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A B S T R A C T   

Flexibility is one of the most important solutions for facilitating the variability of renewable energy sources 
(RESs) in a distribution network. It is predicted that electric vehicles (EVs) can play an effective role in improving 
it in the distribution networks. So, this paper presents multiobjective scheduling of batteries of EVs in parking 
lots (EVPLs) to improve the storage-based flexibility of smart distribution networks (SDNs). The proposed 
formulation minimizes the energy cost and the voltage deviation function and maximizes the system flexibility 
(SF) as multiobjective functions that will be optimized subject to the AC load flow, RES and EV constraints, and 
the allowable limits of the flexibility and operation indices. The resulting model is in the form of a nonlinear 
programming (NLP) model. Therefore, an equivalent linear programming (LP) formulation is obtained for the 
original problem to achieve the global optimum result. The stochastic programming approach is used to model 
uncertainties of the load, active power generation of RESs, price of energy, and EV parameters. The flexible 
power management is formulated as one of the objective functions of the proposed multiobjective framework, 
which is solved by using the ε-constraint method, reaching the best possible compromise solution by a fuzzy 
decision-maker. The proposed framework is tested by using a 33-bus radial test distribution network in the GAMS 
software environment to evaluate the EVs capability in improving the flexibility indices. Based on the numerical 
results, it is observed that the proposed scheme with optimal energy management of EVs is able to obtain a high 
flexibility for SDN. It can also reduce energy losses in terms of network operation and provide a rather smooth 
voltage profile.   

1. Introduction 

1.1. Motivation 

The past two decades have witnessed the proliferation of renewable 
energy sources (RESs), such as wind turbines (WT) and solar photovol-
taics (PVs), aiming to reduce the environmental pollution in green smart 
distribution networks (SDNs). However, these resources have raised 
some concerns regarding the increased uncertainty of network opera-
tion, and as a result, they have reduced the system flexibility (SF). 
Flexibility is introduced as “the modification of generation injection and/or 
consumption patterns in reaction to an external price or activation signal in 
order to provide a service within the electrical system” [1]. There are 

different flexible resources such as demand response programs (DRPs) 
[2], fuel cells, nonrenewable energy sources (NRESs) such as gas-fuelled 
microturbines and diesel generators [3], and electrical energy storage 
systems (ESSs) [4]. Furthermore, it should be noted that electric vehicles 
(EVs) are mobile storage systems, which can be charged/discharged by/ 
into the distribution networks. Therefore, the EVs in parking lot (EVPL) 
parking lot/aggregator can be considered a flexible resource with an 
acceptable response time, because an EV includes a battery that could 
provide a high flexibility. This is due to the inherent fast dynamics 
combined with the fast control possibility based on power electronic 
converters [5]. 
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1.2. Literature review 

There are numerous studies in the field of optimal scheduling of EVs 
in distribution networks. For instance, in [6], the authors propose 
optimal charging scheduling of EVs in distribution networks based on 
the day-ahead market price to obtain a low charging cost to all EVs. 
Furthermore, charging management of EVs in charging stations based on 
centralized and decentralized methods is presented in [7], where a 
linear optimization model is used to obtain EV charging scheduling. In 
[8], day-ahead electricity procurement and real-time EV charging 
management of an aggregator are formulated by a two-stage charging 
framework for EVs in order to reduce the operating costs. In [9], the EV 
charging scheduling is investigated in distribution networks where an 
optimal AC power flow is used based on the model predictive control to 
obtain a low energy cost and optimal hourly EV demand power or en-
ergy. Moreover, multistage optimization is used in [10] to manage the 
charging demand of EVs in active distribution networks considering a 
coordination framework for all EVs. The authors of [11] present a bilevel 
scheduling scheme for an isolated microgrid including RESs by incor-
porating demand response of EVs. In [12], the Lyapunov optimization is 
used to determine the EV scheduling based on a low energy cost while 
considering the uncertainty of RESs. In addition, a game theoretic 
decentralized EV charging strategy is presented in [13] to achieve 
minimum payments for customers, maximum grid efficiency, and 
maximum potential capacity of EVs in the regulation services. Moreover, 
the EV charging management is discussed in [14] to maximize cost ef-
ficiency and user convenience. The method of [14] is also repeated in 
[15] according to the user's charging selection strategy based on eco-
nomic indices. It is used in [16] by considering EVs and network ob-
jectives while defining an optimal power flow problem. Finally, in [17], 
a real-time EV charging scheduling is obtained in the distribution 

network in the presence of PVs and ESSs. 
Ref. [18] proposes several strategies to optimally allocate EV 

charging stations and discusses their influence on distribution networks. 
Proper size of hybrid RESs is determined and optimized in [19]. The 
same reference also investigates the potential of sharing power with EVs. 
Multi-objective particle swarm optimization and multi-objective crow 
search as two popular algorithms are adopted to address the problem. A 
two-stage framework has been discussed in [20]. The first stage deals 
with analyzing some parameters including battery status, charge/ 
discharge modes, together with transportation parameters like distance 
traversed within a given day, times of EVs arrival and departure to 
parking lots, and the amount of EV sales, and the profitability of the EV 
charging/discharging program for EV users have been calculated. The 
other stage deals with the influence of parking lots and the imbalance 
indices have been calculated. A novel decentralized bi-level stochastic 
optimization approach based on the progressive hedging algorithm has 
been proposed in [21] for multi-agent systems in multi-energy micro-
grids so that flexibility is improved. A probabilistic nonlinear model has 
been suggested in [22] based on power flow study to maximize the 
flexibility in which EVs limitations have been considered. Some essential 
items discussed include improving voltage profile and congestion, and 
providing robust thermal comfort during reserve call, and exploiting 
multi-energy storages. The strategic scheduling of a multi-energy system 
(MES) in the day-ahead wholesale market has been presented in [23]. 
The model formulates a bi-level optimization problem. The upper-level 
minimizes the cost of the MES, and the lower-level deals with the 
wholesale market operator so that public satisfaction has been maxi-
mized. The authors in [24] put forward a framework to obtain proper 
locational marginal prices of reserves, which include up− /down-going 
reserves at both generation- and demand-sides. A hybrid island system 
consisting of a wind turbine, PV, diesel generator, and stationary 

Nomenclature 

k, Ωk Index and set (I/S) of linearized pieces of the circular 
constraint, respectively 

l, Ωl I/S of linearized pieces of the voltage magnitude, 
respectively 

n, j, Ωb I/S of bus, respectively 
nc, nv Total number of the linearized pieces of the circular 

constraint and voltage, respectively 
ref Index of the slack (reference) bus 
t, Ωt I/S of time, respectively 
w, Ωs I/S of scenario, respectively 

Variables 
B, C Active/reactive power of the batteries/chargers, 

respectively [p.u.] 
E Total stored energy of the EV batteries in the EVPL [p.u.] 
f1, f2, f3 Expected energy cost [$], voltage deviation function [p. 

u.], and symmetry of the system flexibility 
Fp, Fq Active/reactive flows of lines, respectively [p.u.] 
Lp, Lq Active/reactive losses of chargers in the EVPLs [p.u.] 
PE, QE Total active/reactive power of the EVs from the grid's point 

of view [p.u.] 
PE+, PE- Total charging/discharging of the EVs from the grid's point 

of view [p.u.] 
PG, QG Active/reactive power of the distribution substation [p.u.] 
SF System flexibility [without unit] 
Uf, Df Total upward/downward storage-based flexibility of EVs 

in an EVPL, respectively [p.u.] 
V, ΔV, δ Amount, deviation, and angle of voltage, respectively 

[radian] 

Constant values 
A Incidence matrix of lines (e.g., Ax,y is equal to 1 provided 

that there is a line between 
buses x and y and otherwise is 0) 
ap, aq Loss function coefficients of a charger 
bp, bq Coefficients of the reactive power loss of a charger 
CR, DR Rate of charging/discharging of EV batteries, respectively 

[p.u.] 
CCmax Maximum capacity of chargers in an EVPL [p.u.] 
Dp, Dq Active and reactive loads, respectively [p.u.] 
Eini, Efinal Level of the initial/final energy of EVs in EVPL [p.u.] 
Fmax, Gmax Maximum line/substation capacity, respectively [p.u.] 
g, b Conductance and susceptance of each branch, respectively 

[p.u.] 
kQ Ratio of active power price with respect to reactive power 

price 
L, AER Distance and all electric ranges that an EV can drive, 

respectively [mi] 
M Line slope for a linear piece 
PR Active power output of an RES [p.u.] 
SOC, BC State of charge and capacity of EV batteries, respectively 
TPF Tangent value in the minimum power factor point 
Vmax, Vmin Maximum/minimum amount of voltage at each bus, 

respectively [p.u.] 
Vref Voltage of the slack bus [p.u.] 
ΔVmax Maximum amount of voltage deviation [p.u.] 
ρ Price of energy [$/MWh] 
π Probability of each scenario 
Δα Angle deviation [radian]  
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(battery) and mobile (EVs) ESS has been presented in [25]. The method 
deploys a multi-objective optimization to find minimum costs associated 
with investment, maintenance and repair, and operation of power 
sources and ESSs besides reducing pollution level. Intelligent parking 
lots (IPLs) in an uncertain environment are managed in [26] and optimal 
bidding curves are achieved concerning the power market. The paper 
also attempts to find the optimal bidding curves while taking into ac-
count the uncertainty associated with power price and optimal opera-
tion of IPLs. Empirical mode decomposition, feature selection, and 
hybrid forecast engine have been used in [27] to propose a novel pre-
diction model. The model incorporates non-stationarity and non-convex 
nature of the wind power signal. A combined energy system composed 
of a parabolic dish solar collector, a Stirling engine, and thermoelectric 
device have been examined in [28]. Short-term power prediction of 
wind and PV power to evaluate the output power of production units has 
been discussed in [29]. The model uses lead acid batteries in a hybrid 
wind turbine/PV system. To find maximum profit of a compressed air 
energy system, the authors in [30] have presented a novel mathematical 
formulation which plays the role of a hybrid robust-stochastic approach. 
The study also deals with uncertain price of the market by using several 
scenarios using the stochastic method. Besides, maximum uncertain size 
of cavern has been modeled with the help of a robust optimization 
formulation. Table 1 provides a summary of the background research. 

1.3. Contributions 

Within the literature in the area, there are main research gaps as 
follows:  

– There are numerous studies that consider the energy management of 
EVPLs to obtain a low energy or operating cost; in these studies, 
nonlinear programming (NLP) optimization is usually applied to 
obtain optimal EV charging/discharging scheduling in the distribu-
tion network. Nevertheless, EVs can be entered into ancillary ser-
vices, such as voltage regulation and reactive power market, if they 
use bidirectional chargers [31]. Moreover, it is noted that EVs can 
participate in the SF management, which is an important method in 

SDNs in the presence of RESs; however, this matter has received little 
attention in studies on EV's energy management.  

– There are various economic and technical indices in SDN, where an 
improvement in one indicator does not necessarily improve the sta-
tus of another. This requires simultaneous modeling of different SDN 
indices, which according to Table 1, this has not been discussed in 
any research.  

– Most research has generally suggested that the presence of RES in the 
network will reduce network flexibility, then suggested the use of 
ESS and DRP to improve flexibility. Nonetheless, they did not pro-
vide a numerical indicator of flexibility. However, to estimate the 
status of an indicator, it is necessary to know its value. 

Therefore, this paper for fill the research gaps, as shown in Fig. 1, 
presents a multiobjective optimization model to achieve the optimal 
power management of EVs in improving the SF, voltage regulation, 
reactive power services, and energy management of distribution net-
works. Accordingly, the proposed flexible power management mini-
mizes the energy cost and voltage deviation and maximizes the SF in a 
multiobjective optimization framework subject to the optimal AC power 

Table 1 
Taxonomy of recent research works.  

Ref. Indices formulation of flexibility EVPL as flexibility source Problem model 

Economic Operation Flexibility 

[6] Yes Yes No No No Non-linear 
[7] No Yes No No No Non-linear 
[8] No Yes No No No Non-linear 
[9] Yes Yes No No No Non-linear 
[10] No Yes No No No Non-linear 
[11] No Yes No No No Linear 
[12] Yes Yes No No No Non-linear 
[13] No Yes No No No Non-linear 
[14] Yes Yes No No No Non-linear 
[15] Yes Yes No No No Non-linear 
[16] No Yes No No No Non-linear 
[17] No Yes No No No Non-linear 
[18] Yes Yes No No No Non-linear 
[19] Yes Yes No No No Non-linear 
[20] No Yes No No No Non-linear 
[21] No Yes No No No Non-linear 
[22] No Yes Yes No No Non-linear 
[23] Yes Yes No No No Non-linear 
[24] No Yes No No No Non-linear 
[25] Yes Yes No No No Linear 
[26] No Yes No No No Non-linear 
[27] No Yes No No No Non-linear 
[28] No Yes No No No Non-linear 
[29] No Yes No No No Linear 
[30] Yes Yes No No No Non-linear 
Proposed scheme Yes Yes Yes Yes Yes Linear  

Flexible power 

management 

Distribution 

network

Information 

Power 

EVs

RESs
SP 

approach  

Fig. 1. Conceptual framework of stochastic flexible SDN management.  
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flow equations in the presence of EVs and RESs. The proposed NLP 
model is converted into linear programming (LP) by using the first-order 
term of a Taylor series to linearize the AC load flow equations and 
replacing a polygon for circular constraints, such as the capacity limit of 
the distribution lines. In the next step, the hybrid ε-constraint and fuzzy 
decision-making method is used to obtain single-objective formulation. 
The proposed framework also takes into account the uncertainty of load, 
price of energy, RESs power, and energy demand and charger capacity of 
EVs. Therefore, stochastic programming (SP) is used to model these 
parameters according to the Monte Carlo simulation (MCS)-based sce-
nario generation approach and the fast backward/forward scenario 
reduction method. Considering the aforementioned literature review, 
the novel aspects of this work can be stated as follows:  

– Modeling of the multiobjective flexible management of SDNs for 
achieving a flexible network with improved technical indices;  

– Obtaining the optimal potential of EVs to increase storage-based 
flexibility, regulate the voltage profile, provide reactive power ser-
vices, and facilitate energy management.  

– Modeling the economic, operation and flexibility indices, 
simultaneously. 

1.4. Objectives and hypothesis 

Objectives  

– Considering EVs as flexibility source, 
– Investigate the EVs capability on the economic and operation sec-

tions of SDN,  
– Flexibility modeling,  
– Modeling the economic, operation and flexibility indices, 

simultaneously,  
– Investigate the EVs capability on the active and reactive power 

management.  
– Hypothesis  
– EVs can be considered as flexibility source,  
– EVs can be modified the operation indices of SDN, i.e. energy loss, 

voltage profile and energy cost. 

1.5. Paper organization 

The rest of the paper is organized as follows. In Section 2, linear and 
nonlinear modeling for multi-objective and single-objective problems is 
presented. Then, the modeling of uncertainties is presented in Section 3. 
Finally, the numerical results and conclusions are presented in Sections 
4 and 5, respectively. 

2. Optimal flexible scheduling of electric vehicles 

2.1. Original nonlinear formulation 

The original nonlinear formulation of the optimal flexible scheduling 
of EVs is presented in this subsection. As it can be seen, the objective is to 
minimize the total energy cost (EC) and the voltage deviation function 
(VDF) and also to maximize the SF. The model is solved subject to the AC 
load flow constraints in the presence of EVs and RESs and operational 
and flexibility constraints. The problem is formulated in Eqs. (1)–(23) as 
follows: 

minPE ,QE

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

f1=
∑

w∈Ωs

πw

∑

t∈Ωt

ρt,w

⎛

⎝PG
ref ,t,w−

∑

n∈Ωb

(
PE−

n,t,w+kQ

⃒
⃒
⃒QE

n,t,w

⃒
⃒
⃒

)⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞EVsrevenue⎞

⎠

f2=
∑

w∈Ωs

πw

∑

n∈Ωb

∑

t∈Ωt

(
Vn,t,w− Vref

)2

f3=− SF

∀
∑

w∈Ωs

πw=1

(1) 

Subject to: 

PG
n,t,w − PE

n,t,w −
∑

j∈Ωb

An,jFp
n,j,t,w = Dp

n,t,w − PR
n,t,w ∀ n, t,w (2)  

QG
n,t,w − QE

n,t,w −
∑

j∈Ωb

An,jFq
n,j,t,w = Dq

n,t,w ∀ n, t,w (3)  

Fp
n,j,t,w = gn,j

(
Vn,t,w

)2
− Vn,t,wVj,t,w

{
gn,jcos

(
δn,t,w − δj,t,w

)
+ bn,jsin

(
δn,t,w

− δj,t,w
) }

∀n, j, t,w
(4)  

Fq
n,j,t,w = − bn,j

(
Vn,t,w

)2
+Vn,t,wVj,t,w

{
bn,jcos

(
δn,t,w − δj,t,w

)
− gn,jsin

(
δn,t,w

− δj,t,w
) }

∀n, j, t,w
(5)  

Vn,t,w = Vref ∀ n = Slack bus, t,w (6)  

δn,t,w = 0 ∀ n = Slack bus, t,w (7)  

Vmin ≤ Vn,t,w ≤ Vmax ∀ n, t,w (8)  

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(
Fp

n,j,t,w
)2

+
(
Fq

n,j,t,w
)2

√

≤ Fmax
n,j ∀ n, j, t,w (9)  

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(

PG
n,t,w

)2
+
(

QG
n,t,w

)2
√

≤ Gmax
n ∀ n, t,w (10)  

− TPF ×PG
n,t,w ≤ QG

n,t,w ≤ TPF ×PG
n,t,w ∀ n = Slack bus, t,w (11)  

PE
n,t,w = Bn,t,w + Lp

n,t,w ∀ n, t,w (12)  

QE
n,t,w = Cn,t,w +Lq

n,t,w ∀ n, t,w (13)  

PE
n,t,w = PE+

n,t,w − PE−
n,t,w ∀ n, t,w &PE+,PE− ≥ 0 (14)  

Lp
n,t,w = ap

(
PE+

n,t,w +PE−
n,t,w

)
+ aq

⃒
⃒
⃒QE

n,t,w

⃒
⃒
⃒ ∀ n, t,w (15)  

Lq
n,t,w = bp

(
PE+

n,t,w +PE−
n,t,w

)
+ bq

⃒
⃒
⃒QE

n,t,w

⃒
⃒
⃒ ∀ n, t,w (16)  

− DRn,t,w ≤ Bn,t,w ≤ CRn,t,w ∀ n, t,w (17)  

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(

PE
n,t,w

)2
+
(

QE
n,t,w

)2
√

≤ CCmax
n,t,w ∀ n, t,w (18)  

En,t,w = En,t− 1,w +Bn,t,w ∀n, t,w &E ≥ 0 (19)  

En,t,w = Eini
n,t,w ∀n, t = Arrival time,w (20)  

En,t,w = Efinal
n,t,w ∀n, t = Departure time,w (21)  

Uf
n,t,w − Df

n,t,w = PE
n,t,w − PE

n,t,1 ∀n, t,w ∕= 1 &Uf ,Df ≥ 0 (22)  

SF =
∑

n,t,w
πw.

Uf
n,t,w + Df

n,t,w

2 × CCmax
n,t,w

(23) 

Eq. (1) presents the multiobjective functions that include minimi-
zation of the cost of buying energy from the main grid (upstream 
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network) (f1) [32], minimization of the voltage deviation function (f2) 
[33], and maximization of the SF (f3) [32]. In f1, the energy cost is equal 
to the difference between the summation of demand, power loss, and EV 
charging cost and EV revenue resulting from the injection of active 
power and injection/absorption of reactive power into/from the 
network. Constraints (2)–(7) express the AC load flow equations 
considering the RESs and EVPLs. Eqs. (2) and (3) are the active and 
reactive power balance between different sources (distribution sub-
station and RESs) and active loads (i.e., EVs) and passive ones. Further, 
Eqs. (4) and (5) are the active and reactive flows of distribution 
branches, and in Eqs. (6) and (7), the voltage level and angle of the slack 
bus are set. Here, it is assumed that the distribution substation connects 
to the slack bus, and therefore, the amounts of PG and QG at all buses, 
except the slack bus, are considered zero. Moreover, the system opera-
tion limits are presented in Eqs. (8)–(11), where they are the limits of 
voltage magnitude, line apparent power flow (line capacity), capacity 
and power factor, respectively, of the distribution station. In Eq. (11), 
TPF is the tangent value in the minimum power factor point (here, it is 
0.90). 

The constraints of EVPLs are presented in Eqs. (12)–(21). Eq. (12) 
models the active power balance of the network and the total of batteries 
in the EVPLs, Eq. (13) is the reactive power balance of the network and 
the total of chargers in the EVPLs, Eq. (14) is the active power equation 
of EVs based on their charging and discharging power, Eqs. (15) and 
(16) are active and reactive power losses for all EVs chargers in the 
EVPL, Eq. (17) is the charge/discharge limit for all EV batteries in the 
EVPL, Eq. (18) is the capability curve of the EVPLs, Eq. (19) is the 
amount of stored energy in all EV batteries, and Eq. (20) and (21) are the 
energy of EV batteries at arrival and departure time, respectively. Note 
that Eini at time t is equal to 

∑NIt
e=1SOCeBCe, in which the SOC and BC are 

the state of charge and capacity of the EV battery, and NIt is the total 
number of EVs connected to the network in an EVPL at time t. Further, 
SOC shows the percentage of energy remaining in the battery when the 
EV arrives the EVPL after daily journeys. Therefore, it is subject to the 
distance that the EV drives (L) as well as all electrical ranges (AER) based 
on the equation SOC = (1 – L/AER) [34]. AER demonstrates the total 
distance that an EV can drive based on the capacity of its battery. 
Finally, it is assumed that each EV charges its battery to the full charge, 
and hence, Efinal is equal to 

∑NFt
e=1BCe, where NFt is the total number of 

EVs disconnected from an EVPL at time t. 
In this work, a metric is proposed to quantify the technical level of 

storage-based flexibility in both the individual flexible resource (EVPLs) 
and the whole system [35]. The proposed metric helps in analyzing the 
technical ability of a system or resources to cope with the flexibility 
requirement resulting from the variability and uncertainty produced by 
RESs. The flexibility index for each resource comprises two parts, up-
ward and downward flexibility [36]. There is upward flexibility for a 
flexible resource if its output power in scenario k is greater than its 
output power in the base case (scenario 1). But if the output power of a 
flexible resource in scenario k is less than its output power in the base 
case, there is downward flexibility for the flexible resource [36]. 
Therefore, the upward and downward flexibilities for the EVPLs can be 
obtained from Eq. (22). Moreover, the SF is calculated based on Eq. (23) 
[35]. Here, B and C are the decision variables of the aforementioned 
optimization model, and f1 to f3 are the output variables. In addition, it is 
pointed out that this paper investigates the capability of EVs to provide 
storage-based flexibility in an SDN, and other potential flexible re-
sources, such as DRPs, ESSs, and NRES, are neglected. Furthermore, it is 
assumed that the distribution network is balanced, and as a result, all the 
loads and EVs are equally distributed among the different three phases 
of the electricity network. 

2.2. Linear approximated model 

Owing to the nonlinear equations of f1 and f2 in Eqs. (1), and (4), (5), 
(9), (10), (15), (16), and (18), and nonconvex Eqs. (4) and (5), the base 
model in Eqs. (1)–(23) is modeled as a nonconvex NLP problem. 
Therefore, the solvers of this method are based on numerical techniques, 
and in the best situation, because of the nonconvex equations, they 
obtain the local optimal point [32,33]. It is noted, however, that this 
method can be converted into a linear approximation model by 
considering a suitable assumption for different variables and equations. 
For example, the distribution network is generally inductive, and hence, 
the reactive power control devices, such as EVs, operate in the capacitive 
mode (QE ≤ 0). Therefore, the term of |QE| is converted into -QE in Eqs. 
(1), (15), and (16). Furthermore, based on [19], the difference between 
the angles of the two ends of a line (i.e., δn - δj) is <0.105. Therefore, the 
terms of cos(δn - δj) and sin(δn - δj) are approximated as 1 and (δn - δj), 
respectively. Moreover, based on the conventional piecewise lineariza-
tion technique, the voltage magnitude can be expressed as Vmin +

∑

l∈φl

ΔVl 

[19], where ΔV < < 1. Thus, the expressions of V2 and VnVj are 
formulated as 

(
Vmin)2

+
∑

l∈φl

mlΔVland 
(
Vmin)2

+ Vmin∑

l∈φl

ΔVb,l +

Vmin∑

l∈φl

ΔVj,l, respectively. Finally, the linear approximation equations 

for Eqs. (4), (5), (8), and f2 are rewritten as follows: 

Fp
n,j,t,w = gn,j

(
∑

l∈Ωl

(
ml − Vmin)ΔVn,t,w,l − VminΔVj,t,w,l

)

−
(
Vmin)2bn,j

(
δn,t

− δj,t
)

∀n, j, t,w
(24)  

Fq
n,j,t,w = − bn,j

(
∑

l∈Ωl

(
ml − Vmin)ΔVn,t,w,l − VminΔVj,t,w,l

)

−
(
Vmin)2gn,j

(
δn,t

− δj,t
)

∀n, j, t,w
(25)  

0 ≤ ΔVn,t,w,l ≤ ΔVmax where ΔVmax =
Vmax − Vmin

nv
∀ n, t,w, l ∈ Ωl

= {1, 2,…, nv}

(26)  

f2 =
∑

w∈Ωs

πw

∑

n∈Ωb

∑

t∈Ωt

{
(
Vref − Vmin)2

+
∑

l∈Ωl

(
ml − 2Vref

)
ΔVn,t,w,l

}

(27) 

It is to be noted that Eqs. (9), (10), and (18) are circular inequalities, 
which can be approximated by a polygon. As it is shown in Fig. 2, each 
side of the polygon is a straight line, and thus, its equation can be ob-
tained [32,33]. Accordingly, the constraints (9), (10), and (18) are 
linearized as follows: 

Fp
n,j,t,wcos(k×Δα)+Fq

n,j,t,wsin(k×Δα) ≤ Fmax
n,j where Δα =

2π
nc

∀ n, j, t,w, k

∈ Ωk = {1, 2,…, nc}

(28) 

Therefore, the equivalent LP model of the base problem can be 
reformulated as Eqs. (31)–(34), where it is suitable to obtain the global 
optimal point, and its solvers, such as the simplex method, can be 
calculated with the values of different variables at a lower time or a 
higher speed [32,33].  
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Subject to: 

Constraints (2), (3), (6)–(7), (11)–(14), (17), (19)–(26), and (28)–(30) (32)  

Lp
n,t,w = ap

(
PE+

n,t,w +PE−
n,t,w

)
− aqQE

n,t,w ∀ n, t,w (33)  

Lq
n,t,w = bp

(
PE+

n,t,w +PE−
n,t,w

)
− bqQE

n,t,w ∀ n, t,w (34)  

2.3. Single-objective LP model 

In this paper, multiobjective optimization is used to achieve the 
Pareto optimal solutions of the problem and present them to the 
decision-maker to choose the final solution among the Pareto solutions. 
There are different techniques for Pareto optimization [37], of which 
this paper uses the ε-constraint to obtain a linear model for single- 
objective function formulation [37]. Based on this approach [37], one 
objective function is considered the main one, and all the other objective 
functions are defined as inequality constraints with a maximum value of 
ε. For the proposed problem, Eqs. (31)–(34), f1 is minimized, but f2 and 
f3 are constrained to ε2 and ε3, respectively, according to the following 
formulation: 

minPE ,QE f1 (35) 

Subject to: 

Constraints (32)–(34) (36)  

f2 ≤ ε2 ∀ε2 ∈
[
f min
2 , f max

2

]
(37)  

f3 ≤ ε3 ∀ε3 ∈
[
f min
3 , f max

3

]
(38) 

It is noted that the terms of ε2 and ε3 are control parameters of the 
proposed method, where they change between the minimum and 
maximum values (fmin and fmax) of different objective functions based on 
Eqs. (37) and (38). To calculate fmin and fmax, problem (31)–(34) is 
solved for each objective function separately. Finally, to obtain the best 
compromise solution, this paper uses the fuzzy decision-making method 
[37] that calculates the linear fuzzy membership function ( f̂ ) as follows: 

f̂ i =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 fi ≤ f min
i

fi − f max
i

f min
i − f max

i
f min
i ≤ fi ≤ f max

i

0 f max
i ≤ fi

i = 1, 2, 3 (39)  

where f̂ varies between 0 and 1. In the next step, the fuzzy decision- 
maker calculates min{f1, f2, f3} for different values of ε2 and ε3, and 
thus, this method will yield the best compromise solution by calculation 

Fig. 2. Linearization method for circular inequality [32] 

PG
n,t,wcos(k×Δα)+QG

n,t,wsin(k×Δα) ≤ Gmax
n ∀ n, t,w, k (29)  

PE
n,t,wcos(k×Δα)+QE

n,t,wsin(k×Δα) ≤ CCmax
n,t,w ∀ n, t,w, k (30)    

minPE ,QE

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

f1 =
∑

w∈Ωs

πw

∑

t∈Ωt

ρt,w

(

PG
ref ,t,w −

∑

n∈Ωb

(
PE−

n,t,w − kQQE
n,t,w

)
)

f2 =
∑

w∈Ωs

πw

∑

n∈Ωb

∑

t∈Ωt

{
(
Vref − Vmin)2

+
∑

l∈Ωl

(
ml − 2Vref

)
ΔVn,t,w,l

}

f3 = − SF

∀
∑

w∈Ωs

πw = 1,QE
n,t,w ≤ 0 (31)   
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Fig. 3. Flowchart of the proposed solving approach.  
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of the maximum value of the previous step. Finally, Algorithm 1 presents 
the proposed approach to calculate the optimal compromise point in 
problem (35)–(38).  

3. Uncertainty modeling 

There are various uncertain parameters, such as active and reactive 
demands (Dp and Dq), output power of RESs (PR), energy price (ρ), total 
charge/discharge rate of the EV batteries (CR/DR), charger capacity of 
all EVs in the EVPL (CCmax), and the initial and final energy of EVs (Eini 

and Efinal). Therefore, the uncertainty matrix is written as follows: 

u =
[
Dp Dp PR ρ CR DR CCmax Eini Efinal] (40) 

In this paper, the MCS is applied for modeling these uncertain pa-

rameters by scenario generation. Each scenario of the MCS is generated 
considering the following points:  

– The load and energy price forecast errors at each hour and bus are 
based on the normal (Gaussian) probability distribution function 
[36].  

– EV parameter forecasts for each bus and hour are based on the 
Rayleigh probability distribution function [38]. 

After that, the fast backward/forward approach for scenario reduc-
tion is used to reduce the number of scenario samples and enhance the 
tractability of the proposed LP operational tool [39]. Finally, a flowchart 
of the solving approach based on Algorithm 1 and the proposed scenario 
generation/reduction method is illustrated in Fig. 3. 

4. Numerical analysis 

4.1. Input data 

The proposed model is tested on a 33-bus radial test distribution 
network of Fig. 4 [40] with a base power of 1 MVA and a base voltage of 
12.66 kV. It is considered that the voltage should be between 0.9 and 

Table 2 
Minima and maxima of the objective functions.   

f1 (EC) [$] f2 (VDF) [p.u.] f3 (-SF) 

Min Max Min Max Min Max 

f1 1228.778 – – – – – 
f2 – 1338.379 0.407 – – − 6.954 
f3 – – – 4.255 − 32.672 –  

Fig. 4. 33-bus test distribution network [40].  

Fig. 5. Daily power percentage curves of the network load and the RESs [44].  

Fig. 6. Number of EVs in each bus of the network [46].  
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1.05 p.u. [41–43], and the value of the minimum power factor in the 
main substation of the distribution network is equal to 0.90. The dis-
tribution lines and load data at the peak load hour are presented in [40], 
and the load value at other simulation times is equal to the product of 
the peak load and the load factor (power percentage) curve as shown in 
Fig. 5 based on the data of the city of Rafsanjan in Iran [44]. Further, this 
network includes 300 kW of WTs and 200 kW of PVs, as shown in Fig. 4. 
The daily power percentage curves of these RESs are shown in Fig. 5 
based on the data of the city of Rafsanjan in Iran [44]. The energy prices 
for the periods of 1:00–7:00, 8:00–16:00 and 23:00–24:00, and 
17:00–22:00 are 16, 24, and 30 $/MWh, respectively, according to [45], 
and kQ is selected to be 0.08. In addition, it is considered that each of the 
buses 2–33 includes an EVPL, where the numbers of EVs for different 
buses are according to [46] as shown in Fig. 6. The charger power loss 
factors, i.e., ap, aq, bp, and bq, are 0.09, 0.0475, 0.02, and 0.02 [46], and 
other data related to EVs, such as AER, SOC, BC, L, charger/discharge 
rate, and charger capacity are given in [46]. Moreover, the starting time 
of the simulation is 10:00, and the MCS generates 1000 scenarios for 
uncertain parameters of the proposed problem. Thus, the backward/ 
forward scenario reduction method yields 20 scenarios that have a high 
occurrence probability among these generated scenario samples. 

4.2. Simulation results 

The optimization model of this paper is simulated in the environment 
of the GAMS software and solved using the CPLEX solver [47]. Here, 5 
and 45 linearization segments are selected for the voltage and circular 
form constraints (i.e., Eqs. (9), (10), and (18)), respectively. It is noted 
that the calculation error for the power/voltage variable is reported to 
be about 2.5%/0.5% in [32,33] for the proposed linearization method. 

4.2.1. Pareto front computation 
The first step in determining the Pareto front is the calculation of the 

minimum and maximum values of different objective functions in Eq. 
(1). Table 2 presents these values, where the minimum value of energy 
cost (EC), voltage deviation (VDF), and SF (-SF) are $1228.778, 0.407 p. 
u., and − 32.672, respectively, obtained by individual minimization of 
f1, f2, and f3. The maximum values of these functions are $1338.379, 
4.255 p.u., and − 6.954, which are calculated by individual minimiza-
tion of f2, f3, and f2, respectively. Therefore, the Pareto front for the 
proposed problem, Eqs. (31)–(34), is shown in Fig. 7, which is obtained 
according to the ε-constraint method or Algorithm 1. Accordingly, the 
energy cost and f3 (-SF) will increase when VDF decreases, because, 
based on Table 2, the changing direction of these two functions is not the 
same. Finally, the optimal point of the objective functions in the best 
compromise solution is as given in Table 3 according to the proposed 
fuzzy decision-making method. It can be seen that the difference of f1 
from its minimum value is 1.15% ((1243.127–1228.778)/1243.127), 
and this value for f2 and f3 is equal to 62.2% and 12.8%, respectively. 
Therefore, it can be said that the energy cost is close to its minimum 
value with respect to the SF and VDF for the proposed problem. In 
addition, in Table 3 the values of the mentioned objective functions are 
expressed for both deterministic and stochastic modeling of un-
certainties. According to Table 3, uncertainty modeling has resulted in 
higher energy cost and VDF than the deterministic model. This is 
because the stochastic modeling takes into account the conditions in 
which the energy consumption of loads and EVs (energy generated by 
RES) is more (less) than the scenario corresponding to the deterministic 

Fig. 7. Pareto front for the proposed flexible power management.  

Table 3 
Value of EC, VDF and SF in the best compromise solution results.  

Objective function Deterministic model Stochastic model 

f1 (EC) [$] 1127.843 1243.127 
f2 (VDF) [p.u.] 1.0693 1.0766 
f3 (-SF) – − 28.967  

Fig. 8. Expected daily power of the RESs and the EVs; 
a) active power of the RESs, b) active power of the EVs, and c) reactive power of 
the EVs. 

Table 4 
Values of the objective functions in Cases I–III.  

Objective function Case I Case II Case III 

f1 (EC) [$] 1391.551 1261.673 1243.127 
f2 (VDF) [p.u.] 1.1940 1.257 1.0766 
f3 (-SF) – – − 28.967  
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model. Therefore, the values of the mentioned functions in the stochastic 
model are more than the deterministic model. To calculate SF based on 
Eqs. (22)–(23), it is necessary to consider several scenarios. Therefore, it 
does not have a value in the deterministic model. 

4.2.2. Optimal scheduling of the RESs and EVPLs 
Fig. 8 shows the optimal scheduling curve of the total of RESs and 

EVs in the best compromise solution. According to Fig. 8(a), the RESs, i. 
e., PV and WT, inject more active power into the network at hours 
10:00–17:00 compared with the other hours. Hence, in this period, the 
EVs will absorb the active power from RESs or local sources and inject 
the low reactive power into the network based on Fig. 8(b) and (c) 
because of voltage regulation. However, in the period of 18:00–22:00, 
which is related to the peak-load times based on Fig. 5, the EVs and the 
RESs inject a low active power and the EVs inject a high reactive power 
into the distribution network to regulate voltage, reduce energy cost, 
and obtain a high SF. In addition, the EVs receive a high active power 
from the RESs and the distribution network in the period from 1:00 to 
7:00 to provide their energy consumption in the trips because of the low 
energy price in these hours based on Section 4.1. Hence, they will inject 
a high amount of reactive power into the network for regulating the 
voltage profile. Finally, it is pointed out that the daily scheduling power 
curve of EVs is set to achieve the least energy cost, make the voltage 
profile as flat as possible, and increase the SF as shown in Fig. 8. 

4.2.3. Capabilities of the proposed flexible power management 
To analyze the capabilities of the proposed strategy, three cases are 

implemented in this section as follows:  

-    

Case IPower flow analysis in the distribution network without consid-
ering the RESs and the EVPLs;  

-    

Case IIPower flow analysis in the distribution network considering the 
RESs;  

-    

Case IIIMultiobjective flexible power management in the distribution 
network considering the RESs and the EVPLs (based on model (31)– 
(34)). 

The results of this section are given in Table 4 and Figs. 9 and 10, 
which present the values of the objective functions, daily energy loss, 
and maximum voltage deviation, respectively, in the different cases. 
Owing to the presence of RESs in the distribution network, Case II, the 
energy cost and energy loss are reduced in comparison with Case I 
because of the local energy supply to customers by RESs. However, the 
value of the VDF and the maximum voltage deviation increase in this 
case compared with Case I as a result of the high injection of active 
power by RESs. Therefore, an overvoltage occurs in this case as shown in 
Fig. 10. Nevertheless, it is noted that with the proposed flexible power 
management in the smart distribution network using EVPLs, as in Case 
III, the least energy cost, minimum energy loss, minimum VDF, and the 
highest flexibility can be obtained, as reported in Table 4 and Figs. 9 
and 10, compared with Cases I and II. Thus, the energy cost is 
reduced about to 10.67% ((1391.551–1243.127)/1391.551)/1.47% 
((1261.673–1243.127)/1261.673) compared with Case I/II. Further-
more, in Case III, the VDF can be decreased by about 9.83% 
((1.1940–1.0766)/1.1940)/14.35% ((1.257–1.0766)/1.257) in com-
parison with Case I/II. This value for energy loss in Case III is 27.7%/ 
8.33% in comparison with Case I/II. Moreover, Case III can yield a 
system flexibility of 28.967 for the distribution network, whereas this 
index is not considered in Cases I and II. Thus, defining the proposed 
flexible power management strategy for a smart distribution network 
including controllable loads, such as EVPLs, can improve the technical 
and economic indices while they are not optimal and suitable in Cases I 
and II. Moreover, the flexibility of the distribution network will be 
increased with flexible sources, such as EVPLs. In other words, the main 
capability of ECPLs is to improve the network flexibility in the presence 
of RESs. 

5. Conclusions 

In this paper, multiobjective flexible power management in an SDN 
including RESs and EVPLs was presented. The NLP model of this prob-
lem minimizes the energy cost and voltage deviation functions and 
maximizes the system flexibility subject to the AC load flow equations in 
the presence of RESs, WTs, PVs, and EVPLs. In the next step to achieve 
the globally optimal solution and speed up the calculation, the equiva-
lent linear formulation is adopted. The multiobjective model of this 
formulation is based on the hybrid ε-constraint and fuzzy decision- 
making methods. This problem also includes uncertainties of the load, 
energy price, RES power, EV energy demand, and power production 
capacity. Therefore, stochastic programming according to the Monte 
Carlo simulation and the fast backward/forward scenario reduction was 
used to model these uncertain parameters. According to the numerical 
results, the proposed flexible power management can reduce energy 
cost, energy loss, and voltage deviation, and it will yield a flat voltage 
profile and a high system flexibility by using the optimal operation of EV 
parking lots. Also at the compromise point, the mentioned objective 
functions are a small distance from their minimum value, so that the 
energy cost, voltage deviation function, and system flexibility are about 
1%, 62%, and 13% of their minimum value, respectively. The proposed 
scheme with EV energy management has been able to improve energy 
costs, energy losses, and voltage profiles compared to the network flow 
distribution by about 11%, 28%, and 10%, respectively. Under these 
conditions, it increases the flexibility of the system up to 30. It should be 

Fig. 9. Expected value of energy loss in different cases.  

Fig. 10. Expected value of maximum voltage deviation in Cases I–III.  
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said that these results and capabilities can be achieved in real networks 
by implementing the proposed strategy to this power system. 

Note that in function f1 in Eq. (1), only the cost of purchasing energy 
(charging) of EVs is considered. Therefore, the optimal operation of SDN 
is done based on this case. In f1, when the EVs are in charging mode, the 
power flowing through the distribution substation (PG) will be higher 
than in the case without the EVs, so the extra cost represents the cost of 
charging the EVs. In addition, energy sales revenue by EVs in discharge 
mode is also calculated in the function. Thus, the mentioned function 
considers the net cost of EVs for their charge. However, the cost of 
deregulation and the cost of their capacity were not considered. Ca-
pacity cost is not taken into account because it is assumed that the size of 
the parking lots is known, an operation problem is given for it. If a 
planning problem is presented, capacity cost can be considered. There-
fore, this was suggested as a future work. 
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