topologically a 3-clique is 2-dimensional, hence the 2 in the subscript of C2. The transitive

clustering coefficient can be generalised for higher dimensions, but this is not used here.

Density coefficient. Every directed (k + 1)-clique contains k + 1 directed k-cliques as its

faces, but no number of directed k-cliques will necessarily form any (k + 1)-cliques. If we

let Qk(v) denote the number of directed k-cliques that contain a vertex v, then the quotient

Qk+1(v)/Qk(v) gives an indication of how efficiently k-cliques are put together around v to cre-

ate (k + 1)-cliques. This number can be shown to be arbitrarily small or large, depending on

the ambient graph [24]. Therefore, to obtain a distribution as a number between 0 and 1, we

normalise and define the k-th density coefficient for a vertex v in a graph G with n vertices to

be

DkðvÞ ¼
k

ðkþ 1Þðn � kÞ
�
Qkþ1ðvÞ
QkðvÞ

: ð2Þ

With this definition, if G is a directed graph on n vertices, where any pair of vertices is recip-

rocally connected then the k-th density coefficient of any vertex in it will be 1 for all k. For

instance the 2nd density coefficient of a vertex v is defined by

D2ðvÞ ¼
2

3ðn � 2Þ
�
Q3ðvÞ
degðvÞ

:

In all cases the subscript k refers to (k + 1)-cliques being topologically k-dimensional. Notice

also that Q2(v) = deg(v).

Homological parameters. If G is a directed graph, let XG denote its directed flag complex.

This is a topological space obtained from G by replacing every directed 2-clique (a directed

edge) by a line segment (or in mathematical language—a 1-simplex), every directed 3-clique

by a solid triangle (a 2-simplex), every directed 4-clique by a solid tetrahedron (a 3-simplex),

and so on in higher dimension. In general each directed (n + 1)-clique is replaced by an n-sim-

plex—an n-dimensional object that generalises the concepts of, line segment, triangle and tet-

rahedron to a general dimension. The directed flag complex XG of the directed graph G has

been defined and studied in the context of neuronal networks and neuroscience in [29, 39].

Any directed (n + 1)-clique contains exactly n + 1 directed n-sub-cliques. The correspond-

ing n-simplex contains n + 1 (n − 1)-dimensional faces, that are themselves (n − 1)-simplices in

XG. Using this structure it is possible to associate with the directed flag complex an algebraic

object called a chain complex. It is constructed as follows. For every n� 0, take CnðGÞ to be the

vector space over the finite field of 2 elements (or any other field) [40], with basis given

abstractly by the set of all n-simplices in XG or equivalently all the directed (n + 1)-cliques in G.
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Taking faces of simplices gives rise, for every n� 1, to a linear transformation called a differen-

tial

@n : CnðGÞ ! Cn� 1ðGÞ:

The n-the homology group of XG (with coefficients in the field of 2 elements) is defined by

HnðXGÞ ¼ Kerð@nÞ=Imð@nþ1Þ;

namely the quotient vector space of the kernel of @N by the subspace that is the image of @n+1.

For the purpose of the discussion in this article, what is important to understand is only the

dimension of the vector space HnðXGÞ—the so called the n-th Betti number of XG. If we let Dn

denote the matrix representing the linear transformation @n, then the n-th Betti number,

denoted bn or bnðGÞ, is calculated as the difference

bn ¼ NullðDnÞ � rkðDnþ1Þ;

i.e., the dimension of the null-space Dn minus the dimension of the column space of Dn+1.

These numbers depend on the field as well as on the graph G, but in this article we worked

only with the field of 2 elements. The interested reader is referred to [41] for a thorough math-

ematical background on these concepts.

The 0-th Betti number b0 is exactly the number of connected components of G. The 1-st

Betti number b1 can be thought of as the number of distinct loops in G that are not bounding a

2-dimensional subspace in XG. Intuitively, the Betti numbers of XG are a count of n-dimen-

sional “cavities” in XG [29].

In this paper we consider two extra topological metrics that are associated to Betti numbers.

The first is the classical Euler characteristic. The Euler characteristic wðXGÞ can be computed in

two ways that yield the same number. One is the alternating sum

w ¼ b0 � b1 þ b2 � b3 þ � � �

of the Betti numbers of XG. The other is the alternating sum of the number of directed cliques

in each dimension in G. The Euler characteristic is relatively very easy to compute (using the

second method) and although it is considered to be a weak invariant of topological spaces, it is

frequently extremely efficient both in theory and in applications. It is used in a classification

task in [24] and as a topological parameter in this article.

The second topological parameter we use here is the normalized Betti coefficient. It is a

weighted sum of the Betti numbers:

BðXGÞ ≔
X1

i¼0

ðiþ 1Þ � bi
the number of i-dimensional simplices in XG

: ð3Þ

The Betti coefficient is a rough measure of how efficient the graph G is in creating cavities in

all dimensions where they exist in the directed flag complex XG.

Spectral parameters. Every square n × n real valued matrix A has eigenvalues {λ1, . . ., λn},

which are the (real or complex) solutions to the characteristic equation Ax = λx where x is a

vector of length n. Equivalently the eigenvalues are the roots of the characteristic polynomial of
A. The collection of eigenvalues of a matrix A is often referred to as the spectrum of A.

Considering the set of moduli (absolute values) of the eigenvalues of A, one associates three

invariants with A:

• The spectral radius of A is the largest modulus of an eigenvalue.

• The low spectral gap of A is the smallest modulus of a non-zero eigenvalue of A.
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• The high spectral gap of A is the difference between the moduli of its two largest eigenvalues

(sorted by their moduli).

Let G be a directed graph with n vertices. The adjacency matrix A of G has (i, j)-entry ai,j = 1

if there is a directed edge from vertex i to vertex j, and 0 otherwise. The Chung–Laplacian
matrix has a more involved definition, which can be found in [42]. A graph is said to be

strongly connected if for any two distinct vertices u and v in G there is a directed path in G from

u to v. The Chung–Laplacian matrix is only defined on a strongly connected graph. In this

paper we consider the spectral radius of the adjacency matrix of the graphs we studied, as well

as its low and high spectral gaps. We also considered the Chung–Laplacian spectral gaps of the

largest strongly connected components of graphs, whenever these can be uniquely determined.

These invariants are well studied in theoretical and applied graph theory, where their main

objective is to relate various structural properties of graphs to the spectrum. For example the

Laplacian spectral gap is famously known to measure how easy the graph is to disconnect

through so-called Cheeger inequalities [43].

Relative boundary. For a subset S� V of vertices in a graph G ¼ ðV; EÞ, the edge bound-
ary

@S ≔ fði; jÞ 2 E j either i 2 S; j =2S or j 2 S; i =2Sg ð4Þ

of S consists of all edges with exactly one endpoint in S. Likewise, the edge volume

jSj ≔ jfði; jÞ 2 E j i 2 S; j 2 Sgj ð5Þ

of S is the number of edges whose both endpoints are in S. We then define the relative boundary

rbðSÞ ≔
j@Sj
jSj

ð6Þ

of S as the size of its edge boundary divided by its volume. Relative boundary is related to the

so-called isoperimetric or Cheeger number [43] and is designed to measure how strongly the

subset S connects to the rest of the graph relative to its internal connectivity.

Extension. For a subset S� V of vertices in a graph G ¼ ðV;EÞ, its extension is the num-

ber of vertices that are connected to S but are not in S itself. The afferent extension of S and the

efferent extension of S are defined as

aeðSÞ ≔ jfv 2 VnS j ðv; jÞ 2 E; j 2 Sgj; ð7Þ

eeðSÞ ≔ jfv 2 VnS j ði; vÞ 2 E; i 2 Sgj; ð8Þ

respectively. Note that, for example, a vertex v outside of S for which (v, s1), (v, s2)2E for dis-

tinct s1, s2 2 S will be counted only once in ae(S), so as to distinguish the extension of S from

the edge boundary of S. In other words, ae(S) + ee(S) is bounded above by the edge boundary

of S, and the bound is attained whenever no vertex in V \ S is connected by more than one

edge to S. In that case, the edge boundary coincides with the extension.

Structural analysis of the model

The results of the simulations were analyzed according to the pipeline depicted in Fig 8. Inputs

were:

1. The spike trains of the 31,346 most central excitatory neurons in the simulations

2. For each neuron its morphological type, layer and location in the model (x,y,z-coordinates)
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3. The adjacency matrix of synaptic connections between all neurons in the model

4. The identifier of the pattern presented during each stimulation (the “stimulus stream”).

These inputs can be downloaded from https://doi.org/10.5281/zenodo.4317336. The analy-

sis pipeline conceptualized in Fig 8 was implemented in custom python code (python version

3.7), except for parts of the topological analysis which used custom c++ code that was wrapped

for use in python using pybind11. The entirety of the pipeline can be obtained from: https://

github.com/BlueBrain/topological_sampling.

The following sections will explain the individual steps of the pipeline, beginning with the

structural analysis of the model and its connectivity, followed by the analysis of the simulated

neuron activity.

Generating neuron samples. Neuron samples were generated in one of six ways:

1. Volumetric. First, we found the center of the neuron population by averaging their x, y, and

z-coordinates. Next, we added a random offset between −100μm and 100μm for the x- and

z-coordinates (parallel to layer boundaries) and −300μm and 300μm for the y-coordinate

(orthogonal to layer boundaries). Next, we found all neurons in the model within a certain

radius of that point and randomly picked 600 neurons from them. We repeated these steps

to generate 25 samples each for radii of 125μm, 175μm, 225μm, 275μm and 325μm.

2. Champions. We generated champions by finding the 25 neighborhoods that yielded the

largest values for one of the topological parameters described above. We limited the selec-

tion to neighborhoods with at least 50 neurons.

Fig 8. Overview of the inputs into the analysis pipeline and its individual analysis steps.

https://doi.org/10.1371/journal.pone.0261702.g008
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3. Random samples. For each of the morphological types of neurons in the model, we ran-

domly picked 25 neurons and used their associated neighborhoods.

4. Subsampled. For the champions of in-degree, out-degree, and Euler characteristic we gen-

erated random subsamples. First, we randomly picked five champions of each of the three

parameters. Next, we randomly selected a certain fraction of the neurons contained in the

neighborhoods. We repeated this five times, generating five subsamples of each picked

neighborhood. We thus generated subsamples at 90%, 70%, 50%, 25% and 15% of the origi-

nal neighborhood sizes.

5. Sub-neighborhoods. For each volumetric sample, we picked the 25 largest neighborhoods

contained within a sample.

6. Random sub-neighborhoods. As a control condition, we generated random subsamples

from each volumetric sample which have exactly the same sizes as their corresponding 25

largest sub-neighborhoods.

Triad counts. Input into the triad counter was the adjacency matrix of the model and the

identifiers of neurons in a given sample. First we extracted the submatrix defining the internal

connectivity of the sample. Then we recursively iterated through all possible combinations of

three neurons of the sample and classified their connectivity into one of 13 motifs. We limited

this analysis to neuron triplets that were strongly connected in either direction, otherwise

three additional motifs (unconnected, single connection, single bidirectional connection)

would have been possible.

We then calculated the expected numbers of each motif in two control models. First, an

Erdos-Renyi graph with the same number of nodes and edges, yielding CER(i), the expected

count of motif i. Second, an Erdos-Renyi graph with the same number of nodes and edges, but

taking into account the sampling procedure used. That is, taking into account that the sample

contains one central neuron and its neighborhood. We calculated this as follows.

First, we calculated the number of triplets that contain the center (central neuron):

Tcenter ¼
ðN � 1Þ � ðN � 2Þ

2
; ð9Þ

Where N refers to the size of the sample. In this arrangement, the connections binding the cen-

ter to the two other neurons can have one of three patterns. From the view of the center they

can be efferent-efferent (probability 0.25), efferent-afferent (probability 0.5) or afferent-affer-

ent (0.25). For each of these possibilities we analytically derived the expected numbers of

motifs assuming that the remaining connections were subject to a uniform, statistically inde-

pendent probability derived. This included the option to turn the connection binding the cen-

ter to a neighborhood member into a bidirectional connection. The thusly derived motif

probabilities, Pcenter, multiplied by the number of center-including triplets yielded the first part

of the expected motif counts.

Next, the number of triplets not containing the center was:

Tnon� center ¼
ðN � 1Þ � ðN � 2Þ � ðN � 3Þ

6
ð10Þ

For these we derived the expected motif counts according to an Erdos-Renyi control. Total

expected count of motif i in neighborhood sampling was then:

CneighborhoodðiÞ ¼ TcenterðiÞ � PcenterðiÞ þ Tnon� centerðiÞ � PERðiÞ ð11Þ
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The degree of over- and under-expression of motif i in volumetric samples was then calcu-

lated as:

OvolðiÞ ¼
CvolðiÞ � CERðiÞ
CvolðiÞ þ CERðiÞ

: ð12Þ

The degree of over- and under-expression in champion samples was calculated relative to the

volumetric samples. First we normalized each sample against their respective control:

ÔvolðiÞ ¼
CvolðiÞ
CERðiÞ

; ÔchampðiÞ ¼
CchampðiÞ

CneighborhoodðiÞ
; ð13Þ

Then, we normalized the motif count in the samples to the mean and standard deviation of the

volumetric samples:

OchampðiÞ ¼
ÔchampðiÞ � meanðÔvolðiÞÞ

stdðÔvolðiÞÞ
; ð14Þ

Where mean and std refer to the mean and standard deviation over volumetric samples.

Calculating topological parameters for samples. We calculated the values of the topo-

logical parameters for all possible neighborhoods, i.e. we considered each neuron in the model

as a center and calculated the parameters of the resulting neighborhood. We also calculated

parameter values for volumetric samples in two ways.

First, by simply applying the topological method to the connectivity of the sample. This

could be done for all parameters except in-degree, out-degree, transitive clustering coefficient.

These parameters were calculated in neighborhood samples as the in-degree, out-degree,

etc. of the center and were consequently undefined for volumetric samples. We instead used

the mean in-degree, out-degree of clustering coefficient of all neurons in the volumetric

sample.

Second, by taking the neighborhood structure of the sample into account. To that end, we

first calculated the value of a given parameter for all possible neighborhoods in the model as

described above. Next, we calculated for each neighborhood the relative size of its overlap with

the volumetric sample in question, i.e. the number of neurons contained in both divided by

the number of neurons contained in the sample. We then selected the n neighborhoods with

the largest overlap and calculated the weighted mean of their value of the parameter, with

weights proportional to the overlap. Note that the center of a neighborhood did not have to be

part of the sample to let it impact the weighted mean. We optimized the value of n to yield the

best predictor of accuracy, separately for each topological parameter.

Analysis of simulated neuron activity

Calculation of coupling coefficients. Input into this step were the raw spike trains of all

neurons recorded in the simulations.

We started by binning the spike trains of all neurons in the model into 10 ms bins. This

yielded a N × T sparse matrix, where N was the number of neurons and T the number of time

bins and the entry at i, j specified the number of spikes of neuron i in time bin j. For the cou-

pling coefficient of neuron i, we used the ith row of the matrix as the time series of firing of

that neuron, and the mean value across all rows of the matrix, except i as the average firing rate

of all others. We then calculated the coupling coefficient as the normalized correlation between

the two time series (numpy.corrcoef).
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Dimensionality reduction through factor analysis. Input into this step were the raw

spike trains of all neurons recorded in the simulations, information about the pattern identity

of each stimulation, and the identifiers of a sample of neurons.

We began by binning the spike trains of all samples neurons into 10 ms bins. This yielded a

Nsample × T sparse matrix, where Nsample denotes the number of neurons in the sample. Non-

spiking neurons were removed. Next, we extracted the twelve strongest components from this

Nsample-dimensional time series using factor analysis (sklearn.decomposition.FactorAnalysis).

Then we split the resulting 12-dimensional time series into 200 ms time windows that each

corresponded to a stimulus presentation. Finally, we grouped these time windows by the iden-

tity of the stimulus pattern presented at that time.

Topological featurization. For a given type of neuron sample, based on a topological

parameter or randomly sampled (see “generating neuron samples” above), we considered all

25 generated neighborhoods. Spike trains for each of the individual neurons in the microcir-

cuit and each stimulus were binned into 10 ms time bins. In each time bin we recorded the

neurons that fired at least one spike, i.e. active neurons. For each of the selected neighbor-

hoods, we now computed the directed flag complex of the subgraph of the neighborhood

graph induced by the active neurons in each time bin, and then we computed the Euler charac-

teristic (EC) of that directed flag complex. For each stimulus, this reduced the activity of the

neurons in a neighborhood to a time series of 20 (one per time bin) EC values. The series for

all 25 neighborhoods were concatenated and used used as feature vectors for our classification.

In [24] the same method was used, but many other topological and graph invariants were used

there as feature parameters, and not only Euler characteristic. However, Euler characteristic

was shown there to be one of the strongest performing feature parameters in terms of classifi-

cation accuracy.

Stimulus classification. Input into the classifier was either: The twelve strongest compo-

nents of the spiking activity of a neighborhood, extracted as detailed above. Or: The time series

of Euler characteristic values of the active sub-neighborhood extracted from the activity of 25

neighborhoods as detailed in the main text. In both cases, the input was split into time win-

dows that each represented a single trial, i.e. a single stimulus. The time windows were further

grouped by the identity of the stimulus pattern used in the trial.

Next, we generated for each time window a time series of expected outputs of the classifier.

This was simply the identity of the stimulus (an integer between 0 and 7), repeated for each

time step. 60% of the trials and their associated expected outputs were used to train a linear

classifier (sklearn.svm.SVC). The remaining 40% were used to determine classification accu-

racy. This was repeated 5 times, thereby conducting 6-times cross validation.

Dependence of classification accuracy on topological parameters. We first generated a

model of the dependence of accuracy on neighborhood sizes in a sample. To that end, we iter-

ated over each neuron in a sample, considered the neuron as the center of its own neighbor-

hood and calculated the size of that neighborhood. We call the mean of these neighborhood

sizes for a sample the neighborhood size average (NSA). This measure could be calculated

equally for both neighborhood and volumetric samples. Next, as the model of the impact of

NSA, we conducted a linear fit of NSA against classification accuracy (using the manifold

method) based on the data of 1276 randomly picked neighborhoods. The fit minimized the

sum of squared errors and was performed using the statsmodels package in python 3.7.

We calculated the residual accuracy for each sample—neighborhood or volumetric—by

subtracting the prediction of this model from the classification accuracy values. We then deter-

mined the relation between topological parameters and residual accuracy as follows. We began

with a simple control model predicting the residual accuracy from the sampling radius in the

case of volumetric samples or from the morphological type of the center in the case of
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neighborhood samples. Both morphological type and radius were considered categorical vari-

ables. Again, the fit was performed using statsmodels in python.

Next, we normalized the values of each topological parameter to zero mean and unity vari-

ance and generated linear models of the residual accuracy taking into account the effects of

both radius / morphological type as a categorical variable and the normalized value of the

parameter. We created such a model for each topological parameter.

We then calculated the slope of the fits in the parameter to assess the strength of the effect

of that parameter; and the fraction of variance explained, from which we subtracted the frac-

tion of variance explained by the simpler control models.
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25. Riihimäki H, Chachólski W, Theorell J, Hillert J, Ramanujam R. A topological data analysis based classi-

fication method for multiple measurements. BMC Bioinformatics. 2020; 21(1):336. https://doi.org/10.

1186/s12859-020-03659-3 PMID: 32727348

26. Petilla Interneuron Nomenclature Group, Ascoli GA, Alonso-Nanclares L, Anderson SA, Barrionuevo G,

Benavides-Piccione R, et al. Petilla terminology: nomenclature of features of GABAergic interneurons

of the cerebral cortex. Nature Reviews Neuroscience. 2008; 9(7):557–568. https://doi.org/10.1038/

nrn2402 PMID: 18568015

27. Okun M, Steinmetz NA, Cossell L, Iacaruso MF, Ko H, Barthó P, et al. Diverse coupling of neurons to
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