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Abstract: While there has been a massive increase in research into face recognition, it remains a
challenging problem due to conditions present in real life. This paper focuses on the inherently
present issue of partial occlusion distortions in real face recognition applications. We propose an
approach to tackle this problem. First, face images are divided into multiple patches before local
descriptors of Local Binary Patterns and Histograms of Oriented Gradients are applied on each patch.
Next, the resulting histograms are concatenated, and their dimensionality is then reduced using
Kernel Principle Component Analysis. Once completed, patches are randomly selected using the
concept of random sampling to finally construct several sub-Support Vector Machine classifiers. The
results obtained from these sub-classifiers are combined to generate the final recognition outcome.
Experimental results based on the AR face database and the Extended Yale B database show the
effectiveness of our proposed technique.

Keywords: face recognition; random sampling; SVM classification

1. Introduction

Face images can be captured easily at a distance and can also be used in various
applications including surveillance, tracking, access control, etc. Therefore, face modality
has been widely investigated in the biometric research field compared to other biometric
modalities such as iris, fingerprint, and palmprint counterparts.

Currently, the human face can be accurately recognised in a restricted environment.
However, in an unrestricted environment, several challenges are encountered where faces
are exposed to distortions. These distortions include illumination changes, pose variations,
and partial occlusion. Moreover, while multiple algorithms have been proposed to tackle
them in recent years, they have their limitations or requirements that cannot be met for
faces in the wild.

An image-based recognition system comprises of a feature extraction and representa-
tion process followed by a classification stage. Feature extraction methods can be classified
into two main approaches: holistic feature-based and local feature-based methods [1].

In holistic approaches, the features extracted from the whole images are processed us-
ing either global linear, nonlinear statistical techniques or combined. The more conventional
holistic methods include the popular linear techniques such as Principal Component analy-
sis (PCA) method [2], Independent Component Analysis (ICA) [3], and Linear Discriminant
Analysis (LDA) [4]. However, these methods may not be efficient due to the nonlinear
characteristics of the face images. Therefore, some nonlinear kernel-based techniques have
been investigated to address the problem by exploiting the contours of face images includ-

Appl. Sci. 2021, 11, 6303. https://doi.org/10.3390/app11146303 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-0961-0476
https://orcid.org/0000-0001-8187-5228
https://orcid.org/0000-0002-1474-2772
https://orcid.org/0000-0002-5595-0615
https://orcid.org/0000-0003-1721-9474
https://doi.org/10.3390/app11146303
https://doi.org/10.3390/app11146303
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11146303
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app11146303?type=check_update&version=1


Appl. Sci. 2021, 11, 6303 2 of 14

ing the information details of the curves. Kernel Principal component analysis (KPCA) and
Kernel Fisher Analysis (KFA) [5,6] are widely used methods of this category.

Local feature-based approaches are proven to be more robust to deal with complex
backgrounds and occlusions inherently present in real image data. Unlike global descrip-
tors which compute features from the whole image, local descriptors [7] have been shown
to be more effective. Patch-based face recognition, which was proposed in [8], is another
effective technique and operates by dividing an image into multiple overlapping or non-
overlapping patches using either global or local descriptors for matching. In the case of
patch-based approaches, the extraction of the local features is performed for each region (or
patch) of the images where each face image is divided into a number of either overlapping
or non-overlapping blocks. There exists a number of approaches for patch-based face recog-
nition in the literature. The authors in [9] have proposed a feature concatenation method
including a block selection with similarity measure. On the other hand, the work described
in [10] suggests the use of a weight for classification results of the patches by calculating the
genuine classification rates extracted from the test set. The work [11] proposes to employ
the concept of subspace by using a majority voting scheme for combining the results of
classification generated from the patches using random subspaces. The work discussed
in [12] proposes carrying out the training of classifiers using separate random patches of the
images and suggests a combination using a two-step layer decision: (i) using a weighted
summation and (ii) combining the outcome from local ensemble classifiers with that of
a global classifier obtained from the whole faces. The work described in [13] proposes
to determine and select face areas containing more discriminative information for use in
the classification phase. Although this proposed method shows high effectiveness while
being highly robust against the issues of illumination distortions and partial occlusions,
the classification performances are not significant, which is mainly due to the fact that one
single classifier is constructed for all the image patches. The authors in [14] propose to first
determine the area having the largest matching score at each point of the face. This is then
used to carry out an occlusion de-emphasis stage in order to deal with partial occlusion
distortions. However, this approach has shown limitations since it can be challenging to
develop such a de-emphasis procedure due to the variations and extent of the occlusions.
Recently, the concept of deep learning [15–17] has been proposed and has gained popularity
in face recognition problems. This technology gives outstanding results and clearly outper-
forms the conventional machine learning algorithms. However, deep learning architectures
generally require a considerable amount of data, including specialised high performance
hardware for the training stage especially for practical situations. This makes them hard to
deploy and less suited especially for embedded and low power applications.

Therefore, this work proposes an approach for human face recognition under partial
occlusion. A random patch sampling method for face recognition under various distortions
is proposed in this paper. Local descriptors are deployed to capture smaller texture patterns
which can be more discriminative in human faces while still keeping the spatial relations.
This paper is a follow-up of our previous work [18], deploying a multi-descriptor approach
instead of a single descriptor. In addition, the proposed method has been validated using a
dataset with more challenging illumination and occlusion conditions.

The paper is organised as follows: Section 2 gives an overview of the method including
a brief description of the concept of face patching, the multi-LBP approach, the feature
extraction process using HOG and Kernel PCA and their application in the proposed
method, and finally describing the proposed Random Patching method and its adaptation
to the problem of face recognition. Section 3 discusses the validation process and the
experiments performed and compared against existing methods. Finally, conclusions and
future work are in Section 4.

2. Overview of the Proposed Method

As mentioned above, this paper proposes a random patch (RP) sampling method
for face recognition under distortions targeting partial occlusion in particular. The use
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of multiple local descriptors helps capture smaller texture patterns. Therefore, they offer
higher accuracy compared to holistic feature-based descriptors that tend to average over
the given image. The local descriptors used are Local Binary Patterns (LBPs) and Histogram
of Oriented Gradients (HoGs). These two descriptors provide different type of features,
which are complimentary and therefore offer more discriminative power. For example, their
combination would offer an advantage over using a single descriptor. For dimensionality
reduction, KPCA, which is nonlinear extension of the conventional PCA, offers more
refined features. For the matching process, the proposed approach uses Random Patch
Sampling based on the employment of several Support Vector Machine (SVM) classifiers. It
operates by considering all generated face patches equally to build multiple sub-classifiers
to further improve the recognition performances.

The proposed algorithm works as follows: First, each image is partitioned into sev-
eral 50% overlapping regions/blocks. Then, the LBP and HOG descriptors are used to
individually extract features from the generated image patches. Since the previous step
generates high dimensionality descriptors, potentially including redundancies, the KPCA
method is used in order to extract the most significant feature patterns of the descriptors.
Next, the reduced descriptors of the image patches are normalised and fed to the classifica-
tion module. Finally, a number of patches are randomly sub-sampled within each image
training set in order to build multiple SVM classifiers from each subset. The validation
of the proposed algorithm was performed through extensive experiments using a single
sample per person as per real world conditions. A combination of the final results of the
performances generated from all the sub-classifiers is performed with a union rule. Figure 1
depicts the process.

Figure 1. Diagram explaining Random Patch SVM for face recognition.

2.1. Face Patching

Let S be a greyscale image. S can be defined as a collection of k patches. The blocks
can be overlapping, non-overlapping, covering, or non-covering. The shapes and sizes can
vary as well. Figure 2 is an illustration of overlapping blocks.
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Figure 2. Example of overlapping patches of an image from the AR dataset.

Selecting the optimum patch size is an important step since the recognition perfor-
mances can be significantly affected. This is mainly due to the fact that the extracted
features may adversely correlate in small blocks while the more discriminative ones may
not be captured especially in large patches. In this work, the face patches are selected in
rectangular shape and each overlapping by 50%. This is because, as explained above, the
features may correlate in small blocks and, thus, an overlap of 50% would help to capture
more distinguishing features while avoiding excessive redundancies. As for determin-
ing the appropriate patch size, initial experiments were carried out by varying the block
size [18] and noting the performances, a size of 33 × 30 was found to be the best and it is
noted that it relates to the image’s original size of 165 × 120.

2.2. Multi-Scale Local Binary Patterns

The LBP operator has gained much popularity as a local texture descriptor for various
computer vision and biometric security applications including face recognition [19]. It is
based on a combination of greyscale invariants and works by thresholding and labelling a
pixel of an image neighbourhood (P, R) (P sampling points on a circle of radius R) against
the central pixel value. This results in a binary number and the histogram of the labels can
the be used as a texture descriptor.

One of the earliest LBP neighbourhoods introduced is (8, 1) and is generated by the
8 neighbouring pixels in a radius of 1, as shown in Figure 3. This scheme was later extended
to other neighbourhoods having larger sizes. As can be seen in Figure 3, the threshold
value is generally the value of the central pixel gc which can be used for comparing the
neighbourhood pixels gp. The result of applying the operator would give 1 if the gp is larger
than gc and 0 otherwise. The final form of the LBP is an integer value and the features
extracted by the LBP operator can be represented as histograms. Mathematically, this can
be expressed as:

LBP(P, R) =
P−1

∑
p=0

f (gp − gc)2P, f (x) =

{
1, x ≥ 0
0 x < 0

(1)

Figure 3. Illustration of the original LBP operator.

The local neighbourhood (P, R) is a set of evenly spaced sampling points P on a circle
of radius R centred at a fixed pixel. Uniform patterns [20] were inspired from the fact that
some binary patterns occur more commonly in facial images than others. LBP is called
uniform when the binary pattern contains at most two bitwise transitions from 0 to 1 or vice
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versa when the bit pattern is considered circular. By using uniform patterns and computing
the occurrence histogram, structural and statistical approaches are effectively combined.
The distribution of micro structures-like edges, lines, and flat areas is estimated by the
uniform histogram. LBP histograms have been introduced for face description in [21],
where the face images are divided into a number of local regions allowing for the texture
descriptors to be extracted from each region. The descriptors are then combined into one
uniform histogram representing the face image as depicted in Figure 4.

Figure 4. The process of extracting multi-LBP features from face images.

Uniform histograms were proposed as a result of the observation that some binary
patterns do occur more commonly in face images than others and are therefore used
to reduce the usual length of 256-bins patterns to smaller 59 patterns [20]. In addition,
since the area covered by a conventional LBP algorithm is usually small, a uniform multi-
scale LBP has been chosen in our work. This ensures that neighbourhoods with varying
sizes can be used. Therefore, an LBP is carried out using various sample points P = 8,
P = 16, and P = 24. The extracted feature vectors from each neighbourhood are then
concatenated to form one uniform LBP histogram having 857 bins. This method covers a
larger area, thus providing a much larger range of discriminative descriptors. The choice
of LBP neighbourhoods is based on the best results obtained from initial experiments. The
neighbourhoods LBP(3, 8), LBP(8, 16), and LBP(6, 24) offer a different range of features on
different levels.

2.3. Histograms of Oriented Gradients

Histograms of Oriented Gradients is a representation that captures edge or gradient
structures/patterns that are very characteristic to local shapes (counts occurrences of edge
orientations). They are also invariant to geometric transformations when they are smaller
than the local spatial or orientation bin size. They have been used mainly in human
detection [22,23] and later for recognition [24]. HOG features are calculated by taking
orientation histograms of the edge intensity in local regions. An image can be divided into
N local regions called ‘blocks’. Each block can then be divided into smaller spatial areas
called ‘cells’. Consequently, each block is defined as a set of cells.

Figure 5 describes a step-by-step overview of the method. Each image patch is first
divided into blocks of A × B pixels, then each block is divided into a number of a × b
cells from which histograms of oriented gradients with k orientations are computed. After
that, histograms from each cell are concatenated into one histogram representing the whole
block. These histograms are then concatenated together to represent each patch.
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Figure 5. The process of extracting HOG features from face images: (1) Original face image after
patching (2) partition of each patch into cells (3) extraction of HOG features from each cell (4)
Concatenation of HOG features of each cell (5) Concatenation of HOG histograms of all cells into a
single histogram.

2.4. Kernel Principal Component Analysis

Kernel PCA, which remains one of the most effective nonlinear dimensionality reduc-
tion techniques [25], is a nonlinear extension of conventional PCA that uses second order
statistics to take into account partial statistical information of the face image at hand. In
addition, higher order statistics have become a useful tool resulting from the extension of
PCA using kernels. This works by mapping texture patterns of the original input space to a
higher nonlinear dimensional feature vector space [25]. Its appearance is due mainly to the
need to carry out PCA in the feature space. Previously, it was not possible to perform PCA
in the feature space due to the high computational expense of the dot product computation
in the high dimensional feature space [26] and, thus, the appearance of kernel PCA. Ulti-
mately, KPCA is implemented and performed in the input space by using various kernels
without the need to perform the mapping explicitly [27], thus overcoming the initial issue.
Let the set x1, x2, . . . , xm ∈ RN be the data in the input space and there exists a nonlinear
mapping Φ : RN → F between the input and the feature space.

KPCA has been used extensively in various face recognition applications [28–30],
including facial expression under illumination variations and proven to give satisfactory
results as compared to other feature reduction techniques, thus its use in this work. Fur-
thermore, this work uses the polynomial kernel since it has shown to effectively extract
discriminative facial features.

2.5. Random Patch-Based SVM

In previous papers employing patched faces, researchers have either deployed all the
patches or have selected only a smaller number of blocks to construct a global classifier. In
our approach described in [18], we have chosen the use of a random sampling method to
construct more than one classifier to improve the recognition performances. In this case,
a random sample can be seen as a subset of a population selected by considering that all
samples have an equal occurrence probability. Support Vector Machine [31], which has been
selected at the matching stage, has been found to be very effective. SVM is a type of binary
supervised learning algorithm where the classification module is trained by mapping the
training set feature vectors in a space that efficiently separates them using some kernel
function (for example, polynomial, Gaussian. . .). Once done, the test set is mapped onto
the same space. Typically, an SVM classifier determines an optimal hyperplane for use as a
decision function in a high-dimensional space, thus predicting the optimum class using an
in-between maximum distance. The novelty of our approach relates to the new approach
of training multiple SVM classifiers based on the sub-training sets, and combining the
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individual results with a union rule to obtain the final score as illustrated in Figure 6.
SVM has shown clear advantages in different applications [32] dealing with nonlinear data
as well as high dimensionality and small samples, thus making it ideal for the problem
at hand.

Figure 6. Illustration of the classification process using multiple sub-SVM classifiers.

3. Experiments and Analysis

In order to assess the effectiveness of the proposed approach, experiments were carried
out using two different and well known datasets.

3.1. AR Face Dataset

The first dataset used, the cropped AR face database [27], contains 2600 images
generated from 100 individuals (26 different images per person) taken in two sessions
under various distortions including facial expression, lighting, and occlusions. A resizing
of the images into 165 × 160 pixels has been performed in this experiment. Some sample
images of this dataset are shown in Figure 7.

Figure 7. Sample images from the AR Face Dataset.

The training step used a single clean image per person from the first session. The
training set has been divided into two sets depending on the type of occlusions present in
each image. ‘set1’: sunglasses-occluded faces and ‘set2’: scarf-occluded faces from both
sessions. See Figure 8

Figure 8. Example of testing images from the AR dataset.
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3.1.1. Experiments Part 1: Single Descriptor

Experiments started out by testing the proposed approach using LBP and HOG
separately. First, the following LBP neighbourhoods have been used: LBP(8, 3), LBP(16,
8), and LBP(24, 6). After extracting the features using each scale separately, the resulting
feature vectors are then concatenated into one big feature set. Following the LBP algorithm,
Figure 9 presents the accuracy rate of each neighbourhood separately and when the features
are concatenated before classification.

Figure 9. Results of experiments conducted using different LBP neighbourhoods.

It is observed that each LBP neighbourhood gives different results depending on the
testing set and type of occlusion present in the images, with LBP3

8 scoring the highest rate
for both sets. It is therefore concluded that the combination will tackle different types of
challenges as compared to single-scale. From the same figure, it is seen that the multi-LBP
goes as high as 95% for set2 and averaging around 70% for set1. Next, when extracting
HOG features, the following cell sizes have been used: 6 × 6, 7 × 7, and 8 × 8 as seen in
Figure 10. The results show that each cell size works differently for each testing set. In the
same figure it could be seen that the recognition rate for set1 goes up to 83% and 96% for
set2 with cell size 7 × 7. The last rate is lower compared to cell size 6 × 6, which reaches
98%. Cell size 8 × 8 records lower recognition rate than both smaller cells. It is to be noted
that the smaller the cell, the more features HOG produces as their number increases.

Figure 10. Results of experiments conducted using different HOG descriptors.
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3.1.2. Experiments Part 2: Multi-Descriptor

The second set of experiments focused on the combination of both HOG and LBP
features for classification. First, multi-LBP features used previously (see Figure 9) are
concatenated with HOG features from Figure 11. Results in Figure 11 show that although
the recognition rate for the combination is higher, especially for test set1 reaching as high
as 81%, the improvement is slight and insignificant.

Figure 11. Results of experiments carried out by combining HOG (with a cell size of 6 × 6) and LBP.

Another experiment was carried out to validate the approach using different HOG
features using a cell size of 8 × 8. The results are depicted in Figure 12, where it clearly
shows a significant improvement for test set1, increasing sharply and reaching an outstand-
ing 91% as compared to previous results that fall below 83%. Test set2 sees an increase as
well to a high rate of 98.5%.

Figure 12. Experiments carried out using HOG with a cell size of 8 × 8 and LBP.

Although the HOG features used in the last experiments have lower recognition
rates separately compared to when using different HOG cell sizes (see Figure 10), their
combination with LBP features has given superior results. It can be concluded that both
types of features are complimentary for both testing sets making them more robust against
different partial-occlusion types.
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3.1.3. Experiments Part 3: Classifier Size

In the third set of experiments, the number of samples used per SVM classifier is
varied in order to find the best subset. Figure 13 presents the results of the conducted
experiments decreasing the number of samples each time. For testing set1, the accuracy
rate sees a noticeable increase as the number of samples used decreases, starting from
75% when the number samples p = 6 and going to a highest of 91% when p = 3. The same
observation for testing set2, as it starts from 94.5% when p = 6 going up as p decreases and
rating 98.5% when p = 3.

Figure 13. Obtained recognition rates with varying numbers of samples per sub-SVM classifier.

These results and observations can be explained by the fact that a smaller training set
decreases the possibility of error, thus making the accuracy higher and the approach more
robust in general.

Another observation relates to the difference between the performance rates of test
set1 and test set2. Even though in set2, the scarf used as partial occlusion hides a larger
chunk of the face as compared to set1 where only the eyes are invisible (see Figure 8), set2
gives higher performance accuracy when tested under the proposed approach. This can
be concluded that the features extracted from the eyes and eyebrows using the proposed
method play a significant role in recognition as compared to other parts of the face.

Table 1 shows the results of our comparative study of our approach against some
existing and similar approaches available in literature including our previous work [18].
From the results shown in the table, one can observe that our proposed method clearly
compares favourably when compared against some of the best performing algorithms. For
example, our proposed technique attains 98% performance accuracy, thus matching [14,33]
using the scarf-occluded set. It is also worth mentioning that the authors in [33] have used
more than one training sample in their analysis, unlike the proposed method which uses
a single training sample, thus making it more recommendable as it operates under real
world conditions.

Table 1. Comparing Random Patching approach results on the AR dataset to the literature.

Test Conditions Sunglasses % Scarf %

Previous work [18] 73∼89 92∼98

Our approach 91 98.5

LMA/LMA-UDM [14] 96∼98 97∼98

DICW [33] 99.5 98
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3.2. Extended Yale B Dataset

The Extended Yale B database [34] consists of 2414 frontal face images generated from
38 persons using 64 different illumination conditions. In addition, an image with ambient
illumination was also captured for every subject in all poses. Then, the images are grouped
into four different subsets depending on the lighting angle with respect to the axis of the
camera. Typically, subset1 and subset2 cover the range of 0° to 25° while subset3 covers
the angular range of 25° to 50°. subset4 covers 50° to 77° and subset5 covers angles which
are larger than 78°. To allow a simulation of different levels of contiguous occlusions, the
most widely used technique described in [35] is used to replace a randomly located square
patch from each test image with a baboon image, this is because it has a texture similar to
that of the human face. Moreover, the location of the occlusion is randomly selected. The
sizes of the synthetic occlusions vary in the range of 10% to 80% of the original image size.
Figure 14 shows some samples of randomly occluded faces generated from the Extended
Yale B database.

Figure 14. Sample images from the Extended Yale B dataset with randomly located occlusions.

For this set of experiments, subset1 was used for training while the remaining 4 subsets
were used for testing. For the other parameters, the best performing ones from the previous
experiments were used. First, the original image size of 192 × 168 was kept, and 50%
overlapping patches were sized equally at 32 × 28 each. The classifier size was set to p = 3,
the HOG cell size to 6 × 6 combined with multi-LBP.

The average recognition accuracy for each subset for an occlusion level ranging
between 10% and 80% is depicted in Figure 15.

The obtained results have been evaluated and compared against some state-of-the-art
algorithms and Table 2 depicts the accuracy percentages. From the table, it can be observed
that our proposed method achieves consistent results throughout the experiments. Despite



Appl. Sci. 2021, 11, 6303 12 of 14

not reaching a higher accuracy at small occlusions, its increase does not affect it as does the
SSR-P/W method proposed in [36]. Finally, it eventually outperforms it when occlusion is
at 50%, reaching 90.58% as compared to 88.6% for SSR-W, in subset5.

Table 2. Comparative analysis of the proposed approach using the Extended Yale B Datatset.

Occlusion % 10 20 30 40 50

subset3 SSR-P [36] 100 100 100 97.8 85.4
Our Method 94.26 94.53 94.57 94.89 90.78

subset4 SSR-W [36] 99.8 99.4 99.4 99.6 98.1
Our Method 87.04 85.52 90.90 89.96 90.29

subset5 SSR-W [36] 98.0 97.3 95.8 95.4 88.6
Our Method 89.38 86.53 90.54 90.02 90.58

Further results can be seen in Table 3, which are consistent even when occlusion
increases. The accuracy remains above 85% for any occlusion level and under different
lighting conditions. This could also be seen in Figure 15, where the average accuracy for
each of the four testing sets has been illustrated.

Table 3. Further Results on the Extended Yale B Datatset.

Occlusion % 60 70 80

subset3 90.07 89.17 90.08

subset4 89.03 93.85 89.85

subset5 90.58 86.66 86.44

Figure 15. Results for each Extended Yale B dataset subset averaged over the different levels
of occlusion.

4. Conclusions

This paper has proposed a novel face recognition algorithm using the concept of
random patching. The method operates by dividing the face images into a number of
non-overlapping patches. Next, LBP operator is employed as a local descriptor and
then combined with HOG technique to extract a concatenated descriptor of the image
patches. A dimensionality reduction step using KPCA method is then applied to the
inherent high dimensional descriptors. Once done, a random patch sampling operation
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is employed allowing us to build a number of sub-SVM classifiers. Finally, the results
from the classification obtained from the SVMs are fused using a simple union rule. The
experiments carried out suggest that the proposed algorithm performs favourably when
compared against conventional global SVM face classifiers when the lower part of the face
is missing (up to 98.5%). Furthermore, the algorithm outperforms other similar state-of-
the-art techniques, thus clearly demonstrating its potential recognition performances, even
when working in an under-sampled and challenging operational environment.
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