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Abstract

This paper introduces a new class of market games featuring multiple posts per commodity,

in which trading posts are privately owned. It is demonstrated via three robust counterex-

amples, that in this setting the law of one price fails, thus showing, contrary to longstanding

belief in the literature, that price dispersion in large market games is extremely robust. Most

importantly, it is established that even in economies with a continuum of small agents and

in�nitely many atoms (all of whom can arbitrage prices if they so wish), and an in�nite num-

ber of markets per commodity, the set of equilibria�and the resulting market structure�is

in�uenced, both by strategic behaviour, and private ownership of posts.

JEL Classi�cation: D49, D51, C72.
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1 Introduction

The in�uence of strategic considerations on the process of price formation is a fundamental issue,

and one elegant theory capturing both these concepts is that of strategic market games (SMG).

An SMG, originating in Dubey�Shubik (1978), Shapley�Shubik (1977), and Shubik (1973), is a
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noncooperative trading model in which commodity prices depend on the buy-and-sell decisions of

agents. Such strategic decision making by agents has called into question the validity of the law of

one price1 (LOP) in SMG with multiple �trading posts� per commodity (MTPC). An important

implication of the failure of the LOP is that the set of equilibria depends nontrivially on the

structure of trading posts. Regarding the latter, it is interesting to note that in standard SMG

models, trading posts are typically assumed to be publicly and costlessly available. Surprisingly,

the question never seems to have been asked if (or how) the �privatisation� of trading posts would

a�ect the equilibrium allocations and prices in a meaningful manner. The purpose of this paper is

to demonstrate that private ownership of trading posts,2 alongside strategic behaviour by agents,

in MTPC market games is indeed a material issue.

The following fact is established: even in very large economies, strategic considerations still

matter in the determination of the equilibrium market structure. We achieve this by proving, in a

new class of MTPC market games, that the LOP, an intimate feature of Walrasian markets, fails

to obtain in very general settings. Hence, trading posts cannot be consolidated.3 This is in stark

contrast to the norm in SMG, where provided there are at least countably in�nitely many agents

(large and/or small), the LOP always prevails. Indeed, Koutsougeras (1999; 2003a; 2003b) shows

the failure of the LOP when the number of agents is �nite. Koutsougeras (2003a) then proves that

as the number of agents increases without bounds in MTPC models with publicly-available posts,

the uniformity of prices across trading posts is restored, independently of the characteristics�

preferences, endowments, measure, etc.�of agents.4 In our model, however, the failure of the

LOP to obtain e�ectively stems from the heterogeneity of agents. There are two types of agents

1The LOP postulates that at equilibrium, there is a single price that clears all markets for a commodity. It is a
central feature of Walrasian economies, in which markets for a commodity are consolidated and modeled as a single
trading spot where transactions take place. See Koutsougeras (1999; 2003b) for numerical examples in which the
LOP fails in SMG with �nitely many agents, all of whom face no binding liquidity constraints.

2It must be noted that in the model that we propose, post owners are not given any kind of �extreme� market
power. More precisely, they can neither �close down� their post, nor preclude agents from trading at their spots,
such that all agents are perfectly free to choose where to trade, and to arbitrage prices should they so wish.

3The equilibrium market/trading-post structure is determined by the distribution of prices across posts for each
commodity. Consider any commodity k. If for k the support of this distribution is a single point, then there is
e�ectively a single trading post for k. However, if equilibrium prices are not uniform across trading posts for k,
then it follows that the equilibrium structure of posts cannot be merged into a single trading platform. So, the
LOP�or the failure thereof�is a �tool� that we use to determine the market structure at equilibrium.

4Koutsougeras' (2003a) limit economy need not be atomless�even if there exist �nitely many non-price-taking

atoms in the limit, the LOP must still hold. Thus, note that that limit economy need not be perfectly competitive;
indeed, the validity of the LOP is a more general issue than the prevalence of perfect competition.

2



in this model, pure traders (the only kind of agents that Koutsougeras, 1999; 2003a; 2003b,

considers), and trading post owners. The latter not only buy and sell across posts, but also levy

a proportional �service charge� on agents who trade at their spots. We show, intriguingly, that

even with a continuum of price takers, and only as few as two, or as many as an in�nite number

of �large� players, the LOP is still violated. This persistent price inequality is driven, both by

strategic play by agents, and the trading-post service charge, an intricate concept which looks

deceptively trivial.

To the best of our knowledge, none of the existing SMG models analyses the existence and

availability of trading posts. Thus far, the SMG literature has been content to assume that trading

posts somehow exist, and are somehow made publicly and costlessly available for all agents to trade

at, as though by some other �invisible hand.� In this paper, we depart from the literature and

introduce post owners, who in addition to commodities, are endowed with trading posts. These

agents also engage in trade, by presenting arrays of buy-and-sell strategies at their own, and/or

other post owners' posts, as do the pure traders. Now, in most�if not all�economic models,

privately-owned trading platforms are very rarely provided free of charge, and are even more so

in real-world economies. In this light, we assume that post owners levy a proportional service

charge per unit of (monetary) net trade on all agents who transact at their post.5 Thus, an agent

whose net trade is zero at a post�and therefore derives no direct monetary bene�t from trading

there�has no premium to pay. This service charge is reminiscent of the taxes and transactions

costs that agents pay and incur in Gabszewicz and Grazzini (1999), Koutsougeras and Ziros (2015),

and Rogawski and Shubik (1986). However, di�erently to these models, in the current paper, it

is agents who charge agents,6 and solely on their net proceeds, a formulation which is unique to

this SMG. We assume that these trading-post service charges are exogenously given. Think of

some outside agency as selecting and allocating these charges at the outset, before trading starts.7

5In the present model, the focus is on how post owners charge other agents for trading at platforms that they
own. We acknowledge that ideally, setting up a trading post should also be costly. However, since it is assumed
that post owners are �endowed� with such posts, there is therefore no cost for them to set up a platform, nor can
they decide how many trading posts per commodity they would like to open or shut down.

6Thus, in addition to how their individual bids and o�ers directly a�ect their allocations, agents must also
consider how their strategies a�ect the premia payable that accrue to them. The introduction of this service charge
leads to a modi�cation of agents' strategy sets and holdings-surfaces, such that, as opposed to Koutsougeras (1999),
but similarly to Koutsougeras (2003a; 2003b), the SMG models considered in this paper are generalised games.

7While these charges can be endogenised, in our framework we choose to take these as being given, such that
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Interestingly, this charge is the same across all markets for a commodity, but need not be the

same across di�erent commodities�see more about the potency of this speci�cation below.

We show that non-uniform prices in equilibrium are much more persistent than has been por-

trayed in previous models. Indeed, the LOP fails even in cases where conventional wisdom dictates

it should not, namely, with a continuum of small agents, and in�nitely many atoms. Perhaps it

would be helpful at this point to spell out what the failure of the LOP is not. An unequal-price

equilibrium in our model does not simply mean di�erent market-clearing prices and similar ef-

fective after-service-charge (ASC) prices across posts for a commodity. As previously remarked,

this service charge is equal at all posts for the same commodity. Hence, the failure of the LOP as

postulated in this paper not only means di�erent market-clearing prices, but also di�erent e�ective

ASC prices across di�erent posts for a commodity. This is a strong result.

The intuition behind the failure of the LOP in every robust counterexample8 considered in

this paper is the same: what to outside observers seems like an arbitrage opportunity, is actually

not for the active market participant. We explain why this is so. The large pure traders and

post owners (who also trade) a�ect market-clearing prices nontrivially. Hence, whenever they try

to take advantage of the price di�erence by altering their bid-and-o�er decisions across any two

posts, the resulting net change a�ects them adversely. Consider the �insigni�cant� agents now. By

shifting his orders from one post to another, a negligible individual a�ects neither the equilibrium

price, nor the equilibrium allocation. Yet, he still cannot pro�t from the price di�erence, due to

the counterbalancing e�ect that is provided by the trading-post service charge. For clarity, let

us contemplate one such very small agent who shifts all of his bids from the more expensive to

the cheaper markets, and all of his o�ers from the cheaper to the more expensive posts. In doing

so, he incurs charges on the full amounts of: (i) his bids, and; (ii) his receipts from sales, across

both markets. The net gain obtained by the shift of orders is thus more than completely o�set by

the increase in premia payable. So, no insigni�cant agent has any incentive to deviate, and this

unequal-price situation is indeed sustainable as an equilibrium.

extremely little to almost no market power is given to the post owners. Note also that these charges may instead
be viewed as taxes imposed by a government. This interpretation was suggested to me by Herakles Polemarchakis.

8More precisely, the following is true of all the counterexamples computed in this paper: any endowments, and
utility functions with the same marginal rate of substitution at the consumption allocations as computed in the
respective examples, would constitute equilibria with the same properties (such that the LOP still fails). This fact
attests to the robustness of our counterexamples in endowment and utility spaces.
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In the next section, we construct and show the failure of the LOP in a model with a continuum

of small agents, and �nitely many large agents and trading posts. In Section 3, we extend this

model to include in�nitely many trading posts per commodity. In Section 4, we generalise the

model in Section 3 to include in�nitely many atoms. Our conclusions are summarised in Section

5. The Appendix contains all the technical proofs.

2 The failure of the LOP, Part 1: The model

In this section, we analyse a model featuring: (i) an atomless continuum of small agents; (ii)

�nitely many atoms, and; (iii) �nitely many markets per commodity.

We consider a pure exchange economy with small agents, represented by an atomless continuum,

and large agents, represented by atoms. So, we let the set of agents be denoted by N = N0 ∪ A,

where N0 = (0, 1], and A = {2, ..., H}. The collection of all half-open intervals in (0, 1] de�ned by

S0 = {(a, b] : a, b ∈ N0}, where (a, b] = ∅ if b ≤ a, is a semiring. So, let ν0 be a measure on S0

such that ν0 ((a, b]) = b−a, and denote the Carathéodory extension of ν0 by µ0. Let N0 denote the

collection of all µ0-measurable subsets of N0 (and recall that µ0 is in fact the Lebesgue measure

when restricted to N0). Next, de�ne the collection of all the subsets of A by SA = P(A), which is

trivially a σ-algebra (and hence, a semiring). Finally, denote by µA the counting measure on SA.

We may now introduce the following properties of our set of agents:

The triple (N,N , µ)�where N is the collection of all µ-measurable sets of N , and µ is an

extended real-valued, σ-additive measure de�ned on N�is a complete, �nite measure space of

agents (See Appendix, Lemmata 1 and 2). Let NN0 denote the restriction of N to N0, and NA the

restriction of N to A. Then, the measure space
(
N0,NN0 , µ

)
, where NN0 = N0 and µ = µ0 when

restricted to NN0 (See Appendix, Lemma 3), is atomless, while the measure space
(
A,NA, µ

)
,

where NA = SA and µ = µA when restricted to NA (See Appendix, Lemma 4), is purely atomic.

Moreover, for each i ∈ A, the singleton set {i} is an atom of the measure space (N,N , µ). Thus,

one can describe N0 and A as being the sets of small and large agents, respectively.

We denote the set of commodities bought and sold in this economy by K = {1, 2, ...., L}. There

is also an (L + 1)th commodity, m, which in addition to yielding utility in consumption, acts as
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money. There are two types of agents in this economy, pure traders, and post owners.

Each pure trader h ∈ N is characterised by a preference relation, which is representable by a

utility function uh : RL+1
+ → R, and an initial endowment of commodities e(h) ∈ RL+1

+ .

Post owners, as opposed to pure traders, are also endowed with trading posts. Each post owner

i ∈ N is characterised by a preference relation representable by a utility function ui : RL+1
+ → R,

and initial endowments of commodities e(i) ∈ RL+1
+ , and trading posts Υi = {Υi

1,Υ
i
2, . . . ,Υ

i
L}, i.e.,

each i is endowed with only one post for each k ∈ K, where Υi
k denotes the post for k owned by i.

We impose the following technical condition on post owners: any post owned by a �small� w ∈

N0 has capacity
9 χsmall = 0, while any post owned by an atom in A has capacity χatom = µ(N).10

Before trading starts, an outside agency allocates a service charge to post owners, which all

agents then take as given when making their trading decisions. This proportional service charge

ck ∈ (0, 1), k ∈ K, is the same across all posts for a good k, but may di�er across commodities�

i.e., let |P | <∞ denote the total number of (large) post owners, such that c1,k = · · · = c|P |,k = ck,

and c1,l = · · · = c|P |,l = cl for all k, l ∈ K, k 6= l, but ck need not be equal to cl.

Throughout this paper, we will employ the following assumptions:

Assumption (i) e(n) > 0 for each n ∈ N .

Assumption (ii) Preferences for each type of agents are strictly convex, C2, and di�erentiably

strictly monotone,11 and indi�erence surfaces through the endowment do not intersect the axes.

2.1 The strategic market game

Trade in the economy is organised through trading posts, at which agents o�er commodities for

sale, and place bids for purchases of commodities. Bids, (b), for commodities 1, . . . , L, are placed in

terms of commodity m, while sales, (q), are made in terms of commodities 1, . . . , L. The strategy

9i.e., the measure of agents that the trading post can accommodate.
10Based on this rule, we may w.l.o.g., view all agents µ-a.e, w ∈ N0, as being (small) pure traders, and view all

post owners and large pure traders as lying in N \ N0 only. While this condition makes the model more elegant
mathematically without any loss of intuition, it is actually also required for the well-de�nedness of our model�see,
e.g., Dubey and Shapley (1994: p. 264). We will therefore use this method throughout this paper.

11i.e., if u represents �, then for all x ∈ RL+1
++ , ∂u/∂xk > 0 ∀k = m, 1, 2, ...L.
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sets of agents are described by a measurable correspondence S : N ⇒ 2R2×|P |×L
+ such that

S(n) =
{

(b(n), q(n)) ∈ R|P |×L+ ×R|P |×L+ :
L∑
k=1

|P |∑
s=1

bsk (n)+Λ(n) ≤ em (n) ;

|P |∑
s=1

qsk (n) ≤ ek (n) , k ∈ K
}
,

where ϕsk(n), ϕ = b, q, denotes the strategies of agent n ∈ N at the post owned by s ∈ A for

commodity k, and Λ(n) is the total premium payable12 by n (more on how Λ(n) is calculated is

found below). A strategy pro�le consists of a pair of measurable mappings b : N → R|P |×L+ and

q : N → R|P |×L+ , such that (b(n), q(n)) ∈ S(n) a.e in N , i.e., a strategy pro�le is a measurable

choice from the graph of the correspondence S, Gr(S). It is easily seen that S : N ⇒ 2R2×|P |×L
+ has a

measurable graph, and therefore such mappings exist, by Aumann's Measurable Selection Theorem

(AMST). For a given strategy pro�le (b, q) ∈ Gr(S), we then de�ne Bs
k =
´
N
bsk(n)dµ < ∞, and

Qs
k =

´
N
qsk(n)dµ < ∞. Transactions at each post clear through the price psk = (Bs

k/Q
s
k). For

k ∈ K, we let zsk(n) = (bsk(n)/psk) − qsk(n) denote the net trade in k of a player n ∈ N by trading

at post Υs
k. We also de�ne Bs

−γ,k =
´
N\{γ} b

s
k(n)dµ, and Qs

−γ,k =
´
N\{γ} q

s
k(n)dµ.

Consumption allocations, xh,k (b(h), q(h), B−h, Q−h) ≡ xh,k, for commodities k = m, 1, . . . , L,

to pure traders µ-a.e, h ∈ N , are as follows:

xh,k =


ek(h) +

|P |∑
s=1

(
bsk(h) · Q

s
k

Bs
k

− qsk(h)
)

if k 6= m;

ek(h) +
L∑
k=1

|P |∑
s=1

(
qsk(h) · B

s
k

Qs
k

− bsk(h)
)
·
(
1 + ts,kh ck

)
if k = m,

(1)

where ts,kh : R ⊃ zsk(h) → {−1,+1}, ck is the proportional service charge payable (per unit of

monetary net trade) at all trading posts for k, and as is standard in the SMG literature, any division

by zero, including 0/0, is taken to equal zero whenever it appears in the allocation rule above.

From here onwards, we will only write ts,kh instead of ts,kh (zsk(h)). The second expression in the

allocation rule above incorporates the total premia payable to post owners, in terms of commodity

m. The total premium payable at a post depends on the di�erence between an individual h's total

12As mentioned in the introduction, the premium payable at a post Υs
k by an agent n depends on his net trade

there. His net trade at that post depends on the price at Υs
k, which in turn depends on the strategies of all the

players. Hence, the term Λ(n), and what is feasible depend on the strategies of all the players, such that the market
games considered in Sections 2, 3, and 4 of this paper are generalised games.
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revenue and his bid placed, both at the same post. In this light, we stipulate that ts,kh = +1 if

zsk(h) > 0 (such that qsk(h) · psk − bsk(h) < 0), and ts,kh = −1 if zsk(h) < 0 (s.t. qsk(h) · psk − bsk(h) > 0).

If zsk(h) = 0, then we use the following rule:13

ts,kh =

+1 if ∃θ ∈ N , where µ(θ ∩N0) > 0, such that µ-a.e, w ∈ (θ ∩N0), z
s
k(w) ≥ 0;

−1 otherwise.

In light of the above, the premium payable at a post Υs
k by any agent n ∈ N may be written

explicitly as −ckts,kn (qsk(n) · psk − bsk(n)), such that Λ(n) =
∑L

k=1

∑|P |
s=1 − ckts,kn (qsk(n) · psk − bsk(n)).

Consumption allocations, xi,k (b(i), q(i), B−i, Q−i) ≡ xi,k, for k = m, 1, . . . , L, to any (large)

post owner i ∈ A, are determined as:

xi,k =



ek(i) +

|P |∑
s=1

(
bsk(i) ·

Qs
k

Bs
k

− qsk(i)
)

if k 6= m;

ek(i)−
L∑
k=1

ck ·
(ˆ

N

ti,kn q
i
k(n)dµ · B

i
k

Qi
k

−
ˆ
N

ti,kn b
i
k(n)dµ

)
+

L∑
k=1

|P |∑
s=1

(
qsk(i) ·

Bs
k

Qs
k

− bsk(i)
)
·
(
1 + ts,ki ck

)
if k = m.

(2)

The conditions on ts,ki are as for pure traders above. The second expression in the above rule also

includes total premia receivable at posts i owns, and amounts payable (to other post owners).

An equilibrium for this model is de�ned as a pro�le of agents' buy-and-sell decisions across

all trading posts and commodities (b, q) ∈ Gr(S) which forms a Nash equilibrium (N.E). At an

equilibrium with positive bids and o�ers, agents can be viewed as solving the following problem:

max
(b(n),q(n))∈S(n)

{
un

((
xn,k

(
b(n), q(n), B−n, Q−n

))L
k=1

, xn,m
(
b(n), q(n), B−n, Q−n

))}
. (3)

Before we proceed, we de�ne, for a large post owner i ∈ A, the net proceeds of commodity m,

from trading at his post Υi
k, by z

i
m,k(i) = −ck ·

(´
N
ti,kn q

i
k(n)dµ · B

i
k

Qi
k
−
´
N
ti,kn b

i
k(n)dµ

)
+
(
qik(i) ·

Bi
k

Qi
k
−

13Though it may appear abstract, the use of this rule has an important economic meaning. We use this speci�-
cation because for any n ∈ N whose net trade is 0 at a post Υs

k, we have that B
s
−n,k/Q

s
−n,k = Bsk/Q

s
k, a condition

that for every small w ∈ N0, regardless of w's net trade being positive, negative, or zero, is always true. In other
words, if zsk(n) = 0, then agent n behaves like a price taker at post Υs

k�but is not one, unless n ∈ N0. We also
emphasise at this point that this is a benchmark model, such that other speci�cations are also possible.
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bik(i)
)
· (1 + ti,ki c

k), while µ-a.e, n ∈ N \ {i}, zim,k(n) =
(
qik(n) · B

i
k

Qi
k
− bik(n)

)
· (1 + ti,kn c

k).

In the sequel, we will derive properties of interior equilibria14 for our economy where there are

at least two (large) active posts per commodity. A post is active if price is positive and there is

trade. An equilibrium is interior if every agent is solving (3) in the interior of S(n).

2.2 Equilibrium Analysis

We proceed with two propositions which characterise equilibrium prices for a commodity between

pairs of trading posts. The failure of the LOP is crystallised in Theorem 1.

PROPOSITION 1.1 In an economy with a continuum of agents, and at least two (large) active

posts, at an interior N.E, the prices for any commodity k ∈ K between any such pair of trading

posts Υi
k,Υ

j
k should satisfy the following (no-arbitrage) conditions:15

For any large pure trader τ ∈ N \N0 :
(
pik
)2

=
Bi
−τ,kQ

j
−τ,k
(
1 + tj,kτ c

k
)

Qi
−τ,kB

j
−τ,k
(
1 + ti,kτ ck

)(pjk)2;
For µ-a.e, w ∈ N0 : pik =

(
1 + tj,kw c

k
)(

1 + ti,kw ck
) pjk.

PROPOSITION 1.2 In an economy with a continuum of agents, and at least two active posts

owned by (large) agents i, j ∈ A, i 6= j, at an interior N.E, the prices for any commodity k ∈ K

between trading posts Υi
k,Υ

j
k should satisfy the following (no-arbitrage) conditions for i and j:

For i: (pik)
2

=
Bi
−i,kQ

j
−i,k
(
1 + tj,ki c

k
)[

Qi
−i,k + ck ·

(´
N\{i} t

i,k
n qik(n)dµ

)]
Bj
−i,k

(
pjk
)2

;

For j: (pik)
2

=
Bi
−j,k

[
Qj
−j,k + ck ·

(´
N\{j} t

j,k
n q

j
k(n)dµ

)]
Qi
−j,kB

j
−j,k
(
1 + ti,kj c

k
) (

pjk
)2
.

THEOREM 1 Consider any commodity k ∈ K. Whenever at equilibrium ∃θ ∈ N , such that

µ(θ ∩N0) > 0, and µ-a.e, w ∈ (θ ∩N0), z
α
k (w) ≥ 0, zβk (w) < 0, α, β ∈ A, then pαk 6= pβk .

14Dubey and Shubik (1978) proved the existence of equilibria�which may fail to be interior�for the species of
SMG we use. However, in this paper, we construct ad hoc counterexamples, in which non-trivial equilibria do exist.

15Recall�see footnote 10�that we may w.l.o.g. view all agents µ-a.e, w ∈ N0, as being (small) pure traders.
Thus, as both conditions below characterise N.E prices for pure traders, they have been presented together.
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PROOF: W.l.o.g., let α = i and β = j, as in Proposition 1.1. Then, µ-a.e, w ∈ (θ ∩ N0),

pik
pjk

=
(1−ck)
(1+ck)

< 1. 2

A well-founded question is whether the LOP would still fail if the service charge became too small,

or too large. Theorem 1 gives us the possibility to elaborate on this matter. Take any commodity

k ∈ K, and any �su�ciently small� ε > 0. If ck = ε, then so long as the conditions in the statement

of the theorem hold, it is clear that the LOP still has to fail. A similar argument would be true if

ck = 1− ε. This is because large agents cannot pro�tably deviate, for their actions a�ect market-

clearing prices adversely. On the other hand, small agents, who themselves �live in a world of

in�nitesimals,� (Dubey and Shapley, 1994: p. 264) are hindered by any positive service charge.

Theorem 1 also shows that as ck decreases (increases), the degree of price dispersion decreases

(increases). So, suppose that ck were very large (close to 1). Would such a high ck not be prohibitive

to trade? It can be easily argued that this need not be the case. Using Theorem 1, we know that a

high ck implies that prices across posts for commodity k must be vastly unequal. Thus, if an agent

were, say, a net buyer at post Υi
k and a net seller at post Υj

k, and had no incentive to shift orders

across these posts, then this must be because: (i) his total expenditure (inclusive of the premium

payable) at Υi
k is su�ciently low, and; (ii) his total revenue (net of the premium payable) that he

is receiving at Υj
k is su�ciently high. (i) and (ii) imply that if pik < pjk (or pik > pjk), then this

agent makes high (low) non-zero net trades at both posts�while agents on the other sides of the

corresponding markets make low (high) net trades. This discussion thus shows that a high ck does

not destroy agents' incentives to trade. An analogous argument is true when ck is close to zero.

Yet another piece of information that can be gleaned from Theorem 1 is that at equilibrium,

only two di�erent prices may be obtained across posts for any commodity k ∈ K at any time.

2.3 Unequal-price equilibrium: an example

We exemplify the failure of the LOP in a setup with: (i) an atomless continuum of small agents;

(ii) �nitely many atoms, and; (iii) �nitely many posts per commodity.16

Let (N,N , µ) be a measure space of agents where N = N0 ∪ A = (0, 1] ∪ {2, 3}, and µ is as

16For the economy considered in this subsection�and the economies in the subsequent counterexamples as well�
equilibria in which the LOP holds can be trivially constructed, and are available from the author.

10



de�ned in Section 2. For the sake of clarity, we denote agents 2 and 3 by i and j, respectively.

There are two commodities {k, l}, and i and j each own one trading post for each commodity.

Each trading post has capacity χatom = µ(N) = 3. The service charges allocated to the post

owners for each commodity are (ck, cl) = (1
5
, 1
10

). The commodity endowments of the agents are:(
ek(w), el(w), em(w)

)
= ( 3999

2
, 21994

11
, 10013

5
), µ-a.e, w ∈ N0,(

ek(i), el(i), em(i)
)

= (15947
8
, 4451701

2222
, 4038309

2020
),(

ek(j), el(j), em(j)
)

= (16057
8
, 4437511

2222
, 4036439

2020
).

Consider the markets for k. We look for a pro�le which simultaneously satis�es the N.E conditions

in Propositions 1.1 (for w ∈ N0), 1.2, and Theorem 1, which the following strategies do:(
bik(w), qik (w) , bjk(w), qjk (w)

)
=

(
2, 2, 5, 9

4

)
, µ-a.e, w ∈ N0,(

bik(i), qik(i), bjk(i), qjk(i)
)

=
(

8, 3
2
, 20, 87

8

)
,(

bik(j), qik(j), bjk(j), qjk(j)
)

=
(

3, 3, 1
2
, 6

)
.

For the above representation of bids and o�ers in the two markets for commodity k, the prevailing

market-clearing prices are pik = 2, and pjk = (4/3).17

Consider now the markets for commodity l. It can again be veri�ed that the pro�le of strategies

below satis�es Propositions 1.1 (for w ∈ N0), 1.2, and Theorem 1:

(
bil(w), qil (w) , bjl (w), qjl (w)

)
=

(
15, 2, 2, 3

)
, µ-a.e, w ∈ N0,(

bil(i), qil(i), bjl (i), qjl (i)
)

=
(

57
101
, 7

2
, 47602

303
, 43

)
,(

bil(j), qil(j), bjl (j), qjl (j)
)

=
(

1695397
7676

, 16715
228

, 6907
606

, 1
2

)
.

For the above representation of bids and o�ers in the two markets for commodity l, the prevailing

market-clearing prices are pil = 3, and pjl = (11/3).

Each agent ends up with consumption (xn,k, xn,l, xn,m) = (2000, 2000, 2000), µ-a.e, n ∈ N .

From here, one can proceed as in Koutsougeras (1999) to easily derive utility functions such that

the above pro�le of strategies constitutes an N.E. For concreteness, we present one solution:

17We remark that in the class of SMG that we propose in this paper, it is necessary that there be wash-sales for
the LOP to fail, consistent with Bloch and Ferrer's (2001) �nding. We also point out that agents µ-a.e, w ∈ N0,
need not be identical. We have done this for simplicity, and to ensure that unnecessary matters do not detract from
the main message of the paper.
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uw(xw) = 16 ln(xw,k) + 33 ln(xw,l) + 10 ln(xw,m), µ-a.e, w ∈ N0,

ui(xi) = 779424 ln(xi,k) + 769923 ln(xi,l) + 243570 ln(xi,m),

uj(xj) = 117376 ln(xj,k) + 366630 ln(xj,l) + 104800 ln(xj,m).

3 The failure of the LOP, Part 2: The model

We now analyse the failure of the LOP in a context featuring: (i) an atomless continuum of small

agents; (ii) �nitely many atoms, and; (iii) in�nitely many markets per commodity.

We consider a complete, �nite measure space of agents (N,N , µ), whereN = N0∪A, N0 = (0, 1],

and A = {2, . . . , H}. µ is Lebesgue when restricted to NN0 , and the counting measure when

restricted to NA, where NN0 and NA are as de�ned in Section 2. The commodity space is de�ned

by RL+1, and the consumption set of each agent by RL+1
+ . Each (large) post owner now owns

countably in�nitely many trading posts for each commodity k ∈ K = {1, 2, . . . , L}. Now, de�ne

Y = `1 × `1, where each factor `1, the space of absolutely-summable real sequences, is equipped

with its 1-norm, i.e., is given its usual norm topology. We supply Y with the product topology, and

we equip it with the norm ‖(x, y)‖Y = ‖x‖`1 +‖y‖`1 <∞, (x, y) ∈ Y . Next, consider Θ := `1+× `1+,

where `1+ denotes the positive cone of `1. The strategy sets of agents can then described by a

measurable correspondence S : N ⇒ 2Θ, such that18

S(n) =
{

(b(n), q(n)) ∈ `1+×`1+ :
∞∑
r=1

L∑
k=1

|P |∑
s=1

bs,rk (n)+Λ(n) ≤ em (n) ;
∞∑
r=1

|P |∑
s=1

qs,rk (n) ≤ ek (n) , k ∈ K
}
,

where (b(n), q(n)) =
{{{

bs,rk (n), qs,rk (n)
}|P |
s=1

}L
k=1

}∞
r=1

, and |P | is the number of large post owners

in A. Note that in this section, Υs,r
k represents the rth trading post owned by post owner s ∈ A

for commodity k. As before, posts owned by atoms have capacity χatom = µ(N), while χsmall = 0.

A strategy pro�le consists of a pair of measurable mappings b : N → `1+, and q : N → `1+, such

that (b(n), q(n)) ∈ S(n) a.e in N . `1+ is a separable Banach (complete normed vector) space. Y ,

equipped with the norm as described above, is also a Banach space, and therefore, so is Θ. Now, it

is well known that the countable Cartesian product of separable spaces is separable, and hence, we

18Since for agents µ-a.e, n ∈ N , ek(n) <∞ ∀k ∈ ({m}∪K), we have that bids and o�ers must converge for every
individual, hence our choice of sequence space.
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have that the product vector space Θ is a separable Banach space. Considering S : N ⇒ 2Θ has

a measurable graph, we have that the measurable mappings b and q exist, by AMST. A mapping

f : N → X is said to be µ-measurable if there exists a sequence of simple functions {fn}n∈N
such that µ-a.e, limn→∞ ‖fn − f‖X = 0. Seeing that every measurable mapping can be obtained

as the limit of some sequence of simple functions, it follows that b and q are µ-measurable. A

µ-measurable function f : N → X is called Bochner-integrable if there exists a sequence of

simple functions {fn}n∈N such that limn→∞
´
N
‖fn − f‖X dµ = 0. It can equally be shown that

a µ-measurable function f : N → X is Bochner-integrable i� its norm function ‖f‖ is Lebesgue-

integrable, i.e.,
´
N
‖f‖X dµ <∞ (see, e.g., Diestel and Uhl, 1977: p. 45). As (N,N , µ) is a �nite

measure space, it is easy to see that
´
N
‖b‖`1 dµ <∞ and

´
N
‖q‖`1 dµ <∞, and thus, we have that

b and q are Bochner-integrable. Furthermore, since the µ-measurable mappings b and q take values

in a separable Banach space, they are also weakly measurable, by Pettis' Measurability Theorem

(see, e.g., Diestel and Uhl, 1977: p. 42). This therefore implies that the coordinate functionals{{{
bs,rk (n), qs,rk (n)

}|P |
s=1

}L
k=1

}∞
r=1

, where bs,rk , q
s,r
k : N× R+ ⊃ N → R+, are also measurable. Hence,

for a given strategy pro�le (b, q) ∈ Gr(S), we de�ne, for each k ∈ K, s ∈ {1, 2, . . . , |P |} and r ∈ N,

Bs,r
k =

´
N
bs,rk (n)dµ < ∞ and Qs,r

k =
´
N
qs,rk (n)dµ < ∞. Transactions at each post clear through

the price ps,rk = (Bs,r
k /Qs,r

k ). The allocation rule for pure traders µ-a.e, h ∈ N , is now:

xh,k =


ek(h) +

∞∑
r=1

|P |∑
s=1

(
bs,rk (h) · Q

s,r
k

Bs,r
k

− qs,rk (h)
)

if k 6= m;

ek(h) +
∞∑
r=1

L∑
k=1

|P |∑
s=1

(
qs,rk (h) · B

s,r
k

Qs,r
k

− bs,rk (h)
)
·
(
1 + ts,r,kh ck

)
if k = m,

(4)

while the distribution rule in (2) for any (large) post owner i ∈ A, must now be rewritten as

xi,k =



ek(i) +
∞∑
r=1

|P |∑
s=1

(
bs,rk (i) · Q

s,r
k

Bs,r
k

− qs,rk (i)
)

if k 6= m;

ek(i)−
∞∑
r=1

L∑
k=1

ck ·
(ˆ

N

ti,r,kn qi,rk (n)dµ · B
i,r
k

Qi,r
k

−
ˆ
N

ti,r,kn bi,rk (n)dµ
)

+
∞∑
r=1

L∑
k=1

|P |∑
s=1

(
qs,rk (i) · B

s,r
k

Qs,r
k

− bs,rk (i)
)
·
(
1 + ts,r,ki ck

)
if k = m,

(5)

where as before, any division by zero, including 0/0, is taken to equal zero. The conditions on ts,r,kn

13



for each n ∈ N and s ∈ {1, 2, . . . , |P |} are as in Section 2. We impose that the total endowment

and allocation of any commodity k ∈ ({m} ∪ K) in the economy be such that 0 <
´
N
xn,kdµ ≤´

N
ek(n)dµ <∞.

At an N.E with positive bids and o�ers, agents are viewed as solving the same programme as in

(3). By Assumption (ii), u(·) is (twice-) continuously di�erentiable, and since our commodity space

is still �nite-dimensional, we have that u(·) is in fact (twice-) continuously Fréchet-di�erentiable19

(in x). As we show in the Appendix, Lemma 6, xh,k and xi,k, as (well-) de�ned above, are in turn,

Gâteaux-di�erentiable19 (in b and q). Hence, we are able to prove that:

PROPOSITION 2 The (no-arbitrage) equilibrium conditions in Propositions 1.1, 1.2 and The-

orem 1 are true for this section as well, mutatis mutandis.20

3.1 Unequal-price equilibrium: an example

We demonstrate the invalidity of the LOP in a framework featuring: (i) an atomless continuum of

small agents; (ii) �nitely many atoms; and; (iii) in�nitely many markets per commodity.

We let (N,N , µ) be a complete, �nite measure space as de�ned in Section 3, where N =

N0 ∪ A = (0, 1] ∪ {2, 3}. As before, we denote agents 2 and 3 by i and j, respectively. There are

two commodities {k, l}, and i and j each own countably in�nitely many trading posts for each

commodity. The capacity of each trading post is χatom = µ(N) = 3. The service charges allocated

to the post owners for each commodity are (ck, cl) = (1
5
, 1
10

). The commodity endowments of the

agents are as follows:

k l m

e(w) = (1999, 21988
11

, 10026
5

), µ-a.e, w ∈ N0,

e(i) = ( 7947
4
, 2229701

1111
, 2018309

1010
),

e(j) = ( 8057
4
, 2215511

1111
, 2016439

1010
).

At this point, it is helpful to note that in Propositions 1.1 (for w ∈ N0) and 1.2, the prices, along

with the fractions
Bi
−i,k

Qi
−i,k+c

k·
(´

N\{i} t
i,k
n qik(n)dµ

) , Qj
−i,k

Bj
−i,k

,
Bi
−j,k

Qi
−j,k

,
Qj
−j,k+c

k·
(´

N\{j} t
j,k
n qjk(n)dµ

)
Bj
−j,k

, are homogeneous

of degree zero in bids and o�ers, a fact which will be used throughout this example.

19Please refer to Luenberger (1969: pp. 171-172) for a formal de�nition.
20`1+ has an empty interior. Thus, in the statements of these results, the equilibria must be recharacterised,

instead of interior, as N.E with positive bids and o�ers, and no binding liquidity and o�er constraints.
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In particular, using the above fact, we may easily reformulate the strategy pro�le in Section

2.3 to let i and j both own countably in�nitely many markets for each commodity, by simply

replicating posts as we next show. So �rst, we relabel the posts owned by i for commodity k as{
Υi,1
k ,Υ

i,2
k , . . .

}
=
{

Υi,r
k

}∞
r=1

, and similarly for posts owned by j,
{

Υj,r
k

}∞
r=1

. It can then be veri�ed,

for any pair of trading posts Υi,α
k ,Υj,β

k , α, β ∈ N, that the following strategies satisfy Propositions

1.1, 1.2 and Theorem 1, mutatis mutandis, thus constituting an (unequal-price) N.E:

For commodity k, at posts Υi,r
k and Υj,r

k , r ∈ N:

Bids at Υi,r
k O�ers at Υi,r

k

µ-a.e, w ∈ N0

(
1

2r−1

)
· 2

(
1

2r−1

)
· 2

i
(

1
2r−1

)
· 8

(
1

2r−1

)
· 3
2

j
(

1
2r−1

)
· 3

(
1

2r−1

)
· 3

∣∣∣∣∣∣∣∣∣∣∣∣

Bids at Υj,r
k O�ers at Υj,r

k(
1

2r−1

)
· 5

(
1

2r−1

)
· 9
4(

1
2r−1

)
· 20

(
1

2r−1

)
· 87

8(
1

2r−1

)
· 1
2

(
1

2r−1

)
· 6

For the above representation of bids and o�ers in the markets for commodity k, the prevailing

market-clearing prices are pi,rk = 2, and pj,rk = (4/3), r ∈ N.

For commodity l, at posts Υi,r
l and Υj,r

l , r ∈ N:

Bids at Υi,r
l O�ers at Υi,r

l

µ-a.e, w ∈ N0

(
1

2r−1

)
· 15

(
1

2r−1

)
· 2

i
(

1
2r−1

)
· 57
101

(
1

2r−1

)
· 7
2

j
(

1
2r−1

)
· 1695397

7676

(
1

2r−1

)
· 16715

228

∣∣∣∣∣∣∣∣∣∣∣∣

Bids at Υj,r
l O�ers at Υj,r

l(
1

2r−1

)
· 2

(
1

2r−1

)
· 3(

1
2r−1

)
· 47602

303

(
1

2r−1

)
· 43(

1
2r−1

)
· 6907

606

(
1

2r−1

)
· 1
2

For the above representation of bids and o�ers in the markets for commodity l, the prevailing

market-clearing prices are pi,rl = 3, and pj,rl = (11/3), r ∈ N.

It is also interesting to note that for both k and l, the LOP would still fail if instead of

1
2r−1 , r ∈ N, we multiplied every b and q by 1

πr−1 , r ∈ N, where π ∈ (1,∞).

Each agent ends up with consumption (xn,k, xn,l, xn,m) = (2000, 2000, 2000) , µ-a.e, n ∈ N .

Utility functions, such that the above pro�le of strategies constitutes an N.E, are as in Section 2.3.

4 The failure of the LOP, Part 3: The model

In this section, we look at the failure of the LOP in a context featuring: (i) an atomless continuum

of small agents; (ii) in�nitely many atoms, and; (iii) in�nitely many markets per commodity.
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For this section, we let the set of agents be denoted by N = N0 ∪A∪C, where as before, N0 =

(0, 1] and A = {2, ..., H}, and we de�ne C = {H + 1, H + 2, . . .}. We let S0, SA, NN0 , NA, µ0

and µA be de�ned as in Section 2, and we de�ne SC = P (C). Trivially, SC is a σ-algebra. So, let

µC be a measure on SC such that for each agent (H+g) ∈ C, g ∈ N, we have µC (H + g) =
(
1/2g

)
.

Then, as in the previous sections, the triple (N,N , µ) is a complete, �nite measure space of agents

(see Appendix, Lemma 7). There are �nitely many commodities k ∈ K = {1, 2, . . . , L}, and

each large post owner is endowed with in�nitely many posts for each commodity, the capacity of

each post being equal to µ(N). To keep notation tractable, we choose to let post owners lie in A

only.21 The commodity space is RL+1, and the consumption set of every individual is RL+1
+ . Let

the product vector space Y be de�ned as in Section 3, and consider Θ := `1+ × `1+. The strategy

sets of agents are described by a measurable correspondence S : N ⇒ 2Θ, such that

S(n) =
{

(b(n), q(n)) ∈ `1+×`1+ :
∞∑
r=1

L∑
k=1

|P |∑
s=1

bs,rk (n)+Λ(n) ≤ em (n) ;
∞∑
r=1

|P |∑
s=1

qs,rk (n) ≤ ek (n) , k ∈ K
}
,

where (b(n), q(n)) =
{{{

bs,rk (n), qs,rk (n)
}|P |
s=1

}L
k=1

}∞
r=1

, and |P | is the number of post owners in A.

A strategy pro�le consists of a pair of measurable mappings b : N → `1+, and q : N → `1+, such

that (b(n), q(n)) ∈ S(n) a.e in N . By the same argument as in the preceding section, we have that

the µ-measurable mappings b and q exist, by AMST. Since (N,N , µ) as de�ned in this section is

still a �nite measure space, it easily follows that
´
N
‖b‖`1 dµ <∞ and

´
N
‖q‖`1 dµ <∞, such that

b and q are Bochner-integrable. As in the previous section, b and q are also weakly measurable, such

that the component functions
{{{

bs,rk (n), qs,rk (n)
}|P |
s=1

}∞
k=1

}∞
r=1

, where bs,rk , q
s,r
k : N×R+ ⊃ N → R+,

are measurable. For a given strategy pro�le (b, q) ∈ Gr(S), we then de�ne, for each k ∈ N,

s ∈ {1, 2, . . . |P |}, and r ∈ N, Bs,r
k =

´
N
bs,rk (n)dµ <∞ and Qs,r

k =
´
N
qs,rk (n)dµ <∞. Transactions

at each post clear through the price ps,rk = (Bs,r
k /Qs,r

k ).

Consumption assignments for k = m, 1, . . . , L, to pure traders µ-a.e, h ∈ N , are de�ned as

in (4), while for any (large) post owner i ∈ A, the allocation rule is as in (5). As before, the

total endowment and allocation of every commodity k ∈ ({m} ∪K) in the economy are such that

0 <
´
N
xn,kdµ ≤

´
N
ek(n)dµ <∞.

21We could, with no major technical di�culty, let post owners lie in A∪C. However, this comes at the cost of an
even more cumbersome notation, with no signi�cant gain in intuition, and no change whatsoever in our conclusions.
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At an N.E with positive bids and o�ers, agents are viewed as solving the same problem as in

(3).

PROPOSITION 3 The results in Propositions 1.1 through to 2 and Theorem 1, are true for this

section as well, mutatis mutandis.

PROOF: The proof is identical to that of Proposition 2, and is therefore omitted. 2

4.1 Unequal-price equilibrium: an example

We show the failure of the LOP in a framework featuring: (i) an atomless continuum of small

agents; (ii) in�nitely many atoms, and; (iii) in�nitely many markets per commodity.

Let (N,N , µ) be a measure space of agents as de�ned in Section 4 above. Consider an economy

where N = N0 ∪ A ∪ C, N0 = (0, 1], A = {2, 3}, and C = {4, 5, . . .}, where agents 2 and 3 are

a large post owner and a large pure trader, respectively. We denote agent 2 by i, agent 3 by τ ,

and the agents in C by 3 + g, g ∈ N. The set of commodities is K = {1, 2, . . . , 10}, and i owns

in�nitely many markets for each commodity. The capacity of each post is µ(N) = 4. The service

charges allocated to i for commodities a ∈ KO = {1, 3, 5, 7, 9} and b ∈ KE = {2, 4, 6, 8, 10} are:

(ca, cb) = (1
5
, 1
10

).

The commodity endowments of the agents are as follows:22

∀a ∈ KO ∀b ∈ KE m

µ-a.e, w ∈ N0, e(w) =
((

1
2a−1

)
· 1999.92,

(
1

2b−2

)
· 1999.92, 2003.17

)
,

e(i) =
((

1
2a−1

)
· 2000.62,

(
1

2b−2

)
· 2000.34, 1980.88

)
,

e(τ) =
((

1
2a−1

)
· 1999.46,

(
1

2b−2

)
· 1999.74, 2015.95

)
,

e(3 + g), g ∈ N =
((

1
2a−1

)
· 2000.00,

(
1

2b−2

)
· 2000.00, 2000.00

)
.

Consider �rst a pair of commodities a ∈ KO and b ∈ KE. It can be veri�ed that the strategies

below satisfy the conditions as in Theorem 1 and Propositions 1.1 and 1.2, mutatis mutandis,23

22For clarity of exposition, the numbers in this example have been rounded o�. The exact �gures (rational
numbers), which were used in all computations throughout this example, are available from the author.

23There is now only one post owner i. So, at an equilibrium with positive bids and o�ers, and no binding liquidity
and o�er constraints, the prices for any k ∈ K between any two trading posts Υi,α

k ,Υi,β
k , α, β ∈ N, should satisfy

the following (no-arbitrage) condition for i:
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and therefore constitute an (unequal-price) N.E:

For any commodity a ∈ KO, at posts Υi,2g−1
a and Υi,2g

a , g ∈ N:

Agent Bids at Υi,2g−1
a O�ers at Υi,2g−1

a

µ-a.e, w ∈ N0,
(

1
2a−1+g

)
· 1.000

(
1

2a−1+g

)
· 0.000

i
(

1
2a−1+g

)
· 0.429

(
1

2a−1+g

)
· 0.656

τ
(

1
2a−1+g

)
· 9.000

(
1

2a−1+g

)
· 0.207

Every agent ∈ C
(

1
2a−1+g

)
· 9.240

(
1

2a−1+g

)
· 0.765

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Bids at Υi,2g
a O�ers at Υi,2g

a(
1

2a−1+g

)
· 0.000

(
1

2a−1+g

)
· 0.001(

1
2a−1+g

)
· 1.000

(
1

2a−1+g

)
· 0.058(

1
2a−1+g

)
· 0.100

(
1

2a−1+g

)
· 0.001(

1
2a−1+g

)
· 0.008

(
1

2a−1+g

)
· 0.000

For the above representation of bids and o�ers in the markets for commodity a, the prevailing

market-clearing prices are pi,2g−1a = 12.08, and pi,2ga = 18.13, g ∈ N.

For any commodity b ∈ KE, at posts Υi,2g−1
b and Υi,2g

b , g ∈ N:

Agent Bids at Υi,2g−1
b O�ers at Υi,2g−1

b

µ-a.e, w ∈ N0,
(

1
2b−2+g

)
· 1.100

(
1

2b−2+g

)
· 0.000

i
(

1
2b−2+g

)
· 0.429

(
1

2b−2+g

)
· 0.368

τ
(

1
2b−2+g

)
· 8.273

(
1

2b−2+g

)
· 0.327

Every agent ∈ C
(

1
2b−2+g

)
· 11.60

(
1

2b−2+g

)
· 0.824

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Bids at Υi,2g
b O�ers at Υi,2g

b(
1

2b−2+g

)
· 0.000

(
1

2b−2+g

)
· 0.001(

1
2b−2+g

)
· 1.125

(
1

2b−2+g

)
· 0.067(

1
2b−2+g

)
· 0.100

(
1

2b−2+g

)
· 0.003(

1
2b−2+g

)
· 0.008

(
1

2b−2+g

)
· 0.000

For the above representation of bids and o�ers in the markets for commodity b, the prevailing

market-clearing prices are pi,2g−1b = 14.09, and pi,2gb = 17.22, g ∈ N.

Certainly, the same can be done for every other pair of commodities c ∈ KO \ {a} and d ∈

KE \ {b}. In this light, the �nal consumption of all agents µ-a.e, n ∈ N , is (xn,a, xn,b, xn,m) =

(2000/2a−1, 2000/2b−2, 2000), ∀a ∈ KO, ∀b ∈ KE. From here, one can follow Koutsougeras (1999)

to derive utility functions such that the above strategies form an N.E.

Before we close this section, we highlight a few striking features of this example. First, as in

the examples in Subsections 2.3 and 3.1, equal-price equilibria can also be easily constructed for

the economy considered in this example. Second, note that the allocated service charge is the same

(
pi,αk

)2
=
Bi,α−i,k ·

[
Qi,β−i,k + ck ·

(´
N\{i} t

i,β,k
n qi,βk (n)dµ

)][
Qi,α−i,k + ck ·

(´
N\{i} t

i,α,k
n qi,αk (n)dµ

)]
·Bi,β−i,k

(
pi,βk
)2
.

This result follows as a simple corollary of Proposition 1.2, and is readily seen from (6) in the proof of Proposition
1.2. Proposition 1.1 still holds, with the only di�erence being that posts are now also indexed by α, β ∈ N.
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at all posts for a commodity k ∈ K, and yet, the LOP still fails across in�nitely many posts, all

owned by the same agent.24 It is also interesting to note that ∀a ∈ KO, and ∀b ∈ KE, we have

that
∣∣pi,2g−1a − pi,2ga

∣∣ > ∣∣pi,2g−1b − pi,2gb

∣∣ > ∣∣pi,rk − pj,rk ∣∣ =
∣∣pi,rl − pj,rl ∣∣, g, r ∈ N, where pik, p

j
k, p

i
l and p

j
l

are as in Subsections 2.3 and 3.1. In other words, increasing the number of atoms denumerably

has, intriguingly, not decreased the degree of price dispersion. There is thus no convergence of

any kind to no-arbitrage equilibria, and de�nitely not to Walrasian (price-taking) equilibria. The

main message of this example (and of this paper, as a matter of fact) is that it is not who owns

the trading posts that matters, nor how many posts one owns��nitely or in�nitely many. What

truly counts is merely that posts be privately owned, such that service charges are imposed, for

strategic behaviour to in�uence the resulting equilibrium market structure.

5 Conclusion

In this paper, we have presented a framework in which strategic behaviour by agents, and private

ownership of trading posts, a�ect the set of equilibria of large economies non-trivially. Indeed,

while Koutsougeras (2003a) shows that the structure of trading posts becomes immaterial as the

number of agents increases without bounds, this is not true for our model. This is evidenced by the

failure of the LOP even in economies with many agents and markets. Thus, we can conclude that

in large frictionless (in the sense that no money and/or commodity leaves the system or is �lost�)

SMG, it is strategic behaviour, alongside the private ownership of trading posts, that constitutes

the only source of equilibria with arbitrage.

In light of the above, we believe that the model proposed in this paper can be easily applied

to other �elds of study, to provide a theoretical underpinning for the failure of the LOP that

is based on strategic behaviour by agents. In particular, �elds such as di�erential-information,

international, macro-, and even public economics25 would be suitable avenues, for these are areas

24The presence of only one post owner does not weaken our conclusions in any way; if anything, it strengthens
them. This is because at a glance, it would seem that this post owner would have the strongest incentives to shift
his orders across posts (all of which he owns) in a way such that the aggregate net trade across the markets remains
unchanged. However, this unilateral deviation will not be pro�table for him�see, for instance, Koutsougeras
(2003b) and Toraubally (2017b).

25The interested reader is referred to Goenka et al. (1998) for a pioneering and rigorous application of SMG to
macroeconomics. For an application of SMG to di�erential-information economics, see, e.g., Faias et al. (2010).
For a recent application of SMG to international trade, see, e.g., Toraubally (2017b). For the use of the SMG

19



in which there are, not only large numbers of agents and markets, but also many well-documented

cases of inconsistent prices. In future research, given the crucial role that the trading-post service

charges play in this model, it would be worthwhile to analyse in greater detail how changes in

those charges a�ect the behaviour of net buyers and net sellers, and in particular, the direction of

trade.

Appendix

LEMMA 1 The set function ν : S → [0,∞], where S = {W ⊆ N : W = K ∪ L;K ∈ S0;L ∈ SA},

such that ν(W ) = ν0 (W ∩N0) + µA (W ∩ A) for each W ∈ S , is a measure.

PROOF: It can be easily shown, given S0 and SA are semirings, that S is also a semiring. So,

for each countable family {Wn}n∈N of pairwise disjoint sets in S , with
⋃∞
n=1Wn ∈ S , we have

ν (
⋃∞
n=1Wn) = ν0

((⋃∞
n=1Wn

)
∩N0

)
+ µA

((⋃∞
n=1Wn

)
∩ A

)
= ν0 (

⋃∞
n=1 (Wn ∩N0)) + µA (

⋃∞
n=1 (Wn ∩ A))

=
∑∞

n=1
ν0 (Wn ∩N0) +

∑∞

n=1
µA (Wn ∩ A)

=
∑∞

n=1
(ν0 (Wn ∩N0) + µA (Wn ∩ A)) =

∑∞

n=1
ν (Wn) .

So ν is σ-additive. Finally, by construction, we have that ν(∅) = ν0 (∅) + µA (∅) = 0. 2

Since ν is a measure on S , it generates a nonnegative extended real-valued set function µ, the

Carathéodory extension of ν, de�ned on P(N). µ is, as is well known, an outer measure. So,

a set W ⊆ N is said to be µ-measurable if µ(Y ) = µ(Y ∩W ) + µ (Y ∩W c), for each Y ⊆ N .

Next, denote by N the collection of all the µ-measurable subsets of N . Thus, we have that N is

a σ-algebra, and µ is a complete measure (see, e.g., Aliprantis and Border, 2006: p. 387) when

restricted to N . We then have that:

LEMMA 2 The triple (N,N , µ) is a complete, �nite measure space of agents. Moreover, µ is the

unique extension of ν to a measure on N .

PROOF: Since µ(N) = H <∞, we have that the measure space (N,N , µ) is �nite. This implies

that the measure ν on S is also �nite, and therefore, σ-�nite. Since N is a semiring with S ⊆ N ,

mechanism in public economics, see, e.g., Faias et al. (2014).
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our result follows (see, e.g., Aliprantis and Border, 2006: pp. 382-383). 2

Consider now the set function ν0 : S0 → [0,∞]. Since ν0 is a measure on S0, it also generates

a nonnegative extended real-valued set function µ0, the Carathéodory extension of ν0, de�ned on

P(N0). Denote by N0 the collection of all the µ0-measurable subsets of N0. Then, we have that

N0 is a σ-algebra, and µ0 is a measure when restricted to N0. Thus, the triple (N0,N0, µ0) is

a complete, �nite measure space, and µ0 is the unique extension of ν0 to a measure on N0. Let

NN0 = {N0 ∩W : W ∈ N} denote the restriction of N to N0. We then have the following result.

LEMMA 3 The triple
(
N0,NN0 , µ

)
is a measure space such that NN0 = N0, and µ = µ0 when

restricted to NN0 .

PROOF:We �rst prove the second part of our lemma, which involves appropriately manipulating,

for every W in N0, the following formula for µ, the Carathéodory extension of ν, thus:

µ (W ) = inf
{∑∞

n=1 ν (Wn) : {Wn}n∈N ⊆ S ;W ⊆
⋃∞
n=1Wn

}
= inf

{∑∞
n=1 (ν0 (Wn ∩N0) + µA (Wn ∩ A)) : {Wn}n∈N ⊆ S ;W ⊆

⋃∞
n=1Wn

}
= inf

{∑∞
n=1 (ν0 (Wn ∩N0)) : {Wn}n∈N ⊆ S ;Wn ∩ A = ∅, n ∈ N;W ⊆

⋃∞
n=1 (Wn ∩N0)

}
= inf

{∑∞
n=1 ν0 (Wn) : {Wn}n∈N ⊆ S ;Wn ∩ A = ∅, n ∈ N;W ⊆

⋃∞
n=1 (Wn ∩N0)

}
= µ0 (W ) .

Now, since N0 is µ-measurable, NN0 is then, by de�nition, a collection of µ-measurable subsets of

N0. So, let W ∈ N0, and consider any Y ⊆ N . By the σ-subadditivity of µ, and given µ(∅) = 0,

we have

µ (Y ) ≤ µ
(
Y ∩W

)
+ µ
(
Y ∩W c

)
≤ µ

(
N0 ∩ Y ∩W

)
+ µ
(
A ∩ Y ∩W

)
+ µ
(
N0 ∩ Y ∩W c

)
+ µ
(
A ∩ Y ∩W c

)
= µ

(
N0 ∩ Y ∩W

)
+ µ
(
N0 ∩ Y ∩W c

)
+ µ
(
A ∩ Y

)
.

Since µ = µ0 for every W ⊆ N0, and using the µ0-measurability of W , we may show that

µ
(
N0 ∩ Y ∩W

)
+ µ
(
N0 ∩ Y ∩W c

)
+ µ
(
A ∩ Y

)
= µ0

(
N0 ∩ Y ∩W

)
+ µ0

(
N0 ∩ Y ∩W c

)
+ µ
(
A ∩ Y

)
= µ0

(
N0 ∩ Y

)
+ µ
(
A ∩ Y

)
= µ

(
N0 ∩ Y

)
+ µ
(
A ∩ Y

)
= µ (Y ) .
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This implies that µ (Y ∩W )+µ (Y ∩W c) = µ(Y ), which then implies thatW is also µ-measurable,

thereby showing that N0 ⊆ NN0 . To show the reverse inclusion, we �rst let W ∈ NN0 , then use

the µ-measurability of W , and subsequently, the σ-additivity of µ on N , to show that W is also

µ0-measurable, such that the result that NN0 ⊆ N0 easily follows. Thus, we have N0 = NN0 . 2

Consider now the triple
(
A,SA, µA

)
. Since SA is the collection of all the µA-measurable subsets

of A, and µA is a measure de�ned on P (A), we have that the triple
(
A,SA, µA

)
is a complete

measure space. Let NA = {A ∩W : W ∈ N} denote the restriction of N to A. The following fact

characterises the restriction of the measure space (N,N , µ) to A.

LEMMA 4 The triple
(
A,NA, µ

)
is a measure space such that NA = SA, and µ = µA when

restricted to NA.

PROOF: The result that µ = µA when restricted to NA can be easily obtained by using a

similar line of reasoning as in the proof of Lemma 3. To prove that NA = SA, note that because

SA := P (A), we only need to show that SA ⊆ NA, which is trivial, since SA ⊂ S ⊆ N ⇒ SA =

{A ∩ L : L ∈ S } ⊆ {A ∩W : W ∈ N} = NA. 2

From Lemmata 3 and 4 respectively, it is easy to show that the measure space
(
N0,NN0 , µ

)
is

atomless, while the measure space
(
A,NA, µ

)
is purely atomic. Moreover, for each i ∈ A, the

singleton set {i} is an atom of the measure space (N,N , µ).

The following lemma shows that the set of all feasible net trades is convex. We will use this result

in the proofs of Propositions 1.1, 1.2, and 2.

LEMMA 5 For each n ∈ N , the set of all feasible net trades is convex.

PROOF: To avoid repetition and to save space, we prove the result for when there are countably

many trading posts per commodity. This way, the result automatically holds true for all of the

constructions in Sections 2 through to 4. For ease of exposition, we will adopt a di�erent notation

to the one that has been used thus far for the purposes of the �rst part of the proof only.

So, let Zn denote the set of all feasible net trades for some n ∈ N . Let z̃n and ẑn ∈ Zn, where z̃n
and ẑn are obtained by the vectors of strategies (b̃n, q̃n) and (b̂n, q̂n), respectively, i.e., z̃n := z(b̃n, q̃n)

and ẑn := z(b̂n, q̂n). We need to show that, given the strategies of all the other agents, for any
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λ ∈ [0, 1], λz̃n+(1− λ) ẑn ∈ Zn. In other words, if
?
zn := λz̃n+(1− λ) ẑn, then we want to show that

∃(
?

bn,
?
qn) feasible such that z(

?

bn,
?
qn) =

?
zn. So, �rst, �x a λ ∈ [0, 1]. Now, we may rewrite z̃n and ẑn

explicitly as z̃n =
(
z̃n,m, z̃n,1, . . . , z̃n,k, . . . , z̃n,L

)T
, and ẑn =

(
ẑn,m, ẑn,1, . . . , ẑn,k, . . . , ẑn,L

)T
, where

T denotes transposition. Hence,
?
zn = λ

(
z̃n,m, z̃n,1, . . . , z̃n,L

)T
+ (1− λ)

(
ẑn,m, ẑn,1, . . . , ẑn,L

)T
=(

λz̃n,m + (1− λ) ẑn,m, λz̃n,1 + (1− λ) ẑn,1, . . . , λz̃n,L + (1− λ) ẑn,L
)T ≡ (?zn,m, ?zn,1, . . . , ?zn,L)T . But

there are multiple posts for each k ∈ K. So, for every k ∈ K, we have that λz̃n,k + (1− λ) ẑn,k =

λ
(
z̃s,1n,k + z̃s,2n,k + . . .

)|P |
s=1

+(1− λ)
(
ẑs,1n,k + ẑs,2n,k + . . .

)|P |
s=1

=
([
λz̃s,1n,k+(1− λ) ẑs,1n,k

]
+
[
λz̃s,2n,k+(1− λ) ẑs,2n,k

]
+

. . .
)|P |
s=1

=
∑Γ

r=1

∑|P |
s=1

[
λz̃s,rn,k + (1− λ) ẑs,rn,k

]
=
∑Γ

r=1

∑|P |
s=1

?
zs,rn,k =

?
zn,k. Here, Γ ≤ ∞ denotes the

number of posts that an agent s ∈ A owns, and |P | is the number of post owners in A. So, our

strategy will be to proceed post by post, and show that each
?
zs,rn,k, s ∈ {1, . . . , |P |}, r ∈ {1, . . . , Γ},

is feasible, such that
?
zn,k has to be feasible. One can then repeat the algorithm for every other

commodity l ∈ K \ {k}.

With these preliminary remarks out of the way, consider a commodity k ∈ K, any one trading

post r for k owned by an atom i, and the net trade of an agent n ∈ N there, zi,rn,k,
26 and de�ne,

z̃i,rn,k = z
(
b̃i,rn,k, q̃

i,r
n,k

)
;

ẑi,rn,k = z
(
b̂i,rn,k, q̂

i,r
n,k

)
.

Next, de�ne

qi,r
n,k

= min
(
q̃i,rn,k, q̂

i,r
n,k

)
;

q̄i,rn,k = max
(
q̃i,rn,k, q̂

i,r
n,k

)
.

Since zi,rn,k is decreasing in qi,rn,k (holding b
i,r
n,k constant), we have that

z̃i,rn,k ≡ z
(
b̃i,rn,k, q̄

i,r
n,k

)
≤ z

(
b̃i,rn,k, q̃

i,r
n,k

)
≤ z

(
b̃i,rn,k, q

i,r
n,k

)
≡ ¯̃zi,rn,k;

ẑi,rn,k ≡ z
(
b̂i,rn,k, q̄

i,r
n,k

)
≤ z

(
b̂i,rn,k, q̂

i,r
n,k

)
≤ z

(
b̂i,rn,k, q

i,r
n,k

)
≡ ¯̂zi,rn,k.

But zi,rn,k is increasing and concave in bi,rn,k (holding q
i,r
n,k constant), such that we have

z
(
0, q̄i,rn,k

)
≤ λz̃i,rn,k + (1− λ) ẑi,rn,k

≤ ?
zi,rn,k = λz̃i,rn,k + (1− λ) ẑi,rn,k

≤ λ¯̃zi,rn,k + (1− λ) ¯̂zi,rn,k

≤ z
(
λb̃i,rn,k + (1− λ) b̂i,rn,k, q

i,r
n,k

)
≡ z
(
λbi,rn,k, q

i,r
n,k

)
.

26As noted before, for the �rst part of the proof, we will use zi,rn,k to denote the more elaborate z
i,r
k (n).
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zi,rn,k is continuous and increasing in b
i,r
n,k (holding q

i,r
n,k constant), while z

i,r
n,k is continuous and decreas-

ing in qi,rn,k (holding b
i,r
n,k constant). So, de�ne two continuous surjections B :

[
0, λbi,rn,k

]
→ z

(
·, qi,r

n,k

)
,

and Q :
(
qi,r
n,k
, q̄i,rn,k

]
→ z(0, ·), and let us consider two cases: (i)

?
zi,rn,k ≥ z

(
0, qi,r

n,k

)
, and; (ii)

?
zi,rn,k < z

(
0, qi,r

n,k

)
. If (i) is true, then note that B(0) ≤ ?

zi,rn,k ≤ B
(
λbi,rn,k

)
implies that ∃

?

bi,rn,k ∈
[
0, λbi,rn,k

]
such that B

(?
bi,rn,k
)

=
?
zi,rn,k, by the Intermediate Value Theorem (IVT). If (ii) is true, then observe

that Q
(
q̄i,rn,k
)
≤ ?
zi,rn,k < Q

(
qi,r
n,k

)
, such that by the IVT, ∃?qi,rn,k ∈

(
qi,r
n,k
, q̄i,rn,k

]
, with Q

(?
qi,rn,k
)

=
?
zi,rn,k.

Notice that the above procedure can now be repeated for each post Υs,r
k , s ∈ {1, . . . , |P |},

r ∈ {1, . . . , Γ}, such that
?
zn,k is budget-feasible. Certainly, the same can also be done for all

commodities k ∈ K to get
?
zn feasible. Hence, the set of all budget-feasible net trades in commodi-

ties k ∈ K is convex. Denote this set by ZK .

Now, the net proceeds of commodity m to any µ-a.e, w ∈ N0, zm(w), can be written as a

function of
{{{

zs,rk (w)
}|P |
s=1

}L
k=1

}Γ
r=1

as shown below:

zm(w) =
Γ∑
r=1

L∑
k=1

|P |∑
s=1

−
Bs,r
−w,kz

s,r
k (w)

Qs,r
−w,k

·
(
1 + ts,r,kw ck

)
.

For large pure traders τ ∈ N \N0, zm(τ) can be written as a function of
{{{

zs,rk (τ)
}|P |
s=1

}L
k=1

}Γ
r=1

as follows:

zm(τ) =
Γ∑
r=1

L∑
k=1

|P |∑
s=1

Bs,r
−τ,kz

s,r
k (τ)(

zs,rk (τ) · µ(τ)−Qs,r
−τ,k
) · (1 + ts,r,kτ ck

)
,

while for large post owners i ∈ A, zm(i) is expressible as a function of
{{{

zs,rk (i)
}|P |
s=1

}L
k=1

}Γ
r=1

thus:

zm(i) =
Γ∑
r=1

L∑
k=1

− ck ·
(ˆ

N\{i}
ti,r,kn qi,rk (n)dµ ·

Bi,r
−i,k(

Qi,r
−i,k − z

i,r
k (i) · µ(i)

) − ˆ
N\{i}

ti,r,kn bi,rk (n)dµ
)

+
Γ∑
r=1

L∑
k=1

Bi,r
−i,kz

i,r
k (i)(

zi,rk (i) · µ(i)−Qi,r
−i,k
) +

Γ∑
r=1

L∑
k=1

∑
s 6=i

Bs,r
−i,kz

s,r
k (i)(

zs,rk (i) · µ(i)−Qs,r
−i,k
) · (1 + ts,r,ki ck

)
,

where, as in the main body of the paper, ϕs,rk (n), ϕ = b, q, denotes the strategies of agent n ∈ N

at the rth post owned by s ∈ A for commodity k. Now, over the convex set ZK , it can be veri�ed

that zm(w), being the sum of countably many concave functions is concave, while zm(τ) and zm(i),

being the sum of countably many strictly concave functions, are both strictly concave functions.
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Given that the hypograph of a concave function is a convex set, we �nally have that for every

agent µ-a.e, n ∈ N , the set of all feasible net trade bundles, Zn, is indeed convex. 2

PROOF OF PROPOSITION 1.1: The Lagrangian to the programme in (3) for large pure

traders τ ∈ N \N0 can be written as

Lτ = uτ (x)− λb ·
(∑L

k=1

∑|P |
s=1 b

s
k(τ) + Λ(τ)− em(τ)

)
−
∑L

k=1 λ
q
k ·
(∑|P |

s=1 q
s
k(τ)− ek(τ)

)
,

where x = (xτ,m, xτ,1, . . . , xτ,L), and λb and {λqk}Lk=1 are the Lagrange multipliers associated with

the constraints in (3). Next, consider any post Υi
k, for any k ∈ K. Solving for the �rst-order

necessary and su�cient27 conditions, we have, at an interior equilibrium, that28

∂uτ
∂xτ,k

Qi
kB

i
−τ,k(

Bi
k

)2 − ∂uτ
∂xτ,m

Qi
−τ,k

Qi
k

·
(
1 + ti,kτ c

k
)

= 0;

− ∂uτ
∂xτ,k

Bi
−τ,k

Bi
k

+
∂uτ
∂xτ,m

Bi
kQ

i
−τ,k(

Qi
k

)2 · (1 + ti,kτ c
k
)

= 0.

It is easy to see that both equations above imply that

∂uτ/∂xτ,k
∂uτ/∂xτ,m

=

(
Bi
k

)2
Qi
−τ,k(

Qi
k

)2
Bi
−τ,k

·
(
1 + ti,kτ c

k
)
.

Now, consider another post for commodity k, say Υj
k. Then, by the same argument as above, at

an interior N.E, it must be true that

∂uτ/∂xτ,k
∂uτ/∂xτ,m

=

(
Bj
k

)2
Qj
−τ,k(

Qj
k

)2
Bj
−τ,k

·
(
1 + tj,kτ c

k
)
.

The conclusion for large pure traders τ ∈ N \N0 is implied by the last two equations above.

Next, consider small pure traders and post owners in N0. Since by construction χsmall = 0,

one may view all agents in N0 as being small pure traders. So, it is easy to see that since N0

is an atomless set of agents, we have that Bs
−w,k =

´
N\{w} b

s
k(n)dµ =

´
N
bsk(n)dµ = Bs

k, s = i, j.

Similarly, Qs
−w,k =

´
N\{w} q

s
k(n)dµ =

´
N
qsk(n)dµ = Qs

k, s = i, j. Hence, µ-a.e, w ∈ N0, it has to be

true that
27By construction, xk : zk → ek +zk, ∀k ∈ ({m}∪K). So, de�ne a new function v = u◦x : RL+1 ⊃ z → R. u is a

smooth strictly concave function of x; trivially therefore, v is a smooth strictly concave function of z. By Lemma 5,
we have that the set of all feasible/attainable net trades is convex. Hence, by the Supporting Hyperplane Theorem,
a unique optimum exists, i.e., there is a unique �net trade bundle� that is a best response to the strategies played
by other agents.

28To simplify exposition, we make use of the fact that zik(n) · (∂ti,kn /∂zik(n)) · (∂zik(n)/∂bik(n)) = zik(n) ·
(∂ti,kn /∂zik(n)) · (∂zik(n)/∂qik(n)) = 0 in what will follow. We do this in the proof of Proposition 1.2 as well.
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(
pik
)2

=
Bi
−w,kQ

j
−w,k

(
1 + tj,kw c

k
)

Qi
−w,kB

j
−w,k

(
1 + ti,kw ck

)(pjk)2 ⇔ pik =

(
1 + tj,kw c

k
)(

1 + ti,kw ck
) pjk . 2

PROOF OF PROPOSITION 1.2: The Lagrangian to the programme in (3) for large post

owners i ∈ A (for whom µ(i) = 1) can be written as

Li = ui(x)− λb ·
(∑L

k=1

∑|P |
s=1 b

s
k(i) + Λ(i)− em(i)

)
−
∑L

k=1 λ
q
k ·
(∑|P |

s=1 q
s
k(i)− ek(i)

)
.

The �rst-order conditions of (3) at an interior equilibrium, at i's post Υi
k, for any k ∈ K, are:

∂ui
∂xi,k

Bi
−i,kQ

i
k

(Bi
k)

2
+

∂ui
∂xi,m

·
(
−
ck
´
N
ti,kn q

i
k(n)dµ

Qi
k

+ ti,ki c
k −

Qi
−i,k

Qi
k

·
(
1 + ti,ki c

k
))

= 0;

∂ui
∂xi,k

Bi
−i,k

Bi
k

− ∂ui
∂xi,m

·Bi
k ·
(
−
Qi
kt
i,k
i c

k − ck
´
N
ti,kn q

i
k(n)dµ

(Qi
k)

2
+
Qi
−i,k
(
1 + ti,ki c

k
)

(Qi
k)

2

)
= 0.

Both equations above imply that

∂ui/∂xi,k
∂ui/∂xi,m

=
(Bi

k)
2

(Qi
k)

2
·
(Qi

−i,k + ck
´
N\{i} t

i,k
n q

i
k(n)dµ

Bi
−i,k

)
. (6)

Consider now another post for k, owned by some other large agent j ∈ A\{i}. Then, at an interior

equilibrium, it has to be true that

∂ui
∂xi,k

Bj
−i,kQ

j
k

(Bj
k)

2
− ∂ui
∂xi,m

Qj
−i,k
(
1 + tj,ki c

k
)

Qj
k

= 0;

∂ui
∂xi,k

Bj
−i,k

Bj
k

− ∂ui
∂xi,m

Qj
−i,kB

j
k

(
1 + tj,ki c

k
)

(Qj
k)

2
= 0,

both of which are equivalent to

∂ui/∂xi,k
∂ui/∂xi,m

=
(Bj

k)
2Qj
−i,k

(Qj
k)

2Bj
−i,k
·
(
1 + tj,ki c

k
)
. (7)

The condition for i ∈ A is implied by equations (6) and (7) above. The condition for j ∈ A \ {i}

can be obtained by following an argument analogous to the one above. 2

LEMMA 6 The distribution rules, as de�ned in Section 3, are Gâteaux-di�erentiable.

PROOF: Let a strategy pro�le (b, q) ∈ Gr(S) be given. We �rst prove that xn,k, k 6= m, is

Gâteaux-di�erentiable at (b, q).
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Gâteaux-di�erentiability of xn,k, k 6= m:

For clarity of exposition, we introduce some notation. Let `1+ ⊃ hb(n) :=
{{{

hs,r,kn,b

}|P |
s=1

}
k∈K

}∞
r=1

,

and `1+ ⊃ ĥb(n) :=
{{{

ĥs,r,kn,b

}|P |
s=1

}
k∈K

}∞
r=1

, where each ĥs,r,kn,b =
hs,r,kn,b

‖hb‖`1
, such that

∥∥ĥb∥∥`1 = 1. We

de�ne the terms hq, ĥq and ĥ
s,r,k
n,q analogously. Next, let `1+ ⊃ b(n) :=

{{{
bs,rk (n)

}|P |
s=1

}
k∈K

}∞
r=1

, and

`1+ ⊃ b̂(n) :=
{{{

b̂s,rk (n)
}|P |
s=1

}
k∈K

}∞
r=1

, where each b̂s,rk (n) =
bs,rk (n)

‖b‖`1
. q(n) and q̂(n) are de�ned

analogously. Finally, let B̂k(n) :=
{
b̂(n) :

∑∞
r=1

∑|P |
s=1 b̂

s,r
k (n) = 1;

∑∞
r=1

∑|P |
s=1 b

s,r
k (n) ≤ em(n)

}
,

and Q̂(n) :=
{
q̂(n) :

∑∞
r=1

∑|P |
s=1 q

s,r
k (n) ≤ ek(n), k ∈ K

}
. We may now proceed.

Using the de�nition of the Gâteaux di�erential as in Luenberger (1969: p. 171) and taking limits,

we have that the Gâteaux di�erential of xn,k, which we denote by δxn,k
((b, q), h), is

∞∑
r=1

|P |∑
s=1

Bs,r
−n,kQ

s,r
k

(Bs,r
k )2

· ĥs,r,kn,b −
∞∑
r=1

|P |∑
s=1

Bs,r
−n,k

Bs,r
k

· ĥs,r,kn,q ,

where ĥs,r,kn,b and ĥs,r,kn,q are the increments associated with bs,rk (n) and qs,rk (n), respectively. Clearly,

δxn,k
((b, q), h) is linear in its increments hb and hq. We need to prove that −∞ < δxn,k

((b, q), h) <

∞. So let us begin by noting that

∞∑
r=1

|P |∑
s=1

Bs,r
−n,kQ

s,r
k

(Bs,r
k )2

· ĥs,r,kn,b ≤
∞∑
r=1

|P |∑
s=1

Qs,r
k

Bs,r
k

· ĥs,r,kn,b .

Since
´
N
ek(n)dµ < ∞ ∀k ∈ ({m} ∪K), we have that

´
N
xn,kdµ < ∞. So, bearing in mind that

q(n), and hence q̂(n), lie in `1+, it has to be true that for any b̂(n) ∈ B̂k(n),
∑∞

r=1

∑|P |
s=1 b̂

s,r
k (n) · Q

s,r
k

Bs,r
k

is �nite a.e in N . Now, since ĥb is normalised, we may choose some
¯̂
b(n) ∈ B̂k(n), such that

ĥs,r,kn,b =
¯̂
bs,rk (n) for each s ∈ {1, 2, . . . , |P |} and r ∈ N. Hence,

∞∑
r=1

|P |∑
s=1

Qs,r
k

Bs,r
k

· ĥs,r,kn,b =
∞∑
r=1

|P |∑
s=1

Qs,r
k

Bs,r
k

· ¯̂bs,rk (n) <∞.

We next show that
∑∞

r=1

∑|P |
s=1

Bs,r
−n,k

Bs,r
k
·ĥs,r,kn,q <∞. Easily,

∑∞
r=1

∑|P |
s=1

Bs,r
−n,k

Bs,r
k
·ĥs,r,kn,q ≤

∑∞
r=1

∑|P |
s=1 ĥ

s,r,k
n,q

<∞, since
{{
ĥs,r,kn,q

}|P |
s=1

}∞
r=1
∈ `1+. Combining these two results yields −∞ < δxn,k

((b, q), h) <∞.

Finally, note that ĥb, ĥq ∈ `1+ were arbitrarily chosen. Hence, xn,k is indeed Gâteaux-di�erentiable.

Gâteaux-di�erentiability of xn,k, k = m:
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We now prove that xi,m for some post owner i ∈ A (such that µ(i) = 1) is Gâteaux-di�erentiable

at (b, q). That xn,m, µ-a.e, n ∈ N \ {i}, is also Gâteaux-di�erentiable at (b, q) then follows as a

direct consequence of this result. The Gâteaux di�erential of xi,m at (b, q), δxi,m((b, q), h), is

∞∑
r=1

L∑
k=1

(
ck
ti,r,ki Qi,r

−i,k −
´
N\{i} t

i,r,k
n qi,rk (n)dµ

Qi,r
k

· ĥi,r,ki,b −
|P |∑
s=1

Qs,r
−i,k
(
1 + ts,r,ki ck

)
Qs,r
k

· ĥs,r,ki,b

)
+

∞∑
r=1

L∑
k=1

(
Bi,r
k c

k
−ti,r,ki Qi,r

−i,k +
´
N\{i} t

i,r,k
n qi,rk (n)dµ

(Qi,r
k )2

· ĥi,r,ki,q +

|P |∑
s=1

Qs,r
−i,kB

s,r
k

(
1 + ts,r,ki ck

)
(Qs,r

k )2
· ĥs,r,ki,q

)
,

where as before, both sequences of increments have been normalised. Clearly, δxi,m((b, q), h) is also

linear in its increments hb and hq. For ease of exposition, let the summation in the �rst row in the

expression just above be represented by W , and the summation in the second row by Y . We �rst

show that W is �nite. We begin by noting that

∞∑
r=1

L∑
k=1

|P |∑
s=1

Qs,r
−i,k
(
1 + ts,r,ki ck

)
Qs,r
k

· ĥs,r,ki,b ≤
∞∑
r=1

L∑
k=1

|P |∑
s=1

(
1 + ts,r,ki ck

)
· ĥs,r,ki,b < 2

∞∑
r=1

L∑
k=1

|P |∑
s=1

ĥs,r,ki,b <∞,

where the last inequality follows from the fact that
{{{

ĥs,r,ki,b

}|P |
s=1

}
k∈K

}∞
r=1
∈ `1+. Next,

−∞ < −2
∞∑
r=1

L∑
k=1

ĥi,r,ki,b <
∞∑
r=1

L∑
k=1

ck
ti,k,ri Qi,r

−i,k −
´
N\{i} t

i,r,k
n qi,rk (n)dµ

Qi,r
k

· ĥi,r,ki,b

<
∞∑
r=1

L∑
k=1

ck
Qi,r
k +Qi,r

k

Qi,r
k

· ĥi,r,ki,b =
∞∑
r=1

L∑
k=1

2ck · ĥi,r,ki,b < 2
∞∑
r=1

L∑
k=1

ĥi,r,ki,b <∞.

So W is �nite. Looking at Y next, we have that

−A <

∞∑
r=1

L∑
k=1

(
Bi,r
k c

k
−ti,r,ki Qi,r

−i,k +
´
N\{i} t

i,r,k
n qi,rk (n)dµ

(Qi,r
k )2

· ĥi,r,ki,q +

|P |∑
s=1

Qs,r
−i,kB

s,r
k

(
1 + ts,r,ki ck

)
(Qs,r

k )2
· ĥs,r,ki,q

)

<
∞∑
r=1

L∑
k=1

(
2ck

Bi,r
k

Qi,r
k

· ĥi,r,ki,q +

|P |∑
s=1

Bs,r
k

(
1 + ts,r,ki ck

)
Qs,r
k

· ĥs,r,ki,q

)
< A ,

where A := 2
∑∞

r=1

∑L
k=1

(Bi,r
k

Qi,r
k

· ĥi,r,ki,q +
∑|P |

s=1

Bs,r
k

Qs,r
k
· ĥs,r,ki,q

)
. Now, by construction, since

´
N
em(n)dµ <

∞, we have that
´
N
xn,mdµ < ∞. Thus, as b(i), and hence b̂(i), lie in `1+, it has to be true that∑∞

r=1

∑L
k=1

∑|P |
s=1 q̂

s,r
k (i) · B

s,r
k

Qs,r
k

is �nite for any q̂(i) ∈ Q̂(i). Since ĥq is normalised, we may therefore

pick some ¯̂q(i) ∈ Q̂(i), such that ĥs,r,ki,q = ¯̂qs,rk (i) for each s ∈ {1, 2, . . . , |P |}, r ∈ N, and each
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k ∈ K. Thus,
∑∞

r=1

∑L
k=1

∑|P |
s=1

Bs,r
k

Qs,r
k
· ĥs,r,ki,q is �nite, implying that

∑∞
r=1

∑L
k=1

Bi,r
k

Qi,r
k

· ĥi,r,ki,q is also

�nite. Hence, −∞ < Y < ∞, such that −∞ < δxi,m((b, q), h) < ∞. Finally, recall that in this

part of our proof as well, ĥb, ĥq ∈ `1+ were arbitrarily chosen. Hence, xi,m is Gâteaux-di�erentiable.

That xn,m, µ-a.e, n ∈ N \ {i}, is also Gâteaux-di�erentiable at (b, q), follows as a corollary. 2

PROOF OF PROPOSITION 2: Let the positive bids and o�ers of all agents other than

some n ∈ N be given. By Assumption (ii), u(·) is strictly concave in x. De�ne a new mapping

v = u ◦ x : RL+1 ⊃ Zn 3 z(n)→ R, where x : RL+1 ⊃ Zn 3 z(n)→ RL+1
+ , and Zn is agent n's set

of all feasible net trades, which by Lemma 5 is convex. Trivially therefore, v(·) is strictly concave.

So, at an interior equilibrium, each agent µ-a.e, n ∈ N , solves infz(n)∈Zn{−v (·)}. Since −v(·) is

strictly convex, if this problem has a solution, then it is unique. We may therefore move back to

strategy space to derive the �rst-order necessary and su�cient conditions. This will be achieved

by using a Generalised Kuhn�Tucker theorem (GKTT) as in Luenberger (1969: p. 249). Thus,

we need to show that all of the conditions of that theorem hold for our construction in Section 3.

To help the reader, we relate each piece of notation from the GKTT to the symbols that we use

in our model. In particular, X will now be represented by Y (for conciseness, X ≡ Y ), Z ≡ RL+1,

P ≡ RL+1
+ , f ≡ −ζ, G ≡ G, x0 ≡ s, z∗0 ≡ ψ∗, and Z∗ ≡ RL+1.

We proceed by noting that Y := `1 × `1 (equipped with the norm ‖·‖Y = ‖·‖`1 + ‖·‖`1 , as

de�ned in Section 3), is a normed vector space, and so is RL+1 (endowed with its usual Euclidean

norm), whose positive cone RL+1
+ contains an interior point. By Assumption (ii), u(·) is Fréchet-

di�erentiable in x. By Lemma 6, x(·) is Gâteaux-di�erentiable in b and q, and is linear in its

increments (hb and hq). Thus, ζ := u ◦ x : Y ⊃ `1+ × `1+ 3 (b, q) → R, is a Gâteaux-di�erentiable

functional possessing linear increments, and hence, so is −ζ(·). Let G(·) be a mapping G : Y ⊃

`1+ × `1+ 3 (b, q)→ RL+1, such that

∑∞
r=1

∑L
k=1

∑|P |
s=1 b

s,r
k (n) + Λ(n)− em(n)∑∞

r=1

∑|P |
s=1 q

s,r
1 (n)− e1(n)
...∑∞

r=1

∑|P |
s=1 q

s,r
L (n)− eL(n)

 ≤


0

0
...

0

 .

Λ(n) can be explicitly written as
∑∞

r=1

∑L
k=1

∑|P |
s=1−ckts,r,kn

(
qs,rk (n) · ps,rk − b

s,r
k (n)

)
. In this regard,

it can be easily shown that G(·) is a Gâteaux-di�erentiable mapping with linear increments (see
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Luenberger, 1969: p. 171, and, e.g., Lemma 6). Next, suppose that the strategy s(n) := (b(n), q(n))

minimises −ζ(·) subject to G(s(n)) ≤ 0, where 0 is a null vector. We need to show that s(n) is

a regular point (see Luenberger, 1969: p. 248). This is straightforward. Choose an increment

h = h(ε) ∈ Y (see Luenberger, 1969: pp. 171-172) such that for a given and su�ciently small

ε ∈ R++, we have

∞∑
r=1

L∑
k=1

|P |∑
s=1

bs,rk (n) + Λ(n)− em(n)

∞∑
r=1

|P |∑
s=1

qs,r
1

(n)− e1(n)

∞∑
r=1

|P |∑
s=1

qs,r
2

(n)− e2(n)

...

∞∑
r=1

|P |∑
s=1

qs,r
L

(n)− eL(n)



+



∞∑
r=1

L∑
k=1

|P |∑
s=1

− ε

2(s+r+k)
·

(
1 +

ckts,r,kn Qs,r−n,k
Qs,rk

)
∞∑
r=1

|P |∑
s=1

− ε

2(s+r+1)

∞∑
r=1

|P |∑
s=1

− ε

2(s+r+2)

...

∞∑
r=1

|P |∑
s=1

− ε

2(s+r+L)



<



0

0

0
...

0


,

where the �rst, second, and third matrices correspond to G(s(n)), δG(s(n);h) := G
′
(s(n)) · h,

and 0, respectively, with G
′
(s(n)) denoting the Gâteaux derivative of G(·) at s(n). Note that

−1 < (ckts,r,kn Qs,r
−n,k/Q

s,r
k ) < 1, such that [1 + (ckts,r,kn Qs,r

−n,k/Q
s,r
k )] > 0. So, it is easy to see, by

considering one row at a time, that each sum above is strictly negative, whether the constraints

are binding or not. Hence, s(n) is a regular point, i.e., G(s(n)) ≤ 0, and ∃h ∈ Y , such that

G(s(n)) + δG(s(n);h) < 0.

Since all the conditions of the GKTT are met, we have, at an N.E with positive bids and o�ers,

that there exists ψ∗ ≥ 0 in (RL+1, ‖·‖2), where ψ∗ =
(
ψ∗b ,
{
ψ∗q,k

}L
k=1

)
, such that

∂un
∂xn,k

· ∂xn,k
∂bs,rk (n)

∣∣∣∣
s(n)

+
∂un
∂xn,m

· ∂xn,m
∂bs,rk (n)

∣∣∣∣
s(n)

− ψ∗b ·

(
1 +

∂Λ(n)

∂bs,rk (n)

∣∣∣∣
s(n)

)
= 0, k ∈ K;

∂un
∂xn,k

· ∂xn,k
∂qs,rk (n)

∣∣∣∣
s(n)

+
∂un
∂xn,m

· ∂xn,m
∂qs,rk (n)

∣∣∣∣
s(n)

− ψ∗q,k = 0, k ∈ K;

ψ∗ ·G(s(n)) = 0.

Propositions 1.1 and 1.2, for Section 3, mutatis mutandis, can be easily derived by plugging into the

above system of equations the respective allocation rules for each type of agents�and by noting

that at an N.E with positive bids and o�ers, and no binding liquidity and o�er contraints, ψ∗ = 0.

The corresponding version of Theorem 1 can be subsequently retrieved. 2
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LEMMA 7 The set function ν : S → [0,∞], where S =
{
W ⊆ N : W = K ∪ L ∪M ;K ∈

S0;L ∈ SA;M ∈ SC

}
, such that ν(W ) = ν0

(
W ∩ N0

)
+ µA (W ∩ A) + µC (W ∩ C) for each

W ∈ S , is a measure. Moreover, the triple (N,N , µ)�where N is the collection of all the µ-

measurable subsets of N , and µ is the unique extension of ν to a measure on N�is a complete,

�nite measure space of agents.

PROOF: The �rst part of the lemma is easily proved by following the workings in Lemma 1.

Now, since ν is a measure on S , it generates a nonnegative extended real-valued set function µ,

the Carathéodory extension of ν, de�ned on P(N). In this regard, note that µ(N) = H + 1 <∞,

such that the measure space (N,N , µ) is �nite (and complete). This implies that the measure ν on

S is also �nite, and therefore, σ-�nite. Since N is a semiring with S ⊆ N , our result follows. 2

Remark. The other properties of the new measure µ, together with those of the measure spaces

(N0,NN0 , µ), (A,NA, µ), and (C,NC , µ), where NC denotes the restriction of N to C, can be

derived by following the workings in Lemmata 3 and 4.
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