
 

Essex Finance Centre 

Working Paper Series 

 

Working Paper No 56: 04-2020 

 

 

 

 

“Commodity Price Uncertainty as a Leading Indicator of 

Economic Activity” 

 

 

“Dimitrios Bakas, Marilou Ioakimidis, Athanasios Triantafyllou” 

 

 

 

 

 

 

 

 

 

Essex Business School, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ 

Web site: http://www.essex.ac.uk/ebs/  

 

http://www.essex.ac.uk/ebs/


1 

 

 

Commodity Price Uncertainty as a 

Leading Indicator of Economic Activity  

 

Dimitrios Bakasa,b, Marilou Ioakimidisc,d and Athanasios Triantafyllou e† 

aNottingham Business School, Nottingham Trent University, UK 

bRimini Centre for Economic Analysis (RCEA), Canada 

cUniversity of Peloponnese, Greece 

dNational and Kapodistrian University of Athens, Greece 

eEssex Business School, University of Essex, UK 

 

Abstract 

In this paper we examine the impact of commodity price uncertainty on US economic activity. 

Our empirical analysis indicates that uncertainty in agricultural, energy and metals markets 

depresses US economic activity and acts as an early warning signal for US recessions. Our 

VAR analysis shows that uncertainty shocks in agricultural and metals markets have a more 

long-lasting dampening effect on US economic activity and its components, when compared to 

the effect of oil price uncertainty shocks. Finally, we show that when accounting for the effects 

of macroeconomic and monetary factors, the negative dynamic response of economic activity 

to agricultural and metals price uncertainty shocks remains unaltered, while the respective 

macroeconomic response to energy uncertainty shocks is significantly reduced due to either 

systematic policy reactions or random shocks in monetary policy.  
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1. Introduction 

The real options approach to the theory of investment under uncertainty indicates that 

firms postpone their investment decisions, or they exercise their real option to wait to 

invest in highly uncertain times, due to the irreversible nature of investment decisions. 

This ‘irreversibility’ property of investment raises firms’ ‘option value’ to delay or 

postpone their investment decisions for less uncertain times (Aguerrevere, 2009; 

Bernanke, 1983; Brennan and Schwartz, 1985; Henry, 1974; Pindyck, 1991; 1993; 

Triantis and Hodder, 1990; among others). In a similar way, uncertainty may lead to a 

reduction in employment and consumption due to a precautionary savings effect by 

economic agents (Caggiano et al., 2014; Edelstein and Killian, 2009; Schaal, 2017; 

Skinner, 1988). Hence, the overall consensus in the literature is that rising economic 

uncertainty results to a drop in aggregate investment, consumption and employment, 

which, in turn, leads to economic recessions.1 

 

A large and growing body in the literature shows the negative impact of rising 

uncertainty on the macroeconomy (Bachman et al., 2013; Baker et al., 2016; Basu and 

Bundick, 2017; Bloom, 2009; Bonciani and Van Roye, 2016; Caggiano et al., 2014; 

Caldara et al., 2016; Carriere-Swallow and Cespedes, 2013; Drechsel and Tenreyro, 

2018; Ferrara and Guérin, 2018; Ilut and Schneider, 2014; Popp and Zhang, 2016; Saijo, 

2017; among others).2 For example, Bloom (2009) shows that when uncertainty shock 

is defined as an increase in stock-market volatility, then this type of shock has a 

persistently negative impact on US economic activity, while Popp and Zhang (2016) 

show that economic uncertainty shocks, proxied by shocks in the VXO index, have 

negative effects on the US macroeconomy and the financial markets, with the impact 

of the uncertainty shock being higher in magnitude during recessionary periods. All 

these empirical studies show the negative macroeconomic effect of uncertainty shocks 

 
1 While the general consensus in the literature on investment under uncertainty is that rising uncertainty 

results to a drop in firm-level and aggregate investment, and therefore in economic activity, there are 

some studies which identify a positive effect of uncertainty shocks on investment and real output under 

specific macroeconomic conditions (Lence and Hayes, 1998; Marmer and Slade, 2018). 
2 Bloom (2009) shows that the negative impact of uncertainty shocks, which are proxied by the US stock-

market volatility, occurs because higher uncertainty leads firms to ‘temporarily pause their investment 
and hiring process’. Bachmann and Bayer (2013) find that the ‘wait-and-see’ factor in German firms is a 
key factor that affects the business cycle in the German economy. Bloom et al. (2007) empirically verify 

this evidence by showing that higher uncertainty increases firms’ real option values to wait and reduces 
their responsiveness to aggregate demand shocks. 
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by proxying economic uncertainty using stock-market volatility, the VIX index, or 

measures of uncertainty about future economic policy.  

 

In this paper, we move the current research a step further by modeling uncertainty as 

the volatility of primary agricultural (corn, cotton, soybeans, wheat), metals (copper, 

gold, platinum, silver) and energy (crude oil, heating oil, petroleum, gasoline) 

commodity prices. Commodities are highly homogeneous products that are used as 

primary inputs for the production of manufacturing products. Therefore, their price 

volatility is a significant source of uncertainty for economic agents, hence, according 

to the real options theory of investment under uncertainty, the rising commodity market 

volatility should be associated with a subsequent drop in investment, consumption, 

production and, ultimately, economic activity. Moreover, the general consensus in the 

literature is that commodity prices are driven by the forces of aggregate supply and 

demand conditions (Borensztein and Reinhart, 1994; Kilian, 2009; Roberts and 

Schlenker, 2013; among others). Therefore, a higher commodity price uncertainty 

could signal higher uncertainty about aggregate supply and demand conditions in the 

economy. This uncertainty, about aggregate demand and supply, is typically followed 

by sudden drops in economic activity (Basu and Bundick, 2017; Caggiano et al., 2014; 

Leduc and Liu, 2016; among others). The relevant literature has identified a significant 

linkage between commodity price fluctuations and the macroeconomy (Alquist et al., 

2019; Fernández et al., 2018; Fernandez-Perez et al., 2017; Ferraro and Peretto, 2018; 

Frankel and Rose, 2010; Gilbert, 2010; Karali and Power, 2013; Nocetti and Smith, 

2011; Ready, 2018; among others). For example, Ferraro and Peretto (2018) using an 

endogenous growth model show that commodity price changes are strongly correlated 

with short-run economic growth, while Fernández et al. (2018) show that a common 

factor, capturing co-movement in global commodity prices, explains more than one 

third of real output fluctuations of emerging market economies. Another strand of the 

empirical literature identifies significant linkages between monetary policy, inflation 

and commodity prices (Anzuini et al., 2013; Frankel, 1984; Frankel and Rose, 2010; 

Frankel and Hardouvelis, 1985; Gilbert, 2010; Gospodinov and Ng, 2013; Han et al., 

1990; Orden and Fackler, 1989; Scrimgeour, 2015).  

 

Motivated by the previous findings of the literature on the effects of uncertainty shocks 

and the literature which identifies the significant linkages between commodity prices 

and the macroeconomy, we empirically examine the impact of commodity price 
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uncertainty on US economic activity. To the best of our knowledge, the empirical 

literature showing the effect of commodity price uncertainty on macroeconomic 

fluctuations is limited. Previous empirical studies identify the well-known oil-

macroeconomy relationship according to which rising prices and volatility in the crude 

oil market result in depressing investment, a fall in GDP growth and economic 

recession (Elder, 2018; Elder and Serletis, 2010; Ferderer, 1996; Hamilton, 1983; 1996; 

2003; Jo, 2014; Kilian, 2009; Kilian and Vigfusson, 2011; 2013; 2017; Lee at al., 1995; 

Rahman and Serletis, 2011; Ravazzolo and Rothman, 2013; Ready, 2018). For 

example, Hamilton (1983, 1996, 2003) finds an asymmetric relationship between oil 

price changes and economic activity by showing that oil price increases have a more 

negative impact on US GDP growth when compared to the positive impact of oil price 

decreases. Lee et al. (1995) and Ferderer (1996) were among the first to identify the 

role of the conditional second moment of oil price (i.e., variability) on forecasting 

macroeconomic activity. More specifically, they find that the conditional volatility of 

crude oil prices explains significantly better GNP growth variability when compared to 

the forecasting ability of crude oil prices. The recent empirical findings of Elder (2018), 

Elder and Serletis (2010) and Jo (2014) provide further insights into the significant 

forecasting power of oil price uncertainty on economic activity.  

 

Although the studies mentioned above identify the negative macroeconomic impact of 

oil price uncertainty, there is no empirical work showing what is the macroeconomic 

impact of uncertainty in agricultural and metals commodity markets. In this paper, 

therefore, we attempt to fill this gap in the literature by examining and comparing the 

macroeconomic impact of agricultural, metals and energy commodity price uncertainty 

shocks. Our results show that uncertainty shocks in agricultural, metals and energy 

commodity markets have a significant negative impact on US economic activity and its 

components. More specifically, by examining the forecasting power of commodity 

price uncertainty using the bivariate regressions on real GDP and industrial production 

growth, we report negative and statistically significant coefficients for all commodity 

series and for forecasting horizons ranging from one to six quarters. Interestingly, the 

uncertainty series of agricultural and metals commodities, like wheat, gold and 

platinum, have higher predictive power on the measures of economic activity when 

compared to the energy markets. These findings are the first to show the significantly 

higher predictive information content of agricultural and metals commodities as 

opposed to energy commodities on US economic activity. While the previous findings 



5 

 

in the literature identify the role of oil price uncertainty shocks (Elder and Serletis, 

2010; Jo, 2014; Rahman and Serletis, 2011), we contribute to the literature by showing 

that non-oil commodity market uncertainty shocks have a more dampening effect on 

real output when compared to oil uncertainty shocks. Our evidence is in line with the 

previous findings of Karali and Power (2013) and Gilbert (2010) according to which 

agricultural prices and volatility are better explained by macroeconomic factors like the 

industrial production growth, inflation and short-term interest rates.  

 

Interestingly, while we report a significant causal relationship running from agricultural 

and metals commodity price uncertainty to economic activity, we do not find the same 

evidence for oil market uncertainty. On the contrary, we provide evidence of a reverse 

channel of causality for energy commodity markets. While the relevant literature so far 

has identified the recessionary impact of oil price uncertainty shocks (Elder and 

Serletis, 2010; Elder, 2018; Kilian and Vigfusson, 2017), our analysis identifies the 

reverse channel of causality according to which changes in US real output affect oil 

price uncertainty. These results are in line with the recent empirical findings of Van 

Robays (2016) and Bakas and Triantafyllou (2018), who empirically examine the 

impact of macroeconomic uncertainty on agricultural, metals and energy markets and 

find that macro-uncertainty shocks have the highest and more long-lasting dynamic 

effect on the volatility of energy markets. 

 

Furthermore, in order to examine the dynamic responses of economic activity to 

commodity price uncertainty shocks, we estimate a multivariate VAR model in which 

we control for various factors, suggested by the literature to affect economic activity, 

such as the slope of the US Treasury yield curve and measures of macroeconomic and 

financial uncertainty. Moreover, a number of empirical studies have shown that oil 

price shocks are inflationary and thus have attributed a large part of the recessionary 

impact of oil price shocks to the systematic monetary policy responses of the Fed, after 

the occurrence of unexpected shocks in oil prices in the fear of inflationary pressures 

(Beckerman and Jenkinson, 1986; Bernanke et al.,1997; Kara, 2017; among others).3 

 
3 There is still an ongoing lively debate in the literature about whether the recessionary impact of oil price 

shocks is genuine or it can be (at least partially) attributed to systematic reactions of the monetary 

authority in order to offset the inflationary pressures of rising oil prices. For example, while Bernanke et 

al. (1997) show that the oil shocks have been followed by contractionary monetary policy (which 

ultimately lowers output growth), Hamilton and Herrera (2004) and Kilian and Lewis (2011) find that the 

Fed does not respond (at least not so aggressively as Bernanke et al. (1997) imply) to rising oil price 

shocks, and hence the effect of rising oil prices is purely recessionary. In our multivariate VAR model, 
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Hence, in order to find the pure (net) recessionary impact of commodity price 

uncertainty shocks, we also control for endogenous interactions between commodity 

price fluctuations and monetary policy by including the money supply and the inflation 

rate as endogenous variables in our VAR model. We find that price uncertainty shocks 

of some agricultural and metals commodities (like corn, wheat, gold and platinum) have 

significantly negative effects on real GDP growth that are unrelated to inflation and 

monetary policy. The VAR analysis shows that the estimated macroeconomic impact 

of uncertainty shocks in these commodity markets remains robust to the inclusion of 

economic uncertainty measures and monetary policy instruments.  

 

In addition, we show that unlike the metals and agricultural uncertainty shocks, oil price 

uncertainty shocks become insignificant when we control for inflation and monetary 

policy. Our results are also broadly in line with the findings of Bernanke et al. (1997), 

since we show that the dampening effect of oil uncertainty shocks vanishes when we 

control for inflation and monetary policy shocks.4 In this way, our results provide new 

empirical support to the findings of Bernanke et al. (1997), who show that ‘it is not 

possible to determine how much of the decline in output is the direct result of the 

increase in oil prices, as opposed to the ensued tightening of monetary policy’.5 On the 

other hand, our VAR analysis clearly shows that this is not the case for non-oil 

commodities. The uncertainty shocks of non-oil commodities, like corn, wheat, gold 

and platinum, have a significant and long-lasting negative impact on US 

macroeconomic activity irrespectively of whether we control (or not) for monetary 

policy in the VAR system. Our multivariate VAR analysis reveals that a positive one-

standard-deviation shock in wheat price volatility results in four basis points drop in 

GDP growth four quarters after the initial uncertainty shock, with the impact remaining 

negative and statistically significant from the second until the sixth quarter after the 

 

we control for both monetary policy shocks and inflation, in order to account for possible interactions 

between commodity price uncertainty, inflation and monetary policy, and thus to identify the pure 

recessionary impact of commodity price uncertainty shocks.  
4 Bernanke et al. (1997) additionally find that the recessionary impact of oil shocks is also reduced even 

when they restrict monetary policy not to have systematic reactions to oil shocks. This means that the 

recessionary impact of oil price uncertainty shocks is either inflationary or can be attributed to systematic 

(or random) shocks-responses of the monetary authority. 
5 The relevant literature has extensively shown that on many occasions the monetary policy authority 

reacts (at some degree) to oil price shocks by raising the Fed fund rate in order to control the inflationary 

pressures of these shocks. Bernanke et al. (1997) are the first to show that oil shocks may not be the 

primary cause of US economic recessions since the monetary authority most of the time reacts to these 

shocks by raising short-term interest rates. Thus, it is difficult to attribute economic recessions solely to 

oil price shocks. 
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initial uncertainty shock. Our results, also, show that commodity price uncertainty 

shocks affect negatively several other widely accepted proxies of economic activity, 

like the industrial production index, investment, consumption, capacity utilization and 

the unemployment rate. Our results are broadly in line with the findings of Bellemare 

et al. (2013) who show that rising agricultural price volatility has a negative effect on 

economic welfare in developing countries. Here, we additionally show that rising 

agricultural price volatility (or uncertainty) has a negative effect on aggregate 

consumption and investment of developed economies like US.  

 

Overall, we empirically verify the real options theory of ‘investment under uncertainty’ 

when modeling uncertainty as the realized variance of the daily returns of commodity 

markets. More specifically, our VAR analysis shows that aggregate investment is the 

component of GDP which is more heavily impacted by commodity price uncertainty 

shocks, hence we provide further empirical support to the real options theory of 

investment under uncertainty (Henry, 1974; Pindyck, 1991) by modeling uncertainty as 

the volatility of major agricultural, metals and energy prices. Finally, our findings 

showing the negative effects of volatility of storable commodities like corn and wheat, 

are in line with the  previous empirical evidence which shows the economic significance 

of convenience yields and inventory levels for aggregate production and consumption 

(Milonas and Thomadakis, 1997; Pindyck, 2004; Williams and Wright, 1982; Wright, 

2011). The policy implication behind our empirical findings is that policy-makers 

should turn their attention to both agricultural and metals commodity price fluctuations 

instead of perceiving oil market uncertainty shocks as the only commodity-related 

threat for the macroeconomy.6  

 

The rest of the paper is organized as follows. Section 2 outlines the empirical 

methodology. Section 3 describes the data. Section 4 presents the empirical analysis, 

and Section 5 discusses our robustness checks. Finally, Section 6 concludes.  

 

 

 
6 According to this strand of the literature, the rising price volatility of storable commodities coincides 

with higher convenience yields for holding physical inventory (Milonas and Thomadakis, 1997), and thus 

lowers commodity inventory levels and results to de-stabilizing production and consumption in the 

economy (Williams and Wright, 1982). Hence, our results showing that rising volatility of corn and wheat 

prices result to a drop in US industrial production and consumption expenditures, provide further insights 

to this literature.  
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2. Methodology 

2.1 Uncertainty in Commodity Prices 

Our uncertainty measure (COMRV) is the realized variance of the daily returns of 

commodity futures. Following Ferderer (1996), we construct both quarterly and 

monthly volatility series for each commodity futures contract by computing for each 

period (quarter/month) the standard deviation of the daily returns. We calculate the 

realized variance using daily closing prices of the nearby futures contract, according to 

Equation (1) below: 

                          

2

1 1
,

1 1 1

252 T
t i t i t i t i

t T

i t i t i

F F F F
COMRV

T F F

+ + − + + −

= + − + −

 − −
= − 

 
 ,                              (1) 

Where Ft is the nearby commodity futures price on trading day t and 

1 1( ) /t i t i t iF F F+ + − + −−  is the average futures returns for each period (t,T). COMRVt,T is 

our estimated realized variance for each period (quarter/month).7,8 Our approach of 

estimating the realized variance using the standard deviation of daily returns is found 

to be preferable since it relies on all the information contained in the daily observations 

as compared to the approach of estimating unobservable GARCH measures of volatility 

based on quarterly or monthly commodity price series (see for example, Andersen et 

al., 2003). In simple words, the realized volatility is the actual variation that market 

participants and firms observe in the market and that, based on that variation, they take 

investment decisions and exercise (or not) their option to wait until the price variability 

reduces significantly.9 

 

2.2 Multivariate VAR Model  

Following Bernanke et al. (1997), we estimate a multivariate VAR model in which we 

control for inflation and monetary policy as endogenous variables. In this way, we 

implicitly account for the inflationary impact of commodity prices and for possible 

 
7
 The time period for the estimation of realized variance is either quarterly or monthly depending on the 

frequency of the time-series used in our econometric model. 
8 The realized variance is multiplied by 252 (the number of trading days for one calendar year) in order 

to be annualized. 
9 Our main findings remain unaltered when we use the GARCH approach of Elder and Serletis (2010) 

for the estimation of oil price uncertainty as the conditional standard deviation of a one-step ahead 

forecast error. In addition, our main findings remain unaltered when we use the GARCH (1,1) model for 

the measurement of commodity price uncertainty, although the predictability of the uncertainty series is 

slightly reduced under this methodology. These additional results can be provided upon request. 
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monetary policy reactions to commodity market turbulence (Beckerman and Jenkinson, 

1986; Carlstrom and Fuerst, 2006; Hooker, 2002; Kara, 2017; Kilian and Lewis, 2011). 

In addition, we control for proxies of macroeconomic and financial market uncertainty 

using the economic policy uncertainty (EPU) index (Baker et al., 2016) and the 

volatility of the S&P500 stock-price index (Bloom, 2009; Caggiano et al., 2017; 

Hamilton and Lin, 1996; Schwert, 1989). Moreover, in the VAR model we control for 

the slope of the US Treasury yield curve which is also a significant predictor of US 

economic activity (Estrella, 2005; Estrella and Hardouvelis, 1991). The major 

advantage of our VAR identification scheme is that we control for the major 

determinants of economic activity in the VAR setting. Thus, our VAR estimates give a 

more robust estimation compared to that of Elder and Serletis (2010) and Jo (2014), 

since these works do not include in the VAR identification any variable that controls 

for monetary policy or other proxies of macroeconomic and financial uncertainty that 

have already been proven significant indicators of US economic recessions. Following 

Bekaert et al. (2013), we choose to place the macroeconomic variables first and the 

financial variables last in the VAR ordering due to the more sluggish response of the 

former compared to the latter, while we follow Jurado et al. (2015) and place the 

uncertainty measures last in the VAR ordering.  

 

Our reduced form VAR model is given in Equation (2) below: 

 

                                          0 1 1 ...t t k t k tY A AY A Y − −= + + + +                                           (2) 

 

Where 0A  is a vector of constants, 1A  to kA  are matrices of coefficients and t  is the 

vector of serially uncorrelated disturbances, with zero mean and variance-covariance 

matrix 
' 2( , )t tE I  = . tY  is the vector of endogenous variables. The lag-length (k) in 

the VAR model is selected using the Schwarz (SBIC) optimal lag-length information 

criterion.10 To recover orthogonal shocks, we use a Cholesky decomposition with the 

following ordering in our baseline 8-factor VAR model: 

 
10 Our IRFs estimates remain robust to the choice of lags that are included in the VAR. More specifically, 

we have estimated alternative versions of the baseline multivariate VAR model using the Akaike and the 

Hannan-Quinn information criteria for selecting the optimal lag-length (k). Moreover, following Elder 

and Serletis (2010) and Jo (2014), we have also estimated the VAR model using a full year of lags (i.e. 

k=4) for all variables. The evidence from all these alternative versions of the VAR model shows that our 

main results remain unaltered, and that our findings are stable to the choice of lags used in the VAR. 

These additional results can be available upon request.  
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              [ΔGDP  INFL  UNEMP  ΔM2  TERM  EPU  SP500RV  COMRV]              (3) 

 

ΔGDP stands for the growth of real GDP (the proxy of US economic activity), COMRV 

is the realized variance of daily returns of the commodity futures prices, SP500RV is 

the realized variance of daily returns of the S&P 500 stock-market index, EPU is the 

economic policy uncertainty index, UNEMP is the unemployment rate, ΔM2 is the 

growth of M2 money supply, INFL is the inflation rate (the quarterly growth of 

consumer price index (CPI) using a rolling fixed window of four quarters) and TERM 

is the slope of the term structure of US interest rates (namely, the difference between 

the 10-year US Treasury Bond yield and the 3-month US Treasury Bill rate). We 

additionally estimate our baseline 8-factor VAR model where, instead of ΔGDP, we 

use the growth of the investment and consumption components of GDP (ΔINV and 

ΔCONS), and the growth of the industrial production index (ΔIPI), the capacity 

utilization growth (ΔCU) and the unemployment rate (UNEMP) as alternative proxies 

of economic activity in the US.11 

 

3. Data 

3.1 Commodity Data 

We obtain daily time-series data for the prices of the major S&P GSCI commodity 

futures indices from DataStream. More specifically, we obtain data for the prices of 

agricultural (corn, cotton, soybeans, wheat), metals (copper, gold, silver, platinum) and 

energy (crude oil, heating oil, gasoline, petroleum) commodity futures. Our daily 

commodity data covers the period from 1st January 1988 to 31st January 2017. 

 

3.2 Macroeconomic and Financial Data 

We obtain quarterly and monthly (where available) US data for real gross domestic 

product (GDP), consumer price index (CPI), unemployment rate (UNEMP), 

consumption expenditures (CONS), investment (INV), industrial production index 

 
11 The variables (in quarterly frequency) used in the VAR analysis cover the period from 1988Q1 to 

2016Q4, except for the VAR model for the IPI which is employed in monthly frequency and covers the 

period 1988M1 to 2017M1. In the robustness section we additionally examine multivariate VAR models, 

in quarterly frequency, for the two main components of GDP; investment growth (ΔINV) and consumption 

expenditures growth (ΔCONS), and analogous multivariate VAR models, in monthly frequency, for the 

capacity utilization growth (ΔCU) and the unemployment rate (UNEMP), as alternative proxies of 

economic activity.     
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(IPI), capacity utilization (CU), M2 money supply (M2), economic policy uncertainty 

index (EPU), the 10-year US treasury bond rate and the 3-month US treasury bill rate 

from the Federal Reserve Bank of Saint Louis (FRED). We also obtain data for the S&P 

500 stock-market index from DataStream. The slope of the yield curve (TERM) is 

estimated as the difference between the 10-year US government bond yield and the 3-

month maturity US treasury bill rate. All the macroeconomic and financial data series 

cover the period from January 1988 to January 2017.12  

 

3.3 Descriptive Statistics  

Table 1 shows the descriptive statistics of the variables and the correlation matrix 

between commodity volatility series in the quarterly frequency.13  

 

[Insert Table 1 Here] 

 

From Table 1 we observe that energy commodity volatility series, such as the crude oil 

and petroleum, exhibit a higher mean compared to agricultural and metals commodity 

volatility series. In addition, the standard deviation of the realized variance series for 

energy commodity prices is much higher compared to the standard deviation of non-

energy realized variance series. This indicates that the time variation and the sudden 

swings in time-varying volatility are much higher in energy commodity markets when 

compared to agricultural and metals commodity markets. Moreover, Table 2 displays 

the correlation matrix of our commodity realized variance series.  

 

[Insert Table 2 Here] 

 

Table 2 shows that the correlations between commodity volatility series are positive 

and, in most cases, larger than 40%. These results are a first indication of significant 

co-movements in the volatility of commodity prices. Furthermore, we observe that the 

correlations between commodity realized variance series of the same commodity class 

 
12 All variables have been tested for stationarity and the null hypothesis of unit root have been rejected 

using both the Augmented Dickey-Fuller and the Philips-Perron unit root tests. The results of the unit root 

tests can be provided upon request. 
13 We use both quarterly and monthly time-series models in our empirical analysis. Our quarterly dataset 

consists of the period 1988Q1-2016Q4, while our monthly dataset covers the period 1988M1-2017M1. 

Here, we report the descriptive statistics for the quarterly dataset and the respective correlation matrix for 

the commodity volatility series in quarterly frequency. The descriptive statistics and correlation matrix 

for the monthly data exhibit a similar behavior with the quarterly sample. The tables for the monthly 

dataset can be provided upon request. 
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become even higher, which indicates that co-movement is stronger for commodity 

markets in the same class. 

 

4. Empirical Analysis 

4.1 OLS Predictive Regressions Results 

For an initial investigation of the impact of agricultural, energy and metals commodity 

markets uncertainty on US economic activity we use single-equation forecasting 

regression models. Following the output forecasting approach of Estrella and 

Hardouvelis (1991), we estimate bivariate OLS forecasting regressions in which we use 

the realized variance of commodity prices as the only predictor of economic activity, 

as follows:  

 

0 1t t k tGDP b bCOMRV − = + +  ,                                                  (4) 

 

where ΔGDP is the growth of real GDP and COMRV is the realized variance of 

agricultural, energy and metals commodity futures returns, respectively. The 

forecasting horizon ranges from 0 to 12 quarters. We additionally estimate the bivariate 

forecasting regressions of Equation (4) using the IPI growth (ΔIPI) as an alternative 

measure of economic activity in US.14 

 

Table 3 shows the regression results of our bivariate regression on real GDP growth 

using commodity price uncertainty as our only predictor.  

 

[Insert Table 3 Here] 

 

The results from Table 3 indicate that rising uncertainty in agricultural, metals and 

energy prices is associated with a significant drop in GDP growth. The estimated 

coefficients of the commodity price uncertainty series remain negative and statistically 

significant for forecasting horizons ranging from one up to six quarters ahead. When 

regressing the contemporaneous time-series of commodity price volatility on GDP 

 
14 The variables (in quarterly frequency) used in the regression analysis cover the period from 1988Q1 to 

2016Q4, except for the regressions for IPI which are employed in monthly frequency and cover the period 

1988M1 to 2017M1.  
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growth, we find that the volatility of metals and energy commodity prices are the most 

significant indicators of economic activity with adjusted R2 values reaching 29.8%, 

30.0% and 28.6% for the case of crude oil, gasoline and gold, respectively.  

 

These results, reinforce the previous evidence on the predictive ability of financial 

variables, and especially of the various measures of financial volatility, for economic 

activity (Schwert, 1989; Ferrara et al., 2014; Chauvet et al., 2015; among others). 

Furthermore, our findings are in line with Elder and Serletis (2010), Elder (2018) and 

Jo (2014), according to which oil uncertainty shocks are significant indicators of 

economic activity. On the other hand, our empirical analysis is the first to show that 

rising uncertainty in metals and in some agricultural markets (like wheat) are equally 

important indicators of falling economic activity. However, when we lengthen the 

forecasting horizon, we observe that the volatility of energy commodities like crude oil, 

petroleum and gasoline have a poorer forecasting ability when compared with the 

explanatory power of agricultural and metals commodities. For example, the adjusted 

R2 value of the bivariate regression falls from 10.2% (one quarter forecasting horizon) 

to 1.3% (two quarters forecasting horizon) when forecasting GDP growth using the 

realized variance of crude oil futures as a predictor, while the respective adjusted R2 

falls from 18.7% to 9.8% when using the realized variance of gold futures instead. Our 

results on the macroeconomic information content of commodity price volatility are 

broadly in line with findings of Kang et al. (2017) and Fernández et al. (2018), who 

find that fluctuations in commodity prices are a significant driver of macroeconomic 

fluctuations in US output and in small emerging market economies output.  

 

We additionally examine the effect of commodity price volatility on the industrial 

production index  growth (ΔIPI), in monthly frequency. Table 4 report the regression 

results of the bivariate OLS forecasting regression models for the monthly IPI growth. 

 

[Insert Table 4 Here] 

 

The results from Table 4 confirm the findings for GDP growth, and show that 

commodity uncertainty has a negative effect on industrial production growth. As 
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expected, the price uncertainty in the metals markets has the most significant impact on 

IPI growth.15  

 

4.2 Commodity Price Uncertainty and US Economic Recessions 

In this section, we follow the econometric approach of Estrella and Mishkin (1998) on 

the prediction of US recessions, using our measures of commodity price uncertainty. 

More specifically, we present the results based on the bivariate linear probability and 

probit models in which we predict the probability of US economic recessions (i.e. the 

right-hand-side variable in Equation (4) for these models is a binary (0-1) variable that 

indicates the NBER based US economic recessions (NBER)). Tables 5 and 6 show the 

results based on the bivariate linear probability and probit regression models 

respectively.  

 

[Tables 5 and 6 Here] 

 

The results, presented in Tables 5-6, clearly show the strong and significant predictive 

power of commodity price uncertainty for US economic recessions in both short- and 

long-term forecasting horizons. More specifically, our bivariate linear probability and 

probit regressions report positive and statistically significant coefficients for all 

commodity realized variance series in the short-term (for one- and two-month 

forecasting horizons). We additionally observe that the short-term predictive power of 

crude oil and petroleum price uncertainty is significantly higher compared to other non-

oil commodity volatility series. Our regression analysis clearly shows that oil price 

uncertainty is more closely associated with subsequent US economic recessions when 

compared to non-oil price uncertainty. Our results on the significant predictive power 

of oil price uncertainty (for short-term forecasting horizons) are broadly in line with the 

evidence in Hamilton (1983, 2003) and the recent empirical findings of Killian and 

Vigfusson (2017), who show that oil price shocks can act as leading indicators for US 

economic recessions. On the other hand, we observe that the predictive power of oil 

price uncertainty is significantly deteriorated for medium-term (three-month and six-

month) forecasting horizons, while the respective predictive power of some agricultural 

 
15 Following our baseline 8-factor model, used in the VAR analysis, we have estimated multivariate OLS 

predictive regressions in which we include these key macroeconomic and financial determinants of 

economic activity on the left-hand side of the predictive regression equation. The main findings, using 

this multivariate regression model, remain unaltered. These results are available upon request. 
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and metals commodities such as wheat, gold and platinum is significantly increased and 

thus these series can act as better indicators of US economic recessions for medium-

term forecasting horizons.16 In addition, Figure 1 shows the estimated recession 

probability based on the bivariate probit models when using agricultural, energy and 

metals price uncertainty as predictors of NBER recessions respectively.  

 

[Figure 1 Here] 

 

From Figure 1 we can easily observe that the rising probabilities of our probit models 

are associated with economic recessions in the US. More specifically, the estimated 

probabilities from the bivariate probit models corresponds to the observed episodes of 

US economic recessions. Figure 1 shows the high predictive power of crude oil and 

petroleum price uncertainty on US economic recessions when compared to the non-oil 

price uncertainty. The increased predictive power of oil price uncertainty on economic 

activity does not contrast our findings and the previous evidence by Bernanke et al. 

(1997, 2004), since this increased predictive power of oil price uncertainty on economic 

recessions may partially be due to increased monetary policy interventions. 

 

4.3 Multivariate VAR Results 

In this section we present the results of the baseline multivariate VAR model (as 

described in Equations (2) and (3)). We begin our analysis with the results from the 

Granger causality tests between commodity price uncertainty and economic activity 

derived from our baseline multivariate VAR model. The results of the Granger causality 

tests for the commodity uncertainty-GDP growth pair is shown in Table 7.17  

 

 [Insert Table 7 Here] 

 

 
16 This outcome is a first indication of our basic conclusions from our VAR analysis, according to which 

the recessionary impact of non-oil commodity markets uncertainty is found to be more long-lasting 

compared to the impact of uncertainty in oil commodity markets. 
17 Here we provide the results of the Granger causality tests for the main variables of interest (i.e. the 

commodity uncertainty-GDP growth pair). The full set of results for the Granger causality tests for all 

remaining variables in our VAR model can be provided upon request. In addition, we have also estimated 

the Granger causality tests for the commodity uncertainty-IPI growth pair as well as for the two 

components of GDP (ΔINV and ΔCONS). Our main findings are qualitatively similar. These additional 

results are provided upon request. 
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The results of Granger causality tests presented in Table 7 show that price uncertainty 

in the agricultural and metals markets like corn, wheat, silver and gold Granger cause 

GDP growth. So, these tests identify a unidirectional causality from the majority of 

agricultural and metals markets to US economic activity. On the other hand, we do not 

find any significant causality running from energy commodity markets to US economic 

activity (i.e., we fail to reject the hypothesis of no causality from energy markets to 

GDP growth). In addition, when examining the reverse channel of causality, our tests 

show that the only significant causal relationship is from US economic activity to 

energy price uncertainty. Hence, according to these tests, the changes in US economic 

activity, do Granger cause oil price uncertainty, while they do not (Granger) cause 

uncertainty in agricultural and metals commodity markets. Our results are the first to 

identify this reverse channel of causality between oil price uncertainty and the 

macroeconomy. The findings of the relevant literature so far have shown that oil price 

uncertainty shocks have a significant negative impact on US macroeconomy (Elder and 

Serletis, 2010; Elder, 2018; Jo, 2014; Ferderer, 1996). Our evidence here, is that the 

causal relationship is not from oil uncertainty shocks to macroeconomic fluctuations, 

but from US economic activity to oil and, in general, energy price uncertainty. Our 

results are broadly in line with the more recent empirical findings which show that 

macro-uncertainty shocks have a significant effect in uncertainty in oil and energy 

markets (Bakas and Triantafyllou, 2018; Joets et al., 2017; Van Robays, 2016).  

 

We continue our VAR analysis by estimating the dynamic responses of unexpected 

commodity price uncertainty shocks on US economic activity and its components. 

More specifically, we present the estimated orthogonalized impulse response functions 

(IRFs), in which the shocks are identified using a Cholesky decomposition, for our 

baseline multivariate VAR model described in Equations (2) and (3).18,19 Figure 2 

shows the estimated IRFs for the VAR models of GDP growth in which we use the 

agricultural (corn, cotton, soybeans, wheat), energy (crude oil, heating oil, gasoline, 

 
18 Here we provide the estimated IRFs of commodity uncertainty shocks on the measure of economic 

activity in the VAR model (GDP growth). The full set of the estimated IRFs for all the variables included 

in our VAR model can be provided upon request. 
19 For robustness purposes, we have also estimated orthogonalized IRFs, using a Cholesky decomposition 

with alternative orderings for the variables in our VAR model. Furthermore, for additional robustness, we 

have estimated the generalized IRFs which do not require orthogonalization of shocks and, unlike the 

impulse responses on orthogonalized shocks, are insensitive to the choice of the ordering of variables in 

the VAR model (see Pesaran and Shin, 1998). Our main findings remain unaltered when we estimate 

either the generalized IRFs, or the orthogonalized IRFs with alternative VAR orderings. The set of these 

additional results can be provided upon request.    
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petroleum) and metals (copper, gold, silver, platinum) price volatility series as proxies 

for commodity price uncertainty.  

 

[Insert Figure 2 Here] 

 

The IRFs, from Figure 2, show that agricultural and metals commodity price 

uncertainty shocks have a negative and long-lasting impact on US GDP growth. 

Specifically, our VAR analysis shows that rising volatility in some precious metals and 

agricultural prices, like platinum, gold and wheat, has a more negative and long-lasting 

impact on US GDP growth when compared with the respective macroeconomic effects 

of energy price uncertainty shocks. The results of our VAR model show that a positive 

one-standard-deviation shock in the volatility of wheat prices reduces GDP growth by 

almost 10 basis points one quarter after the initial volatility shock, with the effect 

remaining negative and statistically significant for five quarters after the initial shock. 

In addition, our VAR analysis shows that a positive one-standard-deviation shock in 

the realized variance of platinum futures prices reduces GDP growth almost 12 basis 

points two quarters after the initial uncertainty shock, with the effect remaining 

significant for four quarters after the initial platinum uncertainty shock. On the other 

hand, the estimated response of US GDP growth to energy price uncertainty shock is 

statistically insignificant (statistically indistinguishable from zero) for all energy 

commodity markets considered. In our multivariate VAR model, we control for 

monetary policy (money supply - M2) and inflation, so we are able to control for any 

possible interactions between monetary policy, inflation and commodity price 

volatility. In addition, we control for both macroeconomic and financial uncertainty 

(EPU and SP500RV) and thus we are able to account for possible interactions between 

commodity price volatility and uncertainty that stems from the broader macroeconomic 

and financial environment.20       

 

Our findings are line with those of Bernanke et al. (2004), Carlstrom and Fuerst (2006) 

and Cologni and Manera (2008) who show that it is difficult to infer whether US 

 
20 Following the work of Bakas and Triantafyllou (2018), which shows that unobserved macroeconomic 

uncertainty have a stronger effect on the volatility of commodity prices compared to observable measures 

of economic uncertainty, we additionally estimate the baseline multivariate VAR model where we replace 

EPU with the unobservable macroeconomic uncertainty measure (MU) of Jurado et al. (2015). Our main 

findings do not change when we control for the unobserved macroeconomic uncertainty in the VAR 

model. These results can be provided upon request.    
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economic recessions have occurred because of oil prices or subsequent monetary policy 

reactions and that a significant part of the recessionary effects of oil price shocks is due 

to the systematic monetary policy reaction function. Oil shocks are frequently being 

followed by reactions of monetary policy and that overall, it is difficult to disentangle 

the recessionary impact of oil price shocks and monetary policy changes, which many 

times occur simultaneously (Bernanke et al., 1997; 2004; Carstrom and Fuerst, 2006; 

Kara, 2017). Our results are also in line and provide further insights to the findings of 

Ferraro and Peretto (2018) who show that commodity prices are associated with short-

run growth of commodity-rich economies. Here, we additionally show that commodity 

price volatility shocks are significantly (negatively) associated and also have a negative 

dynamic effect on US real GDP growth. Assuming the same type of endogeneity 

between commodity price uncertainty and monetary policy, we control for possible 

interactions between monetary policy and commodity price uncertainty by including as 

endogenous variables the money supply growth (ΔM2) and inflation (INFL) in our VAR 

model. Thus, the estimated IRFs show the net impact of commodity price uncertainty 

shocks on US economic activity.21  

 

Unlike the empirical analysis of Elder and Serletis (2010) and Jo (2014), who do not 

control for inflation and systematic monetary policy shocks, in our VAR model we 

control for the possible interactions between monetary policy, inflation and commodity 

price uncertainty in order to measure the net real macroeconomic impact of unexpected 

random shocks in commodity price uncertainty. Our VAR estimates are broadly in line 

with the findings of Bernanke et al. (1997; 2004) and Kara (2017) since we find that 

the impact of oil price uncertainty shocks on US economic growth is significantly 

deteriorated when we control for monetary policy and inflation in our VAR model; 

thus, we implicitly allow for possible interactions between commodity price uncertainty 

shocks and monetary policy changes.22 Our analysis implicitly reveals that the reduced 

impact of oil price uncertainty shocks on US GDP growth may be attributed to the fact 

 
21 We additionally estimate a structural VAR (SVAR) model in which we restrict monetary policy to have 

no systematic reaction to commodity price uncertainty shocks. Even under this VAR identification 

scheme, our basic findings remain unaltered. The impact of agricultural and metals commodity price 

uncertainty shocks remains negative and statistically significant irrespective of the systematic (or random) 

interactions of monetary policy with commodity price fluctuations. These additional results based on the 

SVAR model can be provided upon request. 
22 Our results remain robust to the inclusion of alternative monetary policy instruments like the Federal 

funds rate and the 3-month US Treasury Bill rate. These additional results can be provided upon request. 
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that these shocks are either inflationary and, as a consequence, do not pass to the real 

economy, or they result in a systematic reaction of the monetary authority (through 

contractionary monetary policy), which in turn reduces output. Thus, our analysis 

implicitly shows that oil shocks primarily affect the monetary (nominal) and not the 

real part of the macroeconomy. On the other hand, the impact of non-oil price 

uncertainty shocks, such as shocks in wheat, gold and platinum price variability, 

remains robust to the inclusion of inflation, monetary policy and other macroeconomic 

factors directly related to economic activity. These results clearly show that, in sharp 

contrast to oil shocks, the agricultural and metals commodity price uncertainty shocks 

have a purely macroeconomic (recessionary) impact and, thus, they can act as leading 

indicators of economic activity. The policy implication of our empirical findings is that 

monetary authorities should consider to target also the commodity price uncertainty of 

non-oil commodity market uncertainty. This policy may be feasible since commodity 

prices are significantly affected by changes in interest rates and monetary policy 

(Anzuini et al., 2013; Frankel and Hardouvelis, 1985; Gubler and Hertweck, 2013; 

Hammoudeh et al., 2015). Moreover, according to the empirical findings of 

Triantafyllou and Dotsis (2017), US monetary policy is capable of affecting the option-

implied uncertainty on agricultural commodity markets. 

 

We also estimate a similar VAR model (as given in Equations (2) and (3)) in which 

we use the industrial production growth as our proxy for economic activity (ΔIPI is 

now the first variable in the VAR ordering) – this VAR model is estimated in monthly 

frequency. Figure 3 shows the estimated orthogonalized IRFs of our VAR model when 

using agricultural, energy and metals price volatility series as the commodity 

uncertainty measure.  

 

[Insert Figure 3 Here] 

 

Figure 3 shows that an unexpected positive uncertainty shock in agricultural markets 

like corn and wheat has a long-lasting impact on the IPI growth in the US when 

compared to the respective effect of energy and metals price volatility. For example, a 

one-standard-deviation shock in wheat price uncertainty reduces IPI growth by almost 

8 basis points one month after the initial shock with the effect remaining negative and 

statistically significant for ten months after the initial shock. On the other hand, the 

response of industrial production growth to energy price uncertainty shocks is more 
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transitory since the negative effect disappears 2-3 months after the initial energy 

uncertainty shock.23 Overall, the results based on the monthly frequency VAR model 

are in line with our quarterly VAR. Our findings show that, albeit in line with the oil-

macroeconomy literature, according to which energy price shocks have a negative 

impact on economic activity in US (Elder and Serletis, 2010; Elder, 2018; Jo, 2014), 

the effect of energy markets is transitory and vanishes after a 3-months period, that is 

one quarter after the initial shock. These results are also in line with the findings of our 

forecasting regression models, according to which, the predictive power of oil price 

uncertainty is significant and relatively higher for short-term forecasting horizon, while 

it vanishes for medium and long-term forecasting horizon. On the other hand, the 

negative impact of agricultural and metals price uncertainty shocks remains significant 

for about one year after the initial shock. 

 

5. Robustness Checks 

In this section we provide the results of our robustness checks. In specific, we estimate 

the same multivariate VAR models for the two main components of GDP; that is 

investment growth (ΔINV) and consumption expenditures growth (ΔCONS), and for the 

growth of capacity utilization (ΔCU) and the unemployment rate (UNEMP) as 

alternative proxies of economic activity. We start by estimating an identical VAR 

model, given in Equations (2) and (3), in which we use investment growth (ΔINV) 

instead of GDP growth as the first variable in the VAR ordering. Using this VAR 

model, we measure the impact of random shocks in the time-varying uncertainty of 

commodity markets on the investment component of the US output. Figure 4 shows 

the respective orthogonalized IRFs of investment growth based on the multivariate 

VAR models.  

 

[Insert Figure 4 Here] 

 

From Figure 4, we observe that a positive shock in the realized variance of corn, wheat, 

gold and platinum results to significant drops in US investment growth. More 

specifically, an unexpected positive one-standard-deviation shock in the realized 

 
23 The results based on the VAR model in monthly frequency, where we use IPI growth as proxy of 

economic activity, reaffirm our previous evidence, which are based on the VAR model in quarterly 

frequency using the measure of real GDP growth as proxy, and furthermore shows that our findings are 

robust to the estimation of the VAR model in different frequencies (quarterly/monthly). 



21 

 

variance of corn and wheat futures leads to a drop of approximately 40 basis points in 

US investment growth in one quarter after the initial uncertainty shock, with the effect 

remaining negative and statistically significant for six quarters after the initial shock. 

In addition, a positive price uncertainty shock in the gold futures market reduces US 

investment growth by nearly 40 basis points two quarters after the initial shock, while 

a platinum uncertainty shock results to a reduction of investment of about 50 basis 

points two quarters after the platinum shock, with both effects remaining significantly 

negative for five quarters after the initial metals uncertainty shocks. On the other hand, 

energy price uncertainty shocks have a rather small and transitory negative impact on 

US investment growth.  

 

We also estimate the baseline VAR model in which we use consumption expenditures 

growth (ΔCONS) as the first variable in the VAR ordering (Equation (3)). Figure 5 

shows the estimated orthogonalized IRFs for agricultural, energy and metals 

uncertainty shocks respectively.  

 

[Figure 5 Here] 

 

The estimated IRFs (Figure 5) clearly show that the impact of agricultural volatility 

shocks in US consumption growth is larger in magnitude and more persistent as 

opposed the impact of energy volatility shocks. We observe that a positive shock in the 

realized variance of corn, cotton and wheat results to significant drops in consumption 

growth. For example, a one-standard-deviation shock in corn price uncertainty leads to 

a drop of 10 basis points in consumption growth in about three quarters after the initial 

shock. These results reinforce the evidence that agricultural commodities are largely 

related with consumption. However, we also find that metals commodity markets, like 

gold and platinum, have also a negative dynamic effect on US consumption growth. 

These findings are in line with Edelstein and Killian (2009), who show that energy price 

shocks result in a reduction in consumer spending, since they can create sudden shifts 

in precautionary savings and changes in the cost of energy-usage durables. We extend 

here this empirical finding by showing that, apart from energy price spikes, price 

uncertainty in both energy and non-energy commodity markets has persistently 

negative impact on aggregate consumption expenditures. 
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In addition, we estimate the baseline VAR model with capacity utilization growth 

(ΔCU) as the first variable in the VAR ordering (Equation (3)) – this VAR model is 

also estimated in monthly frequency. Figure 6 shows the estimated orthogonalized 

IRFs for agricultural, energy and metals uncertainty shocks respectively.  

 

[Figure 6 Here] 

 

The estimated IRFs (Figure 6) provide a similar evidence with that from the other 

measures of economic activity; that the impact of agricultural volatility shocks in US 

capacity utilization growth are larger in magnitude and more persistent as opposed to 

the impact of energy volatility shocks. 

 

Finally, we estimate the baseline VAR model, in monthly frequency, where we explore 

the dynamic responses of commodity price uncertainty shocks on the unemployment 

rate (UNEMP) - as another proxy for the US economic activity.24 Figure 7 shows the 

estimated orthogonalized IRFs for agricultural, energy and metals uncertainty shocks 

respectively.  

 

[Figure 7 Here] 

 

The estimated IRFs (Figure 7) clearly show that the impact of agricultural volatility 

shocks is larger in magnitude and more persistent as opposed the impact of energy 

volatility shocks. For example, a shock in corn price uncertainty increases US 

unemployment rate by approximately 8 basis points with the effect remaining positive 

and statistically significant for almost 35 months after the initial shock. On the other 

hand, except from platinum, the energy and metals commodity price uncertainty has a 

lower effect (in magnitude and persistence) on US unemployment rate.  

 

These additional results provide further robustness to our main findings and 

conclusions from the main VAR analysis since all alternative proxies of economic 

activity are found to be negatively affected by agricultural and metals markets 

 
24 The VAR model used here is the baseline 8-factor VAR (described in Equation (3)) in monthly 

frequency in which the industrial production growth (ΔIPI) is placed first and the unemployment rate 

(UNEMP) is placed third in the VAR ordering. For robustness purposes, we have also estimated a VAR 

model where we reverse the ordering of these two variables, and our findings remain qualitatively the 

same. These additional results can be provided upon request.  
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uncertainty shocks, while the respective impact from the energy uncertainty shocks is 

found to be much smaller. 

 

6. Conclusions 

Motivated by the real options approach of the theory of investment under uncertainty, 

we empirically examine the impact of commodity price uncertainty on US economic 

activity. Our paper differentiates from the previous literature since we empirically 

examine the impact of both oil and non-oil commodity price uncertainty shocks on US 

macroeconomy using a class of agricultural, metals and energy commodities. Our 

empirical analysis reveals that uncertainty in agricultural, energy and metals markets 

has significant predictive information content on economic activity. Rising uncertainty 

in all commodity markets is associated with slumps in US GDP and its components and 

with economic recessions. However, our VAR analysis for the first time shows that the 

causality between oil price uncertainty and US macroeconomy is unidirectional and 

runs from output fluctuations to oil price uncertainty and not the opposite. On the other 

hand, the dynamic effects of uncertainty in many agricultural and metals commodities 

have a long-lasting negative impact on US economic activity and its components, such 

as investment and consumption expenditures. Our VAR analysis shows that aggregate 

investment is the component of GDP which is more sensitive to agricultural and metals 

commodity price uncertainty shocks, hence, we implicitly verify the real options model 

of investment under uncertainty when the uncertainty shock is modeled as the rising 

volatility in commodity markets. Furthermore, when controlling for the monetary 

policy stance, we find that the recessionary impact of energy shocks is significantly 

reduced. Our results are in line with the findings of Bernanke et al. (1997; 2004) who 

show that the predictive power of oil shocks is significantly reduced when controlling 

for monetary policy in the VAR model. Although the non-oil price uncertainty shocks 

have a larger and more persistent negative impact on economic activity, our findings 

implicitly reveal that these types of uncertainty shocks have not been taken into 

consideration by policy-makers. Hence, our findings implicitly reveal as policy 

implications the need of the inclusion of agricultural and metals markets uncertainty 

into the central bank information variable set when making predictions on future 

economic activity, and thus adopting proactive monetary policies by monitoring 

variables which could act as non-standard indicators of future macroeconomic 

downturns (Woodford, 1994). The more careful consideration of non-oil commodity 
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fluctuations and rising uncertainty in agricultural and metals futures markets might be 

another non-conventional monetary policy in order to ameliorate the recessionary 

impact of commodity market turbulence. 
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Tables and Figures 
 

 

 

Table 1. Descriptive Statistics 
 Mean Std. Dev. Minimum Maximum Skewness Kurtosis 

ΔGDP 0.006 0.006 -0.021 0.019 -1.169 6.555 

ΔIPI 0.004 0.012 -0.056 0.025 -2.017 9.306 

ΔINV 0.010 0.024 -0.096 0.058 -1.014 5.610 

ΔCONS 0.012 0.006 -0.026 0.026 -2.040 13.438 

ΔCU -0.001 0.012 -0.059 0.026 -1.629 8.446 

SP500RV 0.030 0.047 0.004 0.441 6.386 54.028 

EPU 4.627 0.287 4.083 5.288 0.403 2.422 

TERM 0.018 0.011 -0.006 0.036 -0.223 1.952 

INFL 0.006 0.005 -0.023 0.017 -1.763 11.941 

ΔM2 0.013 0.007 -0.003 0.046 0.652 5.638 

UNEMP 0.061 0.015 0.039 0.101 0.999 3.207 

COMRV       

Corn 0.059 0.046 0.006 0.311 2.039 10.011 

Cotton 0.057 0.040 0.012 0.271 2.439 10.920 

Soybeans 0.050 0.036 0.006 0.212 1.925 7.251 

Wheat 0.071 0.052 0.009 0.305 1.827 7.005 

Crude oil 0.119 0.119 0.016 0.769 3.383 16.460 

Heating oil 0.104 0.086 0.015 0.652 3.174 17.686 

Petroleum 0.099 0.095 0.012 0.633 3.499 18.099 

Gasoline 0.112 0.096 0.014 0.742 3.584 20.829 

Copper 0.065 0.069 0.012 0.522 3.745 21.350 

Gold 0.025 0.023 0.002 0.143 2.552 10.923 

Platinum 0.044 0.036 0.006 0.249 3.257 17.331 

Silver 0.078 0.075 0.009 0.479 2.924 13.419 

T = 116 Quarters 
 

     

Notes: The descriptive statistics are based on the balanced dataset of the 12 agricultural, energy and 

metals commodities and the macroeconomic and financial time-series for the quarterly dataset over the 

period 1988Q1 to 2016Q4. 

 

 

 

Table 2. Correlation Matrix for the Agricultural, Energy and Metals Commodity Markets 
 Corn Cotton Soybeans Wheat Crude 

oil 

Heating 

oil 

Petroleum Gasoline Copper Gold Platinum Silver 

Corn 1.000            
Cotton 0.619 1.000           
Soybeans 0.763 0.548 1.000          
Wheat 0.751 0.623 0.591 1.000         

Crude oil 0.260 0.268 0.241 0.219 1.000        
Heating oil 0.140 0.220 0.193 0.126 0.928 1.000       
Petroleum 0.269 0.292 0.265 0.227 0.991 0.956 1.000      
Gasoline 0.364 0.396 0.361 0.284 0.912 0.906 0.942 1.000     

Copper 0.555 0.387 0.422 0.428 0.413 0.300 0.421 0.502 1.000    
Gold 0.584 0.404 0.452 0.499 0.463 0.366 0.468 0.538 0.628 1.000   
Platinum 0.568 0.412 0.560 0.466 0.484 0.387 0.498 0.532 0.530 0.719 1.000  
Silver 0.619 0.510 0.436 0.539 0.346 0.218 0.351 0.423 0.672 0.806 0.587 1.000 

Notes: The agricultural commodities consist of corn, cotton, soybeans and wheat, while the energy commodities consist of crude 

oil, heating oil, petroleum and gasoline, and finally, the metals commodities consist of copper, gold, platinum and silver. 
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Table 3. Forecasting Gross Domestic Product Growth with Commodity Price Uncertainty 
 

Panel A: Estimated b1 coefficients 

Horizon (k) k=0 k=1 k=2 k=3 k=6 k=12 

Corn -0.049** -0.050** -0.034** -0.021* -0.038* -0.005 

Cotton -0.063** -0.042** -0.026* -0.018 -0.006 -0.001 

Soybeans -0.047 -0.047 -0.040 -0.013 -0.029* -0.017 

Wheat -0.045** -0.042** -0.039** -0.035 -0.021* -0.008 

Crude oil -0.028*** -0.017*** -0.007** -0.004 0.007** 0.004 

Heating oil -0.032*** -0.018* -0.008 -0.006 0.006 0.001 

Petroleum -0.035*** -0.021** -0.009** -0.006* 0.008* 0.003 

Gasoline -0.035*** -0.025*** -0.011*** -0.007** 0.004 -0.003 

Copper -0.036** -0.024** -0.012** -0.011 -0.014 -0.006 

Gold -0.139*** -0.109** -0.085*** -0.062*** -0.030 -0.034 

Platinum -0.077*** -0.073*** -0.053*** -0.041*** -0.002 -0.005 

Silver -0.035** -0.027* -0.013 -0.009 -0.004 -0.005 

 

Panel B: Adjusted R2 values 

Horizon (k) k=0 k=1 k=2 k=3 k=6 k=12 

Corn 13.0 13.6 5.9 1.7 7.6 -0.8 

Cotton 17.3 7.3 2.2 0.6 -0.8 -1.0 

Soybeans 7.5 7.2 5.1 -0.3 2.1 0.1 

Wheat 14.3 12.6 10.7 8.4 2.4 -0.5 

Crude oil 29.8 10.2 1.3 -0.2 0.8 -0.3 

Heating oil 20.6 5.6 0.4 -0.3 -0.2 -1.0 

Petroleum 29.1 10.2 1.3 -0.1 0.7 -0.7 

Gasoline 30.0 14.6 2.4 0.6 -0.5 -0.7 

Copper 16.0 7.0 1.0 0.8 1.6 -0.4 

Gold 28.6 17.2 10.2 5.1 0.5 1.0 

Platinum 21.4 18.7 9.8 5.6 -0.9 -0.9 

Silver 19.1 10.4 1.7 0.5 -0.7 -0.6 

Notes: * p < 0.10, ** p < 0.05, *** p < 0.01. The table presents the results of the bivariate forecasting 

regression model on gross domestic product growth (ΔGDP) using the realized variance series of 

agricultural, energy and metals commodity futures returns. The forecasting horizon ranges from 0 to 

12 quarters. COMRV is the realized variance and ΔGDP is the GDP growth. The standard errors are 

corrected for autocorrelation and heteroscedasticity using the Newey-West (1987) estimator. The 

estimated beta coefficients are based on the following bivariate regressions: 𝛥ܦܩ 𝑡ܲ = 𝑏଴ +𝑏ଵܯܱܥ𝑅𝑉𝑡−𝑘 + 𝜀𝑡. 
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Table 4. Forecasting Industrial Production Growth with Commodity Price Uncertainty 
 

Panel A: Estimated b1 coefficients 

Horizon (k) k=0 k=1 k=2 k=3 k=6 k=12 

Corn -0.027** -0.024 -0.025* -0.029** -0.013 -0.008 

Cotton -0.030** -0.027 -0.026 -0.022 -0.019 -0.002 

Soybeans -0.027* -0.028 -0.031* -0.033* -0.022 -0.008 

Wheat -0.023** -0.025* -0.020** -0.026** -0.028** -0.012 

Crude oil -0.014** -0.014*** -0.012*** -0.011** -0.004 -0.001 

Heating oil -0.015** -0.014** -0.014** -0.011* -0.004 -0.003 

Petroleum -0.017** -0.016*** -0.015** -0.013** -0.005 -0.002 

Gasoline -0.019*** -0.018*** -0.016*** -0.015*** -0.006* -0.002 

Copper -0.010 -0.017** -0.021** -0.016* -0.004 0.000 

Gold -0.082*** -0.054** -0.064** -0.074*** -0.041* -0.010 

Platinum -0.053*** -0.040*** -0.042*** -0.048*** -0.037*** -0.004 

Silver -0.014* -0.013* -0.015 -0.014 -0.008 0.003 

 
Panel B: Adjusted R2 values 

Horizon (k) k=0 k=1 k=2 k=3 k=6 k=12 

Corn 5.1 4.3 4.7 6.3 1.1 0.2 

Cotton 4.6 3.7 3.4 2.4 1.6 -0.3 

Soybeans 3.5 3.9 4.7 5.4 2.2 0.0 

Wheat 5.4 6.2 3.8 6.9 7.8 1.1 

Crude oil 12.2 11.5 8.9 7.0 0.5 -0.2 

Heating oil 7.7 6.5 6.3 4.5 0.3 0.0 

Petroleum 10.9 10.5 8.5 6.6 0.6 -0.1 

Gasoline 13.6 12.1 9.5 8.8 1.3 -0.1 

Copper 1.4 4.5 7.1 3.9 0.0 -0.3 

Gold 14.2 6.0 8.5 11.6 3.3 -0.1 

Platinum 14.6 8.2 8.7 11.8 6.7 -0.2 

Silver 3.8 3.4 4.6 3.9 1.0 -0.1 

Notes: * p < 0.10, ** p < 0.05, *** p < 0.01. The table presents the results of the bivariate forecasting 

regression model on the industrial production index growth (ΔIPI) using the realized variance series 

of agricultural, energy and metals commodity futures returns. The forecasting horizon ranges from 0 

to 12 months. COMRV is the realized variance and ΔIPI is the industrial production index growth. The 

standard errors are corrected for autocorrelation and heteroscedasticity using the Newey-West (1987) 

estimator. The estimated beta coefficients are based on the following bivariate regressions: 𝛥𝐼ܲ𝐼𝑡 =𝑏଴ + 𝑏ଵܯܱܥ𝑅𝑉𝑡−𝑘 + 𝜀𝑡. 
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Table 5. Forecasting US Economic Recessions with Commodity Price Uncertainty 
 

Panel A: Estimated b1 coefficients 

Horizon (k) k=0 k=1 k=2 k=3 k=6 k=12 

Corn 1.341* 1.202 1.226 1.272 0.948 0.223 

Cotton 1.799** 1.621* 1.390 1.288 0.825 -0.338 

Soybeans 1.874** 1.794* 1.841** 1.827** 1.286 0.092 

Wheat 1.532** 1.463** 1.435** 1.436** 1.179* 0.526 

Crude oil 0.979*** 0.925*** 0.911*** 0.636** 0.316 -0.107 

Heating oil 1.109*** 1.049*** 1.010*** 0.616* 0.352 -0.051 

Petroleum 1.166*** 1.095*** 1.082*** 0.727** 0.404 -0.101 

Gasoline 1.166*** 1.104*** 1.110*** 0.811** 0.529* -0.056 

Copper 0.991** 0.946** 0.951** 0.912** 0.638* 0.106 

Gold 4.064*** 4.122*** 4.321*** 3.798*** 2.646** 0.134 

Platinum 3.135*** 2.942*** 2.814*** 2.520*** 1.671* 0.322 

Silver 0.838* 0.769 0.761 0.663 0.426 -0.315 

 

Panel B: Adjusted R2 values 

Horizon (k) k=0 k=1 k=2 k=3 k=6 k=12 

Corn 5.8 4.6 4.8 5.1 2.7 -0.1 

Cotton 7.4 5.9 4.3 3.6 1.3 0.0 

Soybeans 7.6 7.0 7.3 7.2 3.4 -0.3 

Wheat 10.4 9.4 9.1 9.1 6.0 1.0 

Crude oil 25.4 22.6 21.9 10.5 2.4 0.0 

Heating oil 19.0 16.9 15.7 5.7 1.6 -0.3 

Petroleum 23.9 21.1 20.6 9.1 2.6 -0.1 

Gasoline 22.5 20.2 20.4 10.7 4.4 -0.2 

Copper 6.9 6.3 6.3 5.8 2.7 -0.2 

Gold 15.2 15.6 17.2 13.2 6.3 -0.3 

Platinum 22.1 19.5 17.7 14.2 6.1 -0.1 

Silver 6.2 5.1 5.0 3.7 1.4 0.6 

Notes: * p < 0.10, ** p < 0.05, *** p < 0.01. The table presents the results of the bivariate linear 

probability forecasting regression model on US economic recessions (NBER) using the realized 

variance series of agricultural, energy and metals commodity futures returns. The forecasting horizon 

ranges from 0 to 12 months. COMRV is the realized variance and NBER is the US economic recessions 

index. The standard errors are corrected for autocorrelation and heteroscedasticity using the Newey-

West (1987) estimator. The estimated beta coefficients are based on the following linear probability 

bivariate regressions: ܰܧܤ𝑅𝑡 = 𝑏଴ + 𝑏ଵܯܱܥ𝑅𝑉𝑡−𝑘 + 𝜀𝑡. 
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Table 6. Forecasting US Economic Recessions with Commodity Price Uncertainty 
 

Panel A: Estimated b1 coefficients 

Horizon (k) k=0 k=1 k=2 k=3 k=6 k=12 

Corn 5.661** 5.080* 5.197* 5.417** 4.053 1.251 

Cotton 7.548** 6.794** 5.836* 5.404* 3.530 -2.202 

Soybeans 7.812** 7.482** 7.716** 7.660** 5.361 0.516 

Wheat 6.103** 5.812** 5.677** 5.657** 4.659* 2.305 

Crude oil 5.497*** 4.911*** 4.767*** 2.096 1.196 -1.129 

Heating oil 6.840*** 6.213*** 5.797*** 2.125 1.376 -0.386 

Petroleum 6.879*** 6.061*** 5.913*** 2.382 1.484 -0.956 

Gasoline 6.010*** 5.392*** 5.455*** 2.799* 1.923* -0.411 

Copper 3.943** 3.747** 3.772** 3.602** 2.561** 0.610 

Gold 16.389*** 16.736*** 17.648*** 15.270*** 10.712*** 0.804 

Platinum 13.682*** 12.393*** 11.528*** 10.069*** 6.225** 1.590 

Silver 3.230** 2.951* 2.912* 2.529 1.668 -3.199 

 

Panel B: Pseudo R2 values 

Horizon (k) k=0 k=1 k=2 k=3 k=6 k=12 

Corn 6.8 5.5 5.7 6.2 3.5 0.3 

Cotton 8.7 7.0 5.2 4.4 1.9 0.5 

Soybeans 8.8 8.1 8.6 8.4 4.2 0.0 

Wheat 11.1 10.2 9.8 9.7 6.6 1.5 

Crude oil 28.7 24.8 23.9 10.0 2.9 0.7 

Heating oil 24.0 20.9 18.9 5.9 2.2 0.1 

Petroleum 27.9 23.8 23.0 8.7 3.0 0.4 

Gasoline 24.1 21.0 21.3 10.4 4.7 0.1 

Copper 7.2 6.6 6.7 6.1 3.2 0.1 

Gold 16.1 16.6 18.3 14.1 7.1 0.0 

Platinum 23.3 20.1 18.0 14.4 6.2 0.3 

Silver 6.7 5.6 5.5 4.2 1.8 2.1 

Notes: * p < 0.10, ** p < 0.05, *** p < 0.01. The table presents the results of the bivariate probit 

forecasting regression model on US economic recessions (NBER) using the realized variance series of 

agricultural, energy and metals commodity futures returns. The forecasting horizon ranges from 0 to 

12 months. COMRV is the realized variance and NBER is the US economic recessions index. The 

standard errors are corrected for autocorrelation and heteroscedasticity using the Newey-West (1987) 

estimator. The estimated beta coefficients are based on the following probit bivariate regressions: ܲሺܰܧܤ𝑅𝑡 = 1ሻ = ሺ𝑏଴ܨ + 𝑏ଵܯܱܥ𝑅𝑉𝑡−𝑘ሻ. 
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Table 7. Granger Causality Tests between Gross Domestic Product Growth and 

Commodity Price Uncertainty 

 

Panel A 

Dependent variable Independent variable Chi-square p-value 

ΔGDP  Corn 29.831*** 0.008 

ΔGDP Cotton 0.972 0.615 

ΔGDP  Soybeans 2.738 0.254 

ΔGDP Wheat 8.725** 0.013 

ΔGDP Crude oil 2.216 0.330 

ΔGDP Heating oil 2.858 0.240 

ΔGDP Petroleum 1.935 0.380 

ΔGDP Gasoline 0.692 0.707 

ΔGDP Copper 0.275 0.871 

ΔGDP Gold 4.555* 0.100 

ΔGDP Silver 4.817* 0.090 

ΔGDP Platinum 5.097* 0.078 

 

Panel B 

Dependent variable Independent variable Chi-square p-value 

Corn ΔGDP  0.314 0.843 

Cotton ΔGDP 0.979 0.613 

Soybeans ΔGDP 0.509 0.775 

Wheat ΔGDP 0.485 0.785 

Crude oil ΔGDP 5.779* 0.056 

Heating oil ΔGDP 10.875*** 0.004 

Petroleum ΔGDP 7.385** 0.025 

Gasoline ΔGDP 8.633** 0.013 

Copper ΔGDP 0.257 0.859 

Gold ΔGDP 2.507 0.285 

Silver ΔGDP 3.627 0.163 

Platinum ΔGDP 0.568 0.753 

Notes: The table shows the results of the Granger causality tests between commodity price 

uncertainty and gross domestic product growth (ΔGDP). The tests refer to the baseline multivariate 

VAR model presented in Equation (3). The optimal lag-length is based on the Schwarz criterion. 

The null hypothesis is that the independent variable does not Granger cause the dependent variable. 
*, ** and *** denotes the rejection of the null hypothesis of no causality at the 10%, 5% and 1% level 

respectively. 
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Figure 1. Estimated Recession Probability from the Bivariate Probit Model for 

Commodity Markets 
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Figure 2. Response of GDP Growth to Commodity Price Uncertainty Shocks 

 

 

 Agricultural Markets           Energy Markets               Metals Markets 

 

Notes: The solid red line shows the estimated IRFs and the grey shaded area show the 

corresponding 90% bootstrapped confidence intervals based on 1,000 replications. The 

estimated orthogonalized IRFs are expressed in percentages (%).  
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Figure 3. Response of IPI Growth to Commodity Price Uncertainty Shocks 

 

 

Agricultural Markets           Energy Markets               Metals Markets 

 

Notes: The solid red line shows the estimated IRFs and the grey shaded area show the 

corresponding 90% bootstrapped confidence intervals based on 1,000 replications. The 

estimated orthogonalized IRFs are expressed in percentages (%).  
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Figure 4. Response of Investment Growth to Commodity Price Uncertainty Shocks 

 

 

Agricultural Markets           Energy Markets               Metals Markets 

 

Notes: The solid red line shows the estimated IRFs and the grey shaded area show the 

corresponding 90% bootstrapped confidence intervals based on 1,000 replications. The 

estimated orthogonalized IRFs are expressed in percentages (%).  
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Figure 5. Response of Consumption Growth to Commodity Price Uncertainty Shocks 
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Notes: The solid red line shows the estimated IRFs and the grey shaded area show the 

corresponding 90% bootstrapped confidence intervals based on 1,000 replications. The 

estimated orthogonalized IRFs are expressed in percentages (%).  

 

 

 

 

 

 



41 

 

 

 

 

 

Figure 6. Response of Capacity Utilization to Commodity Price Uncertainty Shocks 
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Notes: The solid red line shows the estimated IRFs and the grey shaded area show the 

corresponding 90% bootstrapped confidence intervals based on 1,000 replications. The 

estimated orthogonalized IRFs are expressed in percentages (%).  
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Figure 7. Response of Unemployment Rate to Commodity Price Uncertainty Shocks 
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Notes: The solid red line shows the estimated IRFs and the grey shaded area show the 

corresponding 90% bootstrapped confidence intervals based on 1,000 replications. The 

estimated orthogonalized IRFs are expressed in percentages (%).  

 

 

 


