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Abstract 14 

Pesticides are among the top-priority contaminants, which significantly contribute to 15 

environmental deterioration. Conventional techniques are not efficient enough to remove 16 

pollutants from environmental matrices. The development of functional materials has emerged as 17 

promising candidates to remove and degrade pesticides and related hazardous compounds. 18 

Furthermore, the nanohybrid materials with unique structural and functional characteristics, such 19 

as better material anchorage, mass transfer, electron-hole separation, and charged interaction 20 

make them a versatile option to treat and reduce pollutants from aqueous matrices. Herein, we 21 

present the current progress in the development of functional materials for the abatement of toxic 22 

pesticides. The physicochemical characteristics and pesticide-removal functionalities of various 23 

metallic functional materials (e.g., zirconium, zinc, titanium, tungsten, and iron), polymer, and 24 
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carbon-based materials are critically discussed with suitable examples. Finally, the industrial-25 

scale applications of the functional materials, concluding remarks, and future directions in this 26 

important arena are given.  27 
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 30 

Introduction  31 

Water is among the most indispensable constituent of various biotic ecosystems. The vulnerable 32 

and uninterrupted exploitation of water resources, off-the-cuff utilities of the human-made 33 

chemicals, and growing population have instigated the mitigation of the environment (Sahoo and 34 

Gupta, 2012). The traces of pesticides protect them from recognition and obstructs the 35 

development of an operative treatment methodology. Micropollutants such as pesticides 36 

contributed a lot to the deterioration of the environment. These toxicants are acutely dangerous 37 

even in a trace amount, e.g., simazine in μg/L in water bodies can potentially cause kidney 38 

congestion, low blood pressure, heart, adrenal gland and lung related consequences (Boruah et 39 

al., 2021). These contaminants are present in unprocessed discharge from domestic wastewater, 40 

industrial effluents, cultivated fields, wetlands, and polluting natural resources (Figure 1). The 41 

United States Environment Protection Agency (USEPA) and European Environment Agency 42 

(EEA), both have declared pesticides as priority contaminants on the bases of their harmful and 43 

persistent environmental impacts (Wade et al., 2003; Rani et al., 2017). The foreseeable 44 

harmfulness of the pesticides is because of the presence of micro compounds such as dioxins, 45 

phenols, and cyanides, etc. The toxicity of these micro compounds owes to the fact that they are 46 

resilient to the conventional treatment methodologies (Debnath and Gupta, 2018; Vaya and 47 
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Surolia, 2020; Bayantong et al., 2021; Hashimoto et al., 2021). Their hydrophobic character has 48 

facilitated the assimilation of the pesticides in fatty tissues for a more extended period. The 49 

persistence of these contaminants and their accumulation in more significant concentration 50 

outcome adverse impact on living organisms. This increased level further obstructs the normal 51 

functioning of the endocrine system by disturbing the hormones (McKinlay et al., 2008). The 52 

resistive nature of these contaminants has significantly challenged the quality of usable water 53 

resources. This urges the scientists and researchers to develop advanced technologies to meet the 54 

challenge (Pillai and Gupta, 2016). Recently, the investigations are centered around the 55 

development of cutting edge tailored functional materials such as clay composites, core-shell 56 

structure, doped metal oxides, composite heterojunctions non-metal modified oxides, metal-57 

organic framework and metal-organic framework/carbon-based hybrid nanocomposite, etc. to 58 

overcome the deficiencies (Lin et al., 2006; Cui et al., 2018). These hybrid nanomaterials are 59 

instituting their advanced applications to remove and degrade the pesticides as they exhibit better 60 

material anchorage, mass transfer, electron–hole separation, and charged interaction.  61 

This review presents functional materials as potential candidates to mitigate toxic pesticide 62 

contamination in wastewater. Furthermore, the work focuses on the functional materials that 63 

create a lesser amount of sludge, prevent the production of secondary pollutants, and can be 64 

reused for several operations. Additionally, the basic removal pathway, negative consequences of 65 

pesticides, and their efficient handling have been discussed in detail. The fundamental 66 

sustainable developments in the manufacturing of various metallic functional materials, carbon-67 

based materials, and polymer-based functional materials are discussed along with their 68 

advantages, such as low-cost alternatives for managing pesticides. Finally, the industrial-scale 69 
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applications of the functional materials with future prospects and recommendations are 70 

discussed. 71 

Categories of the pesticides 72 

The category and chemical profile of pesticides are decided based on their structure and function. 73 

, They are categorized as bactericides, fungicides, herbicides, and insecticides, based on their 74 

action on bacteria, fungi, herbs, and insects, respectively. In contrast, the organic residues of 75 

pesticides are classified based on functionalities present in their structure. They may be 76 

categorizing as pyrethroids, organophosphorus, carbamates, and organochlorine (Konstantinou et 77 

al., 2006). The pesticides are employed aerially in the form of aerosols and sprays in household 78 

areas and agricultural lands. The aerial application of pesticides may lead to the contamination of 79 

the distant regions through transboundary movement (Aktar et al., 2009). Mainly, the unpointed 80 

discharge of the pesticides from domestic wastewater and agricultural fields is hard to observe, 81 

obstructing their control (Yadav et al., 2015).  82 

The environmental concern of the pesticides  83 

Widespread usage of pesticides is responsible for different adverse environmental consequences 84 

and their ultimate biological effects (Figure 2). According to the Drinking Water Directive 85 

(98/83/EC) regulation, the permissible level of a single active constituent is 0.1 mg/L and for all 86 

collectively active components, the permissible level should be 0.5 mg/L in any drinking water, 87 

which is used by the humans (Karabelas et al., 2009).  The documented reports reveal that the 88 

long-time intake of insecticides is responsible for interfering with the signaling of the nervous 89 

system by hindering the sodium and potassium channels and inhibiting the cholinesterase 90 

(McKinlay et al., 2008). Strong soil adsorption and resistance to biodegradation of heptachlor 91 

epoxide made them highly toxic, and its consumption causes vomiting and nausea (Grundlingh et 92 
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al., 2011). Pyrethroids are known as endocrine disruptors, and they cause various disorders as 93 

amyotrophic lateral sclerosis, dementia, genetic diseases, and Parkinson’s disease. They increase 94 

the risk of childhood cancer ( Slotkin, 1999; Ishihara et al., 2003). Pesticides have accumulated 95 

property. They may reside in the body from few months to several years, so even at very low 96 

concentration (ng/ml) they are dangerous for health (Graymore et al., 2001; Yadav et al., 2015). 97 

Due to their interference with cell signaling, call shocks occur, which may cause nausea, 98 

vomiting, and muscle miscoordination (Ogut et al., 2015). Different functional moieties as 99 

amides, phosphate, phenolics, and chlorine assist the uptake of pesticides on the lipophilic 100 

membranes of lungs and kidneys responsible for irreversible adverse effects (Tomer et al., 2015). 101 

Pesticide exposure may cause reproductive diseases, congenital disabilities, cancer, malignant 102 

tumors, miscarriages, genital deformations, abnormalities in behavior stunted growth of off-103 

springs (McKinlay et al., 2008; Tayour et al., 2019; Gutiérrez-Jara et al., 2020; Yang et al., 104 

2020). Pesticides also affect the reproductive system of fishes and affect the egg-shells thickness 105 

of different birds (Al Hattab and Ghaly, 2012).  106 

Functional materials to remove pesticide  107 

Conventional methods have several limitations for removing the pesticides, which urged the 108 

scientists to develop advanced functionalized materials and subsequent processes. The 109 

functionalization of hetero-structures enhances the physical and chemical characteristics of 110 

materials. Photoactive materials exhibit enhanced efficacy because the restricted movement of 111 

electrons and the appearance of discrete energy-levels are responsible for improving the material 112 

property. The significant properties of functional materials may be due to their improved surface 113 

defects, enhanced surface-area to volume ratio, excellent mobility of electrons, greater 114 

absorption of light, and excellent affinity for metabolites sorption in aqueous form (Lin et al., 115 
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2006). These materials can be easily tailored to polymers, zeolites, and membranes to assist their 116 

operation with ease. Functional materials play a significant role in treating dangerous waste 117 

materials, sustainable products and sensor developments, etc. (Mohmood et al., 2013; Qu et al., 118 

2013).  119 

Modified structures are responsible for improving the physical characteristics of materials and 120 

enhancing the catalytic, magnetic, adsorbing, electrical, luminescence, and filtration 121 

characteristics of the material ( Reddy and Kim, 2015). So far, various functional materials have 122 

been tailored and established to remove pollutants and incorporate characteristics of photo-123 

catalytic oxidation. Those functional materials suitable for treating broad spectrum molecules of 124 

pesticides also do not cause any pollution in aqueous media. These challenges regarding 125 

functional materials urged the scientist to research non-toxic benign templates of carbon, zinc, 126 

iron, titanium, tungsten, zirconium, and polymers. For instance, graphene, carbon-nanotubes, 127 

different oxides of iron as magnetite and hematite, titanium dioxide (TiO2), zirconium oxide 128 

(ZrO), zinc oxide (ZnO), and tungsten oxides are found efficient in the removal and degradation 129 

of pesticides from aqueous media ( Khajeh et al., 2013; Al-Hamdi et al., 2016). To decrease the 130 

treatment cost, different biomaterials can be used as alternatives to expensive adsorbents. Natural 131 

sources may provide carbon and biomaterials, which are obtained from polymers. They provide 132 

an excellent template to produce functionalized membranes. The dendrimers with functional 133 

surface modified and surface plasmonic species effectively adsorb the contaminants (Adachi et 134 

al., 2004). In water treatment, materials have been found actively involved in photo-catalytic 135 

degradation and adsorption of organic pollutants on their porous surface (Pillai et al., 2015; 136 

Reddy et al., 2016). The active sites on porous surface materials are responsible for the 137 

interaction of solid-phase with pesticide. Attempts are being to fabricate functional materials 138 
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with overcome loopholes as surface-passivation, high aggregation, and high-surface energy. 139 

Tungsten, zinc, and titanium metal oxides have great potential to absorb a specific light 140 

spectrum.  141 

Pesticide catalysis is a new methodology to mineralize pollutants by generating low amounts of 142 

by-products, usually water and carbon dioxide. Their light absorption capability aids the catalytic 143 

property of functional materials. After functionalization, the catalytic properties and photon 144 

capture capacity of catalysts are enhanced so that they can be re-used many times to treat 145 

pesticides. The light absorption depends on the photocatalyst band gap. When light energy 146 

exceeds the material band-gap, an electron-hole pair generates only (Lam et al., 2014). The 147 

transfer of charge and channeling on the surface of the catalyst is enhanced by a greater specific 148 

surface area (Zangeneh et al., 2015). Functional materials may overcome bottlenecks of photo-149 

oxidation as plasmonic-species, metal, and non-metal complexes charge recombination by 150 

coupling photoactive materials with polymers and sensitized dye molecules. Charge-transfer 151 

within the semiconductors increases by the formation of additional discrete band-state. The 152 

plasmonic species like gold and silver decrease charge carrier recombination. Electrons are 153 

pumped into the conduction band by these species, and life time of positive holes increases in 154 

valence-band, which completes the oxidative species generation (Luo et al., 2015). The electrons 155 

generation is facilitated by dye-sensitization of photo-catalyst, which is ascribed for the process 156 

of photo-reduction. This phenomenon can enhance the efficacy of photo-catalyst by inserting 157 

electrons from the highest occupied molecular orbital (HOMO) to the CB of semiconductor 158 

through the lowest unoccupied molecular orbital (LUMO) (Albay et al., 2016; Alam et al., 159 

2017). Figure 3 presents various tailored functional materials for the treatment of pesticides and 160 

related environmental pollutants.  161 
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Functional materials based on Titanium  162 

The photocatalyst TiO2 has high mobility of electrons and can quickly generate the electron-hole 163 

pair, which enhances its capacity to effectively degrade the organic contaminants (López-Ayala 164 

et al., 2015; Sivagami et al., 2016). TiO2 has UV sensitivity, and its bap gap falls in the range of 165 

3.2-3.4 ev (Lee and Park, 2013; Justh et al., 2017). Different titanium oxides exist in different 166 

phases as rutile, anatase, and brookite (Chitose et al., 2003; Follut and Leitner, 2007).  167 

The charged electrons (eCB
-) and holes (hVB

+) are generated when the light having more energy 168 

than the band gap falls on the surface of TiO2 as presented in Equation (1) (Chen et al., 2011). 169 

…………………………………….. (1) 170 

Superoxides and hydroxyl radicals are generated on the surface of the catalyst when material 171 

mobilizes electrons (photo excited) from the valence to the conduction band. Available chlorine 172 

and sulfur are oxidized to chloride, and the generated holes trigger sulfide radicals and this 173 

process. While energy dissipation causes hindrance to photocatalytic efficacy, this occurs due to 174 

quick recombination of charge carriers and less visible light capability (Gupta et al., 2006; Sahoo 175 

and Gupta, 2013). Different hybrids of titanium oxides with enhanced efficiency in the visible 176 

light spectrum have been synthesized. Mainly functionalization comprises impregnating TiO2 to 177 

the mesoporous materials like graphene, glass surface, clays, polymeric molecules, and carbon 178 

nanotubes etc. The materials strive to minimize the electron-hole pair recombination and 179 

generate additional band state, which helps absorb the visible light (Linsebigler et al., 1995; Lee 180 

et al., 2015; Cho et al. By using AgCl/Ag/TiO2 (silver chloride/ silver/titanium oxide) a 181 

sandwiched type structure has been reported which enhanced the capability of TiO2 to absorb in 182 

the visible range (Figure 4)  (Tian et al., 2014).  183 
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Silver (Ag) and gold (Au) have plasmonic properties and can pump the electrons into the 184 

conduction band of TiO2. Because of this, they are of great interest for the development of 185 

photocatalyst with enhanced qualities. The electron flow is induced by silver (Ag) surface, and 186 

silver chloride (negative surface) increased the radicals (active chlorides) generation and 187 

entrapment of holes ( Wang et al., 2012; Dong et al., 2013). Simple TiO2 nanoparticles have 5% 188 

less efficiency to degrade pentachlorophenol under visible light irradiation compared to Ag/TiO2 189 

hybrid nanoparticles, which can degrade 80% pentachlorophenol (Zhang et al., 2012). Modified 190 

TiO2 with metals like gold, copper, palladium, and zirconium showed enhanced formation of p-n 191 

hetero-junction and interfacial transfer of charge at the solid-liquid interface (Lee and Jang, 192 

2014; Hernández-Gordillo and González, 2015; Naraginti et al., 2015). Yu et al. (2010) reported 193 

that gold coupling provides improved photo-electrons' localization and prohibits recombination 194 

loss. As compared to TiO2, the metals favor the generation of holes and are responsible for 195 

promoting oxidation. Dopped material replaced the base atoms, so the modified doped TiO2 has 196 

many surface defects, and these defects increase the separation of charges responsible for 197 

entrapping the lighter energy. The n-type semiconductors are converted to the p-type when 198 

doping is done with non-metals and this increase the sensitivity of visible-light (Zangeneh et al., 199 

2015). Interfacial surface tension on the TiO2 surface caused by the metal impregnation increase 200 

the mesoporous surface area. This also enhances the transfer of the electrons from the metal 201 

conduction band to the TiO2 surface, reducing the divalent oxygen to the superoxide ( Hossaini 202 

et al., 2014; Sahoo and Gupta, 2015). In the absorption spectrum of TiO2, the activity of visible 203 

light is monitored by red shift, which increases the apparent quantum-yield (Linsebigler et al., 204 

1995). TiO2 has been modified with Cetyl Trimethyl Ammonium Bromide (CTAB) surfactant to 205 

enhance the stability of the photo-excited species and also to give the best anchorage for the 206 



10 
 

interaction of solid-liquid phase with organic compounds (Zhu et al., 2007). Increased removal 207 

and degradation of the pesticides may be due to the co-adsorptive capability of surfactant-bilayer 208 

(Senthilnathan and Philip, 2010). Enhanced dispersion of particles was also provided by 209 

surfactants which give a homogeneous surface for the degradation and adsorption of metabolites. 210 

Modification of TiO2 particles with iron particles or silica beads has been carried out to better 211 

separate TiO2 particles from aqueous phase both magnetically and physically. Organo-212 

phosphorus based pesticides have been degraded by the immobilization of TiO2 on silica beads 213 

(Shifu and Gengyu, 2005). Liu and his co-workers synthesized the Fe/TiO2 nano-particles for the 214 

degradation of 2,4-dinitrophenol (Liu et al., 2012).  215 

Fe2O3/TiO2 has been employed for 2,4-dichlorophenoxyacetic acid degradation (Figure 5) (Lee 216 

et al., 2017). Photogenerated electrons get excited from the valence band to the conduction band 217 

of TiO2 after exposure of photocatalyst to UV light, and holes left are left in the valence band. 218 

2,4-dichlorophenoxyacetic acid oxidized directly to 2,4-dichlorophenol through these 219 

photogenerated holes. Reduction of oxygen takes place because holes and superoxide radicals 220 

are generated. Heteroconjuction formation between Fe2O3 and TiO2 nanoparticles led to the 221 

promotion of charge transfer, which also suppressed the electron-hole recombination. Table 1 222 

presents the efficiency of different titanium-based materials for the degradation and removal of 223 

different pesticides 224 

Functional materials based on Zinc  225 

Zinc-based materials with novel crystalline and characteristics have been developed with 226 

efficient photo-catalytic properties. These materials have the property of reusability for many 227 

degradation processes. Low toxicity, economic values, less light scattering, easy tailored-surface 228 

characteristics, and good mobility of E-H pair made zinc the best option for pesticide 229 
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degradation. The inhibition of recombination of  E-H pair, quantum entrapment, and loss of heat 230 

energy are the main factors responsible for the efficacy of photocatalysis (Shanmugam and 231 

Jeyaperumal, 2018). The Refractive index of ZnO is 2, and it has a band gap of 3.2 eV. It has an 232 

efficiency of maximum light absorption. As compared to TiO2, ZnO produces more reductive 233 

species due to the excellent mobility of electrons, and similarly, the oxidative potential of 234 

hydroxyl radicals is higher in ZnO (3.0 V) in comparison to TiO2 (2.7 V) (Kumar and Rao, 235 

2015). Despite being a promising photocatalyst, ZnO also has potent antimicrobial properties 236 

(Navarro et al., 2009; Bechambi et al., 2015). Photo-corrosion, photo dissolution, fast E-H pair 237 

recombination, and also at alkaline pH, the creation of the surface-passive-layer (Zn(OH)n
(2-n)+) 238 

are the limitations of ZnO, which decreases its efficacy and versatility (Panthi et al., 2015). 239 

Equation (2) presents the reaction process (Kumar and Rao, 2015) where ‘n’ is dependent on the 240 

solution pH. Initially, the ZnO photo dissolution involves the hole trapping (h+) on the surface, 241 

resultantly oxygen molecules are generated (O2), and then the creation of the surface-passive-242 

layer (Zn(OH)n
(2-n)+) happens. 243 

………………………… (2) 244 

By incorporating carbon-nanotubes, polymers, metals, non-metals, and surfactants, researchers 245 

have developed modified ZnO materials to overcome these limitations. These modifications can 246 

inhibit Photo-corrosion and the formation of the passive layer. Divband et al. (2013) presented 247 

the importance of the fermi-level for the potential transfer of the electrons from the conduction-248 

band of ZnO to silver, which consequently entraps the oxygen and forms the super-oxides. ZnO 249 

complexes with HCA (hydrocitric acid)/TBPA (tetra-bromophthalic anhydride) increased the 250 

visible-light sensitivity of ZnO (Comparelli et al., 2005). Complexation of ZnO with chitosan to 251 

degrade the permethrin (pesticide) has been reported (Dehaghi et al., 2014). The polymer-zinc 252 
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oxide composite at the dose of 0.5 g/L degraded the 99% pesticide. After 3 cycles, the composite 253 

showed 56% efficacy. Coating the polymer on ZnO gives strength to functional material against 254 

the photocorrosion, and also polymer may also act as an electron-pumping agent.  Pei and co-255 

workers (Pei et al., 2014) described the increased photocatalytic efficacy of coupled ZnO with 256 

poly-aniline. And this attributed the process to the excellent capture of the electrons. Dyes and 257 

polymers have mobile charge carrier potential and may help in the easy transfer of electrons. In 258 

the acidic media, the polymers protonate conveniently, which protects ZnO's dissolution in 259 

acidic media and helps efficient binding of negative charge containing organic contaminants 260 

(Khatamian et al., (2012).  In the continuous-flow reactor, the composite of ZnO-bentonite 261 

having an approximate size of 20-30 nm degraded the phenol (70%) with an adsorption potential 262 

of 14.7 mg/g (Meshram et al., 2011). Bentonite clay has many layers of silicate and aluminum 263 

hydroxide, which probably responsible for the removal mechanism. They have excellent 264 

absorbing power and enhance the surface area of the catalyst, which is attributed to improving 265 

the solid-liquid mass transfer operations. ZnO has been hybridized with rare earth metals as 266 

nobelium and lanthanum to control the E-H pair recombination (Anandan et al., 2007a; Anandan 267 

et al., 2007b; Lam et al., 2014). Doping of lanthanum in ZnO enhanced the space charge 268 

potential more than 0.2 V which gave the effective E-H pair separation (Anandan et al., 2007a). 269 

ZnO modified with ferric oxide provided enhanced surface-area and also showed enhanced 270 

absorption of visible light to efficiently degrade the penta-chlorophenol (Xie et al., 2015). Fast 271 

diffusional metabolites transfer occurs to the mesoporous structure (flower like) which then 272 

reacts with radicals. 273 

The ZnO has been coupled with silver to efficiently remove the phosphamidon (an organo-274 

phosphorus pesticide) (Korake et al., 2012). Catalyst at conc. of 1 g/dm3 (at pH = 7) degraded the 275 
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phosphamidon (at initial conc. of 5x10-2 mol/L) within 150 minutes. Widespread use of ZnO is 276 

hindered because of low quantum yield due to out-ward electron diffusion. To prevent the 277 

recombination and entrapment of holes, the formation of p-n hetero-junction is an efficient 278 

method (Pirhashemi and Habibi-Yangjeh, 2017). Improvement in visible-light activity of ZnO 279 

has been made by grapheme, which potentially enhances the shelf-life of radicals and provides a 280 

larger surface area for pesticide interaction (Darwish et al., 2017). The doping of nitrogen and 281 

silver obtained the modulation in the ZnO bandgap in the ZnO lattice (Debnath and Gupta, 282 

2018). And this tailored functional material increased the degradation of 2,4-di-nitrophenol (2,4-283 

DNPH). Co-doing with metal and non-metal and decrease in the band gap helped generate the 284 

bulk attributed to enhancing the photo-catalytic potential of ZnO by absorption of the wide light 285 

spectrum and low dissipation of heat. Role of different Zinc based functional materials for 286 

degradation and removal of pesticides has been presented in Table 1. 287 

Functional materials based on Tungsten  288 

Ultra-violet (UV) active photocatalysts cannot absorb in the visible light region, which is a 289 

significant part of the solar light spectrum. While many semiconductors have wider band-gaps 290 

which UV light energy activates only. Tungsten oxides have a narrow band-gap (2.3-2.5 eV), 291 

activated in visible light energy. The tungsten trioxide (WO3) complexes with different materials 292 

or semi-conductors are under consideration to explore its photo-catalytic potential. The WO3 was 293 

found in mono-clinic I and mono-clinic II phases (Tahir et al., 2017). Recombination, dissipation 294 

of absorbed energy, and generation of E-H pairs are processes that decrease the efficacy of WO3 295 

due to its small bandgap. Mesoporous WO3-TiO2 degraded the imazapyr, phenolics, and 296 

malathion with efficient removal greater than 100, 98, and 76%, respectively (Aslam et al., 2014; 297 

Ismail et al., 2016). The mechanism may be due to less light scattering and increased diffusion of 298 
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organic motifs in catalyst surface (porous). Convenient transfer of oxidative holes from WO3 to 299 

TiO2 produces radicals that increase the oxidation. Surface impregnation with Pd (palladium) 300 

metal enhanced the surface response of WO3 (Mkhalid, 2016). Graphite electrodes have been 301 

coated with WO3 for efficiently removing the 2-nitrophenol around 82%. Figure 6 showed the 302 

mechanism of the photo-assisted activity of the WO3-EG composite electrode for the degradation 303 

of 2-nitrophenol. (Umukoro et al., 2017). Table 1 presents the efficiency of different tungsten-304 

based materials for the degradation and removal of different pesticides 305 

Functional materials based on Iron  306 

Iron has a mesoporous surface and exists in different forms in the earth's crust. It has both 307 

reductive and oxidative properties. Iron-based nano-materials have a surface area of 82 m2 g-1 308 

and a band gap of 2.2 eV (Pei et al., 2014). Iron-based materials are adequate for water treatment 309 

as they are easy to separate from aqueous solutions because of their magnetic characteristics. 310 

Complexes of iron as Fe/Pd, Fe/Ni transformed the chlorinated pesticides, PCBs 311 

(polychlorinated-biphenyls), HCH (hexa-chlorocyclohexane), and hydrocarbons by de-312 

chlorination process (Cao et al., 2005; Elliott et al., 2009). Iron materials get agglomerated in 313 

aqueous media, leading to less dispersion and low surface contact with the pesticides. The 314 

incorporation of metals (Pd, Ni, Pt, and Zn) may counter the agglomeration by promoting 315 

association and dissociation of H2 gas into the atomic hydrogen, which inhibits the oxide layers 316 

formation on iron (Tee et al., 2009). Table 1 presents the efficiency of different modified iron-317 

based materials for the degradation and removal of various pesticides. Copper-maghemite 318 

mineralized the 4-nitrophenol efficiently (Feng et al., 2013). Zero-valent iron in nano form has 319 

significant reducing characteristics and good surface area, resulting in agglomeration, but metals 320 

and organic stabilizer compounds can stabilize it (Ayad et al., 2017). The reduction of organic 321 
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molecules may release the active radicals (bromide, sulfate, and chloride), and these radicals may 322 

indirectly oxidize the pesticides. The metal nano-particles adorned on the surface of iron oxide as 323 

Ni/Fe-Fe3O4 dechlorinated the di-chlorophenol within 3 hours (Xu et al., 2016a). Pesticides are 324 

mostly hydrophobic and adhere to the porous surface of the iron. Impregnation of iron oxide with 325 

either gold or silver plasmonic-species increased the p-nitrophenol reduction (Jiang et al., 2015). 326 

The coordination of adsorption and reduction was effective at the surface of Ag/Fe2O3. The 327 

electrons transfer from silver (Ag) to iron (Fe) formed the depletion-layer at the interface of 328 

Ag/Fe2O3 enhanced the fast organic species reduction (Chiou et al., 2013). Iron-based materials 329 

have significant porosity and permeability, which may be responsible for the potent diffusion of 330 

metabolites.  The transfer of mass between the solid-liquid phase offers enough time for effective 331 

degradation. Magnetic-silica nanoparticles modified with palladium effectively degrade and 332 

remove the DDT (Tian et al., 2015). In this process, electron-channeling from the Pd-donor 333 

followed by adsorption of magnetic particles.  The presentation of the Core-shell structure has 334 

been provided in Figure 7. Bimetallic iron-palladium (Fe-Pd) nano effectively degraded the 335 

lindane at an initial conc. of 5 mg/L (Tian et al., 2015). The iron-palladium (Fe-Pd) potential is 336 

attributed to the fast de-hydrohalogenation of C-Cl bond in lindane (Joo and Zhao, 2008). The 337 

amount of palladium is effective for inhibiting the agglomeration of iron (Xu et al., 2005). The 338 

coupling of magnetic particles with polymers (e.g., starch) and surfactants (e.g., CTAB) provided 339 

excellent coherence of contaminated materials (Zhao et al., 2008; Gao et al., 2013). Magnetic 340 

particles coated with the starch effectively reduced the 98% of tri-chloroethylene (TCE) in the 341 

period of 1 hour (He and Zhao, 2005). Zeta-potential played a role in glyphosate removal by the 342 

MnFe2O4-graphene-nanomaterial (Yamaguchi et al., 2016). Incorporation of Fe2O3 on the carbon 343 

nano-tubes enhanced the surface area which increased the atrazine (pesticide) removal within 344 
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120 minutes using H2O2 (Yu et al., 2015). Fast de-alkylation, alkylic-oxidation and de-345 

chlorination and available adsorption sites on the carbon-nanotubes attributed to the removal of 346 

the pesticide (Graymore et al., 2001). Iron-based materials are reported to degrade nitro-aromatic 347 

pesticides which may convert the anilines to respective amine or various other nitroso 348 

compounds (Keum and Li, 2004).  349 

Functional materials based on Carbon  350 

A primal element, carbon, formulae the fundamental construction unit of life expectancy. In 351 

water treatment, the actuated carbon material is extensively used as an adsorbent. The nanoscale 352 

dimension and the adaptable characteristics of carbon are significantly improved, such as high 353 

thermal and mechanical properties, improved electrical conduction, etc. Various carbon-based 354 

materials, including carbon quantum dots, g-C3N4, carbon nanotubes, and graphene, are 355 

available as various nanomaterials based on their architectural properties. Such materials have a 356 

high volume to surface area and a particularly closer band gap (Yue and Economy, 2005). 357 

Carbon is hydrophobic and has a great affinity for non-polar phenols and pesticides. On the other 358 

hand, because of the absence of chemical activity, graphene and carbon nanotubes take a long 359 

time to adsorb organic pollutants. Conventionally, to ensure the cost-effective removal of 360 

pesticides from water, carbon-based activated materials with its increased characters of improved 361 

porosity and surface area have been investigated. Besides, carbon materials demonstrate 362 

considerable high-temperature stability, making the expended adsorbent readily available after 363 

adsorption. The production of carbon-based activated materials from waste tyres and rubber and 364 

its successive usage for atrazine,  methyl parathion, and methoxychlor extraction were stated by 365 

Gupta and co-workers (Gupta et al., 2011). Carbonaceous materials based on hydrogen bonds, π-366 

π interactions, porous nature of the surface, and covalent bonds, making it an excellent 367 
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hydrophobic contaminant removal substrate. Biomaterials can sometimes be fabricated by 368 

carbon-based materials that afford cheaper alternatives to treat pesticides, such as banana peel, 369 

rice husk, olive stone, coconut shell, eggshell, etc. The oil seed matrix as an innovative material 370 

for the collaborative elimination of hydrophobic pollutants based on the water/octanol partition 371 

coefficient has been examined for this purpose (Boucher et al., 2007). The successful elimination 372 

of chlorpyrifos DDE and endosulfan owes because of reduction in compounds by halogen group 373 

oxidation accompanied by adsorption on RGO exfoliated sheets by π-π graphene surface 374 

interactions. (Yue and Economy, 2005; Cho et al., 2018). Previous studies have also examined 375 

the successful removal of nitrophenols, pesticides, and chlorobenzene from carbon nanotubes 376 

(Peng et al., 2003; Cai et al., 2005). Based on structure, the carbon nanotubes are normally multi-377 

walled or single-walled. In developing solid-phase extraction systems, the flexible properties of 378 

nanotubes have also been used. Even at low concentrations (4-13 ng/L), pesticides, such as 379 

sulphonyl urea and DDT, have been eliminated. This elimination owes to the extraordinary, 380 

which can be due to the unusual attraction of CNTs with functionalities present in the structure 381 

of pesticide (Zhou et al., 2006). It is worth mentioning here that the sheet purity, degree of twist, 382 

diameter of the tube, geometric character, physical/chemical character, and the synthetic method 383 

ascertain remarkable properties to the CNTs (Debnath et al., 2019). The polar and nonpolar 384 

bonds present in different molecules (COOH, NH2, C-C, C-O) interact with these π-π 385 

interactions (Pan and Xing, 2008). Therefore, the symbiotic structure of adsorbing catalysis can 386 

effectively eliminate pesticides, and designing such functional materials is imperative. Carbon-387 

based particles can be very easily modified by cationic and anionic surfactants on the surface. 388 

This modification leads to ionic modulation of the carbon-based surface, which can easily 389 

interact with the oppositely charged surface of pesticide (Park and Bae, 2015). Wang and 390 
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Coworkers documented MWCNT conjugated TiO2 based material to mitigate dinitrophenol 391 

(Wang et al., 2009). Shi et al. documented the CNT-based materials conjugated with Ag/AgCl 392 

through the ultrasonication-based deposition-precipitation method to remove tribromophenol 393 

(Shi et al., 2013). The new materials resolve the issues related to the low reactivity of CNTs 394 

against intransigent carbon assisted compounds by plasmon action of silver. Electrons are 395 

injected by plasmon into the silver bromide conduction band, whose conduction band is more 396 

negative than silver (0.065 V vs. 0.2 V). Moreover, the electrons guide the flow to the mobile 397 

surface of CNTs. Often, silver-based compounds can enhance the activity of visible light. 398 

Compounds such as Ag2S with a 0.9-1.05 eV band gap have been stated to cause the reaction 399 

under visible light reaction (Huo et al., 2018). Recently, to catalyze the degradation of 4-400 

nitrophenol, g-C3N4 coupled with nickel has been effectively synthesized. In this degradation 401 

process the impregnated Ni is the major cause of degradation process as it donates electron and 402 

enhances the effectiveness of the process. This matrix (g-C3N4-Ni) contains highly oxidative 403 

holes which can enhance the degradation mechanism. The improved character of Pd-mesoporous 404 

carbon based materials engineered by irradiation for the degradation of nitrophenol has also been 405 

documented in a few studies (Veerakumar et al., 2014). Guo et al. (2016) indicated that 406 

mesoporous carbon coupled plasmonic gold nanoparticles coupled with NaBH4 function as an 407 

outstanding catalyst for the transformation of p-nitrophenol to p-aminophenol. The hybridization 408 

with other plasmonic organisms, non-metals and metals of graphene and carbon nanotubes 409 

improves the nanomaterials' reactivity and reusability. Studies investigating the applicability of 410 

carbon functional materials have been published previously. Further various carbon-based 411 

materials are tabulated in Table 2. 412 

Functional materials based upon zirconium 413 
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In the field of high-surface porous materials, zirconium-derived materials have expressed 414 

demanding promise in the rapid growth of material engineering. The zirconium (Tetragonal), 415 

architecture consisting of zirconium and benzenedicarboxylate, has been employed to 416 

engineering a metal-organic framework UiO-66. Due to its π-π interactions and ionic 417 

interactions, the substance has shown similar characteristics to carbon. Besides, these MOFs 418 

have excellent detection capabilities for organophosphates. The UiO-66 and 67 Zr-OH groups 419 

display a preference for pesticides such as glyphosate phosphates (Bugaev et al., 2018). 420 

Subsequently, the materials based on zirconium were used to enhance the photocatalyst's 421 

mesoporous property. Goswami and Ganguli (2013) stated the mitigation of quinalphos by 422 

zirconia/titania composite. The effect of zirconia doping allows oxygen vacancies to trap 423 

electrons and zirconia to trap holes, making them excellent electron separators. High activity 424 

zirconium content has also been reported to be involved in hydrogen production and 425 

photocatalysis by doping platinum (An et al., 2018).  426 

Polymeric derived functional materials 427 

In the field of water treatment, functional polymeric materials have gained a lot of interest. These 428 

materials can be synthetic or natural and can be modified to other components  (Wang et al., 429 

2013; Hu et al., 2015). In membrane preparation, many polymers are often used as 430 

immobilization substrates and resins to target particular pollutants in waste water (Halake et al., 431 

2014). The extraction of materials such as chitosan, cellulose, alginate, and Cyclodextrins from 432 

plant, seashell residues such as shells, wood, leaves, etc. (Ding et al., 2009; Ngo et al., 2015). 433 

The functional biomaterials display more significant interaction of the adsorptive properties, 434 

functional group, and greater pollutant piling. Besides, these polymeric materials exhibit 435 

extraordinary stability and porosity and can be adjusted on the surface to improve their 436 
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interaction with pesticides. The formation of a layer from core shells allowing improved 437 

diffusion of pesticides, the simple design of biomaterials can be used for the layer. For the 438 

efficient removal of 2,4-Dinitrophenol, previous investigations have documented the adaptation 439 

of the NH2 group of functionalized carbon coated with polyacrylonitrile. The adsorption of the 440 

anionic contaminants on the polymer cationic amino group is the intrinsic mechanism (Zhao et 441 

al., 2017). The adsorption of cationic contaminants as pesticides is strongly regulated by the 442 

molecule's pKa as negative charges that can interfere with the positive polymer are revealed by 443 

the greater dissociation of molecules above pKa. A versatile structure for contaminant removal 444 

and easy separation from the aqueous medium has also been documented for functional polymer 445 

materials such as β-cyclodextrin-chitosan-magnetic material, β-cyclodextrin-silica nanomaterial ( 446 

Zhao et al., 2017). Metal-integrated polymers are successful in sorption execution as well as 447 

acting as a porous catalysis substrate. Advanced oxidation of organic contaminants occurs in 448 

functional polymers impregnated with gold and silver. Gold-polythiophene core-shell and silver 449 

citrate polymer materials are some of those materials (Pradeep, 2009). The model for casting 450 

flexible porous membranes that can be used as ultrafiltration and nano-filtration membranes can 451 

be made from biomaterials (Mukherjee et al., 2018). Besides, certain materials have been 452 

mimicking the sediment sorption mechanism of hydrophobic contaminants with natural clay 453 

minerals such as montmorillonite (MMT) (Sahithya et al., 2015; Foo, 2016; Shabtai and Mishael, 454 

2017). Specific conductive polymers including polyaniline, polypyrrole, and polythiophene have 455 

flexible properties that can be used in photocatalytic membranes, such as electrical conductivity 456 

and semiconductor-based properties (Sarkar and Das, 2017; Khan et al., 2018). However, the 457 

problem of biofilm formation that leads to surface passivation is faced by polymeric materials 458 

used in membranes. Because of its antibacterial property, materials such as silver loaded 459 
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polymers may prohibit biofilm development. Biomaterials provide a low-cost alternative for 460 

developing flexible pesticide removal filters and membranes. In order to formulate unique 461 

biopolymers for targeting overdosed pesticides, the properties of membranes need to be 462 

examined in detail. The studies that developed carbon, zirconium and polymer based functional 463 

materials to treat pesticides consisting of are presented in Table 2. 464 

Application of functional nanomaterials in industry 465 

The application of polysaccharides and polymers can well be found via integrated membranes in 466 

oil separation mechanisms. In the manufacture of membranes, hydroxyethylcellulose, xanthan 467 

gums, guar gum, scleroglucan, cellulose, carboxymethylcellulose, etc. were used (Subash et al., 468 

2013). For the elimination of inorganic and organic compounds from industrial waste water, the 469 

membranes may be used selectively. Industrial wastewater treatment requires that usable 470 

materials be tolerant of hazardous conditions. Fouling due to its antimicrobial nature is avoided 471 

using functional materials such as silver embedded carbon or polymers. The effect of high 472 

interfering ion concentrations induces shock loads to the effluent treatment easily controlled by 473 

practical material models for high surface area. Moreover, the spectrum of photocatalytic hybrids 474 

overcomes the conventional limitations that can be built to use solar light that degrade organics 475 

and hydrocarbons that are permanent. Besides, the regeneration of usable materials permits 476 

repeated reuse in industrial applications, lowering running costs (Grandclément et al., 2017). The 477 

use of materials in wastewater treatment as fine powders and pellets helps them absorb a wide 478 

variety of contaminants found in industrial wastewater, such as heavy metals, pesticides, 479 

antibiotics, surfactants, etc. (Kuśmierek and Świątkowski, 2015). In addition to the innovative 480 

production of usable materials from synthetic sources, industrial waste can also be developed to 481 

provide a sustainable alternative for sludge handling and reuse (Edathil et al., 2018). 482 
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Concluding remarks and future prospects 483 

In conclusion, pesticide development and their effective utilization as per standard regulations 484 

have noteworthy contributions in fulfilling the ever-rising food demand. However, the 485 

disproportionate and inconsistent/irregular use of any or many pesticides that include 486 

bactericides, fungicides, herbicides, insecticides, and so on pose severe environmental and 487 

biological effects on plants, animals, and humans. Such massive consumption avoiding the 488 

standard regulations creates havoc on living beings and alters the whole ecological structure. In 489 

this context, the short and long-term consequences of pesticide compounds and/or their active 490 

by-products or residues that ultimately get discharged into water matrices should be considered 491 

with care before their agricultural or aquacultural exploitation. Moreover, the environmental and 492 

water matrices are at substantial threat of contamination due to pesticide drift, such as vapor drift 493 

and leaching drift after post-application into air or water bodies, respectively. After years of 494 

negligence, now the adverse consequences are evident in several diseases, such as cancer and 495 

other chronic diseases, and these are still emerging at a high pace. As discussed above in 496 

respective sections, many of these diseases are attributed to the consistent use and 497 

bioaccumulation of pesticide compounds in our system, which act as a catalyst to carcinogens 498 

and other disease-stimulating active agents.  499 

There is a dire need to mitigate pesticide contamination for a safe and better tomorrow. Thus, 500 

keeping this in mind, this article spotlights the functional attributes of tailored functional 501 

materials as robust candidates since conventional methods have several limitations for removing 502 

the pesticides. The work is enriched with several functional materials with suitable examples and 503 

their exploitation against different pesticidal compounds. Based on the above-discussed literature 504 

with relevant examples, it is evident that integrating tailored functional materials as robust 505 
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candidates could be useful to mitigate pesticides from wastewater matrices. However, their large-506 

scale implementation in bulk seems a formidable challenge, and intensive research investigations 507 

and cost-effective models are of supreme interest for future studies. Given that increasing the 508 

exploitation of tailored functional materials-based mitigation systems for pesticides drives at the 509 

cost of low reliability and efficacy and that such mitigation systems are still in their infancy and 510 

urge substantial advancement in the coming future. 511 
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List of Tables 1131 

Table 1 Role of Ti, Zn, W, Fe based functional materials for removal of the pesticides in 1132 

aqueous media. 1133 

Metal based 

Functionalized materials 

Contaminants Removal efficacy 

and Time 

References 

Titanium based materials 

AgCl/Ag/TiO2 2,4-Dichlorophenol 94.0 %, 60 min (Tian et al., 2014) 

Ag/TiO2 Pentachlorophenol 100 %, 160 min (Zhang et al., 2012) 

Fe/TiO2 2,4-Dinitrophenol 97.0 %, 120 min (Liu et al., 2012) 

Ag/Zr/TiO2 4-nitrophenol 100 %, 8 mint (Naraginti et al., 2015) 

Ag/Cu/TiO2 4-nitrophenol 96.0 %, 30 min (Hernández-Gordillo and González, 

2015) 

Ti-AC np Dicofol 97.3%, 89.12 min (Vali et al., 2021) 

Ag/TiO2 Acetamiprid -, 40 min (Cao et al., 2008) 

FeFNS/TiO2 Diazinon 87.6 %, 100 min (Hossaini et al., 2014) 

TiO2/Fe2O3 Diazinon 95.1 %, 45 min (Mirmasoomi et al., 2017) 

CTAB-TiO2 Pyridaben 100 %, 560 min (Zhu et al., 2007) 

TiO2-SiO2 Dichlorovos, 100 %, 420 min (Shifu and Gengyu, 2005) 

Fe2O3/CuO/TiO2 2,4-D 97.0 %, 300 min (López-Ayala et al., 2015) 

Fe/TiO2 Thiacloprid 96.0 %, 240 min (Banić et al., 2011) 

Fe2O3-TiO2 Propachlor 96.0 %, 50 min (Belessi et al., 2009) 

Au-Pd-TiO2 Malathion 98.2 %, 240 min (Yu et al., 2010) 

Zinc based materials 

Chitosan-ZnO Permethrin 99.0 %, 90 min (Dehaghi et al., 2014) 

ZnO-bentonite Phenol 80.0 %, 90 min (Meshram et al., 2011) 
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WO3-ZnO Diazinon 99%, 180 min (Maleki et al., 2020) 

rGO-ZnO  Chlorpyrifos 75%, 70 min (Gulati et al., 2020) 

PANI/ZnO-CoMoO4 Imidacloprid 97%, 180 min (Adabavazeh et al., 2021) 

Fe3O4/CdS–ZnS Chlorpyrifos 72%, - (Soltani-nezhad et al., 2020) 

Ag/ZnO Phosphamidon 100 %, 150 min (Korake et al., 2012) 

ZnO/TiO2 Diazinon 99.9 %, 60 min (Jonidi-Jafari et al., 2015) 

ZnO/Fe2O3 Dicamba 100 %, 300 min (Maya-Treviño et al., 2014) 

Ag/ZnO 4-nitrophenol 100 %, 180 min (Divband et al., 2013) 

Ln/ZnO 4-nitrophenol 83.4 %, 200 min (Khatamian et al., 2012) 

CuO/ZnO 4-nitrophenol 99.0 %, 180 min (Qamar et al., 2015) 

Graphene/ZnO Nitrophenol 98.0 %, 150 min (Darwish et al., 2017) 

La/ZnO Metasystox 90.0 %, 150 min (Korake et al., 2014) 

2,4,6-Trichlorophenol 100 %, 120 min (Anandan et al., 2007b) 

Monocrotophos 100 %, 120 min (Anandan et al., 2007a) 

Fe2O3/ZnO Pentachlorophenol 98.0 %, 240 min (Xie et al., 2015) 

W/ZnO Chlorophenol 100 %, 150 min (Aslam et al., 2015) 

Sm/ZnO Phenol 89.5 %, 480 min (Sin et al., 2013) 

Nb2O5/ZnO Phenol 100 %, 40 min (Lam et al., 2014) 

Tungsten based materials 

WO3 2-Chlorophenol 98.0 %, 180 min (Aslam et al., 2014) 

WO3-TiO2 Malathion 99.0 %, 300 min (Ramos-Delgado et al., 2013) 

Imazapyr 100 %, 120 min (Ismail et al., 2016) 

ZnSe-WO3 Bisphenol A 99.0 %, 90 min (Kumar et al., 2017) 

Pd-WO3 2,4-D 100 %, 50 min (Mkhalid, 2016) 

P/W@UiO-66-NH2 MOFs 4-Nitrophenol 100%, - (Roshdy et al., 2021) 
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WO3/Fe3O4 Thiacloprid 91.3%, - (Banić et al., 2019) 

Iron based materials 

CuFe3O4 4-Nitrophenol 95.0 %, 40s (Feng et al., 2013) 

SDS-coated Fe3O4 

chitosan NPs 

Diazinon 99% (Ranjbar Bandforuzi and 

Hadjmohammadi, 2019) 
Phosalone 98% 

Chlorpyrifos 96% 

Fe/Pd Lindane kobs =1.02x0.16 

min-1 ,5 min 

(Nagpal et al., 2010) 

Fe2O3/MWCNT Atrazine 81.4 %, 2h (Yu et al., 2015) 

Starched Fe/Pd Trichloroethylene 98.0 %, 1h (He and Zhao, 2005) 

Ag/iron oxide Nitrophenol 30 min (Chiou et al., 2013) 

FeOOH/Fe2O3 Atrazine 95.0 %, 30 min (Ali et al., 2016) 

Ag/Fe microbox Nitrophenol  kobs = 11.4x102 s-1 

, 150 min 

(Jiang et al., 2015) 

MnFe2O4-graphene Glyphosate 97.0 %, 8h (Yamaguchi et al., 2016) 

Fe-ZnIn2S4 Tribromophenol 95.0 %, 60 min (Gao et al., 2013) 

CTAB-Fe3O4 Bisphenol A 95.0 % (Zhao et al., 2008) 

CuFe2O4 Tetrabromobisphenol-A 99.0 %, 30 min (Ding et al., 2013) 

GO-Fe3O4 2,4-D 67.2 mg/g (Nethaji and Sivasamy, 2017) 

Fe3O4@nSiO2@mSiO2 DDT 97.0 %, 60 min (Tian et al., 2015) 

CoFe2O4@TiO2-GO Chloropyrifos -, 60 min (Gupta et al., 2015) 

CexFe1-xO2 Chlorophenol, 

Dichlorophenol, 2,4-D 

58.7 %, 90 min, 

42.4 %, 90 min, 

45.8 %, 60 min 

(Kurian et al., 2017) 

FeO/activated carbon Chlordecone 79.8 µg/mg, 1400 

min 

(Rana et al., 2017) 
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Pd/Fe–Fe3O4@MWCNT 2,4-Dichlorophenol 92.3 %, 300 min (Xu et al., 2016b) 

Fe3C@N-GE-Fe3O4 2,6-dichlorobenzamide 

(BAM), 2-methyl-4-

chlorophenoxy acetic 

acid (MCPA), 2-methyl-

4- chlorophenoxy 

propionic acid (MCPP) 

84%, 93%, 93% 

respectively 

(Ghanbarlou et al., 2020) 

Fe turnings Heptachlor, endosulfan, 

dieldrin, endrin 

5.7, 13.2, 23.3, 

39.4% respectively, 

10 min 

(Abbas et al., 2020) 

CaFu MOFs Imidacloprid  467.23 mg/g (Singh et al., 2021) 

TiO2@LaFeO3  myclobutanil 100%, 180 min (Garcia-Muñoz et al., 2020) 

 1134 
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Table 2 Functional polymeric materials for the removal of pesticides. 1151 

Functional 

Group 

Material Target 

analytes 

Experimental 

conditions 

Removal 

efficacy 

Ref 

Carbon-

based  

MWCNT/TiO2 Dinitrophenol Dose: 8 g/L, C0: 38 

ppm, pH: 6, Sunlight 

99% (Debnath et al., 

2019) 

Ti/MWCNT Atrazine Dose: 0.2 mg/L 

C0: 4.6 104  9.3 102 

mmol/L 

- (Chen et al., 2011) 

Biochar Tricyclazole, 

Isoprothiolane, 

Malathion 

- 63.81, 

46.72, 

98.08 %  

(Tong et al., 2019) 

Silver@graphene 

oxide  

Imidacloprid - 63% (Keshvardoostchok

ami et al., 2018) 

Activated 

Coconut 

Charcoal 

(AcCoC) 

monocrotophos pH 7 103.9 

mg/g 

(Kodali et al., 

2021) 

Plain chitosan  Imidacloprid pH 6 70% (Moustafa et al., 

2021) 

AgNPs@ 

chitosan 

Imidacloprid pH 6 95% (Moustafa et al., 

2021) 

Nanoporous 

activated carbon  

Imidacloprid - 80-99% (Mohammad and 

El-Sayed, 2020) 

Ag/AgBr/CNT Tribromophenol Dose: 30 mg/50 mL, 

C0: 100mmol/L 

pH: 10, 250 W metal 

halide lamp 

100% (Shi et al., 2013) 

GAC (granular 

active carbon) 

Atrazine,  

Prometryn, 

Chlorpyrifos,  

Dipterex, 

Acetamiprid, 

Imidacloprid, 

Thiamethoxam,  

Azoxystrobin, 

Carbendazim,  

Dimethomorph,  

Difenoconazole

, Prochloraz 

- 80, 100, 

100, 

93.33, 

84.95, 

100, 

72.41, 

88.89, 

92.80, 

83.33, 

100, 100 

%  

(Tang et al., 2020) 

Au/mesoporous 

carbon 

p-Nitrophenol Dose: 75 mg 

C0: 200 ppm pH: 

87% (Guo et al., 2016) 
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10.1, 0.06 M NaBH4 

Ag/graphene-

dopamine 

MWCNT-O 

(0.85%) 

4-Nitrophenol 

Atrazine 

NaBH4 

Dose: 5 mg/25 mL 

C0: 4.2 ppm 

0.01 M NaNO3 + 0.1 

g/L NaN3, pH: 6 

17.3 mg/g (Chen et al., 2009; 

Jeon et al., 2013) 

RGO-ZnS 

RGO-Ag 

Fe3O4/graphene 

Nitrophenol 

Lindane 

Ametryn 

Solar light simulator 

C0: 2 ppm, Dose: 

0.5 g/L, C0: 10 ppm 

87% 

99% 

93.6% 

(Boruah et al., 

2017; Ibrahim et 

al., 2017) 

Fe4O3–GO–β-

cyclodextrin 

Thiamethoxam 

Imidacloprid 

Acetamiprid 

Nitenpyram 

Dinotefuran 

Clothianidin 

Thiacloprid 

Dose: 5 g/L 

C0: 10 ppm 

2.8 mg/g 

3.1 mg/g 

2.9 mg/g 

2.5 mg/g 

2.5 mg/g 

1.7 mg/g 

2.8 mg/g 

(Liu et al., 2017) 

β-FeOOH-RGO 2-Chlorophenol Dose: 1 g/L 

C0: 100 ppm 

0.1 M H2O2 

pH: 4 

100% (Xiao et al., 2016) 

Ag/AgCl-

activated carbon 

Thidiazuron Dose: 0.3 g/L 

C0: 20 ppm 

23 W Philips LED, 

20 mW/cm2 

pH: 7 

91% (Yang et al., 2017) 

CoO/TiO2/GO Chlorophenol Dose: 0.5 g/L 

C0: 10 ppm, 0.01% 

H2O2, 200 W Xenon 

lamp, pH: 6 

97.5% (Sharma and Lee, 

2016) 

Ag/Ag2CO3-rGO Phenol Dose: 0.05 g/25 mL 

C0: 10 ppm 

350 W Xenon lamp, 

40 mW/cm2 

82% (Song et al., 2016) 

Graphene 

quantum dot 

Oxamyl Dose: 0.6 g/20 mL 

C0: 150 ppm 

pH: 8 

125mg/g 

95.7% 

(Agarwal et al., 

2016) 

Zirconium Zirconium-

benzene 

dicarboxylate 

Methylchloro-

phenoxy 

propionic 

pH: 4, C0: 20 ppm 

Dose: 0.1 g/L 

85% (Seo et al., 2015) 
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- based (UiO-66) acid 

Zirconium-

benzene 

dicarboxylate 

(UiO-67) 

Glyphosate Dose: 0.03 g/L 

pH: 4, C0: 0.1 

mmol/L 

537 mg/g (Zhu et al., 2015) 

UiO-67 Glyphosate - 540 mg/g (Pankajakshan et 

al., 2018) 

NU-1000 Glyphosate - 1500 

mg/g 

(Pankajakshan et 

al., 2018) 

yttria-stabilized 

ZrO2 (8YSZ) 

Carbofuran - 89% (Qin et al., 2020) 

MIL-140A Nitrophenol - 91 mg/g (Lee et al., 2018) 

Zirconium-

benzene 

dicarboxylate 

(UiO-67) 

Glufosinate Dose: 0.03 g/L 

pH: 4, C0: 0.1 

mmol/L 

360 mg/g (Zhu et al., 2015) 

TiO2/ZrO2 Quinalphos Dose: 4 g/L, pH: 3 

C0: 105 M 

62% (Goswami and 

Ganguli, 2013) 

WO3/ZrO3 Carbofuran Dose: 1 g/L 

pH: 8, C0: 20 ppm 

UV flux 50 W/m2 

100% (Alalm et al., 2016) 

TiO2/ZrO2 Chloridazon Dose: 3 g/L, pH: 8 

C0: 5 105 M, 150W 

Xenon lamp 

- (Mbiri et al., 2018) 

Polymer-

based 

β-Cyclodextrin-

chitosan-Fe3O4 

Bisphenol A pH: 6 

C0: 200 ppm 

133 mg/g (Huang et al., 

2017) 

Polyvinyl-

pyridine-co-

styrene-

montmorillonite 

clay 

composite 

Diazinon Dose: 0.5 g/L 

pH: 3.5 

0.13 mM 

100% (Shabtai and 

Mishael, 2017) 

β-Cyclodextrin Bisphenol A Dose: 1 g/L 

0.1 mmol/L 

113 mg/g (Wang et al., 2017) 

Carbon coated 

polyacrylonitrile 

2,4-D Dose: 50 mg/80 mL 

pH: 3, 70 ppm 

61.02 

mg/g 

(Zhao et al., 2017) 

Montmorillonite-

CuO-chitosan 

Dichlorovos Dose: 1.5 g/L 

pH: 8, 80 ppm 

93% (Sahithya et al., 

2015) 

Montmorillonite-

CuO- polylactic 

acid 

Monocrotophos Dose: 15 g/L 

pH: 5, 100 ppm 

80% (Foo, 2016) 



58 
 

  1152 

 1153 

 1154 

 1155 

 1156 

 1157 

 1158 

 1159 

 1160 

 1161 

 1162 

 1163 

 1164 

Starch polymer-

laponite clay 

Dicamba Dose: 30 mg/25 mL 

pH: 7, 500 ppm 

251 mg/g (Pinto et al., 2016) 

Polyaniline-

zeolite 

Glyphosate Dose: 50 mg/5 cm3 

400 ppm 

98.5 mg/g (Debnath et al., 

2019) 

Polyaniline-silica 

gel 

2,6- 

Dichlorophenol 

Dose: 1 g/L 

pH: 7, 80 ppm 

31.9 mg/g (Pan et al., 2011) 

Polyvinylpyrroli

done-magnetic 

nanoparticles 

Bisphenol-A pH: 7 

50mg/L 

90 mg/g (Fard et al., 2017) 

Bentonite/P.HE

MA-MMA 

methyl 

parathion 

240 min 868.5 

mg/g 

(Abukhadra et al., 

2021) 

poly (ε-

caprolactone)  

Endosulfan 30 min 99.97% (Mourabit and 

Boulaid, 2019) 

Nano-organoclay 

composite based 

on carboxy 

methyl cellulose 

and two nano-

organobentonites 

(DMDA, 

ODAAPS) 

Atrazine, 

butachlor, 

cabendazim, 

cabofuran, 

imidacloprid, 

isoproturon, 

pendimethalin, 

thiophanate 

methyl, 

thiamethoxam 

-   57.6, 

99.6, 

66.6, 

74.8, 

75.3, 

96.2, 

98.5, 

99.9, 

76.3% 

(Narayanan et al., 

2020) 
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List of Figures 1165 
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Figure 1 Pesticide drift that can lead to contamination of different environmental matrices 1167 

including air, soil, and water. 1168 
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Figure 2 Adverse biological impacts of pesticides via air, water and soil pollution. 1178 
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 1181 

 1182 

 1183 
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 1184 

Figure 3 Schematic diagram showing tailored functional materials for the treatment of pesticides 1185 

and related environmental pollutants. 1186 

 1187 

 1188 

 1189 

 1190 

 1191 
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 1194 

 1195 

 1196 
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 1197 

Figure 4 Proposed reaction mechanism of organics (or bacteria) over 1198 

AgBr@Ag@TiO2 photocatalyst under visible light irradiation. Reprinted from Tian et al. (2014) 1199 

with permission from Elsevier. Copyright © 2014 Elsevier B.V. License Number: 1200 

5055760857679. 1201 
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 1206 

 1207 

 1208 

 1209 

 1210 

 1211 

 1212 

 1213 



63 
 

 1214 

Figure 5 Illustration of the mechanism for major charge transfer pathways on 1215 

Fe2O3(0.5)/TiO2 (PD) for 2,4-dichlorophenoxyacetic acid degradation. VB stands for valence 1216 

band and CB stands for conduction band. Reprinted from Lee et al. (2017) with permission under 1217 

the terms of the Creative Commons Attribution License. 1218 

(http://creativecommons.org/licenses/by/4.0).  1219 
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 1227 

 1228 

 1229 
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 1231 

Figure 6 (a) Degradation kinetics graphs of electrochemical and photo-assisted electrochemical 1232 

degradation of 2-nitrophenol dye at pH 6 and 10 mA cm−2 using WO3-EG composite electrode; 1233 

(b) Proposed underlying charge transfer mechanism of the photo-assisted activity of WO3-EG 1234 

composite electrode for the degradation of 2-nitrophenol. Reprinted from Umukoro et al. (2017) 1235 

with permission from Elsevier. Copyright © 2017 Elsevier B.V. License Number: 1236 

5055761305400. 1237 
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 1238 

Figure 7 Schematic of Fe3O4/nSiO2/mSiO2/Pd formation. Reprinted from Tian et al. (2015) with 1239 

permission from Elsevier. Copyright © 2015 Elsevier Inc. License Number: 5055770011546. 1240 


