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• Quality-oriented recycling of plastic waste is proposed. 

• Data-driven plastic pinch analysis to evaluate plastic waste recycling potential. 

• Machine learning approaches to define quality grades of plastic polymers. 

• The study showed maximum recyclability is 38% for PET, 100% for PE and 92% for 

PP. 

• The environmental impacts of recycling and treatment technologies are compared. 
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Abstract 12 

The worldwide plastic waste accumulation has posed probably irreversible harm to the 13 

environment, and the main dilemma for this global issue is: How to define the waste quality 14 

grading system to maximise plastic recyclability? This work reports a machine learning 15 

approach to evaluating the recyclability of plastic waste by categorising the quality trends of 16 

the contained polymers with auxiliary materials. The result reveals the hierarchical resource 17 

quality grades predictors that restrict the mapping of the waste sources to the demands. The 18 

Pinch Analysis framework is then applied using the quality clusters to maximise plastic 19 

recyclability. The method identifies a Pinch Point – the ideal waste quality level that limits the 20 

plastic recycling rate in the system. The novel concept is applied to a problem with different 21 

polymer types and properties. The results show the maximum recycling rate for the case study 22 

to be 38 % for PET, 100 % for PE and 92 % for PP based on the optimal number of clusters 23 

identified. Trends of environmental impacts with different plastic recyclability and footprints 24 

of recycled plastic are also compared.  25 

 26 

1. Introduction 27 

Plastic waste pollution has been a consistent threat to societies regardless of the global 28 

advancement of technology (Huysman et al., 2017). Ritchie and Roser (2018) reported that the 29 

annual production of plastic waste had reached 400 Mt in 2015. It is expected that about 0.2 Gt 30 

of plastic will be ended up in landfills by 2025 if the trend persists, and the expected amount 31 

of ocean plastic waste would increase to about 150 Mt by 2025 (Jambeck et al., 2015). The 32 

plastic surge is more significant during the pandemic of COVID-19 as it induces measures on 33 

higher usage of plastic packaging, causing further damage to the environment (Klemeš et al., 34 
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2020). The plastic waste issues considerably increased when fighting COVID-19 and 35 

vaccinations (Klemeš et al., 2021). The highest priority mitigation measure is to minimise 36 

virgin plastic consumption by maximising the recycling rate of plastic waste. It is highlighted 37 

by Lazarevic et al. (2010) that the optimal virgin material substitution ratio should be identified 38 

by recycling high-quality plastic waste to ensure greater environmental benefits. This 39 

underlines a better understanding of the plastic material characteristics and its recyclability is 40 

needed to maximise the environmental benefits.  41 

The main hurdle for plastic waste recycling is the complex fraction of the plastic waste streams, 42 

which also consists of a complex blend of several polymers (Ragaert et al., 2017). It was 43 

identified that the waste streams with more than 20 wt % for the contamination fractions are 44 

sent to incineration, wasting the potential of the secondary materials (Huysveld et al., 2019). 45 

Gradus et al. (2017) analysed the cost-effectiveness of plastic waste incineration and treatment 46 

options in the Netherlands. Despite the cost of collection and treatment of plastic recycling 47 

being high, the post-separation of waste can reduce the cost of recycling, rather than source 48 

separation. They also mentioned that the post-separation of plastics provides a higher quality 49 

of plastic waste, enabling a higher recycling rate of plastic. Faraca et al. (2019) analysed the 50 

environmental life-cycle cost perspective for hard plastic waste recycling options, and they 51 

concluded that quality-oriented mechanical recycling options are preferable from both 52 

environmental and economic perspectives. More straightforward mechanical recycling can be 53 

more beneficial than incineration due to considerable emissions from incinerating a large 54 

amount of plastic waste. Their studies have proven that resource quality is the driving force 55 

toward cost-effective and environmentally-friendly recycling to achieve a sustainable Circular 56 

Economy.  57 

Ragaert et al. (2020) extensively analysed the composition and mechanical properties of the 58 

mixed plastic waste case study for recyclability study. PVC is one of the hurdles for recycling 59 

plastic and they proposed that the waste stream can be treated with PVC removals as well as 60 

non-ferrous metals. Akbar and Liew (2020) assessed the recycling potential of carbon-fibre 61 

reinforced plastic waste in the construction industry. Several pathways for mechanical and 62 

chemical recycling of plastic waste are reviewed by Ragert et al. (2020) and, more recently, 63 

Vollmet et al. (2020), who reviewed options for the chemical recycling of polymers to enhance 64 

recycling rates. They provide several options for closing the loops for polymers, which are 65 

preferable to incineration or landfilling. Coates and Getzler (2020) proposed and analysed the 66 

option for the chemical recycling method by transforming polymers back to monomers and 67 

then purifying them for repolymerisation. Successful research reported by Tournier et al. 68 

(2020) is using enzymes to reduce plastic waste (PET) into fully functional plastic bottles. 69 

Mikula et al. (2021) also reviewed the production of 3D printing filaments from secondary 70 

plastic resources and showed that this approach is promising in closing the loop of plastic 71 

recycling. Several options include converting plastic to value-added products like solvents or 72 
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fuel additives via an integrated biomass process (Beydoun and Klankermayer, 2020) and 73 

carbon nanotube products (Alireza and Gordon, 2012). Various works have proven that 74 

minimising and recycling plastic waste is a major way forward for treating plastic waste 75 

(Klemeš, et al., 2020). However, prior to recycling plastic waste, the various complex 76 

properties should be taken into consideration when planning the recycling pathways.  77 

Regarding the plastic waste recycling planning studies, Huysman et al. (2017) have developed 78 

a Circular Economy performance indicator for plastic waste, mainly based on the Cumulative 79 

Exergy Extraction from the Natural Environment (CEENE) method, which analyses the impact 80 

of the recycling process. The approach is coupled with compatibility estimation between 81 

different polymers. The substitution ratio of recycled plastic is based on the quality indicator 82 

and is correlated with interfacial tension between polymers. Incompatible polymers blend has 83 

poor mechanical properties such as high brittleness (Ragaert et al., 2017). Min et al. (2020) has 84 

analysed the critical factors for ocean plastic degradation based on limited data from various 85 

publications. Eriksen et al. (2019) have defined the plastic waste categorisation based on EU 86 

standards qualitatively and according to different applications (e.g. food grade, pharmaceutical 87 

uses, and other usages). They assessed the polymeric composition and other general residues 88 

of the polymers. Faraca and Astrup (2019) also evaluated the plastic waste from the recycling 89 

centres in Denmark and distinguished them into applicability, impurity, lifetime, and polymeric 90 

compositions. The quality grades of plastic are mainly identified through the specific 91 

application of recycled waste. Brouwer et al. (2020) later provided a general categorisation 92 

guideline depending on the physical strength, degradation, and chemical composition of the 93 

plastic waste. However, the categorisation only provides a qualitative guideline for the 94 

practitioners, and it can be difficult to identify a proper quality grade to maximise the recycling 95 

of plastic waste. This calls for a tactical approach to systematic quantifying the quality classes 96 

of plastic waste with complex properties. 97 

Material Pinch Analysis has been proven to be an efficient tool in the problem of resources 98 

conservation network synthesis. Water Pinch Analysis was initiated by Wang and Smith (1994) 99 

based on the Pinch Analysis concept for heat recovery systems (Linnhoff et al., 1994). El-100 

Halwagi et al. (2003) introduced a graph-based method called Material Recovery Pinch 101 

Diagram to obtain a minimum supply of external resources by investigating the single quality 102 

resource conservation problems. A detailed review of the Pinch Analysis application can be 103 

found in Klemeš et al. (2018). This approach provides more accurate fresh resources 104 

requirements that account for source mixing, and the network design can be determined 105 

directly. While those developments on Mass Integration have been very helpful for the 106 

recycling and reuse of materials in the industry, where the streams are more homogeneous, the 107 

reuse of mass flows in the general economy features less homogeneous flows, with varying 108 

composition and quality levels. This problem is made more difficult by the variation of the 109 

regulations for material recycling across countries. Typical problems of this type are presented 110 
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by regional water scarcity evaluation- see Jia et al. (2020) and minimisation and by the 111 

recycling of material resources at various scales – site, city, region. 112 

Many publications have laid a foundation in plastic waste recycling planning, but a critical gap 113 

that exists is the lacking of a proper defined plastic waste recyclability within a regional system. 114 

Plastic waste trading is still restricted by the current recycling capacity due to the lack of a 115 

plastic chemical information system. To the best of the authors’ knowledge, the correlation 116 

between complex plastic quality and plastic recyclability has not yet been investigated. 117 

To fill the knowledge gaps, two key steps have been taken by collaborations of the current 118 

authors and developed a prototype of an AI-driven plastic waste categorisation method (Chin 119 

et al., 2021) for identifying the recyclability of plastic waste flows and batches. The other step 120 

has been the Plastic Pinch Analysis concept (Varbanov et al., 2021), which defines the basics 121 

of plastic cascade recycling. These works are inspired by the family of Process Integration 122 

methods (Klemeš et al. 2018) and draw an analogy from the Water Scarcity Pinch concept (Jia 123 

et al., 2020). To obtain a fully usable data-driven Plastic Pinch Analysis method, these two 124 

prototype components need further development to achieve: 125 

(i) A general data-driven workflow integrating the available waste streams data, covering 126 

the suppliers of secondary raw materials (sources) and the potential users (sinks), with 127 

the plastic conservation network synthesis problem 128 

(ii) A clear system of concepts for quantifying the qualities of mixed-polymer and mixed-129 

composition samples 130 

(iii) The construction of a cascade model where each material cascade enables the exchange 131 

and reuse of a separate internally compatible set of materials. Materials in the same 132 

category can be recycled to the demands with similar categories or cascaded to lower 133 

quality categories. This helps evaluate the plastic recyclability within a region/system.  134 

The concept developed in this work stems from the general life cycle of plastic materials, as 135 

well as the established separation and recycling practices. The ultimate aim is to formulate a 136 

site-level integration with Big Data analytics to form a chemical information system for plastic 137 

waste recycling- see Fig. 1. The qualities of the plastic waste can be modelled using the 138 

Machine Learning framework, using the existing available centralised database. The data 139 

samples can be collected from an existing plastic recycling system presented in Fig. 1, and the 140 

general database can be formulated from the samples. In this case, the qualities of the plastic 141 

waste from different plants can be identified using the database as the benchmark, and in turn, 142 

it helps to predict the waste quality for any system. The plastic waste exchange between 143 

industrial and domestic users has become more accurate and informative by allowing 144 

information exchange between suppliers and demands. The flow network starts the 145 

consideration from the extraction of primary resources and includes the stages for raw material 146 
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preparation, forming products, distribution/use of the products, waste separation and 147 

processing, recycling and landfilling.  148 

In addition to that general flow pattern, it is also known that there are different applications for 149 

plastic materials (Grigore et al., 2017), such as food and drink, household items, gardening 150 

items, building, and interior items. Those applications define a set of material classes, which 151 

impose different quality and cleanliness requirements on the material sources. Taking a batch 152 

or a sample of waste plastics (termed a Source) and determining its future fate presents a 153 

recycling planning problem. That can be modelled as a mapping of the source to a set of 154 

alternative sinks, as illustrated in Fig. 2, whether be closed-loop, semi-closed loop or open-155 

loop recycling applications (Huysman et al., 2017). In that Fig., a set of sinks, which pose 156 

sufficiently close quality requirements, form a class of materials. Following that logic, the 157 

potential applications determine the classes of materials, and the potential source of secondary 158 

raw material has to be classified within one or several of those classes. The main questions to 159 

be answered are the recyclability of the plastic waste within that system. The environmental 160 

impact of the recycling system should be studied as well, by analysing the emissions as well as 161 

potential water and energy consumption. 162 
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 163 

Fig. 1. Material exchange between stakeholders aided by using big data analytics with a database based 164 

on a plastic value chain with a recycling system (Adapted and modified from Eriksen et al. (2017)). 165 
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 166 

Fig. 2. Mapping of plastic sources for different applications with a data-driven approach. 167 

2. Material and methods 168 

2.1 Database formation 169 

To characterise the effect of complex properties of plastic waste the optimal recycling planning, 170 

the datasets utilised in this study consist of various bulk properties of plastic waste streams, 171 

including three polymers types: PE, PET and PP to mimic the regional property database. Each 172 

polymer types consist of data samples with mechanical properties, degradation properties, 173 

metal contaminations and impurities. For metal contaminations, there are 13 types of metals in 174 

the dataset for each polymer type, namely As, Cd, Co, Cr, Cu, Fe, Hg, Li, Mn, Ni, Pb, Sb, Ti 175 

and Zn. The data samples for metal contaminations are retrieved from the experimental study 176 

of Eriksen et al. (2017) that are sourced from an existing plastic recycling system. Their data 177 

are limited due to few samples available: 16 for PE, 26 for PET and 10 for PP, including all 178 

the plastic waste from different origins: virgin plastic, recycled industrial and household waste, 179 

and unwanted waste. The rest of the datasets are interpolated from the existing data.  180 

The degradation of plastic waste happens for various factors, including exposure to high 181 

temperatures or exposure to ultraviolet radiation. They could break the polymers 182 

intermolecular chain links, which in turn affects the plastic waste usability. The degradation 183 
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can be quantified by measuring the viscosity of the polymers. In this work, the intrinsic 184 

viscosity (IV) property is used for the polymers PET, while the melt flow index is used for 185 

polymer PE and PP as it measures the ease of flow for thermoplastic polymer. Lower values of 186 

MFI/higher values of IV for a similar polymer indicate higher polymer strengths, which means 187 

less degradation of the plastic waste. The values provided in the dataset are estimated based on 188 

IV from Bredikhin et al. (2017) and MFI from Eriksen et al. (2019), but they can differ 189 

depending on the specific processes. The dataset in this work is just a benchmark dataset for 190 

demonstrating the proposed framework. 191 

The dataset also includes mechanical properties, which in this case mainly focus on the tensile 192 

strength of the plastic waste. Due to limited data availability, the tensile strengths for each 193 

polymer type in the datasets are estimated from the experimental data of Eriksen et al. (2019). 194 

In reality, this is correlated with the polymer's strength index, which is MFI or IV. The 195 

impurities included in the datasets consist of papers, cardboard, food residues and other 196 

unknown substances. The datasets are estimated based on the standard ranges provided in 197 

Brouswer et al. (2019) that indicate the range of the impurities amount acceptable for recycled 198 

plastics based on specific applications. The polymeric composition of non-target polymers is 199 

also estimated based on the specification with a similar reference. Specification of the non-200 

target polymers compositions for the target polymers is assumed to be known in the demand 201 

sites through information exchange. 202 

2.2 Plastic pinch analysis 203 

This work focuses on providing a user-friendly tool for targeting the minimum virgin plastic 204 

flow according to the quality grade of plastic waste. Pinch Analysis is an efficient framework 205 

without the need for complex mathematical formulation in targeting the maximum recycling 206 

rate of the waste stream, constrained by the quality of the waste. The approach is user-friendly 207 

and can be illustrated with graphical visualisation, allowing the insights of the problem and 208 

solutions to be visualised. The users can tweak the graphical solutions themselves as well to 209 

determine the alternative solutions. The pinch analysis concept is mainly based on the two 210 

variables: quality and the quantity of the material sources/supplies and sinks/demands. For 211 

plastic waste recycling, the main hurdle is the definition of the quality grade due to the complex 212 

properties of plastic waste, which hinders accurate plastic waste recycling planning. Since the 213 

quality class of plastic waste is determined using the Machine Learning tools, this eases the 214 

problem formulation, and the outcomes of the learning tools help in defining the quality 215 

constraints for the problem of the plastic waste conservation network. The theoretical 216 

explanation of the machine learning framework applied is explained in Table S1 and S2. 217 

The illustration of how the quality class can be integrated with the Pinch Analysis tool is shown 218 

through database formulation, as shown in Fig. 1. The composite curves for supply and demand 219 

can be constructed, as illustrated in Fig. 3(a). The plastic source composite curve is made up 220 



 

11 
 

of the available plastic waste sources in the case study that can be recycled, while the plastic 221 

sink composite curve is for the demands requirements. Both composite curves are constructed 222 

by stacking each segment of sources/sinks in descending order of quality grade, where each 223 

segment represents a source/sink stream. Y-axis denotes the plastic waste quality classes from 224 

the highest to lowest quality- which is defined by the machine learning algorithms). The 225 

horizontal axis is the plastic amount (can be flow or flowrate). The Source Composite Curve 226 

is then shifted horizontally to the right until it is at the right of the sink composite curve. The 227 

segment where they touch represents the ‘Pinch’ quality of the plastic waste recycling system. 228 

The pinch segment shows the quality bottleneck of the plastic waste in the system. The 229 

minimum required input raw plastic is denoted by the shifted amount of the source composite 230 

curve, while the minimum plastic waste to be disposed of is denoted as the extra source segment 231 

that is not overlapped with sink composite curve. 232 

 233 

Fig. 3. (a) An example of source and sink composite curve and plastic material cascade diagram (b) 234 

Infeasible and (c) Feasible. 235 
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The pinch analysis is analogous to the cascading use of plastic waste sources. The highest 236 

quality plastic sources should be used for demands that have higher quality requirements of the 237 

plastic. If the highest quality source is used up, the next highest quality source should have 238 

resorted. The recursive use of the resources in this way ensures the recycling potential of the 239 

sources is maximised, and the reliance on the raw materials can be minimised (El-Halwagi et 240 

al., 2003). Fig. 3 shows the cascading diagrams where they show the pathways of the plastic 241 

waste sources. Fig. 3(b) shows that it is an insufficient good quality plastic waste to fulfil the 242 

demands. In this case, a fresh supply is required, as denoted in Fig. 3(c). 243 

3. Results 244 

3.1 Quality grading with machine learning 245 

The data-driven framework for quantifying the quality levels of the plastic waste streams and 246 

integrating them with the optimisation of the plastic waste recycling rate is proposed in Fig. 4. 247 

Although the current dataset requires more data on the properties of all polymer types, the 248 

current work demonstrates the application of machine learning in quantifying the quality 249 

clusters of existing waste streams. The use of data-driven approaches could shed light on the 250 

information on the available plastic waste and allow better-informed categorisation of the 251 

plastic waste based on its complex properties, which also allows easier planning of waste 252 

recycling. The pinch analysis method followed up by machine learning allows users to gain 253 

crucial intuitions on the resource quality bottlenecks of the current production or recycling 254 

system. Tree-based models are employed for data classification due to their high results 255 

interpretability. Prior to classification, data pre-screening might be required, and in reality, 256 

there are mislabeled data or imbalanced datasets. This work utilises a custom sampling method 257 

to filter out the noises of the data with undersampling and estimate data for imbalanced data 258 

scenarios using the oversampling method. This work utilises K-Nearest Neighbour (KNN) 259 

algorithm to analyse mislabeled data and filter the mislabeled ones. The code is available on 260 

github. 261 
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 262 

Fig. 4. A data-driven plastic pinch analysis framework. 263 

The decision trees were trained on the data with known quality grades with 2-3 maximum tree 264 

depths to avoid overfitting, using the entropy method (Fig. 5). Accuracies on the decision tree 265 

model for PET, PP and PE are 99.9, 90.0 and 97.2%, with 2-3 levels with a maximum of two 266 

features per level after applying linear PCA to the data. The f1-scores, precisions and recalls 267 

are all over 90 % as well for all polymers. PET and PP require only two levels of depth for over 268 

90 % accuracies prediction (Fig. 5(a-b)), while PE requires three levels of depth to achieve 269 

97.2 % (Fig. 5(c)). The outputs suggested that the models predicted the correct categorisation 270 

of plastic waste for each polymer due to almost zero entropies at the child nodes. Even with 271 

two features and a maximum of three levels, the results underscore the connection between 272 
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bulk properties to the quality of the plastic waste. Interestingly, the quantification starts with 273 

the degradation properties (IV and MFI) as the primary division for quality classification. The 274 

next division properties are mainly the metal contamination within the plastic waste streams. 275 

(a) PET 

 

 

 

 

(b) PP 
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(c) PE 

 

Fig. 5. Decision tree representation for each polymer types: (a) PET (b) PP (c) PE. Each box of tree, 276 

value = [a, b, c, d] corresponds to data [virgin, industrial, household, waste]. The units for the variables 277 

follow the units presented in Table S1 and S2. 278 

Going one step up, if the quality grades of the data samples are unknown, the unsupervised 279 

learning method is employed, namely, the K-means clustering algorithm or hierarchical 280 

clustering (HC) approaches. For an imbalanced dataset, the centroids estimated using K-means 281 

tends to be pulled towards the majority cluster, which creates more datasets that belong to other 282 

clusters. The Hierarchical Clustering method captures the latent structure of the imbalanced 283 

datasets better in this case, but still with quite different results from the classification. This 284 

work first reduces the dimensionality of the datasets using linear or kernel PCA and then 285 

applies the clustering approaches to the reduced dataset. The outcomes of the models include 286 

the clusters of the plastic datasets, which can be labelled as the quality grades of the plastic 287 

waste samples. Another K-Nearest Neighbor (KNN) algorithm is applied to the new data to 288 

classify it to the predicted clusters, which allows quality grading of the new plastic waste 289 

sample. 290 

The results of clustering approaches are represented with radar charts presented in Fig. 6, 291 

showing the property ranges within each cluster. Using a dendrogram as a reference, the HC 292 

approach identifies the optimal cluster for PET and PP are 4, while for PE is 6. Based on Fig. 293 

6(a) for PET, Clusters 1-3 have distinctive properties that differentiate them, except for Cluster 294 
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4, in which the most distinctive feature is the tensile strength. Cluster 1 has quite similar 295 

characteristics to Cluster 2, with Cluster 2 having a lower maximum limit for some metal 296 

contaminants (Co, Cu, Ti, Zn) that suggests cluster 2 may has a better grade than Cluster 1. 297 

Cluster 3 features a higher range of IV and a lower range of most of the metal contaminants 298 

and other residues, which suggests Cluster 3 should be the higher grade compared to Cluster 1 299 

and 2. However, for Ti, Mn and food residues, Cluster 3 has higher limits. This can create 300 

ambiguity in the quality grade definition for the clusters. Depending on the importance of the 301 

properties in the system, the definition of the quality grades can differ. Cluster 3 and 4 are quite 302 

similar as well, but Cluster 4 has higher maximum tensile strength. This work assumes the 303 

higher tensile strength indicates better plastic quality, and considering degradation, Cluster 4 304 

should be the highest grade.  305 

For polymer PP in Fig. 6(b), Clusters 1 and 2 each have higher maximum limits of 306 

contaminants/residues compared to each other. In terms of polymer degradation, Clusters 3 and 307 

4 feature lower MFI, which suggests plastic in these categories is not degraded much. Cluster 308 

4 has a lower maximum limit of MFI than Cluster 3. While for polymer PE in Fig. 6(c), the 309 

optimal cluster is 6, but only one sample is assigned to each Cluster 5, and 6 due to the 310 

maximum and minimum limits coinciding, as shown in Fig. 6(d). Both clusters have similar 311 

characteristics to Cluster 4 as well, except for some impurities: food residues, paper, cardboard, 312 

and others. This suggests the data may be overfitted, and four clusters are enough to make the 313 

plastic clustering for this polymer type. 314 

(a) PET 
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(b) PP 
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(c) PE 
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(d) Clusters 4, 5 and 6 for PE 

 

Fig. 6. Radar charts representation of property ranges for each property and for each polymer type (a) 315 

PET (b) PP (c) PE (d) Representation of Clusters 4,5 and 6 for PE. The units for the variables follow 316 

the units presented in  Tables S1 and S2. 317 

3.2 Recyclability quantifying from the AI-driven pinch analysis 318 

After the quality grading system has been identified, the outcomes can be applied to any plastic 319 

recycling system to determine the plastic recyclability. The available regional plastic 320 

supplies/sources and demands/sinks streams are fitted into the trained Machine Learning 321 

algorithms to identify their respective clusters. The case studies data for all the polymers are 322 

given in Tables S1 and S2. Fig. 7 below shows the composite curves for all studied polymer 323 

types. The grading system in this work is assumed that the degradation property is prioritised. 324 

For PET polymer, Cluster 4 is determined as the highest grade, followed by Clusters 3, 2 and 325 

1. For polymer PP, the grades for the clusters are ordered as {4 > 3 > 1 > 2}, while for polymer 326 

PE the grade is ordered as {4 > 1 > 3 > 2}- see Section 3.1 for explanation.  327 

There are no available sources with quality grade ‘1’ but other qualities (Fig. 7(a)). Adjusting 328 

the source composite curve indicating a minimum amount of 300 t of external plastic with at 329 

least grade ‘2’ is required for the studied system. Some of SR2 and SR3 with quality grade ‘2’ 330 

can be directly recycled to SK1+SK2 with grade ‘2’ requirements, while others are to be 331 

disposed of, either landfilled or incinerated. The Pinch Point is at quality grade ‘2’. As for PP 332 
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polymer (Fig. 7(b)), the available sources SR1, SR2, and SR4 are good enough quality to satisfy 333 

all the demands of SK1-SK4, with which about 100 t of waste is disposed of. The Pinch Point 334 

is at quality grade ‘3’ with an external plastic requirement of 400 t with at least grade ‘3’. For 335 

the last polymer type PE (Fig. 7(c)), a similar Pinch Analysis procedure is applied, and the 336 

problem is of ‘threshold’ Pinch type. This means that all of the sources are good enough quality 337 

to fulfil all the demands without disposal. External plastic required is about 300 t of grade ‘1’ 338 

PE.  339 

The grand composite curves display the net plastic flow within each quality grade. It directly 340 

shows the cascading flow of the plastic from higher grade to lower grade. For example polymer 341 

PP, it shows that the plastic sources from grade ‘1’ can be recycled/reused for plastic demands 342 

of grades ‘2’ and ‘3’ since there are net deficit plastic flows for these categories. The clear 343 

representation of the cascading system allows users to identify the plastic recyclability potential 344 

within the system and shows the quality bottleneck of the current plastic waste. Analysing the 345 

Pinch Points helps to understand which plastic waste type or quality grade to improve so that 346 

virgin plastic production or generated waste can be reduced. For polymer PP, the disposed 347 

plastic above the Pinch Point can be upgraded to below the Pinch Point (grade ‘3’), and for 348 

PET the extra plastic waste can be upgraded to at least grade ‘2’, so that the virgin plastic can 349 

be reduced, while waste generation can be avoided for the studied system. 350 

(a) PET 

 

 

 

 

(b) PP  
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(c) PE 

 

 

 

Fig. 7. Pinch analysis of the plastic waste recycling for each polymer type using composite curves (left) 351 

and grand composite curves (right) for; (a) PET, (b) PP and (c) PE. 352 

The framework identifies the maximum PET recyclability is about 38 %, 100 % for PE and 92 353 

% for PP. It suggests that for this specific case, the End-of-life (EOL) practice of PET can be 354 

strengthened to improve the plastic waste properties, especially SR1. 355 

3.3 Trends of environmental impacts of plastic recycling 356 

The carbon footprint analysis considering various percentages of recycled plastic is conducted 357 

to identify the environmental impacts of plastic recycling. The carbon emission footprint 358 

considered is the cradle-to-gate emission contributed by recycling, virgin plastic production, 359 

and landfill of disposed of plastic waste (net emission). Fig. 8 shows the carbon emission 360 

footprints for the polymers, indicating the breakdown of different components of the CO2 361 

emission with various percentages of recycled plastic, with data from Devasahayam et al. 362 

(2019) presented in Table S3.  363 
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 364 

Fig. 8. Carbon emission footprint for different percentages of plastic recycled. Dotted lines represent 365 

the maximum percentage of plastic that can be recycled according to plastic pinch analysis. 366 

It can be observed that the trend of footprint analysis drops when recycled plastic increases. 367 

This is due to the carbon emission factor for virgin plastic productions dominating the recycling 368 

process and landfills. The global warming potential of recycling plastic is just 1.4 CO2e, as 369 

compared to virgin production of PET (3.4 CO2e), PP (2.0 CO2e) and PE (LDPE for 2.1 CO2e). 370 

Since virgin plastic required is always more than the recycled plastic flow, the carbon emission 371 

footprint of virgin production is always higher than the recycling process. The maximum 372 

recycling percentage of plastic waste identified from Plastic Pinch Analysis provides the 373 

optimal solutions in terms of environmental impacts. Note that these results may differ 374 

depending on the carbon emission of the recycling technologies. Energy and water needed for 375 

plastic recycling are also less compared to the cradle-to-gate production of raw plastics, 376 

indicating recycling plastics could save more energy and water usage (see Table S3).  377 
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 378 

Fig. 9. Carbon emission footprint for different disposal technologies for each polymer type. ‘NR’ 379 

denotes the base case scenario where no recycling occurs, ‘R’ denotes for recycling scenario after Pinch 380 

Analysis 381 

Various waste disposal technologies could yield different footprints due to the displacement 382 

savings of the carbon emission. Fig. 9 shows the carbon emission footprint for different 383 

recycling technologies, with data from Devasahayam et al. (2019) presented in Table S4. The 384 

landfill has no carbon emission footprint due to the assumption that the carbon footprint is 385 

returned to the environment, while a minority is generated from transportation and processing. 386 

Incineration consumes the largest amount of energy, which is indicated by about 99 % of the 387 

carbon emission from the processing unit. Even though it provides displacement savings, the 388 

net emission is still positive for incineration. Pyrolysis and catalytic depolymerisation offer 389 

negative net emission potential for disposing of plastic waste, indicating waste disposal may 390 

be a better option compared to recycling (if no displacement saving is considered for recycling). 391 

In this case, disposing of waste with these technologies may be better than recycling plastic 392 

waste (mechanical recycling). It can be seen that the recycling scenario definitely reduces the 393 

emission footprints of different recycling technologies. 394 

4 Discussion and conclusion 395 

The exploitation of natural resources should lead to irreversible ecological harm. Despite the 396 

strong emphasis on plastic recycling worldwide, industrial practitioners remain heavily reliant 397 

on raw plastic products. Other than the reasons for the cost-effectiveness of the recycling 398 

system, resource quality is the central driving force toward a sustainable circular economy. The 399 

complex properties of plastic waste are another hurdle for recycling, and the quality grading 400 

becomes difficult. This work has shown that utilising a machine learning framework to identify 401 
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a quality grading system is effective for any plastic waste. The framework could account for 402 

the extensive properties of plastic waste, ranging from mechanical, degradation, and chemical 403 

properties which are measurable. The Machine Learning algorithms extract crucial intuitions 404 

based on the available data of plastic waste streams and categorise the waste streams into 405 

classes. Depending on the sampled sources or applications, these classes define the quality 406 

grades of the waste and aid in plastic recycling network optimisation. The use of Pinch Analysis 407 

tools allows users to visualise and identify the quality bottleneck that drives the plastic 408 

recyclability easily. Different case studies featuring different polymer types are formulated to 409 

showcase the novel concept. Using the data-driven quality grading system, the framework 410 

identifies maximum PET recyclability as about 38 %, 100 % for PE and 92 % for PP. Improving 411 

EOL treatment of PET could potentially increase the waste recycling rate. The results show 412 

that the concept is promising and effective in determining the qualities and optimising the 413 

recycling network. These initial prototyping steps have made a number of simplifying 414 

assumptions – such as having a homogeneous polymer composition of the treated plastic waste, 415 

unlimited availability of fresh plastic material, and simple material cascading. 416 

This framework is subjected to variables in the method itself, including the clustering 417 

philosophies, maximum depth of decision trees, and overfitting or underfitting of the ML 418 

algorithms. These will affect the outcomes of the clustering/classification, which in turn affect 419 

the strategic planning of plastic recycling. The proper hyperparameter tuning should be 420 

conducted to all variables to ensure the optimal number of clusters is guaranteed or to avoid 421 

overfitting or underfitting. The plastic recyclability and deficit are also subject to uncertainties 422 

such as treatment technologies, cost and footprint, for which the strength of the Pinch 423 

framework is flexible to these factors and can be easily manipulated. Different clustering 424 

concepts can also be explored to compare the clustering results, which may bring insights to 425 

various AI-based quality grading systems. 426 

However, it is to be noted that the compatibility of the sources mixture should be ensured before 427 

sending to the demands. The heterogeneous mixture of the polymers could incur problems of 428 

incompatibility between polymers and decrease the polymer strength. The method for 429 

compatibility estimation can be found in Huysman et al. (2017) through binary interfacial 430 

tension determination. The opportunities of different polymer types mixture (e.g. PET with PE 431 

or PP) are not considered, which could further improve the recycling rate if the polymer mix is 432 

homogeneous and fulfils the demand properties. For multiple polymers streams, the 433 

homogeneousity is difficult to estimate due to the limited accuracy of mixture interfacial 434 

tension estimations and requires accurate empirical verification. The main function of the 435 

Plastic Pinch Analysis tool is to allow users to strategically plan the plastic recycling and 436 

optimise the external virgin plastic required. Homogeneousity of plastic waste can be regarded 437 

as one of the key parameters during recycling planning or defining the quality grade. 438 
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This framework could output the recycling rates of the plastic polymers and can be compared 439 

with governmental regulation on the targeted recycling rates. The benefit of the Composite 440 

Curve is that the number of clusters can be adjusted so that the recycling rates can be 441 

manipulated easily as well, providing suggestions for practitioners to manage the plastic 442 

resources. In this case, various measures can be planned to meet the government requirements, 443 

e.g. waste treatment technologies can be set up to improve the quality grades of waste. 444 

In this advanced technological era, the future trends would be the use of computerised systems 445 

and sensors for plastic trade flows. This is a necessity for managing the vast information flows 446 

efficiently and coordinating the recycling activities of circular economy. A property database 447 

on the globally available plastic waste can be constructed by measuring the properties, either 448 

pre-or post-treatment. Through Big Data Analytics, the patterns of various plastic waste can be 449 

identified that allow proper planning of the plastic waste. The data-driven tools can be 450 

enhanced as well, not just to apply to properties of plastic waste, the spectral analysis of the 451 

plastic can be integrated with property analysis to generate a globally or locally available 452 

plastic screening tool. The challenge of dataset scarcity can be coped with by generating similar 453 

datasets using generative models such as generative adversarial networks or the Gaussian 454 

mixture model. Despite the fact that the effective use of resources should be the main priority, 455 

different aspects of the recycling system's cost, energy usage, detailed life-cycle analysis or 456 

environmental footprint should be considered. The quality grading and Pinch concepts 457 

provided in this work can be complemented with advanced mathematical approaches to make 458 

a more accurate and business-informed recycling decision. 459 
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