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Abstract

This paper analyses the failure of the traditional Ricardo–Haberlerian (1817; 1936) theory of compar-
ative advantage (RTCA) in a strategic market game à la Shapley–Shubik (1977). In this model, trade
is driven, not by comparative advantages, but by strategic considerations. We prove, in a Ricardian
framework, the simultaneous existence of two types of equilibria, at both of which active international
trade takes place. In the first type of equilibrium, both countries specialise based on comparative ad-
vantages. In the other, each country produces only its comparative-disadvantage good. The welfare
properties, and policy implications of this result (using the examples of the China–US trade war and
Venezuela), are discussed at length in two dedicated sections. We show that the predictions of the
RTCA depend, not on the number of agents in the economy, but on the nature of agents: the RTCA fails
to obtain even with an infinite number of large players in each country. We prove that the RTCA pre-
vails when agents are price-takers, and establish the conditions under which equilibria of our market
game coincide with Walrasian ones.
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1 Introduction

The traditional theory of comparative advantage (RTCA) à la Ricardo–Haberler (1817; 1936), in its most
basic two-country two-good form,1 states that free trade is driven by differences in the ratios of labour
productivity in the two goods across the two countries—due to differing constant-returns-to-scale tech-
nologies. Thus, countries produce and export the good in which they have a comparative advantage.2

∗Coventry University, Department of Economics, and CFCI, Coventry. Email: waseem.toraubally@coventry.ac.uk
1For a comprehensive review of the RTCA à la Ricardo–Haberler (1817; 1936), see Haberler (1936), Dornbusch et al. (1977),

and Feenstra (2015).
2The RTCA does not imply that specialisation must always be complete. In particular, it is possible for only one country to

specialise completely in the production of one good, while the other produces both goods. This will occur if the former country
cannot meet the total world demand for the good in which it specialises. For more on outcomes which the RTCA admits, please
refer to the penultimate paragraph of this section.
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Amongst others, recent support has been lent to the RTCA by Costinot and Donaldson (2012), who con-
clude that it is “... mathematically correct and non-trivial ...” (p. 6). In pioneering work, Eaton and
Kortum (2002) construct a parsimonious trade model incorporating technological heterogeneity and ge-
ography, and they also demonstrate that the RTCA is buttressed by real-world evidence. Costinot et al.
(2012) also derive theoretical foundations to guide empirical tests of the RTCA, and use the resulting
framework to prove the paramount relevance of Ricardian trade. Despite the well-known fact that the
essential ingredient of the RTCA is differing technologies/productivity, it is interesting to note that for
tractability reasons, individually insignificant agents have been a mainstay of most Ricardian models of
trade, as a result of which goods and factor prices are taken as given.3 Yet, it is common knowledge that
countries, and their constituents, behave strategically in the real world (see, e.g., Freund and Pierola,
2015; Siebert, 2007: p. 382, and; Jacquemin, 1982). We therefore deem it important—in fact, necessary,
especially for policymakers—to theoretically reappraise the predictions of the RTCA, in a context where
workers/countries are strategic in nature.

In this paper, we develop a Ricardian market game and show that the predictions of the RTCA fail.
Indeed, in the two-country two-commodity Ricardian model that we consider, it is no longer compara-
tive advantages, but only strategic interactions among agents, that drive trade. Our main contribution
is twofold. First, we prove the existence of two types of equilibria; one in which countries specialise in
accordance with the RTCA, and another in which each country produces and exports to the other only
the good in which it has a comparative disadvantage. Second, we establish that the failure of the RTCA is
intimately linked to the strategic nature of agents. Indeed, the RTCA fails even in economies consisting of
an infinite number of agents,4 each of whomwields a non-negligible amount of market power. We prove
that specialisation as per the RTCA finally takes place when we consider economies with a continuum of
small agents (see §5). The above claims are established in the context of strategic market games (SMG) of
the Shapley–Shubik (1977) tradition. An SMG is a general equilibrium,5 noncooperative game-theoretic
model which features an explicit description of the commodity-price formation process.6 Prices are de-

3This issue is discussed at length in Toraubally (2020), where we explain that none of perfect competition, perfect mobility
of factors of production, or even perfect divisibility of the latter are crucial characteristics of the RTCA.

4Cordella and Gabszewicz (1997) provide an example in which the RTCA fails in oligopolistic markets, but holds in markets
with large numbers of players, markets which need not be Walrasian. See §§2 and 4 of the current paper for more details.

5SMGs have been applied to a vast variety of frameworks, ranging from imperfect competition in unregulated electricitymar-
kets (Spear, 2003), providing solid micro-foundations for macroeconomic analysis (Goenka, Kelly and Spear, 1998), analysing
the asymptotic convergence of Nash equilibria toWalrasian ones with uncertainty and asymmetric information (Meo and Kout-
sougeras, 2018), to experimental implementations (among others, Jiang et al., 2021; Ding and Puzzello, 2020; Barreda-Tarrazona
et al., 2018; Duffy et al., 2011).

6The interested reader is referred to the seminal papers by Dubey and Shubik (1978), Dubey and Shapley (1994), and Peck
et al. (1992) for in-depth explanations of the formulation that we use in this paper.
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termined solely by the buy-and-sell decisions of agents in the economy. The theory of SMG thus provides
an elegant formulation that we believe appropriately captures the influence of strategic considerations on
trade in world markets.

We extend the two-country two-commodityRicardian framework, in the first instance, to aCournotian
setup. In §3.2, we present in a very general framework, which includes most utility functions that are
used in the international trade literature, our main results (Theorems 1 and 2). Using a combination
of fixed-point theorem, and Lagrange multiplier methods, we prove the existence of an equilibrium in
which countries specialise based on comparative advantages in Theorem 1. In Theorem 2, we show that
there simultaneously exists another equilibrium in which each country specialises in the production of
its comparative-disadvantage good, though comparative advantages are clearly present. The intuition
for this apparent anomaly is that market-clearing prices are sensitive to the market activities of each
agent, such that the marginal price of a commodity is not equal to its average price—see, e.g., Tirole
(1988: pp. 218-219). Hence, any effort by a worker to benefit from any price difference by shifting orders
across markets (e.g, producing and selling more of the expensive commodity, while buying more of the
cheaper one), alters the corresponding market-clearing prices adversely. The resulting net effect impacts
theworker unfavourably, who therefore chooses to stay put. We emphasise that these results are achieved
in a framework where all of the original assumptions of Ricardo–Haberler are retained—save price-taking
agents when considering imperfectly-competitive markets.

We demonstrate that even when the number of agents increases without bounds, the RTCA still fails
(Theorem 3). This is because these agents, though (countably) many in numbers, still perceive the influ-
ence of their market power on the market-clearing prices of the two goods. Thus, they use their ability to
manipulate prices to their advantage. This possibility is also discussed in Toraubally (2018, 2019), where
it is demonstrated that even in large economies with many agents, markets, and commodities, strategic
behaviour may still persist.

In light of the above, we deem it important to extend our formulation and analysewhat happenswhen
the economy is populated only by a continuum of small, individually-insignificant workers. It is shown
that in this setup, the predictions of the RTCA are restored, thereby establishing a strong link between the
failure of the RTCA, and the strategic nature of agents. This conclusion may no doubt seem intuitive; yet,
the analysis is necessary for a comprehensive exposition of the Ricardianmarket gamewhichwe propose.
We show that in Ricardian economies with a continuum of price-taking agents, equilibrium takes (only
one of) three forms (Proposition 2). The first is when both countries are completely specialised in their
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respective comparative advantage goods. The second type consists of one country fully specialised in
its comparative-advantage good, while the other produces both goods—a situation also known as an in-
complete specialisation equilibrium. The third is when both countries completely specialise in producing
only one and the same good. Now, it is a well-known fact that Nash equilibrium allocations of a mar-
ket game need not be Walrasian, and vice versa. This is because a market game is transactions-oriented,
and agents face liquidity constraints that cannot be ignored—the latter play no role whatsoever in Wal-
rasian economies. In this light, it is worthwhile to provide a characterisation of when Nash equilibrium
allocations of our game are also Walrasian, which we do in §5.1.

In §2, we present a brief literature review to better frame the extent of our contribution. In §3, we
develop our model, and explain how interactions take place in the economy. We provide an analysis
of the properties of equilibria, and present our main results in the form of various propositions and
theorems. We also discuss the policy and welfare implications of the latter. In §§4 and 5, we extend the
model in §3 to setups with, first, a countable infinity of agents, and subsequently, a continuum of agents,
respectively. Our conclusions are summarised in the following section. For the reader’s convenience, all
the mathematical proofs derived in this paper have been relegated to an Appendix.

2 Literature Review

To put things into perspective, and to dispel any misconception right from the outset, we (very) briefly
review a prominent strand of the trade literature, which has now come to be known as the “new trade
theory.” The most important works in this direction are those by Krugman (1979, 1980), who views mo-
nopolistic competition, increasing returns to scale (IRTS) and product differentiation as the main drivers
of trade, Markusen (1981, monopoly/duopoly and IRTS), Brander (1981, IRTS, segmented markets, and
transportation costs), and Brander and Krugman (1983, segmented markets and transportation costs).
We emphasise that none of the aforementioned effects are present in the purely Ricardian model(s) that
we propose in this paper. Moreover, in our framework, the domestic and foreign markets are integrated,
as opposed to segmented. We also remark that althoughMarkusen (1981) shows that even with constant
returns to scale trade will still take place, his model relies on the existence of capital and labour as factors
of production, and assumes that the market for the labour-intensive good is perfectly competitive—such
that its price is given by Adam Smith’s “invisible hand.” Importantly, this means that his model also
describes a theory of trade that is not driven completely and uniquely by strategic interactions amongst
agents. Crucially, apart from Krugman (1979, 1980), the above are all partial equilibrium, as opposed
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to general equilibrium models, which ours is. Last but not least, Krugman’s (1979, 1980) analyses are
carried out in monopolistically-competitive general equilibrium setups, such that individual agents are
negligible (see also our discussion in the Introduction).

The paper most closely related to ours (in terms of the market game mechanism used) is Cordella
and Gabszewicz (1997) (henceforth, C–G). C–G analyse how the use of market power by agents alters
the predictions of the original Ricardian model. In their two-country, two-commodity framework, all
individuals across both countries derive utility only from the consumption of the good inwhich they have
a comparative disadvantage. They show that for a large class of Ricardian economies, despite there being
free trade and clear comparative advantages, autarky is the unique oligopoly equilibrium on the world
market. More precisely, at equilibrium, no trade at all takes place, and agents produce only the good in
the production of which they have a comparative disadvantage. When the number of agents becomes
“large enough,” the Ricardian outcome is restored. Note that C–G only require that the number of agents
in each country exceed some (obviously finite) upper bound, which they call n̄, for the RTCA to hold
again—i.e., agents do not have to be infinite in numbers, let alone price-takers, nor do the corresponding
equilibria have to be Walrasian. In the framework that we propose, however, workers’ utility functions
depend on the consumption of all goods on the world market, as opposed to solely on the one in which
they have a comparative disadvantage. Additionally, we show that even when the number of agents is
countably infinite, the Ricardo–Haberlerian predictions still fail to obtain. This is because as in Toraubally
(2018, 2019), agents still possess a non-negligible degree of market power. It is only when agents are
price takers that specialisation (at a non-trivial equilibrium) as per the RTCA is guaranteed to take place.
Also, it is interesting to note that while strategic interactions by agents in the model in C–G do affect the
equilibrium exchange rate of goods, individuals still take world prices of the two commodities as given—
i.e., there is no description of how commodity prices are formed. In this paper, however, prices for all
commodities are determined purely endogenously, by agents’ buy-and-sell decisions through a system
of trading posts/markets.

3 The Ricardian market game Γ with finitely many agents

We consider two countries, F andH . The set of agents (workers) isN = F∪H , where |F | , |H| ≥ 2. There
are 2 consumption goods that can be produced in the world economy, the technologies for producing
which are possessed by both countries F andH . We let the set of both commodities which are produced,
and tradeable be denoted by {1, 2}. There is also a 3rd commodity, which we callm, that is not produced
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but which, in addition to its role in utility, also acts as money.7 The consumption set of each worker is
therefore identified with R3

+.
Agents n ∈ N do not have any initial endowments of goods 1 and 2, but are instead endowed with

labour hours, with which to produce commodities 1 and 2.
Each country is characterised by its technology. The latter is exogenously fixed and exhibits constant

returns to scale, and is denoted by aJk , J = F,H . More precisely, the technology in country J, aJk , deter-
mines howmany labour hours it takes for a constituentworker in J to produce one unit of any commodity
k ∈ {1, 2}. In line with Ricardo–Haberler’s original formulation, we assume that aF1 /aF2 6= aH1 /a

H
2 . As in

C–G, workers are taken to be homogeneous and perfectlymobile between the industries within a country,
but immobile and heterogeneous across countries. In light of the above, each worker n ∈ N , is described
by a preference relation representable by a utility function un : R3

+ → R, and initial endowments, of
money en,m ∈ R++, and of labour hours Qn ∈ R++.

Any commodity k ∈ {1, 2} that workers choose to produce by offering labour hours, ismanufactured at
the corresponding trading post—i.e., no good can be produced without a trading post. At this common,
fully integrated international trading post, workers also place bids (purchases) in terms of commodity
m for every commodity k ∈ {1, 2}. Every worker can, in this way, consume vectors of each commodity
produced. A worker may well buy back everything s/he has produced, but s/he can only do so through
the respective trading posts. Formally, we define the strategy set of each n ∈ N as:

Sn =
{(
bn, ln

)
∈ R2

+ × R2
+ :

2∑
k=1

ln,k ≤ Qn;
2∑

k=1

bn,k ≤ en,m
}
,

where bn = (bn,1, bn,2) and ln = (ln,1, ln,2) represent vectors of bids placed, and labour hours offered
across the various markets, respectively.

Throughout the rest of the paper, we will employ the following assumption:

Assumption 1. Utility functions for all agents are concave, smooth, and differentiably strictly monotone.8

3.1 Interactions in the economy

Given a strategy profile (b, l) ∈ S :=
∏
n∈N Sn, we define Bk =

∑
n∈N bn,k, φk =

∑
f∈F

lf,k
aFk

+
∑

h∈H
lh,k
aHk

,
B−n,k =

∑
i∈N\{n} bi,k, and φ−n,k =

∑
f∈F\{n}

lf,k
aFk

+
∑

h∈H\{n}
lh,k
aHk

. Consumption allocations of commod-
7The role of money does in no way affect the predictions of the original Ricardian model. As Haberler (1936: p. 131) argues,

“all these [assumptions, including the introduction of money] give rise to annoyingmisunderstandings. Somebody or the other
is always trying to show that the [RTCA] is valid only under the simple assumptions upon which it was originally formulated.”

8i.e., for all x ∈ R3
++,

∂un
∂xk

> 0 ∀k = 1, 2,m.
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ity k ∈ {1, 2,m}, for any worker j ∈ J, J = F,H , are then determined as follows:

xj,k =


bj,k

φk
Bk

where k ∈ {1, 2}, and Bk · φk 6= 0;

0 where k ∈ {1, 2}, and Bk · φk = 0;

xj,m = ej,m −
2∑

k=1

bj,k +
2∑

k=1

lj,k

aJk

Bk
φk
,

wherewe adopt themarket game convention that any division by zero, including 0
0 , is equal to zerowhen-

ever it appears in any of the expressions above—see Peck et al. (1992) for an interpretation. According
to the above mechanism, a worker j ∈ J , J = F,H , is allocated commodity k ∈ {1, 2,m} in proportion
to his/her bids and labour hours offered.

The trading post for good k ∈ {1, 2} is said to be active if Bk · φk > 0. Observe that, as what agent
j produces of good k is lj,k

aJk
, φk in fact refers to the total amount of good k that is produced and traded

(offered for sale). Thus, whenBk ·φk > 0, the fraction pk = Bk
φk

has a natural interpretation as the (market-
clearing) price of commodity k. Henceforth, wewill use the notation pk and Bk

φk
interchangeably, and refer

to each as the price of k.
Note further that, as workers reap the full value of what they produce with their labour, the last term

in xj,m may be interpreted as the total wages of worker j, just like in the traditional Ricardian model (see,
e.g., Feenstra, 2015).

An equilibrium in ourmodel is a profile constituting vectors of agents’ bids (purchases) for commodi-
ties and labour hours offered, which forms a Nash equilibrium (N.E). And at an N.E, any worker n ∈ N
is viewed as solving the following problem:

max
(bn,ln)∈Sn

{
un

((
xn,k

(
bn,k, ln,k, B−n,k, φ−n,k

))2
k=1

, xn,m
((
bn,k, ln,k, B−n,k, φ−n,k

)2
k=1

))}
. (1)

3.2 Equilibrium Analysis, main results and policy implications

We may now introduce our first results. In particular, thanks to the allocation rule for all agents n ∈ N ,
ourmodel provides the strongest incentives for trade to occur, an ideawhich is formalised in the following
proposition:

Proposition 1. At any N.E, the trading post for at least one good is active. More precisely, given that all players

are rational and rationality is common knowledge, at any N.E, every agent buys and consumes at least one of
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goods 1 and 2.

Proposition 1 is nontrivial, and new to themarket game literature. In particular, in standard SMGmodels,
there always exists a trivial N.E, in which all agents make zero offers on allmarkets, such that zero trade
results. If agents’ endowments are already Pareto optimal, then this trivial N.E is logical and efficient. If
endowments are Pareto-suboptimal, a trivial N.E is an inefficient outcome as agents would be better off
reallocating resources. For our model, however, this no-trade scenario never materialises at equilibrium.
This is because, contrary to extant models, in our case, agents are not endowed with any of goods 1
and 2. Yet, they can always play strategies such that they may, not only buy commodities 1 and 2, but
also guarantee their initial endowment of money. Thus, every agent makes a non-zero net trade at any
equilibrium.

It is alsoworth noting that any equilibriumof ourmodel is characterised by full employment of labour,
in line with all Ricardian models. The intuition behind this conclusion in our model is simple: workers
in (F ∪ H) derive no utility from leisure. Thus, their labour hours can always be “put to good use” on
the market(s). Of course, in our model, producing and selling more of any commodity will drive down
its price on the market. Yet, it suffices to note, for any worker n ∈ N that their allocations of every good
k ∈ {1, 2,m} are all increasing in labour hours.

Note that Proposition 1 does not guarantee that both goods are traded at equilibrium, nor does it say
which good is traded. A more meaningful result can be achieved through the imposition of a mild, nat-
ural assumption about workers’ preferences. We simply require that agents’ utility functions be strictly
concave and satisfy the Inada condition limxn,k→0(∂un/∂xn,k) = +∞, k = 1, 2. For notational conciseness,
let the class of utility functions satisfying this condition and Assumption 1 be denoted by UACI . Note
that UACI includes most utility functions used in international trade models, such as Constant Elastic-
ity of Substitution (which nest Cobb–Douglas, Dixit–Stiglitz, and Mill–Graham preferences), additively-
separable logarithmic, and Stone–Geary utility functions.

We are now in a position to present our first existence result. In Theorem 1, we prove that our model
is “well-behaved,” and admits equilibria as postulated by the RTCA.

Theorem 1. If un ∈ UACI for each n ∈ N , there exists an equilibrium in which countries produce and export

only the good in which they have a comparative advantage.

Our next existence result below shows that our model includes configurations of international trade that
are not possible in existing models. While specialisation in accordance with the RTCA does constitute
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an equilibrium, there also simultaneously exist other equilibria at which both countries produce only their
disadvantaged goods, even though comparative advantages are clearly present. Additionally, at such
equilibria, active international trade takes place in both goods on the world market, and it is driven solely
by strategic behaviour, without there being economies of scale, transportation costs or any other economic
friction.

Theorem 2. If un ∈ UACI for each n ∈ N , there also exists an equilibrium in which countries produce and export

only the good in which they have a comparative disadvantage.

Theorem 2 represents a severe, if not the severest, violation of the RTCA. Admittedly, that agents do not
wish to deviate, shifting some of their labour hours towards the good they are relatively more efficient at
producing, is most intriguing. Yet, the reason why this situation is tenable as an equilibrium is simple.
Agents perceive the influence of their individual buy-and-labour-supply decisions on the world equilib-
rium exchange rate of goods, and they make strategic use of this market power. Once the price-taking
assumption is abandoned, any unilateral perturbation in the amount bidden or the number of labour
hours offered adversely alters the equilibriumprices and allocations for anyworker. Consider anyworker
whowishes to shift his labour hours offered from themarket for his comparative-disadvantage good, say,
commodity 2, to that of commodity 1. In doing so, he automatically causes the price in the market for 1
to fall, in view of the increased supply for good 1. This implies that a lower price is now received, not
only for the marginal unit, but for all units of 1 produced and sold. At the same time, the market-clearing
price for good 2 soars, for there is now a relatively lower supply of the good. Again, this implies that a
higher price needs to be paid, not only for the marginal unit, but for all units of 2 purchased. The upshot
is that the worker’s consumption of commodities 1, 2 andm will change in a way which is unfavourable
to him. The same argument can be repeated for a contemplated shift of bids placed, or for a combined
shift of bids and offers across the two markets. Hence, given the strategies played by the other workers,
it pays to stay put.

The above conclusion holds true regardless of the size of the population, whether very large or very
small, so long as no individual agent is completely insignificant relative to the market (see more in §4).
Indeed, any individual agent who contributes nontrivially, no matter how little, to the aggregate bids
and/or offers and thus to the market-clearing prices, exerts a non-negligible degree of market power.9

9Novshek (1980) calls firms that are small but not insignificant relative to the market “non-infinitesimal firms.” He shows
that when the economy is populated by such firms, a Cournot market equilibrium exists. Unsurprisingly, this equilibrium is
only approximately competitive, because any individual non-infinitesimal firm still has an effect on price. This is in line with our
analyses in §§3 and 4.

9



Hence, the foregoing equilibrating apparatus remains in operation. A result of a similar nature is also
proved in Toraubally (2018, 2019) where, what at a glance appears to be a profitable deviation, turns out
not to be so for active market participants.

It is also relatively straightforward to deduce that the proof method we adopt does not preclude the
existence of other equilibria which run counter to the predictions of the RTCA. For example, there are
also exist equilibria at which each country produces both goods. For convenience, we collect this result
in the following corollary.

Corollary 1. If un ∈ UACI for each n ∈ N , there exists an equilibrium in which each country produces both

goods on the market.

3.3 Pareto rankability of imperfectly competitive N.E10

Peck et al. (1992) show that different offer-constrained equilibria can be Pareto ranked, although the
authors do not analyse which equilibria Pareto dominate. In Goenka et al. (1998), the authors show in
the context of an overlapping generations model with imperfect competition, that thicker markets (those
with larger offers) lead to Pareto superior equilibria. In view of the existence results in §3.2, it therefore
seems natural to wonder if there is a similar mechanism at work in our model.

We shall hereby enlighten this important matter by making extensive use of the Edgeworth box—like
Shapley and Shubik (1977) also do. The result is a highly intuitive, descriptive yet general, analysis en-
abling us to visualise the qualitative effects of strategic behaviour on the Pareto optimality and rankability
of various equilibria. Note that though simple, the Edgeworth box is powerful enough to portray almost
all phenomena and properties of general equilibrium exchange economies (Mas-Colell et al., 1995).

Consider the model described in §3. Assume, for now, that neither F nor H has a comparative ad-
vantage in the production of any good. W.l.o.g., let the labour endowments be such that each country
can produce one unit of either good, or any convex combinations thereof. Then country J ′s, J = F,H ,
production possibilities frontier (PPF) is described by

xJ,1 + xJ,2 = 1,

and the world PPF is described by
x1 + x2 = 2.

10It is a pleasure to thank Steve Spear, with whom the material in this section was developed over a long series of emails.
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Figure 1: Strategic vs price-taking behaviour
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(b) The Edgeworth Box

This economy looks just like a simple pure exchange economy, with the endowments given by the choice
of labour inputs on the country’s PPF. Consequently, this can be modeled in a simple Edgeworth box, as
in Panel (b) below. Assume that the total production of each good is one unit, so that the Edgeworth box
we generate maximises the total possibilities for each good, and hence, is derived from the world PPF as
in Panel (a).

In Panel (b), the green line shows the possible endowment points starting from complete specialisa-
tion in the lower right-hand corner—or, symmetrically in the upper left-hand corner. Given the assump-
tion of heterogeneous preferences across countries, the pink curve is the set of Pareto optimal allocations.

For the competitive case, i.e., a continuum of price-taking agents in each country, the equilibrium al-
location will be at the intersection of the pink curve and the green line, at C . Agents in this economy will
be indifferent between any production allocations that yield endowments on the green line. In this case,
if we now perturb the economy away from no comparative advantage to one where country F (H) has a
sufficiently small comparative advantage in producing good 1 (2), the optimal outcome for the competi-
tive case will be complete specialisation as per the RTCA, i.e., produce so that the endowment lies in the
lower right-hand corner. This is becausewith the comparative-advantage perturbation, complete special-
isation nowmaximisesworld output, and sharing the output of both goods dominates non-specialisation.
Here, non-specialisation would manifest itself as a change in the shape and size of the Edgeworth box
as we moved away from the specialisation corner. Hence, in a perfectly competitive environment, even
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a minor perturbation away from the no-comparative-advantage case yields a discontinuous jump in the
optimal production decisions.

The heavy (undotted) red and blue budget constraints/consumption possibilities frontiers11 (CPF)
show the situation for the imperfectly competitive economy (i.e., oligopolistic agents in each country),
starting from the specialised endowment point. The N.E outcome occurs where the two curves intersect
at Ξ , and we know that the N.E allocations are not Pareto optimal (Shapley and Shubik, 1977; Postle-
waite and Schmeidler, 1978). Because of the inoptimality, agents in each country would be better off if
they started trading from an endowment point at the N.E attained from pure specialisation—i.e., if each
country started out producing at Ξ as depicted in Panel (b) and then exchanged goods, they would end
up at a newN.E inside the lens-shaped region between the two indifference curves tangential to the initial
CPF. In other words, they would be better off by not specialising before any redistribution of the social
endowment takes place. Of course, as long as the N.E from whichever endowment point they start from
is not Pareto optimal, the two countries are better off reallocating production. This only stops being the
case at a Pareto optimal allocation. In fact, it is straightforward to see in Panel (b) that the allocations
generated as N.E starting from endowments on the green line can be strictly Pareto ranked.

Now, as we did with the competitive case, perturb the production functions so that country F (H)
has a sufficiently small comparative advantage in good 1 (2). Unlike the competitive case, we will not
see a discontinuous jump to specialisation because by continuity, the Pareto rankability of the N.E alloca-
tions does not disappear, and hence, by continuity, the imperfectly competitive agents will prefer having
slightly less goods available in order to maintain a higher welfare N.E allocation. Hence, we have an open
set of examples where equilibria of the type described in Corollary 1 Pareto dominate those described in
Theorem 1. One may, using this approach, also show the generic—in the sense of an open and dense set
of N.E—Pareto superiority of the equilibria in Theorem 2 over those in Theorem 1 by simply noting that
the intersection of the dashed CPF lies in the aforementioned lens-shaped region in Panel (b).

It should be possible to make a general argument via the fact that if each country (in the imper-
fectly competitive case) could produce a Pareto optimal endowment allocation in the no-comparative-
advantage case, then under perturbations away from no comparative advantage, they will move continu-
ously from a non-specialised production bundle to the specialised bundle as the extent of the comparative
advantage gets larger. �

11Dubey and Shubik (1978) dub the CPF “holdings surface.”
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3.4 Policy Implications: the sino-US trade dispute, and Venezuela examples

A few preliminary comments, to better frame the policy implications of our results, are in order. First,
as Ruffin (2003) argues,12 “the folk theorem that under oligopoly, free trade increases the gains from
trade [compared to the competitive case] through [a] pro-competitive effect is not true in general” (p.
332). The failure of this folk theorem is a manifestation of a more general problem: under oligopoly,
which is embodied by a finite number of agents, a specific trader cannot be completely negligible, such
that complete world production efficiency cannot obtain (see §3.3). Interestingly though, in such a sce-
nario, oligopolistic gains help to sustain/support the domestic import-competing industry, akin to how
import tariffs protect perfectly-competitive industries. Our results thus provide an alternative solution
to the traditional import protection argument, without needing any of dynamic and static economies of
scale, market segmentation, and decreasing marginal costs (see Krugman, 1984). This fact, together with
our findings in §§3.2 and 3.3, shows that when comparative advantages are shifting, much like the cur-
rent situation between China and the US, trade barriers should not always be the go-to measure. Free

international trade is itself powerful enough for all (oligopolistic) parties involved to reap the gains from
it, irrespective of where comparative advantages lie.

The above is substantiated by the empirical evidence. Arguably, the China–US trade war arose be-
cause of China’s dominance inmanufacturing, a sector inwhich theUS has historically had a comparative
advantage. Due to China’s newfound comparative advantage in this sector, the US in 2017 ran a bilat-
eral trade deficit in goods to the tune of $375 billion, or approximately $1.03 billion per day (Wall Street
Journal, 2018). If one is to believe the textbook case of specialisation as per the RTCA being mutually
beneficial to all engaged in it, why did these two economic powers erect trade barriers? The losses that
both countries incurred as a result of the imposition of trade impediments make for compelling reading.
Moody’s Analytics (2019) found that the China–US trade war had cost the US economy nearly 300,000
jobs, with the monetary losses reported to be in the range of 0.3%–0.7% of real GDP (Bloomberg Eco-
nomics, 2019). Bloomberg Economics (2019) predicted that the trade war would make the US economy
$316 billion worse off by late 2020, while recent research from the Federal Reserve Bank of New York
(2020) found that U.S. companies lost at least $1.7 trillion in stock prices as a result of US tariffs imposed
on imports from China. Of course, China was also not immune from substantial economic losses, and

12Ruffin’s (2003) results are driven by the use of Cobb–Douglas preferences, and sometimes by Mill–Graham preferences
(identical Cobb–Douglas preferenceswith identical product shares). Thus, our result is valid for a larger class of utility functions
than his. Note that the context in which Ruffin (2003) makes these observations is different to ours. Notwithstanding this fact,
his conclusions are still useful for our purposes.
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resorted to lowering tariffs for its other trading partners as it reduced its dependance on US markets
(Brookings, 2020).

The findings in §3.2, together with the above figures, also shed light on another facet of the RTCA:
its unsustainability and limited applicability in practical policy. Xie (2019) argues that the RTCA is too
static in nature for policy based on it to reap success. While RTCA-driven economic policy may succeed
in the short run, it is bound to fail in the long run. This is because the development model based on this
approach has an inherent destructive mechanism which leads to the deterioration of a country’s socio-
politico-economic environment. Consider China’s case. In the early 1990s, it adopted the traditional
RTCA as its blueprint for growth and made significant economic progress. It exploited its comparative
advantage in manufacturing based on cheap labour to usher in rapid economic growth. Yet, the 2007-8
financial crisis exposed the problematic nature of China’s industrial structure: the latter is made up of
technology-intensive and very large labour-intensive sectors pulling in opposite directions. This has cre-
ated a vicious circle. China’s international competitiveness in key, tech-heavy industries such as advanced
manufacturing and large aircraft production is seriously inadequate, and is today exhibiting a downward
trend. Hence, these sectors cannot be relied upon for maintaining, let alone stimulating, robust economic
growth. To maintain comparative advantage, wages in labour-intensive sectors must therefore be tightly
controlled and kept low at all times. This has widened the income gap between the tech- and labour-
intensive sectors, exacerbating domestic inequality. At the same time, very cheap Chinese exports have
adversely affected employment in the US, hence the change in US foreign policy, and the trade war. In
turn, the massive fall in US demand for Chinese products and the ensuing substantial economic losses
have had knock-on effects on domestic employment and growth in China. Thus, China finds itself in a
quandary. On the one hand, its large domestic labour force is heavily dependent on the international
market (especially demand) to keep employment levels healthy. On the other hand, if it persists with the
traditional RTCAmodel, and no suitable countermeasures are adopted, there will be significant negative
economic repercussions—e.g., the current trade war. Thus, the successful applicability and adaptability
of RTCA-oriented trade policy hinges crucially on which stage of its development a country is at.

The vicious circle described above is not specific to China. There is a wealth of empirical evidence
demonstrating the dangers of other economies blindly pursuing RTCA-driven specialisation. Promi-
nent examples include extremely resource-abundant countries such as the oil states in the Gulf, Nigeria,
Mexico and Venezuela (Sachs and Warner, 2001). Indeed, empirical growth studies classify natural re-
sources as a robust explanatory variable for poor economic growth (Sala-i-Martin, 1997; Doppelhofer et
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al., 2004). To drive home how poorly the RTCA fares absent the conditions for its successful applicability,
let us delve deeper into the economic landscape of Venezuela. While the reasons underlying its economic
underperformance are varied and not clear-cut, one which is ubiquitously encountered is the resource
curse argument (Auty, 1983), which runs counter to the classical RTCA explanations of growth advan-
tages. Venezuela is rich in—and has a comparative advantage in the production of—oil. In line with the
postulates of the RTCA, it proceeded to lay heavy emphasis on developing its oil industry. The prioriti-
sation of a single industry, alongside the lack of growth in non-resource sectors to diversify its industrial
system (Venables, 2016), led Venezuela to experience one of the worst-ever cases of Dutch disease (see,
e.g., Corden, 1984). Additionally, a key feature of resource-intensive economies is that they tend to have
higher general price levels. Inasmuch as businesses in these countries use domestic inputs and sell the
resulting products on international markets, their competitiveness suffers. These compounding factors
led to Venezuela’s gravely missing out on export-led growth (Sachs and Warner, 2001). Coupled with
a volatile macroeconomic environment (Murillo, 2000), and drastic cuts in public spending, a currency
devaluation, and inflation spiralling indefinitely, Venezuela went from being one of Latin America’s old-
est and most prosperous democracies, to one of its most impoverished nations (Naím and Toro, 2018).
The empirical evidence thus reinforces the fact that the optimality of RTCA-induced specialisation de-
pends not merely on comparative advantages, but a whole host of other equally, if not more, important
economic factors.

Our results, especially the discussion in §3.3, hence make an important theoretical contribution to our
understanding of current international trade issues. To wit, compared to the immediate post-World War
II era, industries today are characterised by market power concentrated in the hands of a few corpora-
tions (Freund and Pierola, 2015). This is true in agriculture, finance, manufacturing, and non-financial
services. Under the neoliberal trade consensus, the conventional wisdom around comparative advantage
has allowed large companies to engage in costly lobbying for special (almost protected) positions in trade
negotiations, often to the detriment of smaller, less powerful firms or less concentrated sectors. What the
findings in this paper prove is that when firms have market power, trade negotiations need focus only on
engaging in free international trade, without regard to issues of comparative advantage. �

It should by now be abundantly clear that strategic considerations by agents are a powerful determinant
of the resulting equilibrium market structure. By extension, strategic behaviour thus drives the failure
or prevalence of the RTCA. In the next section, we prove this point: even when the number of agents in-
creases without bounds, the RTCA fails if agents behave strategically, such that completeworld efficiency
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is still not achieved. Notably, this is different to the approaches in C–G and Ruffin (2003). In particular, as
alluded to in §2, C–G show that as the number of agents in their model becomes large enough (not neces-
sarily infinite), the predictions of the RTCA are restored. That is, Ricardian specialisation turns out to be
optimal even in imperfectly competitive/oligopolistic environments, where agents have market power.
So, the analysis that follows is not about the well-known fact that perfect competition is not implied by
a large number of agents. Rather, it is about the predictions of the RTCA not materialising so long as
strategic behaviour persists.

4 The Ricardian market game Γ∞ with a countable infinity of agents

We consider an economy featuring a purely atomic measure space of agents (N,N , µ), whereN = F ∪H ,
with F =

{
fi
}∞
i=1

andH =
{
hi
}∞
i=1

. N is the collection of all µ-measurable subsets ofN , and µ is a totally
finite complete positive σ-additive measure onN .13 All our assumptions about the technologies and the
mobility of workers are as described previously. Naturally, we require that the total endowments in the
economy of labour hours, and commoditym, be such that∑n∈N Qn ·µ(n) <∞, and∑n∈N en,m ·µ(n) <

∞. The strategy set of each n ∈ N is defined as:

Sn =
{(
bn, ln

)
∈ R2

+ × R2
+ :

2∑
k=1

ln,k ≤ Qn;

2∑
k=1

bn,k ≤ en,m
}
.

Let (Rω, τP ) denote the space of all real-valued sequences endowed with the product topology, and let
S∞ :=

∏
n∈N Sn ⊂

(
Rω, τP

). Then, given a strategy profile (b, l) ∈ S∞, we let Bk :=
∑

n∈N bn,k · µ(n),
φk :=

∑
f∈F

lf,k·µ(f)
aFk

+
∑

h∈H
lh,k·µ(h)
aHk

, B−n,k :=
∑

i∈N\{n} bi,k · µ(i), and φ−n,k :=
∑

f∈F\{n}
lf,k·µ(f)
aFk

+∑
h∈H\{n}

lh,k·µ(h)
aHk

. The consumption allocation of every commodity k ∈ {1, 2,m}, for any worker j ∈
J, J = F,H , is determined thus:

xj,k =


bj,k

φk
Bk

where k ∈ {1, 2}, and Bk · φk 6= 0;

0 where k ∈ {1, 2}, and Bk · φk = 0;

xj,m = ej,m −
2∑

k=1

bj,k +
2∑

k=1

lj,k

aJk

Bk
φk
,

where, as before, Bkφk = φk
Bk

:= 0 whenever Bk · φk = 0. The trading post for good k ∈ {1, 2} is said to be
13An atom of (N,N , µ) is a set A such that µ(A) > 0, and for any B ⊆ A, we either have µ(B) = 0 or µ(A \B) = 0.
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active if Bk ·φk > 0. Given a profile (b, l) ∈ S∞, agents are viewed as solving the same problem as in (1).
We are now ready to state our main result for this section. This the same conclusion as in Theorems

1 and 2, but restated for a context with a countable infinity of agents. As remarked in the preamble to
§4, in C–G’s Ricardian market game, the RTCA no longer fails as the number of agents increases without
bounds, whether or not these agents are large and/or small.14 What simply drives, or stifles, trade in
C–G’s model is the number of agents, whereas here, it is their nature that matters. Moreover, to the best
of our knowledge, this is the most general framework to date in which the RTCA has been shown to fail
in purely Ricardian economies, with no frictions of any kind.

THEOREM 3. If un ∈ UACI for each n ∈ N , there exists an equilibrium in which countries produce and export

only the good in which they have a comparative advantage. There also simultaneously exists an equilibrium in

which countries produce and export only the good in which they have a comparative disadvantage.

A distinction is opportune: the set of equilibria in which the RTCA holds is a proper subset of the set
of equilibria of frictionless economies with infinitely many agents. Indeed, as Theorem 3 makes clear,
frictionless economies featuring large numbers of agents are not synonymous with the prevalence of
the RTCA. Some further qualifications are needed for that (see the next section). To be mathematically
precise, it is the measure of individual agents (or sets of agents) that matters. In particular, even with
uncountably many agents, and a purely nonatomic measure, an equilibrium in which agents behave as
per the predictions of the RTCA may still not exist—e.g., if the set of agents is the Cantor set, such that
autarky then becomes the unique equilibrium.

To complete our analysis, we will extend the model(s) that we have analysed so far to a setup with an
atomless continuum of workers in each country. In this context, workers have no market power whatso-
ever. We show that the RTCA is restored, and we establish the conditions under which N.E of our model
are also Walrasian equilibria, thus providing a Cournotian foundation to the traditional RTCA.

5 The Ricardian market game Γc with a continuum of agents

We let the set of agents be denoted by N = F ∪H , where F = (0, 1] and H = (1, 2]. The collection of all
half-open intervals in (0, 2] defined by S = {(a, b] : a, b ∈ N}, where (a, b] = ∅ if b ≤ a, is a semiring. Let
the set function ν : S → [0,∞) be such that ν ((a, b]) = b − a. Then, ν is a σ-finite measure on S , and

14In C–G and Ruffin (2003), there is a threshold number of Cournot traders belowwhich there is world economic inefficiency,
but above which complete world production efficiency prevails.

17



it generates a nonnegative extended real-valued set function µ, the Carathéodory extension of ν, defined
on P(N). Let N denote the collection of all the µ-measurable subsets of N . Then, N is a σ-algebra, and
µ is the Lebesgue measure when restricted to N . Hence, the triple (N,N , µ) is a complete, finite, and
atomless measure space of agents. Any individual worker n—andmore generally, anyW ∈ N , such that
µ(W) = 0—is without influence on the market(s), and will therefore, w.l.o.g., always be ignored. The
strategy sets of agents are described by a measurable correspondence S : N ⇒ 2R

4
+ , such that

S(n) =
{

(b, l) ∈ R4
+ :

2∑
k=1

lk(n) ≤ Q(n);

2∑
k=1

bk(n) ≤ em(n)
}
.

A strategy profile is a pair of measurable mappings b : N → R2
+ and l : N → R2

+, such that (b(n), l(n)) ∈

S(n) a.e inN , i.e., a strategy profile is ameasurable choice from the graph of the correspondenceS,Gr(S).
It is easily seen thatS : N ⇒ 2R

4
+ has ameasurable graph, and therefore suchmappings exist, byAumann’s

Measurable Selection Theorem. For a given strategy profile (b, l) ∈ Gr(S), we define Bk =
∫
N bk(n)dµ(n),

and φk = 1
aFk

∫
F lk(f)dµ(f) + 1

aHk

∫
H lk(h)dµ(h). As previously, transactions at each trading post clear

through the price pk = Bk/φk. Consumption assignments of each commodity k ∈ {1, 2,m}, to any
worker j ∈ J, J = F,H , are determined as shown:

xk(j) =


bk(j)

φk
Bk

where k ∈ {1, 2}, and Bk · φk 6= 0;

0 where k ∈ {1, 2}, and Bk · φk = 0;

xm(j) = em(j)−
2∑

k=1

bk(j) +
2∑

k=1

lk(j)

aJk

Bk
φk
,

where as in the previous section, any division by zero, including 0/0, is taken to equal zero. The trading
post for good k ∈ {1, 2} is said to be active if Bk · φk > 0.

Given a profile (b, l) ∈ Gr(S), agents are viewed as solving the same problem as in (1). For the sake
of completeness, we next define an N.E for our game.

Definition 1. A strategy profile (b∗, l∗) ∈ Gr(S) is an N.E of the market game iff 15

un

(
x
(
b∗(n), l∗(n), B,Q

))
≥ un

(
x
(
b(n), l(n), B,Q

)) for all (b(n), l(n)) ∈ S(n), µ-a.e, n ∈ N.
15As in Dubey and Shapley (1994), u : N × R3

+ → R given by u(n, x) = un(x) is assumed to be measurable (where N × R3
+

is equipped with the σ-field generated by the product ofN and the Borel sets of R3
+).
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5.1 Nash equilibria, Walrasian equilibria, and further comments

In this subsection, we will analyse the equilibrium properties of the market game with a continuum of
agents. Our main result is formalised in the following proposition:

Proposition 2. At any N.E of Γc with positive bids and offers, the RTCA holds.

The above conclusion, together with our analyses in §§3 and 4, establishes the fact that the failure of
the RTCA operates in tandem with strategic behaviour. The RTCA holds in the current context because
individual agents have nomarket power with which to influence themarket-clearing prices and resulting
allocations. Hence, price-taking behaviour prevails. This needs no further elaboration, as this conclusion
is consistent with the findings of existing international trade models.

What needs to be elucidated, however, is the following crucial issue: does the fact that the economy is
now populated only by price-taking agents mean that any N.E allocation of this model is also a perfectly-
competitive outcome? As the reader may have already guessed, this need not be the case. If we are
to establish a link between competitive (Walrasian) equilibria, and Nash equilibria when the latter are
based on a commodity money which is fixed in supply, we must tackle the question of liquidity. This is
simply because in a Walrasian equilibrium, it is only the relative prices of commodities that matter, such
that liquidity constraints are irrelevant. On the other hand, a strategic market game’s defining feature is
that of fiscally-driven trade. As a result, if traders are bindingly financially-constrained at an N.E, then
it is possible that the latter not be a competitive equilibrium (and vice versa). Thus, to circumvent this
problem, traders must be given enough money. But what constitutes “enough” money? Borrowing from
Dubey and Shapley (1994), we say that for an N.E to have prices and allocations that are competitive,
all (except for possibly a measure-zero set of) traders must be “interior,” i.e., they must willingly stop
spending before their liquidity limits are reached.

In view of the above, following Dubey and Shapley (1994), we formalise this notion. Let (b∗, l∗) ∈

Gr(S) be given. The resulting allocation x∗ and price vector p∗ = (p∗1, p
∗
2, 1) ∈ R3

+ are defined to constitute
a Walrasian equilibrium if

1. (b∗, l∗) ∈ Gr(S) is an active N.E of Γc, and;

2. µ-a.e, n ∈ N,
2∑

k=1

b∗k(n)� em(n).

We next provide two examples which will shed light on all of the above points.
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5.1.1 Example 1: An N.E which is not Walrasian

We let the set of agents be defined as in §5 above. Both countries F andH have differing constant-returns-
to-scale technologies to produce goods 1 and 2, and the consumption set of each agent is a subset of R3

+.
Every player µ-a.e, n ∈ N possesses 10 units of commodity m, and each agent is endowed with labour
hours as shown below:

Q(n) = 6, µ-a.e, n ∈ N.

The technologies possessed by each country for the production of the two goods are as follows:

(aF1 , a
H
1 ) = (32 , 4);

(aF2 , a
H
2 ) = (157 , 5).

The preferences of the agents are represented by the following utility functions:

uf (x) = 9
4 ln(x1(f)) + 3

2 ln(x2(f)) + 2 ln(xm(f)), µ-a.e, f ∈ F ;

uh(x) = 94 ln(x1(h)) + 16 ln(x2(h)) + 30 ln(xm(h)), µ-a.e, h ∈ H.

In light of the above, it can be verified that the following profile of strategies constitutes an N.E:

(
b1(f), b2(f), l1(f)/aF1 , l2(f)/aF2

)
= (6, 4, 4, 0), µ-a.e, f ∈ F ;(

b1(h), b2(h), l1(h)/aH1 , l2(h)/aH2
)
= (9411 ,

16
11 , 0,

6
5), µ-a.e, h ∈ H.

The corresponding market-clearing prices to the strategies above are:

(p1, p2) = (4011 ,
50
11),

and each agent ends up with consumption as follows

(
x1(f), x2(f), xm(f)

)
= (3320 ,

22
25 ,

160
11 ), µ-a.e, f ∈ F ;(

x1(h), x2(h), xm(h)
)
= (4720 ,

8
25 ,

60
11), µ-a.e, h ∈ H.

20



However, this economy has a unique Walrasian equilibrium, with

(
x1(f), x2(f), xm(f)

)
= (39241921 ,

1962
2035 ,

4360
293 ), µ-a.e, f ∈ F ;(

x1(h), x2(h), xm(h)
)
= (37601921 ,

96
407 ,

1500
293 ), µ-a.e, h ∈ H.

and (relative) market-clearing prices

(p1, p2) = (96051172 ,
10175
879 ).

Clearly, the N.E strategy profile presented in this example does not satisfy condition 2 as laid out in §5.1.
As such, the resulting N.E allocation fails to be Walrasian. In particular, when an agent is bindingly
financially-constrained, there exist other bundles which s/he would have preferred to the N.E allocation,
but cannot afford. The agent “suffers” from a lack of liquidity. However, this does notmean that all agents
are worse off at the non-Walrasian equilibrium than they are at the Walrasian one. In fact, this example
has the following interesting characteristic: while trade at the N.E above takes place in accordance with
the RTCA, a quick calculation shows that ∫N un(xN.E)dµ(n) >

∫
N un(xWalras)dµ(n)—i.e., the gains from

trade at the N.E are larger than they are in the Walrasian case. This reaffirms the well-known fact that
while a Walrasian equilibrium is Pareto efficient, there is no reason to assume that this allocation is not
distributionally unjust and highly inequitable. This point, while innocuous, must be borne in mindwhen
comparing different equilibrium allocations. �

5.1.2 Example 2: An N.E which is also Walrasian

We let the set of agents be defined as in §5. Both countries F and H have differing constant-returns-to-
scale technologies to produce goods 1 and 2, and the consumption set of each agent is a subset of R3

+.
Every player µ-a.e, n ∈ N possesses 10 units of commodity m, and each agent is endowed with labour
hours as shown below:

Q(n) = 6, µ-a.e, n ∈ N.

The technologies possessed by each country for the production of the two goods are as follows:
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(aF1 , a
H
1 ) = (32 , 4);

(aF2 , a
H
2 ) = (157 , 5).

The preferences of the agents are represented by the following utility functions:

uf (x) = 18 ln(x1(f)) + 9 ln(x2(f)) + 33 ln(xm(f)), µ-a.e, f ∈ F ;

uh(x) = 12 ln(x1(h)) + 3 ln(x2(h)) + 27 ln(xm(h)), µ-a.e, h ∈ H.

It may be verified that the following profile of strategies constitutes an N.E:

(
b1(f), b2(f), l1(f)/aF1 , l2(f)/aF2

)
= (6, 3, 4, 0), µ-a.e, f ∈ F ;(

b1(h), b2(h), l1(h)/aH1 , l2(h)/aH2
)
= (4, 1, 0, 65), µ-a.e, h ∈ H.

The corresponding market-clearing prices to the strategies above are

(p1, p2) = (52 ,
10
3 ),

and each agent ends up with consumption

(
x1(f), x2(f), xm(f)

)
= (3320 ,

22
25 ,

160
11 ), µ-a.e, f ∈ F ;(

x1(h), x2(h), xm(h)
)
= (4720 ,

8
25 ,

60
11), µ-a.e, h ∈ H.

(relative) prices and allocations which can be verified to be Walrasian as well. �

6 Conclusion

In this paper, we have provided a comprehensive treatment of the RTCA from amarket-game perspective.
We have shown that the law of comparative advantage does not always hold true. Free trade does not
necessarily lead countries to specialise based on comparative advantages. We have also proved that even
in large economies consisting of a countable infinity of agents, the RTCA still fails. Verily, the statements
that “It is this principle [of comparative advantage] which determines that wine shall be made in France
and Portugal, that corn shall be grown in America and Poland, and that hardware and other goods shall
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be manufactured in England” (Ricardo, 1817: p. 90), and “Even with economies of scale and imperfectly
competitivemarkets, for a wide variety of market structures, differences in the characteristics of countries
are a major predictor of the pattern of trade” (Helpman and Krugman, 1986: p. 261), must be tempered:
it is only when agents are price-taking and perfectly-competitive (so that equilibria are not trivial), as
opposed to being strategic, that the RTCAprevails. We conclude that the failure of the RTCA is, therefore,
intimately related to the introduction of even the slightest hint of strategic element in agents’ decision-
making process.

Certainly, our model of international trade is stylised, and we do not claim that it constitutes a unify-
ing framework that accurately captures the intricacies of any particular type of trade between countries.
Notwithstanding this fact, we believe that our simple formulation does still provide an alternative, but
equally plausible explanation of the current goings-on in the international scene. More precisely, it makes
a compelling case for countries to engage in, and benefit from free international trade, even when no spe-
cialisation as per the RTCA takes place.

In terms of future research, considering the finite- and infinite-agent contexts analysed in this work,
a meaningful problem to address would be whether the failure of the RTCA as we have studied also
applies to Ricardian frameworks with infinitely many goods of the kind proposed by Dornbusch et al.
(1977). Another interesting avenue would be to, in view of our conclusions, test whether the RTCA also
fails in a laboratory setting. As evidenced by the studies in Jiang et al. (2021), Ding and Puzzello (2019),
Barreda-Tarrazona et al. (2018), and Duffy et al. (2011), the market game framework lends itself well to
experiments (and international economics). The simplicity of the model we put forth should make this
endeavour feasible.

Appendix

Proof of Proposition 1. Suppose that the trivial outcome of no bids being placed and no offers being made
were an N.E for our market game, and let this N.E strategy profile be denoted by ζ = {(bn, ln)}n∈N =

(0,0). Choose some j ∈ J, J = F,H , and let the strategies of all n ∈ N \ {j} be given. Next, choose
any sufficiently small ε > 0, and consider for j, the strategy ζεj =

{
(bεj,k, l

ε
j,k)
}2
k=1

=
{

(ε, aJk · ε)
}2
k=1

. This
strategy generates a market-clearing price pk = 1 in all markets for commodities k ∈ {1, 2}. In particular,
for j ∈ J , j’s consumption of every good k is equal to ε, such that j’s total bids, and total revenue from
the labour hours offered are both equal to 2ε. So, for every k ∈ {1, 2}, we have that xζεj,k > xζj,k = 0, while
xζ

ε

j,m = xζj,m > 0. Given that for all xj ∈ R3
++,

∂uj
∂xj,k

> 0, k = 1, 2,m, it follows that for j, we must have
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uj(x
ζε

j ) > uj(x
ζ
j ), thereby contradicting the claim that ζ was an N.E. So we know that there is a k ∈ {1, 2},

the market for which is active at equilibrium.
We now show that every agent buys at least one k ∈ {1, 2} at equilibrium. There are 2 N.E scenarios to

consider: (i) the market for, say, good 1 is active while no one trades in good 2, and; (ii) both markets are
active. Consider Case (i). Suppose, by way of contradiction, that at an N.E, which we call ϑ, there were
a worker j ∈ J, J = F,H , who did not trade at all. Then, for δ > 0 and sufficiently small, by playing the
strategy (bδj,1, l

δ
j,1) := (δB−j,1, δa

J
1φ−j,1) in the market for good 1, and (bδj,2, l

δ
j,2) := (δ, aJ2 · δ) in the market

for good 2, worker j can ensure that s/he gets xϑδj,k > xϑj,k = 0, for every k ∈ {1, 2} while xϑδj,m = xϑj,m > 0,
such that un(xϑ

δ

j ) > un(xϑj ), thus contradicting the claim that ϑ was an N.E. Consider Case (ii) now.
Again, by way of contradiction, assume that at an N.E, ϑ, there were a worker j who did not trade at all.
Then, for δ > 0 and sufficiently small, by playing the strategy {(bδj,k, l

δ
j,k)
}2
k=1

=
{

(δB−j,k, δa
J
kφ−j,k)

}2
k=1

,
worker j can ensure that s/he gets xϑδj,k > xϑj,k = 0 for every k ∈ {1, 2}, while xϑδj,m = xϑj,m > 0, such that
un(xϑ

δ

j ) > un(xϑj ), a contradiction. Hence, at any N.E, all agents trade in at least one k ∈ {1, 2}.

While the proofs for Theorems 1 and 2 are very similar in essence, the findings in Theorem 2 are novel,
to the extent that they may even appear “counterintuitive” at first glance. We therefore deem it more
instructive to prove Theorem 2 first, providing an explicitly labelled step-by-step breakdown of the latter,
which should help to dispel any reservation the reader may have. Theorem 1 can subsequently be proved
using the same method. Below, we provide a non-technical roadmap to the proof of Theorem 2.

Our approach consists of first proving that all the conditions for successfully applying Kakutani’s
fixed-point theorem (KFT) in a partially offer-constrainedmarket game are met. To this end, we begin by
showing in Lemma 1 that the consumption possibilities set16 (CPS) of each agent is convex. This allows
us to demonstrate that each agent’s optimisation problem is well-behaved, and the first-order conditions
necessary and sufficient. That is, any N.E is completely characterised by the first-order conditions. Con-
vexity of the CPS is also needed to prove that our correspondence of interest, Θn (which we define later
in our proof) is convex-valued. In Lemma 2, we prove that the CPS of every agent is compact. This is
needed to exhibit that a best-response to every agent’s optimisation problem actually exists. We then
derive and use the first-order conditions to prove that equilibrium bids for all agents are bounded away
from zero. This result allows us to show that the payoff function for every n is continuous, andΘn upper
hemicontinuous. We then use KFT to prove the existence of an active equilibrium. Our next task consists
of showing that the constrained market game equilibrium obtained is also an N.E of the unconstrained

16This is just the budget set of the agent, i.e., the set of all feasible allocations, given the strategies of all the other players.
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game. We do so through Lagrange multiplier methods. Our desired result is finally achieved by taking
the limit of a sequence of N.E of partially offer-constrained games.

Lemma 1. The consumption possibilities set (CPS) for each n ∈ N is (strictly) convex.

Proof. First, note that convexity of the CPS cannot be established as in standard market game models.
This is because, as opposed to the latter, in which agents are endowed with at least one commodity
k ∈ {1, 2}, in our formulation, agents are not endowed with any of goods 1 and 2. We will therefore
adopt an approach different from those which are routinely used in the literature. So, letMn denote the
set of all feasible allocations for any n ∈ N . Let x′n and x′′n ∈ Mn, where x′n and x′′n are obtained by the
vectors of strategies (b

′
n, l
′
n) and (b

′′
n, l
′′
n), respectively. We need to show that, given the strategies of all the

other agents, for all λ ∈ [0, 1], λx′n + (1− λ)x
′′
n ∈Mn—i.e., if x∗n ≡ λx

′
n + (1− λ)x

′′
n, then we want to show

that ∃(b∗n, l
∗
n) feasible such that x(b

∗
n, l
∗
n) = x∗n. So, first, fix any λ ∈ [0, 1], which we will use throughout the

whole proof. Consider next a commodity k ∈ {1, 2}, and define,

x
′
n,k = x(b

′
n,k, l

′
n,k);

x
′′
n,k = x(b

′′
n,k, l

′′
n,k).

In what follows, for ease of exposition, we drop the n subscript. Now, notice that the statement of Lemma
1 is trivially true if x′k · x

′′
k = 0. Hence, we prove it for the case when x′k · x

′′
k > 0. W.l.o.g, let l′′k ≥ l

′
k. Since

xk is increasing in lk (holding bk constant), it must be true that

x
′
k = x(b

′
k, l
′
k) ≤ x(b

′
k, l
′′
k) ≡ x̄k.

But xk is strictly concave in bk (holding lk constant), such that we have

x∗k = λx
′
k + (1− λ)x

′′
k

≤ λx̄k + (1− λ)x
′′
k= λx(b

′
k, l
′′
k) + (1− λ)x(b

′′
k , l
′′
k)

< x(λb
′
k + (1− λ) b

′′
k , l
′′
k) ≡ x(bλk , l

′′
k).

xk is continuous, and increasing in bk (holding lk constant). So, define a continuous surjection Ωl′′ :

[0, bλk ] → x(·, l′′k).17 Now, observe that 0 = Ωl′′ (0) < x∗k < Ωl′′ (b
λ
k), and hence, ∃b∗k ∈ (0, bλk) such that

17More precisely, Ωl′′ : [0, bλk ]→ x(·, l
′′
k ) is such that for any b̂k ∈ [0, bλk ],we have Ωl′′ (b̂k) = x(b̂k, l

′′
k ).
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Ωl′′ (b
∗
k) = x∗k, by the Intermediate Value Theorem (IVT). Certainly, the same procedure can be followed for

commodity t ∈ {1, 2} \ {k}. We thus have that the set of feasible allocations of commodities produced
is strictly convex. We next need to perform an appropriate analysis for xm. This is because xm is already

determined by ((bk, lk))2k=1
, and thus, the previous method (of applying the IVT) cannot be used for this

part of the proof. Moreover, note that as opposed to standard market game models,18 in our setup, xm is
not expressible as an explicit—but instead as an implicit—function of (xk)

2
k=1.

So, consider x′ , x′′ ∈M , where x′ =
(
(x
′
k)

2
k=1, x

′
m

) is induced by ((b
′
k, l
′
k))

2
k=1, and x

′′
=
(
(x
′′
k)2k=1, x

′′
m

)
is induced by ((b′′k , l′′k)

)2
k=1

, and (x
′
k)

2
k=1, (x

′′
k)2k=1 are as in the first part of the proof. We need to show that

given x′m and x′′m, then, for λ ∈ [0, 1] as in the first part of our proof, we have that λx′m + (1− λ)x
′′
m is still

attainable. In particular, since all ((x′k)2k=1, x
′
m

)
,
(
(x
′′
k)2k=1, x

′′
m

)
∈M are surjective and continuous in b and

l, if we prove that λx′m + (1 − λ)x
′′
m ≤ x∗m, where x∗m corresponds to (x∗k)

2
k=1 induced by ((b∗k, l∗k))2k=1

as
above, thenwewill be done. So, let xm = em+

∑2
k=1((lkBk/a

J
kφk)−bk) be denoted by em+

∑2
k=1 zk(bk, lk),

and define

zk(b
′
k, l
′
k) = z

′
m,k;

zk(b
′′
k , l
′′
k) = z

′′
m,k.

Again, w.l.o.g., consider first a commodity k ∈ {1, 2}. In keeping with the analysis in the first part of our
proof, we let l′′k ≥ l

′
k. As zm,k is increasing in lk (holding bk constant), we have that

z
′
m,k = zk(b

′
k, l
′
k) ≤ zk(b

′
k, l
′′
k).

Now, since zm,k is linear in bk (holding lk constant), we have that

zλm,k ≡ λz
′
m,k + (1− λ) z

′′
m,k = λzk(b

′
k, l
′
k) + (1− λ) zk(b

′′
k , l
′′
k)

≤ λzk(b
′
k, l
′′
k) + (1− λ) zk(b

′′
k , l
′′
k)

= zk(λb
′
k + (1− λ)b

′′
k , l
′′
k) ≡ zk(bλk , l

′′
k).

The above set of relations can be summarised as zλm,k ≤ zk(b
λ
k , l
′′
k). Now, from the first part of our proof,

18See Dubey and Shubik (1978), Peck et al. (1992), and Toraubally (2018) for cases in which xm is expressed as a concave
function of (xk)2k=1.
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we have that x∗k = x(b
∗
k, l
′′
k), where b∗k ∈ (0, bλk). Since zm,k is decreasing in bk (holding lk constant),

zλm,k = λz
′
m,k + (1− λ) z

′′
m,k ≤ zk(bλk , l

′′
k) < zk(b

∗
k, l
′′
k).

Certainly, the same algorithm can be applied to good t ∈ {1, 2} \ {k}. So:

zλm,k < zk(b
∗
k, l
′′
k) ∀k ∈ {1, 2}w�

2∑
k=1

zλm,k <
2∑

k=1

zk(b
∗
k, l
′′
k)~�

λ

2∑
k=1

z
′
m,k + (1− λ)

2∑
k=1

z
′′
m,k <

2∑
k=1

zk(b
∗
k, l
′′
k)~�

λ
(
em +

2∑
k=1

zk(b
′
k, l
′
k)
)

+ (1− λ)
(
em +

2∑
k=1

zk(b
′′
k , l
′′
k)
)
< em +

2∑
k=1

zk(b
∗
k, l
′′
k)~�

λx
′
m + (1− λ)x

′′
m < x∗m.

With this, we have shown that the consumption possibilities set is indeed (strictly) convex.

Given the concavity of utility functions and convexity of the CPS, we may switch to strategy space to
derive the first-order necessary and sufficient conditions, which are as follows:

∂un
∂xn,k

·

(
B−n,kφk(
Bk
)2
)

= λbn +
∂un
∂xn,m

·
(
φ−n,k
φk

)
− λb≥0n,k ;

∂un
∂xn,k

·
(
bn,k

aJkBk

)
= λln −

∂un
∂xn,m

·
(
φ−n,k
(φk)2

· Bk
aJk

)
− λl≥0n,k ,

 k ∈ {1, 2} (2)

where J = F,H , depending on which country n is a member of.

Lemma 2. The CPS for each n ∈ N is compact.

Proof. We first prove that the CPS is closed. Consider any n ∈ N , let n’s strategies be denoted by sn ∈ Sn,
and let the strategies of all agents in N \ {n} be given. Next, consider any sequence of strategies {srn}r∈N
in Sn and the corresponding allocations {xn(srn)}r∈N. For all r ∈ N, we have that srn ∈ [0, en,m]2× [0, Qn]2,
a compact subset of R2

+×R2
+. Hence, by extracting a subsequence if necessary, we have that limr→∞ s

r
n =
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s∗n ∈ Sn. But xn(·) is continuous in sn, such that limr→∞ xn(srn) = xn(s∗n), which clearly lies in n’s CPS.
Thus, n’s CPS is closed. Next, since Sn is compact and xn(·) continuous in sn, we have that xn(·) is also
bounded, by the Boundedness Theorem.

Beforemoving on to ourmain proof, we introduce the following definition of a partially offer-constrained
game. We do so by modifying Peck et al.’s (1992) (fully) offer-constrained game.

Definition 2. For every f ∈ F , h ∈ H , and a, b = 1, 2, set lf,a to be such that lf,a ≥ F , and lh,b to be
such that lh,b ≥ H , where F ,H ≥ 0, and ln,1 + ln,2 ≤ Qn ∀n ∈ N . Let Sf (lf,a ≥ F ) =

{(
bf , lf

)
∈

R4
+ :

∑2
k=1 bf,k ≤ ef,m;

∑2
k=1 lf,k ≤ Qf ; lf,a ≥ F

}, and Sh(lh,b ≥ H ) =
{(
bh, lh

)
∈ R4

+ :
∑2

k=1 bh,k ≤

eh,m;
∑2

k=1 lh,k ≤ Qh; lh,b ≥ H
}. The partially offer-constrained market game Γ (lf,a ≥ F ; lh,b ≥ H ) is

constructed from Γ by replacing the strategy set R4|N |
+ ⊃ S =

∏
f∈F Sf ×

∏
h∈H Sh with the strategy set

R4|N |
+ ⊃

∏
f∈F Sf (lf,a ≥ F )×

∏
h∈H Sh(lh,b ≥H ).

In the next result, we analyse a partially offer-constrained game, and we first demonstrate that at any N.E
of such a game, every agent j ∈ J, J = F,H , purchases a strictly positive amount of each commodity
k ∈ {1, 2}. We then make systematic use of a limiting argument to prove the more specific properties of
the equilibria under consideration.

Proof of Theorem 2. In the first part of our proof, we will establish the existence of an equilibrium, the
nature of which we will derive later. Along the way, we will sometimes use and modify as needed ar-
guments from Dubey and Shubik (1978) and Spear (2003). For ease of exposition, we will introduce
two mappings A : N → {1, 2} and D : N → {1, 2}, where A and D map workers to the good in
which they have a comparative advantage, and disadvantage, respectively. Consider the market game
Γ (lj,D(j) ≥

Qj
2 ), in which the labour hours offered by each j ∈ J, J = F,H, towards the good in which

country J has a comparative disadvantage are constrained to be at least half their initial endowment of
labour hours.

Step 1. Proving each n’s best-response set is non-empty

Pick any worker n ∈ N , and let n’s strategy set in Γ (lj,D(j) ≥
Qj
2 ) be denoted by S̃n. We will use the

notation s̃n ∈ S̃n to denote the strategies of worker n, and s̃−n = (s̃1, . . . , s̃n−1, s̃n+1, . . . , s̃|N |) ∈ S̃−n the
strategies of all agents but n. Let n’s consumption possibilites set in Γ (lj,D(j) ≥

Qj
2 ) be denoted by

M̃n =
{
xn ∈ R3

+ : xn,m = en,m −
2∑

k=1

bn,k +

2∑
k=1

ln,k

aJk
pk and xn,k =

bn,k
pk

, k = 1, 2, where (bn, ln) ∈ S̃n
}
.
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Before proceeding, let us prove that n′s best-response set is non-empty. This follows from Weierstrass’

Theorem: u(·) is a continuous function of xn, where xn ∈ M̃n, which by (a simple modification of) Lemma
2 above is compact. Thus, we know that a solution to n’s maximisation problem exists.

Step 2. Proving all equilibrium bids are uniformly bounded above zero

• Case 1: Pick any n ∈ N , and suppose that n’s liquidity constraint is slack, i.e., b∗n,1 + b∗n,2 � en,m.

We prove that for any k ∈ {1, 2}, there exist positive constants D1 and D2, such that p∗k =
B∗k
φ∗k

< Dk <∞,
where p∗k, B∗k, φ∗k represent, respectively, the price, aggregate bids, and aggregate offers, at equilibrium.
To establish the existence of Dk, k = 1, 2, consider w.l.o.g., any f ∈ F , and let us look at commodity
D(f)—which is in fact commodity A (h) for any h ∈ H . By the Inada condition, we know that for any
n ∈ N , b∗n,1 · b∗n,2 > 0. Thus, we may derive

p∗D(f) =
B∗D(f)

φ∗D(f)

<

∑
n∈Nen,m

φ∗D(f)

≤
2aFD(f)

∑
n∈Nen,m∑

f∈FQf
≡ DD(f),

where the second (weak) inequality follows from the fact that by construction, lf,D(f) ≥
Qf
2 . Performing

the same operation for commodity A (f) yields DA (f) = (2aHA (f)

∑
n∈Nen,m)/

∑
h∈HQh. Now, consider

for n the following equation from (2):

∂un
∂xn,k

·

(
B∗−n,kφ

∗
k(

B∗k
)2
)

=
∂un
∂xn,m

·
(
φ∗−n,k
φ∗k

)
.

As p∗k < Dk, simple manipulation of the above reveals that at any N.E with non-binding liquidity con-
straint, we must have

∂un/∂xn,k
∂un/∂xn,m

<
B∗kDk

B∗−n,k
.

Now, note that by the Inada condition, limbn,k→0
∂un/∂xn,k
∂un/∂xn,m

=∞, while limbn,k→0
B∗kDk
B∗−n,k

= Dk <∞. Hence,
there must exist a uniform lower bound bn,k � 0 on trader n’s bid for k. The same argument can be
repeated for commodity t ∈ {1, 2} \ {k}. Thus, at equilibrium, (b∗n,1, b

∗
n,2)
> ≥ (bn,1, bn,2)

> � 0, where >
denotes transposition.

• Case 2: Suppose that n’s liquidity constraint is binding, i.e., b∗n,1 + b∗n,2 = en,m.
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Then from (2), we have that

∂un
∂xn,k

·

(
B∗−n,kφ

∗
k(

B∗k
)2
)
− ∂un
∂xn,m

·
(
φ∗−n,k
φ∗k

)
=

∂un
∂xn,t

·

(
B∗−n,tφ

∗
t(

B∗t
)2
)
− ∂un
∂xn,m

·
(
φ∗−n,t
φ∗t

)
.

Rearranging the above, we get

∂un/∂xn,k
∂un/∂xn,m

·

(
B∗−n,kφ

∗
k(

B∗k
)2
)
− ∂un/∂xn,t
∂un/∂xn,m

·

(
B∗−n,tφ

∗
t(

B∗t
)2
)

=
φ∗−n,k
φ∗k

−
φ∗−n,t
φ∗t

.

It is easy to see that
∣∣∣φ∗−n,kφ∗k

− φ∗−n,t
φ∗t

∣∣∣ < 1. Proceeding as in Dubey and Shubik’s (1978) Lemma 2, we
may derive, for any k ∈ {1, 2}, positive constants C1 and C2, such that 0 < Ck < p∗k =

B∗k
φ∗k

. Further
manipulating the above equation then yields the following inequality, which must obtain at any N.E
with binding liquidity constraint:

∆(b∗n,k) ≡

∣∣∣∣∣ ∂un/∂xn,k∂un/∂xn,m
− ∂un/∂xn,t
∂un/∂xn,m

·

(
B∗kDk

B∗−n,kCt

)∣∣∣∣∣ < B∗kDk

B∗−n,k
.

As b∗n,k → 0, we have that b∗n,t → en,m, such that eventually, b∗n,t > en,m
2 , implying xn,t > 0 and therefore

∂un
∂xn,t

< ∞. So, by the Inada condition, limb∗n,k→0∆(b∗n,k) = ∞, while limb∗n,k→0
B∗kDk
B∗−n,k

= Dk < ∞. Hence,
there must exist a uniform lower bound bn,k � 0 on trader n’s bid for k. The same argument can be
repeated for commodity t ∈ {1, 2} \ {k}. Therefore, at equilibrium, (b∗n,1, b

∗
n,2)
> ≥ (bn,1, bn,2)

> � 0. Since
n was arbitrarily chosen, we have thus ascertained that equilibrium bids are uniformly bounded away
from zero ∀n ∈ N , and may now proceed.

Step 3. Proving continuity of payoff function, and upper hemicontinuity of Θn

Define Vn(s̃n, s̃−n) = un(xn(s̃n, s̃−n)) to be the payoff function of each n ∈ N . Note that Vn(s̃n, s̃−n) is
continuous, as it is the composition of continuous functions, given that equilibrium bids are bounded
above zero. Let ϑn(s̃−n) = arg maxs̃n∈S̃n Vn(s̃n, s̃−n). Put S̃n,Ξ = [bn,1, en,m − bn,2] × [bn,2, en,m − bn,1] ×

[0, Qn2 ]× [Qn2 , Qn], and let the correspondence Θn : S̃−n ⇒ S̃n,Ξ be defined as Θn(s̃−n) = ϑn(s̃−n) ∩ S̃n,Ξ .
It is straightforward to see that S̃n,Ξ is compact and convex, for each n ∈ N . We next show that Θn is
upper hemicontinuous. Suppose that we have a sequence of strategies {s̃r}r∈N with limr→∞ s̃

r = s̃∗, and
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a sequence of best-responses, {ζ̃rn}r∈N with limr→∞ ζ̃
r
n = ζ̃∗n, such that we have

ζ̃rn ∈ Θn(s̃r−n) for all r, and,

ζ̃∗n /∈ Θn(s̃∗−n).

As S̃n,Ξ is a compact set, it is easy to see that ζ̃∗n is feasible. But since it is not a best-response to s̃∗−n, it
must be true, for an ε > 0 and some other feasible unilateral deviation ζ̊n, that

Vn(ζ̊n, s̃
∗
−n)� Vn(ζ̃∗n, s̃

∗
−n) + 3ε.

But then, since Vn is continuous, it must be true, for a sufficiently large r ∈ N, that

Vn(ζ̊n, s̃
r
−n)� Vn(ζ̊n, s̃

∗
−n)− ε� Vn(ζ̃∗n, s̃

∗
−n) + 2ε� Vn(ζ̃rn, s̃

r
−n) + ε,

a contradiction, as ζ̃rn ∈ Θn(s̃r−n) ∀r.

Step 4. Exhibiting convex-valuedness of Θn

Observe that the utility function of each n ∈ N is strictly concave in x, and that by a simple analogue of
Lemma 1, M̃n is (strictly) convex, even with the additional constraint that lj,D(j) ≥

Qj
2 . As such, given

the strategies of all agents other than n ∈ N , the Supporting Hyperplane Theorem stipulates that if there is
an allocation vector x∗n that solves n’s maximisation problem, then it must be unique. Thus,Θn is convex-
valued, as if ζ̃n = (b̃n, l̃n) ∈ Θn(s̃−n) and ζ̂n = (b̂n, l̂n) ∈ Θn(ŝ−n) are arbitrary best-responses for n, then
any convex combination of ζ̃n and ζ̂n yields a convex combination of x∗n = xn(b̃n, l̃n) and x∗n = xn(b̂n, l̂n)

itself. Consequently, any convex combination of ζ̃n and ζ̂n is also a (feasible) best-response—apply the
method in Lemma 1 once more for proof of, and an explanation of the geometry underlying, this fact.

Step 5. Applying Kakutani’s fixed-point theorem

Finally, define S̃Ξ =
∏
n∈N S̃n,Ξ , and consider Φ : S̃Ξ ⇒ S̃Ξ , where

Φ(s̃) =
∏
n∈N Θn(s̃−n), s̃ ∈ S̃Ξ ,
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Φ satisfies the conditions of Kakutani’s fixed-point theorem. Hence, ∃s̃∗ ∈ S̃Ξ , such that s̃∗ ∈ Φ(s̃∗).
Denote this fixed point by (b∗n, l

∗
n)n∈N . This is clearly an N.E of Γ (lj,D(j) ≥

Qj
2 ). Call this equilibrium

Ξ(lj,D(j) ≥
Qj
2 ).

Step 6. Proving N.E of constrained game is also N.E of unconstrained game

Wenext show thatΞ(lj,D(j) ≥
Qj
2 ) is also an equilibrium of the completely unconstrainedmarket game Γ .

So, pick any agent j ∈ J , and recall that at Ξ(lj,D(j) ≥
Qj
2 ), j is viewed as solving the following problem:

max
(bj ,lj)∈R4

+

{
uj

((
xj,k
(
bj,k, lj,k, B−j,k, φ−j,k

))2
k=1

, xj,m
((
bj,k, lj,k, B−j,k, φ−j,k

)2
k=1

))}
s.t.

2∑
k=1

bj,k ≤ ej,m

2∑
k=1

lj,k ≤ Qj

lj,D(j) ≥ Qj/2.

(3)

The non-degenerate constraint qualification (NDCQ) holds, such that Ξ(lj,D(j) ≥
Qj
2 ) is characterised by

the following first-order necessary and sufficient conditions:

∂uj
∂xj,k

·

(
B∗−j,kφ

∗
k(

B∗k
)2
)

= λbj +
∂uj
∂xj,m

·
(
φ∗−j,k
φ∗k

)
, k ∈ {1, 2};

∂uj
∂xj,A (j)

·

(
b∗j,A (j)

aJA (j)B
∗
A (j)

)
= λlj −

∂uj
∂xj,m

·

(
φ∗−j,A (j)

(φ∗A (j))
2
·
B∗A (j)

aJA (j)

)
− λl≥0j,A (j);

∂uj
∂xj,D(j)

·

(
b∗j,D(j)

aJD(j)B
∗
D(j)

)
= λlj −

∂uj
∂xj,m

·

(
φ∗−j,D(j)

(φ∗D(j))
2
·
B∗D(j)

aJD(j)

)
− λ̄;

(4)

where λbj , λlj and λ̄ are the Lagrange multipliers associated with the first, second and third constraints
of the programme in (3), respectively, and λl≥0j,A (j) is the multiplier associated with the non-negativity
constraint on lj,A (j). Of course, the remaining Kuhn–Tucker conditions are also satisfied, but have not
been written out explicitly, to keep our argument unburdensome. We will prove that λ̄ = 0, such that the
above F.O.C. will also satisfy the F.O.C. as in (2), for every j ∈ J . Trivially, if lj,D(j) > Qj/2, then λ̄ = 0.
We will now show that λ̄ = 0 even if the constraint is binding—i.e., lj,D(j) = Qj/2. To this end, recall
that at any equilibrium, there is full employment of labour, i.e., any solution to the programme in (3)
must meet the constraint∑2

k=1 lj,k ≤ Qj with equality, as otherwise, total utility can always be increased.
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We may therefore, by replacing∑2
k=1 lj,k ≤ Qj with∑2

k=1 lj,k = Qj , transform (3) into an equivalently-
constrained problem. Using this fact, alongside the third constraint in (3), we see that (

∑2
k=1 lj,k =

Qj)∧
(
lj,D(j) ≥

Qj
2

)
⇔ (

∑2
k=1 lj,k = Qj)∧

(
lj,D(j) ≥

lj,A (j)+lj,D(j)

2

)
⇔ (

∑2
k=1 lj,k = Qj)∧ (lj,D(j) ≥ lj,A (j)).

Thus, (3) may be reformulated as:

max
(bj ,lj)∈R4

+

{
uj

((
xj,k
(
bj,k, lj,k, B−j,k, φ−j,k

))2
k=1

, xj,m
((
bj,k, lj,k, B−j,k, φ−j,k

)2
k=1

))}
s.t.

2∑
k=1

bj,k ≤ ej,m

2∑
k=1

lj,k = Qj

lj,D(j) ≥ lj,A (j).

(5)

The NDCQ holds again, such that Ξ(lj,D(j) ≥
Qj
2 ) is also characterised by the following first-order neces-

sary and sufficient conditions:

∂uj
∂xj,k

·

(
B∗−j,kφ

∗
k(

B∗k
)2
)

= λbj +
∂uj
∂xj,m

·
(
φ∗−j,k
φ∗k

)
, k ∈ {1, 2};

∂uj
∂xj,A (j)

·

(
b∗j,A (j)

aJA (j)B
∗
A (j)

)
= λlj −

∂uj
∂xj,m

·

(
φ∗−j,A (j)

(φ∗A (j))
2
·
B∗A (j)

aJA (j)

)
− λl≥0j,A (j) + ˆ̄λ;

∂uj
∂xj,D(j)

·

(
b∗j,D(j)

aJD(j)B
∗
D(j)

)
= λlj −

∂uj
∂xj,m

·

(
φ∗−j,D(j)

(φ∗D(j))
2
·
B∗D(j)

aJD(j)

)
− ˆ̄λ;

(6)

where λbj , λlj , and λl≥0j,A (j) represent the Lagrange multipliers of the same constraints as before—and they
also take on the same optimal values, for recall that neither has the objective function changed, nor has
the nature of any one of these constraints been manipulated—and ˆ̄λ is the multiplier associated with the
third constraint in (5). As before, the remaining Kuhn–Tucker conditions are also satisfied. So, suppose
that at equilibrium, we had that lj,D(j) =

Qj
2 = lj,A (j), such that λl≥0j,A (j) = 0. The second equation in (4)

along with the second equation in (6) then imply that λlj = λlj + ˆ̄λ, from which it follows that ˆ̄λ = 0. In
turn, the third equation in (4) along with the third equation in (6) then imply that λlj − λ̄ = λlj − ˆ̄λ = λlj ,
from which it follows that λ̄ = 0, such that (2) is then met for ∀j ∈ J, J = F,H . But this therefore
means that Ξ(lj,D(j) ≥

Qj
2 ) is also an equilibrium among unconstrained strategies in Sn ∀n ∈ N . Thus,

Ξ(lj,D(j) ≥
Qj
2 ) is an N.E of the unconstrained market game Γ .
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Step 7. Applying a limiting argument

It can be verified that the above line of attack applies generally for the market game Γ (lj,D(j) ≥
τQj
1+τ ), for

any τ ∈ N. This is thanks to the facts that the utility function of every n ∈ N is continuous in x, with x
continuous in b and l (such that Vn is continuous), and each agent’s CPS is compact and strictly convex—
call this collective set of properties, Pccc. By Pccc, it follows that Θn(s̃−n) is upper hemicontinuous and
convex-valued. So, denote the set of N.E strategy profiles of Γ (lj,D(j) ≥

τQj
1+τ ) by NE(lj,D(j) ≥

τQj
1+τ ) ≡

NEτ , and consider a sequence {τ r}∞r=1 in N where τ r → ∞ as r → ∞, and a sequence of (sets of)
N.E profiles {NEτr}∞

r=1
. By Pccc, it has to be the case that limr→∞NEτ

r
= NE(lj,D(j) = Qj) 6= ∅,

constitutes a set of N.E profiles of Γ (lj,D(j) ≥ Qj). But as every NE(lj,D(j) ≥
τrQj
1+τr ), r ∈ N, is a set

of N.E profiles of Γ ,19 the continuous differentiability of the utility functions implies that the Lagrange
multiplier method developed above may again be utilised, alongside a limiting argument, to easily show
that NE(lj,D(j) = Qj) is also set of N.E profiles of Γ . Hence, an equilibrium in which each country
specialises in its comparative-disadvantage good exists.

Proof of Theorem 1. Consider the offer-constrained market game Γ (lj,A (j) ≥
Qj
2 ), and proceed as in the

proof of Theorem 2 above.

Proof of Theorem 3. Let the mappings A : N → {1, 2} and D : N → {1, 2} be as previously defined.
Consider the market game Γ∞(lj,D(j) ≥

Qj
2 ), in which the labour hours offered by each j ∈ J, J = F,H,

towards the good in which country J has a comparative disadvantage are constrained to be at least half
their initial endowment of labour hours. S∞—and by extension, S̃∞ and S̃∞Ξ , the infinite-dimensional
analogues of S̃ and S̃Ξ which appeared in the proof of Theorem 2—as described in §4, is a nonempty,
compact, convex subset of a Hausdorff locally convex topological vector space. Utility functions are con-
tinuous in x, and x : S∞ → R3

+ is continuous in b and l in the product topology. Thus, the payoff function
Vn(s̃n, s̃−n) = un(xn(s̃n, s̃−n)) is continuous for every n ∈ N . Proceeding as in the proof of Theorem 2,
one may use the Kakutani–Glicksberg–Fan fixed-point theorem to prove the existence of a fixed point
(b∗n, l

∗
n)n∈N . One may then adopt all the subsequent arguments in the proof of Theorem 2, while taking

care to modify the first-order conditions to take into account the measure of each agent, to show that any
N.E of Γ∞(lj,D(j) ≥ Qj) is also an N.E of Γ∞.

We now prove the existence of an equilibrium where countries specialise according to the RTCA. Vn
19This can be straightforwardly seen by combining (4) and (6) for any agent j ∈ J, J = F,H . It can be readily verified that

the non-degenerate constraint qualification also holds.
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is continuous for each n ∈ N , and each agent’s CPS is compact and strictly convex—call this collective
set of characteristics, P∞ccc. It can be verified, akin to Theorems 1 and 2, that the method used in the
first part of this proof applies just as well for the market game Γ∞(lj,A (j) ≥

τQj
1+τ ), for any τ ∈ N. So,

as before, denote the set of N.E strategy profiles of Γ∞(lj,A (j) ≥
τQj
1+τ ) by NE∞(lj,A (j) ≥

τQj
1+τ ) ≡ NEτ∞,

consider a sequence {τ r}∞r=1 in N where τ r → ∞ as r → ∞, and a sequence of (sets of) N.E profiles{
NEτr∞

}∞
r=1

. It is straightforward to see that P∞ccc implies convex-valuedness and upper hemicontinuity
of Θn(s̃−n), where s̃−n ∈

∏
i∈N\{n} Si ⊂

(
Rω, τP

), indicating that it therefore has to be the case that
limr→∞NEτ

r

∞ = NE∞(lj,A (j) = Qj) 6= ∅, is a set of N.E profiles of Γ∞(lj,A (j) ≥ Qj). But as every
NE∞(lj,A (j) ≥

τrQj
1+τr ), r ∈ N, is also a set of N.E profiles of Γ∞, the continuous differentiability of the

utility functions implies that the technique developed in the second part of the proof of Theorem 2 may
again be utilised, alongside a limiting argument, to easily show that NE∞(lj,A (j) = Qj) is also an equi-
librium of Γ∞. Hence, an equilibrium in which each country produces only its comparative-advantage
good exists.

Proof of Proposition 2. First, let us remark that with an atomless measure space of agents as we consider,
it is true that B−n,k =

∫
i∈N\{n} bk(i)dµ(i) =

∫
n∈N bk(n)dµ(n) = Bk, and φ−n,k = 1

aFk

∫
F\{n} lk(f)dµ(f) +

1
aHk

∫
H\{n} lk(h)dµ(h) = 1

aFk

∫
F lk(f)dµ(f)+ 1

aHk

∫
H lk(h)dµ(h) = φk. Next, given each agent’s CPS is convex,

and utility functions concave, we have that any N.E of Γc with positive bids and offers is characterised by
the following first-order (necessary and sufficient) conditions:

∂uj(x)

∂xk(j)
· 1

pk
= λbj +

∂uj(x)

∂xm(j)
− λb≥0j,k ;

∂uj(x)

∂xm(j)
·
(
pk
aJk

)
= λlj − λ

l≥0
j,k ,

 k ∈ {1, 2} (7)

and the complementary slackness conditions (which have not been listed for conciseness) are also sat-
isfied. We will make extensive use of the second equation in (7) to prove our proposition. W.l.o.g., let
country F (resp. H) have a comparative advantage in the production of good k (t). There are then 9
cases to consider, which are as follows: (1) both F and H produce both goods; (2) F produces both,
while H produces k only; (3) F produces both, while H produces t only; (4) F produces k only, while
H produces both goods; (5) both F and H produce k only; (6) F produces k only, while H produces t
only; (7) F produces t only, while H produces both goods; (8) F produces t only, while H produces k
only; (9) both F and H produce t only.

Case (1): IfF andH produce both goods, then from (7), we have for agents f ∈ F that ∂uf (x)∂xm(f) ·
(
pk
aFk

)
=
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λlf =
∂uf (x)
∂xm(f) ·

(
pt
aFt

)
, such that pk

aFk
= pt

aFt
⇔ pk

pt
=

aFk
aFt

. Similarly, for agents h ∈ H , we have that
∂uh(x)
∂xm(h) ·

(
pk
aHk

)
= λlh = ∂uh(x)

∂xm(h) ·
(
pt
aHt

)
, such that pk

aHk
= pt

aHt
⇔ pk

pt
=

aHk
aHt

. These imply that aFk
aFt

=
aHk
aHt

, a
contradiction, since F has a comparative advantage in k.

Case (2): If F produces both, while H produces k only, then for all f ∈ F , we have that pkpt =
aFk
aFt

.
On the other hand, for agents h ∈ H , we have that ∂uh(x)

∂xm(h) ·
(
pk
aHk

)
= λlh ≥

∂uh(x)
∂xm(h) ·

(
pt
aHt

)
, such that

pk
aHk
≥ pt

aHt
⇔ pk

pt
≥ aHk

aHt
. Combining these two conditions yields pk

pt
=

aFk
aFt
≥ aHk

aHt
, which, in light of the fact

that F has a comparative advantage in k, gives rise to a contradiction.
Case (3): If F produces both, while H produces t only, then for all f ∈ F , we have that pkpt =

aFk
aFt

. For
agents h ∈ H , we have that λlh = ∂uh(x)

∂xm(h) ·
(
pt
aHt

)
= ∂uh(x)

∂xm(h) ·
(
pk
aHk

)
+ λl≥0h,k . By construction, we know that

aFk
aFt

<
aHk
aHt

, such that in the current scenario, pkpt <
aHk
aHt
⇔ pt

aHt
> pk

aHk
. Thus, one may, by choosing λl≥0h,k > 0

large enough, show that no mathematical impossibility obtains when the first two equations in (7) are
considered, for any n ∈ N .

Case (4): If F produces k only, while H produces both goods, then we have for agents f ∈ F that
λlf =

∂uf (x)
∂xm(f) ·

(
pk
aFk

)
=

∂uf (x)
∂xm(f) ·

(
pt
aFt

)
+ λl≥0f,t . On the other hand, for agents h ∈ H , we have that

∂uh(x)
∂xm(h) ·

(
pk
aHk

)
= λlh = ∂uh(x)

∂xm(h) ·
(
pt
aHt

)
, such that pk

aHk
= pt

aHt
⇔ pk

pt
=

aHk
aHt

. By construction, we know
that a

F
k

aFt
<

aHk
aHt

, yielding aFk
aFt

< pk
pt
⇔ pk

aFk
> pt

aFt
. Thus, one may, by choosing λl≥0f,t > 0 large enough, show

that no mathematical impossibility obtains when the first two equations in (7) are considered, for any
n ∈ N .

Case (5): If both F and H produce k only, then the markets for k and t are active and inactive, re-
spectively. In particular, this means that pk > 0, such that from (7) and Assumption (i), we have that
λlf , λ

l
h > 0. At the same time, it must be true that pt = 0 = bt(n) = lt(n), µ-a.e, n ∈ N . Thus, taking

λb≥0n,t = ∂un(x)
∂xm(n) + λbn and λl≥0n,t = λln, it is easy to see that no mathematical impossibility is arrived at when

the first two equations in (7) are considered, for any n ∈ N .
Case (6): If F produces k only, while H produces t only, then we have for agents f ∈ F that λlf =

∂uf (x)
∂xm(f) ·

(
pk
aFk

)
=

∂uf (x)
∂xm(f) ·

(
pt
aFt

)
+ λl≥0f,t . Similarly, for agents h ∈ H , we have that λlh = ∂uh(x)

∂xm(h) ·
(
pt
aHt

)
=

∂uh(x)
∂xm(h) ·

(
pk
aHk

)
+ λl≥0h,k . Combining the equations for agents f ∈ F and h ∈ H gives aFk

aFt
≤ pk

pt
≤ aHk

aHt
, which,

given aFk
aFt

<
aHk
aHt

, can be decomposed into three sets of inequalities, namely, Case (6a): a
H
k

aHt
> pk

pt
=

aFk
aFt

; Case
(6b): a

H
k

aHt
= pk

pt
>

aFk
aFt

, and; Case (6c): a
H
k

aHt
> pk

pt
>

aFk
aFt

. Cases (6a) and (6b) are exactly the same as Cases
(3) and (4), respectively, so we need only analyse Case (6c). It suffices to note, in view of the first two
equations derived in Case (6) for agents f ∈ F and h ∈ H , that by taking sufficiently large λl≥0f,t > 0 and
λl≥0h,k > 0, no mathematical impossibility is arrived at when the first two equations in (7) are considered,

36



for any n ∈ N .
Case (7): If F produces t only, while H produces both goods, then using an argument similar to the

one in Case (2), we have that pkpt =
aHk
aHt

µ-a.e, h ∈ H , while pk
aFk
≤ pt

aFt
⇔ pk

pt
≤ aFk

aFt
µ-a.e, f ∈ F , such that

aFk
aFt
≥ aHk

aHt
, a contradiction.

Case (8): If F produces t only, while H produces k only, then we have for agents f ∈ F that ∂uf (x)
∂xm(f) ·(

pk
aFk

)
≤ λlf =

∂uf (x)
∂xm(f) ·

(
pt
aFt

)
, such that pk

aFk
≤ pt

aFt
⇔ pk

pt
≤ aFk

aFt
. On the other hand, for agents h ∈ H , we

have that ∂uh(x)
∂xm(h) ·

(
pk
aHk

)
= λlh ≥

∂uh(x)
∂xm(h) ·

(
pt
aHt

)
, such that pk

aHk
≥ pt

aHt
⇔ pk

pt
≥ aHk

aHt
. These imply that a

F
k

aFt
≥ aHk

aHt
,

a contradiction.
Case (9): If both F andH produce t only, then using an argument similar to the one in Case (5), it is

easy to see that no mathematical impossibility is arrived at.
From the above, we see that only Cases (3), (4), (5), (6), and (9) are compatible with (Nash) equi-

libria of our model, which are the exact equilibria which the RTCA admits—see, e.g., Feenstra (2015: pp.
2-3). Notably, there is, at most, only one country (and not both) that ever produces its comparative-
disadvantage good at equilibrium, in stark contrast to the equilibria described in Theorems 2 and 3.
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