
  Miron-Barroso et al., 2022 

1 
 

Polymeric carriers for delivery of RNA cancer 1 

therapeutics   2 

Sofía Mirón-Barroso1, Joana Salvado Correia2, Adam E Frampton3, Mark Lythgoe1, James 3 
Clark1, Laura Tookman1, Silvia Ottaviani4, Leandro Castellano5, Alexandra Porter2, Theoni 4 
Georgiou2, Jonathan Krell1 5 

1 Department of Surgery and Cancer, Imperial College, London, UK. 6 
2 Department of Materials, Imperial College London, London, UK. 7 
3 Department of Clinical and Experimental Medicine, University of Surrey, 8 

Guildford, UK. 9 
4 Department of Biosciences, Nottingham Trent University, Nottingham, UK. 10 
5 School of Life Sciences, University of Sussex, Brighton, UK. 11 
* Correspondence: s.miron-barroso21@imperial.ac.uk 12 

Abstract: As research uncovers the underpinnings of cancer biology, new 13 
targeted therapies have been developed. Many of these therapies are small 14 
molecules such as kinase inhibitors that target specific proteins, however 15 
only 1% of the genome encodes for proteins and only a subset of these 16 
proteins has ‘druggable’ active binding sites. In the last decades, RNA 17 
therapeutics have gained popularity because of their ability to affect targets 18 
that small molecules cannot. Additionally, they can be manufactured more 19 
rapidly and cost-effectively than small molecules or recombinant proteins. 20 
RNA therapeutics can be synthesized chemically and altered quickly, 21 
which can enable a more personalized approach to cancer treatment. Even 22 
though a wide range of RNA therapeutics are being developed for various 23 
indications in the oncology setting, none has reached the clinic to date. One 24 
of the main reasons for this is attributed to the lack of safe and effective 25 
delivery systems for this type of therapeutic. This review focuses on 26 
current strategies to overcome these challenges and enable the clinical 27 
utility of these novel therapeutic agents in the cancer clinic. 28 
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1. Introduction 39 

Cancer is a leading cause of death worldwide and a major healthcare challenge [1]. Traditional 40 

cancer treatments such as chemo or radiotherapy target rapidly proliferating cells in a non-41 

specific manner. Healthy cells, not only cancer cells, are affected and this can result significant 42 

undesirable off-target effects for patients. In addition, primary and secondary resistance can 43 

lead to poor response or tumour relapse [2].  44 

As research uncovers the underpinnings of cancer biology [3], new targeted therapies have 45 

been developed. The majority of these targeted therapies are small molecules such as kinase 46 

inhibitors [4], which work by targeting active sites in proteins involved in tumour development 47 

and cancer progression. However, only 1% of the genome encodes for proteins and only a 48 

subset of these proteins has ‘druggable’ active binding sites [5]. Another class of targeted 49 

therapy are recombinant proteins, such as monoclonal antibodies that target cancer-specific 50 

epitopes or aberrant post-translational modifications in cancer cells [6]. Recombinant proteins 51 

present certain restraints such as their instability and complex and expensive manufacturing 52 

requirements that involve folding and post-translational modifications [7]. 53 

1.1. RNA therapeutics for cancer treatment 54 

In the last decades, RNA therapeutics have gained popularity because of their ability to affect 55 

targets that small molecules cannot. Additionally, they can be manufactured more rapidly and 56 

cost-effectively than small molecules or recombinant proteins. RNA therapeutics can be 57 

synthesized chemically and altered quickly, which can enable a more personalized approach to 58 

cancer treatment [8]. 59 

There are several modalities of RNA therapeutics with potential in the cancer clinic. Synthetic 60 

mRNA technology can be employed to develop cancer vaccines that elicit an immune response 61 

against specific tumour epitopes [9, 10]. Antisense oligonucleotides can be designed to inhibit 62 

the translation of specific mRNAs that encode for proteins involved in tumour development 63 

and progression [11]. 64 

Some RNA therapeutics take advantage of the endogenous mechanisms of RNA interference 65 

including small interfering RNAs (siRNAs) and microRNAs (miRNAs). siRNAs can be artificially 66 

introduced to bind with base complementarity and inhibit the translation of a specific mRNA 67 

involved in tumour development and progression [12]. On the other hand, miRNAs are 68 

endogenous molecules that can regulate the expression of multiple mRNAs involved in 69 

tumorigenesis [13, 14]. Synthetic miRNA therapeutics that can either mimic or inhibit miRNAs 70 

are being developed as potential treatments in the cancer clinic [15]. 71 
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Aptamers are single-stranded oligonucleotides that have a specific three-dimensional structure 72 

that allows them to bind to specific target molecules with high affinities. Aptamers have the 73 

potential to replace monoclonal antibodies because they present less immunogenicity and 74 

have an easier and a more cost-effective manufacturing process [16, 17]. 75 

Even though a wide range of RNA therapeutics are being developed for various indications in 76 

the oncology setting, none has reached the clinic to date. One of the main reasons for this is 77 

attributed to the lack of safe and effective delivery systems for this type of therapeutic. 78 

1.2. Need for delivery systems 79 

As RNA molecules are hydrophilic and negatively charged, they do not easily cross biological 80 

membranes which have a hydrophobic section and a negatively charged surface. Furthermore, 81 

endo- and exo-nucleases present in biological fluids can rapidly degrade RNA. Foreign RNA can 82 

trigger the innate immune response via the activation of Toll-like Receptors which have 83 

evolved to recognize microbial infections by sensing extrinsic nucleic acid [18]. Even though, 84 

activation of the immune response might be beneficial in some cases such as vaccines or 85 

immuno-therapeutics, it can be detrimental for other indications. Moreover, the undesirable 86 

pharmacokinetic profile of RNA therapeutics can hinder their ability to reach their required site 87 

of action because of their short half-life due to rapid degradation and renal clearance. 88 

Some progress has been made to overcome these barriers. These include chemical 89 

modifications in synthetic RNA such as using phosphorothioates as analogues of the phosphate 90 

backbone, incorporating methylated nucleobases, introducing alterations of the ribose 2’ 91 

hydroxyl group [19-21].  These modifications can confer resistance to degradation by 92 

nucleases, increasing the half-life of the RNA therapeutics as well as decreasing their 93 

immunogenicity. However, RNA therapeutics are still unable to cross biological membranes 94 

and are rapidly cleared by the kidneys. Thus, there is still a need to develop and optimise 95 

systems for RNA delivery. 96 

1.3. Gene delivery systems 97 

Viral vectors are the most widely studied systems for the delivery of gene therapeutics. Recent 98 

developments have been made in this field, particularly the use adeno-associated viruses 99 

(AAV) to improve tropism for certain target tissues [22].  However, their limited packaging 100 

capacity [23] and safety issues, especially related to their immunogenicity, have hindered their 101 

translation into the clinical setting. Furthermore, viral vectors are expensive and difficult to 102 

manufacture and scale up. 103 
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Lipid-based delivery systems have also been widely studied for the delivery of RNA 104 

therapeutics. In fact, several products have reached the market including Patisiran, the first 105 

iRNA therapeutic approved by the FDA [24] and the recently developed vaccines against SARS-106 

CoV-2 [25, 26]. However, lipid-based delivery systems have difficulty reaching target tissues 107 

because they of their low specificity and tendency to accumulate in the liver. They can be 108 

administered locally such as in the case of vaccines or used to target liver conditions such as 109 

Patisiran but further progress needs to be made to deliver RNA therapeutics to other target 110 

organs.  111 

Several types of inorganic nanoparticles have also been studied for the delivery of RNA 112 

therapeutics for cancer treatment. For instance, mesoporous silica nanoparticles with tuneable 113 

pore sizes and surface chemistry have been developed. These nanoparticles have large surface 114 

areas in the pores that can be modified by adding positive charges which enable the 115 

encapsulation of nucleic acids. Furthermore, nanoparticle surfaces can be also modified to 116 

incorporate targeting moieties and specific ligands [27-29]. Another type of inorganic 117 

nanoparticles used to delivery RNA are gold nanoparticles. Gold nanoparticles present several 118 

advantages such as unique optical properties, high biocompatibility and precise synthesis with 119 

controlled size and shape [30, 31]. However, inorganic nanoparticles are not biodegradable, 120 

and their accumulation can lead to long term toxicity. Thus, more studies are necessary to 121 

prove their safety profile in in vivo models.  122 

Extracellular vesicles are secreted by mostly all cell types containing biomolecules such as 123 

DNA, RNA, proteins or lipids to deliver information to other cells. Their natural biocompatibility 124 

makes them ideal candidates as delivery systems for external RNA therapeutics. However, 125 

their production process is complex and difficult to scale up [32, 33]. 126 

Other methods to deliver RNA therapeutics to cancer cell are physical methods which include 127 

sonoporation, particle bombardment and laser-assisted nucleic acid delivery. These methods 128 

present low immunogenicity However, they can cause tissue damage, lack selectivity and 129 

require knowledge of the precise location of the tumour.  130 

2. Polymeric carriers 131 

Polymeric carriers have been widely studied for the delivery of RNA therapeutics because of 132 

their versatility, potential multi-functionality and relative low cost. Polymers are 133 

macromolecules that can be defined by different characteristics such as their composition, 134 

architecture, molecular mass or charge [34].  135 
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 136 

Figure 1. a) Chemical structures of commonly used polymers in RNA therapeutics b) Schematical illustrations of 137 
different polymer architectures and topologies 138 

2.1. Polymer composition 139 

A variety of polymers are being developed for the delivery of RNA therapeutics (Figure 1A, 140 

Table 1. They can be classified in homopolymers, composed of only one type of monomer, or 141 

co-polymers if they include several types of monomers (Figure 1B).  142 

The most widely studied cationic polymer for RNA delivery is polyethyleneimine (PEI) due to 143 

its high transfection efficiency. Its primary, secondary and tertiary amines are protonated at 144 

physiological pH and enable nucleic acid complexation, cellular internalization and endosomal 145 

escape. However, PEI presents high toxicity and immunogenicity that has hindered its 146 

translation into the clinic. Combination of PEI with poly(ethylene glycol) [35] or hydrophobic 147 

moieties such as cholesterol [36] is being studied to decrease its toxicity and enable a safe and 148 

effective delivery of RNA therapeutics. 149 

Chitosan is a naturally sourced polysaccharide widely studied for RNA delivery due to its 150 

biocompatibility, biodegradability, low toxicity and immunogenicity. Also, the ability to fine-151 

tune several of its parameters such as the degrees of deacetylation (DDA) or its charge by 152 

altering the fractions of protonatable amine has made it appealing for the development of 153 

gene delivery systems [37]. This cationic co-polymer is composed of β-linked N-acetyl 154 

glucosamine and D-glucosamine, its amino groups are protonated at physiological pH which 155 
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allows it to interact with negatively charged nucleic acids [38]. However, these interactions 156 

with nucleic acids are not very strong and can cause premature release and low efficiency, 157 

several strategies are being developed to overcome these issues [39].  158 

Poly(L-Lysine) (PLL) is a biodegradable homopolymer which contains primary amines that can 159 

be protonated to interact with RNA but can cause toxicity in vivo. Novel architectures such as 160 

PLL dendrigrafts are being developed to deliver RNA therapeutics [40]. Approaches to reduce 161 

PLL toxicity such as complexation with anionic compounds are being studied [41]. 162 

Poly(lactic-co-glycolic acid) (PLGA) is a copolymer composed of lactic and glycolic acid, widely 163 

used for drug delivery. It’s FDA approved, biodegradable and biocompatible. Its tuneable 164 

properties such as the ratio of lactic acid to glycolic acid enable the controlled release of 165 

encapsulated therapeutics. Systems based on PLGA are being developed for the delivery of 166 

RNA therapeutics [42, 43]. Combination of PLGA with cationic polymers such as PEI are being 167 

studied to improve RNA condensation [44].  168 

Polyamidoamine (PAMAM) dendrimers have also been developed for delivery of RNA [45]. 169 

Strategies such as grafting targeting moieties are being studied to increase their selectivity 170 

towards diseased cells [46, 47]. Higher dendrimer generations lead to higher efficacy but also 171 

increased toxicity, the balance between these parameters is key in the design of PAMAM gene 172 

delivery systems [48]. 173 

Poly(β-amino esters) (PBAE) are biodegradable and biocompatible polymers that can be easily 174 

modified. The application of PBAE for RNA delivery is being studied. However, there is a need 175 

to optimize the balance between their toxicity and efficiency in vivo [49] as well as their 176 

stability in order to accomplish their translation into the clinic [50]. 177 

Poly[2-(dimethylamino)ethyl methacrylate] (PDMAEMA) is a promising polymer for delivery 178 

of RNA therapeutics. It contains tertiary amines that interact with RNA and allow endosomal 179 

escape and cellular internalization [51-53].  180 

A common co-monomer that is often introduced to cationic polymer chains is poly(ethylene 181 

glycol) (PEG) because of its biocompatibility. It is present in the formulation of many FDA 182 

approved products, such as the COVID-19 vaccines. Thus, many studies reported that by 183 

introducing PEG or PEG based monomers like oligo(ethylene glycol) methyl ether methacrylate 184 

(OEGMA) resulted in decreased toxicity and prolonged circulation time [51-54].  185 

Table 1. Polymers for RNA delivery. 186 

Polymer Advantages  Limitations Ref 
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PEI High transfection efficiency High toxicity and immunogenicity [35, 36] 

Chitosan Biocompatibility, biodegradability, 
low toxicity and immunogenicity 

Premature release and low 
transfection efficiency 

[37-39] 

PLL Biodegradability, high transfection 
efficiency 

Toxicity [40, 41] 

 PLGA FDA approved, biodegradability and 
biocompatibility 

Low efficiency [42-44] 

PAMAM Dendrimers highly efficiency Toxicity [45, 46] 

PBAE Biodegradability and biocompatibility Limited ability to sustain delivery 
over long timespans, toxicity 

[49, 50] 

PDMAEMA High transfection efficiency Non-biodegradable [52, 53] 

 187 

2.2. Polymer architectures 188 

In copolymers, monomers can be arranged in different manners which can results in statistical, 189 

alternating, gradient and block copolymers. The effect of the different arrangement of 190 

monomers on gene delivery efficiency is being studied [55]. Statistical copolymers that include 191 

cationic and non-ionic or anionic monomers have reported higher efficacy and toxicity than 192 

block copolymers with the same composition. This might be due to the lack of a hydrophilic 193 

block that hinders interaction with cellular membranes. However, block copolymers were 194 

observed to have increased colloidal stability probably due to the steric hindrance of the 195 

hydrophilic blocks [56-58]. 196 

Polymers can also present different spatial architectures (Figure 1B). In linear polymers 197 

monomers are only bond to one or two other monomers. Incorporation of crosslinkers that 198 

bind more than two monomers can result in different architectures such as stars, grafts, 199 

branched polymers or dendrimers [55].  200 

Branched architectures have been shown to increase efficiency over linear polymers [59]. They 201 

include branched copolymers in which secondary polymer chains are linked to a primary 202 

backbone and dendrimers [34].   203 

Dendrimers consist of a central core and highly branched arms. They are synthesized in a 204 

controlled manner and are characterised by their generation which refers to the number of 205 

branches additions. With each generation the volume and surface increase as well as the 206 

number of terminal groups. Generally, dendrimers are characterised by a very narrow size 207 

distribution. The most commonly used dendrimers for gene delivery are poly(amidoamine) 208 

(PAMAM) [45-48] and poly(propylenimine) (PPI) [60, 61] dendrimers.  209 

Another architecture emerging for promising delivery systems for nucleic acids are star 210 

copolymers. They consist of several linear homo- or co-polymers bond to a core forming a star 211 

shaped structure  [62-65]. Star shaped polymers have reported higher transfection efficiencies 212 
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than their linear counterparts which can be due to a higher condensation of the nucleic acids 213 

[66]. 214 

2.3. Molecular mass 215 

Molecular mass distribution of polymers is one of the most studied characteristics. Increasing 216 

molecular mass have generally shown to increase efficiency and cytotoxicity [67]. This can be 217 

due to the increase of the probability of interaction with cellular membranes. Molecular mass 218 

distribution can also impact the ability of polymers to escape the endosome. Higher molecular 219 

mass polymers reported increased endosomal escape [68]. Optimizing the molecular mass to 220 

balance efficiency and toxicity is a key consideration in the design of polymeric delivery 221 

systems [59]. 222 

2.4. Polyplexes formulation  223 

The formation of polyplexes is mostly driven by electrostatic interactions. A key parameter in 224 

polyplex formulation is the N/P ratio (the ratio of nitrogen groups of the polymer to the 225 

phosphate groups of the nucleic acid). Higher N/P ratios lead to higher transfection efficiency 226 

and colloidal stability due to the electrostatic repulsion of the positive charges in the surface of 227 

the polyplexes. However, high N/P ratios can also cause toxicity as a result of the interactions 228 

of the polymer’s positive charges with negatively charged proteins and cellular membranes 229 

[69]. 230 

Other preparation methods such as the buffer used, or the mixing of reagents can have an 231 

influence on the physicochemical characteristics of the polyplexes and ultimately their 232 

transfection efficiency. Mixing the reagents by pipetting instead of dropwise addition leads to 233 

lower hydrodynamic diameters and narrower size distributions, as well as lower transfection 234 

efficiency [70]. 235 

2.5. Characterization techniques 236 

In order to reach the clinical setting, polyplexes need to be thoroughly characterized. Size is 237 

one of the key parameters that has a great impact on the pharmacokinetic profile of 238 

polyplexes. Several techniques have been developed to evaluate the size distribution of 239 

nanosized systems.  240 

Dynamic light scattering (DLS) determines the hydrodynamic diameter of the polyplexes by 241 

relating it to their Brownian motion using the Stokes–Einstein equation. DLS is ideal to 242 

determine the hydrodynamic diameter distribution of mono-population, nanosized particles. 243 

Fluorescent correlation spectroscopy (FCS) is also used measure the size and diffusion 244 

coefficient of fluorescently labelled polyplexes [71].  245 

Atomic force microscopy (AFM) allows the visualization particles’ surface and morphology at 246 

high resolutions scanning the sample with a cantilever tip. Scanning electron microscopy (SEM) 247 

is used to determine the surface, morphology and composition by creating images from the 248 

scattered electrons. Transmission electron microscopy (TEM) provides information on the 249 

inner structure, size and morphology as well as on the cellular internalization of the 250 

polyplexes. It creates images from the electrons transmitted through the sample [72]. 251 
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The charge at the surface of the polyplexes can be determined by their zeta potential. The zeta 252 

potential can be measured by electrophoretic mobility, observing how the particles move 253 

when an electric field is applied. This parameter is crucial for the polyplexes’ stability as well as 254 

its’ safety and efficiency [73]. 255 

The molecular mass and composition are also key parameters for polymer characterisation. 256 

Gel permeation chromatography (GPC) is the standard method for determining the molecular 257 

mass. Nuclear magnetic resonance (NMR) spectroscopy can also be used to determine the 258 

polymer’s molecular mass as well as to accurately determine monomer composition for 259 

copolymers [74]. Fourier transform infrared spectrometry (FTIR) can also be used to 260 

characterize polymers and determine their composition [75]. 261 

3. Barriers for polymeric carriers 262 

3.1. Protein corona, opsonisation and the MPS 263 

Several barriers must be overcome to allow successful delivery of polymeric carriers to their 264 

site of action. Some relate to their route of administration. For systemic administration, one of 265 

the biggest concerns is the absorption of proteins to the surface of nanoparticles [76]. 266 

Polymeric carriers are generally positively charged and thus, proteins, which are commonly 267 

negatively charged, can bind through electrostatic interactions.  268 

The absorption of proteins causes the formation of a protein corona surrounding the 269 

nanoparticles. This protein corona can change the physicochemical characteristics of the 270 

nanoparticles such as their size, charge and surface chemistry. These properties greatly affect 271 

their pharmacokinetic profile and biological activity [77]. Furthermore, some of these proteins 272 

can be opsonins, including immunoglobulins, coagulation and complement proteins [78]. 273 

Opsonins are recognized by the mononuclear phagocyte system (MPS) which mainly includes 274 

Kupffer cells present in the liver and spleen macrophages. Opsonins can mark nanoparticles 275 

and trigger their phagocytosis and elimination, as well as cause changes in their biodistribution 276 

and promote accumulation in organs such as the liver or spleen. Opsonisation can prevent 277 

nanoparticles from reaching their site of action, as well as trigger an immune response causing 278 

severe side effects [79].  279 

Extracellular anionic glycosaminoglycans (GAG) can also displace nucleic acids and lead to a 280 

prompt release of the therapeutic agent before reaching it site of action [80]. 281 

Furthermore, the formation of this protein corona in the surface of nanoparticles can hide 282 

targeting moieties such as aptamers or antibodies and thus hinder their ability to target 283 

specific organs or cell types [81].  284 
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Nevertheless, binding of certain proteins such as albumin can allow nanoparticles to evade the 285 

immune system and can increase targeting to tumour cells. Albumin accumulates in the 286 

tumour due to the leaky vasculature present in the tumour tissue and is known that cancer 287 

cells take up plasma proteins in a higher rate than normal cells and utilize their degradation 288 

products for proliferation [82, 83]. 289 

A widely studied strategy to overcome this barrier is PEGylation. Grafting poly(ethylene glycol), 290 

a hydrophilic polymer, to the surface of nanoparticles to block the absorption of proteins by 291 

steric hindrance and shields the positive charges from the surface, thereby improving the 292 

biodistribution to target organs [84]. However, several recent studies have reported the 293 

production of antibodies against PEG upon repeated administrations of PEGylated 294 

nanoparticles and that pre-existing anti-PEG antibodies can lead to accelerated clearance of 295 

PEGylated nanoparticles and reduced efficiency [85]. Several approached to overcome this 296 

issue are being developed such as using free PEG molecules to saturate anti-PEG antibodies 297 

[86] or grafting nanoparticles with alternative hydrophilic molecules [87]. 298 

3.2. Tissue targeting 299 

Reaching the target tissue is one of the main barriers for the delivery of RNA therapeutics to 300 

cancer cells. Targeting strategies are categorized in active or passive (Figure 2). Passive 301 

strategies rely on characteristics of the delivery system. Different physicochemical properties 302 

of polymeric nanoparticles such as their size, charge and surface chemistry greatly affect their 303 

biodistribution [88]. Nanoparticles smaller than 6 nm can be quickly excreted by the kidneys. 304 

[89]. On the other hand, nanoparticles with a hydrodynamic diameter larger than 150 nm are 305 

prone to be taken up by phagocytic cells in the spleen. Furthermore, nanoparticles tend to 306 

accumulate in the liver due to the fenestrated vasculature of the liver sinusoids and can be 307 

eliminated by the MPS [90]. Rapid renal clearance and liver accumulation decrease the 308 

nanoparticle’s half-life reducing the possibility of the nanoparticles to reach their site of action. 309 

Thus, choosing an appropriate nanoparticle size that is not too small to be quickly excreted by 310 

the kidneys and not too large to be quickly taken up by the MPS is key in designing an optimal 311 

delivery system. 312 

Moreover, a widely studied but controversial strategy for passive targeting of nanoparticles to 313 

solid tumours is the Enhanced Permeation and Retention (EPR) effect. The EPR effect was 314 

firstly described by Maeda in 1986 [91], he observed that macromolecules tended to 315 

accumulate in tumours due to their abundant vasculature, defective blood vessels with 316 

increased permeability and the lack of efficient lymphatic drainage. Since his discovery, many 317 

studies have been performed using this strategy to target drug delivery systems to solid 318 
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tumours. However, results have revealed large variability of this effect in vivo and in human 319 

patients [92]. In murine models, tumour blood vessels do not develop properly due to the 320 

rapid growth of tumour xenografts and thus have higher number of fenestrations and are 321 

leaky to nanoparticles. However, tumours in humans grow slower than in murine models and 322 

the vasculature is not as permeable, which decreases the efficiency of the EPR effect. 323 

Furthermore, this variability might be due to the heterogeneity of tumour tissue, factors such 324 

as the tumour tissue of origin, tumour size and vascularization can modulate the EPR effect. 325 

Many solid tumours present a high intratumoural interstitial fluid pressure due the high 326 

vascularization and impaired lymphatic drainage as well as a dense extracellular matrix 327 

composed of which a network of collagen, proteoglycans, elastin fibres and hyaluronic acid 328 

which can hinder the transport of nanoparticles into tumours [93, 94]. However, this 329 

phenomenon is still an important strategy used for targeting polymeric delivery systems to 330 

primary tumour and metastasis [95, 96]. 331 

Different strategies based physicochemical characteristics of nanoparticles are being 332 

developed to improve targeting of non-viral vectors to specific tissues. In a recent study, SORT 333 

(Selective Organ Targeting) was developed to engineer lipid nanoparticles to selectively target 334 

certain organs [97].  335 

Active targeting, which involves the grafting of specific moieties to the surface of 336 

nanoparticles, is the most well-studied strategy to accomplish selective tissue targeting of 337 

polymeric nanoparticles to date. These ligands include peptides such as RGD (arginine, glycine, 338 

aspartic acid) which binds selectively to αvβ3 integrins generally overexpressed in tumour 339 

vasculature endothelial cell [98-100], as well as antibodies, antibody fragments or aptamers 340 

that recognize certain surface receptors that are overexpressed in cancer cells such as HER2 341 

[101-103]. Other molecules used for active targeting of polymeric nanoparticles to tumours 342 

are transferrin [104, 105], folic acid [106, 107], hyaluronic acid [108, 109] and epidermal 343 

growth factor (EGF) [110] due to the overexpression of their receptors in cancer cells [111]. 344 

Active targeting allows nanoparticles to be internalized more efficiently by a specific cell type. 345 

However, the interaction between ligands and receptors only occurs when both molecules are 346 

within a very short distance of each other. Active targeting does not lead to tumour 347 

accumulation, but it improves selective cell uptake. Hence, a combination of both strategies is 348 

ideal when designing delivery systems. Passive targeting can enable nanoparticles to reach 349 

tumours and active targeting can trigger nanoparticles internalization in cancer cells. 350 
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In order to reach cancer cells within tumours nanoparticles must cross the endothelium. In 351 

brain tumours, such as glioblastoma or brain metastasis, this barrier becomes harder to cross. 352 

The blood brain barrier (BBB) formed by endothelial cells attached to each other by tight 353 

junctions hinders the transport of drugs to the brain. Several strategies are being developed to 354 

enable nanoparticles to cross the BBB and deliver drugs to the brain such as grafting 355 

transferrin to the nanoparticles surface to target the transferrin receptor [112] or using 356 

penetrating peptides that target lipoprotein receptors [113] both of which are overexpressed 357 

in the BBB. 358 

 359 

Figure 2. Active and passive strategies for tissue targeting of polymeric carriers. 360 

3.3. Cellular uptake 361 

Once nanoparticles reach the tumour, they need to be internalized by cancer cells. Most 362 

polymeric nanoparticles are made of cationic polymers that interact with negatively charged 363 

nucleic acids If the net charge of the polyplexes is positive, these nanoparticles can be 364 

internalized by binding via electrostatic interactions to the negatively charged glycocalyx in the 365 

cell membrane in a non-specific manner [114]. 366 

Moreover, targeting moieties on the surface of nanoparticles can trigger cellular uptake by 367 

receptor-mediated endocytosis. There are different endocytosis pathways that can be involve 368 

in nanoparticle internalization: clathrin-mediated, caveolae-dependent, macropinocytosis and 369 

clathrin- and caveolae- independent pathways [115].  370 
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When nanoparticles are internalized by most of these pathways they will be transported to the 371 

endo-lysosomal compartment. Internalized nanoparticles are entrapped in vesicles which 372 

gradually become early endosomes, late endosomes and finally, lysosomes. During this process 373 

protons are pumped into the vesicles causing the pH to decrease. The acidic pH and the 374 

presence of hydrolases in the lysosomal compartment can degrade RNA therapeutics and thus 375 

dramatically decrease treatment efficacy. 376 

3.4. Endosomal Escape 377 

Endosomal entrapment is a huge bottleneck in the delivery of RNA therapeutics and their 378 

translation to the clinic. It has been observed that certain polymers such as PEI are able to 379 

escape the endosome, however the precise mechanism is not entirely known. One well-known 380 

hypothesis is the proton sponge effect (Figure 3) [116, 117]. This hypothesis states that 381 

polymers containing high number of amino groups have high buffering capacity and act as 382 

proton sponges. The high influx of protons into the endosomes causes a flow of chloride atoms 383 

that cause an indirect entry of water in the endosome. The high osmotic pressure disrupts the 384 

endosomal membrane and causes the release of the polyplexes. However, after many years of 385 

research this hypothesis has not been verified and alternative hypothesis have been proposed 386 

such as the direct membrane permeabilization hypothesis. This hypothesis states that there is 387 

a charge-driven interaction of polyplexes with the endo-lysosomal membrane which causes 388 

the formation of transient holes and increases its permeability remaining the endosome intact 389 

[118].  390 

Several polymer properties such as their molecular mass or/and pKa can impact their ability to 391 

escape the endosome. Higher molecular mass polymers reported increased endosomal escape 392 

[68] and polymers with a pKa ranging from 5.8 to 6.2 showed increase efficiency in siRNA 393 

delivery [119].  394 
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 395 

Figure 3. Endosomal escape. Proton sponge effect 396 

3.5. Balance between transfection efficiency, toxicity and immune activation 397 

Generally, polymers used for RNA delivery are positively charged due to the ability of cationic 398 

polymers to interact with negatively charged nucleic acids to form polyplexes as well as with 399 

negatively charged cellular and endosomal membranes to allow internalization and endosomal 400 

escape. However, this positive charge can cause cellular membranes disruption of non-401 

targeted cells and interact with negatively charged proteins in biological fluids which can lead 402 

to toxicity and immune system activation. Different strategies are being developed to 403 

circumvent this issue such as the use of negatively charged coatings [120].  404 

Usually, increasing the positive charge of the polymeric carriers leads to an increased 405 

transfection efficacy but also in toxicity and immune activation. Breaking this correlation is a 406 

long standing goal in the field of polymeric gene delivery [121]. However, both, transfection 407 

efficiency and toxicity are dependent on the cell type [122].  408 

Furthermore, it is not appropriate to directly compare the transfection efficiency of even the 409 

same polymer carriers in the same cell lines from different studies because often different 410 

transfection protocols and formulations are used. 411 

Size can also play a role on the safety profile of nanoparticles. As mentioned previously, 412 

nanoparticles larger than 5 nm are required to avoid renal clearance and increase 413 

nanoparticle’s half-life so that they can reach the target tissue. However, accumulation of 414 

nanoparticles in certain tissues can cause toxicity. Ideally, nanoparticles should be cleared 415 
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after delivering the RNA to the targeted tissue.  Biodegradable polymers such as PLGA, PBAE 416 

and polycaprolactone (PCL) are being studied to overcome this issue [38, 123, 124]. 417 

3.6. Tumour heterogenicity  418 

An important challenge in the development of polymer gene delivery systems is tumour 419 

heterogenicity. Different transfection efficiencies are reported on the same systems when 420 

transfecting different cell types [125]. Many different cell types can be found in tumour 421 

microenvironments such as tumour-associated macrophages, cancer-associated fibroblasts, 422 

immune cells and endothelial cells [126].  423 

Furthermore, genomic instability in cancer cells causes intratumoural heterogeneity and leads 424 

to the presence of different cancer cell clones with different properties which can result in 425 

different transfection efficacy of the same polymeric carrier [3, 127].  426 

4. Smart polymeric carriers 427 

Polymeric nanoparticles have great potential to deliver RNA therapeutics for cancer treatment. 428 

However, as previously described there is still limitations that must be overcome. In order to 429 

do so, researchers are developing smart polymeric nanocarriers that are able to sense and 430 

react to internal or external stimuli (Figure 4). 431 

One of the main endogenous stimuli being exploited is the acidic pH of the endo-lysosomal 432 

compartment. To avoid degradation of RNA therapeutics in the lysosome and enable 433 

endosomal escape, pH-responsive polymers that disassemble and are able to disrupt 434 

membranes at endosomal pH (5-6) are being developed [128, 129]. pH-responsive polymers 435 

have also been designed to undergo disassembly and membrane disruption in response to the 436 

slightly acidic pH of the tumour microenvironment. These polymers become protonated at pH 437 

6.8, in contrast to the physiological pH 7.4, and expose targeting moieties or cell-penetrating 438 

peptides to allow internalization into cancer cells [130, 131]. 439 

Tumour tissue is also characterized by a high level of reactive oxygen species (ROS). Polymeric 440 

nanoparticles with ROS-cleavable linkages that break and allow the release RNA in the 441 

presence of ROS are being developed to increase selectivity to tumour tissues [132-134]. 442 

Another endogenous stimulus that allows to control over the release of the encapsulated drug 443 

is the redox state. The difference between the high intracellular concentrations of glutathione 444 

(GSH) (2-10 mM) compared to that of the extracellular environment (2-20 µM) can be used to 445 

trigger drug release only when the nanoparticle has reached the cytoplasm. Polymeric 446 
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nanoparticles containing disulphide links that can be reduced by intracellular glutathione are 447 

being developed to avoid prompt release of therapeutics in the extracellular space [135, 136]. 448 

Ideally, nanoparticles should have a negatively charged surface to prolong circulation time and 449 

allow them to reach their target tissue but having a positive charge enables cellular uptake. In 450 

a recent study, the development of polymeric nanoparticles with a negatively charged shell 451 

linked by a pH-sensitive bond was described. This bond breaks when the nanoparticles reach 452 

the slightly acidic tumour microenvironment exposing a positively charged core triggering 453 

cellular internalization. The core of these polymeric nanoparticles is linked by redox-sensitive 454 

bonds and is able to dissociate in the cell cytoplasm releasing the drug [137]. 455 

Approaches using the activity of specific enzymes that are overexpressed in the tumour 456 

microenvironment such as matrix metalloproteinases (MMP) to increase selectivity are being 457 

studied [138]. Polymeric nanoparticles with PEG grafted on their surface via an MMP-sensitive 458 

peptides have been developed. These nanoparticles lose their PEG coating in an MMP rich 459 

environment, such as the tumour tissue, exposing their cationic core that encapsulates siRNA 460 

or targeting moieties which enable cellular internalization [139, 140]. 461 

External stimuli can also be used to trigger RNA delivery to tumours. One of the most common 462 

stimuli is temperature, mild hyperthermia can be induced in tumours via different techniques 463 

such as infrared light. A moderate increase of temperature has been reported to promote 464 

blood flow and increase vascular permeability as well as make cancer cells more sensitive to 465 

therapeutics. Mild hyperthermia can be used as a trigger for temperature-responsive polymers 466 

to release the encapsulated drug to tumour tissues [141, 142]. Other external stimuli used to 467 

facilitate tumour targeting and controlled drug release are ultrasound [134, 143, 144] and light 468 

[145, 146].  469 
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  470 

Figure 4. Smart polymeric nanocarriers respond to endogenous and exogenous stimuli which trigger shell 471 
detachment, endosomal escape and RNA release into the cytoplasm. 472 

 473 

5. Summary 474 

RNA therapeutics can enable targeted and personalised approaches and thus, hold great 475 

promise as cancer therapeutics. However, due to the instability and suboptimal 476 

pharmacokinetics of RNA molecules, there is a significant need for safe and effective delivery 477 

systems before they can reach the clinic. 478 

The versatility and multi-functionality of polymeric carriers make them ideal candidates to 479 

enable the delivery of RNA therapeutics. Even though there are many biological barriers that 480 

polymeric carriers need to overcome to reach the site of action, significant advances are being 481 

made in this field. These include an improved understanding of the interaction between 482 

polymers and the biological environment including serum proteins, the immune system as well 483 

as their interaction with cancer cells. Furthermore, advances in polymerisation and 484 

characterisation techniques have resulted in greater control over the engineering and design 485 

of polymeric carriers. Finally, the design and development of smart polymeric carriers able to 486 

sense and react to different stimuli are allowing for increased RNA delivery efficiency while 487 

maintaining optimal safety profiles.  488 

 489 
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