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Abstract

The devastating personal and economic upheaval caused by the fi-

nancial crises in 2007/2008 and more recently, the spread of Covid-19

from Feb 2020 till date (June 2021) strongly highlighted the need

for effective time-series processing models that can provide useful in-

sights and accurate forecasts in a timely manner to inform critical

decision-making that affects lives and livelihoods. Thus, this research

is focused on identifying an effective and suitable time-series approach

that harnesses advantages of the current state-of-the-art forecasting

models whilst mitigating their challenges. A critical review of existing

state-of-the-art methods revealed the following two key attributes are

required for effective time-series processing: a robust yet flexible mem-

ory mechanism and minimal computational complexity for modelling

complex dynamic time-series. The Multi-recurrent Neural Network

(MRN) was identified as the preferred model and subject to critical

examination and enhancement due to its unique and powerful slug-

gish state-based memory mechanism that has largely gone unnoticed

since its first introduction by Claudia Ulbricht from the University of

Austria in 1994.

This thesis subsequently makes the following four meaningful contri-

butions to the research field: a) the MRN was applied to different real-

world temporal problems (where it had not previously been applied)

(of varying complexity). It was then compared to current state-of-the-

art forecasting methods, where it demonstrated superior performance.

It was critically assessed to identify limitations and points of exten-

sion; b) the MRN’s hidden layer was endowed with periodically at-

tentive units to tackle two well-known issues affecting artificial neural



networks; vanishing gradient problem and catastrophic interference.

This innovation applied to the hidden layer encouraged the network

to organise features according to different units of time. Therefore,

reducing the information processing load placed on individual hidden

units. Thus, alleviating the issue of catastrophic interference. In ad-

dition, the network was able to hold information for longer periods of

time, as the unit partitions only responded at specific time intervals.

This provided a means to mitigating the vanishing gradient prob-

lem, which in most instances led to better performance; c) the MRN

was endowed with an innovative self-learning mechanism, to reduce

user input and identify architectural hyper-parameters. This exten-

sion enabled the MRN to inform and enhance its internal memory

composition (and thus quality) through incorporating Ratio Control

Units to learn the layer-link ratios. This technique provided a new

outlook on algorithm development, in particular pointing to the abil-

ities of recurrent neural networks, and in particular, the MRN, to

innately learn the importance of historical context rather than rely-

ing on hyper-parameters manually set by the user and d) a framework

incorporating one of the proposed MRN innovations together with a

one-shot pruning algorithm (based on the learnt ratio similarity) was

proposed. The framework specifically provided a means of obtaining

‘good’ models by eliminating the need to train numerous models to

exhaustively explore the search space for the optimum memory bank

configuration. The new innovation simply requires one large over-

parameterised MRN to be trained. More specifically, the pruning

algorithm will automatically identify the optimum memory bank con-

figuration in a robust manner which minimises the coupling of memory

banks whilst maximising, or at least retaining, strong generalisation

ability.

Finally, a critical discussion of the innovations proposed is given to-

gether with a number of insights and suggestions for further work.

The key areas for improvements are i) employing different activation

functions for the ratio learning, ii) extending the pruning algorithm to



not only prune based on ratio similarity but on memory bank impor-

tance, iii) learning the self-link ratios rather than just the layer-link

ratios iv) developing deep MRNs for more complex temporal prob-

lems and v) applying knowledge extraction techniques to understand

the quality of the underlying state-based representations formed. The

work of this thesis has been published in IEEE Symposium Series on

Computational Intelligence, International Joint Conference on Neural

Networks and the Applied Intelligence and Informatics Conference.
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Chapter 1

Introduction

This chapter presents the introduction to this thesis. Section 1.1 provides the

background and motivation for the research and Section 1.2 presents a research

overview of the chosen topic and describes the proposed work to be undertaken.

The research questions are outlined in Section 1.3 and Section 1.3.1 outlines the

aim and objectives of this research. Finally, the thesis structure and a brief

chapter summary is given in Section 1.4.

1.1 Background and Motivation

Time-series data (also known as temporal data) is a collection of chronologically

ordered observations [55]. Such data typically have embedded signal information

through both spatial and temporal dimensions. For example, daily, monthly or

quarterly observations of financial and business data series can be analysed to

map underlying trends within the data, which aids the prediction of associated

target variables such as changes in Gross Domestic Product (GDP) for predicting

business cycle turning points or changes in daily or weekly Covid-19 cases to

forecast future cases, informing decisions by policymakers to mitigate its spread.

Employing time-series data rather than static data particularly for such essential

tasks is key as more meaningful insights can be gleaned from the dynamically

evolving nature of the important factors (for example, exponential growth in

Covid-19 cases or consecutive downward movements in GDP). However, despite
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1. Introduction

their advantages, time-series data poses challenges not typically seen with static

data, such as increased complexity due to structural breaks and non-stationarity,

and the introduction of spatio-temporal dependencies.

The rapid spread and upheaval of Covid-19 over the last year lucidly demon-

strated the need for sophisticated modelling techniques, to better capture the

underlying trends and patterns within the series, providing more accurate fore-

casts. Current state-of-the-art time-series forecasting methods are mainly centred

on Artificial Neural Networks (ANNs) [71] and in particular, Recurrent Neural

Networks (RNNs), that embed historical information and have been shown to

inform the learning and identification of spatio-temporal dependencies. RNN

models have varying complexities from simple memory-based networks with little

integration of past and recent information (such as; Simple Recurrent Network) to

more complex gated-based memory networks (such as; Long-Short Term Memory

(LSTM)) that utilise sophisticated mechanisms to learn to latch and integrate

long- and short-term information over time. LSTM [84] variants of the RNN

class have typically been the preferred model, even though they generally require

many adjustable parameters, and have ad hoc complex memory mechanisms. In

addition, the training process is lengthy and cumbersome with the requirement

of user intervention for hyper-parameter selection, to the point where their use

could become intractable.

This thesis therefore focuses on assessing and extending the relatively un-

known yet powerful Multi-recurrent Neural Network (MRN) [208]. MRNs were

first proposed in 1994 by Claudia Ulbricht at The University of Austria and are

a variant from the simple recurrent class of RNNs (Elman [52] and Jordan net-

works [96]), however, they are endowed with a more sophisticated memory mech-

anism than the standard SRN. The MRN allows recent information fed back from

the input, hidden and output layers to be integrated with historical information

from these layers stored in the context layer (without any complex gating mech-

anisms as found in the LSTM). This approach to integrating historic and current

information allows the formation of a sluggish-state based memory that reduces

‘forgetting’ (a key issue with most RNNs from the simple recurrent network class).

The potential of the MRN has been demonstrated by [20,149,150,183,200,208] in

terms of predictive accuracy and reduced network complexity, however, despite

2
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this, the MRN has largely gone unnoticed. The thesis will provide a critical review

of the two main model categories exploited for time-series modelling and forecast-

ing: Traditional Statistical (TS) models and Machine Learning (ML), particularly

focusing on the shift towards ML given the limitations of TS. This thesis will ad-

dress the following question: “Is the MRN a suitable alternative class of

RNNs, that mitigates the limitations of current techniques and is ef-

ficacious with respect to both generalisation performance and model

complexity?”.

1.2 Overview of the Research

This research will investigate the suitability of MRNs in line with the literature

and with respect to the current state-of-the-art models for time-series forecasting.

The literature review motivates and informs a critique and subsequent evaluations

of the MRN against current state-of-the-art methods using datasets from real-

world problem domains (such as; financial and medical). In this research, exper-

iments will be conducted with these datasets across various forecast horizons (for

example, predicting monthly oil price for ‘t+1’ or ‘t+12’, that is 1 or 12 month(s)

ahead). This is particularly useful as the model’s credibility and versatility can

be thoroughly assessed. In general, for ‘t + n’ as n gets bigger, more errors are

accumulated, due to inherent unpredictability for complex events further in time,

which can obscure the underlying signal. Thus, applying the models for different

forecast horizons provides a means to assess their abilities to reveal the under-

lying signal in different temporal contexts (particularly in complex time-varying

domains) and as such assessing their robustness for modelling and forecasting.

The MRN will be critically assessed to identify inherent limitations, highlighting

points of extension. Model extensions will be proposed and assessed to identify

whether they mitigate the limitations identified, encourage better learning and

enhance performance. Should these optimisations of the MRN be successful, this

would provide researchers and decision-makers with an effective prediction tool

for (non-linear and volatile) time-series.
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1.3 Research Challenges and Questions

Following the overview of the research, the following research questions are in-

vestigated in this thesis:

1. In light of the growing availability of time-series data and as such the need

for effective time-series models, the first research question is:

Does the MRN offer a robust alternative to current state-of-the-

art models, such that it more effectively models and forecasts

time-series data across a range of different problem domains

and consistently provides superior performance?

2. ANNs are notoriously known to suffer from inherent learning limitations

such as the vanishing gradient problem and catastrophic inference. In addi-

tion, RNNs have specific architectural limitations that inhibit their perfor-

mance. For example, the use of simple feedback in Elman Networks (also

known as Simple Recurrent Networks) utilises only the most recent hidden

state information, this leads to a lack of explicitness of historical informa-

tion, thus, limiting its ability to preserve important historic information as

more inputs are processed. These limitations significantly impede perfor-

mance and thus the second research question is:

Can the MRN class of models be extended and endowed to mit-

igate such inherent learning & architectural limitations to en-

courage more robust learning of both recent and historical infor-

mation such that performance is enhanced?

3. A major disadvantage with RNNs is identifying suitable (general and archi-

tectural specific) hyper-parameters in the search space. Whilst the MRN

appears to have an effective flexible memory mechanism, the model size

can drastically increase as memory banks are added or units increase. This

motivates the following third research question:

How can the MRN be adapted to reduce model complexity, par-

ticularly, reducing the search space whilst minimising the impact

on generalisation ability?
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1.3.1 Research Aims and Objectives

The aim and objectives of this research to address the research questions pre-

sented are outlined in this section. The first aim of this research is to thoroughly

investigate the MRN’s suitability for time-series forecasting, critically assessing it,

to identify its limitations. The second aim is to explore and extend the MRN to

mitigate the limitations identified and develop a suitable paradigm for time-series

modelling. To achieve the two aims, the following research objectives will be met:

Objective 1.1 Critically review the current research literature for existing time-

series forecasting (particularly TS & ANNs) models and assess the MRN in light

of the review to identify its suitability and whether it possess key attributes for

effective time-series forecasting.

Objective 1.2 Identify suitable time-series datasets and appropriate data pre-

processing and transformation techniques for a number of real-world problem

domains.

Objective 1.3 Define a set of appropriate model fitting, selection and evalu-

ation techniques, and metrics to evaluate performance.

Objective 1.4 Critically assess the MRN to identify the inherent learning and

architectural limitations.

Objective 1.5 Identify appropriate solutions to extend the MRN which mitigate

the inherent learning and architectural limitations (such as catastrophic interfer-

ence, vanishing gradients and model complexity) and enhance performance.

Objective 1.6 Evaluate the efficacy of the paradigm developed and its potential

for time-series modelling & forecasting using the selected datasets representing

real-world problems.

5
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1.4 Thesis structure

This thesis comprises the following eight chapters:

Chapter 2 presents a comprehensive literature review of time-series modelling

and forecasting using traditional statistical methods and Artificial Neural Net-

work models. The literature review critically assesses and identifies the key at-

tributes for time-series processing and forecasting. The MRN is identified as a

suitable modelling paradigm and assessed in light of the key attributes; appro-

priate memory mechanism and suitable computational complexity, required for

time-series modelling, for application, exploration and extension.

In Chapter 3, the proposed methodology for time-series forecasting is pre-

sented. The chapter presents an in-depth explanation of the chosen paradigm, its

structure and architectural design, the forecasting methodologies and the data

utilised. The Multi-recurrent Neural Network coupled with the sliding window

technique along with a forecast horizon and ensemble approach is presented. A

summary of the current research to date with the chosen paradigm along with its

suitability for time-series applications is discussed.

In Chapter 4, the MRN is first applied across domains where it has not been

previously applied. The MRN is evaluated on real-world problems from the time-

series domain (of varying complexity), to ascertain its suitability for time-series

processing. The performance of the MRN is also critically compared to the current

state-of-the-art forecasting models to determine its comparative performance. Fi-

nally, the limitations of the MRN are presented.

Chapter 5 presents an extension employing periodic attentiveness, to mitigate

two key learning limitations, namely, vanishing gradient problem and catastrophic

interference. This extension is compared to the standard MRN (as presented in

Chapter 3), to assess its comparative performance across four different problem

domains introduced in Chapter 3.

Chapter 6 introduces and extends the MRN with self-learning attributes. The

extension is proposed to alleviate an inherent architectural limitation of the MRN,

namely, the requirement for designer input (particularly for the memory ratios).

The model extension is applied to four different problem domains introduced in

Chapter 3 and compared to the standard MRN (as presented in Chapter 3), to

6
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understand whether they provide an improvement in performance.

Chapter 7 introduces a novel framework to obtain good models while pruning

the memory where possible. The framework incorporates the model extension

presented in Chapter 6 and is applied to four different problem domains intro-

duced in Chapter 3. This framework is conclusively assessed and discussed for

efficacy and performance.

Chapter 8 presents a summary of the research findings. In addition, the

contributions of this thesis relative to the aims and objectives are discussed and

reviewed. The contributions of this thesis lie in context of assessing the MRN for

time-series modelling, extending it to mitigate current limitations and to identify

a suitable time-series modelling framework. Finally, the limitations are discussed

and suggested future work and recommendations presented.

7



Chapter 2

Literature Review

In this chapter, a summarised critical review of the main computational ap-

proaches to time-series processing is presented. The chapter begins with a brief

introduction to time-series data and its characteristics, which is pivotal to un-

derstanding the main tenets of each method. The review highlights notable

techniques in the literature including traditional state-of-the-art statistical ap-

proaches (for example, the Box-Jenkins and Regime switching approaches) and

machine learning approaches such as feed-forward and recurrent neural networks.

The methodological, predictive strengths and limitations of each approach are

presented. The chapter concludes with an argument that further investigation

of the Multi-Recurrent Neural Networks class of artificial neural networks for

advanced time-series processing is warranted. A case is made for this particular

paradigm, due to their ability to capture the computational power of existing sta-

tistical and neural network approaches whilst retaining computational simplicity

and elegance not observed in other current state-of-the-art neural networks, such

as Long short-term memory models.

2.1 Time-series data

Time-series data is formally defined as a sequence of chronologically ordered ob-

servations indexed in time, t [73]. Each observation within a sequence is typically

8
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dependent indirectly or directly on the preceding observation.

~x = (x1, x2, ....., xn) (2.1)

Time-series data is usually observed a finite number of times. Specifically, a

time-series with a single variable is referred to as a uni-variate series whilst one

with multiple variables is referred to as a multivariate series [2, 46, 73,187].

Time-series data can be observed in various forms (discrete, continuous, bi-

nary) and different sectors (for example, finance: stock market prices for a given

quarter; medicine: patient vital signs during a hospital stay; education: yearly

student intake for a county). This contrasts with static data, such as stock

records stored in a transactional database for a retail company or snapshot of

images captured by a camera for a property security system.

2.1.1 Components of time-series

Time-series data are generally affected by four main components, which can then

be separated from the actual observations [2]. These components are Trend,

Cyclical, Seasonal and Random [2].

Trend: this is described as the long-term direction of the data, which could be

either upward, downward or constant, in either linear or non-linear form [61]. For

example, the spread and death rate of Covid-19 in 2020 followed an upward trend.

Cyclical: these are potentially irregular swings indicating an upward or down-

ward movement of a given trend (its duration is dependent on the sector) [61].

For example, most financial and economic data demonstrate cyclical variations,

such as business cycle turning points. Another example, retail sales in winter,

there is a peak for heavy woollen coats, hats and mitts, and in summer, for t-

shirts and shorts.

Seasonal: these are regular, repetitive and relatively short upward or down-

ward fluctuations [61]. This component is usually measured in quarters (Winter,

Spring, Summer, and Autumn) [61]. For example, the sales of boots in winter,

9
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or the number of holiday bookings in summer.

Random: these are random upward or downward variations over a specific time

period [61]. This is the unpredictable aspect of any given time-series. For exam-

ple, pandemic, war, drought or political upheaval.

Understanding and identifying the various components of any given time-series

dataset is essential in order to properly model the underlying signal rather than

the components of the data [46].

For the purpose of this research, with a focus on time-series modelling and

forecasting, a brief overview of time-series data is provided. The remainder of

this chapter presents methods that attempt to learn statistics and patterns from

various time-series datasets, with a view to making meaningful predictions for

the future values of these time-series, thereby modelling the underlying data

generation. For a more detailed review, the reader is referred to Adhikari and

Agrawal [2] and Dorffner [46].

2.2 Time-series analysis and forecasting

In the literature, time-series analysis can be understood as “the systematic ap-

proach of developing mathematical models to describe, understand and model

time-series data” [186]. Identifying and fitting an appropriate model is vital

as reliable analysis i) enables the transformation of raw data to insights, which

informs decisions and propels change where required, and ii) provides forecasts

from the identified inherent patterns and insights, which can be projected to

inform the future [61].

2.2.1 Traditional statistical models for time-series pro-

cessing

Statistical models have been popularly used for time-series analysis, particularly

due to their flexibility and ability to model stationary processes. This section

describes the notable and well-known statistical models employed for time-series

10
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analysis. In general, these models estimate parameters1 to make predictions.

2.2.1.1 Moving Average (MA)

A moving average (MA) model is a stationary process where previous forecast

errors are used to make forecast for univariate time-series [236].

A moving average model of order2 q (MA(q)) is given as:

yt = εt + φ1εt−1 + ....+ φqεt−q = εt +

q∑
j=1

φjεt−j (2.2)

where εt−1, .. , εt−q are the white noise error terms, εt ˜ εn(0, σ2
ε ) and φ1, .. , φq

(φq 6= 0) are the model parameters [236].

The moving average also known as ‘running mean’ or ‘rolling average’ is a

simple technique that combines the mean of a fixed number of sequential output

values from the model [87]. The average ‘moves’ through time as the newest

observation is included and the latest disregarded. The assumption that the

current value at any given time, t is a weighted sum of previous white noise

underpins the MA process, and as such it is always a stationary process3 [236].

Different types of moving average can be computed, for example, Simple Mov-

ing Average (as described above), Weighted Moving Average (WMA), where

weightings are given to each data point [156], Exponential Weighted Moving

Average (EWMA) derives the mean estimates by giving recent values more ex-

ponential weighting than distant values [37] and finally Cumulative Moving Av-

erage, where all the available data up to the current value is used to calculate the

average.

Pilcher et al. [160] used a risk-adjusted EWMA (RAEWMA) chart to monitor

outcomes of ICU patients. They showed that the RAEWMA chart had the abil-

ity to track fluctuations, particularly in contrast to the standard mortality ratio.

They were confident that the RAEWMA was capable to be used as a routine mon-

1A parameter is considered to be a numerical or other measurable factor of a model.
2The order, q, denotes the number of past errors considered up to and including time t (the

present time).
3A stationary process is a stochastic process whose joint probability distribution remains

constant. For example, a white noise with mean, 0 and variance σ2.
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itoring tool in ICUs. In addition, Coulson et al. [39] highlighted a key advantage

of their approach using MA over other control charts, namely interpretability.

Despite the observed improvement by Pilcher et al. [160] employing the MA, a

simple technique which enables easy computation, such simplicity hinders proper

handling of complex and evolving time-series (reflecting real-world dynamics).

Specifically, Pilcher et al. [160] proposed the use of the EMWA for ICUs with

a few admissions each year, but given the enormous growth in ICU admissions

such techniques pose little to no value. In particular, MA models have short-

term memory and are limited when modelling and analysing time-series data,

where the historical information provides considerable insights. In Wang and

Zhang’s [215] analysis, the adaptive MA model employed is very sensitive to small

changes in the data, which could be attributed to the short-term nature of the

memory mechanism. In addition, parameter estimation of MA models is known

to be difficult because; the lagged error terms are not observable [236]. Finally,

there are a number of problems associated with the moving average window;

the two main drawbacks are i) introduction of temporal autocorrelation1 which

can amplify noise, obscuring learning, and ii) the historical information is quite

‘rigid’ as the window size is predetermined but also averaged and as a result, co-

dependencies in time are not accounted for which is vital for identifying patterns

and modelling the series.

2.2.1.2 Auto-regressive (AR)

An auto-regressive (AR) model is a process where variable forecasts are calculated

as a linear combination of previous input values (that is, the given variable is

regressed unto itself) with a random error [236].

An auto-regressive model of order2 p (AR(p)) is given as:

yt = β1yt−1 + ....+ βpyt−p + εt =

p∑
i=1

βiyt−i + εt (2.3)

where β1, .. ,βp are the parameters of the model and εt ˜ εn(0, σ2
ε ), is white noise

1Autocorrelation is the similarity between observations as a function of the time lag.
2The order, p, denotes the number of past outputs considered.
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uncorrelated with ys for each s < t [236].

The model order (that is, the number of past observations) needs to be ex-

perimentally determined and the values of the coefficients in Equation 2.3 can be

estimated with methods such as Maximum Likelihood Estimation and Ordinary

Least Squares [215,236].

AR processes possess a relatively “long” memory, where the model linearly

combines decreasing coefficients with the previous values, to calculate the current

value [4]. This characteristic is essential as historical information is significantly

important for analysis, modelling and forecasting. In addition, these processes

are based on previous observed values unlike MA models, which reduces the level

of ambiguity for modelling and predicting.

Chaves and Pascual [27] presented seasonal AR to model and predict Cuta-

neous Leishmaniasis disease. Chaves and Pascual [28] later compared a number

of models for early warning of neglected tropical diseases. In particular, a sea-

sonal AR model is used as an Early Warning System (EWS) for prediction, where

it outperformed the other models for the four forecast horizons (1, 3, 6 and 12

month(s)) evaluated. This superiority can be attributed to the “autoregressive

treatment of seasonality, providing an adequate approximation to the asymptotic

cyclical structure of a time-series” [28].

However, given that the independent variables are time-lagged values of the

dependent variable, the assumption of uncorrelated error is easily violated. This

behaviour may violate one of the key features of an EWS for diseases, as correla-

tion between errors may hinder the ability to model covariates robustly [28]. An

effective model should have the ability to adapt as data is presented, however, an

AR model does not possess this ability as it has a relatively “long” memory; thus

it is limited for modelling and prediction of short-term tasks [4]. The limitation

with the MA and AR warrant the need for models that better capture the short-

term and long-term temporal dependencies to more accurately model time-series

data.
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2.2.1.3 Auto-Regressive Moving Average (ARMA)

An Auto-Regressive Moving Average (ARMA) model combines the properties of

an AR and MA model, enabling the ARMA to benefit from key advantages of

the two processes. An ARMA model of order p and q (ARMA(p, q)) is given as

yt = εt +

p∑
i=1

βiyt−i +

q∑
j=1

φjεt−j (2.4)

where βp 6= 0, φq 6= 0, βi and φj are the parameters of the model, σ2
ε > 0 and εt:

εt ˜ εn(0, σ2
ε ) [236].

The ARMA model possesses the stationarity conditions of an AR(p) model

and invertibility1 conditions of an MA(q) model. In particular, combining both

AR and MA means the model subsequently requires fewer parameters to represent

the data [155].

The stationarity condition is one of the bases of ARMA models [132], however,

most time-series are composed of a non-stationary2 trend series and a zero-mean

stationary series [132]. Another condition that underpins ARMA models is ergod-

icity ; which is where the autocovariance3 decays rapidly to zero as the lag value

increases, indicating that more accurate estimates can be obtained as the sam-

ple size increases [132]. However, this is not necessarily always true, especially

for very complex series with structural breaks (for example, oil prices). These

two main conditions do not replicate real-world dynamics and as a result ARMA

models have limited modelling and predictive abilities.

Introducing a finite number of differencing (or other transformations) to re-

move non-stationarity is referred to as the so called Integrated ARMA, popularly

known as the Auto-Regressive Integrated4 Moving Average (ARIMA) [2,201,207].

ARIMA models are well suited to short-term prediction tasks, as they give more

prominence to the recent past rather than the distant past [176]. The ARIMA’s

1Invertibility condition is fulfilled when the summation of the model’s parameters is less
than infinity ∞.

2A non-stationary process is characterized by a continuous change of statistical properties
over time, for example, random walks.

3Autocovariance estimates the covariance between a variable at a given point in time with
itself at a lagged point in time.

4Integrated represents the differencing of observations to ensure stationarity.
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ability to distinguish the signal from the noise enables the identification of a

tangible correlation, thus improving prediction accuracy [189]. Researchers have

employed ARIMA models for time-series analysis such as EWS to detect anoma-

lies [227], to make early warning analysis by forecasting the process level network

traffic [211], to forecast future mortality ratios [176] and an integration of ARIMA

models into an online early warning system of power systems security and stabil-

ity [100].

However, this method also has a number of limitations, Meyler et al. [102]

presented evidence for the limited capability of ARIMA models to deal with

volatility. They found that the ARIMA had difficulty modelling the Harmonised

Index of Consumer Prices, particularly due to the ARIMA’s poor handling of

noisy data. In addition, they pointed out the model’s ‘backward nature’ and

poor ability to predict turning points, which further impedes its modelling and

predictive abilities [102]. Stevenson [194] stated that the ARIMA’s backward

looking nature and price reverberations limit its ability to predict changes in the

market direction following an extended cycle. More specifically, turning points1

are where accurate forecasts are most desired and the ARIMA’s limited ability

with turning points renders it less effective as a modelling tool. In addition,

stationarity, an essential process in ARIMA, might not be achieved as shown

by Williamson and Hudson [223], due to large deviations between observations.

William and Hudson [223] pointed out another limitation with ARIMAs, i.e. their

inability to establish patterns and handle series with random or non-seasonal

occurrences.

2.2.1.4 Box-Jenkins methodology

George Box and Gwilym Jenkins developed the Box-Jenkins method in 1970, to

identify the best fit for the ARIMA/ARMA class of models. They proposed a

three-stage iterative process to estimate the ARIMA [87, 236]. The three stages

are Identification, Estimation, and Diagnostic checking [236].

• Identification: selecting the model specification, ARIMA (p, d, p), at this

1Turning points are defined by Chin and Miller [32] “as occurring when a swing in one
direction ends and a swing in the other direction begins”.
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stage stationarity is ensured and differencing performed if necessary [163,

236].

• Estimation: inferring and estimating the model parameters, the aim at

this stage is to minimise the error term [236].

• Diagnostic checking: evaluating the final model using available data,

identifying areas of improvement and incorporating these improvements

(Note: if it failed, go back to Identification and repeat [236].

Researchers such as Hikichi et al. [82] presented the Box-Jenkins methodology

for certification forecasting and obtained satisfactory results when compared to lo-

gistic regression models, and provided new insights on the predicted certifications

diffusion. Petrevska [157] applied the methodology for short-run predictions for

tourism demand. In particular, they proposed the ARIMA(1,1,1) model for reli-

able forecasts of international tourism. Williamson and Weatherby Hudson [223]

employed the Box-Jenkins method along with several statistical process control

charts, and it proved to be an effective early warning tool to identify large unusual

increases (or decreases) in disease reports.

Additionally, Commandeur and Koopman [36] stated this approach is intrin-

sically problematic as it does not replicate real series which are largely non-

stationary1, despite the inclusion of differencing. Despite Hikichi et al.’s [82]

success with the Box-Jenkins method, they alluded to the method’s lack of pre-

cision for long-term forecasting and implementation difficulty with short data

series. Similarly, Petrevska [157] stated “the model is not highly accurate, prob-

ably due to the presence of several structural breaks (that is, a sudden change in

the series, proper capturing of which is essential for modelling) during the sample

period. This means that the suggested model has some difficulties in producing

forecasts with minimal errors, implying that different models could be tested.”.

Finally, the Box-Jenkins methodology is based on the ARIMA class of models

and as a result it is susceptible to the limitations presented in Section 2.2.1.3.

1Non-stationarity describes a process with a variable mean and variance.
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2.2.1.5 Vector Models

The methods discussed above are univariate and thus an extension of these meth-

ods has been developed for multivariate (that is, when there are two or more in-

dependent variables) time-series processing. For a multivariate framework, the

extension of ARMA models give Vector AutoRegressive (VAR) models, Vec-

tor Moving Average (VMA) models and Vector AutoRegressive Moving Average

(VARMA) models.

The most common of these, the VAR model, is given as:

yt = β1yt−1 + ....+ βpyt−p + εt) (2.5)

for yt = (y1t, .., yKt)
T a K variate random process, where βi are fixed (K × K)

coefficients matrices and εt is the K-dimensional white noise with a non-singular

covariance matrix
∑
u [75].

A VMA model is given as:

yt = φ1yt−1 + ........+ φpyt−p + εt (2.6)

for yt = (y1t, ...., yKt)
T a K variate random process, where φi are fixed (K × K)

coefficients matrices and εt is the K-dimensional white noise with a non-singular

covariance matrix
∑
u [57].

Authors such as [8, 11, 167] demonstrated the VAR model’s efficacy and use-

fulness as an EWS. In particular, Lui et al. [125] showed that the VAR models

with exogenous variables outperformed an ANN model. Mostafa [17] presented

VARs and showed they provided more accurate economic forecasts than struc-

tural macroeconomic models.

Conversely, Aydin and Cavdar [8] used the VAR model to predict financial

distress or stock market crashes before the 2007 financial crises and concluded

that the VAR model underperformed compared to the alternative neural network

model1 used. Mostafa [17] admitted that despite the improvement in predictions

obtained with VAR models, they are unable to fully describe the functioning

mechanisms of the economy. In particular, for two of the variables, the insight

1Multilayered Feedforward Neural Network (MLFN) architecture
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provided by the VAR model was the same as that provided from a random walk1

model. These results, particularly those obtained by [17] are indicative of the

unsuitability of VAR models for time-series modelling.

These models are based on MA/AR techniques, and thus they are prone to

the limitations of MA, AR and ARIMA models presented in Sections 2.2.1.1,

Section 2.2.1.2 and Section 2.2.1.3. As a result, they do not possess the quali-

ties required to properly model and predict time-series data. In addition, Stock

and Watson [195] pointed out further limitations such as inaccurate modelling of

non-linearities, conditional heteroskedasticity2 and parameter drifts. These lim-

itations point to the need for more dynamic state based models that can model

different aspects of the data, to properly handle volatility, non-linearities and

identify underlying patterns.

2.2.1.6 Markov Switching models

Stationary models as seen above are good for modelling when the parameters

(mean and variance) of the model remain constant. However, this is not usually

the case for real-world data and Markov switching models enable the relaxation

of this restriction. Markov switching models, also known as Regime switching

models, are models “based on a mixture of parametric distributions whose prob-

abilities depend on unobserved state variable(s)” [151]. Modelling data using

different regimes enables better capturing of the underlying signal, as data prop-

erties, such as the mean and standard deviation, may vary temporally.

1The Random Walk is linked to the Efficient Market Hypothesis, which states “that financial
markets are efficient, that prices already reflect all known information concerning a stock or
other security, and that prices rapidly adjust to any new information” [202].

2Heteroskedasticity occurs when standard deviations of a predicted variable over time are
non-constant.
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The Markov switching model is given by

f(yt|φ1,Ft−1) if St = 1

f(yt|φ2,Ft−1) if St = 2

.

.

.

f(yt|φr,Ft−1) if St = r

(2.7)

where φi are parameters of the model i and φi 6= φj if i 6= j, St is an unob-

served discrete state variable that determines the conditional distribution of Yt

and Ft−1 = f(Xt, Xt−1, .., Xt−p, Yt−1, .., Yt−p) that is, the information known up

to time, t− 1 [151].

Goldfeld and Quandt [69] and Hamilton [77] notably introduced these mod-

els to the research community. The Markov switching model is well-noted for

nonlinear time-series modelling and has the ability to distinguish time-series be-

haviour into different regimes and such behaviour enables the model to capture

and represent complex dynamic patterns [111].

“A novel feature of the Markov switching model is a switching mechanism

controlled by an unobservable state variable that follows a first-order Markov

chain” [111]. In these models, St evolves over time as a discrete time, discrete

space Markov process1 and the transition probability of the state variable, St are

dependent on the previous value of the state variable [151].

Lee and Chen [116] showed that Markov switching models are suitable for

predicting exchange rates. Lu et al. [123] applied Markov switching models for

a bioterrorism event detection task, which obtained a faster detection speed and

higher detection sensitivity compared to the Serfling and ARMA models. They

stated that the Markov switching models mitigated computational issues associ-

ated with temporal detection techniques. They later compared the three models

used for predicting bioterrorism to disease outbreak detection where an extension

1A Markov process can be defined as a random process where predictions can be determined
solely by the last previous state (that is, the last previous state has all the information required
for prediction).
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of the Markov model (with jumps and a filtering component) performed best

with 23% - 328% higher detection sensitivity [124]. Song et al. [193] similarly

applied the Markov model for wind forecasting and showed the worst perfor-

mance of the Markov switching model was better than the other models (AR

model, Neural Network, and Bayesian structural break model). In particular, the

different regimes of the Markov model enabled the forecasting of not only wind

speed points but also wind speed intervals, which they stated is beneficial for

operational planning.

Despite the success obtained with Markov switching models, Briggs and Sculpher

[1] pointed out their inherent limitations; i) restrictive assumptions and ii) lack

of memory. These limitations indicate that Markov models are particularly lim-

ited for more complex and dynamic series, as restrictive parameterisation limits

its modelling abilities as the data ‘evolves’ and they do not have the necessary

historical information to map and model the signal. In addition, Song et al. [193]

stated large datasets may be required to identify optimal regimes, thus requir-

ing increased computational complexity. As a result, state based models with

appropriate memory mechanism (internally or externally) that can adequately

and properly represent time-series and its features should be explored for reliable

insights and predictions.

2.2.1.7 Review of Statistical Approaches

Statistical methods have been widely applied across several domains for time-

series application (as presented in Section 2.2.1.1 - Section 2.2.1.6). They offer

key advantages such as simplicity, computational efficacy and interpretability for

time-series modelling and forecasting. However, despite the benefits offered by

these models, they suffer from significant limitations such as difficulty process-

ing complexities (present in real-world data) and inability to properly handle

numerical complications (that arise with latent state variables1) [49].

In particular, the ARIMA class of models are unable to handle and process

1These are internal system states unobservable from the environment by the user and thus
their behavioural characteristics must be informed from observational variables (inputs from
and outputs to the environment), for example: hidden units in a neural network.
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asymmetries1, irregularities2, and volatility3 present in the data, due to their

rigid linearity assumptions. Petrica et al. [158] showed these models are limited

in mimicking intrinsic properties of time-series and as such limiting their pre-

dictive abilities. Finally, a number of these traditional methods are linear and

consequently, they are unable to properly predict the structural shifts. Note: to

thoroughly evaluate the robustness and suitability of the models employed in this

thesis, real-world data with the characteristics discussed in this section will be

employed.

Given the limitations of traditional statistical models, advances have been

made to apply Machine Learning (ML) techniques for time-series analysis. Makri-

dakis et al. [127] carried out experiments with the well-known M3 dataset and

interestingly the results obtained by the author indicated that ML methods were

not superior to statistical models. Makridakas et al. [127] thoroughly discussed

what they deemed inadequacies of ML methods and concluded that the shift

to ML methods had not been sufficiently justified (in comparison to statistical

models).

Cerqueira et al. [26] addressed Makridakis et al’s [127] criticisms of machine

learning by highlighting a key bias: sample size. Although Makridakis et al

[127] drew their findings from 1045 monthly observations to properly assess the

models, the length of the series were ‘extremely short’ (with an average, minimum

and maximum of 118, 66, and 144, respectively) [26]. They hypothesized and

tested the claim that ML models generalize poorly on ‘small datasets’. Their

results demonstrated that statistical methods performed better on small dataset,

however, as the sample size grew, ML models performed better. They stated that

because “ML models assume a functional form such that they are more flexible

than statistical models, they are more prone to overfit.” They explained that

the poorer performance with ML models for a smaller dataset was due to the

1Asymmetric data has variable values at irregular or haphazard intervals, for example:
medical datasets with controls where the number of healthy subjects significantly outnumbers
the number of subjects with disease.

2There are irregularities present in a dataset due to deviations causing bias or skew, for
example: spike increase in oil prices or drop in interest rates due to financial crisis.

3A dataset is referred to as volatile when there is a high rate of change in the variable
values over a period leading to increased uncertainty of the future trend of the time-series, for
example: stock prices, inflation rate, oil prices.
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lack of sufficient representation in the data to enable appropriate mapping of the

underlying signal. Although, Makridakis et al. [127] raised concerns about the

superiority of ML models over statistical models, the work in [26] highlights that

ML are suitable and should be explored (particularly with the vast wealth of data

available today).

2.2.2 Neural Networks for time-series processing

Machine Learning is a branch of artificial intelligence and according to Shalev-

Shwartz and Ben-David [180] is defined as “the automated detection of meaningful

patterns in data”. More specifically, machines are given data in order to facilitate

‘learning’ and perform given tasks. Learning can be supervised, unsupervised,

semi-supervised or reinforced. Some example of these learning types are:

1. Supervised : observations: images of vehicles, and their labels: name of the

vehicle (bus, car).

2. Unsupervised : using the characteristics of the input data to group and

classify the data.

3. Semi-supervised : using a subset of labelled data to aid the identification of

hate speech.

4. Reinforced : training using a reward and punishment mechanism.

ML is commonly viewed as an intersection between computer science and

statistics. Statistically the aim is to identify “how meaningful inferences can

be obtained from data?” while computationally the aim is to understand “how

machines can be used for problem-solving?” [133]. The overarching goal is to

develop “a computer program that learns from experience E with respect to

some class of tasks T and performance measure P and its performance P at tasks

T improves with experience E” [133].

Similar to statistical methods, ML methods aim to minimize a cost function

in order to fit the data, where cost refers to some system error measure [127]. ML

includes, but is not limited to, Artificial Neural Networks (ANNs), Case Based
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Reasoning, Classification and Regression Trees, Rule Induction, Support Vector

Machines, Gaussian Processes, Genetic Algorithms and Genetic Programming

[190].

Specifically, Artificial Neural Networks (ANNs) have been shown to be an ef-

fective learning paradigm which provide state-of-the-art performance in a variety

of tasks such as image recognition, financial forecasting, natural language pro-

cessing and strategic game playing. These networks are based on and modelled

(that is, they receive, process and output information) after the mechanisms of

the brain (a complex and powerful interconnected mechanism), using simplified

numerical computations [180].

Kriesel [109] formally defines ANNs as “a sorted triple (N, V, w) with two

sets N , V and a function w, where N is the set of neurons and V is a set

{(i, j)|i, j ∈ N} whose elements are called connections between neuron i and

neuron j”. “The function w : V → IR defines the weights, where w((i, j)), the

weight of the connection between neuron i and neuron j, wi,j” [109]. Information

processing occurs as the network receives inputs which are multiplied by the

appropriate weights to give the activation of the next layer and this is repeated for

the succeeding layers (that is, the network forward propagates information) [62].

Particularly, for supervised learning with back-propagation, the network is

initialised with random weights (and biases) which are used for the desired cal-

culations. The network starts to learn once the error (the difference between the

actual label and the network’s prediction) along with the error surface gradient

are propagated back (fed into the network) such that the weights (and biases) are

adjusted in order to obtain network predictions closer to the actual label (thus

producing a lower error) [9]. ANNs are powerful tools with the ability to i) ap-

proximate complex non-linear mappings and deal with ‘noisy’ signals, ii) predict

without a priori distribution assumptions (which can obscure learning) and iii)

adaptively incorporate new data [9]. In particular, these are properties which

state-based memory mechanisms such as ARIMA and Regime Switching models

do not possess.

These advantages are key for time-series processing, particularly for complex

series. Having an adaptable model such as ANNs, that does not form prior as-

sumptions, aids the input-output mapping and can separate the noise from the
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signal to provide useful insights and inferences for informed decisions. ANN mod-

els can be broadly categorized into feed-forward neural networks and Recurrent

Neural Networks (RNNs). The distinction is made based on their network topol-

ogy i.e. how nodes within the network are interconnected and thus the direction

in which information is allowed to flow [178].

2.2.3 Feed-forward Neural Networks (FFNNs)

Feed-forward Neural Networks are ANNs that utilise only forward connections

(i.e. all information is received in a particular order, no feedback or context

from layers within the network is provided) for numerical computation [178]. A

number of FNN network variants have been developed and applied for time-series

tasks, for example, Radial Basis Function (RBF) Networks, Perceptrons, Time-

delay Neural Networks, Learning Vector Quantization and Probabilistic Neural

Networks.

2.2.3.1 Multi-layer Perceptrons (MLPs)

Perceptrons, initially developed by Rosenblatt [164] in 1958 with a basic learning

method, were the first type of neural networks built for binary classification.

A later adaptation was with the Least Mean Square algorithm by Widrow and

Hoff [221] in 1960. Werbos in 1974 developed a back-propagation algorithm for

training multi-layer networks in his thesis and this was popularised by Rumelhart,

Hinton, and Williams [166] in 1986. Back-propagation enabled the generation of

meaningful internal representations to solve both linear and non-linear problems.

More specifically, a perceptron has an input and output layer. Then MLPs which

consist of an input layer, one or more hidden layer(s) and an output layer were

later developed. A diagram of the simplest MLP is shown in Figure 2.1.

The equations for an MLP are given as follows:

S(j+1)t = f(WjSjt) for j = (1, .., n)

yt = f(WoS(j+1)t)
(2.8)

where n is the total number of hidden layers, Wj is the weight between the jth
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Figure 2.1: Multi-layer Perceptron

layer and the succeeding layer, Sjt is the output of the jth layer at time t (Note:

S1t is the input layer) and f is the activation function [70].

MLPs provide a simple framework for time-series analysis with temporal infor-

mation presented in a static manner. A number of researchers have applied MLPs

for various time-series tasks. For example, to predict ICU outcome [50,63,86,184]

and length of ICU stay [51,206]. Others such as Salmon et al. [174] explored MLPs

with different processing techniques to detect land cover change; Dudek [48] pro-

posed an MLP for forecasting probabilistic electricity price; and Pano-Azucena et

al. [152] showed that MLPs outperformed Least-squares Support Vector Machines

and Adaptive Neuro-Fuzzy Inference System when predicting chaotic time-series.

Zhou et al. [239] proposed a hybrid which uses an ARIMA; a statistical approach

and an ANN. Authors such as Frank [54] et al. and Murphy and Dieterich [136]

have incorporated a sliding window with MLPs to better account for the time-

series component within the data. Kohzadi et al. [106] particularly found that

MLPs with a sliding window performed better and was able to capture a signifi-

cant number of turning points in (non-linear and chaotic) datasets.

MLPs have shown potential for time-series modelling, for example as demon-

strated in [127], however, they do not have ‘memory’ mechanisms and can not

account for temporal features thus hindering effective learning and meaningful

insights. Fawaz et al. [90] stated that MLPs are limited for time-series as they

do not exhibit any spatial invariance and temporal information is lost. Similarly,

Koskela et al. [108] pointed to their static nature and particularly for multi-step

prediction MLPs could not perform as well as some other models (Elman and Fi-

nite Impulse Response neural network). They attributed the better performance

of the two networks to their temporal extension, which MLPs lack. Therefore,
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identifying and exploring feed-forward approaches that employ memory is key for

better representation of time-series and accurate forecasting.

2.2.3.2 Time-delay Neural Networks (TDNNs)

Time-delay Neural Networks (TDNNs) are networks that employ time delays to

treat temporal and time-invariant signals. These time delays enable the input

neurons to store ‘history’, as they have access to inputs at T + 1 points, that is,

the current value, xt along with T delays (xt−T , xt−(T+1), ..) [98].

The equations for the TDNN is as follows:

ht = fh(XWh)

yt = fo(htWo)
(2.9)

where X = (xt−T , .., xt), Wh is the hidden weight matrix, Wo is the output weight

matrix, ht, yt are the hidden and output vectors at time t [98] and fh and fo are

the hidden and output activation functions.

Shao and Lin [181] used a TDNN to identify variables that cause out-of-

control signals for a Multivariate Normal Process with variance shifts. They

found that the TDNN outperformed and provided satisfactory results compared

to other techniques employed (ANN, Support Vector Machine and Multivariate

Adaptive Regression Splines). TDNNs have particularly been widely applied for

speech recognition tasks, for example by Peddinti et al. [154] and Sawai [177].

Zhang et al. [233] used a TDNN which improved pattern recognition ability of an

electronic nose in discriminating four different spices. The TDNN outperformed

the Discriminant Function Analysis and MLP. They attributed the superiority of

the TDNN to its ability to capture the difference in time related patterns among

sensors’ responses.

However, Marques et al. [129] showed that the TDNN underperformed for

response prediction and required more hidden neurons when compared to an RNN

variant. This is possibly due to the lack of adequate temporal representation of

the series, which is essential to obtain meaningful predictions for time-series.

In particular, time-series data can be quite complex, requiring many feedback

loops within the model architecture for effective processing to conserve temporal
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dynamics, however, TDNNs do not possess this feature.

2.2.3.3 Limitations of Feed-Forward Neural Networks

Shabri and Samsudin [179] pointed out that ANNs suffer from local minima, pa-

rameter selection sensitivity and over-fitting [115, 217, 226, 231]. From Section

2.2.3.1 and Section 2.2.3.2, it is evident that feedforward networks do not possess

the necessary feedback loops to appropriately map time-series data to capture

the underlying signal. Natarajan and Ashok [139] further highlighted the need

for advanced models such as recurrent neural networks for time-series processing

as MLPs are not dynamic and as a result are inadequate to properly identify in-

teractions between variables across time. Thus, they believe that neural networks

with recurrent features possess the ability to properly utilise past observations

and are more suitable methods for time-series processing.

2.2.4 Recurrent Neural Networks (RNNs)

Recurrent Neural Networks are ANNs with recurrent connections to one or more

layers within the network enabling the capturing and modelling of sequential

data [173]. The hidden states in an RNN store information from previous states,

thus creating a ‘memory’ for the network [173]. This ‘memory’ mechanism enables

RNNs to properly handle time-series data [22,24,47,81,93].

2.2.4.1 Nonlinear Autoregressive models with eXogenous input Neu-

ral Network (NARX)

Nonlinear Autoregressive models with eXogenous input Neural Network (NARX)

is a simple RNN variant employing lagged variable values to enable the modelling

of non-stationary and non-linearity in time-series data [43]. Although, NARX

networks do not possess state units, they utilise feedback of historical inputs and

outputs in a shift-register manner such that time is mapped onto space.

The equation for the NARX is as follows:

yt+1 = f(yt, ...., yt−dy+1, ut, ut−1, ...., ut−du+1) (2.10)
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where yt and ut are the input and output vectors at time t and dy and du are the

output and input memory orders (the amount of memory embedded) [130].

NARX models have been employed by a number of authors, such as Maria

and Barreto [130], specifically for predicting and early warning indication. Xie et

al. [225] applied NARX for long-term prediction of a univariate time-series which

constantly outperformed the TDNN. They attributed this to the feedback loops

in the NARX which enabled it to handle complex time-series data. Asgari et

al. [6] found that despite the simplicity of NARX models, they had the ability to

model and predict ‘unstable’ behaviour within the data.

Nevertheless, DiPietro et al. [45] showed that the NARX model alongside

other RNN variants contains the shortest paths of length such that historical in-

formation is lost rapidly and given the NARX’s architecture with non-contiguous

delays the paths are further shortened. This implies that the NARX network

does not possess sufficient ability for long-term dependency problems and as a

result other RNN variants should be explored.

2.2.4.2 Jordan Network

ARMA models as seen in Section 2.2.1.3 are a combination of both MA and AR

techniques such that both the errors and outputs are used for modelling. Jordan

networks are neural network extensions of the ARMA ideology forming a non-

linear function. In particular, a Jordan network with a time window approximates

a non-linear ARIMA model of past sequence elements and error estimates [46].

The Jordan network has feedback connections from the output layer to the input

layer (see Figure 2.2) [46].

The equations for a Jordan network are:

St = fh(WhIt + Uhyt−1)

yt = fo(WoSt)
(2.11)

where It is the input vector at time t, St is the state vector at time t, W and

U are weight matrices, yt is the output at time t and f represents the chosen

activation functions [95].

The output feedback in the Jordan network enables the exploitation of past
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Figure 2.2: Jordan Network

information, particularly as the activations within the network are a function of all

past estimates. Furthermore, the Jordan network was extended to incorporate

self-recurrent loops for the units in the context layer (also known as memory)

such that the units are connected to themselves through a weight that is less

than 1 [46].

Authors such as Kasiran et al. [101], Wysocki and  Lawryńczuk [224], Yasdi

[229] and Song [192] have employed the Jordan network. Wysocki and  Lawryńczuk

[224] demonstrated that despite the simple architecture of the Jordan network, it

possesses predictive abilities for model predictive control. Song [192] used the Jor-

dan network along with recurrent constrained learning for non-linear time-series

prediction, which achieved guaranteed weight convergence and network stability.

The Jordan network boasts two key features; simplicity and non-linearity map-

ping, which are essential for volatile time-series and encourage computational

efficacy. In addition, the Jordan network contains ‘unlimited’ historical informa-

tion (as the activations are a function of all past estimates) [46]. Thus, enabling

the network to exploit information beyond a limited time period (which most

techniques presented thus far do not possess), enhancing its performance [46].
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However, although this simplicity with access to ‘unlimited’ historical infor-

mation is useful for the network, Dorffner [46] pointed out that the structure of the

Jordan network leads to a loss of explicitness of information (as all past estimates

are aggregated into one activation function). Wysocki and  Lawryńczuk, [224] de-

spite their success with the Jordan network, pointed out that ‘unavoidable’ inac-

curacies are encountered and did not state whether these inaccuracies are peculiar

to the Jordan network. However, Dorffner’s [46] comments on the oversimplified

history of the network explains why these inaccuracies arise. In addition, when

sigmoid functions are used, the units saturate quickly and additional inputs have

little effect [46]. This implies that the Jordan network has a theoretically rich

memory mechanism but in practice, it is not dynamic and saturation can occur

quickly with little to no further benefits realised [46]. As a result, Jordan net-

works are limited when modelling real-word dynamics and prediction of ordered

sequence of actions (for example, robotic arm movements).

2.2.4.3 Simple Recurrent Network (SRN)

Elman [52] introduced an RNN that utilises its previous internal state as an

additional input. This model is commonly known as either the Simple Recurrent

Network (SRN) or Elman Network. State space models were presented earlier in

Section 2.2.1.6 and this concept is extended to neural networks such as the SRN,

as hidden states are fed back (or output states for Jordan networks) at the next

time step. Each new observation is presented within the context of a compressed

representation of previous input observations within the sequence [46]. More

specifically, SRNs are computationally equivalent to a one-step Markov process

as predictions can be made by the network’s state (regardless of how the state

was reached) such that all historical information required for predicting can be

expressed by one state vector [46].

The SRN therefore extends MLP networks by incorporating these feedback

loops from the hidden layer (generated in response to the current input stimuli)

to the input layer (for use as inputs to the model at the next time step, along

with any new input stimuli) as shown in Figure 2.3. The units that hold these

historical hidden unit activations (from the hidden layer) on the input layer are

30



2. Literature Review

popularly known as state units and represent the memory mechanism in the SRN.

INPUT LAYER

HIDDEN LAYER

OUTPUT LAYER

CONTEXT LAYER

Figure 2.3: Simple Recurrent Network

The equations for an SRN are:

St = fh(WhIt + UhSt−1)

yt = fo(WoSt)
(2.12)

where It is the input vector at time t, St is the state vector at time t, W and

U are weight matrices, yt is the output at time t and f represents the chosen

activation function [52].

The SRN has been used for time-series forecasting and early warning indica-

tion as shown by Sugiartawan and Hartati [196] and Wang et al. [213]. Sugia-

rtawan and Hartati [196] demonstrated that the SRN had the ability to identify

the predictive patterns of tourist visits. They also demonstrated that the SRN

had a faster training time than the Jordan network, an RNN and a feedfor-

ward network [196]. Wang et al. [213] showed that the proposed model, an SRN

with a Stochastic Time Effective Function, had the ability to model the financial

market and predict stock market indices. Others have successfully implemented
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hybrids incorporating the SRN for enhanced time-series analysis, for example,

SRN–NARX neural networks for chaotic time-series modelling [5] and a hybrid

RBF-Elman neural network for anomaly detection [205].

The SRN uses simple feedback loops to inform predictions, which admittedly

simplifies implementation and requires less computational resource. However,

although different from the Jordan network in terms of the type of feedback

employed, the SRN suffers from the same limitation with simple feedback loops,

loss of information explicitness, albeit to a lower degree [46]. Thus, the SRN is

unable to fully represent historical information [46]. In addition, Dorffner [46]

stated that SRNs can not deal with arbitrarily long history. The SRN’s feedback

loops favour the most recent state-based response over older historical responses

and as a result the inherent simplicity causes the historical knowledge (past inputs

and states) to decay rapidly [208]. Consequently, gradients concerning historical,

yet important, input observations begin to vanish quickly (i.e. the vanishing

gradient problem), thus limiting their prediction capability. Tepper et al. [200]

stated this decay occurs as early as 5 to 10 discrete time steps. The SRNs, like

the Jordan network, is a simple RNN and has been widely applied for time-series

modelling, they are however, limited due to their lack of appropriate memory

mechanism. Thus, a more sophisticated, yet simple paradigm is required.

2.2.4.4 Echo State Network (ESN)

A common issue with SRNs such as Elman and Jordan networks, is that they

are trained with gradient descent algorithms. It has been proven that these algo-

rithms suffer from the vanishing gradient descent problem, where the error van-

ishes as it gets propagated back in time [83]. In addition, the over-simplification

of memory in these networks point to the need for other dynamic mechanisms.

One such mechanism is the Echo State Network, developed by Jaeger [92] in 2001.

These networks are similar to other RNNs in that they have an input, hidden

and output layer. Specifically, the hidden layer within this network is a recur-

rent dynamic reservoir, the input sequence information is retained as activations

rebound (that is, inputs to the reservoir are projected to a high dimensional fea-

ture space that allows the application of simpler training techniques) around the
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recurrent units [94, 200].

The equation for an ESN are given as follows:

xt+1 = f(W inut+1 +Wxt +W backyn)

yt+1 = f out(W out(ut+1, xt+1, yt))
(2.13)

where f in are the functions for the internal units, f out are the functions for the

output units and u, x, y are the input, internal and output activation vectors [92].

The reservoir is the core of the ESN and the connectivity in the reservoir is

sparse and random, which encourages the development of individual dynamics

[92]. More specifically, the reservoir must have the Echo State Property (ESP).

The ESP asserts that “the reservoir state should asymptotically depend only on

the driving input signal (the state is an echo of the input), while the influence of

initial conditions should progressively vanish with time” [58]. ESNs are notably

known to alleviate the training difficulties encountered in conventional RNNs

[14,165].

Tong et al. [204] used an ESN for a grammar task, they demonstrated that

ESNs possess the ability to learn grammatical structure, particularly without the

need of specialized learned representations akin to SRNs. They further stated

that such behaviour is compensated by the ESN’s reservoir that enables the net-

work to capture some statistical regularities of the inputs [204]. This finding is

particularly interesting as these specialized representations have been elevated

in the literature as essential for learning, but ESNs appear to refute this no-

tion [204]. Ruffing and Venayagamoorthy [165] found that ESNs were suitable

models for Solar Irradiance prediction. Li et al. [117] used an ESN in a Bayesian

framework to predict chaotic time-series. Others applied ESN variants such as

Double-Reservoir ESN which adopts two reservoirs to handle multi-regime time-

series [238] and Support Vector ESN where the “kernel trick” is replaced with

a “reservoir trick” (that is, linear support vector regression is performed in the

high-dimension “reservoir” state space) [185]. Basterrech [14] sought to boost the

ESN’s performance by ‘weakly’ initialising an ESN and incorporating an L2-Boost

technique and found this added no computational effort and obtained improved

performance for ‘weakly’ initialised ESNs.
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ESNs appear to alleviate the problem associated with over-simplification of

historical information prevalent with the SRN and Jordan network. However, as

seen from Bianchi et al.’s [19] experiments despite obtaining the best performance,

ESNs are of greater computational complexity. Tong et al. [204] quantified this

increased complexity, stating for an SRN with 70 hidden units, an ESN required

300 hidden units (4 times as many parameters). For more complex series, using

an ESN which requires over 4x as many trainable parameters is computationally

intensive, thus mitigating the acclaimed benefits of the ESN. This computational

complexity reduces the suitability of ESNs for effective time-series modelling. In

addition, Ruffing and Venayagamoorthy [165] pointed out that ESNs had a noisier

memory, leading to more errors. Although, the ESN’s dynamics have shown some

success with time-series prediction, the increased number of parameters and noisy

memory lead to increased complexity and inaccuracies. Tepper et al. [200] also

showed that the ESN was unable to fully learn a complex context free grammar

induction task. The network showed preference for early commitment to one

of the paths through the grammar rather than being able to maintain robust

representations of both paths.

2.2.4.5 Long-Short Term Memory (LSTM)

LSTMs were introduced to tackle the vanishing gradient problem associated with

the back-propagation learning process by incorporating a gating mechanism that

uses feedback connections and controls feedback weights enabling gradients to

flow unchanged [198]. Their structure additionally provides a means to tackle

the issues that arise from over-simplification associated with SRN and Jordan

network. LSTMs incorporate a memory cell, multiplicative input and output

gate and forget gate to protect the memory contents (such that information can

be removed and added to the cell state) [103].

The gating equations for LSTMs are shown below:

it = fin(Wixt + Uiht−1 + bi)

lt = fin(Wlxt + Ulht−1 + bl)

ot = fin(Woxt + Uoht−1 + bo)

(2.14)
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and the cell-memory/input block equations are:

ĉt = f(Wcxt + Ucht−1 + bc)

ct = lt � ct−1 + it � ĉt
ht = ot � f(ct)

(2.15)

where xt is the input vector (sequence), ct is the memory “state”, it, lt and ot

are the three gate signal vectors, ht is the hidden activation, f represents the

chosen activation function, b represents the biases and W and U are the model

weights [103].

Authors such as Pham et al. [159], Gopalswam et al. [72], Sak et al. [171],

Kim and Kang [104] and Ge et al. [59] have successfully implemented the LSTM

for time-series analysis in a number of domains, and it is believed to dynamically

model signals and mitigate the vanishing gradient problem. Sak et al. [171]

applied LSTMs for a large vocabulary speech recognition task, in particular, then

endowed the LSTM with thousands of context dependent states to encourage

more flexibility. This extension outperformed Deep Neural Networks, and they

showed that the LSTM quickly converged, obtaining an outstanding performance.

Gopalswamy et al. [72] demonstrated that LSTMs are effective mechanisms for

extracting patterns from patient data and modelling long-term dependencies in

the data. In particular, the LSTM performed better than Support Vector Machine

and k-Nearest Neighbours. Their results are indicative that an increased level of

model complexity aids proper representation. LSTM variations have also been

applied for time-series processing such as, bidirectional LSTM [241] and attention

based LSTM [99]. The LSTM and its variants are currently recognised as the

state-of-the-art RNN, however, they are not without problems.

Chen et al. [30] argued that LSTMs are not adaptable to new changes, as

seen when they applied it for oil prices prediction. In addition, Le et al. [113]

pointed out that although LSTMs provide accurate forecasts at specific points,

they should be combined with other models to obtain improved performance for

long-term prediction. Danihelka et al. [42] stated that the LSTM’s limited abil-

ity with representation makes it a poor candidate for learning due to its lack

of memory mechanism. Additionally, Yu et al. [232] presented a systematic re-
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view on different LSTM cells and pointed to the need for ‘external’ memory to

strengthen their memory capacity. This indicates that although an increased level

of complexity can aid adequate representation, another important component for

effective time-series processing and modelling is an appropriate memory mecha-

nism. Sainath et al. [170] pointed out the modelling flaws with the LSTM such

that the ‘true’ underlying signal is not fully unveiled and proposed higher-level

modelling. Finally, LSTMs are ad-hoc techniques with high dimensionality and

researchers such as Tepper et al. [200] and Jozefowicz et al. [97] debate whether

there are more optimal architectures for prediction tasks. LSTMs can be built as

deep networks such that they consist of multiple hidden layers. However, these

models are overly complex which i) overfit on the data and ii) have intractable

training times (without state-of-the art GPUs).

2.2.4.6 Limitations of current recurrent neural networks for time-

series processing

Section 2.2.4.1 - Section 2.2.4.5 presented the most notable RNNs discussed in the

literature for time-series processing. These models have enabled better capturing

of time-invariant features to process, model and predict time-series compared

to traditional statistical methods and feed-forward ANNs. However, it is clear

that these methods are not ideal for time-series processing due to their identified

limitations. The review of these methodologies indicate the need for two key

attributes: i) mechanisms that incorporate memory and ii) the ‘right’ level of

complexity, in particular, current methods lack the right balance between these

two key attributes.

2.2.4.7 Long-term dependencies

The vanishing gradient problem has serious implications when using RNNs for

learning long-term dependencies. Bengio et al. [15] described the simplest form of

long-term dependencies in an RNN as “storing information about the initial input

values for an arbitrary duration”. This is essential when the output at any given

time step t is dependent on the inputs from the distant past. Consider subject-

auxiliary verb agreement problems in Natural Language Processing, e.g. The dog
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that chased the cat who was chasing the mouse that had eaten the cheese is hungry.

The network must remember the correct subject over a given number of time-

steps to correctly predict the appropriate auxiliary verb. More specifically, Bengio

et al. [15] demonstrated that the gradient descent learning has difficulty learning

long-term dependencies [16]. This difficulty is largely attributed to vanishing or

exploding1 gradients which impede learning [173].

Bengio et al. [15] demonstrated using a simple recurrent network candidate

solution the inefficiencies and issues encountered when learning a long-term de-

pendency task [15]. In particular, their experiments showed that the network

candidate could not robustly latch onto information about the input and long-

term input/output dependencies, and mapping could not be achieved with gradi-

ent descent [15]. In order to explain the difficulty with using gradient descent for

long-term dependencies, they used a system with additive inputs to explain the

issues encountered, namely sensitivity to noise or vanishing gradients [15]. They

stated that there is a trade-off between efficient learning with gradient descent

and information latching for extended periods [15]. Thus, they proposed other

systems and optimization methods (such as, Multi-Grid Random Search, Time-

Weighted Pseudo-Newton Optimization) which provided better learning and had

long plateaus.

Bengio et al. [15] conclusively encouraged the implementation and use of other

techniques, giving the difficulties faced with gradient descent for long-term de-

pendency. Interestingly, the network candidate solution they presented to demon-

strate and prove this, utilises a similar structure to the SRN and Jordan network.

A review of these methods in Section 2.2.4.2 and Section 2.2.4.3 supports the

claims presented by [15], particularly as historical information is aggregated, and

information explicitness lost, thus preventing appropriate information latching.

However, they do not address whether this issue persists for RNNs which utilise

gradient descent but employ mechanisms to tackle the vanishing gradient problem

or mechanisms that encourage better information latching.

1Exploding gradients occur when large error gradients accumulate leading to large param-
eter updates during training.
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2.3 Multi-recurrent Neural Network (MRN)

Ulbricht [208] explored this notion that complexity and memory are key attributes

for effective time-series processing and introduced the Multi-recurrent Net-

works. The MRN integrates features of both the SRN and Jordan network,

along with input layer memory and variable layer-link and self-link recurrency.

These properties enhanced the model’s complexity sufficiently to encourage bet-

ter processing without the added over-complexity observed in LSTMs or Gated

Recurrent Units and as such positioning the MRN as a worthy competitor to

be further explored for time-series modelling. In addition, the MRN allows for

different and flexible representation of past information, unlike the Jordan, SRN,

ESN and LSTM networks which have a ‘rigid’ representation. More recently,

Tepper et al. [200] showed that this more sophisticated class of SRNs, is better

able to capture the latent signal in time-series data and found that the MRN dy-

namics improved learning and achieved better accuracy (compared to the SRN,

NARX and ESN networks). Other researchers such as [20,149,150,183] have in-

vestigated the potential of the MRN for time-series modelling, they applied and

assessed the MRN and found that it offered comparative predictive performance

to current state-of-the-art models. The MRN specifically appears to employ an

extensive historical context within a simple recurrent framework, which as identi-

fied from the limitations of current methods, is essential for time-series modelling.

A detail description of this method is provided in Chapter 3.

Giles et al. [66] highlighted the impact of embedded memory within RNNs

for long-term dependency tasks using three types of RNNs (Globally connected

RNNs1, Locally recurrent networks2 and NARX networks) with varying parame-

ters and memory orders. Interestingly, the MRN mimics the embedding of mem-

ory, particularly that implemented for the globally connected RNNs. Through

the use of ‘rigid’ memory banks, where past information is retained for longer,

the MRN repeatedly encodes historical information that changes very slowly over

time and informs parameter updates during learning. For long-term dependency

tasks, Bengio et al. [15] presented three basic requirements for any parametric

1where feedback connections are obtained from the state vector to the hidden layer
2where feedback connections are only allowed from neurons to themselves and nodes are

connected in a feed forward manner
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dynamical system, namely information latching, noise resistance and trainable

parameters. In particular, Bengio et al. [15] stated systems must possess the

ability to robustly latch onto information, such that information stored inter-

nally about the initial values of the input cannot be deleted easily (by events

that are unrelated to the classification criterion (and assumably for a regression

task)). More specifically, the combination of memory banks in the MRN enables

the network to preserve information from the distant past, particularly as the

rigid memory is loosely sensitive to new information, thus encouraging the net-

work to latch onto information for longer. Secondly, the different representations

of the information provided by the MRN’s memory banks enable the network

to effectively filter the noise. Finally, Bengio et al. [15] presented two compo-

nents for the third requirement, input processing and state variables latching.

The memory mechanism of the MRN not only allows information latching but

also state latching, as the memory contain different and flexible representation of

both past inputs and previous states. The MRN provides a suitable structure for

long-term dependency tasks as it meets these requirements defined by [15] and

in addition demonstrates the importance of appropriate memory mechanism for

complex time-series tasks.

2.4 Summary of current state-of-the-art

In summary, current techniques have been thoroughly assessed across various

domains for time-series modelling, however, they are bound by key inherent lim-

itations. More specifically, traditional statistical models are unable to properly

handle structural breaks and shifts in the signal. The ARIMA/ARMA class of

models, although they are simple techniques with easy calculations and interpre-

tation, they are unable to account for temporal correlations and their memory is

limited. In addition, Markov switching models possess strong abilities to deal with

non-linearities and distinguish the behaviour of the series into different regimes,

which enables the capturing of dynamic patterns. However, these models do not

possess memory and have restrictive assumptions.

Furthermore, feedforward networks are simple paradigms, however, they do

not possess adequate memory to map temporal dependencies. Therefore, these
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models are not dynamic or robust to map time-series data. Simple recurrent

networks such as SRNs and Jordan networks incorporate memory, however, these

networks aggregate history into one activation function. This leads to a loss

of information explicitness, thus they have limited abilities to reflect real-world

dynamics. More complex models such as ESNs and LSTMs alleviate the over-

simplification of historical information in the SRN and Jordan network, however,

the noisy memory of ESNs and inadequate memory in LSTMs, limit their poten-

tials for time-series modelling.

More specifically, the MRN has been shown to outperform other models within

its class and worthy of further exploration due to its simpler yet powerful mem-

ory mechanism. In particular, it alleviates the complexity issues encountered

with models such as the ESN and the LSTM requiring significantly fewer num-

ber of parameters. It also employs a dynamic memory mechanism comprised of

various memory bank types forming sluggish state spaces such that explicitness

of historical information is not lost as in the SRN and Jordan network.

2.5 Conclusion

This chapter has presented a critical review on the current notable modelling

techniques employed for time-series forecasting. Based on this review, it is con-

cluded that current state-of-the-art statistical and ANNs have shown tremendous

success for numerous tasks. However, despite this success, they are limited for

time-series processing. In particular, the limitations of statistical methods were

presented in Section 2.2.1.7, for feed-forward ANNs in Section 2.2.3.3 and for

RNNs in Section 2.2.4.6. Their Achilles heel for statistical methods appears to

be the lack of adequate memory and representation whereas whilst current RNNs

overcome this, they suffer from inherent gradient-based limitations of the back-

propagation learning algorithm. In addition, the current RNN models are either

over-simplified such as the SRN or overly complex like the ESN such that the

temporal and spatial features are not accurately modelled. Thus, they suffer

from a rapid loss of information as time increases and inputs become more dis-

tant. These limitations motivate the need for more suitable and simplified models

that adequately capture, represent and preserve temporal information overtime.
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The MRN, first developed in 1994 [208] and then discovered again in 2010 [20]

appears to offer an appropriate balance between i) a sophisticated memory mech-

anism, that is dynamically sensitive to both historical and recent events, and ii)

computational simplicity, such that the MRN retains the use of well-understood

algorithms such as back-propagation through time [200]. Therefore, this research

seeks to identify whether MRNs from the simple recurrent class of networks can

be optimized and competitively applied for a range of time-series forecasting tasks

when evaluated against current state-of-the-art models whilst mitigating current

limitations and obtaining improved prediction accuracies.
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Chapter 3

The Multi-recurrent Neural

Network

This chapter presents the proposed methodology for time-series forecasting ex-

plored in this thesis. The Multi-recurrent Neural Network will be the focus of this

research and in particular, how it can be extended and optimised to overcome

some of its existing limitations. The chapter begins with an in-depth explanation

of the MRN’s structure, particularly its memory banks and ratios. In addition,

the training process of the MRN is described along with the following forecast-

ing methodologies; sliding window, forecast horizon and ensemble approach. The

chapter concludes with a summary of the current research till date regarding the

MRN and its suitability for time-series applications, and data used in this thesis

is presented.

3.1 Multi-recurrent Neural Network (MRN)

Given the computational and architectural limitations of popular models used for

time-series forecasting, it is clear that more sophisticated models are required for

enhanced usability and performance. Ulbricht [208] proposed the Multi-recurrent

Neural Network (MRN), a class of RNN (using classical neurons1) that utilises

1A standard or classical artificial neuron is one that has a set of weighted inputs, calculates
the net input and passes through a linear or non-linear activation function to determine its
output. This will be the standard model of a neuron used throughout the thesis. However,
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a combination of repeated memory banks of varying strengths. These memory

banks consist of feedback activations from either the input, hidden or output

layers and the memory banks themselves. The memory banks enable the MRN

to store historical information in different forms which are then used for predic-

tion. They are configured with layer-link ratios (which determine the proportion

of the new layer activations that are stored) and self-link ratios(which determine

the proportion of the previous memory retained). The ratio between these links

determines whether we have a sluggish state-based memory bank (where the

historical information changes slowly), rapid memory bank (where the histor-

ical information changes often, as new information is presented to the network)

or stable memory bank (where historical and current information are retained

at the same rate). It is this state-based memory configuration that forms the con-

text of the network for each new input received. Such combination of different

degrees of recurrency enables rigid learning (of the task structure) and flexible

learning (of spatio-temporal features as new information is presented) that effec-

tively captures both variant and invariant properties of the time-series [208]. As

shown in Equation 3.1 - Equation 3.3, the memory composition is determined

by the ratios in a memory bank type (either input, hidden or output), and these

ratios along with the total number of memory banks for each type are key hyper-

parameters. The MRN’s dynamic memory structure enables it to both ‘forget’

and ‘retain’ knowledge, which is the catalyst for enhanced performance [208]. In

addition, the MRN’s memory structure enables the formation of a more sophisti-

cated history, which is particularly required when solving long-term dependency

problems [46,200].

3.1.1 Architecture of the MRN

The architecture of the MRN as described by Ulbricht [208] is illustrated in Figure

3.1 showing the flow of information through the network layers, employing the

following feedback (which determine the memory bank composition at time, t, fed

to the hidden layer at time, t+ 1):

note there are alternative neuronal models that are analoguous to those of biological neurons
(for example, spiking neurons) - these are considered beyond the scope of this thesis.
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1. Layer-recurrency: the output of the network’s layer(s) copied to a respective

memory bank at time, t. The layer-level recurrency comprises the:

• Input layer recurrency : the input layer’s output at time, t is copied to

the relevant memory bank.

• Hidden layer recurrency : the hidden layer’s output at time, t is copied

to the relevant memory bank.

• Output layer recurrency : the output layer’s output at time, t is copied

to the relevant memory bank.

2. Self-recurrency: the outputs of the memory banks (referred to as either

state units or context units) at time t, that is retained.

Memory banks
Hidden memory banks

..... ..... .....
Input memory banks Output memory banks

INPUT LAYER

HIDDEN LAYER

OUTPUT LAYER

Figure 3.1: The architecture of the MRN
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3.1.1.1 Memory architecture

The memory bank compositions for each layer are derived using the calculated

layer-link and self-link ratios. A key assumption for the ratios in a given memory

bank type (input, hidden, output) is that the ratio values are between 0 and

1. Therefore, for each memory bank type, the layer-link ratios are calculated

(using the allocated number of memory banks for that type, nM) as: i
nM

for i =

nM , ..., 2, 1. The self-link ratios are then calculated as: 1− i
nM

for i = nM , ..., 2, 1.

For example, a network with 4 output memory banks gives the following layer-

link ratios: 4
4
(1), 3

4
(0.75), 2

4
(0.5), 1

4
(0.25) and the following self-link ratios: 1 −

4
4
(0), 1− 3

4
(0.25), 1− 2

4
(0.5), 1− 1

4
(0.75).

Figure 3.2 illustrates the derivation of the 4 output memory banks at time t to

be employed at time t + 1. As shown, the layer-link ratios determine how much

of the output values of the output layer at time t are copied and the self-link

ratios determine how much of the respective memory bank values at time t are

retained.

Memory banks
Hidden memory banks

..... ..... .....
Input memory banks Output memory banks

Output values of the 
output layer

Output memory 
bank 1

Output memory 
bank 2

Output memory 
bank 3

Output memory 
bank 4

Figure 3.2: The derivation of the memory banks

The 4 memory banks all hold different properties (of the past inputs). Output

memory bank 1 holds only recent information and is the most flexible output

memory bank, whereas output memory bank 2 holds mostly recent information

and some historical information from the distance past. Output memory bank 3

holds an equal proportion of recent information and information from the distance

past. Output memory bank 4 is the most rigid memory bank, it holds the greatest
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proportion of information from the distance past and some recent information.

Note: the MRN has only three types of memory banks (input, hidden and output),

and a memory bank type can have a different number of memory banks from the

other types. For example, an MRN may have an input memory bank with 3

copies; a hidden memory bank with 5 copies and an output memory bank with

10 copies (denoted as [3, 5, 10]).

3.1.1.2 Memory bank configuration

The number of memory banks for each type determines the memory configuration,

Ulbricht [208] carried out experiments with a limited number of memory bank

combinations, employing either 0, 1 or 4 memory bank(s) for each memory bank

type. The memory bank combinations she employed were: [4, 4, 4], [4, 0, 0], [1, 0,

0], [0, 4, 4], [0, 0, 4], [0, 0, 1], [0, 4, 0], [0, 1, 0], [0, 0, 0]. For her experiments, the

MRN employing 4 memory banks for each memory bank type ([4, 4, 4]) obtained

the best performance.

In this research, the MRN memory bank configuration is explored further

and more memory bank combinations are employed to understand the impact

on the MRN’s performance. More specifically, due to computational limitations

and the large search space, the memory order (that is the maximum number of

memory banks employed for each memory bank type) is 4 (similar to Ulbricht

[208]). For any given set of hyper-parameters, each memory bank type is allowed

to employ either 0, 2, 3 or 4 memory bank(s). To calculate the total number

of possible combinations, the memory order for each memory type (that is the

input, the hidden and the output) is multiplied, thus giving 4∗4∗4 = 64. The first

possible memory bank combination employs no memory bank for each memory

bank type [0, 0, 0], this represents a standard recurrent network and is thus

excluded. Therefore, a total of 63 combinations (models) are trained for a given

set of hyper-parameters. Note: the memory bank types do not employ just 1

memory bank as this mimics the SRN. More specifically, the calculated layer-link

ratio is 1 and the self-link ratio is 0, which is identical to the SRN and has no

flexibility.
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3.1.1.3 Brain dynamics

Interestingly, the MRN mimics the memory mechanism of the human brain (which

utilises different types of memories) by combining multiple types of memory

banks, which is what its superiority is attributed to [200]. The Brain Institute

at The University of Queensland highlighted the two main types of memories

in the brain; short-term and long-term memories [89]. Both types of memories

are essential for the proper working of the brain and body [40]. The study of

Henry Molaison, a patient who had his hippocampus surgically removed to treat

his epilepsy, furthered highlighted that the brain utilised multiple types of mem-

ory [89]. More specifically, short-term memories enable the remembering of a

small amount of information for a limited period of time while the long-term

memory which is broadly categorised into two, explicit (conscious) and implicit

(unconscious) is a vast store of knowledge and a record of prior events [89].

3.1.2 Training in the MRN

Training in the MRN occurs by forward pass and back-propagation through time.

During the forward pass, the inputs are fed to the network (through the input

layer), which along with the memory (randomly initialised) and the input layer

biases produce an input layer output which is then fed to the hidden layer. The

outputs of the hidden layer are then fed along with the hidden layer biases to

the output layer to produce a network output. The layer outputs along with the

current memory are copied using the ratios and the memory is then updated.

After a given number of forward passes, back-propagation (of the error) through

time occurs. During this phase, the learnable parameters (the weights and biases)

in the network are updated in line with the signal of the data to produce more

accurate outputs. The two-stage process above describes the learning in the net-

work, the forward pass and back-propagation are repeated until a desired error

is reached or for a given number of epochs.

3.1.2.1 Forward Pass

During the forward pass, net outputs for each layer are calculated (using the

weights and biases) which are then passed through an activation function (where
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applicable) as information moves through the network (Note: weights are ran-

domly initialised in a given range) [34]. The MRN’s forward pass functions are

given as follows. Given the input units at time t− 1, It−1 and the input memory

at time t− 1, Mt−1i , the input memory at time t, Mti is calculated as:

Mti = (
1

ni
× It−1) + ((1− 1

ni
)×Mt−1i) (3.1)

where ni is the total number of input memory banks. The hidden units at time

t − 1, Ht−1 and the hidden memory at time t − 1, Mt−1h are given. Thus, the

hidden memory at time t, Mth is calculated as:

Mth = (
1

nh
×Ht−1) + ((1− 1

nh
)×Mt−1h) (3.2)

where nh is the total number of hidden memory banks. The output units at time

t − 1, Ot−1 and the output memory at time t − 1, Mt−1o are given. Thus, the

output memory at time t, Mto is calculated as:

Mto = (
1

no
×Ot−1) + ((1− 1

no
)×Mt−1o) (3.3)

where no is the total number of output memory banks. Given the respective

weights from the input and memory layer to the hidden layer, Wih , WMih
, WMhh

,

WMoh
and the input layer biases, bi, the net hidden outputs at time t are calculated

as:

Ĥt =
∑

WihIt +
∑

WMih
Mti +

∑
WMhh

Mth +
∑

WMoh
Mto + bi (3.4)

The outputs of the hidden layer at time t, Ht, are derived using the formula

below:

Ht = f(Ĥt) (3.5)

where f is the chosen activation function. (Note: for the experiments in this

thesis sigmoid; 1
1+e−x is employed). The hidden outputs at time t, Ht, the hidden

to output layer weights, Who and the hidden layer biases, bh are given. Thus, the
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outputs for the output layer at time t, Ot are calculated as:

Ot =
∑

WhoHt + bh (3.6)

3.1.2.2 Back-propagation Through Time (BPTT)

The MRN was trained with Back-propagation Through Time (BPTT), (an ex-

tension of the classical Back-propagation (BP)) to account for time-dependency

as the network is ‘unfolded’ through time (as presented by [219]). In particular,

BP and BPTT have the same underlying algorithm, however, BPTT particularly

‘unfolds’ the network over a given number of time steps. This way the copy of

the network which is fed forward (through the memory) during the forward pass

is accounted for during the error calculation. The main aim of this phase is to

adapt the learnable parameters temporally (given the interdependence between

the network outputs over time).

For experiments, a decaying learning rate is used and recalculated after each

epoch (using the total number of epochs, ne and the current learning rate, L) as:

L = L− L

ne
(3.7)

The error is defined using the Root-Mean Squared Error (RMSE) (given the

total number of patterns, n) as:

E =

√√√√ n∑
i=1

(Oi − Ai)2 (3.8)

To determine how much the error changes with respect to the learnable pa-

rameters (the weights, W and biases, b), partial derivatives, ( ∂E
∂W

and ∂E
∂b

) are

employed. The MRN’s back pass functions are as follows. Given the error at

time t, Et, the network outputs at time t, Ot and the actual output at time t, At,

the output layer deltas at time t, DOt are calculated as:

DOt =
∂E

∂O
= (Ot − At) (3.9)
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The hidden layer to output layer weights, Who and hidden layer biases, bh are

updated as follows:

Who = DOt ∗
∂O

∂Who

= DOt ∗Ht

bh = DOt ∗
∂O

∂bh
= DOt ∗ 1 = DOt

(3.10)

The hidden layer delta at time t, DHt is calculated as:

DHt =
∂E

∂O

∂O

∂H

∂H

∂Ĥ
+Memt+1

= (Ot − At) ∗Who ∗ f−1(Ĥ) +Memt+1

(3.11)

where f−1 is the inverse of the chosen activation function and Memt+1 is the

sum of the hidden layer deltas from the succeeding time step multiplied by the

respective memory weights. The input layer to hidden layer weights, Wih, input

layer biases, bi and the memory weights WMkh
are updated as follows:

Wih = DHt ∗
∂Ĥ

∂Wih

= DHt ∗ It

bi = DHt ∗
∂Ĥ

∂bi
= DHt ∗ 1 = DHt

WMkh
= DHt ∗

∂Ĥ

∂WMkh

= DHt ∗Mtk for k = i, h, o

(3.12)

where i, h and o mean input, hidden and output.

3.2 Forecasting Methodology

The forecasting methodology describes how the data is represented, manipulated

and presented to the MRN during training and how forecasts are derived.

3.2.1 Sliding Window

A number of researchers such as [85, 110, 122, 169, 175] have demonstrated im-

proved learning and enhanced performance when employing a sliding window
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with varying ANNs. For example, Krystalakos et al. [110] demonstrated that

the models that used a sliding window technique performed better on multi-state

devices for Online Energy Disaggregation. In addition, Liu et al. [122] employed

a Bayesian-Gaussian neural network driven by sliding window data for on-line

modelling of a hydraulic turbine system. They showed that the sliding window

enabled the quick capturing of changes in the HTS characteristics and the model

obtained a high prediction accuracy.

Given the success with and input processing benefits offered by a sliding win-

dow, it is employed with the MRN. A sliding window technique with a shift factor

of 1 is used to generate the input sequences for the model to process. These se-

quences, also known as temporal input windows, consist of a given number of pre-

vious input/output observation pairs along with the current observation. They

are used as inputs to the model at any given time step to obtain a prediction.

The input patterns in a window are presented sequentially to the model. The

length of the input window is problem dependent and empirically established for

each of the individual models evaluated. Figure 3.3 presents an example of the

sliding window technique with 50 input observations, a window size of 3 and a

shift factor of 1.

, , , , , , , , , , , , , ¸ … … … … ….  , ,  

, , , , , , , , , , , , , ¸ … … … … ….  , ,  

, , , , , , , , , , , , , ¸ … … … … ….  , ,  
. 
. 

, , , , , , , , , , , , , ¸ … … … … ….  , ,  

 

 

 

 

Figure 3.3: Example of the sliding window technique

When the data is generated in this way, the models are treated as finite

memory models due to the fixed length of the window and the state memory is

reset at the beginning of each window. For each time step, a sequence is fed to the

network as inputs and the network reads the inputs sequentially (i.e. one pattern

at a time) (see Algorithm 1). The calculations for the feed forward weight updates

in Equation 3.10 and Equation 3.12 are modified for information processing with
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a sliding window as follows:

Sj(j+1)t =
ns∑
1

(−L ∗ (D(j+1)t ∗ jt)) + (F ∗ Sj(j+1)t−1)

sj =
ns∑
1

(−L ∗D(j+1)t) + (F ∗ sjt−1)

Wj(j+1) =
1

ns
∗ Sj(j+1)t

bj =
1

ns
∗ sjt

(3.13)

where j, k = i, h, o refer to the input, hidden and output layers (Note: j + 1

indicates the succeeding layer to j), F is the momentum term1 and ns is the

window size. The calculation for the memory weight updates in Equation 3.12 is

modified for information processing with a sliding window as follows:

SMkht
=

ns∑
1

(−L ∗ (DHt ∗Mtk)) + (F ∗ SMkht−1
)

WMkh
=

1

ns
∗ SMkht

(3.14)

where k = i, h, o mean input, hidden and output.

3.2.2 Forecast Horizon

The desired output for any given time step is determined by the forecast horizon,

that is, how many time steps ahead a prediction is made for the given target vari-

able. For example, for 10 input-output observations, inputs; X = (x1, x2, ...., x10)

outputs; y = (y1, y2, ...., y10), for pattern x1, predicting for a forecast horizon of

1, 3 and 5 (step(s) ahead) gives the following output; y2, y4 and y6.

1The momentum determines how much previous changes influence the current direction of
change for the parameters.
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Algorithm 1 Forward and Back propagation in the MRN with sliding window

1: procedure Windows(x, y, s, h) . s: window size, h: forecast horizon
2: <initialise empty arrays to store input-output windows>

3: for <all the input-output pairs> do
4: <store the next s input-output pairs with horizon, h>

5: <shift by a factor of 1 and repeat till the last s

input-output pairs>

6: end for
7: return X, Y . Input-Output windows
8: end procedure
9: procedure Learning(X, Y, l r,m) . l r: learning rate, m: momentum

10: <initialise random starting weights, W and biases, b>
11: for <all the input windows> do
12: <initialise empty arrays to store calculations>

13: <initialise weight change vectors>

14: for <for each window> do
15: <do a forward pass>

16: <store calculations>

17: end for
18: for <for each window> do
19: <back propagation>

20: <store calculations>

21: end for
22: <update learnable parameters using l r and m>

23: end for
24: return W, b . The learnt weights and biases
25: end procedure

3.2.3 Ensemble approach

Ensemble approaches have been widely applied to neural networks to enhance

their performance. The most common of these is cross-validation, Lin et al. [121]

applied cross-validation for the Radial Basis Function neural network which im-

proved generalisation performance. Similarly, Zhang and Wu [237] discussed the

importance of cross validation and employed it to prevent over-fitting. Other

popular ensemble approaches include; Bootstrap Aggregation (bagging), Boost-

ing, Stacked Generalization (stacking), Model Averaging and Weighted Average.

In particular, researchers such as Opitz et al. [148] and Refaeilzadeh et al. [162]
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stated that the model averaging ensemble is preferred over other techniques such

as cross validation, bagging or boosting which are computational expensive with

lengthy training times and large variance. In addition, Binner et al. [20] showed

that using model averaging provides more reliable results, is computationally

inexpensive and improves performance. Model forecasts of the MRN are deter-

mined by a model averaging ensemble approach, where a given number of models

are trained and the average of the predictions are used as the final prediction and

to assess performance. (Note: the number of models is empirically established).

3.2.4 Methodological constraints

The MRN, similar to other RNNs, employs iterative training procedures and as

such requires retraining/refitting as new data becomes available which is time-

consuming unlike statistical methods such as Linear Regression that employ one-

shot learning, which is fast and efficient.

3.3 Computational requirement

Williams and Zipser [222] showed that to store m-dimensional input and n-

dimensional activity of a network over, h time steps (epochs) and with the number

of target values, t 6 nh requires (m+n)h space therefore BPTT has a space com-

plexity of O((m+ n)h). The time complexity of the BPTT as presented by [222]

is O(wUH+wAh) where wU is the number of non-zero weights between units and

wA is the number of adjustable parameters.

Employing a sliding window further increases the number of calculations by

the number of input windows (mw) multiplied by the input window size (ms).

This increase in the number of calculations has a negligible effect on time complex-

ity as the increase is by a constant, however, the space complexity increases. The

MRN with a sliding window employing the BPTT algorithm, therefore has a space

complexity of O(((mw ∗ms) +n)h) and time complexity of O(wUH +wAh) [222].
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3.4 Time-series application with the MRN

To date, very few researchers have employed the MRN for time-series forecasting.

Ulbricht [208] undertook a comparative study and exploited various memory bank

combinations to identify which would enhance performance. The results from the

study demonstrated that the MRN which combined all types of memory feedback

(input, hidden and output layer memories) with self-recurrent feedback loops of

different strengths obtained the best results. More specifically, Ulbricht showed

that this memory combination enabled the formation of short-term memories

with different properties. Thus, extending the neural network properties which

often only have long-term memories and this enhanced performance [208]. In

particular, Ulbricht showed that the hidden-layer feedback enabled the network

to utilise information from the previous days [208]. This, coupled with output

and input feedback, provided superior performance compared to other memory

bank combinations for traffic forecasting [208]. The outcomes of the study were

used for the installation of a highway check point tool.

In the study, 9 neural networks with different memory combinations were

employed, these are:

1. The MRN with 4 input, 4 hidden and 4 output memories (4I 4H 4O)

2. An RNN with 4 input layer memories (4I)

3. An RNN with 1 input layer memory (1I)

4. An RNN with 4 hidden and 4 output memories (4H 4O)

5. An RNN with 4 output layer memories (4O)

6. An RNN with 1 output layer memory (1O)

7. An RNN with 4 hidden layer memories (4H)

8. An RNN with 1 hidden layer memory (1H)

9. Feedforward network (without memory, None)
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Figure 3.4 shows the RMSE of the models presented in her paper, as shown the

MRN (which employed 4 input, 4 hidden and 4 output memory banks) performed

best. Ulbricht’s works highlighted the importance of different feedback loops for

time-series modelling and forecasting. In particular, this work demonstrated the

versatility of neural networks (as they are not only suitable for long-term tasks

but also for short-term tasks). More specifically, the MRN’s memory is adaptable

and as such further justifying the exploration of this network.
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Figure 3.4: Root Mean Squared Error of the presented models in [208]

Over a decade later, Binner et al. [20] applied the MRN for inflation forecast-

ing. Tepper et al. [200] and Shertil [183] for grammar induction through training

the MRN to perform the next word prediction task. Tepper et al. [200] adapted

the MRN and utilised just hidden and output feedback with noise injection in

the input layer. In particular, Tepper et al. [200] demonstrated how the under-

lying representations formed by the MRN were superior to those formed by the

SRN, NARX and ESN for a complex grammar induction task. Thus, providing

evidence that the MRN is able to more robustly model complex time-series data

and improve prediction accuracy. Figure 3.5 shows the performance of the MRN,

SRN and ESN on randomly generated long sequences; the MRN consistently

outperformed all the other networks [200]. Note: Unique set refers to those test
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cases that did not appear in the training set and indicates the pure generalisation

ability, as seen the MRN is far superior to the other models.
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Figure 3.5: Network performance (% correctly predicted training and test) in [200]

Despite the success achieved with the MRN, there has been a very limited

number of studies and therefore applications with the MRN. Today, there are

increased data complexity as a result of structural shifts and variance, which

require more dynamic and robust models for better modelling. Ulbricht’s findings

using (varying strengths of memory banks) over two decades ago are well-suited

to model such complexity, as this type of graded feedback enables the network to

account for many aspects of the data, thus, simplifying the task of capturing data

properties. This research seeks to i) explore and exploit the MRN further and

ii) mitigate the inherent limitations of the MRN by extending its architecture for

enhanced time-series processing whilst maintaining simplicity to learn a problem.

For the purpose of this research, the MRN as presented in this chapter is also

referred to as the standard MRN.
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3.5 Data

In this section, the datasets used for the experiments undertaken in this research

are presented. Four experiments are carried out, namely Business cycle predic-

tion, Oil price prediction, M3 competition prediction and Covid-19 forecasting.

3.5.1 Business cycle data

Giusto and Piger [67] used four monthly coincident series collected from February

1967 to July 2013 to ‘nowcast’ business cycle phases (periods of expansion or

recession). Understanding and identifying business cycle points is important for

economic planning. These four series used commonly known as ‘the big four

economic indicators ’ are:

1. Non-farm payroll employment: this is a monthly statistic which repre-

sents workers in the United States, specifically excluding proprietors, private

household employees, unpaid volunteers, farm employees, and the unincor-

porated self-employed. [145].

2. Industrial production index: this “measures the real output for all facil-

ities located in the United States manufacturing, mining, and electric and

gas utilities (excluding those in U.S. territories)” [146].

3. Real personal income excluding transfer receipts: this “measure is

deflated by the implicit price deflator for personal consumption expendi-

tures.” [147].

4. Real manufacturing and trade sales: this measures “the combined

changes in business sales and end-of-month inventories for domestic retail

trade, wholesale trade and manufacturers’ activities”. [209].

The series are obtained from the Federal Reserve Economic Data website:

http://fred.stlouisfed.org/. The out-sample data is between October 1976

to July 2013, a period with five complete National Bureau of Economic Research

(NBER) recession phases.
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3.5.1.1 Data Preprocessing

The data consists of continuous-valued variables only and each variable was trans-

formed using basic standardisation (based on the mean and standard deviation)

of the variable values in the training set. This ensures all variables are of the same

scale and transformed into a normal variable to ensure minimal measurement er-

ror. Muralidharan [135] showed that training the network with standardised data

yields better results.

Three datasets for the real-time classification of NBER points were created.

The first dataset comprises the four growth variables used in [67], the second

comprises the change of direction1 (COD) of each growth variable (thus, there

are 4 input variables) and the third comprises the growth variables and their

change of direction (thus, there are 8 input variables). (Note: the change of

direction is not standardised).

3.5.2 Oil price data

Approximately, 99 million barrels of petroleum were consumed daily in 2018

[210]. Crude oil is therefore arguably the world’s most important commodity, it

is particularly key in ensuring nations are able to meet their energy demands [13].

Furthermore, oil prices have a massive effect on the price of other commodities

and heavily influence macroeconomic projections for gross domestic product and

inflation [56,76].

Five (5) key indicators were used to predict monthly crude oil prices from July

1969 to March 2015, consisting of 549 observations (see Table. 3.1). Monthly data

was preferred compared to daily data due to less noise and as such less obscurity

of the signal, which is essential for learning in the network.

3.5.2.1 Data Pre-processing

The change of direction as described in Section 3.5.1.1 was calculated for the

five variables in Table 3.1 and included as features for the oil price prediction

1This is the difference in magnitude between any given variable at time, t and the same
variable at time, t - 1 which informs the direction (-1: negative change, 0: no change, 1: positive
change).
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Table 3.1: Key indicator variables and data source.

Variable Data source
Real WTI Crude Oil Price, Month-End Prices Energy Information Admin-

istration, BLS MacroTrends
Data Download

Gold Fixing Price 10:30 A.M. (London time)
in London Bullion Market, based in U.S. Dol-
lars Average daily price

DataStream database

US External Trade: Goods, Deflator/Unit
Value of Imports NADJ
US Unemployment Rate SADJ
US average weekly hours - Total Private Non-
farm VOLA

task. The data was divided into training and testing sets, the training data

accounted for 75% of the data and the remaining 25% of the data was out-sample

testing. In particular, the in-sample data (pre-financial crisis) was from July 1969

to December 2005 and the out-sample data was from January 2006 to February

2015. The standardised variables and their change of direction are used as inputs

at all time-steps for modelling, thus there are 10 input variables.

3.5.3 M3 competition data

The M3 competition data is a widely used data benchmark for assessing the

ability of time-series forecasting models. The M3-Competition data consists of

3003 time-series which include data from various sectors (micro, industry, macro,

finance, demographic and other) and different time intervals (yearly, quarterly,

monthly and other).

Ten monthly series are randomly selected from the following sectors: Micro,

Macro & Industry, the length of these series are between 126 and 144, and the

last 18 observations for each series are used as out-sample observations to assess

the performance. The 10 series are N1807, N1908, N1918, N2012, N2144, N2150,

N2158, N2159, N2516 and N2521.
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3.5.3.1 Data Pre-processing

The data is standardised as explained in Section 3.5.1.1 using the mean and

standard deviation. The change of direction or other pre-processing techniques

were not utilised for comparability with published techniques.

3.5.4 Covid-19 data

Two series are collected to predict the number of Covid-19 (confirmed and death)

cases in the USA, the experimental setup is similar to that in [182]. The data is

obtained from Centers for Disease Control and Prevention, U.S. Department of

Health and Human Services1. Daily data of the confirmed cases from the 7th of

February 2020 to the 7th of July 2020 and 26th of Feb to the 7th of July 2020 for

the death cases were used for this experimentation. The data was divided into

training and testing sets, training data accounted for 80%2 of the data and the

remaining 20% was out-sample testing.

3.5.4.1 Data Pre-processing

The two series were transformed using MinMaxScaler 3, such that the data is

scaled between 0 and 1 on the training set [182]. Transformation of the data is

important to deal with data inconsistency and variance [182]. The training set is

scaled as follows:

xscaled =
x− xmin

xmax − xmin
(3.15)

where xmin and xmax are the minimum and maximum values of the feature in the

training set and x is the feature value.

3.6 Conclusion

Limitations of current techniques as presented in Chapter 2 support the need to

identify and exploit other paradigms that can effectively model and predict time-

1https://www.cdc.gov/
280% of which specially to train and 20% to validate
3https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.

MinMaxScaler.html
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series data. Subsequently, the Multi-recurrent Neural Network was presented in

this chapter positioned within a forecasting methodology that employs a fixed-

length sliding window, forecast horizons of variable length and an ensemble-based

approach for time-series processing.

In this chapter, the MRN’s architecture was thoroughly presented, particu-

larly how its memory structure enables better information processing. It was

argued that employing multiple memory banks with various connection strengths

provides a more powerful means of latching onto historical information (that is,

information from the distant past and near past) at various levels of gradation to

inform optimal decision-making. The data for the applications in this thesis are

also presented along with the pre-processing techniques employed.

The MRN was introduced over two decades ago and remains largely under

utilised, particularly due to the shift to more complex mechanisms, which are

believed to be more suitable. However, these complex mechanisms present key

limitations, which the MRN addresses. It appears to be a strong candidate for

alleviating the issues associated with traditional gradient descent based models

(vanishing gradients) whilst maintaining the architectural simplicity of Elman’s

SRN and the Jordan network. This research will therefore investigate the MRN

further with a view to introducing a number of innovations that will overcome

inherent limitations. The next chapter will evaluate the MRN on a range of

real-world time-series problems to better understand its processing abilities and

limitations, which will inform further extensions and optimisations of this partic-

ular approach.
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Chapter 4

The Multi-recurrent Network: a

comparative analysis

This chapter seeks to investigate the suitability of the MRN for time-series pro-

cessing and its comparative performance. More specifically, the computational

adequacy of the MRN for complex time-series forecasting will be evaluated and

compared to the current state-of-the-art forecasting models. The MRN is ap-

plied to the following real-world problems from the time-series domain: Business

cycle prediction, Oil price prediction, M3 Competition prediction and Covid-19

forecasting (of varying complexity), to assess its performance.

4.1 Background

ANNs have been applied and are well-suited to modelling and predicting across

various problems in the time-series domain, for example, financial forecasting

[149], natural language processing [161], biological data mining [126], image anal-

ysis [3], anomaly detection [228], strategic game playing [188] and disease de-

tection [143]. In particular, their superiority is attributed to their non-linearity

and universal function approximation abilities as summarised in literature review

presented in Chapter 2.

A number of authors have specifically applied a range of RNNs (due to their

memory mechanism), such as the SRN and current state-of-the-art, the LSTM,
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presenting their superiority over traditional statistical and feed-forward ANN

models. However, despite much success with these techniques, a number of mod-

elling and prediction limitations have been identified. For example, the SRN

and Jordan network overly simplify the memory mechanism, favouring the most

recent state-based response over any historical response. Thus, resulting in van-

ishing gradients of historical yet important input observations and limiting their

predictive ability. LSTMs on the other hand, employ a complex gating mecha-

nism to alleviate the vanishing gradient problem, however, this complex gating

mechanism leads to a significant increase in the number of trainable parameters.

In addition, LSTMs do not possess a comprehensive memory mechanism and

as such the model is unable to appropriately latch onto important information.

Thus, limiting their ability to accurately model the underlying signal and their

performance.

Researchers such as Dorffner [46], Tepper et al. [200], Danihelka et al. [42], Yu

et al. [232] and Ulbricht [208] highlighted the importance of memory mechanisms,

particularly as they enable the capturing of temporal dependencies. Such captur-

ing is crucial for identifying latent interactions between relevant feature variables,

thereby providing insights into behaviour dynamics [74]. The evaluation of cur-

rent models for time-series processing highlighted the need for and importance

of dynamic state-based models with appropriate memory mechanisms (as sum-

marised in Chapter 2). Therefore, in this chapter, the performance of the MRN

is evaluated on real data (of progressively increasing complexity) in different do-

mains. The performance of the MRN is then compared to current state-of-the-art

models to identify whether its internal memory mechanism and simple architec-

ture offer any superiority and benefits.

4.2 Results and Analysis

The MRN is applied to the four time-series tasks; Business cycle prediction, Oil

price prediction, M3 Competition prediction and Covid-19 forecasting using the

datasets presented in Section 3.5. The performance of the MRN is compared

to current state-of-the-art models, and the results are presented, analysed and

discussed in this section.
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4.2.1 Business cycle prediction

Giusto and Piger [67] proposed the Learning Vector Quantisation1 model (LVQ)

to identify turning points in real time2. In addition, they presented evidence

with Monte Carlo to prove the possible benefits of an LVQ over a misspecified

parametric statistical model. They demonstrated that the model had competitive

performance over common alternatives. Thereafter, they implemented the LVQ

and published their findings in [68].

The performance of the MRN is compared to the LVQ model, and also with

the LSTM and Support Vector Machine (SVM)3. The Matthew Correlation Co-

efficient (MCC) is used to assess the performance of the models.

The Matthew Correlation Coefficient (MCC) is calculated as follows:

MCC =
TP ∗ TN − FP ∗ FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
(4.1)

where TP is True Positive, TN is True Negative, FP is False Positive and FN is

False Negative.

MRN: The MRN employed was described in Chapter 3; experimentation with a

memory order of 4 (for the memory bank combinations) and window sizes of [20,

40, 60, 80] was undertaken to identify the best MRN.

LSTM: The LSTM used a dropout regularisation technique to reduce over-

fitting. For experimentation, dropout values in [0, 0.9], units of [10, 15, 20,

25, 40] and two optimisers (Adam and Stochastic Gradient Descent (SGD)) were

employed to obtain the best model.

SVM: For experimentation with the SVM, three types of kernels (sigmoid, poly-

nomial and RBF) and a combination of hyper-parameters (coefficient, degree and

1Learning Vector Quantisation “is an adaptive learning algorithm in which the locations of
the codebook vectors are established through adjustments of decreasing magnitude” [67].

2Due to its computationally simple structure and its superiority compared to a mis-specified
parametric Bayesian Classifier.

3Support Vector Machine creates a hyper-plane in an n-dimensional space that groups data
points distinctly: https://scikit-learn.org/stable/modules/svm.html
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gamma for the relevant kernel) were employed to obtain the best SVM.

Giusto and Piger [67] nowcasted U.S. business cycle turning points (i.e. the

forecast horizon was ‘t + 0’, as the turning points occur) and this is particularly

significant as the NBER’s Business Cycle Dating Committee historically confirm

turning points after they occur. In addition, different pre-processing techniques

are applied to the model to identify the impact on the models. Note: the LVQ

models in [67] obtained a highest MCC of 0.48.

In this section, the prediction task is taken a step further as predictions are

made for ‘t + 1’ steps ahead (that is a month ahead). Table 4.1 shows the results

for all the experiments carried out and as seen the MRN performed better than

the other models including the LVQ proposed by [67] for the three datasets.

Table 4.1: Comparison of models for the NBER turning points prediction task

MCC
Model Optimser

Growth COD Growth & COD
LVQ Clustering 0.578 0.558 0.574

LSTM
Adam 0.715 0.68 0.645
SGD1 0.605 0.63 0.655

SVM
Sigmoid 0.13 0.635 0.627
Poly2 0.57 0.416 0.49
RBF3 0.396 0.395 0.276

MRN BPTT4 0.787 0.79 0.799

In particular, using the change of direction of the growth variable significantly

improved the performance of the SVM with a sigmoid kernel whilst other models

had relatively the same or slightly worse performance. This improvement for the

SVM can be attributed to its effective handling and processing of binary variables

for which it is historically acclaimed. Discretisation with SVMs encourages faster,

easier and more effective identification of decision boundaries required to separate

1Back-propagation through time (see Chapter 3.1.2.2)
2Stochastic Gradient Descent
3Polynomial kernel
4Radial Basis Function kernel
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the classes. Similarly, with the third dataset (the growth variables and the change

of direction), most models had a similar or slightly worse performance. Overall,

the MRN provides the best results for this task. This experiment is particularly

indicative that different models require different data transformations depending

on the internal processing of the architecture to provide meaningful insight and

harness the model’s dynamics.

Table 4.2: Memory bank & window size for the best MRN model

Dataset Memory banks ([in-
put, hidden, output])

Window size Trainable Pa-
rameters

Growth [4, 2, 0] 80 1241
COD [2, 3, 2] 80 1521
Growth & COD [4, 0, 3] 80 901

The MRN performed best with the third dataset, Growth & COD variables,

which is indicative of the usefulness of discretisation for time-series processing

to enhance performance. In particular, the ability of the MRN to employ dif-

ferent memory combinations, encourages appropriate selection and utilisation of

historical data to effectively inform predictions. Interestingly, the third dataset

required less trainable parameters than the models that used the first or second

dataset, underpinning the discovery of enhanced performance incorporating the

change of direction (see Table 4.2).

In particular, the graphs for the NBER turning points prediction task are

shown in Figure 4.1. All three models have a lag when predicting the first,

second and fourth recession. The model applied to the third dataset very closely

maps the third recession, unlike the models that employed the first and second

datasets. Overall, training the MRN with the three datasets provides meaningful

results, highlighting its suitability for time-series processing.

4.2.2 Oil price prediction

Four models (Random Walk, Jordan, SRN and MRN) were applied to the crude

oil price prediction task and comparative results are presented. The MRN’s per-
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Figure 4.1: Best MRN Models
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formance is compared to models within its class (that is, networks employing

simple recurrency) and the best of these models is then compared with the cur-

rently accepted state-of-the-art LSTM model. Note: Tepper et al. [200] cogently

demonstrated that MRN outperformed the SRN ESN and NARX, the work in this

section builds on this finding.

Random Walk (RW): The random walk refers to a model where the best fore-

cast for the volatility of the next time step is the volatility of the current time

step, and it indicates the efficiency of the oil market [168]. For a RW model, the

best prediction of volatility for any time in the future is the current volatility.

The RW model is used as a benchmark.

Simple Recurrent Network model class: The SRN1, Jordan network 2 and

the MRN 3 are applied for the crude oil prediction task. These three models used

the sliding window approach presented in Chapter 3.2.1 and had the following

hyper-parameters: 20 hidden units, an initial learning rate of 0.01 and a momen-

tum of 0.9999.

LSTM: The LSTM is trained with 20 units and employs a sigmoid activation

function. Experiments with two optimisers; SGD and Adam, and three dropouts

[0.1, 0.4, 0.7] are undertaken.

Table 4.3 - Table 4.6 presents the RMSE of the models (RW, Jordan network,

SRN, MRN) at 4 different horizons (1, 3, 6, 12 (months)) with 4 different window

sizes (60, 120, 240, 300). The Improvement over Random Walk (IORW) for the

models are also presented in the tables. The best window sizes for each model at

the different horizons are highlighted in black and the overall best models across

all the models are highlighted in blue. As can be seen, the MRN outperforms all

the other models, supporting the claims of its superior performance. This supe-

1The SRN used is as described in [52], the previous hidden state along with the current
observations are fed as inputs at any given time to the network.

2The Jordan network used is as described in [46], the previous output state along with the
current observations are fed as inputs at any given time to the network.

3The MRN is described in Chapter 3 where multiple feedbacks are utilised.
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riority becomes clearer as predictions are made further in time and is attributed

to its memory mechanism which encourages strong information latching.

Table 4.3: Best RMSE scores for the Oil price prediction task of the RW for
different horizons (1, 3, 6, 12)

t+1 t+3 t+6 t+12
RMSE 3.56 8.02 12.32 14.11

Table 4.4: Best RMSE scores for the Oil price prediction task of the Jordan
network for different horizons (1, 3, 6, 12)

t+1 t+3 t+6 t+12
Window
size

RMSE IORW RMSE IORW RMSE IORW RMSE IORW

60 0.363 0.898 0.694 0.913 0.995 0.92 1.572 0.89
120 0.339 0.9 0.714 0.911 0.967 0.922 0.920 0.93
240 0.331 0.91 0.719 0.91 0.996 0.92 1.040 0.926
300 0.33 0.91 0.713 0.911 0.947 0.923 0.925 0.93

Table 4.5: Best RMSE scores for the Oil price prediction task of the SRN for
different horizons (1, 3, 6, 12)

t+1 t+3 t+6 t+12
Window
size

RMSE IORW RMSE IORW RMSE IORW RMSE IORW

60 0.337 0.91 0.7 0.91 1.061 0.91 1.86 0.87
120 0.335 0.91 0.7 0.91 1.22 0.9 1.488 0.89
240 0.332 0.91 0.861 0.89 1.57 0.87 1.409 0.9
300 0.334 0.91 0.774 0.9 1.33 0.89 1.627 0.88

The Jordan network outperformed the SRN, suggesting that output feedbacks

are more important than hidden feedbacks for the Oil price prediction task. As

expected the models achieved the best prediction accuracy for the shortest hori-

zon, ‘t + 1’ (one-month ahead) as it has the least volatility compared to the

other horizons which are further ahead in time. Note: the best models have dif-

ferent window sizes, thus the in-sample periods shown will differ, however, the

out-sample is the same for all models.
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Table 4.6: Best RMSE scores for the Oil price prediction task of the MRN for
different horizons (1, 3, 6, 12)

t+1 t+3 t+6 t+12
Window
size

RMSE IORW RMSE IORW RMSE IORW RMSE IORW

60 0.33 0.91 0.693 0.914 0.976 0.921 0.892 0.937
120 0.326 0.91 0.697 0.913 0.985 0.92 0.942 0.933
240 0.321 0.91 0.701 0.912 0.864 0.93 0.974 0.931
300 0.322 0.91 0.747 0.91 0.973 0.921 0.978 0.931
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Figure 4.2: Best Models for ‘t + 1’

Figure 4.2 shows the predictions for the best models and the observed values

for ‘t + 1’ prediction task and as seen, all the models appear to closely follow

the signal. From Table 4.3 - Table 4.6, the errors for the best SRN, Jordan &

MRN models are very similar. All three models demonstrated strong predictive

abilities for ‘t + 1’ oil price prediction task.
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Figure 4.3: Best Models for ‘t + 3’

Figure 4.3 visualises the predictions for the best models and observations for ‘t

+ 3’ prediction task. Similar to the ‘t + 1’ prediction task, all the models appear

to closely follow the signal, however, the predictions made are in a slightly smaller

range than that of the observed values. All three models are strong candidates

for the ‘t + 3’ oil price prediction task.

Figure 4.4 visualises the predictions for the best models and the observed

values for ‘t + 6’ predictions. The MRN performed best, it appears to provide

predictions by smoothing out using a weighted average. At most of the peaks,

the MRN predicts values close to the observed, it however appears to miss most

of the troughs in the signal. The Jordan network had a lower error than the SRN,

however it appears to have difficulty mapping the signal. It smooths out similar

to the MRN, however, it ’over smooths’ such that it obtains averaged values

within a small range for the predictions. The predictions are very close to most
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Figure 4.4: Best Models for ‘t + 6’

of the troughs, and it misses all the peaks. Finally, the SRN appears to follow the

trend of the signal with a noticeable lag. In particular, obtaining predictions after

they occur offers little to no benefit, thus limiting the suitability of the SRN for

mid-term forecasting (such as ‘t + 6’, (6 months ahead) prediction tasks). The

results for ‘t + 6’ prediction indicate that it is a volatile period, and mapping

the signal can be difficult, given the number of changes that occur within the

time-frame (for example, the financial crisis or Covid-19 and the rapid change

and impact on the economy between 3 - 6 months).

Figure 4.5 presents the predicted values for the best models and the observed

values for ‘t + 12’ predictions and as seen, all the models appear to have difficulty

mapping the signal. The Jordan network has a lower error for ‘t + 12’ prediction

than ‘t + 6’ prediction. Similar to the ‘t + 6’ prediction task, the MRN and the

Jordan network appear to smooth out the values to make predictions, identifying

some peaks and troughs of the signal, however, on a significantly smaller scale.

73



4. The Multi-recurrent Network: a comparative analysis

Jun 1980 Sep 1998 Jan 1997 May 2005

Pr
ic

e 
*

Month (t)
Mar 2015

Actual
Predicted

(a) Jordan

Jun 1990 July 1994 Sep 1998 Nov 2002

Pr
ic

e 
*

Month (t)
Mar 2015Jan 2007 Mar 2011

Actual
Predicted

(b) SRN

Jun 1975 Sep 1983 Jan 1992 May 2000

Pr
ic

e 
*

Month (t)
Sep 2008 Mar 2015

Actual
Predicted

(c) MRN

Figure 4.5: Best Models for ‘t + 12’

The SRN appears to have lagged predictions, as with the ‘t + 6’ prediction task.

The results from ‘t + 6’ and ‘t + 12’ indicate that the SRN is not suitable for

long-term forecasting, supporting Tepper’s [200] claim of limited processing and

‘forgetting’. The MRN on the other hand, although it smooths out for ‘t + 6’

and ‘t + 12’ provides the best results.

Table 4.7: Hyper-parameters for the best MRN model

Horizon Memory banks ([in-
put, hidden, output])

Window size RMSE Trainable pa-
rameters

1 [0, 4, 2] 240 0.321 1640
3 [0, 4, 4] 60 0.693 1680
6 [4, 3, 4] 240 0.864 2321
12 [0, 0, 3] 60 0.892 301
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Table 4.7 presents the key hyper-parameters and the total number of ad-

justable parameters for the best MRN models. It is specifically noted that the

memory bank combination varies for the different horizons. This flexibility is

believed to encourage more stable formations of representations and better pre-

dictions.

The MRN is then compared to the LSTM and as shown in Table 4.8 out-

performed the LSTM in all but one prediction task (‘t + 3’). In particular, the

MRN requires significantly fewer adjustable parameters than the LSTM to learn

the problem. The MRN appears to offer a simpler and more effective alternative

to more complex (processing and computational) models.

Table 4.8: Comparative RMSE results of the MRN and LSTM (with the number
of trainable parameters shown in parentheses)

Model ‘t + 1’ ‘t + 3’ ‘t + 6’ ‘t + 12’
MRN 0.321

(1,640)
0.693
(1,680)

0.864
(2,321)

0.892
(301)

LSTM 0.448
(5,781)

0.688
(5,781)

0.932
(9,061)

1.161
(9,061)

The results show that the MRN is more persistently able to capture the tempo-

ral dependencies in crude oil prices within the evolving oil market. The enhanced

performance with the MRN is attributed to the varying degrees of embedded

memory within the network. In addition, these predictions appear to provide

early indication of the 2008 financial crisis as the parameters in the MRN, are

tuned up to December 2004, highlighting the MRN’s ability for early warning

indication.

4.2.3 M3 competition prediction

A number of models are applied to the M3 competition dataset. The forecasts

for the initial 24 models employed are available at: https://forecasters.org/

resources/time-series-data/m3-competition/. The MRN is compared to

the best 5 of these models. Experiments with varying memory banks, 10 hidden
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units and window sizes of [10, 40] are employed to obtain the best MRN. Table

4.9 shows the RMSEs for each model for the 10 randomly selected series. In

addition, similar to the work presented by [119], a simple average of the all the

RMSEs for each model is used to identify the best model and is presented in the

table.

Table 4.9: Comparative RMSE results of six models applied to the M3 competi-
tion data

Model MRN Theta Forecast Pro ForcX PP-Autocast Dampen

S
er

ie
s

N2516 187.1 882.9 920.7 920.6 919.3 919.6
N2521 2017.3 2028.5 2008.5 2018.7 2011 2011.7
N1807 268.3 250.6 478.1 424.1 299.0 456.2
N1908 453.9 362.1 317 313.1 333.5 373.4
N2012 517.8 297.6 220.5 229.2 360 383
N2159 521.9 478.5 466.5 494.4 509.3 437.8
N2158 651.1 489.6 485.4 510 512.7 468.6
N2150 141.6 171.7 82.2 128.4 141.2 183.5
N2144 538 1091.5 1182.7 1181.7 1182.9 1182.8
N1918 206.7 143.3 157.6 157.5 194 137.6

Average 550.4 619.6 631.9 637.8 646.3 655.4

As shown in Table 4.9, the MRN performs best for 2 of the series and overall,

it has the most consistent results, obtaining the overall best average RMSE.

All the models had the lowest RMSEs for series N1918 and N2150, indicating

the models could accurately model and map the signal, while the models had the

highest RMSEs for series N2144 and N2521, indicating the models had difficulties

modelling and mapping the signal. The average RMSEs are indicative of the

overall/summarised performance of the models, however, they are affected by

relatively small or large sample values (for example: RMSE scores for series

N2521) and may hide disparities.

Therefore, a non-parametric statistical hypothesis test, The Friedman test,

is conducted. The model ranks are calculated and using Equation 4.2, the chi-

square and F value are calculated to identify whether the models are significantly

different (see Table 4.10 for rankings). The null hypothesis H0: The models

are equal, that is the models are not significantly different and the alternate

hypothesis HA: The models are not equal, that is the models are significantly
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different.

X2
F =

12N

k(k + 1)
[
k∑
j=1

R2
j −

k(k + 1)2

4
]

FF =
(N − 1)X2

F

N(k − 1)−X2
F

(4.2)

where X2
F is the chi-square, k = number of models, N = number of series and Rj

is the sum of the ranks for the jth series.

Table 4.10: RMSE ranking for the six models applied to the M3 competition data

Model MRN Theta Forecast Pro ForcX PP-Autocast Dampen

S
er

ie
s

N2516 1 2 6 5 3 4
N2521 4 6 1 5 2 3
N1807 2 1 6 4 3 5
N1908 6 4 2 1 3 5
N2012 6 3 1 2 4 5
N2159 6 3 2 4 5 1
N2158 6 3 2 4 5 1
N2150 4 5 1 2 3 6
N2144 1 2 4 3 6 5
N1918 6 2 4 3 5 1

Average Rank 4.2 3.1 2.9 3.3 3.9 3.6

In order to investigate the hypothesis, the calculated FF value 3.49 is com-

pared to a known critical value of 11.07 (obtained using the chi-squared table with

an alpha level of 0.05 and 5 degrees of freedom). The calculated FF value is less

than the critical value, thus the null hypothesis, H0, for the Friedman test is

accepted, that is the models are not significantly different. In particular, as seen

in Table 4.10, the MRN has the lowest overall rank suggesting it is the lowest

performing model differing from the results obtained using the overall average.

The Friedman test, as with many other non-parametric test, is less restrictive, re-

laxing the assumptions of the data. However, this may lead to less reliable results

when the variability differs and as seen from Table 4.9 the variability between

the models differ. In addition, the Friedman test is not strong particularly with
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smaller sample sizes [220]. Iman and Davenport [88] derived a better statistic as

they demonstrated the Friedman test is “undesirably conservative”. The test also

does not account for when the models do not learn and this is particularly crucial

as one of the aims of this research is to identify a suitable model across different

problem domains rather than in specific domains. It is evident that more testing

techniques need to be conducted, thus the reader is therefore directed to Chapter

8.4 where future work on model forecast evaluation is presented.
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Figure 4.6: Series N2150

The model predictions and the observations for these four series are visualised

in Figure 4.6 - Figure 4.9. Series N2150 is shown in Figure 4.6, all the models

appear to closely follow the series trend. Particularly, the PP-Autocast and

Forecast Pro appear to make predictions that follow the signal, while the MRN

appears to make predictions (including the trough) a few time-steps after it has

occurred. The THETA appears to predict a straight line with a downward trend

whilst the remaining models appear to follow the signal, although mapping the

78



4. The Multi-recurrent Network: a comparative analysis

trough on a smaller scale. The PP-Autocast and DAMPEN appear to make

significantly different predictions to the observed towards the end of the series,

overall the Forecast Pro’s has the lowest score.
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Figure 4.7: Series N1918

Series N1918 shown in Figure 4.7 is more volatile than series 2150. For this

series, all the models outperform the MRN. They provide predictions on a larger

scale for the first and last peaks and on a smaller scale for the second peak. The

MRN however appears to predict values that are smoothed and averaged.

Most models appear to have difficulty modelling series N2144 and N2521. In

particular, most of the models appear to predict a straight line for series N2144

and could not identify the drastic drop in price. The MRN is the only model

that could map the signal and provide useful predictions. Similarly, most models

except the MRN predict a straight line for series N2521 as seen in Figure 4.9,

which is very volatile. The MRN is the only model that appears to map the

trend, however on a much smaller scale than the observed values.
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Figure 4.8: Series N2144

These series reflect real-world dynamics which can be volatile and chaotic.

Although, the Friedman test indicates no significant improvement with the MRN,

the MRN showed consistency with accurate predictions and learnt the mapping

despite having the highest RMSE for some series. In particular, for two of the

series, N2144 and N2521 were the other models had difficulties learning, the

MRN was able to model and map the signal, specifically due to its state-based

mechanism, enabling the modelling of different states available in the series. In

conclusion, the M3 series are a notable benchmark for time-series forecasting, the

results in this section along with the application of the MRN to other domains

point to its suitability for time-series processing across a number of different fields

and domains unlike traditional techniques or other ML techniques.
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Figure 4.9: Series N2521

4.2.4 Covid-19 forecasting

The World Health Organisation (WHO) declared Covid-19 outbreak a pandemic

on the 11th of March 2020 [41]. From the 11th of March to date, the outbreak has

spread rapidly to many countries and has had a drastic impact on our day-to-day

lives. A number of researchers in an attempt to understand the virus particularly

the rate at which it spreads have applied various forecasting tools to forecast the

future cases (death or confirmed).

Data from a number of countries (such as India, Canada, United States)

that were largely impacted by Covid-19 have recently made available. Covid-19

Data for the United States has been selected for analysis due the veracity of

the data provided, the US being the world’s largest economy and technologically

advanced nation and it has been heavily impacted by Covid-19 in terms the rate

of infection and number of deaths. In addition, the LSTM has been systematically
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applied to this data set and will therefore act as a high-quality benchmark for the

MRN [10, 12, 31, 203]. In addition, there is no universally agreed metric used by

researchers to evaluate the performance of their models with respect to others and

unfortunately, this precludes direct comparisons. As both the MRN and LSTM

will be optimised for the Covid-19 data in this chapter and the same evaluation

metrics used, it will offer insight into relative performance of each model and

ascertain which model is more efficacious. The reader is therefore directed to

Chapter 8 future work for a brief discussion on how the important Covid-19

study could be extended to include other countries.

The MRN is applied for the task and then compared to the LSTM. The models

are assessed using the Mean Absolute Percentage Error (MAPE), calculated as

follows:

M =
1

n

∑ ∣∣∣∣yt − ŷtyt

∣∣∣∣ (4.3)

where yt is the actual outcome, ŷt is the predicted outcome and n is the total

number of outcomes.

MRN: The MRN employed is as described in Chapter 3. It employed 20 hidden

units and experiments with varying memory banks and 5 window sizes [15, 20,

25, 35, 40] were undertaken to identify the best MRN.

LSTM: The LSTM employed a sigmoid activation function and a dropout regu-

larisation technique to reduce over-fitting. For experimentation, 2 units [20, 100],

3 dropout values [0.1, 0.4, 0.7], 3 batch sizes [20, 50, 100] and three optimisers

(RMSprop, Adam and SGD) were employed to obtain the best model.

Table 4.11 presents the results for the best MRN and LSTM models for Covid-

19 forecasting and as seen the MRN outperformed the LSTM.

Further experiments are conducted with the LSTM and as seen increasing the

number of epochs and the units leads to significant improvements. Despite this

improvement, the MRN still outperformed the LSTM.

The predicted values of the MRN and LSTM along with the observed values

for the confirmed cases are presented in Figure 4.10a and Figure 4.10b. The MRN
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Table 4.11: Comparative MAPE results of the MRN and LSTM for Covid-19
forecasting of confirmed and death cases in the USA

Model ( epochs) Hidden units Confirmed
cases

Death
cases

MRN ( 500) 20 4.11 0.3
LSTM ( 500) 20 7.03 22.67

LSTM ( 1000) 20 6.998 7.62
LSTM ( 1000) 100 5.14 1.33

Actual
Predicted

Date

(a) MRN

Actual
Predicted

Date

(b) LSTM

Figure 4.10: Confirmed cases

appears to follow the trend of the confirmed cases closely, it does however miss

the sharp increase from mid-late June. The LSTM on the other hand, appears

to map the trend of the signal, albeit not as well as the MRN and also misses the

sharp increase in confirmed cases from mid-late June1.

Figure 4.11a and Figure 4.11b present the predicted values of the MRN and

LSTM along with the observed values for the death cases. The MRN appears to

have learnt the underlying signal and predicts values for the death cases similar

to those observed. The LSTM on the other hand, loosely follows the trend of the

death cases although on a smaller scale2.

Interestingly, the MRN, albeit a much simpler and less computationally in-

1Note: Both models have the same training and test set, however the number of windows
available to the MRN is dependent on the window size, which determines the number of obser-
vations available; the MRN starts predicting from early April.

2Note: Both models have the same training and test set, however the number of windows
available to the MRN is dependent on the window size, which determines the number of obser-
vations available; the MRN starts predicting from mid-April.
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Figure 4.11: Death cases

tensive model class, outperformed the LSTM. More specifically, the MRN re-

quires much fewer adjustable parameters than the LSTM for this problem. The

MRN’s memory mechanism enables it to ‘remember’ different spatio-temporal

relationships within the signal and provides a descriptive overview of the infor-

mation available. The results are indicative of the strong predictive abilities of

the MRN for time-series forecasting and future work includes extending the MRN

for Covid-19 forecasting for other countries and comparing its performance with

notable papers.

4.3 Discussion

There has been a shift in recent years from simple recurrent networks (such as

SRNs and Jordan networks) to more complex recurrent networks (such as ESNs

and LSTMs), particularly due to the vanishing gradient problem, which limits

processing of time-dependence variables over a long period of time. However, in

this chapter, the MRN, a type of simple recurrent network, demonstrates strong

competencies for time-series processing and forecasting. It specifically employs

multiple memory banks to encourage strong information latching. The results in

this chapter particularly indicate that the shift to more complex mechanisms is

premature and simpler recurrent networks such as the MRN are suitable and can

provide superior predictive abilities compared to more complex methods currently

employed for time-series analysis.
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4.3.1 MRN suitability

The MRN demonstrated persistent superiority with time-series data and con-

sistently outperformed current state-art-of-the models as seen in Section 4.2.1 -

Section 4.2.2 and Section 4.2.3 - Section 4.2.4. As pointed out from the literature

review in Chapter 2, the results in these Sections demonstrated the importance

of an appropriate memory mechanism coupled with the right level of complexity

to encourage and ensure effective time-series modelling and forecasting.

4.3.2 Computational complexity

Experiments presented in this section demonstrate that the MRN specifically

required a significantly lower number of parameters than the LSTM (current

state-of-the-art). As stated in Section 3.3, the MRN employed the BPTT as pre-

sented in Section 3.1.2.2 and has a space complexity of O(((mw ∗ ms) + n)h).

While, the LSTM models employed in this chapter utilised the following optimi-

sations: SGD, Adam and RMSprop. SGD is the basis for all these optimisers and

its space complexity is O(o4 + o2r2), where o and r are the output and regressor

space respectively [53]. The gating mechanism of the LSTM particularly increases

the complexity. More specifically, the MRN proves a worthy competitor as it not

only obtains superior performance but also requires a lower number of parameters

to obtain this enhanced performance.

4.3.3 Memory bank search space

The MRN is a flexible paradigm such that it can employ as many memory banks

as needed for a specific task. While this sophistication is a key attribute for its

superiority, as the memory order increases the number of possible combinations

exponentially increases. For example, a memory order: of 4 requires 43 = 64

models, of 5 requires 53 = 125 models, of 6 requires 63 = 216 models, of 7 re-

quires 73 = 343 models to obtain the best model and of 8 requires 83 = 512

models. Excluding the memory bank combination [0, 0, 0], 63, 124, 215, 342, 511

model combinations are required for training to obtain the best model. As seen,

the search space for the memory bank configuration is large, thus, the memory
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order (that is the maximum number of memory banks employed in each memory

bank type) is restricted to 4, as stated in Section 3.1.1.2. However, where more

memory banks for each memory bank type are required, restricting the number

of memory banks limits performance.

The results presented in this chapter demonstrated the advantages of the memory

bank architecture and its suitability for modelling complex time-series. In partic-

ular, Ulbricht [208] raised the following questions for exploration with the MRN,

“Are there methods to improve the quality of the memories?” and “What tech-

niques can be implemented to properly handle high-dimensionality in the MRN?”.

The MRN will be investigated in the following chapters, with a view to devel-

oping innovations that address the limitations highlighted, positioning the MRN

for effective modelling of more complex time-series data.

4.4 Conclusion

In this chapter, the MRN was applied to a number of time-series forecasting

tasks, to access its suitability and relative performance. The MRN was com-

pared to state-of-the-art ML techniques such as the LSTMs, SVMs and SRNs

to benchmark its performance. The experiments confirmed that the MRN is in-

deed a worthy competitor when compared to other state-of-the-art techniques

and worthy of further exploration and optimisation.

In particular, the memory architecture of the MRN is shown to endow and

enable effective spatio-temporal processing that encourages the identification of

patterns and signal in the data. The architecture of the MRN provides more

flexibility for the network to ‘select’ relevant information through the training

process as parameters are updated. The variety of history strength enables the

network to exploit the data, providing a more informative ‘averaged’ overview

of the underlying signal, thus, encouraging better and more accurate predictions

and enhancing performance. In addition, the MRN offers a more computationally

effective paradigm than more complex models such as the LSTM, thus giving

rise to better accessibility and harnessing the MRN for day-to-day usage and

utilisation within low-end devices. Therefore, further exploration of the MRN’s
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architecture is undertaken in the following chapters.
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Chapter 5

Time Sensitivity in the Multi

Recurrent Network

This chapter introduces a novel extension to the MRN, to overcome two inher-

ent learning limitations associated with the rigidity of its hidden layer. More

specifically, time sensitivity is introduced within the hidden layer, to overcome

the problem of catastrophic interference by partitioning the hidden units such

that they are only active at specific time intervals, thereby reducing the temporal

loading on each hidden unit. In addition, the approach enables the sets of units

to hold activations for longer periods of time, which in turn provides a means

to mitigate the vanishing gradient problem. The main objective is to specifically

enhance the MRN as it outperformed alternative algorithms in most instances

as shown in Chapter 4. Therefore, this extension to the MRN model is only

compared to the standard MRN across four of the different problem domains

introduced in Chapter 3, in order to understand the impact of these innovations

on the behavioural dynamics of the MRN.

5.1 Background

Chapter 2 gave a critical account of recurrent neural networks, including the

MRN, and revealed the need for more efficacious memory mechanisms for cap-

turing temporal dependencies across time, thus ensuring effective time-series pro-
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cessing. The MRN has been discussed and demonstrated to be a powerful dy-

namic modelling tool with a unique memory mechanism, which enables enhanced

information processing and signal extraction. The MRN has shown strong abili-

ties to capture the latent signal in non-linear time-series data, improve learning

and achieve better accuracy (compared to the SRN, NARX, ESN, LSTM, LVQ,

SVM and Bayesian networks). As stated earlier, the MRN is not immune to the

gradient descent problem and catastrophic interference typical of neural network

architectures, such as MLPs and SRNs, that use shared weights and units. In

particular, the MRN does not specifically partition and allocate its resources (the

adaptable parameters) to learn the different (short- and long-term) prediction

tasks, rendering it susceptible to the gradient descent problem albeit to a lower

degree.

To illustrate the memory limitations of SRNs, that is their inability to si-

multaneously learn both the short- and long- term tasks, which in turn induces

the problem of catastrophic interference and vanishing gradient, O’Connell [144]

applied an SRN to the Embedded Reber Grammar (ERG)1. This highlighted

the SRN’s inability to separate various levels of embeddings generated from sub-

grammars related across time. A sentence example analogous to this issue repre-

sented by the ERG is presented by Tepper et al. [200] using the subject-auxiliary

verb agreement further discussed in Section 5.1.1. The short-term task is to pre-

dict the next word within a sentence given the current word, and the long-term

task is to predict the agreement between words in a sentence that have been

separated by intervening clauses (generated using some sub-grammar). Consider

this example:

• S1: The dog that chased the cat it saw is very playful

• S2: The dogs that chased the cat they saw are very playful

For the above example, in order to correctly predict the auxiliary verb (‘is’

or ‘are’), the network must retain a representation of the subject’s plurality

(‘dog’ or ‘dogs’), as it traverses through the embedded clauses or grammar (‘that

1The Embedded Reber Grammar is an extension of the ‘standard’ Reber Grammar, it is
a useful problem for RNNs to solve, as it helps to understand how well they model long-term
dependencies (see [144]).
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chased the cat’). Cleeremans et al. [35] highlighted the need for hidden unit

components to maintain such activations through the sub-grammar. Additionally,

O’Connell [144] emphasised the need for appropriate resource allocation to ensure

both prediction tasks are completed.

Over the last few decades, researchers have identified that significantly en-

hanced performance can be obtained by either extending the architecture of ANNs

directly (for example, incorporating self-learning, self-organising, internal decays

or attentive nodes) or indirectly, by augmenting their architecture with other

techniques (for example, by using wavelet or fuzzy learning). Therefore, in this

chapter, an extension to mitigate the weaknesses of the MRN will be proposed

and investigated. The two learning limitations to be addressed are; gradient de-

scent learning problem and catastrophic interference of hidden states due to all

temporal features being super-imposed onto a single homogeneous hidden feature

layer. To resolve this issue, periodically attentive units are introduced within the

hidden layer of the MRN.

5.1.1 Gradient Descent Learning Problem & Catastrophic

Interference

RNNs are known to suffer significantly from the gradient descent problem. The

gradient descent problem can be simply characterised by either i) the rapid decay

of gradient information essential for learning, as it propagates either through the

hidden layers of the ANN or as it propagates through time, when linearly pro-

cessing sequential inputs; or ii) the exponential increase in gradient information

(explosion) during training due to the ‘excessive multiplication’ of the long-term

components over multiple time-steps [15, 153].

In addition, RNNs also suffer from ‘catastrophic interference’ such that all

the resources (adaptable parameters) within the network respond simultaneously

to input information at every time period. Thus, these networks are unable to

preserve resources for the long-term dependency learning once the short-term

dependency learning has occurred [144]. Catastrophic interference within ANNs

is also observed when the models are required to learn additional information after

an initial training period. In such situations of continual incremental learning,
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the network forgets knowledge acquired from the previously learned tasks (or

data distributions), due to the use of shared hidden units [38]. Thus, forcing a

superposition of different task information across the hidden weights and units,

thereby causing ‘forgetfulness’ and ‘confusion’ as the representation of one new

pattern affects the representation of all other patterns previously stored [105,191].

Researchers have sought to address these problems by shifting from simpler

recurrent networks to more complex networks such as LSTMs and Gated Recur-

rent Units. The LSTM and its embedded gating mechanism were developed to

deal specifically with vanishing gradients, by employing three gates (forget, input,

output) to update and control the states of the cell. The forget gate informs what

information should not be forgotten by the network. However, as presented in

Section 2.2.4.5 the LSTM’s modelling and predictive abilities are limited as they

i) have limited representative abilities due to the lack of an appropriate memory

mechanism [42], ii) are not easily adaptable [30] and iii) are inefficient for long-

term dependency task [113]. In addition, [170] highlighted the ‘over-complexity’

of LSTMs. A systematic review on different LSTM cells carried out by [232]

pointed to the need for ‘external’ memory to strengthen memory capacity.

Similarly, Cho et al. [33] introduced the Gated Recurrent Units (GRUs) (a

simpler LSTM variation) in 2014, to tackle the vanishing gradient problem along-

side reducing the network complexity (presented in the LSTM). GRUs optimise

the LSTM’s structure by combining the three LSTM gate units (input, output

and forget gate) into two gate units (reset and update gate). This enables the

network to learn to skip ‘irrelevant’ temporary information. Thus, reducing the

network complexity, enabling information dependency over a longer time to be

maintained (as redundant information is continuously discarded, and the hidden

state can be more effectively utilised to store key information dependencies) [216].

However, Wang et al. [216] pointed out some limitations with GRUs such as slow

convergence rate, low learning efficiency and inability to discard enough redun-

dant information in one screening for complex states of time series data.

Rather than resorting to complex gating mechanisms and thus, the use of

multiple activation functions within the memory layer, O’Connell [144] sought to

deal with this problem by employing Periodically Attentive (PA) units to extend

the temporal capacity of SRNs. O’Connell [144] defined PA units as “units that
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receive input at some regular interval”. This is different from standard informa-

tion processing within the SRN where hidden units receive input information at

every time-step.

The ERG example (see Figure 5.1) is a notable benchmark and has been

exploited by a number of researchers such as Hochreiter and Schmidhuber [84]

with the LSTM and more recently Tepper et al. [200] with an MRN, ESN and

NARX, Wang et al. [212] with an Auxiliary Memory Unit RNN, to assess the

robustness of these networks and their ability to capture long-term dependency

(discussed in Section 2.2.4.7).
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Figure 5.1: The ERG as presented in [200]

For the long-term prediction task of the ERG, the network must maintain

the hidden activations caused by the indicator symbol (the symbol between 1○
and 2○), to correctly predict the penultimate symbol (the symbol between 7○
and 8○) [144]. In order for this to happen, the weights from the context layer

(which holds the memory) to the hidden layer must be relatively large compared

to the weights between the input and hidden layer [144]. This enables a stronger
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role of previous hidden activations than current inputs for determining the next

hidden activations [144]. However, weight initialisations are very small and as

such it is unlikely that hidden activations will reflect the indicator symbol [144].

In addition, the error generated earlier in training will only reflect the short-term

error (to remember the last two symbols at any given time-steps) [144]. Given the

recurrence of the short-term error, the resources of the network are predominately

utilised for the short-term task [144]. Similarly, Sentence S1 and S2 presented in

Section 5.1 can also be explained using the ERG. Consider the top string of the

ERG as the path for the singular subject and the bottom string as the path for the

plural subject, such that the indicator symbol (the subject) must be remembered

over a given number of time-steps to predict the correct verb to exit the path.

The PA units within the hidden layer of O’Connell’s SRN were configured to

receive inputs at regular time intervals, such that the network is forced to allocate

different groups of hidden units to different units of time, thereby reducing the

computational and representational demand on each hidden unit. [144]. As a

result, even if the network initially learns the short-term prediction task, some

units will still be available to learn the long-term prediction task as they will not

have been fully allocated as short-term predictors and are therefore available to

learn more distant temporal dependencies [144]. Section 5.3 describes how PA

units can be effectively embedded within an MRN.

5.2 Incorporating Periodically Attentive (PA)

Hidden Units into the MRN

The conventional hidden layer of the MRN is replaced with a hidden layer that

consists of both PA units and non-PA units as shown in Figure 5.2. The MRN

employing this modified hidden layer is referred to as the Periodically Attentive

MRN (PA-MRN). The PA hidden units defined as Time Attentive Units (TAUs)

periodically receive input patterns from an input sequence based on a specific unit

of time1. While the non-PA hidden units are defined as Holistic Time Attentive

Units (H-TAUs), they are similar to the hidden units of a standard MRN that

1Note: the time intervals are determined by the total number of phases.
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receive input stimuli at every time-step. These H-TAUs are always active and

serve to integrate holistic temporal information.

Memory banks
Hidden memory banks

..... ..... .....
Input memory banks Output memory banks

INPUT LAYER

HIDDEN LAYER

OUTPUT LAYER

H-TAUs TAUs

.... ....
Phase 1 Phase 3Phase 2

........

Hidden layer

............

Figure 5.2: The architecture of the self-learning MRN

Employing TAUs reduces the superposition of information encoded by each

unit, as the TAUs do not respond at every time-step of a given input sequence,

but rather at regular time intervals. An input sequence (as defined in Section

3.2.1) of known length is divided into phases, the number of TAUs are then split

into the phases1. The number of TAUs in each phase is obtained as follows:

TAUs per phase =
total number of TAUs

total number of phases
(5.1)

1Note: experiments are run with different phases (which inform the time interval) to identify
the best for each task. For example, employing 5 phases indicates each phase receive infromation
every 5th pattern.
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For a given pattern, only the TAUs in the active phase respond, whereas the

TAUs across the inactive phases do not respond but maintain the activations from

when their respective phases were last active. The total number of phases informs

the time attentive sensitivity, which determines how often a phase becomes active

to receive input stimuli.

Table 5.1: Example of Periodically Attentive Units (for a window of size 12)

input pattern Phase 1 Phase 2 Phase 3 H-TAU
start of sequence - - - -
1 p1 - - p1
2 ∧ p2 - p2
3 ∧ ∧ p3 p3
4 p4

∧ ∧ p4
5 ∧ p5

∧ p5
6 ∧ ∧ p6 p6
7 p7

∧ ∧ p7
8 ∧ p8

∧ p8
9 ∧ ∧ p9 p9
10 p10

∧ ∧ p10
11 ∧ p11

∧ p11
12 ∧ ∧ p12 p12

Consider an input sequence of 12 patterns, where the TAUs are divided into 3

phases (that is, a time attentive sensitivity of 3) and 2 H-TAUs. Thus, employing

20 hidden units, 2 of which are H-TAUs gives 18 TAUs for the model. The TAUs

are then split into the 3 phases, which gives 6 TAUs per phase. The 2 H-TAUs

are responsive at every time-step, whereas the TAUs in each phase are active

every 3rd time-step.

Table 5.1 describes the information processing of the input sequence (Note:

pt refers to the pattern, − indicates the beginning of a new sequence, where the

units are set to a known initial value determined by the mid-point of the hidden

unit activation function and (∧) indicates that the TAUs in that phase remain

fixed/unchanged).

At the beginning of every new input sequence, the hidden (PA and non-PA)

units are reset to the mid-point of the activation function. Next, the model
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receives the 1st input pattern, p1 and phase 1 is active. The TAUs in phase 1 and

the H-TAUs respond to the pattern. The other phases (2 & 3) remain inactive

and their TAUs are unchanged (as the activation mid-point). Then the model

receives the 2nd input pattern, p2, phase 2 is active and the TAUs in phase 2

respond to the pattern likewise the H-TAUs. The other phases (1 & 3) remain

inactive and their TAUs are unchanged (the TAUs in phase 1 remain unchanged

from the stimuli received from pattern 1, while the TAUs in phase 3 are unchanged

as the activation mid-point). For the 3rd input pattern, p3, phase 3 is active and

the TAUs in phase 3 and the H-TAUs respond to the pattern while the TAUs

in the inactive phases (1 & 2) remain unchanged. The process is repeated for all

patterns in the sequence such that each phase becomes active at every 3rd pattern,

allowing the TAUs in that phase to respond to the pattern while the TAUs in the

inactive phases remain unchanged. After all the patterns in the sequence have

been processed, the weights and biases are updated using the BPTT as described

in Section 3.1.2.2.

5.2.1 PA units to tackle catastrophic interference and van-

ishing gradient problem

Catastrophic Interference results in the severe exponential loss of learned infor-

mation caused by the representational overlap in the network [38]. This high-

lights a problem inherent in ANNs, limited learning capacity, such that learning

new information once the capacity is reached leads to interference, which affects

the network’s ability to ‘remember’ stored information [38]. In particular, for

time-series tasks, temporal dependencies between the current time and the past

(near past & distant past) could have multiple sub-tasks; for example, long-term,

short-term or medium-term. Employing TAUs split into phases (which respond at

regular time intervals) within the hidden layer, induces, encourages and enables

the network to learn different representations in each phase. Thus, preventing

simultaneous learning of multiple tasks/sub-tasks (as would occur in the standard

MRN) and as a result, mitigating catastrophic interference during learning.

Moreover, when a phase is active, the information stored and the representa-

tions learnt in other phases are ‘frozen’ until they are active. The phases become
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active periodically and as such the TAUs in the phases can only be updated pe-

riodically. Therefore, enabling the TAUs in each phase to retain their learned

representations for longer periods of time. This minimises the rate at which

information decays and temporal dependencies over longer periods of time can

be maintained and utilised for learning, thus, mitigating the vanishing gradient

problem.

5.3 Results & Analysis

In this section, the MRN extension is applied to the four of the time-series tasks

(Business cycle prediction, Oil price prediction, M3 Sales prediction and Covid-

19 forecasting) presented in Chapter 3 and their performance is compared to the

standard MRN1. The following metrics are used to evaluate the model for the

different tasks, Matthew Correlation Coefficient (MCC) (for Business cycle pre-

diction), Root-Mean Squared Error (RMSE) (for Oil price and M3 Competition

prediction) and Mean Absolute Percentage Error (MAPE) (for Covid-19 forecast-

ing). The results are presented along with the percentage Improvement over the

standard MRN (IoMRN). The IoMRN is calculated as follows:

IoMRN =
PA-MRN score - MRN score

MRN score
(5.2)

The memory order (for the memory banks) employed for the standard MRN

is 4 (as stated in Section 3.1.1.2). As explained, the total number of memory

bank combination trained is determined by the memory order. To determine

the best values for the PA-MRN specific hyper-parameters (H-TAUs, TAUs and

phases), preliminary experiments employing different sets of hyper-parameters are

conducted. Thus, keeping the number of PA-MRN models required for training

to a minimum. Appendix A details the results of the preliminary experiments

conducted to identify the best values of the PA-MRN specific hyper-parameters,

which inform the experiments undertaken in this section.

Note: one of the key benefits offered by the MRN over state-of-the-art LSTM

is its ability to learn a task with significantly less adjustable parameters (see Table

1The MRN as presented in Chapter 3

97



5. Time Sensitivity in the Multi Recurrent Network

4.7). Therefore, for the purpose of this research (obtaining efficient models for

effective time-series processing), the proposed MRN variant, the PA-MRN, is

trained with no more than 30 hidden units (10 additional units more than the

standard MRN).

5.3.1 Business cycle prediction

The PA-MRN is endowed with a hidden layer of periodically attentive units as

described above. The hyper-parameters associated with the best MRN models

for the business cycle prediction task are used as the initial starting point for

the PA-MRN (see preliminary experiments in Appendix A.1). Table 5.2 presents

the best models and their associated PA-MRN specific hyper-parameters for each

dataset (Growth, COD, Growth & COD). Experiments for this section are then

conducted with the best hyper-parameter sets for each dataset.

Table 5.2: Best hyper-parameters for the PA-MRN

Dataset Units MCC Window size H-TAUs TAUs Phases
Growth

20
0.736 20 2 18 5

COD 0.758 20 10 10 5
Growth & COD 0.769 20 2 18 10

In Table 5.3 the best MCC scores for the standard MRN and PA-MRN models

are presented and as seen from the table, the standard MRN outperformed the

PA-MRN for all three datasets.

Table 5.3: Best MCC score for the NBER turning points prediction task

Dataset
Model Units

Growth COD Growth & COD
MRN 20 0.787 0.79 0.799
PA-MRN 20 0.732 0.746 0.794

From Table 5.2, the best models for the Growth, COD and Growth & COD

datasets allocate a minimum of 3, 2 and 1 TAU(s) per phase respectively. To

understand whether the TAUs in each phase are sufficient to learn the task, the
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PA-MRN models are trained with 10 additional units so that more TAUs are

available for allocation to the phases.

Preliminary experiments are first conducted for the PA-MRN models with 10

additional units (see Appendix A.1). Table 5.4 presents the hyper-parameters

associated with the best models employing 10 additional units.

Table 5.4: Best hyper-parameters for the PA-MRN

Dataset Units MCC Window size H-TAUs TAUs Phases
Growth

30
0.747 20 0 30 5

COD 0.747 80 2 28 10
Growth & COD 0.792 20 10 20 5

Table 5.5 presents the MCC score for the best standard MRN and PA-MRN

(with 20 & 30 units) models. The PA-MRN models employing 10 additional units

(that is 30 units in total), perform better than the PA-MRN models employing 20

units for the first two datasets (Growth & COD) and maintains the performance

for the third dataset.

Table 5.5: Best MCC score for the NBER turning points prediction task

Dataset
Model Units

Growth COD Growth & COD
MRN 20 0.787 0.79 0.799

PA-MRN
20 0.732 0.746 0.794
30 0.751 0.757 0.794

As seen from the hyper-parameters in Table 5.4, the best models for the

Growth, COD and Growth & COD datasets allocate a minimum of 6, 2 and 4

TAUs per phase respectively. It appears that a critical component for the PA-

MRN models to learn the NBER turning points task is a sufficient number of

TAUs supplied to each phase.

Despite the underperformance with the PA-MRN models compared to the

standard MRN models (see Table 5.6, the PA-MRN models in general performed

best with a smaller window size of 20. This highlights the ability for these mod-

els to learn temporal dependencies with limited data while still obtaining good
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Table 5.6: Improvement over the standard MRN (IoMRN) (%)

Dataset Growth COD Growth & COD
MRN 0.787 0.79 0.799
PA-MRN 0.751 0.757 0.793
IoMRN -4.57% -4.18% -0.75%

results. In particular, the results indicate that providing sufficient TAUs in each

phase is key for this model variant.

5.3.2 Oil price prediction

The PA-MRN model is applied to the oil price prediction task, to understand

whether employing TAUs which enforce and inform resource allocation encour-

ages better learning and enhances performance. Preliminary experiments are

conducted to identify the hyper-parameters1 associated with the best models for

each horizon (1, 3, 6, 12) (see Appendix A.2 for the results of all the models).

The results for the best models are presented in Table 5.7.

Table 5.7: Best hyper-parameters for the PA-MRN

Horizon Units RMSE Window size H-TAUs TAUs Phases
1

20

0.378 60 10 10 3
3 0.699 120 10 10 6
6 0.92 120 2 18 5
12 1.141 120 2 18 3

The hyper-parameters of the best models are then used to train the PA-MRN

for the oil price prediction task and the results for the best models are presented

in Table 5.8.

For the PA-MRN models employing 20 units, all but one of the best models

have a minimum of 3 TAUs in each phase. To understand whether the TAUs per

phase are sufficient to learn the task, the PA-MRN models are trained further

with 10 additional units (that is a total of 30 units), so that there are more

TAUs available for allocation. The best models for the experiments conducted

1Note: the hyper-parameters associated with the best standard MRN models are employed
as a starting point to train the PA-MRN.
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Table 5.8: Best RMSE scores for oil price prediction

Horizon
Model Ratios

1 3 6 12
MRN 20 0.321 0.693 0.864 0.892
PA-MRN 20 0.329 0.679 0.883 0.995

for the PA-MRN models with 10 additional units are presented in Table 5.9 (see

Appendix A.2 for the results of all the models).

Table 5.9: Best hyper-parameters for the PA-MRN

Horizon Units RMSE Window size H-TAUs TAUs Phases
1

30

0.429 60 10 20 3
3 0.674 120 0 30 5
6 0.922 120 10 20 6
12 1.2 120 2 28 6

The best PA-MRN models (with 30 units) for each horizon employ a minimum

of 3 TAUs in each phase. More specifically, the best PA-MRN models for horizon

of 1, 3, 6 and 12 employ a minimum of 6, 6, 3 and 4 TAUs per phase respectively.

These hyper-parameters are then used to train the PA-MRN with 10 additional

units for each horizon and the result for the best models are presented in Table

5.10.

Table 5.10: Best RMSE scores for oil price prediction

Horizon
Model Ratios

1 3 6 12
MRN 20 0.321 0.693 0.864 0.892

PA-MRN
20 0.329 0.679 0.883 0.995
30 0.334 0.705 0.883 1.058

As shown in the table, the PA-MRN offers an improvement in one instance

(an horizon of 3). Employing (10) additional units with the PA-MRN for this

task leads to a slight drop in performance for the remaining horizons which is

indicative of over-fitting. It appears for the oil price prediction task, 3 TAUs are

sufficient. Results in this section and in Section 5.3.1 highlight the need for an
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appropriate number of TAUs per phase, as undersupplying or oversupplying the

number of TAUs in each phase affects the performance of the models.

Table 5.11: Improvement over the standard MRN (IoMRN) (%)

Horizon 1 3 6 12
MRN 0.321 0.693 0.864 0.892
PA-MRN 0.329 0.679 0.883 0.995
IoMRN -2.49% 2.02% -2.2% -11.6%

As shown in Table 5.7 and Table 5.9, for an horizon of 1, the best models

employed a window size of 60 while for the remaining horizons (3, 6, 12), the

best models employed a window size of 120. Similar to the results obtained in

Section 5.3.1, the PA-MRN models performed best with the smaller window size

compared to the standard MRN models (see Table 4.7 for the best window size

for the standard MRN) which is well suited for problems with limited data.

5.3.3 M3 competition prediction

The PA-MRN is applied to the 10 random series from the M3 competition data

(presented in Section 3.5.3) and benchmarked against the standard MRN to as-

sess its performance. Results from Section 5.3.1 and Section 5.3.2 highlight the

need for sufficient TAUs in each phase. Thus, given the models employ 10 hidden

units, the PA-MRN models are trained with these PA specific hyper-parameters,

two H-TAUs [0, 2] and one phase [3], thus the models can have a minimum of ei-

ther 2 or 3 TAUs per phase. Increasing the number of H-TAUs or phases reduces

the number of TAUs allocated to each phase, therefore the parameter search space

with the H-TAUs and phases is restricted to those aforementioned.

The results for the best models are presented in Table 5.12 where the PA-MRN

models performed better than the standard MRN models for six series. However,

for the remaining four series, particularly N1908, there is a significant decline

in performance with the PA-MRN. Interestingly, for series N1908, the alternate

models presented in Table 4.9 performed better than the MRN, suggesting the

standard MRN and PA-MRN have difficulties mapping this series.

To identify whether the PA-MRN had sufficient TAUs, the models are given
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Table 5.12: Best RMSE scores for M3 sales prediction

Series
Model Units H-TAUs

N2516 N2521 N1807 N1908 N2012
MRN 10 10 187.1 2017.3 268.3 453.9 517.8

0 196.9 2009.6 279.2 644.1 573.6
PA MRN 10

2 201.6 2011.5 294 622.8 555.6

Series
Model Units H-TAUs

N2159 N2158 N2150 N2144 N1918
MRN 10 10 521.9 651.1 141.6 538 206.7

0 492.7 538.3 129.8 432.1 197
PA MRN 10

2 492.5 534.3 134.5 441.4 172.7

4/5 TAUs per phase, thus increasing the total number of units to 15. The results

of the best models with 15 units are presented in Table 5.13. Employing more

TAUs enhanced the performance for six series. For three of the remaining four

series, there was a slight drop in performance and finally for series N1908, there

was a significant drop in performance.

Table 5.13: Best RMSE scores for M3 sales prediction

Series
Model Units

N2516 N2521 N1807 N1908 N2012
10 196.9 2009.6 279.2 622.8 555.6

PA MRN
15 199.3 2013.3 256.8 669.5 533.4

Series
Model Units

N2159 N2158 N2150 N2144 N1918
10 492.5 534.3 129.8 432.1 172.7

PA MRN
15 488.1 531.3 131.1 422.5 162.7

Figure 5.3 presents the predictions of the best standard MRN and PA-MRN

models for series N1918, where the overall best PA-MRN model had the best

improvement. The MRN has difficulty mapping the signal and appears to predict

values that are smoothed out and averaged. The PA-MRN on the other hand,

appears to offer more meaningful predictions than the MRN. It maps the signal,
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albeit on a much smaller scale and in advance of the third trough.
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Figure 5.3: Series N1918
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Figure 5.4: Series N1908

Figure 5.4 presents the predictions of the best standard MRN and PA-MRN
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models for series N1908, where the overall best PA-MRN model had the worst

performance. As seen from the figure, the PA-MRN appears to map the signal

for the first trough but on a smaller scale, and it appears to identify the peak but

does not map it as well as the standard MRN.

Table 5.14: Improvement over the standard MRN (IoMRN) (%)

Series N2516 N2521 N1807 N1908 N2012
MRN 187.1 2017.3 268.3 453.9 517.8
PA-MRN 196.9 2009.6 256.8 622.8 533.4
IoMRN -5.24% 0.38% 4.29% -37.2% -3.01%

Series N2159 N2158 N2150 N2144 N1918 Average
MRN 521.9 651.1 141.6 538 206.7 550.36
PA-MRN 488.1 531.3 129.8 422.5 162.7 535.39
IoMRN 6.48% 18.4% 8.33% 21.5% 21.3% -

The PA-MRN models offer significant improvement (up to 21.5%) over the

standard MRN models as seen from Table 5.14 for seven of the ten series. How-

ever, for the remaining three series, there was a decline in performance, in partic-

ular, for series N1908, there is a significant decline of 37.2%. As shown in Table

5.14, the average for all the series is calculated (as in [119]) and as seen the

PA-MRN has a lower overall average than the MRN.Nonetheless, the PA-MRN

model demonstrates strong abilities and offers improvement over the standard

MRN in most cases for the M3 prediction task.

A simple t-test is conducted as in Section 4.2.3, The null hypothesis H0: The

mean difference between the PA-MRN and the MRN is greater than or equal

to zero (H0 : µ̄d ≥ 0) that is the PA-MRN is not significantly different from

the MRN. Thus, the alternate hypothesis HA: The mean difference between the

PA-MRN and the MRN is less than zero (HA : µ̄d < 0) that is the PA-MRN is

not significantly different from the MRN.

The RMSE difference between PA-MRN and the MRN is calculated and the

mean and the standard deviation is calculated from the sample of RMSE differ-

ences (shown in Table 5.15). Using a left-tail t-test, the critical value t9,0.05 (with

a degree of freedom of 9 at 5% significance level) = -1.8331, the null hypothesis,
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Table 5.15: T-test for the models

RMSE dif-
ference

PA-
MRN/MRN

Mean -149.8
Sample
standard
deviation

80.1

t -5.9

H0 is rejected and thus the alternative hypothesis is accepted, concluding that

the PA-MRN does enhance performance.

5.3.4 Covid-19 forecasting

In this section, the PA-MRN model is applied for the Covid-19 forecasting of con-

firmed and death cases in the United States of America. Preliminary experiments

are run with a combination of hyper-parameters1 (all the results are presented

in Appendix A.3). The best hyper-parameters (Confirmed, & Death) from the

preliminary experiments are presented in Table 5.16. Experiments for this section

are then conducted with the best hyper-parameter for the cases.

Table 5.16: Best hyper-parameters for the PA-MRN

Cases Units MAPE Window size H-TAUs TAUs Phases
Confirmed

20
4.57 35 0 20 5

Death 0.66 25 0 20 10

Table 5.17 presents the results of the best models, as seen, the PA-MRN

performed better than the standard MRN for the death cases. However, for the

confirmed cases the standard MRN performed better than the PA-MRN. From

Table 5.16, the best PA-MRN models employed roughly 4, 2 TAUs per phase

for the confirmed and death cases respectively. The PA-MRN is trained with 10

additional units so that more TAUs can be allocated to the phases. Preliminary

1The hyper-parameters of the best MRN model for Covid-19 forecasting is used as the initial
starting point for the PA-MRN
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results were run to identify the best PA specific hyper-parameters and the results

are presented in Table 5.18 (see Appendix A.3 for all the results).

Table 5.17: Best MAPE score for Covid-19 forecasting

Model Hidden
units

confirmed death

MRN 20 4.11 0.3
PA-MRN 20 4.6 0.26

As seen from Table 5.18, the best PA-MRN with 30 units employed a minimum

of 3, 4 TAUs per phase for the confirmed and death cases respectively. These

hyper-parameters are then used to train the PA-MRN models. The results of

the best models are presented in Table 5.19. Employing additional units, which

provided more TAUs per phase, led to an improvement in performance for the

confirmed cases. Whereas for the death cases, although employing additional

units increased the number of TAUs per phase, there was a drop in performance,

which was likely due to over-fitting.

Table 5.18: Best hyper-parameters for the PA-MRN

Cases Units MAPE Window size H-TAUs TAUs Phases
Confirmed

30
4.56 35 10 20 6

Death 0.81 25 2 28 6

Table 5.19: Best MAPE score for Covid-19 forecasting

Model Hidden
units

confirmed death

MRN 20 4.11 0.3
PA-MRN 20 4.6 0.26

30 3.6 0.58

For the confirmed cases, Figure 5.5 visualises the predictions of the best mod-

els. The PA-MRN appears to make slightly closer predictions to the observed

values than the MRN from early June to mid-June. Both models miss the sharp

spike in cases around mid-June, the standard MRN does however appear to have

closer predictions to the observed number of cases from mid-June to late-June

107



5. Time Sensitivity in the Multi Recurrent Network

Table 5.20: Improvement over the standard MRN (IoMRN) (%)

Series Confirmed
cases

Death
cases

MRN 4.11 0.3
PA-MRN 4.01 0.26
IoMRN 2.43% 13.33%

than the PA-MRN. For the death cases, the predictions for the best standard

MRN and PA-MRN models are shown in Figure 5.6. Both models appear to

provide very similar predictions to the observed values and follow the underlying

signal and trend of the death cases.
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Figure 5.5: Best models for Covid-19 forecasting (Confirmed cases)
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Figure 5.6: Best models for Covid-19 forecasting (Death cases)

The PA-MRN offers 2.4% - 13.33% improvement over the standard MRN
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for the Covid-19 forecasting of confirmed and death cases as seen from Table

5.20. Overall, the PA-MRN model appears to enhance performance and offers an

improvement over the standard MRN for Covid-19 forecasting.

5.4 Discussion

The MRN has been shown to add predictive value over other neural networks and

traditional statistical models, it demonstrated superiority as seen from [20, 149,

183, 200, 208] and in Chapter 4. The superiority of the MRN has been further

explored and enhanced in this chapter, by endowing it with periodically atten-

tive units to address two key learning limitations; vanishing gradient descent

and catastrophic interference, associated with most types of ANNs. A brief dis-

cussion is now given with a view to drawing conclusions across the experiments

undertaken in this chapter.

5.4.1 Periodic attentiveness to mitigate gradient descent

problem and catastrophic interference

The PA-MRN model offered some key advantages over the standard MRN model

as indicated by the result obtained, in general, it outperformed for the different

tasks and problems). However, there were some cases where the PA-MRN offered

no improvements, for example, the NBER turning points prediction task. Results

indicated that there were likely insufficient units in each phase and increasing the

total number of hidden units, which is directly related to the number of TAUs

available for allocation in each phase, led to an improvement in performance.

However, for the purpose of this research, to obtain computationally effective

models and due to the large search space for the memory bank combinations, the

number of hidden units for the PA-MRN was restricted (to a maximum of 15 for

the M3 Sales prediction & 30 for the remaining tasks).

To understand the benefits of the PA-MRN, the best standard MRN models

are trained with 10 additional units, to understand whether the improvements

gained with the PA-MRN can be simply obtained by increasing the number of

hidden units, and the results are presented in Table 5.21 and Table 5.22.
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Table 5.21: MRN models trained with additional hidden units

Dataset Oil price NBER Covid-19
Model 1 3 6 12 Growth COD G & COD con. death
PA-MRN 0.334 0.68 0.883 0.995 0.751 0.757 0.793 4.01 0.26
MRN
(30)

0.319 0.71 1.24 1.13 0.775 0.763 0.78 4.73 4.92

As seen from Table 5.21, the MRN with additional units is outperformed by

the PA-MRN in seven instances. This indicates that the MRN with additional

units1 is likely over-fitting and thus, a decline in performance is observed. Sim-

ilarly, as seen from Table 5.22, the PA-MRN performs best for six of the ten

series.

Table 5.22: MRN models trained with additional hidden units

Series
Model 2516 2521 1807 1908 2012 2159 2158 2150 2144 1918
PA-
MRN

199.2 2006.6 336.9 656.5 525.2 482.4 534.4 123.1 429 154.8

MRN
(20)

186.2 2015.6 261.5 470.3 468.9 576.8 619.3 145.7 508.7 205.6

In general, the results indicate that merely increasing the hidden units is not

sufficient to enhance performance and extensions such as the PA-MRN introduced

in this chapter are necessary to enhance performance. Experiments conducted

conclusively demonstrated that in some cases the PA-MRN does generally of-

fer improvement over the standard MRN, however, as seen in Section 5.4, an

appropriate number of TAUs in each phase is necessary for the PA-MRN.

1Note: the models are trained using the hyper-parameters of the best models. NBER
prediction task; learning rate: 0.09, momentum: 0.9999, epochs: 1000 (see Table 4.2 for the
best memory bank combination employed for each dataset along with best window size). Oil
price prediction; learning rate: 0.01, momentum: 0.999, epochs: 1000 (see Table 4.7 for the best
memory bank combination and window size employed for each horizon). M3 sales prediction;
learning rate: 0.01, momentum: 0.999, epochs: 1000 (see Table B.1 for the best memory bank
combination and window size employed for each series). Covid-19 forecasting; learning rate:
0.01, momentum: 0.999, epochs: 500 (see Table B.2 for the best memory bank combination and
window size employed for each series).
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5.4.2 Search space for memory bank configuration

As described in Section 3.1.1.2, to obtain the best model for the standard MRN,

a number of memory bank combinations are run, the total number of which is

determined by the memory order. Due to the non-exhuastive search space for the

memory bank combinations, the memory order (that is the maximum number

of memory bank in each memory bank type), is constrained to 4. Similarly, to

obtain the best PA-MRN models, the memory order which determines the total

number of memory bank combinations required for training, is constrained to 4.

More specifically, for a memory order of 4 (that is each memory bank type can

have 0, 2, 3 or 4 memory banks), for a given task, the total number of possible

models combinations is 43 = 64. Note: the memory bank configuration, [0, 0,

0], is not included (as this represents a standard RNN model without a memory

mechanism), thus, the total number of models required for training is 63. This

presents a major limitation for tasks or problems which require a higher number

of memory banks.

5.5 Conclusion

In this chapter, the MRN was extended and endowed with periodic attentive

units and compared to the standard MRN. The MRN extension; the PA-MRN

is applied to four time-series forecasting tasks, to assess whether it mitigates

two key learning limitations of the standard MRN such that better learning and

information latching is encouraged and as such performance is enhanced.

The results presented demonstrated that the PA-MRN can enhance perfor-

mance in some cases. In particular, the PA-MRN models offered an improvement

over the standard MRN of up to 21.5% for the experiments undertaken. The ex-

periments conclusively indicated that the MRN can be endowed and in some cases

this endowment aided the mitigation of the limitations accounted with using gra-

dient descent training (gradient descent problem and catastrophic interference).

However, the PA-MRN similar to the standard MRN and other machine learn-

ing techniques requires a lengthy hyperparameter tuning process (particularly for
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the memory mechanism) to obtain an ‘optimal’ model. There is a non-exhuastive

search space to be explored to identify the best models and as such the memory

order is restricted. In the following chapter, an extension that addresses this

architectural limitation of lengthy hyper-parameter tuning (specifically for the

ratios in the memory) is presented.

5.6 Chapter contributions

This is the first work to explore and incorporate attentive mechanisms into the

MRN. Specifically, the methodology in [144] is extended to the MRN to i) over-

come the vanishing gradient problem by leaving unit representations from previ-

ous time steps active for longer (enabling further embedding within the memory

banks) and ii) reduce catastrophic interference by dedicating hidden units to

specific phases of time.
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Chapter 6

Self-learning in the

Multi-recurrent Network

In this chapter, a novel technique is introduced to mitigate an architectural lim-

itation associated with the memory rigidity, so that the requirement of designer

input for ratio hyper-parameters within the model can be eliminated. More

specifically, self-learning of the recurrent link ratios are introduced, to inform

the memory composition, by allowing the ratio of current and past information

to be determined by the learning process rather than established a priori. This

extension will be applied and compared to the standard MRN across four of the

different problem domains introduced in Chapter 3 to understand the impact of

these innovations on the behavioural dynamics of the MRN.

6.1 Background

Similar to many ANN variants, the MRN requires manual hyper-parameter tun-

ing by the user. For example, Ulbricht’s original MRN requires the designer to

determine both the learning hyper-parameters (learning rate and momentum)

and architectural hyper-parameters (number of hidden units, number of memory

banks for each type and the weightings for both self- and layer-recurrency link

ratios) [208]. Whilst there are hyper-parameter selection methods such as grid

search [60,120] and randomized searches of hyper-parameter spaces [18,128], the

113



6. Self-learning in the Multi-recurrent Network

process of hyper-parameter tuning is very time-consuming. For this thesis, a tech-

nique would be sought to reduce the hyper-parameter tuning process associated

with the layer-link ratios (which inform the memory composition) and possibly

improve the memory quality, thus, enhancing the MRN’s ability for time-series

processing. Therefore, in this chapter, the general aim is to extend the standard

MRN to specifically overcome the above-mentioned architectural limitation. To

resolve this limitation, the architecture of the MRN will be extended by incorpo-

rating self-learning.

6.2 Self-Learning in ANNs

Authors such as Hartstein and Koch [79], Nguyen and Widrow [141, 142], Li et

al. [118], Yasunaga et al. [230], Chen et al. [29] and Konecný et al. [107] have

investigated and employed various self-learning schemes within ANNs achieving

varying degrees of success.

Hartstein and Koch [79] published their work in 1989, which highlighted self-

learning attributes within ANNs. They utilised the characteristics of a MOSFET1

device which produces an output current from a linear function of an input voltage

relative to a threshold voltage, to develop a more compact network [79]. Using

the MOSFET characteristics, the output of each neuron is calculated as the

summation of all the inputs relative to the respective learnt thresholds, which is

then passed through a sigmoid function [79].

More specifically, the learnt thresholds are calculated as a function of the pre-

vious thresholds added to a proportion of the difference between the respective

neuron outputs and neuron inputs minus a constant, these thresholds hold the

memories of the network [79]. They then performed simulations in two phases

with this type of neuron. The first phase was the learning phase, where thresholds

were adjusted by a given number of random patterns. In the second phase, the

learning was turned off and the memories were probed to identify their essential

features, and how well the network learnt and performed on test patterns [79].

They found that the network was able to learn all the input patterns for a rea-

sonable number of random patterns.

1Metal–Oxide–Semiconductor Field-Effect Transistor
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They also demonstrated that the network had the ability to learn the inverse

patterns as a result of network symmetry [79]. Their work highlighted the inherent

self-learning and predictive abilities of artificial neural networks, particularly, as

the network learns from the given neuron inputs and the thresholds. They viewed

and demonstrated the concept of self-learning in their network as the dynamic

learning ability of a network irrespective of its synaptic function. Hartstein and

Koch [79] conclusively showed that ANNs in and of themselves are robust and

possess innate self-learning abilities.

Similarly, Nguyen and Widrow [142] using The Truck Backer-Upper example

demonstrated that their neural network can learn on its own accord and achieve

nonlinear controller design to dock a truck. Ideally, when a truck driver is back-

ing up a truck, a combination of forward and backward movements are required

to successfully dock the truck. They set an objective for the system to success-

fully back the truck to the dock, such that, the point (x trailer, y trailer) are

aligned as closely as possible with the point (x dock, y dock) using only backward

movements [142]. The neural network employed is first trained to be an emu-

lator of the truck and trailer dynamics, and then the neural network controller

is trained to control the emulator. Results showed that the truck emulator had

the ability to represent the trailer and truck, when ‘jackknifed’, in line or in any

condition in between [142]. More specifically, the results highlighted the self-

learning abilities of neural networks, without which, a substantial amount of user

input and design would have been required [142]. Others such as Li et al. [118]

demonstrated by incorporating active and self-learning to a deep Convolution

Neural Network, the limitations associated with limited data are alleviated. The

active- and self-learning worked in an iterative manner involving “(re)training the

temporal-ensembling deep CNN and updating informatively unlabelled samples

within pseudo-labels to the training dataset” [118]. They showed that through

the self-learning process the model is able to query, subsequently filter and label

samples by a multi-scale spatial constraint without additional labelling from ex-

perts. This enabled the training of only one model, which had the ability to learn

the variability, thus reducing false alarms and increasing precision [118]. Konecný

et al. [107] used a self-learning artificial neural network to classify the financial

situation of enterprises (where the sets of objects of the particular classes are not

115



6. Self-learning in the Multi-recurrent Network

well-known). They demonstrated that employing a self-learning network negated

the need for user input.

6.2.1 Self-learning and Recurrent Networks

Embedding self-learning mechanisms in ANNs has proven to be successful. More

specifically, research on self-learning in RNNs appears to mainly occur in the

‘forward’ layers. For example, Bouchachia and Ortner [23] implemented the idea

of self-learning in an RNN, Recursive Neural Network1, by adopting a semi-

supervised learning approach through self-learning for their dataset (comprised

of both labelled and unlabelled data), so that the network possesses the ability to

actively pre-label data. They thus coerced the network to harness its structure for

extracting and learning from the limited labelled data. The authors explained

the approach as follows: “Self-learning attributes are introduced such that the

networks estimate a posterior probability function for each class, and assign an

unlabelled pattern to the class for which the posterior probability of membership

is the highest” [23]. Using labelled and unlabelled data, their work demonstrated

that RNNs possess self-learning abilities and can harness their structure to en-

hance performance [23].

More specifically, there remains limited work on self-learning in RNNs, par-

ticularly for their context/recurrent layer(s). As a result, the potential benefits

achieved with self-learning, do not appear to be fully realised for RNNs. These

layers are essential for effective processing of temporal data. They particularly

serve as the network’s ‘memory’, allowing the network to ‘remember’ past in-

formation. Thus, optimising these recurrent ‘memory’ layers where possible is

paramount. In this chapter, endowing self-learning within the MRN’s memory

mechanism (the key to its superiority) is subsequently explored.

1“A neuron in the Recursive Neural Network is an extension of a neuron in a one-level
Recurrent Neural Network, where instead of just considering the output of the neuron in the
previous time step (like with the recurrent neuron), the recursive node gets signals from its
subtrees.” [23]
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6.3 Introducing Ratio Learning in the MRN

In this section, a new self-learning approach is introduced whereby the MRN is

extended by incorporating additional units, Ratio Control Units (RCUs), that

learn to determine optimal layer-recurrency link ratios for the memory banks.

(Note, the self-link ratios are calculated as described in Section 3.1.1.1.) As

presented in the subsections below, three techniques are proposed to determine

memory composition and identify whether this can enhance performance. The

MRN with self-learning mechanisms is referred to as the Self-learning MRN (SL-

MRN).

6.3.1 Learning the layer-recurrency link ratios with addi-

tional hidden units (SL-MRN 1)

For the first approach, the RCUs are incorporated in the hidden layer as shown

in Figure 6.1 (the dashed lines represent the copying of the layers and the blue

lines represent the updating of the relevant ratios). Thus, the total number of

units in the hidden layer of the proposed SL-MRN increases in proportion to the

total number of memory banks in each type. (Note: these RCUs are treated like

the other hidden units). Therefore, the SL-MRN naturally has a larger hidden

layer than the standard MRN; this SL-MRN variant is referred to as SL-MRN 1.

Training in SL-MRN 1 is similar to that of the standard MRN (as described in

Section 3.1.2.1), it does however include additional calculations with the RCUs

during the forward pass. After a pattern is passed forward, the net RCUs are

calculated and passed through a sigmoid function like the other hidden units,

(this maintains the proportional assumption of the ratio values, ensuring values

are fixed between 0 and 1). The RCUs (and subsequently the ratios) are then

updated based on the input stimuli received from the current pattern and memory,

and are then used to update the memory, which is fed with the next pattern to

the input layer1. The input, hidden and output memories at time t, Mti , Mth and

Mto are updated (such that Equation 3.1 - Equation 3.3 are modified) as follows:

1Note: the ratios are readjusted during training and as new information is presented during
testing.
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Figure 6.1: The memory architecture of the self-learning MRN with additional
hidden units, called ratio control units, controlling the recurrent links for the
input memory banks.

Mti = (RCUti × It−1) + ((1−RCUti)×Mt−1i)

Mth = (RCUth ×Ht−1) + ((1−RCUth)×Mt−1h)

Mto = (RCUto ×Ot−1) + ((1−RCUto)×Mt−1o)

(6.1)
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where RCUti , RCUth and RCUto are the RCUs at time t for the input, hidden

and the output memory banks respectively. It−1, Ht−1 and Ot−1 are the outputs

of the input, hidden and output layers at time t − 1 respectively. Mt−1i , Mt−1h

and Mt−1o are the input, hidden and output memories at time t− 1 respectively.

After the modified forward pass of an input sequence as described above, the

network goes through the next phase of training, BPTT (as described in Section

3.1.2.2). The network is trained for a given number of epochs, after which the

learnt weights and biases are fixed and used in the testing phase.

6.3.2 Learning the layer-recurrency link ratios by incor-

porating ratio units (SL-MRN 2)

Rather than augmenting the MRN with additional units in the hidden layer, the

second approach endows the MRN with a ratio layer, which holds the RCUs.

The RCUs receive information from input patterns and the memory, and also

contribute to the final output of the network1, as shown in Figure 6.2, where the

dashed lines represent the copying of the layers and the blue line represents the

updating of the relevant RCUs. As shown in the ’zoomed in’ aspect of Figure

6.1, the RCUs are used to determine the weightings of the historical information

from the network layers (input, hidden & output) and the memory layer. This

SL-MRN variant is referred to as SL-MRN 2.

During training, a pattern from an input sequence is received, and the for-

ward pass occurs as described in Section 3.1.2.1 with the addition of the RCUs

calculation. The net RCUs at time t, ˆRCUt, are calculated as follows:

ˆRCUt =
∑

WirIt +
∑

WMir
Mti +

∑
WMhr

Mth +
∑

WMorMto + br (6.2)

where Wir, WMir
, WMhr

, WMor are the respective weights of the input, input

memory, hidden memory and output memory layers to the ratio layer. bir are

the input layer biases (for the ratio layer), It are the outputs of the input layer

at time t and Mti , Mth and Mto are the input, hidden and output memories at

time t.

1Note: the ratios are only readjusted during training and do not change as new information
is presented during testing
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Figure 6.2: The architecture of the self-learning MRN

The RCUs at time t, RCUt are derived by passing the net RCUs, ˆRCUt

through the chosen activation function1 for the ratio layer, fr as follows:

RCUt = fr( ˆRCUt) (6.3)

The calculated RCUs at time t, RCUt, are then used to update the memory

(as shown in Equation 6.1) for the next pattern. The outputs of the output layer

is then updated (such that Equation 3.6 is modified) as follows:

Ot =
∑

WhoHt +
∑

WroRCUt + bk (6.4)

1Sigmoid activation function is employed for the experiments in this thesis to ensure the
assumption of ratio values between 0 and 1 is maintained.
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where Who and Wro are the respective weights of the hidden and ratio layers to

the output layer, bk is the sum of the hidden and ratio layer biases and Ht are

the outputs of the hidden layer at time t.

After the forward pass of the input sequence as described above, the next step

is the BPTT with some modifications to include the new ratio layer. Similar to

Equation 3.10 which shows the calculation to update the hidden layer to output

layer weights and hidden layer biases, the ratio layer to output layer weights, Wro

and ratio layer biases, br are updated as follows:

Wro = DOt ∗
∂O

∂Wro

= DOt ∗RCUt

br = DOt ∗
∂O

∂br
= DOt ∗ 1 = DOt

(6.5)

where DOt is the output layer deltas.

The ratio layer delta at time t, DRCUt is calculated as follows:

DRCUt =
∂E

∂O

∂O

∂RCU

∂RCU

∂ ˆRCU
+Memt+1

= (Ot − At) ∗ f−1r ( ˆRCU) ∗Wro +Memt+1

(6.6)

where At is the actual output at time t and f−1r is the inverse of the chosen

activation function.

The input layer to ratio layer weights, Wir, input biases, br and the memory

weights WMkr
are updated as follows:

Wir = DRCUt ∗
∂ ˆRCU

∂Wir

= DRCUt ∗ It

bir = DRCUt ∗
∂ ˆRCU

∂bir
= DRCUt ∗ 1 = DRCUt

WMkr
= DRCUt ∗

∂ ˆRCU

∂WMkr

= DRCUt ∗Mtk for k = i, h, o

(6.7)

where i, h and o mean input, hidden and output.

Employing the sliding window approach, Equation 6.5 and Equation 6.7 are

modified in line with Equation 3.13 and Equation 3.14. The network is trained
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for a given number of epochs, after which the learnt weights and biases are used

in the testing phase.

6.3.3 Learning the layer-recurrency link ratios using the

error gradients of the ratio units (SL-MRN 3)

The third and final approach derives RCU values from the error gradients of the

units in the ratio layer (incorporated in Section 6.3.2). The error calculations

happen during the BPTT, therefore, the RCUs are only updated after a forward

pass of an input sequence (unlike SL-MRN 1 and SL-MRN 2 that are updated

after every pattern). Thus, the RCUs account for the collective temporal de-

pendencies in a given window. This SL-MRN variant is referred to as SL-MRN

3.

After the forward pass, the errors are calculated using the modified BPTT

described in Section 6.3.2 and the weights and biases in the network are updated.

The errors for the ratio layer are calculated over the input sequence, so that the

error is accrued for every pattern in the sequence. The RCUs are then calculated

as follows:

T =
ns∑
t=1

(τ ∗DRCUt) + (F ∗ Tt−1)

RCUt =
1

ns
∗ Tt

(6.8)

where τ is the ratio momentum term, F is the momentum term and ns is the

length of the input sequence (Note: T is an array to store the errors of the RCUs

across the input sequence).

The RCUs are then rescaled between 0 and 1 for each memory bank type

(input, hidden, output), to maintain the ratio assumption of values between 0

and 1. They are then used to calculate the memory composition for the next

window. The network is trained for a given number of epochs, after which the

learnt weights and biases are used in the testing phase.
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6.4 Results & Analysis

In this section, the SL-MRN is applied to the four of the time-series tasks (Busi-

ness cycle prediction, Oil price prediction, M3 Sales prediction and Covid-19

forecasting) presented in Chapter 3 and their performance is compared to the

standard MRN1. The following measures are used to evaluate the performance

for each task: Matthew Correlation Coefficient (MCC) (for Business cycle pre-

diction), Root-Mean Squared Error (RMSE) (for Oil price and M3 Competition

prediction) and Mean Absolute Percentage Error (MAPE) (for Covid-19 forecast-

ing). The results are presented along with the percentage Improvement over the

standard MRN (IoMRN). The IoMRN is calculated as follows:

IoMRN =
SL-MRN score - MRN score

MRN score
(6.9)

Similar to the standard MRN and the PA-MRN, the memory order for the

memory bank types of the SL-MRN models is maintained at 4. Thus, as explained

in Section 3.1.1.2, a total of 63 models is required for training with any given set

of hyper-parameters to identify the best model.

The SL-MRN models build on and extend the MRN through additional units,

more specifically, the way in which information is processed does not change (un-

like with the PA-MRN). Therefore, the hyper-parameters (except memory bank

configuration) associated with the best standard MRN models2 are utilised for

the SL-MRN models. (Note: this reduces the hyper-parameter search space drasti-

cally as the only tunable hyper-parameters for experimentation with the SL-MRN

models are the memory banks). Employing additional units (RCUs) can lead

to over-fitting, thus, the SL-MRN models are trained with 20 units as with the

standard MRN and then with a lower number of units (5 for the M3 Sales pre-

diction & 15 for the remaining task) to understand whether the models overfit

and the impact on performance. In addition, the SL-MRN models are compared

to the PA-MRN models, to understand which of these extensions offered better

improvements for the tasks.

1The MRN as presented in Chapter 3
2see Table 4.2, Table 4.7 and Appendix B

123



6. Self-learning in the Multi-recurrent Network

6.4.1 Business cycle prediction

The SL-MRN extensions are applied to the NBER turning points prediction task

and the results for the best models are presented in Table 6.1.

Table 6.1: Best MCC score for the NBER turning points prediction task

Dataset
Model Units

Growth COD Growth & COD
MRN 20 0.787 0.79 0.799

SL-MRN 1
15 0.78 0.79 0.787
20 0.775 0.792 0.799

SL-MRN 2
15 0.63 0.649 0.616
20 0.629 0.701 0.573

SL-MRN 3
15 0.663 0.641 0.561
20 0.639 0.627 0.618

As seen from the table, SL-MRN 1 performs significantly better than the other

SL-MRN models. SL-MRN 2 and SL-MRN 3 obtained similar results for all three

datasets, more specifically SL-MRN 3 obtained the highest score and performs

better with the first and third dataset, while SL-MRN 2 performs better with the

second dataset. SL-MRN 1 and the standard MRN attained similar performance

on all three datasets. More specifically, the standard MRN outperforms for the

first dataset, SL-MRN 1 outperforms for the second dataset and both models

obtain the same MCC score for the third dataset. The best SL-MRN model

offers marginal improvement over the standard MRN for the NBER turning points

prediction task as seen from Table 6.2.

Table 6.2: Improvement over the standard MRN (IoMRN) (%)

Dataset Growth COD Growth & COD
MRN 0.787 0.79 0.799
SL-MRN 0.78 0.792 0.799
IoMRN -0.1% 0.2% 0%

In particular, as seen in Table 6.1, for the Growth dataset, the SL-MRN

models performed best with 15 units; for the COD dataset, SL-MRN 3 performed

best with 15 units whilst the remaining SL-MRN models performed best with 20
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units and for the Growth & COD dataset, SL-MRN 2 performed best with 15

units whilst the remaining SL-MRN models performed best with 20 units. For

this problem, there appears little scope for further optimisation as the standard

MRN configuration appears to offer an optimum balance between historic and

current information.

Table 6.3: Best MCC score for the MRN model extensions

Dataset Growth COD Growth & COD
PA-MRN 0.751 0.757 0.793
SL-MRN 0.78 0.792 0.799

Furthermore, in Table 6.3, the best PA-MRN (the model extension presented

in Chapter 5) and the overall best SL-MRN models are compared. The SL-

MRN models performed better than the PA-MRN models for all datasets. The

SL-MRN models provide comparatively similar results to the standard MRN and

performed better than the PA-MRN for the NBER turning points prediction task.

6.4.2 Oil price prediction

The SL-MRN models are applied for the oil price prediction task to understand

whether self-learning enhances performance and the results for the best models

are presented in Table 6.4.

Table 6.4: Best RMSE scores for oil price prediction

Horizon
Model Units

1 3 6 12
MRN 20 0.321 0.693 0.864 0.892

SL-MRN 1
15 0.32 0.689 0.964 0.835
20 0.318 0.684 0.981 0.859

SL-MRN 2
15 0.321 0.682 0.901 0.9
20 0.32 0.686 0.9 0.937

SL-MRN 3
15 0.32 0.679 0.935 0.956
20 0.319 0.686 0.977 0.948

As seen from the Table 6.4, SL-MRN 1 performed best for an horizon of 1

and 12 while SL-MRN 3 performed best for an horizon of 3. The standard MRN
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performed better than the SL-MRN models for an horizon of 6, the models appear

to have difficulty predicting for this horizon as seen from Figure 6.5.

For an horizon of 1, the SL-MRN models performed best with 20 units; for

an horizon of 3, SL-MRN 1 performed best with 20 units and the remaining SL-

MRN models with 15 units; for an horizon of 6, SL-MRN 2 performed best with

20 units while the remaining with 15 units and for an horizon of 12, SL-MRN 3

performed with 20 units and the remaining models with 15 units.
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Figure 6.3: Best models for the oil price prediction task (Horizon 1)
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Figure 6.4: Best models for the oil price prediction task (Horizon 3)
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Figure 6.3 visualizes the overall best models for an horizon of 1. All but one of

the best SL-MRN models appear to offer a slight improvement over the standard

MRN model. Figure 6.4 visualizes the overall best models for an horizon of 3.

The SL-MRN predictions appear to be less erratic than the standard MRN model.

As shown from Table 6.5, the SL-MRN models offer an improvement of up to 1%

and 2% over the standard MRN models for an horizon of 1 and 3 respectively.
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Figure 6.5: Best models for the oil price prediction task (Horizon 6)
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Figure 6.6: Best models for the oil price prediction task (Horizon 12)

Figure 6.5 visualizes the overall best models for an horizon of 6. Both the
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standard MRN and SL-MRN models appear to predict the peak on a smaller

scale and smooth out the succeeding predictions. All variants of the SL-MRN are

outperformed by the standard MRN. Figure 6.6 visualizes the overall best models

for an horizon of 12. The SL-MRN model appears to offer predictions closer to

the observed values than the standard MRN.

Table 6.5: Improvement over the standard MRN (IoMRN) (%)

Horizon 1 3 6 12
MRN 0.321 0.693 0.864 0.892
SL-MRN 0.318 0.679 0.9 0.835
IoMRN 1% 2% -4.17% 6%

As shown from Table 6.5, the SL-MRN model offers an improvement of up to

6% over the standard MRN models, for an horizon of 12. However, for an horizon

of 6, there is a decline in performance of up to 4.17%. Interestingly, the overall

best SL-MRN model obtained a better performance for ‘t + 12’ than for ‘t +

6’. Similar to the standard MRN, the SL-MRN model had difficulties mapping

an horizon of 6. This mapping is especially difficult for ‘t + 6’, as numerous

changes occur in a short period, and it appears the network may not have fully

represented all these changes. Whereas for ‘t + 12’, the network has a longer

overview, encouraging it to fully represent these perturbations. More specifically,

these perturbations affect the learning of not only the parameters but also the

ratios in the SL-MRN and thus the memory composition, and as such led to a

decline in performance.

Table 6.6: Best RMSE score for the MRN model extensions

Horizon 1 3 6 12
PA-MRN 0.329 0.674 0.883 0.995
SL-MRN 0.318 0.679 0.9 0.835

The performance of the best PA-MRN and the overall best SL-MRN models

are compared and presented in Table 6.6. The PA-MRN models performed better

than the SL-MRN models for two horizons (3 & 6) and was outperformed by the

SL-MRN models for the remaining two horizons (1 & 12). Overall, the PA-MRN

models and the SL-MRN models offer an improvement over the standard MRN
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up to 2.74%1 (as seen from Table 5.11) and up to 6% respectively. The SL-

MRN models offered an improvement over the standard MRN in most instances

and demonstrated better predictive abilities than the PA-MRN for the Oil price

prediction task.

6.4.3 M3 competition prediction

In this section, the SL-MRN models are applied to the 10 random series from

the M3 data (presented in Section 3.5.3) and benchmarked against the standard

MRN to assess its performance2. The results for the models are presented in

Table 6.7.

Table 6.7: Best RMSE scores for M3 Sales prediction

Series
Model (Units)

N2516 N2521 N1807 N1908 N2012
MRN ( 10) 187.1 2017.2 268.3 453.9 517.8

SL-MRN 1
( 5) 187.1 2015.7 347.2 649.2 624.9

SL-MRN 1
( 10) 186 2010.2 343 627.9 576.8

SL-MRN 2
( 5) 181.9 2008.4 326.1 662 620.8

SL-MRN 2
( 10) 181.2 2005.8 319.2 632.6 617.1

SL-MRN 3
( 5) 181.9 2012.9 314.6 637.8 559.2

SL-MRN 3
( 10) 175.7 2010.5 287.5 627.3 557.9

Series
Model (Units)

N2159 N2158 N2150 N2144 N1918
MRN ( 10) 521.9 651.1 141.6 538 291

SL-MRN 1
( 5) 518.3 570.9 138.8 512.5 187.4

SL-MRN 1
( 10) 527.3 570.5 141.6 502.4 192.2

SL-MRN 2
( 5) 523.4 578.6 140.8 506.2 187.9

SL-MRN 2
( 10) 533.9 571.5 141.7 491.6 191.1

SL-MRN 3
( 5) 526.6 570.3 138.9 530.8 187.7

SL-MRN 3
( 10) 529.2 578.9 140.1 506.8 190.4

It can be seen that the SL-MRN models outperformed the standard MRN for

1wrong correct after viva
2The learning rate is lowered to 0.009 to aid learning
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most of the series except three series N1908, N1807 and N2012. In particular,

SL-MRN 1 provided the best performance, outperforming on three of the series,

while SL-MRN 2 and SL-MRN 3 outperformed on 2 series each. For 5 of the

series (N1807, N2159, N2158, N2150, N1918), the SL-MRN models performed

best with 5 units and for the remaining 5 series the models performed best with

10 units.
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Figure 6.7: Series N1918

Figure 6.7 presents the predictions of the best standard MRN and SL-MRN

models for series N1918, where the overall best SL-MRN model had the best

improvement. It can be seen that the MRN appears to smooth out its predictions

as does the SL-MRN, albeit to a lesser extent, offering better predictions than

the MRN.

Figure 6.8 presents the predictions of the best standard MRN and SL-MRN

models for series N1908, where the overall best SL-MRN model had the worst

performance. The MRN and SL-MRN models appear to have very similar pre-

dictions, closely following the trend in the series. The SL-MRN does appear to

have slightly more volatile predictions than the standard MRN, and predicts the

peak on a smaller scale. The standard MRN outperformed the SL-MRN model.

In general, there is an improvement between 1% and 12.4% for most of the
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Figure 6.8: Series N1908

Table 6.8: Improvement over the standard MRN (IoMRN) (%)

Series N2516 N2521 N1807 N1908 N2012
MRN 187.1 2017.2 268.3 453.9 517.8
SL-MRN 175.7 2005.8 287.5 627.3 557.9
IoMRN 6.1% 0.57% -7.16% -38.2% -7.7%

Series N2159 N2158 N2150 N2144 N1918
MRN 521.9 651.1 141.6 538 206.7
SL-MRN 518.3 570.3 138.8 491.6 187.4
IoMRN 0.69% 12.4% 2% 8.62% 9.34%

series except series N1908, N1807 and N2012 where there is an 38.2%, 7.16%

and 7.7% deterioration in performance respectively (see Table 6.8). Interestingly,

the standard MRN performed worst compared to other models on series N1908

and N1807 as seen from Table 4.9. This is indicative of why the SL-MRN did not

provide an improvement, as the model on which it is built (the standard MRN),

appears to have had significant difficulty mapping the signal.

The performance of the PA-MRN and the overall best SL-MRN for the M3

Sales prediction is compared and presented in Table 6.9, the PA-MRN performs
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Table 6.9: Best RMSE score for the MRN model extensions

Series N2516 N2521 N1807 N1908 N2012
PA-MRN 196.9 2009.6 256.8 622.8 533.4
SL-MRN 175.7 2005.8 287.5 627.3 557.9

Series N2159 N2158 N2150 N2144 N1918
PA-MRN 488.1 531.3 129.8 422.5 162.7
SL-MRN 518.3 570.3 138.8 491.6 187.4

better than the SL-MRN for eight of the ten series. In general, the results pre-

sented in this section demonstrates that the SL-MRN model offers no significant

improvement over the PA-MRN, but does however possess stronger predictive

abilities than the standard MRN for the M3 Sales prediction task.

6.4.4 Covid-19 forecasting

In this section, the SL-MRN model is applied for the Covid-19 forecasting of

confirmed and death cases in the United States of America, the results of the

best models are presented in Table 6.10.

Table 6.10: Best MAPE score for Covid-19 forecasting

Model Hidden
units

Confirmed
cases

Death cases

MRN 20 4.11 0.3
15 4.43 0.33

SL-MRN 1
20 4.51 0.38
15 3.46 0.49

SL-MRN 2
20 4.02 1.01
15 3.8 15.4

SL-MRN 3
20 4.16 13.02

For the confirmed cases, SL-MRN 1 obtained higher scores than the standard

MRN, thus, underperforming, while SL-MRN 2 obtained lower scores, thus, pro-

viding improved performance over the standard MRN. SL-MRN 3 obtained one

score that was higher than the standard MRN and one that was lower than the
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standard MRN. For the death cases, SL-MRN 1 obtained very similar scores to

the standard MRN while SL-MRN 2 obtained higher scores than the standard

MRN, thus, underperforming. SL-MRN 3 obtained significantly higher scores,

indicating difficulty learning the underlying signal, thus, providing predictions

significantly different from the observed values. In particular, SL-MRN 2 was the

overall best for the confirmed cases, obtaining the lowest MAPE score and the

standard MRN performed best for the death cases with the lowest MAPE score.

In addition, in general, all the SL-MRN variants performed best with 15 units

for the confirmed and death cases.
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Date

Actual
MRN
SL-MRN 2

Figure 6.9: Best models for Covid-19 forecasting (Confirmed cases)

Figure 6.9 visualizes the overall best SL-MRN and MRN models for the con-

firmed cases. The SL-MRN appears to provide predictions closer to the observed

values than the standard MRN. Figure 6.10 visualizes the overall best models for

the death cases, both the standard MRN and SL-MRN appear to obtain very

similar predictions which closely match the observed values. As shown in Table

6.11, for the confirmed cases, the SL-MRN offers significant improvement (up to

16%) and no improvement for the death cases.

The overall best SL-MRN and the best PA-MRN models are presented in

Table 6.12. The PA-MRN is outperformed by the SL-MRN for the confirmed

cases and performed better than the SL-MRN for the death cases. The SL-MRN

offered an improvement of up to 16% while the PA-MRN offered an improvement

of up to 13.33% for Covid-19 forecasting. Overall, the SL-MRN offers some
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Figure 6.10: Best models for Covid-19 forecasting (Death cases)

Table 6.11: Improvement over the standard MRN (IoMRN) (%)

Series Confirmed Death
MRN 4.11 0.3
SL-MRN 3.46 0.33
IoMRN 16% -10%

Table 6.12: Best RMSE score for the MRN model extensions

Series Confirmed Death
PA-MRN 4.01 0.26
SL-MRN 3.46 0.33

improvement for Covid-19 forecasting.

6.5 Discussion

A discussion of the experiments undertaken in this chapter is given to conclusively

assess the SL-MRN and its predictive abilities.
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6.5.1 Self-learning attributes to enhance memory quality

and reduce user design input

Self-learning properties in ANNs have notably been employed to the feed-forward

layers which has proven to be successful and experiments conducted in this chap-

ter build on that. Particularly, given the importance of an appropriate memory

mechanism for effective time-series processing, the self-learning concept is ex-

tended to the memory layer of the MRN, by incorporating RCUs to learn the

appropriate layer-link ratios from the dataset for a given task.

Results presented demonstrate that in general, the MRN extension with self-

learning, the SL-MRN has the ability to learn specific layer-link ratios for a given

task, which enhanced performance, offering an improvement over the standard

MRN. To understand the benefits of the SL-MRN, the best standard MRN models

are trained with 10 additional hidden units to identify whether the improvements

observed with the SL-MRN can be observed by simply increasing the number

of hidden units. The standard MRN with additional units1 is compared to the

overall best SL-MRN models for all the tasks presented in Section 6.4, and the

results are presented in Table 6.13 and Table 6.14.

As seen from Table 6.13, the SL-MRN performed best in all instances for

the NBER turning points prediction task, Oil price prediction task and Covid-19

forecasting. For the M3 Sales prediction task, the SL-MRN performed best for

seven of the ten series as seen in Table 6.14.

The results from Table 6.13 and Table 6.14 demonstrate that merely increasing

the number of hidden units does not guarantee an improvement in performance,

highlighting the need of the SL-MRN models to enhance performance. The SL-

MRN models enable the incorporation of input data and memory to inform the

ratios, which in turn determine memory bank composition. This appears to en-

1Note: the models are trained using the hyper-parameters of the best models. NBER
prediction task; learning rate: 0.09, momentum: 0.9999, epochs: 1000 (see Table 4.2 for the
best memory bank combination employed for each dataset along with best window size). Oil
price prediction; learning rate: 0.01, momentum: 0.999, epochs: 1000 (see Table 4.7 for the best
memory bank combination and window size employed for each horizon). M3 Sales prediction;
learning rate: 0.01, momentum: 0.999, epochs: 1000 (see Appendix B.1 for the best memory bank
combination and window size employed for each series). Covid-19 forecasting; learning rate:
0.01, momentum: 0.999, epochs: 500 (see Appendix B.2 for the best memory bank combination
and window size employed for each series).
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Table 6.13: MRN models trained with additional hidden units

Dataset Oil price NBER Covid-19
Model 1 3 6 12 Growth COD G & COD con. death
SL-
MRN

0.318 0.679 0.9 0.835 0.78 0.792 0.799 3.46 0.33

MRN
(30)

0.319 0.71 1.24 1.13 0.775 0.763 0.78 4.73 4.92

Table 6.14: MRN models trained with additional hidden units

M3 Series
Model 2516 2521 1807 1908 2012 2159 2158 2150 2144 1918
SL-
MRN

175.7 2005.8 287.5 627.3 557.9 518.3 570.3 138.8 491.6 187.4

MRN
(20)

186.2 2015.6 261.5 470.3 468.9 576.8 619.3 145.7 508.7 205.6

courage better information utilisation and processing, and in general led to an

improvement in performance. The results in this chapter conclusively demon-

strate that the SL-MRN models are more suitable for time-series processing.

6.5.2 Link ratios

One of the best models for each task presented in Section 6.4 is re-run with the

associated hyper-parameters and the learnt ratios are presented.

6.5.2.1 Business cycle prediction

For the Business cycle prediction, SL-MRN 1 performed best with the third

dataset which employed the memory bank configuration: [3, 2, 4]. The learnt

ratios of the memory bank configuration for all the models in the ensemble are

presented in Table 6.15.

The standard MRN with the memory bank configuration: [3, 2, 4] employs

the following ratios for the input: [0.33, 0.67, 1], hidden: [0.5, 1] and output:

[0.25, 0.5, 0.75, 1]. The SL-MRN models in the ensemble as seen from Table 6.15

produced different ratios from the standard MRN. The ratio values produced are
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Table 6.15: Learnt ratios for the best SL-MRN model for the NBER turning
points prediction task

Model En-
semble

Input Hidden Output

Model 1 0.712,
0.654,
0.52

0.555,
0.645

0.589,
0.61,
0.651,
0.582

Model 2 0.576,
0.842,
0.548

0.537,
0.677

0.736,
0.335,
0.593,
0.72

Model 3 0.593,
0.612,
0.851

0.693,
0.597

0.641,
0.543,
0.59,
0.191

Model 4 0.664,
0.617,
0.463

0.64,
0.608

0.676,
0.383,
0.466,
0.693

between 0.45 and 0.85, 0.5 and 0.7, 0.1 and 0.75 for the input, hidden and output

memory banks respectively. The models appear to utilise more stable and flexible

memories for the input and hidden memories whilst employing a range of rigid

to flexible memories for the output memories.

6.5.2.2 Oil price prediction

For the Oil price prediction task, the SL-MRN models underperformed for ‘t

+ 6’ compared to the standard MRN. From the SL-MRN models, SL-MRN 2

performed best employing the memory bank configuration: [3, 0, 4]. The learnt

ratios for the memory bank configuration are presented in Table 6.16.

The standard MRN with the memory bank configuration: [3, 0, 4] employs the

following ratios for the input: [0.33, 0.67, 1], hidden: - and output: [0.25, 0.5, 0.75, 1].

Three of the four SL-MRN models (Model 2, 3 & 4) in the ensemble as seen from

Table 6.16 produced learnt ratios between 0.6 and 1, these models appears to

utilise more flexible memories. Model 1 produced learnt ratios between 0.4 and
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Table 6.16: Learnt ratios for the best SL-MRN model for the Oil price prediction
task (Horizon of 6)

Model En-
semble

Input Hidden Output

Model 1 1,
0.511,
0.43

- 0.683,
0.915,
0.437,
0.886

Model 2 0.626,
0.658,
0.687

- 0.637,
0.648,
0.624,
0.636

Model 3 0.635,
0.765,
0.751

- 0.761,
0.701,
0.714,
1

Model 4 0.772,
0.835,
0.737

- 0.741,
0.811,
0.728,
0.729

1, the model appears to utilise a combination of rigid to flexible memories.

6.5.2.3 M3 Competition prediction

For the M3 Sales prediction, the best improvement of 12.4% was obtained for

series N2158. SL-MRN 3 performed best employing the memory bank configura-

tion: [0, 0, 2]. The learnt ratios for the memory bank configuration are presented

in Table 6.17.

Table 6.17: Learnt ratios for the best SL-MRN model for the M3 Sales prediction
task

Model En-
semble

Input Hidden Output

Model 1 - - 1, 0
Model 2 - - 1, 0
Model 3 - - 1, 0
Model 4 - - 0, 1
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The standard MRN with the memory bank configuration: [0, 0, 2] employs

the following ratios for the input: -, hidden: - and output: [0.5, 1]. The SL-MRN

models in the ensemble as seen from Table 6.17 appear to utilise very flexible

memories for the output memories.

6.5.2.4 Covid-19 forecasting

For Covid-19 forecasting, SL-MRN 2 performed best with a 16% improvement

employing the memory bank configuration: [2, 3, 2]. The learnt ratios for the

memory bank configuration are presented in Table 6.18.

Table 6.18: Learnt ratios for the best SL-MRN model for the Covid-19 forecasting

Model En-
semble

Input Hidden Output

Model 1 6.34e-06,
1.68e-06

5.4e-06,
6.3e-06,
2.94e-06

3e-06,
7.44e-06

Model 2 0.326,
0.219

0.217,
0.216,
0.218

0.263,
0.249

Model 3 0.197,
0.223,

0.281,
0.192,
0.208

0.279,
0.202

Model 3 0.229,
0.134

0.141,
0.183,
0.219

0.145,
0.136

The standard MRN with the memory bank configuration: [2, 3, 2] employs the

following ratios for the input: [0.5, 1], hidden: [0.33, 0.67, 1] and output: [0.5, 1].

The SL-MRN models in the ensemble as seen from Table 6.18 do not learn any

ratios for all the memory bank types higher than 0.35 for this task, the model

appears to prefer more rigid memories which hold on to historical information

longer.

The learnt ratios of the best models are presented in Table 6.15 - Table 6.18,

providing insight to memory bank composition preferred by the network (as in-

formed by the learnt ratios) for the tasks. In one of the tasks, M3 Sales prediction,
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the model produces ratios close to that of the standard MRN. However, for the

remaining tasks, the models produce very different ratios compared to that of the

standard MRN. Interestingly, in some cases, the models appear to learn similar

ratios in a given memory bank type, which begs the question Do the models

require multiple similar/replicated memories within a given mem-

ory bank type? And if they do not, how can the similar/replicated

memories be removed from the network? . This will be investigated in the

following chapter.

6.5.3 The MRN extensions

In this chapter, the comparative performance of the overall best SL-MRN (the

MRN extension presented in this chapter) and the best PA-MRN (the MRN ex-

tension presented in Chapter 5) is presented in Table 6.19. The SL-MRN models

offer an improvement to the standard MRN across all the four different tasks,

whilst the PA-MRN offered an improvement to the standard MRN for three of

the four tasks.

Table 6.19: Improvement with MRN extensions

Task NBER turn-
ing points

Oil
price

M3
Sales

Covid-19

PA-MRN -0.75% 2.02% 21.5% 13.33
SL-MRN 0.2% 6% 12.4% 16%

In particular, for the NBER turning points prediction, the PA-MRN offered

no improvement over the standard MRN for any of the datasets. For the Oil

price prediction, the PA-MRN offered an improvement over the standard MRN

for one of the four horizons. It also offers an improvement over the standard

MRN for most of the series for the M3 Sales prediction and, for both confirmed

and death cases, for Covid-19 forecasting. Whereas, the SL-MRN offered an

improvement over the standard MRN on one of the datasets and maintained

performance for another dataset for the NBER turning points prediction. For

the Oil price prediction, the SL-MRN offered an improvement over the standard

MRN for three of the four horizons. The SL-MRN also offered an improvement
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over the standard MRN for most of the series for the M3 Sales prediction and,

for the confirmed cases, for Covid-19 forecasting. The SL-MRN appears to offer

more consistent improvements across all four tasks than the PA-MRN, and thus,

this research builds further on the SL-MRN extensions.

6.5.4 Search space for memory bank configuration

Similar to the standard MRN and the PA-MRN, the search space for the memory

bank configuration is quite large, as a non-exhuastive number of combinations can

be explored for a given task. As explained in Section 3.1.1.2, for any given set of

hyper-parameters, the total number of models required for training is dependent

on the memory order. Increasing the memory order exponentially increases the

total number of models to be trained (as shown in Section 3.1.1.2). Thus, the

search space for the memory bank configuration was constrained to 4, (i.e a mem-

ory order of 4), for the experiments conducted up to and including this chapter.

This restriction poses some limitations when employing the MRN variants, as

the models can not be thoroughly explored and as such techniques to effectively

and efficiently derive appropriate memory bank configurations for the MRN are

required.

6.6 Conclusion

In this chapter, the MRN is endowed with self-learning and applied to four time-

series forecasting tasks, to assess whether they mitigate a key architectural limita-

tion with the standard MRN. More specifically, the model extension, the SL-MRN

sought to identify whether the hyper-parameter tuning of ratios can be eliminated,

through the self-learning of ratios which inform memory composition.

The SL-MRN, in general, enhanced the performance when compared to the

standard MRN as seen from the results presented. In particular, the SL-MRN

models offered an improvement over the standard MRN of up to 16% in 13 of

the 19 instances for the experiments undertaken. The experiments indicated that

the MRN can be endowed to inform and enhance memory composition (and thus

quality), through incorporating RCUs to learn the layer-link ratios and as such
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reducing user design input.

However, similar to the standard MRN and the PA-MRN presented in Chap-

ter 5, the memory order for the memory bank types is constrained, due to the

large space, to identify the memory bank configuration for a given task. More

specifically, given the consistent improvement obtained with the SL-MRN, in the

following chapter, a framework (incorporating the SL-MRN) will be proposed.

This will seek to address the constraint on the memory order, by proposing

a technique to efficiently derive ‘good’ models, without the need to train nu-

merous memory combinations. The framework will also investigate the use of

similar/replicated memory banks.

6.7 Major contributions

This is the first work presenting self-learning within the memory mechanisms

of an RNN. The self-learning algorithm specifically builds on the architectural

structure of the standard MRN by incorporating RCUs in the network (either by

augmenting the hidden layer or through a new ratio layer). The RCUs learn the

layer-link ratios which inform the self-link ratios and both are used to copy cur-

rent information and store historical information, which determine the memory

composition. In the standard MRN, the link ratios are empirically established

by the user. However, by employing the RCUs within the model, the hyper-

parameter tuning process is reduced, due to the automatic learning of the ratios

(encouraging the model to learn better/preferred ratios).
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Pruning the MRN

The MRN was assessed and compared to alternative state-of-the-art algorithms

in preceding chapters, where it offered superior predictive abilities in many cases.

Thereafter, two MRN extensions were presented and applied in Chapter 5 and

Chapter 6, which offered improvements over the standard MRN. More specifi-

cally, the SL-MRN presented in Chapter 6 offered more consistent improvement

over the standard MRN and the PA-MRN (presented in Chapter 5). However,

the MRN variants require a large search space to identify good memory bank

configurations. As a result, in this work, the search space for the memory bank

configuration was constrained and the memory bank order (that is the maximum

number of memory banks allowed for each memory bank type) was restricted

to 4, to reduce the requirement to training multiple memory combinations. In

addition, employing the SL-MRN, which demonstrated the ability to learn the ra-

tio hyper-parameters and inform memory composition, highlighted that for some

tasks, similar ratios in a given memory bank type are learnt (by the network).

Therefore, in this chapter, a framework is proposed to reduce the search space for

the memory bank configuration, thus, eliminating the constraint on the memory

order. In addition, the framework will seek to identify whether the model requires

multiple replicated or similar memory banks or whether these are redundant and

can be removed. The chapter begins with a brief overview of current pruning tech-

niques employed within ANNs, including RNNs, and then the proposed pruning

approach is presented.
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7.1 Background

As with all RNNs, the size and computational complexity of the MRN is funda-

mentally based on the problem and how it is represented as a learning problem

(e.g. input and output representations, data quality and size). Assuming ade-

quate data veracity and efficient representation of the problem, the complexity of

the MRN is particularly dependent on the size of its internal sluggish state-based

memory mechanism. Increasing the number of memory banks directly increases

the network size (the number of weights and biases), thus, increasing the com-

putational and storage requirements. This increase also leads to an increased

number of models required for training, to obtain the best model for a given set

of hyper-parameters. For example, a memory order: of 4, 5, 6, 7 or 8 memory

banks per memory bank type results in an exhaustive search space of 43 = 64,

53 = 125, 63 = 216, 73 = 343 or 83 = 512 models respectively. As a result,

subsequently increasing the time required to obtain an ‘optimal’ model.

Due to the number of models and possible architectural configurations re-

quired, and the search space to be explored, the experiments conducted thus far

from Chapter 4 - Chapter 6 have been limited to a memory order of four (4) for

each memory bank type. However, as the data complexity and feature space in-

creases, more combinations of memory banks might be required, to fully capture

the signal in the data. Thus, such a restriction on the memory order can limit the

use and deployability of the MRN in other domains and for more complex data

(for example, patient data). This motivates the following question, ’Can a good

model for a given problem be obtained in a more computationally efficient way?’.

To answer this question, this chapter seeks to explore and establish an effective

framework to alleviate the difficulties associated with identifying good models.

Supposing the memory order did not have the above restriction, a ‘good’

number of memory banks required for the model to learn the problem can be

identified through an exploratory training process. This is achieved by deliber-

ately starting with an over parameterised model and then pruning based on the

similarities of the learnt ratios. This drastically reduces the number of models

required for training, as only one model with a ‘large’ enough search space is

trained and then pruned. In addition, with a pruning algorithm, it would be
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possible to remove additional parameters where necessary, informed by the ra-

tio similarity. By employing this pruning algorithm, the restriction whereby the

memory order is constrained to 4 can be relaxed, and a wider search space can

be explored for any task and applications in different domains, thus ensuring the

model is generalizable.

In Chapter 5 and 6, two extensions were proposed to mitigate key limitations

inherent in the standard MRN, offering varying degrees of improvement to the

standard MRN. The SL-MRN presented in Chapter 6 generally demonstrated

superiority over the standard MRN and the extension presented in Chapter 5.

In particular, the SL-MRN notably showed that there are more ‘optimal’ ratios

that can be learnt by the model to inform the memory composition than user

specified ratios, which typically led to an enhanced performance. However, and

importantly, as with the standard MRN, both extensions suffer from the need to

train multiple models, to explore the search space and as such limiting their use

as the memory order increases.

Therefore, in this chapter, a framework which combines the SL-MRN and

a pruning technique will be investigated and explored, to identify whether it

mitigates the computational limitations (in terms of search space), associated

with model training and utilisation, such that an effective and generalizable model

is obtained efficiently.

7.2 Pruning in Artificial Neural Systems

Pruning in artificial neural networks dates back to the late 1980s, initially inspired

by synaptic pruning in biological systems [21]. The idea is to reduce the size of the

network by removing unnecessary parameters, thus reducing the computational

cost and increasing the scope for deployment. Barth et al. [140] carried out

experiments to understand the impact of removing weights (akin to synapses in

biological neurons) on the structure and behaviour of ANNs. She states “networks

that are constructed through overabundance and then pruning are much more

robust and efficient than networks that are constructed through other means”

[172].

One of the earliest works on pruning in neural networks is by Yann Lecun et
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al. [114] with magnitude based pruning. They presented a technique using second

order derivatives, Optimal Brain Damage (OBD), to remove unimportant weights

(those whose deletion caused the least increase in the error). Hassibi and Stork

[80] in 1992, developed the Optimal Brain Surgeon (OBS), which computes the

Hessian matrix (relaxing the diagonality assumption in OBD) to remove weights.

They claimed the OBS performed better than the OBD and found that the test

error increased when pruning with OBD and then retraining [80].

Augasta and Kathirvalavakuma [7] provided a survey of pruning algorithms

proposed by researchers for feedforward neural networks, which they grouped

into the following: Penalty term methods, Cross validation methods, Magni-

tude based methods, Mutual Information based methods, Evolutionary prun-

ing methods, Sensitivity Analysis based methods and Significance based pruning

methods. A number of these methods have been successfully deployed but not

without limitations, the most notable issue being low computational efficacy (for

example, disproportionate increase in computation time) [7]. Other limitations

reported inter-alia included: i) the removal of ‘small’ yet important weights,

which prevents saturation with the magnitude based methods of pruning, ii) the

requirement for user specification for threshold and tuning parameters and iii)

the inability of sensitivity analysis-based methods to detect all redundancy, as

mutual independence assumed between inputs and hidden nodes. Augasta and

Kathirvalavakuma [7] interestingly pointed out that real-world applications have

a preference for simpler and more efficient methods. Thus, pointing to and war-

ranting the need for simple yet computationally effective pruning techniques, to

deal with high dimensionality and enhance usability.

There has been much work done exploring pruning techniques with feedfor-

ward networks (simple and deep), however, this is not the case for RNNs. Tech-

niques proposed for feedforward networks have not successfully transferred to

RNNs. This is particularly due to the impact of removing a memory-based neu-

ron or weight causing multiple undesirable side effects, such as, feature dimension

mismatch and as such invaliding the recurrent units [218]. Therefore, more care

is needed for the pruning of RNNs.

Wen et al. [218] proposed a structured sparsity learning method for RNNs,

and pruning occurred by penalising weight matrices through L0 regularization.

146



7. Pruning the MRN

Results demonstrated that there was nearly 20× practical speed up achieved

whilst maintaining performance. Others have implemented pruning techniques

with RNNs such as; i) magnitude based algorithm: assessing the relevance of

recurrent state neurons based on the magnitude of the incoming weights [66];

using an unsupervised noise-driven anti-Hebbian pruning rule [134], ii) struc-

tured pruning algorithm: removing whole columns of weight matrix [214], and

iii) sensitivity based algorithm: measuring weight importance using a posterior

probability [197]; using Jacobian Spectral Evaluation [234].

7.2.1 Knowledge gap

Most of the work on pruning has been largely focused on pruning feedforward

networks, particularly deep feedforward networks, and there has been much suc-

cess reported for these networks. However, there has been limited work in this

area for RNNs, particularly, due to the increased model complexity and intercon-

nectivity. Thus, identifying suitable and computationally effective approaches is

not a trivial task. More specifically, most of the work for pruning RNNs, has been

carried out for LSTMs [25,78,131,199,240] and GRUs [138,235], such that other

models have been largely neglected and this is arguably due to their network

size. As a result, there is very limited to no work on pruning for comparatively

simpler and smaller networks, such as SRNs, Jordan networks, ESNs or Hopfield

networks. It should however be noted that although these networks are compar-

atively smaller, networks such as ESNs and MRNs can rapidly grow in size, due

to their memory mechanism [208]. Furthermore, as with LSTMs and GRU-based

models, the unnecessary connections in these networks can lead to over-fitting

and limit their performance [208].

7.3 Methodology

In this section, a simple pruning technique based on the ratio similarity is in-

troduced. The MRN is trained with a ‘large’ enough number of memory banks,

to learn the problem and then pruned using a novel one-shot pruning algorithm.

The main determinant of the network size for the MRN variants is the memory
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bank mechanism. The flexibility of the MRN variants to employ varying combi-

nations of memory banks, implies the network is able to grow as needed. More

specifically, the layer- and self-link ratios for each memory bank type determine

the composition of memory banks (i.e. how information (historical and new) is

sorted and retained). In Chapter 6, the SL-MRN demonstrated that these ratios

can be learnt during training, to determine the memory composition. Therefore,

the pruning algorithm is applied to the SL-MRN models, and will be based on

the similarity of these learnt ratios.

7.3.1 Pruning in the MRN based on ratio similarity

It is assumed the network is supplied with a specified number of memory banks

for each memory type, which informs the search space. The question that arises

is, if a particular memory bank type has more memory banks than required, can

the network encourage the additional (redundant) ratios of that memory bank type

to converge to values close to each other, so they can be pruned? For the purpose

of pruning in this chapter, redundancy is defined as the similarity between ratios

in a given memory bank type (input, hidden, output). Figure 7.1 presents a model

before and after pruning. Initially, the model has a memory bank configuration

of [4, 4, 4], and it is trained and after pruning the resultant memory configuration

is [2, 2, 3].

Memory banks
Hidden memory banksInput memory banks Output memory banks

INPUT LAYER

HIDDEN LAYER

OUTPUT LAYER

RCUs

Memory banks
Hidden memory banksInput memory banks Output memory banks

INPUT LAYER

HIDDEN LAYER

OUTPUT LAYER

RCUs

BEFORE PRUNING AFTER PRUNING

Figure 7.1: The SL-MRN model before and after pruning
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The pruning approach is as follows. SL-MRN models are trained as described

in Section 6.3. Afterwards, the pruning phase begins (see Algorithm 2). For each

memory bank type, a Similarity Index (SI) for the learnt layer-link ratios in a

given memory bank type is calculated as follows:

SIj =

∑n
i=1 e

−(|rj−ri|)

n− 1
, for i = 1, ..., n, j 6= i (7.1)

where n is the total number of layer-link ratios in that memory bank type.

The SI for a given ratio indicates how similar that ratio is to all the other

ratios in the same memory bank type. The redundant ratios (if any, along with

their associated self-link ratios, memory banks and weights) are pruned, and are

excluded for information processing during testing. The SI for the remaining

ratios is recalculated, and the pruning step is repeated if similar ratios exist.

This process is repeated until the ratios in a given memory bank type are distinct

enough for a given task. After the pruning phase, a new set of ratios (and

associated memory banks) are used for the testing phase.

In theory, this pruning technique can enable the network to prune all the

ratios based on similarity and thus, a reasonable stopping criterion is required.

A key strength of the MRN variants is their ability to employ different types

and combinations of memory. In particular, results from Chapter 4 - Chapter

6 demonstrated that different tasks (even within the same domain) may require

different memory banks (flexible, rigid). To determine whether the ratios should

be pruned, the SI is compared to some probability threshold. The SI produces

values in [0.35, 1], where 0.35 indicates very distinct and 1 indicates very similar.

The mid-point of the SI values is roughly 0.65, thus, probabilty thresholds are

chosen between 0.65 and 1, as the pruning algorithm is more concerned with

similar ratios rather than distinct ones (which fall betewen 0 and 0.65) and thus,

preventing ‘over-pruning’. It should be noted that when the network prunes for a

threshold probability, a new set of pruned ratios is obtained. To identify the best

set of pruned ratios produced, each set of ratios obtained is used in the testing

phase and the model with the best performance is selected.
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Algorithm 2 Pruning Algorithm

1: procedure Pruning(ratios ~R, threshold ~T )

2: for <each probability threshold, t> do

3: for <each memory bank type> do

4: <calculate the similarity index, SI>

5: while SI > threshold do

6: <remove ratios above t (and associated parameters) >

7: <recalculate the SI of remaining ratios>

8: end while

9: end for

10: end for

11: return ratios . pruned ratios

12: end procedure

It should be noted that although SL-MRN 1 presented in Chapter 6 obtained

the best results in some instances, it is excluded from experimentation in this

chapter. This is because supplying the network with a sufficiently large number

of memory banks for SL-MRN 1, will drastically increase the number of units in

the hidden layer, as the model augments its hidden layer with RCUs to represent

each ratio. For example, employing a memory bank configuration of [4, 4, 4] or

[8, 8, 8] leads to an increase of 12 or 24 units in the hidden layer. In particular,

for the pruning technique proposed, the ratios (and their associated parameters)

are pruned not the RCUs (which are augmented in the hidden layer). As a result,

the final resulting model for SL-MRN 1 may be significantly larger and as such

mitigates the possible benefits. The remaining two models, (SL-MRN 2 & SL-

MRN 3), are employed as they have separate ratio layers and these units are not

fed to the memory banks thus their structure is kept to a minimum.

7.4 Results & Analysis

The SL-MRN models with the proposed one-shot pruning algorithm are applied

and evaluated for the following four time-series tasks: Business cycle prediction,

Oil price prediction, M3 Sales prediction and Covid-19 forecasting. The models
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are trained with 4 memory banks for each memory bank type([4, 4, 4]) and

then pruned where possible. For each task, the resultant models are presented,

assessed, compared to the models without pruning and then evaluated.

7.4.1 Business cycle prediction

In this section, SL-MRN 2 and SL-MRN 3 with one-shot pruning are applied for

the NBER turning points prediction task1 and the results are presented in Table

7.1. SL-MRN 2 with pruning performs best with 20 units for two of the three

series, while SL-MRN 3 performs best with 15 units for two of the three series.

SL-MRN 3 with pruning performed the best overall, for all the series (highlighted

in blue).

Table 7.1: MCC Score for best SL-MRN models with pruning for NBER predic-
tion task

Dataset
Model Units Growth COD Growth &

COD

SL-MRN 2 with pruning
15 0.78 0.735 0.76
20 0.77 0.739 0.77

SL-MRN 3 with pruning
15 0.79 0.773 0.75
20 0.75 0.772 0.772

The best SL-MRN models with pruning are then compared to the best SL-

MRN models without pruning and the results are presented in Table 7.2, as shown

the SL-MRN models with pruning performed better than the SL-models without

pruning (highlighted in blue).

To understand the impact of the pruning algorithm, the MCC scores before

and after pruning are compared and presented in Table 7.3. As seen from the

table, employing the pruning technique with the models led to an improvement

in performance for all but one instance, where the performance was maintained.

As earlier stated, all the SL-MRN models are trained with 4 memory banks

for each type ([4, 4, 4) and then pruned. The memory configuration after pruning

1The hyper-parameters, learning rate, momentum (lowered for better stability), initiali-
sation values, hidden units associated with the SL-MRN models presented in Chapter 6 are
employed.
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Table 7.2: MCC Score for best SL-MRN models (with & without pruning) for
NBER prediction task

Dataset
Model Pruning Growth COD Growth & COD

SL-MRN 2
without 0.63 0.701 0.616
with 0.78 0.739 0.77

SL-MRN 3
without 0.663 0.641 0.618
with 0.79 0.773 0.772

Table 7.3: MCC Score for best SL-MRN models with pruning for NBER predic-
tion task

Dataset
Model Pruning Growth COD Growth &

COD

SL-MRN 2 with pruning
before 0.734 0.713 0.732
after 0.78 ↑ 0.739 ↑ 0.768 ↑

SL-MRN 3 with pruning
before 0.79 0.742 0.754
after 0.79 - 0.773 ↑ 0.772 ↑

the models in the ensemble for the best SL-MRN model with pruning is presented

in Table 7.4. It should be noted that each model results in different combinations

dependent on the learnt ratios for an individual model. For the growth series, the

models in the ensemble employed all the memory banks provided and no pruning

occurred. For the COD series and the Growth & COD series, one memory bank

was pruned from most memory bank types.

Table 7.4: Memory bank configuration for best SL-MRN models after pruning
for NBER prediction task

Growth COD Growth & COD
[4, 4, 4], [4, 4, 4],
[4, 4, 4], [4, 4, 4]

[3, 3, 3], [4, 3, 3],
[4, 3, 3], [4, 4, 4]

[3, 3, 3], [3, 4, 3],
[3, 4, 4], [3, 3, 4]

Employing the pruning algorithm reduced the number of models required for

training, as only one model with a maximum number of memory banks for each

memory bank type is trained, and then pruned. This is a key advantage offered as

the SL-MRN, without pruning, is run with multiple memory bank combinations
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dependent on the memory order. More specifically, as stated for a memory order

of 4, 63 memory combinations are required for training to obtain the best model.

The SL-MRN models employed with the pruning algorithm not only reduced the

number of models required for training but also enhanced performance of the

SL-MRN models for the NBER turning points prediction task.

7.4.2 Oil price prediction

The SL-MRN models with the pruning technique are applied for the Oil price

prediction at four different horizons (1, 3, 6, 12)1. The models are supplied with

4 memory banks for each type [4, 4, 4] and pruned, and the results are presented

in Table 7.5. SL-MRN 3 with pruning performed best for an horizon of 12 months

and for the remaining horizons, SL-MRN 2 with pruning performed best.

Table 7.5: RMSE Score for the best SL-MRN models with pruning for Oil price
prediction

Model Units Horizon
of 1

Horizon
of 3

Horizon
of 6

Horizon
of 12

SL-MRN 2 with pruning
15 0.345 0.697 1.57 1.26
20 0.334 0.699 1.04 1.27

SL-MRN 3 with pruning
15 0.336 0.717 1.39 1.37
20 0.4 0.729 1.42 1.07

Table 7.6: RMSE Score for the best SL-MRN models (with & without pruning)
for Oil price prediction

Model pruning Horizon
of 1

Horizon
of 3

Horizon
of 6

Horizon
of 12

SL-MRN 2
without 0.321 0.684 0.9 0.9
with 0.334 0.697 1.04 1.26

SL-MRN 3
without 0.32 0.679 0.935 0.95
with 0.336 0.717 1.39 1.07

The performance of the best SL-MRN models with pruning are then compared

to the best SL-MRN models without pruning, and presented in Table 7.6. The

1The models are configured with the hyper-parameters associated with the SL-MRN models
presented in Chapter 6 (learning rate, momentum, initialisation values, hidden units).
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SL-MRN models without pruning performed better than those with pruning. The

overall best SL-MRN models (with & without pruning) are visualised in Figure

7.2 for an horizon of 1 and 3 respectively. As shown from the figure, for the

horizon of 1 and 3, the SL-MRN models with pruning and the SL-MRN without

pruning obtain very similar predictions.
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Figure 7.2: Overall best SL-MRN models for Oil price prediction

Figure 7.3 presents the overall best SL-models (with & without pruning) for

an horizon of 6 and 12. For an horizon of 6 and 12, the models appears to map

the signal albeit on a smaller scale following the trend. The SL-MRN without

pruning appears to provide better predictions than the SL-MRN with pruning.
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Figure 7.3: Overall best SL-MRN models for Oil price prediction

To understand the benefits of employing the pruning technique, the RMSE

Score for the overall best SL-MRN models before and after pruning is presented
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in Table 7.7, and as shown pruning the models enhanced the performance for all

horizons. The memory bank configuration of the models in the ensemble after

pruning is presented in Table 7.8.

Table 7.7: RMSE Score before and after pruning for the overall best SL-MRN
models with pruning for Oil price prediction

pruning Horizon of 1 Horizon of 3 Horizon of 6 Horizon of
12

before 0.35 0.77 1.34 1.08
after 0.33 ↓ 0.697 ↓ 1.04 ↓ 1.07 ↓

For an horizon of 1, 3 and 6 months, in general two memory banks are pruned

and for an horizon of 12 months, one or no memory bank is pruned. The SL-MRN

models without pruning employed the memory bank combinations, for an horizon

of 1: [0, 4, 4], an horizon of 3: [3, 3, 2], an horizon of 6: [3, 0, 4] and an horizon

of 12: [0, 2, 2]. For an horizon of 3, the SL-MRN with pruning utilised a smaller

memory configuration than the SL-MRN without pruning. For the remaining

horizon, the SL-MRN without pruning has one memory bank type, where no

memory banks are employed. However, the pruning technique prunes based on

ratio similarity, and as such a minimum of 1 memory bank in each memory bank

type is employed.

Table 7.8: Memory bank configuration for best SL-MRN models after pruning
for Oil price prediction

Horizon of 1 Horizon of 3 Horizon of 6 Horizon of 12
[2, 2, 4], [2, 4, 2],
[2, 2, 4], [2, 2, 2]

[2, 2, 2], [2, 2, 2],
[2, 2, 2], [2, 2, 2]

[2, 3, 2], [2, 2, 2],
[2, 2, 2], [2, 2, 4]

[4, 3, 4], [4, 3, 4],
[4, 4, 4], [3, 4, 4]

The experiments in this section highlighted the limitations of the pruning tech-

nique, such that at least one memory bank is employed. For the Oil price predic-

tion, there was a slight drop in performance as shown in Table 7.9. Nonetheless,

employing the pruning algorithm with the SL-MRN models provided an efficient

means to obtain a ‘good’ set of ratios, particularly, as only one model (with 4

memory banks for each memory bank type) was trained and pruned. The SL-

MRN with pruning maintained performance with a maximum of 0.19% drop in
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Table 7.9: Overall best SL-MRN models (for each series) for Oil price prediction

Series SL-MRN with
pruning

SL-MRN % difference

Horizon of 1 0.334 0.32 -0.04
Horizon of 3 0.684 0.679 -0.01
Horizon of 6 295.4 287.5 -0.15
Horizon of 12 623.5 627.3 -0.19

the score, for the trainig of one ‘large enough’ pruned model rather than training

63 models (as with the SL-MRN models without pruning).

7.4.3 M3 competition prediction

The SL-MRN models with the pruning technique are applied to the 10 random

series (presented in Chapter 3) of the M3 data for sales prediction1. The SL-

MRN models are endowed with 4 memory banks for each memory bank type,

then pruned, and the results are presented in Table 7.10, where SL-MRN 3 model

with pruning performed best for six series and SL-MRN 2 with pruning performed

best for the remaining four series. Note: the best model for each technique is

highlighted in black and the overall best models in blue.

The performance of the SL-MRN models without pruning and the SL-MRN

with pruning are then compared and presented in Table 7.11. The SL-MRN

models without pruning performed best for six of the series, while the SL-MRN

models with pruning performed best for the remaining four series. Note: the best

model for each technique is highlighted in black and the overall best models in

blue. Table 7.12 presents the scores of these best models before and after pruning

and the resultant memory banks.

As seen from the table, no ratios were pruned for two series, N2150 and N1918,

which indicates that the model learnt ratios that were distinct. Interestingly, for

series N2521, pruning the network led to a slight decrease in performance. For

the remaining series, the models pruned the ratios and memory banks, indicating

1The models employed the hyper-parameters associated with the standard SL-MRN models
(learning rate, momentum, initialisation values, hidden units). The models are run with window
sizes of 10 and 40, similar to the other MRN variants.
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Table 7.10: Best RMSE scores of the SL-MRN models with pruning for M3 sales
prediction

Series
Model Units

N2516 N2521 N1807 N1908 N2012

SL-MRN 2 with pruning
5 189.1 2016.1 429.4 733.5 538.4
10 198.9 2014.5 464.2 693.4 547.8

SL-MRN 3 with pruning
5 185.4 2016.6 295.4 623.5 557.6
10 177.9 2014.7 347.5 643.5 567.2

Series
Model Units

N2159 N2158 N2150 N2144 N1918

SL-MRN 2 with pruning
5 573.9 543.9 161.2 554.4 208.4
10 520.9 555 160.8 521.2 212.5

SL-MRN 3 with pruning
5 558.3 620.3 143.88 492.3 188.6
10 582.4 677.6 143.9 511.8 207.7

Table 7.11: Best RMSE scores for the best SL-MRN models (with & without
pruning) for M3 sales prediction

Series
Model pruning N2516 N2521 N1807 N1908 N2012

SL-MRN 2
without 181.2 2005.8 319.2 632.6 617.1
with 189.1 2014.5 429.4 693.4 538.4

SL-MRN 3
without 175.7 2010.5 287.5 627.3 557.9
with 177.9 2014.7 295.4 623.5 557.6

Series
Model pruning N2159 N2158 N2150 N2144 N1918

SL-MRN 2
without 523.4 571.5 140.8 491.6 187.9
with 520.9 543.9 160.8 521.2 208.4

SL-MRN 3
without 526.6 570.3 138.9 506.8 187.7
with 558.3 620.3 143.88 492.3 188.6

some ratios were similar and removing them appears to enhance performance.

The overall best SL-MRN models with pruning for two series, 1807 and 1908,

157



7. Pruning the MRN

Table 7.12: RMSE scores before and after pruning for the M3 sales prediction

Series before pruning after pruning Memory bank after pruning
2516 182.8 177.9 ↓ [3, 4, 4],[4, 4, 4], [4, 4, 4], [4, 4, 4]
2521 2013.3 2014.5 ↑ [1, 1, 1],[1, 1, 1], [1, 1, 1], [1, 1, 1]
1807 310.6 295.4 ↓ [3, 3, 4], [3, 4, 4], [4, 3, 4], [4, 3, 3]
1908 642.7 623.5 ↓ [4, 3, 3],[4, 3, 4], [4, 3, 4], [3, 4, 4]
2012 655.5 538.4 ↓ [1, 2, 4],[2, 1, 2], [1, 1, 1], [4, 2, 2]
2159 708.5 520.9 ↓ [1, 2, 2],[2, 2, 2], [2, 2, 1], [1, 1, 2]
2158 691.6 543.9 ↓ [1, 1, 1],[1, 1, 1],[1, 1, 1],[1, 1, 2]
2150 143.88 143.88 - [4, 4, 4],[4, 4, 4], [4, 4, 4], [4, 4, 4]
2144 526.8 492.3 ↓ [3, 4, 4],[4, 3, 4], [4, 4, 4], [3, 4, 3]
1918 188.6 188.6 - [4, 4, 4],[4, 4, 4], [4, 4, 4], [4, 4, 4]

where the SL-MRN models without pruning had difficulty predicting (see Sec-

tion 6.4.3) are visualised in Figure 7.4 and Figure 7.5. Figure 7.4 presents series

1807, both models appear to provide similar predictions, following the trend and

achieving similar performance. Series 1908 is presented in Figure 7.5, where the

SL-MRN models with pruning outperformed the SL-MRN models without prun-

ing. Both models have similar predictions, however, the SL-MRN with pruning

appears to provide predictions on a slightly higher scale than the SL-MRN models

without pruning.

Time (t)

Pr
ic

e 
*

Actual
SL-MRN c pruning
SL-MRN 

Figure 7.4: Overall best SL-MRN models for M3 Sales prediction (N1807)

158



7. Pruning the MRN
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SL-MRN 

Time (t)

Pr
ic

e 
*

Figure 7.5: Overall best SL-MRN models for M3 Sales prediction (N1908)

The overall best models for the SL-MRN models are presented in Table 7.13.

The SL-MRN model without pruning performed better than the SL-MRN model

with pruning for six of the ten series. More importantly, employing the pruning

technique enabled the training of only one model rather than 63 models (as with

the SL-MRN). In addition, employing the pruning technique ensures performance

is maintained with a maximum of 0.04% drop in the score and in some cases

performance is improved up to 0.05%, whilst removing the redundant parameters.

For the M3 Sales prediction task, the pruning technique enables the effective

derivation of ‘good’ models.

7.4.4 Covid-19 forecasting

In this section, the SL-MRN models with one-shot pruning are applied for Covid-

19 forecasting of confirmed and death cases in the United States1 The SL-MRN

models are trained with 4 memory banks for each memory bank type and pruned,

and the results are presented in Table 7.14. SL-MRN 3 with pruning performed

best for both the confirmed and death cases, while SL-MRN 2 with pruning

appears to have difficulty mapping the signal and therefore obtains significantly

1The hyper-parameters (learning rate, momentum, initialisation values, hidden units) as-
sociated with the SL-MRN models are employed and the models are run with window size of
25 and 35 similar to the standard MRN and SL-MRN.
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Table 7.13: Overall best SL-MRN models (for each series) for M3 sales prediction

Series SL-MRN with
pruning

SL-MRN % difference

2516 177.9 175.7 -0.013
2521 2014.5 2005.8 -0.004
1807 295.4 287.5 -0.03
1908 623.5 627.3 0.01
2012 538.4 557.9 0.035
2159 520.9 523.4 0.005
2158 543.9 570.3 0.05
2150 143.88 138.9 -0.04
2144 492.3 491.6 -0.001
1918 188.6 187.7 -0.005

higher MAPE scores. The best score for each model is highlighted.

Table 7.14: MAPE Score for the best SL-MRN models with pruning for Covid-19
forecasting

Model Units Confirmed Death

SL-MRN 2 with pruning
15 54.2 5.68
20 28.2 5.59

SL-MRN 3 with pruning
15 17.93 43.5
20 17.08 8.18

Table 7.15: MAPE Score for the best SL-MRN models (with & without pruning)
for Covid-19 forecasting

Model pruning Confirmed Death

SL-MRN 2
without 3.46 0.49
with 28.2 5.59

SL-MRN 3
without 3.8 13
with 17.08 8.18

As seen from Table 6.10, using SL-MRN 3 without pruning, the best score for

the confirmed cases is 3.8, which was obtained with a memory bank configura-

tion of [0, 3, 0] and for the death cases is 13, which was obtained with a memory

bank configuration of [4, 4, 0]. Employing the pruning algorithm for Covid-19
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forecasting highlights its limitations; the pruning algorithm prunes based on ra-

tio similarity, such that SL-MRN models will always have a non-zero minimum

number of memory bank for each memory bank type (input, hidden, output). The

memory order for all the memory bank types is increased by 1, so the memory

configuration becomes [5, 5, 5] and the models are trained to understand if this

encourages better performance, the results are presented in Table 7.16.

Table 7.16: MAPE Score of the best SL-MRN models with pruning employing
two memory configurations: [4, 4, 4] and [5, 5, 5]

Memory bank [4, 4, 4] [5, 5, 5]
Confirmed 5.59 5.24 ↓
Death 8.18 0.5 ↓

For the confirmed cases, there is a slight improvement in performance and

for the death cases, employing an additional memory bank significantly improves

the performance from 8.18 to 0.5. The score before and after pruning, and the

resultant memory bank configuration is presented in Table 7.17, and as seen the

pruned models obtained better scores. The models in the ensemble prune no

more than two memory banks for the different memory bank types.

Table 7.17: Overall best MAPE score for the best SL-MRN models before and
after pruning for Covid-19 forecasting

Series before pruning after pruning Memory bank after pruning
Confirmed 5.24 5.24 - [5, 5, 5], [5, 5, 5], [5, 5, 5], [5, 5, 5]
Death 3.06 0.5 ↓ [3, 5, 4], [4, 5, 5], [5, 3, 5], [4, 3, 5]

The overall best models for the SL-MRN with pruning and the SL-MRN

without pruning are presented in Table 7.18. As seen from the table, the SL-

MRN model with pruning obtained similar results to the SL-MRN model without

pruning for the death cases however, for the confirmed cases, the performance

drops when using the SL-MRN model with pruning.

The overall best SL-MRN models (with & without pruning) are visualised in

Figure 7.6 and Figure 7.7. For the confirmed cases, the SL-MRN model without

pruning appear to make predictions closer to the observed than the SL-MRN

with pruning. (Note: the SL-MRN model without pruning performed best with
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Table 7.18: Overall best MAPE score of the SL-MRN models for Covid-19 fore-
casting

Series SL-MRN w pruning SL-
MRN

% difference

Confirmed 5.24 3.46 -0.5
Death 0.5 0.49 -0.02

a window size of 35 while SL-MRN models with pruning performed best with a

window size of 25). For the death cases, both models provide similar predictions

which are closely mapped to the observed values.

09 Apr 28 June 08 June 19 May 29 Apr 

Month

Actual
SL-MRN

(a) SL-MRN without pruning

30 Mar 18 June 29 May09 May 19 Apr 

Month

Actual

SL-MRN w pruning

(b) SL-MRN with pruning

Figure 7.6: Overall best SL-MRN models for Covid-19 forecasting (Confirmed
cases)

D
ea

th
 c

as
es

Month

18 Apr 28 Apr 28 May 07 June 17 June 27 June 07 July18 May08 May

Actual
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SL-MRN w pruning

Figure 7.7: Overall best SL-MRN models for Covid-19 forecasting (Death cases)

The results in this section highlighted the need for the pruning algorithm to

have an option to employ no memory banks if this is what is required. Nonethe-
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less, the pruning technique employed provided an effective means to obtain a

‘good’ model whilst maintaining performance with a maximum of 0.5% drop in

the score.

7.5 Discussion

In this section, the pruning technique employed is discussed further, and its per-

formance is conclusively assessed in line with the limitation of the MRN variants.

7.5.1 One-shot pruning

The pruning technique presented is a one-shot pruning algorithm after training

based on the ratio similarity. Ratios in a given memory bank type are pruned

based on how similar they are to other ratios in the same memory bank type.

Experiments demonstrated that the pruning technique is effective and offers two

key computational benefits: firstly, reduced number of models required for training,

as only one ’large’ model is required for training rather than multiple memory

bank combinations, and secondly compactness, such that the number of ratios

and associated parameters (self-link ratios, memory banks & weights) are reduced

where possible.

However, experiments highlighted a limitation of the pruning algorithm, that

is, the inability to completely eliminate a memory bank type, when it is not

required. This is particularly due to the pruning condition, which is based on

similarity. More specifically, where only one ratio for a memory bank type is left,

the ratio can not be pruned as there are no ratios left for comparison. Experiments

however demonstrated in such cases where a memory bank type is not required

for the task, the self-learning attributes enable the network to still learn other

ratios to satisfactorily model and predict for the task.

7.5.2 Ratios

To better understand the effectiveness of the pruning technique, the ratios for

some models from the four tasks presented in Section 7.4 are discussed.
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7.5.2.1 Business cycle prediction

SL-MRN 3 performed best for the NBER prediction task and the learnt pruned

ratios are presented in Table 7.19. The models in the ensemble had the following

memory bank configuration: Model 1 - [4, 4, 4], Model 2 - [4, 4, 4], Model 3 -

[4, 4, 4] and Model 4 - [4, 4, 4].

Table 7.19: Learnt ratios for the overall best model for the NBER prediction task
(Growth dataset)

Model Ensemble Input Hidden Output
Model 1 0,

0.032
0.73,
1

0,
0.055,
0.74,
1

0,
0.087,
0.59,
1

Model 2 0,
0.26,
0.59,
1

0,
0.07,
0.95,
1

0,
0.056,
0.14,
1

Model 3 0,
0.026,
0.89,
1

0,
0.56,
0.65,
1

0, 0.2,
0.26,
1

Model 4 0,
0.047,
0.42,
1

0,
0.66,
0.67,
1

0,
0.41,
0.43,
1

All the models in the ensemble employed a memory configuration of [4, 4, 4],

that is, none of the ratios in all the memory bank types were pruned, and the

model obtained the best performance employing all the memory banks.

7.5.2.2 Oil price prediction

SL-MRN 2 with pruning performed best for an horizon of 6 and SL-MRN 3 with

pruning for an horizon of 12 for the Oil price prediction task. The best models in

the ensemble for an horizon of 6 had the following memory bank configuration:

Model 1 - [2, 3, 2], Model 2 - [2, 2, 2], Model 3 - [2, 2, 2] and Model 4 - [2, 2, 4] and

for an horizon of 12, the best models had: Model 1 - [4, 3, 4], Model 2 - [4, 3, 4],
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Model 3 - [4, 4, 4] and Model 4 - [3, 4, 4]. The ratios before pruning for an horizon

of 6 is presented in Table 7.20 and after pruning in Table 7.21.

Table 7.20: Ratios before pruning for the best SL-MRN model with pruning for
the NBER turning points prediction task (Horizon of 6)

Model Ensemble Input Hidden Output
Model 1 0.61,

0.62,
0.93,
0.97

2x10−6,
0.62,
0.69,
0.94

0.61,
0.77,
0.86,
0.97

Model 2 0.16,
0.42,
0.61,
0.75

0.14,
0.62,
0.7,
0.98

0.61,
0.62,
0.9,
0.92

Model 3 0.49,
0.64,
0.69,
0.97

0.45,
0.59,
0.6, 0.8

0.48,
0.64,
0.65,
0.86

Model 4 0.57,
0.66,
0.7, 1

0.52,
0.58,
0.79,
0.81

0.013,
0.082,
0.72,
0.9

As shown from the table, the models performed best pruning the similar learnt

ratios. The best model produced pruned ratios that had an SI greater than 0.65.

The ratios after pruning for an horizon of 12 are presented in Table 7.22.

The model retained most of the ratios, and it appears the model does not find

many ratios that are similar that need to be pruned. The best model pruned

ratios with a SI above 0.85. More specifically, Model 1, Model 2 and Model 4

pruned one ratio (0.89, 0.84, 0.68) from the hidden, hidden and input memory

bank respectively.

7.5.2.3 M3 Competition prediciton

SL-MRN 2 with pruning performed best with series N2158. The ratios before

pruning are presented in Table 7.23 and after pruning in Table 7.24. The best

models in the ensemble for series N2158 had the following memory bank config-
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Table 7.21: Ratios after pruning for the best SL-MRN model with pruning for
the NBER turning points prediction task (Horizon of 6)

Model Ensemble Input Hidden Output
Model 1 0.61,

0.97
2x10−6,
0.62,
0.94

0.61,
0.97

Model 2 0.16,
0.75

0.14,
0.98

0.61,
0.92

Model 3 0.49,
0.97

0.45,
0.8

0.48,
0.86

Model 4 0.57,
1

0.52,
0.81

0.013,
0.082,
0.72,
0.9

Table 7.22: Ratios after pruning for the best SL-MRN model with pruning for
the Oil price prediction task (Horizon of 12)

Model Ensemble Input Hidden Output
Model 1 0,

0.27,
0.75,
1

0, 0.8,
1

0,
0.018,
0.78,
1

Model 2 0,
0.58,
0.95,
1

0,
0.71,
1

0,
0.11,
0.71,
1

Model 3 0,
0.23,
0.65,
1

0,
0.053,
0.38,
1

0,
0.46,
0.93,
1

Model 4 0,
0.68,
1

0,
0.28,
0.63,
1

0,
0.37,
0.73,
1

uration: Model 1 - [1, 1, 1], Model 2 - [1, 1, 1], Model 3 - [1, 1, 1] and Model 4 -

[1, 1, 2].

As seen from the table, some models learnt very similar ratios within the

166



7. Pruning the MRN

Table 7.23: Ratios before pruning for the best SL-MRN model with pruning for
the M3 Sales prediction task (Series N2158)

Model Ensemble Input Hidden Output
Model 1 0.48,

0.53,
0.56,
0.61

0.36,
0.43,
0.47,
0.6

0.58,
0.6,
0.6,
0.69

Model 2 0.56,
0.63,
0.65,
0.65

0.64,
0.64,
0.58,
0.78

0.44,
0.45,
0.61,
0.63

Model 3 0.47,
0.56,
0.63,
0.68

0.35,
0.49,
0.61,
0.62

0.4,
0.53,
0.57,
0.62

Model 4 0.43,
0.64,
0.65,
0.65

0.61,
0.64,
0.66,
0.77

0.4,
0.56,
0.69,
0.99

Table 7.24: Ratios after pruning for the best SL-MRN model with pruning for
the M3 Sales prediction task (Series N2158)

Model Ensemble Input Hidden Output
Model 1 0.61 0.36 0.58
Model 2 0.56 0.78 0.63
Model 3 0.68 0.35 0.4
Model 4 0.65 0.61 0.4,

0.99

same memory bank. The model performed best by pruning ratios within the

same memory bank type with an SI greater than 0.7.

7.5.2.4 Covid-19 forecasting

SL-MRN 3 with pruning performed best for the death cases. The best models in

the ensemble for the death cases had the following memory bank configuration:

Model 1 - [3, 5, 4], Model 2 - [4, 5, 5], Model 3 - [5, 3, 5] and Model 4 - [4, 3, 5].

The ratios before pruning are presented in Table 7.25 and after pruning in Table
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7.26.

Table 7.25: Ratios before pruning for the best SL-MRN model with pruning for
Covid-19 forecasting

Model Ensemble Input Hidden Output
Model 1 0,

0.74,
0.86,
0.98,
1

0, 0.1,
0.57,
0.81,
1

0,
0.36,
0.43,
0.6, 1

Model 2 0,
0.27,
0.47,
0.57,
1

0,
0.074,
0.22,
0.87,
1

0,
0.09,
0.32,
0.63,
1

Model 3 0,
0.07,
0.13,
0.72,
1

0,
0.22,
0.24,
0.3, 1

0,
0.12,
0.83,
0.94,
1

Model 4 0,
0.12,
0.35,
0.48,
1

0,
0.74,
0.78,
0.84,
1

0, 0.2,
0.38,
0.89,
1

The models in the ensemble pruned no more than two ratios in any given mem-

ory bank type. The model performed best by pruning ratios with an SI above 0.7.

In this section, the pruned ratios produced for the best models are presented.

It can be seen that the similarity between the ratios in a given memory bank

type varied for the different tasks. In particular, for SL-MRN 3, the pruning

technique appears to prune no more than one or two ratios within a memory

bank type. This is due to the rescaling of RCUs, which inform ratio values (as

explained in Section 6.3.2). It appears rescaling as such encourages the model

to produce somewhat distinct ratios, therefore during pruning the model is less

likely to prune.
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Table 7.26: Ratios after pruning for the best SL-MRN model with pruning for
Covid-19 forecasting

Model Ensemble Input Hidden Output
Model 1 0,

0.74,
1

0, 0.1,
0.57,
0.81,
1

0,
0.36,
0.6, 1

Model 2 0,
0.27,
0.57,
1

0,
0.074,
0.22,
0.87,
1

0,
0.09,
0.32,
0.63,
1

Model 3 0,
0.07,
0.13,
0.72,
1

0, 0.3,
1

0,
0.12,
0.83,
0.94,
1

Model 4 0,
0.12,
0.48,
1

0,
0.74,
1

0, 0.2,
0.38,
0.89,
1

7.6 Conclusion

In this chapter, a novel framework combining the SL-MRN (presented in Chap-

ter 6) with a one-shot pruning algorithm (based on the learnt ratio similarity) is

proposed. The framework was employed to mitigate the computational complex-

ity associated with training the MRN variants (a large search space for identify

the memory bank configuration). Additionally, to identify whether the model re-

quires multiple similar memory banks within a memory bank type. The SL-MRN

models with the pruning technique are applied, assessed and evaluated for four

time-series forecasting tasks, to understand its impact, and then compared to the

SL-MRN models without the pruning technique.

The models are endowed with a large enough number of memory banks to

learn the problem and then pruned based on the similarity of ratios in a given

memory bank type. Employing the SL-MRN models with the one-shot pruning
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technique provided a means to obtain ‘good’ models. The technique eliminated

the training of multiple models in a exhaustive search space and removed re-

dundant ratios (for each memory bank type). The experiments indicated that

the pruning algorithm successfully enhanced computational efficacy whilst main-

taining performance with a maximum of 0.5% drop in the score. However, a

limitation was identified; that is a requirement of a non-zero number of memory

banks for each memory bank type, which appeared to limit the robustness of the

technique.

7.7 Major Contributions

A review of the literature presented in Chapter 2 suggested that an appropriate

memory mechanism in RNNs is essential for effective time-series processing. In

particular, results in Chapter 6 showed that the composition (quality) of the

memory has a direct impact on performance. The work in this chapter, therefore,

explored pruning mechanisms to effect better quality memories within the MRN

whilst reducing the search space in order to find good memory configurations.

A framework which combines the SL-MRN with a pruning technique based on

the ratio similarity was presented. The pruning technique provided a means to i)

eliminate the constraint on the memory order and reduce the search space for the

memory bank combinations, as only one model is required for training rather than

multiple models (dependent on the memory order), and ii) remove redundancy in

the memory, by identifying similar memory banks in a memory bank type, thus

reducing the network size where possible.
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Chapter 8

Conclusion: Discussion and

Future Work

8.1 Introduction

This chapter revisits the research questions presented in Chapter 1 and considers

the extent to which these have been answered by this research. The research

contributions of this thesis are summarised and evaluated with respect to their

strengths and limitations. Future work and recommendations are subsequently

presented to address the limitations highlighted and to further build on the in-

sights provided in this thesis.

8.2 Thesis Summary and Contributions

This thesis presents a set of novel improvements to the MRN class of recurrent

neural networks that alleviate some key learning and architectural weaknesses

for dealing with time-series problems. The thesis sought to answer the following

research questions:

1. Does the MRN offer a robust alternative to current state-of-the-art models,

such that it more effectively models and forecasts time-series data across a

range of different problem domains and consistently provides superior per-

formance?
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2. Can the MRN class of models be extended and endowed to mitigate the

inherent learning and architectural limitations and encourage more robust

learning of both recent and historical information such that performance is

enhanced?

3. How can the MRN be adapted to reduce model complexity, particularly, re-

ducing the search space whilst minimising the impact on generalisation abil-

ity?

The sections in this chapter, therefore, summarise the findings of each the-

sis chapter, with respect to how well the above research questions have been

addressed. The research introduced i) periodic attentive units in the MRN to

overcome the issue of vanishing gradient descent & catastrophic interferences,

ii) self-learning attributes to overcome the issue of hyper-parameter tuning and

inform memory composition and iii) a framework with a pruning algorithm to

overcome the need for an exhaustive search process during the model fitting

phase and identify the optimum memory configuration architecture for a given

problem. The extensions are discussed in detail, together with how the results

obtained provide new insights into time-series forecasting due to the MRN’s op-

timised memory mechanism (summarized in Section 8.2.1 - 8.2.3).

8.2.1 Adequate computational complexity and appropri-

ate memory mechanism

A critical review of current models and techniques presented in Chapter 2 iden-

tified two key criteria for effective time-series processing. The first criteria is an

appropriate memory mechanism, (which is sensitive to both historical and recent

events), to enable more effective information latching, and enhance learning and

generalisation performance. The second criteria is minimal computational com-

plexity, such that the model is effective with reasonable training times, usability,

transferability and deployment. More specifically, more complex models such as,

LSTMs appear to be less adaptive, due to their complex gating mechanism and

ESNs are more susceptible to noise leading to increased errors.
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Over two decades ago, Ulbricht [208] undertook a study to extend the SRN

model class, to include a variant that is endowed with different memory bank

combinations, of historical input, hidden and output layer information. Her

study demonstrated the importance of empirically establishing the most effec-

tive weighted input, hidden, output and memory layer feedback configurations to

enhance performance. However, Ulbricht did not provide insight into how best to

determine the optimum balance between historic and current information within

the memory banks. In the model proposed by Ulbricht, the memory composition

are determined by the layer- and self- links, which were manually fixed. This

thesis therefore built on Ulbricht’s work to: i) better identify the optimum mem-

ory bank configuration for a given problem; ii) enable the MRN to learn its own

layer-link ratios and thus, determine how rigid or flexible its memories should be

with minimum user input; and iii) reduce the search space for determining the

optimum model complexity during the model fitting and selection phases.

The methodology presented by Ulbricht is coupled with a sliding window ap-

proach (given its simplicity and input processing benefits) and presented in Chap-

ter 3. The methodology was assessed using a model averaging ensemble approach

for any given forecast horizon. In particular, the MRN was applied to tasks and

in domains where it has not been previously exploited and compared to state-

of-the-art models (LSTM, SVM, Decision Tree, and Gaussian Naive Bayes), in

Chapter 4. The results demonstrated that the MRN is a suitable paradigm for

effective time-series forecasting, and it offered superiority over current state-of-

the-art techniques. In addition, the results highlighted the importance of the

MRN’s memory flexibility as the best models for the different tasks employed

different memory bank combinations.

8.2.2 A model extension employing Periodic Attentive units

The MRN was endowed with periodic attentive units in Chapter 5. More specif-

ically, the periodic units are partitioned such that they receive input stimuli

periodically and not at every time-step. These periodic units coupled with the

standard (non-periodic) units form the new hidden layer. This extension was

developed to 1) prevent gradients from vanishing quickly as new inputs are en-
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countered, and ii) minimise catastrophic interference caused by the temporal

superposition of information across the hidden layer. By partitioning based on

time, the network is encouraged to allocate information occurring at different

points in time to different partitions of hidden units. The model extensions were

applied and the performance of the extensions were assessed and compared to

the standard MRN. The results demonstrated that there were instances where

the model extension enhanced performance, indicating that employing periodic

units mitigated the vanishing gradient problem and catastrophic interference. In

particular, this extension highlighted the importance of partitioning units for dif-

ferent tasks within the MRN and the benefits offered are indicative of the possible

benefits of extending this technique to other strong ANN candidate(s).

8.2.3 A novel model extension employing self-learning for

the memory mechanism in the MRN

The MRN was endowed by employing RCUs to learn the layer-ratios, thus, reduc-

ing hyper-parameter tuning. In particular, employing RCUs to learn the ratios

for the memory bank, encourages the network to determine its preferred mem-

ory composition rather than predetermined by the user. This simple yet effective

technique not only highlighted the inherent strengths of the MRN through its self-

learning abilities but also highlighted the importance of the memory composition

in a network (as identified from the critical review). In addition, it demonstrated

that external and internal input stimuli can be used to learn the ratios which

inform and store the different combinations of memories to be employed (rather

than empirically establishing them), which in general resulted in an enhanced

performance. This simple approach is pivotal as it encourages a paradigm shift

for how models are developed, in particular when incorporating memory mech-

anisms. It demonstrates the autonomy and strong abilities within ANNs to not

only learn the underlying patterns but also architectural features (for example,

the MRN learning what types of memory to employ i.e. flexible, rigid, sluggish,

stable and so on).
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8.2.4 Pruning technique

In Chapter 7, a pruning algorithm was proposed to mitigate a computational

limitation associated with the MRN. Due to the flexibility of the MRN’s memory

mechanism, a large search space must be explored to obtain optimal models for

any given set of parameters. More specifically, as the memory order (that is,

the maximum number of memory banks for each memory bank type) increases,

the number of models to train rapidly increases. This is calculated using Mn ,

where M is the memory order and n is the total number of memory bank types.

For example, a model with three memory bank types (input, hidden and output),

with a memory order: of 4 or 8 requires roughly 43 = 64, 83 = 512 models

respectively, to exhaustively explore the search space and obtain the best model.

Although, the MRN and its variants have proven to be worthy competitors, the

large search space to obtain models may be considered to negate the benefits

provided. Accordingly, a framework with a pruning technique was introduced to

aid the efficient identification of a ‘good’ model.

The pruning algorithm is a one-shot algorithm based on similarity and was

employed with the self-learning models presented in Chapter 6. Pruning occurs

using a similarity index, which indicates how similar a ratio is to the remaining

ratios in a given memory bank type. The pruning technique was presented with

two of the SL-MRN models and applied, evaluated and compared to the two SL-

MRN models without pruning, to assess the benefit of the pruning algorithm. The

results demonstrated that employing the pruning technique provided a means to

obtain ‘good’ models efficiently. In particular, the number of models required for

training was reduced to one and the network ratios were automatically pruned

(along with associated parameters) where necessary. Eliminating the training

of numerous memory combinations is particularly important as the restrictions

on the memory order can be removed, and the model can be exploited for any

memory bank configuration needed. This framework highlighted more uses of

the memory composition and how similarities within the memory can be used to

filter out replication.
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8.3 Discussion

Recurrent neural networks are known to possess the abilities to identify and map

temporal signals. However, important signal information can disappear rapidly

due to problems such as vanishing gradient and catastrophic interference as previ-

ously mentioned. In addition, RNN variants, such as the MRN, require additional

user input to determine architectural hyper-parameter configurations. This led to

the novel interventions with periodic attentive units, self-learning link ratios and

one-shot pruning proposed by this research. This section discusses the strength

and limitations arising from the experiments performed for each innovation and

provides insight into how the issues encountered could be remedied.

The first main contribution, i.e. employing PA units to address the vanishing

gradient problem and catastrophic interference, proved beneficial as seen from the

experiments conducted in Chapter 5 where in some cases, there was an improve-

ment over the standard MRN. However, for two of the four tasks, the PA-MRN

offered little to no improvement to the standard MRN as highlighted in Section

5.4.1. In particular, experiments revealed that a sufficient number of TAUs is

required when employing the PA-MRN, which in some cases may require a signif-

icant increase in the number of additional units. The PA-MRN models, however,

are only trained further with 10 additional units, due to limited computational

resources available for experimental activities and likewise the concomitant aim

of this research, to identify a simple, small yet effective recurrent neural network-

based paradigm for time- series processing.

The SL-MRN, the second extension, was presented in Chapter 6 to mitigate

limitations with user imputation to determine architectural hyper-parameters. In

general, the model consistently offered superior performance over the standard

MRN for all tasks. In particular, it demonstrated the ability to identify suitable

memory combinations without the need for user input, as the RCUs are adjusted

in response to internal and external input stimuli. These incorporated RCUs, as

explained in Chapter 6, determine the ratios, which inform the memory composi-

tion(the model’s superiority). In particular, the RCU values (ratios) are obtained

from the net RCUs in the network, which are (treated like other units and) passed

through a sigmoid activation function.
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The sigmoid activation function is frequently used with ANNs (to obtain unit

activations within the hidden and output layers), as a result of some of its benefits

such as being smooth and differentiable. It does, however, have some inherent

limitations such as i) squashing the unit activations resulting in very similar RCU

unit activations, and thus more homogeneous memory banks, and ii) saturation

of the units ; for large negative or positive values, the gradient for these values is

almost zero and as such little learning takes place and the derived RCU values

are of limited use due to the subsequent lack of variance. The consequence is that

i) homogeneous RCUs and thus memory banks limit the observed performance

as the superiority of these models is attributed to the different combinations and

heterogeneity of memory banks (sluggish, rigid and stable) employed and ii) RCUs

that are not optimal result in lower ‘quality’ memory bank composition which im-

pedes learning and performance. Nonetheless, the SL-MRN demonstrated strong

abilities for time-series processing and, in addition, offered more consistent im-

provements than the PA-MRN across the different tasks and domains.

The innovations and experimental results presented in Chapter 5 - Chapter

6 addressed key limitations of the standard MRN as discussed above. However,

although the MRN’s strength is its flexible memory mechanism, this introduces a

key computational limitation, in that the MRN variants require the exploration

of a large search space to obtain ‘good’ models. In order to address this limita-

tion, a framework incorporating a one-shot pruning algorithm with the SL-MRN

is introduced in Chapter 7. The pruning algorithm not only reduces the num-

ber of models required for training to one but also prunes redundant ratios and

associated memory banks.

Results indicated that employing the pruning algorithm with the model, pro-

vided a means to efficiently obtain ‘suitable’ models without the cumbersome

training of multiple memory combinations. Although, this technique successfully

mitigates the limitations of the MRN variants, the pruning technique is limited.

In particular, at least one memory bank is required for every memory bank type

even though it may not be required for a given task (which could lead to over-

fitting); this is due to the nature of the pruning algorithm (which is based on

similarity). Note: the whole technique is based on ratio selection, which may not

be the only method of pruning effectively.
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8.4 Future Work

This section identifies some possible directions for future research work beyond

the contributions of this thesis, providing recommendations for improvements

based on the discussion of the innovations in Section 8.3.

Firstly, to extend the current work presented in this thesis and to address the

limitations discussed in Section 8.3, the following suggestions are presented:

• Extend the Covid-19 forecasting task to include other countries and com-

parison with other models.

• There appears to be a lack of universally agreed approaches to compar-

ing the quality of forecasts generated by different models. Additional ap-

proaches, such as the Giacomini and Rossi test [64] and Diebold-Mariono

test [44], should be explored to identify more reliable measures of forecast

quality and thus enable researchers to reliably compare forecasts across

different models.

• To mitigate the limitations of the sigmoid activation function, other activa-

tion functions could be employed (for example: RELU, which abandons the

upper bound on the positive gradient of a sigmoid function to allow more

effective learning [137]) or an adaptive activation function can be developed

(as in [112]). The adaptive activation function could employ a wider upper

and lower range limit (unlike 0 to 1 as in sigmoid). By employing, an adap-

tive activation, net values passed through the function are not squashed

and saturation is prevented, due to the wider transformation range. Thus,

the network is encouraged to learn different types of ratios, preventing ho-

mogeneity of the ratios and providing optimal ratios.

• Extending the pruning technique such that the network not only prunes

based on ratio similarity but also on memory bank importance, to identify

whether a specific memory bank type is required. In particular, where a

specific memory bank type is not required, the allocated memory bank(s)

can be pruned. This could be achieved by storing and using the error gra-

dients of the memory banks during training to identify the needed memory
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bank types required for a given task and therefore the minimum non-zero

requirement on memory bank is eliminated.

Building on the insights obtained from the results, future work could include

identifying more appropriate memory bank compositions and model extension.

• Learning the self-link ratios

The model extension proposed in this thesis for self-learning applies only

to the layer-link ratios. More specifically, the MRN architecture assumes a

connection between the self-link and layer-link ratios (see 6.1) thus imposing

and forcing a link between the short-term and long-term memory encoding.

Thus, to enhance memory composition, the self-link ratios which determine

the proportion of the previous memory (long-term memory) retained, can

be learnt by allocating RCUs to learn their values (rather than deriving them

from the layer-link ratios), thus providing the network more autonomy to

determine what/how much information to be retained.

• Deep MRN and extensions to more complex domains

Given the success with the MRN, a simpler class of recurrent neural net-

works, future work can focus on developing and implementing deep MRNs

which employ multiple hidden layers with memory mechanism (for one or

more of the layers). Employing multiple hidden layers that collectively pro-

duce a hierarchical feature representation of the original input signal might

be useful to map more complex representations [71]. In addition, the MRN

can be further explored and extended with additional features (such as con-

volutional layers, feature maps) to extend its applicability to more domains

(for example; generate linguistic responses to changes in an image, describ-

ing the movement of an object within a scene or an action being performed

by an agent within the image i.e. the network is dealing with link words to

images). These extensions can also be explored for more complex, volatile

and higher dimensional problem such as those in the healthcare domain for

example; mortality prediction.

• Knowledge Extraction/Explainable AI
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Future work could focus on endowing the MRN with explanatory power to

provide better understanding of the model predictions and how the predic-

tions are obtained. This could be achieved by mapping data to a set of

binary or symbolic patterns and then for each variable, identifying value

ranges for zero, positive small/med/high and negative small/med/high.

Thereafter, a suitable knowledge/rule extraction method (for example: Self-

Organising Maps or Adaptive Resonance Theory with 7 cluster nodes [65])

could be investigated to form Finite State Machines or grammar discretizing

behaviour of the system. The network could then be trained and optimised

to learn the symbolic prediction task. Such techniques could be evaluated to

review hidden unit state trajectories in response to training/test sequences,

to identify localised clusters and transitions between clusters using either

Principal Component Analysis as per [91] or SOM approaches as per [91].

The benefits of this approach would be i) to enhance user confidence and ii)

to provide a deeper understanding of the underlying dependencies to better

inform decision-making.
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Appendices

A Preliminary results with the PA-MRN

Preliminary experiments are conducted for the PA-MRN models to identify the

best parameters for the NBER prediction task, Oil price prediction task and

Covid-19 forecasting. Note: All models are run for 500 epochs and the memory

bank combination associated with the best standard MRN is employed.

A.1 Business cycle prediction

Preliminary experiments are conducted for the NBER turning points prediction

task with a combination of hyperparameters for the PA-MRN. The PA-MRN

employed the memory bank combination of the best MRN model for each dataset

(See Table 4.2 for the memory combination of the best MRN models).

The PA-MRN models are trained with two hidden units [20, 30], three H-

TAUs [0, 2, 10], four TAUs [3, 5, 6, 10] and three window sizes [20, 40, 80] to

understand the impact on its performance.
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A.1.1 Experiments with window size of 80

Table 1 and Table 2 present the results of the PA-MRN models with 20 and 30

hidden units respectively, employing a combination of hyperparameters with a

window size of 80.

Table 1: PA-MRN results for different hyperparameter (Window size: 80)

Dataset
Units H-TAUs TAUs Phase

Growth COD Growth & COD

20

0 20
3

0.177 0 0
2 18 0.356 0 0
10 10 0.217 0 0
0 20

5
0.333 0 0

2 18 0 0 0
10 10 0.356 0 0
0 20

6
0.509 0.539 0.125

2 18 0.378 0 0.177
10 10 0.217 0 0
0 20

10
0.688 0.742 0.761

2 18 0.697 0.715 0.751
10 10 0.506 0.734 0.734

Table 2: PA-MRN results for different hyperparameter (Window size: 80)

Dataset
Units H-TAUs TAUs Phase

Growth COD Growth & COD

30

0 30
3

0.507 0 0
2 28 0.506 0 0
10 20 0.523 0 0
0 30

5
0.506 0 0.125

2 28 0.571 0 0
10 20 0.506 0 0
0 30

6
0.684 0.695 0.493

2 28 0.697 0 0.611
10 20 0.436 0.492 0.115
0 30

10
0.708 0.71 0.759

2 28 0.688 0.747 0.768
10 20 0.693 0.698 0.756
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A.1.2 Experiments with window size of 40

Table 3 and Table 4 present the results of the PA-MRN models with 20 and 30

hidden units respectively, employing a combination of hyperparameters with a

window size of 40.

Table 3: PA-MRN results for different hyperparameter (Window size: 40)

Dataset
Units H-TAUs TAUs Phase

Growth COD Growth & COD

20

0 20
3

0 0.642 0.381
2 18 0 0.023 0.641
10 10 0 0 0.544
0 20

5
0 0.394 0.48

2 18 0 0 0.504
10 10 0.251 0 0.596
0 20

6
0.356 0.383 0.337

2 18 0.217 0 0.339
10 10 0.308 0 0.173
0 20

10
0.472 0.508 0.442

2 18 0.399 0.537 0.431
10 10 0.356 0.511 0.403

Table 4: PA-MRN results for different hyperparameter (Window size: 40)

Dataset
Units H-TAUs TAUs Phase

Growth COD Growth & COD

30

0 30
3

0.525 0.673 0.647
2 28 0.251 0.659 0.681
10 20 0.281 0.704 0.566
0 30

5
0.457 0.448 0.474

2 28 0.399 0 0.562
10 20 0.419 0.522 0.635
0 30

6
0.541 0.692 0.411

2 28 0.419 0.445 0.472
10 20 0.438 0.451 0.427
0 30

10
0.692 0 0.437

2 28 0.678 0.588 0.313
10 20 0.657 0.288 0.356
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A.1.3 Experiments with window size of 20

Table 5 and Table 6 present the results of the PA-MRN models with 20 and 30

hidden units respectively, employing a combination of hyperparameters with a

window size of 20.

Table 5: PA-MRN results for different hyperparameter (Window size: 20)

Dataset
Units H-TAUs TAUs Phase

Growth COD Growth & COD

20

0 20
3

0.735 0.707 0.707
2 18 0.726 0.707 0.735
10 10 0.655 0.68 0.688
0 20

5
0.719 0.732 0.721

2 18 0.736 0.732 0.125
10 10 0.719 0.758 0.744
0 20

6
0.641 0.733 0.751

2 18 0.733 0.733 0.73
10 10 0.714 0.745 0.754
0 20

10
0.7 0.716 0.766

2 18 0.722 0.681 0.769
10 10 0.722 0.756 0.733

Table 6: PA-MRN results for different hyperparameter (Window size: 20)

Dataset
Units H-TAUs TAUs Phase

Growth COD Growth & COD

30

0 30
3

0.735 0.721 0.735
2 28 0.735 0.701 0.77
10 20 0.735 0.333 0.747
0 30

5
0.747 0.701 0.736

2 28 0.72 0.694 0.757
10 20 0.732 0.681 0.792
0 30

6
0.716 0 0.726

2 28 0.627 0.457 0.747
10 20 0.723 0.356 0.783
0 30

10
0.541 0.72 0.775

2 28 0.641 0.711 0.763
10 20 0.714 0.745 0.783
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A.2 Oil price prediction task

Preliminary experiments are conducted for the Oil price prediction task with a

combination of hyperparameters for the PA-MRN. The PA-MRN employed the

memory bank combination of the best MRN model for each dataset (See Table

4.7 for the memory combination of the best MRN models).

The PA-MRN models are trained with two hidden units [20, 30], three H-

TAUs [0, 2, 10], four TAUs [3, 5, 6, 10] and four window sizes [60, 120, 240, 300]

to understand the impact on its performance.

A.2.1 Experiments with window size of 60

Table 7 and Table 8 present the results of the PA-MRN models with 20 and 30

hidden units respectively, employing a combination of hyperparameters with a

window size of 60.

Table 7: PA-MRN results for different hyperparameter (Window size: 60)

Units H-TAUs TAUs Phase Horizon - 1 Horizon - 3 Horizon - 6 Horizon -
12

20

0 20
3

0.70 0.741 1.125 1.472
2 18 0.533 0.76 1.08 1.265
10 10 0.378 0.713 1.077 1.283
0 20

5
0.605 2.195 2.196 1.851

2 18 2.571 1.14 1.107 1.541
10 10 0.388 1.472 1.088 1.645
0 20

6
2.228 2.387 1.941 2.163

2 18 1.694 1.619 1.412 2.128
10 10 0.439 0.797 1.091 1.355
0 20

10
2.059 2.153 1.618 2.15

2 18 0.965 2.063 1.283 2.079
10 10 0.429 0.733 1.112 1.361
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Table 8: PA-MRN results for different hyperparameter (Window size: 60)

Units H-TAUs TAUs Phase Horizon - 1 Horizon - 3 Horizon - 6 Horizon -
12

30

0 30
3

0.552 0.718 1.141 1.525
2 28 0.715 0.84 1.188 1.874
10 20 0.429 0.727 1.086 1.671
0 30

5
2.306 1.76 2.249 2.163

2 28 0.577 2.211 2.144 2.166
10 20 0.47 0.722 1.09 1.298
0 30

6
2.075 2.06 1.68 1.928

2 28 1.824 2.219 1.393 2.143
10 20 0.447 0.927 1.102 1.898
0 30

10
2.293 2.198 1.835 2.164

2 28 1.798 1.99 1.198 2.295
10 20 0.632 1.106 1.121 1.778

A.2.2 Experiments with window size of 120

Table 9 and Table 10 present the results of the PA-MRN models with 20 and

30 hidden units respectively, employing a combination of hyperparameters with a

window size of 120.

Table 9: PA-MRN results for different hyperparameter (Window size: 120)

Units H-TAUs TAUs Phase Horizon - 1 Horizon - 3 Horizon - 6 Horizon -
12

20

0 20
3

0.662 0.742 0.922 1.155
2 18 0.69 0.748 0.927 1.141
10 10 0.445 0.735 0.961 1.184
0 20

5
0.643 0.708 0.928 1.159

2 18 0.663 0.732 0.92 1.162
10 10 0.489 0.726 0.994 1.168
0 20

6
0.643 0.731 0.936 1.172

2 18 0.64 0.732 0.925 1.172
10 10 0.463 0.699 0.996 1.244
0 20

10
0.611 1.286 0.974 1.189

2 18 0.715 0.715 0.956 1.162
10 10 0.524 0.712 1.058 1.201
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Table 10: PA-MRN results for different hyperparameter (Window size: 120)

Units H-TAUs TAUs Phase Horizon - 1 Horizon - 3 Horizon - 6 Horizon -
12

30

0 30
3

0.652 0.744 0.948 1.208
2 28 0.63 0.739 0.951 1.2
10 20 0.537 0.749 0.98 1.218
0 30

5
0.558 0.674 0.956 1.217

2 28 0.636 0.735 0.95 1.225
10 20 1.796 0.747 0.977 1.273
0 30

6
0.633 0.887 0.963 1.201

2 28 0.716 0.734 0.959 1.197
10 20 0.684 0.689 0.922 1.225
0 30

10
1.567 1.017 1.008 1.356

2 28 0.684 0.688 1.009 1.205
10 20 0.531 0.969 1.34 1.25

A.2.3 Experiments with window size of 240

Table 11 and Table 12 present the results of the PA-MRN models with 20 and

30 hidden units respectively, employing a combination of hyperparameters with a

window size of 240.

Table 11: PA-MRN results for different hyperparameter (Window size: 240)

Units H-TAUs TAUs Phase Horizon - 1 Horizon - 3 Horizon - 6 Horizon -
12

20

0 20
3

1.265 1.855 1.4 1.548
2 18 1.438 2.134 1.432 1.486
10 10 1.556 1.332 1.451 1.533
0 20

5
1.137 1.175 1.455 1.558

2 18 1.326 1.146 1.454 1.502
10 10 1.267 1.053 1.4 1.497
0 20

6
1.411 1.588 1.417 1.558

2 18 1.379 1.341 1.4 1.495
10 10 1.204 1.731 1.386 1.493
0 20

10
1.275 1.258 1.347 1.597

2 18 1.308 1.33 1.347 1.427
10 10 1.276 1.477 1.431 1.559
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Table 12: PA-MRN results for different hyperparameter (Window size: 240)

Units H-TAUs TAUs Phase Horizon - 1 Horizon - 3 Horizon - 6 Horizon -
12

30

0 30
3

1.584 1.193 1.506 1.45
2 28 1.008 1.825 1.624 1.45
10 20 1.359 2.024 1.526 1.481
0 30

5
1.119 1.504 1.523 1.524

2 28 1.084 1.142 1.412 1.502
10 20 1.583 1.517 1.326 1.368
0 30

6
1.118 1.357 1.355 1.481

2 28 1.469 1.389 1.415 1.429
10 20 1.672 2.34 1.445 1.416
0 30

10
1.249 1.318 1.695 1.451

2 28 0.693 0.942 1.594 1.349
10 20 0.714 2.826 1.357 1.605

A.2.4 Experiments with window size of 300

Table 13 and Table 14 present the results of the PA-MRN models with 20 and

30 hidden units respectively, employing a combination of hyperparameters with a

window size of 300.

Table 13: PA-MRN results for different hyperparameter (Window size: 300)

Units H-TAUs TAUs Phase Horizon - 1 Horizon - 3 Horizon - 6 Horizon -
12

20

0 20
3

2.029 2.058 1.883 2.058
2 18 2.037 2.067 1.646 2.05
10 10 2.05 2.064 1.907 2.066
0 20

5
2.032 2.066 1.745 2.05

2 18 2.052 2.052 1.38 2.058
10 10 2.042 2.056 1.688 2.048
0 20

6
2.044 2.055 1.639 2.05

2 18 2.043 2.05 1.176 2.043
10 10 2.046 2.049 1.692 2.056
0 20

10
2.047 2.06 1.271 2.043

2 18 2.045 2.057 1.218 2.044
10 10 2.052 2.061 1.362 2.047
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Table 14: PA-MRN results for different hyperparameter (Window size: 300)

Units H-TAUs TAUs Phase Horizon - 1 Horizon - 3 Horizon - 6 Horizon -
12

30

0 30
3

2.061 2.069 1.635 2.038
2 28 2.049 2.064 1.498 2.041
10 20 2.071 2.054 1.691 2.043
0 30

5
2.075 2.06 1.645 2.038

2 28 2.071 2.07 1.912 2.03
10 20 2.063 2.064 1.749 2.034
0 30

6
2.069 2.042 1.813 2.034

2 28 2.068 2.07 1.828 2.041
10 20 2.062 2.06 1.875 2.045
0 30

10
2.07 2.058 1.774 2.032

2 28 2.058 2.059 1.744 2.042
10 20 2.062 2.065 1.76 2.028

A.3 Covid-19 forecasting

Preliminary experiments are conducted for Covid-19 forecasting with a combina-

tion of hyperparameters for the PA-MRN. The PA-MRN employed the memory

bank combination of the best MRN model for each dataset; confirmed cases [0,

3, 0] and death cases [4, 4, 4].

The PA-MRN models are trained with two hidden units [20, 30], three H-

TAUs [0, 2, 10], four TAUs [3, 5, 6, 10] and five window sizes [15, 25, 35, 45, 55]

to understand the impact on its performance. The results for a window size of

45 and 55 are not presented, as the MAPE score is significantly large.

A.3.1 Experiments with window size of 15

Table 15 and Table 16 present the results of the PA-MRN models with 20 and

30 hidden units respectively, employing a combination of hyperparameters with a

window size of 15.
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Table 15: PA-MRN results for different hyperparameter (Window size: 15)

Units H-TAUs TAUs Phase confirmed death

20

0 20
3

71.86 52.35
2 18 71.37 52.05
10 10 72.41 52.48
0 20

5
71.53 52.21

2 18 71.51 51.84
10 10 71.51 52.61
0 20

6
71.84 51.63

2 18 70.54 51.65
10 10 71.17 51.80
0 20

10
70.71 51.52

2 18 71.18 51.23
10 10 72.13 52

Table 16: PA-MRN results for different hyperparameter (Window size: 15)

Units H-TAUs TAUs Phase confirmed death

30

0 30
3

69.24 49.81
2 28 69.4 50.87
10 20 70.94 51.18
0 30

5
70.21 50.33

2 28 71.06 51.09
10 20 70.41 49.72
0 30

6
69.63 49.82

2 28 70.16 49.68
10 20 69.83 50.21
0 30

10
69.42 50.51

2 28 69.5 49.83
10 20 66.84 49.97

A.3.2 Experiments with window size of 25

Table 17 and Table 18 present the results of the PA-MRN models with 20 and

30 hidden units respectively, employing a combination of hyperparameters with a

window size of 25.
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Table 17: PA-MRN results for different hyperparameter (Window size: 25)

Units H-TAUs TAUs Phase confirmed death

20

0 20
3

58.44 8.67
2 18 58.29 4.41
10 10 60.34 2.39
0 20

5
58.7 4.87

2 18 58.58 5.5
10 10 57.22 3.12
0 20

6
60.27 3.86

2 18 60.33 6.02
10 10 58.18 3.87
0 20

10
61.82 0.66

2 18 59.76 2.75
10 10 59 5.54

Table 18: PA-MRN results for different hyperparameter (Window size: 25)

Units H-TAUs TAUs Phase confirmed death

30

0 30
3

58.98 6.97
2 28 59.4 6.9
10 20 57.78 7.27
0 30

5
57.83 2.67

2 28 54.71 5.93
10 20 59.23 7.88
0 30

6
58.58 4.76

2 28 57.31 0.81
10 20 57.61 4.07
0 30

10
58.37 13.35

2 28 59.84 2.68
10 20 57.63 5.73

A.3.3 Experiments with window size of 35

Table 19 and Table 20 present the results of the PA-MRN models with 20 and

30 hidden units respectively, employing a combination of hyperparameters with a

window size of 35.

The hyperparameters (H-TAUs, phase, window sizes) associated with the best
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Table 19: PA-MRN results for different hyperparameter (Window size: 35)

Units H-TAUs TAUs Phase confirmed death

20

0 20
3

5.87 2.73
2 18 4.76 2.28
10 10 5.28 2.75
0 20

5
4.57 3.56

2 18 5.36 0.97
10 10 5.06 1
0 20

6
4.88 0.93

2 18 5.9 0.91
10 10 4.71 1.91
0 20

10
11.43 10.81

2 18 5.64 1.73
10 10 7.26 3.64

Table 20: PA-MRN results for different hyperparameter (Window size: 35)

Units H-TAUs TAUs Phase confirmed death

30

0 30
3

7.02 9423.19
2 28 7.97 4612.62
10 20 6.56 3147.62
0 30

5
4.71 39.87

2 28 9.53 1298.07
10 20 18.7 569.21
0 30

6
5.08 2467.25

2 28 4.68 258.73
10 20 4.56 654.06
0 30

10
5.31 1572.63

2 28 6.85 476.69
10 20 4.89 81.8

PA-MRN models from the preliminary experiments are used to conduct the ex-

periments presented in Section 5.3.1, Section 5.3.2 and Section 5.3.4.
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B Hyper-parameters for best MRN models

The hyper-parameters associated with the best standard MRN models for the

M3 sales prediction & Covid-19 forecasting task are presented.

B.1 M3 Competition prediction

Table 21 presents the hyper-parameters of the best models for the M3 sales pre-

diction.

Table 21: The best memory bank combinations and window sizes for the M3
Competition prediction

Series Memory bank
combination

Window
size

N2516 [4, 4, 2] 40
N2521 [3, 2, 4] 10
N1807 [4, 0, 2] 40
N1908 [4, 4, 2] 40
N2012 [3, 3, 0] 40
N2159 [0, 3, 0] 40
N2158 [2, 0, 0] 40
N2150 [0, 0, 3] 40
N2144 [2, 0, 4] 10
N1918 [3, 4, 4] 10

B.2 Covid-19 forecasting

Table 22 presents the hyper-parameters of the best models for Covid19 forecast-

ing.
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Table 22: The best memory bank combinations and window sizes for Covid-19
forecasting

Series Memory bank
combination

Window
size

Confirmed [0, 3, 0] 35
Death [4, 4, 4] 25

222


	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Background and Motivation
	1.2 Overview of the Research
	1.3 Research Challenges and Questions
	1.3.1 Research Aims and Objectives

	1.4 Thesis structure

	2 Literature Review
	2.1 Time-series data
	2.1.1 Components of time-series

	2.2 Time-series analysis and forecasting
	2.2.1 Traditional statistical models for time-series processing
	2.2.1.1 Moving Average (MA)
	2.2.1.2 Auto-regressive (AR)
	2.2.1.3 Auto-Regressive Moving Average (ARMA)
	2.2.1.4 Box-Jenkins methodology
	2.2.1.5 Vector Models
	2.2.1.6 Markov Switching models
	2.2.1.7 Review of Statistical Approaches

	2.2.2 Neural Networks for time-series processing
	2.2.3 Feed-forward Neural Networks (FFNNs)
	2.2.3.1 Multi-layer Perceptrons (MLPs)
	2.2.3.2 Time-delay Neural Networks (TDNNs)
	2.2.3.3 Limitations of Feed-Forward Neural Networks

	2.2.4 Recurrent Neural Networks (RNNs)
	2.2.4.1 Nonlinear Autoregressive models with eXogenous input Neural Network (NARX)
	2.2.4.2 Jordan Network
	2.2.4.3 Simple Recurrent Network (SRN)
	2.2.4.4 Echo State Network (ESN)
	2.2.4.5 Long-Short Term Memory (LSTM)
	2.2.4.6 Limitations of current recurrent neural networks for time-series processing
	2.2.4.7 Long-term dependencies


	2.3 Multi-recurrent Neural Network (MRN)
	2.4 Summary of current state-of-the-art
	2.5 Conclusion

	3 The Multi-recurrent Neural Network
	3.1 Multi-recurrent Neural Network (MRN)
	3.1.1 Architecture of the MRN
	3.1.1.1 Memory architecture
	3.1.1.2 Memory bank configuration
	3.1.1.3 Brain dynamics

	3.1.2 Training in the MRN
	3.1.2.1 Forward Pass
	3.1.2.2 Back-propagation Through Time (BPTT)


	3.2 Forecasting Methodology
	3.2.1 Sliding Window
	3.2.2 Forecast Horizon
	3.2.3 Ensemble approach
	3.2.4 Methodological constraints

	3.3 Computational requirement
	3.4 Time-series application with the MRN
	3.5 Data
	3.5.1 Business cycle data
	3.5.1.1 Data Preprocessing

	3.5.2 Oil price data
	3.5.2.1 Data Pre-processing

	3.5.3 M3 competition data
	3.5.3.1 Data Pre-processing

	3.5.4 Covid-19 data
	3.5.4.1 Data Pre-processing


	3.6 Conclusion

	4 The Multi-recurrent Network: a comparative analysis
	4.1 Background
	4.2 Results and Analysis
	4.2.1 Business cycle prediction
	4.2.2 Oil price prediction
	4.2.3 M3 competition prediction
	4.2.4 Covid-19 forecasting

	4.3 Discussion
	4.3.1 MRN suitability
	4.3.2 Computational complexity
	4.3.3 Memory bank search space

	4.4 Conclusion

	5 Time Sensitivity in the Multi Recurrent Network
	5.1 Background
	5.1.1 Gradient Descent Learning Problem & Catastrophic Interference

	5.2 Incorporating Periodically Attentive (PA) Hidden Units into the MRN
	5.2.1 PA units to tackle catastrophic interference and vanishing gradient problem

	5.3 Results & Analysis
	5.3.1 Business cycle prediction
	5.3.2 Oil price prediction
	5.3.3 M3 competition prediction
	5.3.4 Covid-19 forecasting

	5.4 Discussion
	5.4.1 Periodic attentiveness to mitigate gradient descent problem and catastrophic interference
	5.4.2 Search space for memory bank configuration

	5.5 Conclusion
	5.6 Chapter contributions

	6 Self-learning in the Multi-recurrent Network
	6.1 Background
	6.2 Self-Learning in ANNs
	6.2.1 Self-learning and Recurrent Networks

	6.3 Introducing Ratio Learning in the MRN
	6.3.1 Learning the layer-recurrency link ratios with additional hidden units (SL-MRN 1)
	6.3.2 Learning the layer-recurrency link ratios by incorporating ratio units (SL-MRN 2)
	6.3.3 Learning the layer-recurrency link ratios using the error gradients of the ratio units (SL-MRN 3)

	6.4 Results & Analysis
	6.4.1 Business cycle prediction
	6.4.2 Oil price prediction
	6.4.3 M3 competition prediction
	6.4.4 Covid-19 forecasting

	6.5 Discussion
	6.5.1 Self-learning attributes to enhance memory quality and reduce user design input
	6.5.2 Link ratios
	6.5.2.1 Business cycle prediction
	6.5.2.2 Oil price prediction
	6.5.2.3 M3 Competition prediction
	6.5.2.4 Covid-19 forecasting

	6.5.3 The MRN extensions
	6.5.4 Search space for memory bank configuration

	6.6 Conclusion
	6.7 Major contributions

	7 Pruning the MRN
	7.1 Background
	7.2 Pruning in Artificial Neural Systems
	7.2.1 Knowledge gap

	7.3 Methodology
	7.3.1 Pruning in the MRN based on ratio similarity

	7.4 Results & Analysis
	7.4.1 Business cycle prediction
	7.4.2 Oil price prediction
	7.4.3 M3 competition prediction
	7.4.4 Covid-19 forecasting

	7.5 Discussion
	7.5.1 One-shot pruning
	7.5.2 Ratios
	7.5.2.1 Business cycle prediction
	7.5.2.2 Oil price prediction
	7.5.2.3 M3 Competition prediciton
	7.5.2.4 Covid-19 forecasting


	7.6 Conclusion
	7.7 Major Contributions

	8 Conclusion: Discussion and Future Work
	8.1 Introduction
	8.2 Thesis Summary and Contributions
	8.2.1 Adequate computational complexity and appropriate memory mechanism
	8.2.2 A model extension employing Periodic Attentive units
	8.2.3 A novel model extension employing self-learning for the memory mechanism in the MRN
	8.2.4 Pruning technique

	8.3 Discussion
	8.4 Future Work

	References
	Appendices
	A Preliminary results with the PA-MRN
	A.1 Business cycle prediction
	A.1.1 Experiments with window size of 80
	A.1.2 Experiments with window size of 40
	A.1.3 Experiments with window size of 20

	A.2 Oil price prediction task
	A.2.1 Experiments with window size of 60
	A.2.2 Experiments with window size of 120
	A.2.3 Experiments with window size of 240
	A.2.4 Experiments with window size of 300

	A.3 Covid-19 forecasting
	A.3.1 Experiments with window size of 15
	A.3.2 Experiments with window size of 25
	A.3.3 Experiments with window size of 35


	B Hyper-parameters for best MRN models
	B.1 M3 Competition prediction
	B.2 Covid-19 forecasting



