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SleepFCN: A Fully Convolutional Deep Learning
Framework for Sleep Stage Classification Using

Single-Channel Electroencephalograms
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Abstract— Sleep is a vital process of our daily life as
we roughly spend one-third of our lives asleep. In order
to evaluate sleep quality and potential sleep disorders,
sleep stage classification is a gold standard method. In
this paper, we introduce a novel fully convolutional neural
network architecture (SleepFCN) to classify sleep stages
into five classes using single-channel electroencephalo-
grams (EEGs). The framework of SleepFCN includes two
major parts for feature extraction and temporal sequence
encoding namely multi-scale feature extraction (MSFE) and
residual dilated causal convolutions (ResDC), respectively.
These are then followed by convolutional layers of 1-sized
kernels instead of dense layers to build the fully convolu-
tional neural network. Due to the imbalance in the distribu-
tion of sleep stages, we incorporate a weight correspond-
ing to the number of samples of each class in our loss func-
tion. We evaluated the performance of SleepFCN using the
Sleep-EDF and SHHS datasets. Our experimental results
show that the proposed method outperforms state-of-the-
art works in both classification correctness and learning
speed.

Index Terms— CNN, Deep Learning, EEG, Single-
channel, Sleep stage classification.

I. INTRODUCTION

SLEEP is an important brain state. Having a good sleep
quality is essential for guaranteeing normal body per-

formance and mental health. During sleep, the brain goes
to several stages. In the non-rapid eyes movements (Non-
REM) stage, the neural systems (e.g., emotional and sensory
systems) of the brain get rest and calibrated. Inadequate sleep
can cause significant problems such as increasing the risk
of Alzheimer’s, diabetes, and cancer. In addition, disturbing
the sleep rhythm can lead to anxiety, depression, and even
invoke suicidal thoughts [1], [2]. As a result, specialists need to
analyze sleep patterns to identify sleep-related conditions such
as drowsiness, fatigue, or sleep disorders including narcolepsy,
insomnia, and sleep apnea [3]. Several attempts have been
made to distinguish sleep stages using polysomnography to
quantitatively measure the duration of each of the sleep
stages [4]. Polysomnography measures a set of physiological
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signals such as electroencephalography (EEG), electromyo-
gram (EMG), electrooculogram (EOG), and electrocardiogram
(ECG) from each subject during their sleep. Sleep experts visu-
ally classify successive 30-second intervals of the EEG signals
based on a set of rules like those provided by Rechtschaffen
& Kales [5], scoring sleep into six stages, including Wake,
S1, S2, S3, S4, and REM. Manual scoring by an expert is
time-consuming and involves a degree of uncertainty [6]–
[8]. To make this subjective problem objective, researchers
used intelligent techniques to automatically classify the sleep
stages. These methods need to extract sleep patterns, select
the more important ones, and then apply the selected features
to an efficient classifier in order to differentiate sleep stages.
EEG features can be extracted in the time, frequency, and
time-frequency domains [9]. Although these methods have
achieved reasonable performance, they are highly dependent to
hand engineering features based on knowledge of sleep data
characteristics. Hence, establishing an automated method to
extract more general features seems inevitable [10], [11].

Some studies have explored deep learning algorithms to
address this issue in recent years. These algorithms have
been shown good performance in various fields of EEG
analysis [12]–[14], most of which used convolutional [15]–
[18] and recurrent neural networks [19]–[22]. Having a hard
look over the literature, we can see that the studies can be
classified into two categories. Some researchers try to adopt
different modalities of polysomnography (e.g., EEG, EMG)
[23]–[25]. It is obvious such multi-modal approaches impose
high computational complexity on the recognition system
at the cost of achieving better accuracy [26], [27]. On the
other hand, using multiple modalities of PSG needs more
intrusive devices to be attached to the subject during sleep
and are more expensive [16]. Among other electrophysiolog-
ical signals, EEGs are of high interest in various cognitive
tasks, since they are non-invasive, portable, and low in cost
[28], [29]. Thus, most studies are conducted to decode the
information captured through single-channel EEG signals in
order to differentiate the sleep stages [30], [31]. Tsinalis et al.
[15] used a convolutional neural network (CNN) to classify
sleep stages from the raw Fpz-cz EEG channel. In [16], the
authors used a relatively deeper CNN model to show the
effect of model depth on the performance. In most research
findings, an input signal is fed into the model in batches of
30 s EEG signals. In some research, the interval of 90 s is
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also considered to explore the effect of input length [32].
Moreover, Zhu et al. [33] fed 2 s epochs to their model in
order to capture events such as K-complexes and sawtooth
waves that occur rapidly (in 1–2 s). Olesen et al. [34] built a
slightly deeper CNN model with four blocks of convolution
layers and used skip connections between them and Andereotti
et al. [35] incorporated a naı̈ve inception-like module [36]
in their CNN to take advantage of multiple time-frequency-
based contexts. Various models used recurrent neural networks
(RNNs), specially long-short term memory (LSTM), to capture
sequential characteristics of sleep EEGs. For instance, Dong
et al. [37] used a hybrid neural network structure consisting
of the multi-layer perceptron neural networks and LSTM.
In addition, Some studies considered techniques to handle
the imbalanced class problem of sleep scoring. In [21], the
authors have proposed a cascaded model of RNNs with two
blocks of LSTMs which can separately classify the majority
and minority stages and Supratak et al. [38] applied a data
augmentation technique to the rarest stage to overcome its
low performance.

Here is the description of our contributions in this study:

1) We constructed a novel fully convolutional neural net-
work (FCN) that consists of three major parts. I. We
built a custom multi-representational model of convolu-
tional layers to extract local time-invariant features of
sleep data in a multi-scale way, which we call multi-
scale feature extraction (MSFE) module. II. Referring
to the sequential order of sleep stages, we need to
learn from these sequential sleep cycles, in order to
accurately detect the sleep stages. To achieve this goal,
we built a residual dilated causal convolutional module
(ResDC), which models the sequence of sleep with a
remarkably simpler and faster structure than RNNs . III.
We integrated our fully convolutional architecture by the
use of convolutional filters with kernel size = 1 instead
of dense layers on the top of our model. This strategy
could help us to overcome the disadvantages of dense
layers that have been deployed in almost all the models
in the sleep staging processes.

2) In order to deal with the imbalance problem, we pro-
posed a loss function that takes the weight of each stage
into account to correct the prediction errors more evenly.

3) We assessed our model with two public datasets and
showed that it outperforms state-of-the-art models in the
sleep stage classification task.

4) Most studies in the domain of sleep scoring obtained
their results using data from healthy subjects. Despite
being a potentially useful baseline for sleep scoring, this
constrains the task and might reduce the generality of the
model. In a supplementary experiment, we trained our
model with unhealthy subjects to learn useful patterns
for identifying abnormalities and disorders.

The rest of the paper is organized in the following order: in
section II, we introduce our model and explain its components
in detail together with the description of datasets and the
preprocessing steps. Section III contains experimental results
for different datasets as well as the comparison between our

model and the previous ones. Finally, the paper is concluded
in section IV.

II. MATERIALS AND METHOD

A. Data and Preprocessing
We used two publicly available datasets in this work. The

first one, namely Sleep-EDF, which is widely used in sleep
scoring, is derived from the PhysioBank [39]. It comprises the
data from 20 healthy subjects, aged 25–101, 10 females and 10
males. The polysomnography was recorded for about 20 hours
for each individual during two consecutive nights and includes
two channels of EEG signals (Fpz-cz, Pz-oz) sampled at 100
Hz in addition to the EMG and EOG channels. Similar to
previous studies [40], we use the single-channel Fpz-cz EEG
as the input of our model. The second dataset is obtained
from the sleep heart health study (SHHS) database [41], [42],
comprising 6,441 men and women aged more than 40 years.
Each subject’s data has been recorded during about six hours
of sleep, and sampled at 125 Hz. The subjects of this dataset
suffer from sleep-correlated breathing diseases resulting from
lung and cardiovascular abnormalities. To reduce the impact of
disorders, we follow the work in [43] and select 120 subjects
whose Apnea-Hypopnea-Indexes (AHI) is lower than 5. This
shows that the subjects had almost a regular sleep pattern. We
have taken the C4-A1 EEG of the selected subjects from the
two EEG channels provided in this dataset (C4-A1, C3-A2).
In another experiment, we selected and applied the data from
another 120 subjects whose AHI is above 5, indicating a mild
to severe state of obstructive sleep apnea, and fed them to
the proposed model to explore the effect of breath-correlated
abnormalities on the sleep stage classification.

Preprocessing includes these steps: we remove unknown
stages and movements from signals and merge stages 3 and
4 into one stage according to the American Academy of
Sleep Medicine (AASM) guideline [44]. Therefore, we have
five sleep stages namely W, N1, N2, N3, and REM whereby
W represents the state of wakefulness, ranging from full
alertness to early drowsiness and REM stands for rapid eye
movement sleep in which sharp and irregular eye movements
are observable. Stages N1, N2 and N3 are the stages of non-
REM sleep. By way of explanation, stage N1 is characterized
by low amplitude and mixed frequency activities (4–7 Hz),
stage N2 is characterized by the presence of sleep spindles and
K-complexes, while during stage N3, the subject experiences
a state of deep sleep associated with slow wave activity. Then,
we exclude the redundant wake times before and after the sleep
onset. In other words, we keep in-bed times which include 30
minutes of wake stages before and after the sleeping time.
EEG signals were filtered by a 5th order Butterworth filter
with a cutoff frequency of 30 Hz to reduce artifacts and
then standardized by removing the mean and scaling to unit
variance. After all, each data was segmented into successive
30 s windows. Table I shows the per-class and the total number
of 30 s epochs of each dataset.

B. Proposed Method
There are three main challenges in sleep stage classification.

First, we should control the trade-off between the time and
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Fig. 1. The overall framework of the proposed method. Parameter d indicates the dilation rate of the convolutional layers and n is experimentally
set to 4.

TABLE I
THE NUMBER OF PER-STAGE AND TOTAL 30 S EPOCHS FOR EACH

DATASET.

Dataset W N1 N2 N3 REM Total

Sleep-EDF 8285 2804 17799 5703 7717 42308

SHHS 5252 1279 17874 7405 7961 39771

frequency resolutions during the feature extraction phase.
The second is to learn the temporal characteristics of EEG
signals to capture the dependencies of samples that lead to
the transition between sleep stages. Eventually, we should
incorporate some techniques in our model to overcome the
imbalanced distribution of samples between sleep stages.
To deal with these challenges, we propose a novel FCN
called SleepFCN, the components of which are explained
in subsequent parts. The overall framework of SleepFCN is
shown in Fig. 1.

1) Time-Frequency Resolution Trade-Off: As the first part
of the model, we construct MSFE module containing two
convolutional branches with different sizes of kernels, inspired
by [38], [45] and the fact that each sleep stage is associated
with a specific frequency band [46]. In this way, we will be
able to capture information from different frequency bands
of EEG signals and local time-invariant features in the time
domain. In one branch of this block, we use small kernels
of size 25, and in the other, wide kernels of size 200 as the
first layer. These layers are able to capture frequency band
information directly from input EEG samples. To illustrate
more, imagine an input signal sampled at frequency 100
Hz, so each kernel size of 200 can capture 2 s of the EEG
signal. In the frequency domain, these kernels slide on groups
of samples with a frequency of about 0.5 Hz, i.e., slow
waves that occur in a deep sleep. Furthermore, the filter with
a kernel size of 25, can capture frequencies about 4 Hz.
Therefore, with respect to the stride, theta and alpha or even
beta bands can be learned. In order to make these features
more interpretable for a classifier, we need to refine them
after extraction. Hence, these convolutions are followed by
batch normalization [47], which is a regularization technique
for training deep neural networks, normalizing the input to
each layer for mini-batches of the data. This method results in
a more stable learning process since the prediction errors can
be propagated backward more effectively through the layers.
The number of epochs required for training the network can
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Fig. 2. The structure of the MSFE module.

be significantly reduced as a result. The outputs then are
passed through a Leaky Rectified Linear Unit (LeakyReLU)
activation function that allows the negative outputs of neurons
to be passed through the layer. Consequently, we do not
lose such information as opposed to the ReLU that is used
in similar works. Essentially, the initial convolutional layer
of CNNs can be thought of as extracting basic features of
the samples, and as we delve deeper into the network, the



4 GENERIC COLORIZED JOURNAL, VOL. XX, NO. XX, XXXX 2017

features become more representative. Thus, in each branch,
we add convolutional and pooling layers to extract more
details of the signal and prevent the excessive increase of
the parameters, respectively. Features extracted by these two
branches then are concatenated into one array and are passed
through the convolutional layers activated by ReLU, and an
average pooling mechanism for refinement and reduction
purposes. It is worth mentioning that negative values are no
longer a concern since we have included and processed them
within the feature space through the two branches of the
MSFE module. In order to facilitate faster convergence, we
opt for ReLU activation in the converging part of the module.
The whole MSFE module is shown in Fig. 2.

2) Sequential Feature Learning: Sleep stage classification
is naturally a sequential problem. According to the AASM
guideline, an epoch is labeled as N2 if some events such as
K-complexes or sleep spindles occur in the 2nd half of the
previous epoch [44]. Furthermore, the REM stage depends
on the presence of mixed frequency activities in EEG signals
without the occurrence of K-complexes or sleep spindles in the
prior epoch. Indeed, it can be distinguished even without rapid
eye movements, based on information learned by the sequence
[21]. Consequently, after extracting the features of interest,
we should make some decisions to capture the sequential
characteristics of the sleep data, i.e., implement a sequential
modeling scheme. For this purpose, we develop the ResDC
module inspired by [48]. It could control the trade-off between
accurate localization and context-aware understanding, includ-
ing learning the sequence’s order of occurrence, to capture the
transition rules between sleep stages.

There are two fundamental principles behind the ResDC
module. Firstly, it provides a causal sequence modeling
scheme, in which an output at the time t is produced by
performing convolution on the inputs at time t and earlier,
i.e., its past sequence [48]. Secondly, the model is required to
produce an output sequence with the same size as the input.
This can be accomplished by setting the shape of hidden layers
equal to the input layer and adding zero pads of length (kernel
size−1). The problem is, however, that these settings require a
very deep network and/or extensive filters in order to capture
the history of sequence, which is difficult when using classic
convolutional layers. Dilated convolutions are employed to
solve this problem [49], which allow the network to broaden
the filter’s field of view, incorporating a larger context. For
a sequence input x and a filter f , the dilated convolution
operation D on point s is defined as:

D(s) =

k−1∑
i=0

f(i).xs−d.i (1)

where k stands for kernel size and d is the dilation factor,
assuming d = 1 results in classical convolution operation. For
d > 1, the receptive field of the convolution effectively grows
such that a broader range of features at the beginning of the
module could be flowed through consecutive layers [48]. To
achieve this aim, we increase the dilation rate exponentially,
concerning the depth of the ResDC module. Furthermore,

z(i) = (z1(i), . . . , zT(i))

z(i-1) = (z1(i-1), . . . , zT(i-1))

Dilated Causal Conv

Batch Norm

ReLU
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Batch Norm
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Fig. 3. A residual dilated causal convolutional block. The entire
ResDC module is built by connecting a series of such blocks with an
exponentially increasing dilation rate.

there are residual connections between multiple blocks in
the ResDC module. These connections help the model learn
identity function besides the dilated causal convolutions which
is a more complex transformation. Having demonstrated good
performance in the literature, this can be a wise choice to help
the model become more generalized [48]. The architecture of
each residual block of the ResDC module includes two dilated
causal convolutions, each followed by batch normalization and
non-linearities, Fig. 3.

The network is then followed by two convolutional
layers with a kernel size of 1. This idea is proposed to
eliminate the disadvantages of dense layers. Because the
number of parameters must be determined to construct a
dense layer, using such layers necessitates that the model’s
input dimensions be fixed. In contrast, a convolutional layer
receives inputs of arbitrary size and produces outputs of
the appropriate size. It should also be noted that the spatial
information could be lost in dense layers, whereas this is not
the case for convolutional layers, given that the convolution
is a local operation [50]. After all, an adaptive average
pooling mechanism is applied to these outputs, and a softmax
classifier activates them to classify the features learned for
different sleep stages so far.

3) Imbalanced Classification Problem: One challenging
problem in classifying sleep epochs into stages of desire is
that the number of samples in different stages is not equal. The
stage N1, as the AASM guideline states, contains the transition
episodes between wake and sleep. Therefore, this stage is
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the minority class in almost every dataset. Moreover, most
individuals spend more sleep time in the stages N2 and N3
rather than REM. Hence, these are the most major classes in
many sleep datasets [44]. Classifiers are always biased toward
the majority class since common loss functions correct errors
of all classes with the same significance. To overcome this
issue, we construct a loss function sensitive to the number
of samples in each class. Further, the loss function should
learn the proportion of the least and the most represented
stages. We exploit the well-known cross-entropy function as
the foundation for our loss function, which is expressed as (2)
in a multi-class fashion.

Cr = − 1

N

S−1∑
s=0

N−1∑
n=0

yns.log(ŷns), (2)

where N and S stand for the number of 30 s EEG epochs
and sleep stages, y and ŷ represent the actual and predicted
stages, respectively, and Cr is the categorical cross-entropy
loss function. This loss function is an excellent criterion for
distinguishing between two probability distributions (i.e., the
actual and predicted stages). We reformulate (2) into (4) by
reweighting it relative to the following two factors: the ratio of
the minor class (numminor) to the major one (nummajor),
and the inverse proportion of samples in the whole dataset
( N
Ns

). In brief, the weight for each stage is shown as (3).

Ws =
N

Ns
.
numminor

nummajor
(3)

Loss = − 1

N

S−1∑
s=0

N−1∑
n=0

Ws.yns.log(ŷns) (4)

III. EXPERIMENTAL RESULTS

A. Performance Metrics

We use overall and per-class metrics to evaluate the per-
formance of our model. Although one of these metrics is
accuracy, due to the fact that we are faced with an imbalanced
problem, i.e., sleep scoring, the widely-used conventional ac-
curacy metric can not fully represent the model’s correctness.
By way of illustration, suppose we have a dataset, samples
of which belong to two classes, with the first-class containing
90 percent of all samples. In such circumstances, even if the
classifier mistakenly classifies all second-class samples with
the label of first-class, the accuracy criterion will give us a 90
percent correctness rate. It is a biased interpretation that can be
deceptive, especially in clinical diagnostic tasks such as sleep
scoring. Hence, we need to employ the F1-score to interpret
the model performance precisely. Macro F1-score is a faultless
measurement of classification performance in the imbalanced
problems. It establishes a compromise between how much
the results are relevant (i.e., precision) and the percentage
of predictions truly classified by the algorithm (i.e., recall).
We also used Cohen’s kappa to compare our model to other
works as another common metric [51]. With the True Positives
(TP ), False Positives (FP ), True Negatives (TN ), and False

Negatives (FN ) of each class which can be yielded from the
confusion matrix, the metrics stated above are calculated as
follows:

PRs =
TPs

TPs + FPs
(5)

REs =
TPs

TPs + FNs
(6)

mf1 =
1

S

S−1∑
s=0

PRs ×REs

PRs +REs
(7)

acc =

∑S−1
s=0 TPs

N
(8)

where PRs and REs represent the precision and recall of each
class s, respectively, mf1 indicates the macro F1-score and
acc stands for the accuracy.

B. Sleep Stage Classification Performance

Table II and III show the confusion matrices and per-class
metrics obtained by 20-fold cross-validation on Sleep-EDF and
SHHS datasets, respectively. It can be inferred from Table
II that the stages N1 and REM have the most misclassified
number of samples among all classes. The stage REM is
mostly misclassified with stage N2, and the stage N1 has been
confused with the stages Wake, N2, and REM. Another fact
derived from the tables is that stage N3 was only confused with
stage N2. The model’s overall accuracy and macro F1-score
on the Sleep-EDF dataset were 84.8% and 78.8%, respectively.
Per-category precision, recall, and F1-score reported in the
tables show that the performance of all classes except N1
is relatively high and reliable. Stage N1 is significantly low
in F1-score and accuracy. The reason for this issue is the
small number of samples in this class, and incidentally, for the
same reason, it does not affect the overall accuracy strongly.
However, this poor ability to classify stage N1 reduces the
overall macro F1-score. Fig. 4 shows the sleep stages for 250
subsequent epochs (about 2 hours) of subject 9 in the Sleep-
EDF dataset. This figure shows the information inferred from
the confusion matrix more clearly. For example, it can be seen
in the figure that stage N3 is only misclassified as N2. It has
also some unique information, e.g., it is evident from the figure
that the most wrong predictions occur when the transition is
from one stage to another.

TABLE II
THE CONFUSION MATRIX OF SLEEPFCN APPLIED TO SLEEP-EDF

DATASET (CHANNEL FPZ-CZ)

Predictions Per-Class Metrics
W N1 N2 N3 REM PR RE F1

W 7373 397 240 19 148 90.2 89.1 89.6
N1 554 1275 492 2 594 43.7 45.5 44.6
N2 106 527 15666 424 683 90.1 88.0 89.1
N3 26 6 591 5241 4 89.3 91.9 90.6

REM 226 599 810 17 6288 79.2 81.5 80.3
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TABLE III
THE CONFUSION MATRIX OF SLEEPFCN APPLIED TO SHHS DATASET

(CHANNEL C4-A1)

Predictions Per-Class Metrics
W N1 N2 N3 REM PR RE F1

W 4502 253 176 55 266 75.4 85.7 80.2
N1 178 337 215 0 549 25.1 26.3 25.7
N2 537 355 14581 1032 1369 89.6 81.9 85.4
N3 417 2 799 6177 10 84.8 83.4 84.1

REM 337 395 495 16 6718 75.4 84.4 79.6
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Fig. 4. Comparison between the scores provided by expert clinicians
and predictions of the SleepFCN model.

C. Experimental Design

The model was trained and validated through a 20-fold
cross-validation method. That is to say, the dataset is divided
into 20 sets (folds), and then the model is trained 20 times,
each time 19 sets are fed to the model for training, and
one set is held out to evaluate the model. It is identical to
the leave-one(patient)-out scheme for the Sleep-EDF dataset
as it contains 20 subjects. Consequently, one subject is held
out as the validation set in each fold. We scored the overall
performance by aggregating the predictions obtained based on
the validation data from each fold after running 20-fold cross-
validation.

Using PyTorch, we built the model and trained it on an
Nvidia GeForce-RTX1070 GPU. Here are some settings in
the training procedure. We chose Adam optimizer [52] with
a decaying learning rate whose initial point is 0.001 and the
decay rate of 0.1 every 15 epochs given that the model requires
a high learning rate at the start to reduce large errors. Whereas
a lower learning rate is required to avoid getting stuck in
local minimums as the training progresses. We set the batch
size to 128 and initial weights of all convolutional layers
to the random normal distribution with a mean of zero and
standard deviation of 0.05. The number of epochs was set to
100, as the model converges in less than 100 epochs. The
learning curve in Fig. 5 shows that the validation error and
accuracy almost stabilize before reaching 100 epochs. This
reflects the robustness of the SleepFCN against the overfitting
problem. There are also small oscillations due to the small
size of validation data compared to the training data. We also
explored the effect of the number of residual blocks forming
ResDC module by setting them to multiple numbers in the
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Fig. 5. The learning curve obtained by fold 10 (subject 16) of Sleep-
EDF dataset.
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Fig. 6. The performance of the SleepFCN model with varying number
of residual blocks used to construct the ResDC module.

range of 1 to 10. After training the models, we observed
that with four of such blocks, the best performance in regard
to accuracy and macro F1-score had reached, Fig. 6. The
reason is that the classification of sleep stages is based on
a relatively short series of patterns (e.g., a few epochs prior to
a 30 s epoch) arising in the data and does not encompass the
entire sequence. Therefore, the construction of a large ResDC
structure containing a large number of residual blocks for
capturing a long sequence, no longer contributes to enhancing
performance but rather increases the training time. It should
be noted that each convolutional layer of the ResDC module
contains 32 filters.

D. Comparison with Other Methods
To show the validity of the SleepFCN model, we compared

its performance to some state-of-the-art studies in terms of
accuracy, macro F1-score, Cohen’s kappa, and the speed of
training. We considered some of their results as the baseline
for our work. All of them used a customized representational
learning module. While each of them used a different mod-
ule as temporal context learning, in [38], the authors used
LSTM layers (DeepSleepNet), Eldele et al. [40] employed
self-attention (AttnSleep), and the authors of [53] built a
module that included both RNNs and attention mechanism
(SleepEEGNet). Based on these works, we built our represen-
tation module as explained in Section II. We then captured
and encoded the temporal context by proposing an alterna-
tive way, i.e., ResDC module. We also presented a different
approach proposed in [33] that we named it CNNAttention;
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TABLE IV
COMPARISON BETWEEN METHODS IN TERMS OF PER-CLASS F1-SCORE AND OVERALL MACRO F1-SCORE, ACCURACY AND COHEN’S KAPPA

FOR TWO DATASETS.

Dataset Method Per-Class F1-score Overall Metrics Training Time
W N1 N2 N3 REM acc mf1 kappa (Per-Fold)

Sleep-EDF

Naı̈veCNN [15] 65.4 43.7 80.6 82.1 74.5 73.6 69.3 0.70 20 mins
DeepSleepNet [38] 86.7 45.5 85.1 83.3 82.6 81.9 76.6 0.76 2.5 hours
SleepEEGNet [53] 89.4 44.4 84.7 84.6 79.6 81.7 76.5 0.75 1.5 hours
CNNAttention [33] 89.3 46.1 86.0 82.1 83.2 81.5 77.3 0.77 1.9 hours
AttnSleep [40] 88.6 42.4 88.2 89.2 80.8 84.0 77.8 0.78 35 mins
SleepFCN (Ours) 89.6 44.6 89.1 90.6 80.3 84.8 78.8 0.79 27 mins

SHHS

Naı̈veCNN [15] 60.1 26.5 76.2 78.4 74.5 73.0 63.1 0.67 17 mins
DeepSleepNet [38] 81.0 29.6 81.3 79.2 81.5 80.1 70.5 0.74 2.4 hours
SleepEEGNet [53] 81.9 29.2 81.5 80.9 79.6 79.6 70.6 0.72 1.2 hours
CNNAttention [33] 81.9 29.8 82.1 79.8 82.3 79.6 71.2 0.72 1.8 hours
AttnSleep [40] 82.1 29.1 84.9 83.5 79.2 81.0 71.8 0.73 32 mins
SleepFCN (Ours) 81.7 29.0 85.4 84.1 79.6 81.3 72.0 0.74 25 mins

they did not use a representation learning similar to the
mentioned studies but a simpler single-resolution one. To
capture the context of sleep, they used an attention mechanism.
We brought this model to our comparison scheme to show
that the multi-resolution CNN is able to achieve a higher
performance comparable to single-resolution ones. In addition,
we presented the results of a model proposed in [15], which
is almost the first work which employed CNNs in the field
of sleep staging, to show how far the research has come
along with this task. We named this model Naı̈veCNN as
it is obtained by placing convolutional and pooling layers,
followed by fully connected ones. It has a low number of
parameters and thus the average time of training for each fold
is lower than those of other works. Nevertheless, it is inferior
amongst other models in terms of accuracy, macro F1-score,
and Cohen’s kappa. To have a fair comparison, especially
in terms of training speed, we used the published codes of
DeepSleepNet [38], SleepEEGNet [53], and AttnSleep [40]
models, and re-implemented the architectures of Naı̈veCNN
[15], and CNNAttention [33], codes of which have not been
published publicly. We re-ran all these works through a 20-
fold cross-validation scheme. As it can be seen in Table IV,
our model outperforms others in terms of overall metrics
for the Sleep-EDF and SHHS dataset. The SleepFCN also
outperforms other per-stage F1-score for Wake, N2, and N3
but not for N1 and REM on the Sleep-EDF dataset. As is
shown in Table IV, CNNAttention [33] and DeepSleepNet
[38] have reached a higher F1-score for N1 and REM stages,
respectively. This might be due to the use of data augmentation
in their works.

For the second dataset, SHHS, the results have got slightly
lower, which could be because of differences in subjects and
channel configurations. SHHS EEG channels are recorded on
C4-A1 channel, resulting in slightly different signal records
from Fpz-cz channel in Sleep-EDF dataset. Additionally, the
age and gender of subjects are different for different datasets,
which is another contributing factor to the differences in
performance between models based on these two datasets.
Although the overall results of the SleepFCN model have
remained superior to the compared models, it is lower than

TABLE V
THE NORMALIZED CONFUSION MATRIX OF SLEEPFCN APPLIED TO

120 UNHEALTHY SUBJECTS OF SHHS DATASET.

0.82 0.03 0.10 0.02 0.03
0.24 0.24 0.32 0 0.20
0.05 0.02 0.82 0.06 0.05
0.01 0 0.2 0.79 0
0.06 0.08 0.21 0 0.65

TABLE VI
THE NORMALIZED CONFUSION MATRIX OF ATTNSLEEP [40] APPLIED

TO 120 UNHEALTHY SUBJECTS OF SHHS DATASET.

0.81 0.03 0.10 0.02 0.04
0.27 0.21 0.29 0 0.23
0.05 0.03 0.80 0.06 0.06
0.01 0 0.20 0.76 0.03
0.06 0.08 0.22 0.01 0.63

CNNAttention [33] and AttnSleep [40] in regard to N1 and
Wake F1-scores, respectively. In an overview of these results, it
can be concluded that the weights we used in our loss function,
as well as the layout of the proposed model, have done well
to achieve proper performance in sleep scoring. On the other
hand, the average training time per-fold in the SleepFCN
decreased noticeably compared to other related works due
to the development of ResDC module instead of RNNs or
even attention mechanisms which add more computational
complexities to the model. In order to statistically examine
superiority of our results, we performed the Friedman test
[54]. This is a non-parametric measure which ranks different
algorithms based on their performance on various datasets. In
practice, the Friedman test demonstrated the significance of
the proposed model.

As a supplementary experiment, we trained our model using
120 extra subjects with a mild stage of obstructive sleep apnea
from the SHHS dataset. To explore the effect of sleep disorders
on different sleep stage classification models, we also trained
AttnSleep [40] with the same subjects as it performed better
than its previous models in overall. Table V, VI, and VII
show the normalized confusion matrices obtained by applying
20-fold cross-validation to the SleepFCN and AttnSleep [40]
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TABLE VII
COMPARISON BETWEEN THE SLEEPFCN AND ATTNSLEEP [40] MODELS ON 120 UNHEALTHY SUBJECTS OF SHHS DATASET.

Method Per-Class F1-scores Overall Metrics
W N1 N2 N3 REM acc mf1 kappa

AttnSleep [40] 82.5 18.5 79.8 77.4 65.8 76.1 64.8 66.2
SleepFCN (Ours) 82.1 21.2 80.1 78.1 68.9 76.6 66.1 67.1

using random subjects, and per-class F1-scores and overall
metrics. As is shown in the tables, the model performance
reduces with random subjects because it is harder for a model
to classify stages with abnormal patterns in contrast with stan-
dard patterns of healthy individuals (e.g., fewer fluctuations
between sleep stages). However, our model is still superior to
AttnSleep [40] in both overall and per-class metrics.

IV. CONCLUSION

In this study, a novel fully CNN called SleepFCN is
proposed to classify sleep patterns into five classes according
to the AASM manual [44]. The SleepFCN incorporates a
module for feature extraction whose main idea is to cap-
ture multi-frequency band information as well as local time-
invariant features of sleep data called MSFE. Another module
called ResDC is developed for temporal context learning that
employs causal and dilated convolutional layers that enables
the model to capture the history, i.e., the context of the
signal effectively. The proposed model was trained using
single-channel EEG signals obtained by two publicly available
datasets, namely Sleep-EDF and SHHS. A weighted loss
function is applied to the training algorithm to reduce the
data’s skewed distribution effect. Experimental results show
that such a model could be faster and more accurate than other
methods using RNNs or even attention mechanisms. Moreover,
the SleepFCN exhibits more generality for the breath-related
distortions in individuals’ sleep. Furthermore, avoiding fully
connected layers provides the model flexibility to varying
dimensions.

It is beneficial for sleep technicians to have a relatively
accurate and fast model to train and test over unseen data.
Therefore, the motives for future research in the field of sleep
stage classification can be pruning the model to reduce the
parameters for simplicity as well as applying transfer learning
to mitigate the need for large training data.
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