1	Associations of device-measured physical activity, sedentary behavior, and executive
2	function in preadolescents: A latent profile approach
3	Running head: PHYSICAL ACTIVITY AND EXECUTIVE FUNCTION
4	Abstract
5	Purpose: This study investigated the associations between physical activity (PA), sedentary
6	behavior (SB) and executive function (EF) in preadolescents. <i>Methods</i> : One hundred and
7	twenty preadolescents were recruited from two Hong Kong primary schools. PA and SB were
8	recorded for seven consecutive days by accelerometer. EF performance, including inhibition
9	(Stroop task, ST; Flanker task, FT) and working memory (Sternberg Paradigm task, SPT)
10	were measured. Body mass index (BMI) and cardiorespiratory fitness (CRF, multi-stage
11	fitness test) were tested. Latent profile analysis explored the profiles of PA and SB in
12	preadolescents. Results: Three distinct profiles were identified: Low Activity, Average
13	Activity, and High Activity. Participants in Low Activity performed worse in the accuracy of
14	ST (vs. Average Activity, $P = 0.03$; vs. High activity, $P < 0.01$), FT (vs. Average Activity, P
15	= 0.02; vs. High activity, P < 0.001), and SPT (vs. Average Activity, P < 0.01; vs. High
16	activity, $P < 0.01$). No significant difference was observed between participants with Average

17	Activity and High Activity. No significant association was observed for profiles on BMI and
18	CRF. <i>Conclusion</i> : Supplementing the consensus of the literature that moderate-to-vigorous
19	physical activity benefits cognition, we conclude that light physical activity enhances
20	preadolescents' executive functioning.
21	
22	Keywords: exercise; cognition; person-oriented approach; inhibition; working memory
23	
24	Introduction
25	Executive function (EF) comprises a constellation of functions, including inhibitory
26	
20	control, cognitive flexibility, and updating information in working memory (9). EF is crucial
20	control, cognitive flexibility, and updating information in working memory (9). EF is crucial for preadolescents' academic achievement and serves as the capstone for social behaviors
20 27 28	control, cognitive flexibility, and updating information in working memory (9). EF is crucial for preadolescents' academic achievement and serves as the capstone for social behaviors expressed across the lifespan (9). Sedentary behavior (SB) refers to any waking behavior
20 27 28 29	 control, cognitive flexibility, and updating information in working memory (9). EF is crucial for preadolescents' academic achievement and serves as the capstone for social behaviors expressed across the lifespan (9). Sedentary behavior (SB) refers to any waking behavior characterized by an energy expenditure ≤1.5 metabolic equivalents, such as in a sitting,
20 27 28 29 30	<pre>control, cognitive flexibility, and updating information in working memory (9). EF is crucial for preadolescents' academic achievement and serves as the capstone for social behaviors expressed across the lifespan (9). Sedentary behavior (SB) refers to any waking behavior characterized by an energy expenditure ≤1.5 metabolic equivalents, such as in a sitting, reclining, or lying posture (42). For preadolescents, SB such as television viewing is</pre>
27 28 29 30 31	<pre>control, cognitive flexibility, and updating information in working memory (9). EF is crucial for preadolescents' academic achievement and serves as the capstone for social behaviors expressed across the lifespan (9). Sedentary behavior (SB) refers to any waking behavior characterized by an energy expenditure ≤1.5 metabolic equivalents, such as in a sitting, reclining, or lying posture (42). For preadolescents, SB such as television viewing is negatively associated with EF development (43). Alternatively, physical activity (PA), which</pre>

33	expenditure (25), has been reported to "offset" the negative effect of SB on health (5). A
34	review study has indicated that both light-intensity physical activity (LPA) and moderate-to-
35	vigorous-intensity physical activity (MVPA) are associated with enhanced cognition
36	(including EF) in 6–13-year-old children (14).
37	Given the impact of SB and PA on EF, schools have been criticized for minimizing
38	opportunities for PA, and prolonging SB, in the school day (16). The reasons include
39	emphasis placed on academic achievement in school, lack of active commuting to school and
40	availability of electronic devices (16). The WHO guideline (2020) recommends that children
41	and adolescents should engage in at least 60 minutes of MVPA per day (5). However, the
42	Hong Kong Report Card (2018) showed that over 90% of school-aged children and
43	adolescents do not participate adequately in PA (8). Considering that the counterbalance of
44	PA and SB may predict preadolescents' EF (48), low levels of PA and high amounts of SB in
45	schools are of great concern.
46	Over the past decade, a number of reviews have been published on the relationships
47	between PA, SB, and EF, concluding that PA is positively associated with EF (10,14).
48	However, the evidence for the effects of PA on EF is inconclusive. In a recent review, it was

49	found that only 48% of studies with high methodological quality observed a significant
50	positive effect of PA intervention on EF (36). A meta-review showed no effect of classroom
51	PA intervention on EF in school-aged children (46). Inconsistency also exists across multiple
52	measures for the specific domain of EF. For example, several reviews reported a small to
53	moderate effect of PA intervention on inhibition (1,14,19) and working memory (1,14), while
54	another meta-review found that chronic PA had a small positive effect on inhibitory ability
55	but had no effect on working memory in children (47). The inconsistent result therefore
56	invites further investigation of the effect of PA on the specific domains of EF.
57	In addition to examining the variable-centered analysis of the effects of PA and SB on
58	EF, researchers are beginning to take an interest in how PA profiles (a combination of time
59	spent on different physical-related behaviors such as LPA, MVPA and SB) holistically affect
60	EF. A complementary approach is to use latent profile analysis to identify subsets of
61	individuals based on PA and SB patterns (34). By grouping the individuals into profiles based
62	on the observed variables, this approach allows for identifying profiles/groups of individuals
63	and examination of differences between these profiles. In particular, knowing whether the

64	patterns of PA and SB are related to EF in preadolescents could inform interventions aimed at
65	enhancing EF in this population.
66	To date, latent profile analysis has been used to classify survey-based PA data (45), and
67	explore its association with academic burnout (6), and healthy diet behavior (4) in children.
68	The devices-measured PA in children was classified independently (without SB) (20), and
69	were used to investigate the associations with mental status (38). To the best of our
70	knowledge, no study has investigated the associations between PA and SB profiles (using a
71	device-measured approach) and EF in preadolescents. Compared to the survey-based
72	approach, device-measured PA is believed to provide more accurate estimates of energy
73	expenditure and eliminates many of the issues of recall and response bias (31). Therefore, the
74	current study examined the associations between accelerometry-derived day-to-day PA and
75	SB profiles and their relations with EF performance in preadolescents. We hypothesized that
76	profiles characterized by more MVPA and less SB were associated with better EF.
77	Method
78	Participants

79	A total of 184 right-handed students from two elementary school in Hong Kong were
80	recruited using convenience sampling, of whom 120 completed the entire study (50.8%
81	males, mean \pm SD: age = 10.8 \pm 0.5 yrs; body weight = 36.6 \pm 9.1 kg; height = 144 \pm 8 cm;
82	body mass index (BMI) = $17.3 \pm 3.1 \text{ kg/m}^2$). The remaining 64 individuals were excluded
83	due to invalid data in accelerometers, EF, or CRF. Students who suffered from severe
84	neurological diseases, dyslexia, color blindness, special needs, and sensory deficits were
85	excluded from the study. Before the study, parents of the students signed the consent form.
86	The ethics approval was obtained from the University Ethics Committee (No. 2017-2018-
87	0404).
88	Experimental design
89	The present study was a cross-sectional study. Participants completed EF tests and PA
90	recording within two weeks. During the trial day, EF was measured first to avoid the effect of
91	exercise on EF task performance. The EF tests, including Stroop task (ST), Flanker task (FT),
92	and Sternberg Paradigm task (SPT), were performed via the same battery which has been

- 93 adopted in various studies (15,41,49). The EF tasks were conducted in a quiet classroom at
- 94 school with a 22 °C constant temperature. Participants were required to practice the entire

95	testing battery twice on the trial day, to ensure they were familiar with the tasks. After a short
96	break, a formal test was arranged. The sequence of EF tasks was consistent for all
97	participants. The 15-m version of the multi-stage fitness test was performed, on an outdoor
98	sports facility, to measure cardiorespiratory fitness. A 10-min standardized warm-up protocol
99	(consisting of 400-m jogging and stretching) was adopted before completing the multi-stage
100	fitness test. Finally, participants wore the accelerometer for one week to record SB and PA.
101	Measurements
102	Participants' PA and SB were objectively measured using the Actigraph accelerometer
103	(GT3X, Pensacola, FL, USA). They were instructed to wear the accelerometer for seven
104	consecutive days, removing it only for water-based activities (such as swimming, bathing or
105	showering). Similar to previous studies (2,32), valid data were considered to be at least 480
106	min/day of wearing time for at least 2 weekdays (i.e., 9 a.m. to 5 p.m.) and 1 weekend day
107	(i.e., 10 a.m. to 6 p.m.), corresponding to a reliability of 0.7 for three days measurement in a
108	large population study of 11-year-olds (26). The Evenson cut-point has been chosen (SB = 0 -
109	99, LPA = 100-2295, and MVPA \geq 2296 counts/min (12) which has shown to be useful for

111	USA) was used for data analysis.
112	Cardiorespiratory fitness was measured using a 15-m version of the multi-stage fitness
113	test (i.e., maximal oxygen consumption; $VO_{2 max}$) (33). The protocol started at 8.0 km/h,
114	which increased to 9.0 km/h and then increased 0.5 km/h every minute. Participants were
115	required to shuttle run for 15-m following the audio instruction to the point of volitional
116	exhaustion, or until they could no longer keep pace with the audio signal. The performance
117	was recorded and analyzed using the Ramsbottom equation (33).
118	For the EF tests, ST (40) and FT (11) were used to measure attention and inhibitory
119	control. SPT (39) was used to measure working memory. Each task comprised two sections:
120	the practice section (to have the participants get familiar with the task) and the main section
121	(where the participants' performance was recorded and scored). Before each main task,
122	participants practiced in 3-6 stimuli with feedback. After the main task began, no feedback
123	was provided. The three main tasks took 12-15 minutes to complete (i.e., \sim 2 min for ST, \sim 3
124	min for FT and ~5 min for SPT). The corrected reaction time and accuracy were recorded for
125	analysis.

youth aged 5-15 years (44). The ActiLife package (version 6.13.4, Actigraph, Pensacola, FL,

126	The ST consists of 60 stimuli with 20 congruent and 40 incongruent stimuli. Congruent
127	stimulation occurs when the meaning of a word and its font color is the same. Participants
128	were tasked with pressing the color of the word. Incongruent stimulation is the opposite: the
129	meaning of the word and the color on the screen do not align. Participants were asked to press
130	the color of the word instead of reading the word itself. FT includes the two stimulations as
131	ST, but with an equal number of congruent and incongruent stimuli for a total of 60 stimuli
132	presented in a randomized order. The congruent condition refers to the arrows showing the
133	same direction as the central one, and the incongruent condition refers to the arrows pointing
134	in a different direction than the central arrow. Participants were asked to press the right or left
135	arrow on the keyboard to respond.
136	Regarding SPT, participants were instructed to remember a series listed number with a
137	random sequence. The task consists of three ascending levels with the beginning of the one-
138	item level and then three- and five-item levels. At the beginning of each level, participants
139	are assigned a target number or letter that they should remember. During the test, a number or
140	letter appears on the screen, and participants should select whether it is one of the assigned
141	letters or a number by pressing the right arrow key, or whether it is a distraction by pressing

142	the left arrow key. The correct answer was counterbalanced between the left and right arrows
143	for each level.

144 Statistical analysis

145	Statistical analyses were conducted in Mplus Version 8.1. All SB, LPA, and MVPA were
146	subjected to a robust maximum likelihood estimation of latent profile analysis. In the
147	analysis, 1000 random starting values were used to ensure the validity of each class solution.
148	The number of latent classes (groups) was determined as follows. Beginning with a single
149	latent class, additional classes were added in sequence, until a model was found that met
150	optimal selection criteria. In the present study, the optimal statistical number of classes was
151	determined using the Bayesian Information Criterion (BIC), the sample-size Adjusted BIC
152	(ABIC), the Lo-Mendell-Rubin likelihood ratio test (LRT), and the Adjusted LRT (ALRT).
153	Lower BIC and ABIC values indicate a better model. The LRT and the ALRT test a model
154	with K classes versus a model with K-1 classes. A significant P value indicates that the model
155	with K classes is better than the model with K-1 classes. A non-significant P value indicates
156	that the model with K classes does not improve the model with K-1 classes. Although entropy
157	is generally not used to determine the model with the optimal number of classes, it is useful

158	as it summarizes classification accuracy (whether individuals are classified neatly into one
159	and only one category). Entropy varies from 0 to 1, with values closer to 1 indicating fewer
160	classification errors. The final model was chosen based on both statistical results and
161	interpretation.
162	The relations between profiles and constructs related to EF (i.e., ST, FT, SPT) and fitness
163	(i.e., predicted VO _{2max} , BMI) were examined by Wald chi-square tests (i.e., Bolck, Croon,
164	and Hagenaars [BCH] method). The BCH procedure is the most robust and recommended
165	method for examining relationships between classes and continuous variables (3).
166	Results
167	To identify the optimum number of profiles of PA and SB, we computed models with 1
168	to 5 profiles. Table 1 provides the BIC, ABIC, LRT, ALRT and entropy for these models.
169	Both the BIC and ABIC decreased sequentially from the 1- to 2- to 3- to 4-profiles. The BIC
170	value for the 4-profiles model was slightly lower than that of the 3-profiles model ($\Delta BIC = -$
171	4.92), and the ABIC value for the 4-profiles was lower than the 3-profiles model ($\Delta ABIC = -$
179	
112	17.56). The BIC was negligibly higher in the 5-profiles model than the 4-profiles model

174	= -9.54). The LRT value for the 2-profiles LPA solution was significant at $P < 0.001$. The
175	ALRT values for the 2-, 3- and 4-profiles LPA solutions were significant at $P < 0.001$. These
176	values were not significant for the 5-profiles model. Collectively, these findings do not
177	support the 5-profiles model, and it is not necessary to test models with more profiles. The
178	overall classification accuracy (Entropy) was 0.98 for the 1-profile model and 0.90 for the 2-,
179	3- and 4-profiles model.
180	Although there was support for 3- and 4-profiles models, the improvement of the 4-
181	profiles model over the 3-profiles model was negligible and mixed (given the BIC value and
182	LRT p-value). For the 3-profiles model, the percentage of individuals correctly classified
183	were 93.2% for profile 1, 92.5% for profile 2, and 99.9% for profile 3. For the 4-class model,
184	the percentage of individuals correctly classified were 90.7% for profile 1, 85.5% for profile
185	2, 91.7% for profile 3, and 99.8% for profile 4. These findings indicate greater parsimony for
186	the 3-profiles model than the 4-profiles model. Thus, the 3-profiles model was applied in the
187	current study. Profile 1, 2, and 3 consisted of 31.67% (N = 38), 25.83% (N = 31), and 42.50%
188	(N = 51) of the sample, respectively. Given the mean of PA and SB in each profile (see Fig.
189	1), profile 1 (SB = 1195.93, LPA = 194.45 and MVPA = 49.62 min) was named as "Low

190 Activity", profile 2 (SB = 1006.29, LPA = 353.92 and MVPA = 79.79 min) was named as 191 "Average Activity", and profile 3 (SB = 616.40, LPA = 678.29 and MVPA = 145.32 min) 192 was named as "High Activity". The three profiles have a balanced sex composition (male in 193 Profile 1 = 55.26%, Profile 2 = 51.61%, and Profile 3 = 47.06%. Chi-square difference test 194 shows that sex is not significantly associated with profile allocation) 195 ---Insert Table 1. ---196 ---Insert Figure 1. ---197 No significant difference was observed among three profiles for reaction time in the three 198 EF tests (all P > 0.05). For ST accuracy, students in the Average Activity and High Activity performed better than those in Low Activity ($\chi^2 = 4.81$, P = 0.03 for Average Activity; and χ^2 199 = 7.35, P < 0.01 for High activity:). No group difference was observed between the Average 200 201 Activity and High Activity groups. For FT accuracy, students in Average Activity and High Activity performed better than those in Low Activity ($\chi^2 = 5.2$, P = 0.02 for Average Activity; 202 and $\chi^2 = 15.27$, P < 0.001 for High Activity). No group difference was observed between 203 204 Average Activity and High Activity. For SPT accuracy, students belong to Average Activity and High Activity performed better than those in Low Activity ($\chi^2 = 9.59$, P < 0.01 for 205

206	Average Activity; and $\chi^2 = 11.1$, P < 0.01 for High Activity). No group difference was
207	observed between Average Activity and High Activity. The means and standard deviations of
208	EF tests were displayed in Table 2.
209	Insert Table 2
210	No group difference was observed in BMI or predicted VO_{2max} from the multi-stage
211	fitness test (all $P > 0.05$) for the three profiles. The descriptive statistics and comparison are
212	displayed in Table 3.
213	Insert Table 3
214	Discussion
215	In the current study, the latent profile approach was first applied to investigate the PA
216	and SB profiles of Hong Kong preadolescents (using accelerometry) and the association with
217	EF. The latent profile analysis supported three profiles: Low Activity (prolonged SB and little
218	PA), Average Activity (moderate SB, LPA, and little MVPA), and High Activity (a balanced
218 219	PA), Average Activity (moderate SB, LPA, and little MVPA), and High Activity (a balanced SB, LPA, and MVPA). Results indicated that adolescents classified as Low Activity
218 219 220	PA), Average Activity (moderate SB, LPA, and little MVPA), and High Activity (a balanced SB, LPA, and MVPA). Results indicated that adolescents classified as Low Activity performed worse for accuracy in attention, inhibitory control (i.e., ST and FT) and working

222	difference observed between the Average Activity and High Activity groups. Furthermore,
223	there was no difference between the three groups for reaction time in the three EF tests; nor
224	were there significant differences between the activity profiles for BMI and cardiorespiratory
225	fitness (i.e., predicted VO _{2max}).
226	Whilst evidence to date suggests that PA and SB are essential predictors of
227	preadolescents' EF, the effect of combined PA and SB profiles on EF has not been
228	investigated. Compared with previous studies that adopted survey data and variable-centered
229	analysis (23,48), this study examined the profiles of PA and SB and its relationship with EF.
230	Findings of this study revealed that Average Activity and High Activity performed better for
231	accuracy in EF tasks than Low Activity, which is consistent with a recent survey study
232	suggesting that low SB and high PA (both LPA and MVPA) were positively associated with
233	EF in preadolescents (48). Similar results were also reported by previous review study
234	suggesting that the PA has a beneficial effect on attention, working memory and processing
235	speed (14). The beneficial effect may be explained by the changes in neurophysiological
236	function (28). Specifically, the chronic effects of PA in neurophysiological functioning
237	include improved resting-state attention, greater allocation of attentional resources and

altered brain activation in the right anterior prefrontal cortex (28), which may benefit the EF performance. 239

240	However, there is some ambiguity in the evidence for PA and working memory studies
241	in preadolescents. Sjöwall et al. (2017) reported no beneficial development of working
242	memory for the active school (i.e., school with increased PA classes) as compared to the
243	control school (i.e., school with regular PA classes) (37). In contrast, Kamijo et al. (2011)
244	claimed in an RCT study that a nine-month PA program indirectly increased working
245	memory in preadolescents through improved cardiorespiratory fitness (22). de Greeff et al.
246	(2018) reported a small to moderate positive effect for the chronic PA programs on working
247	memory in a meta-review ($k = 8$) (14). A possible explanation is that PA and working
248	memory were measured by various instruments (e.g., self-report survey and device-measured
249	PA; different cognitive batteries for working memory). The discrepancy in instruments may
250	yield biased PA and working memory value, thus leading to mixed results. Another plausible
251	explanation is that EF improves gradually over the school years (18), and working memory
252	development was not evident before 11 or 12 ages (24). The natural development of working
253	memory may bias the effect of PA on working memory (13,24).

255	performed similarly on EF. This suggests the importance of replacing SB, by increasing LPA
256	and MVPA. To date, efforts to increase PA have focused mainly on increasing MVPA. For
257	instance, Kamijo et al. (2011) reported that a 9-month MVPA intervention improved
258	accuracy in working memory (assessed on the Sternberg Paradigm) (22). Hillman et al.
259	(2014) adopted the same intervention and reported the improved accuracy measured by the
260	Flanker Task after the program (17). Additionally, van der Niet et al. (2016) found that
261	following a 22-week MVPA program, inhibitory control (measured by the Stroop Test) and
262	working memory (measured by Digit Span test) were improved, compared with the control
263	group (29). However, in addition to MVPA, promoting health by increasing LPA and total
264	PA should not be ignored. MVPA was reported to have no association with inhibition
265	(measured by the Flanker Task) and working memory (measured by the Operation Span
266	Task) (30). Furthermore, due to curriculum design, MVPA may be difficult to increase on
267	school days (16). Thus, the present study provides important evidence for the development of
268	PA guidelines and intervention studies for not only increasing MVPA, but also reducing SB
269	and increasing LPA.

270	The positive effect of higher PA and lower SB on EF was observed for accuracy, but not
271	reaction time. A possible explanation is that the reaction time was more vulnerable to the
272	acute effect of PA, but not chronic PA. The finding is consistent with the aforementioned
273	intervention studies, where reaction time was enhanced following acute PA, whilst accuracy
274	was unaffected (17,22). Furthermore, a meta-analysis concluded that acute PA had a
275	moderate positive effect on reaction time, but no effect on accuracy (27). Therefore, the acute
276	effect of PA may affect reaction time, whereas chronic PA affects accuracy, on EF tasks.
277	Future studies may further investigate this phenomenon.
278	Consistent with previous studies (29,35), there were no significant associations between
279	the identified activity profiles and BMI or aerobic fitness (i.e., predicted VO_{2max}). For
280	example, Ruiz et al. (2010) indicated that PA during leisure time positively influenced
281	cognitive performance, but the beneficial effect was independent of cardiorespiratory fitness
282	(i.e., predicted VO_{2max}) and BMI (35). Additionally, in a 22-week MVPA intervention study,
283	no difference was found between the control and intervention groups on any physical fitness
284	variables in preadolescents, including aerobic fitness, speed and agility (29). However, this is
285	not consistent with a previous study indicating that VO_{2max} was positively correlated with

286	time spent in vigorous activity in preadolescents (7). More recently, Jones et al. (2020)
287	suggested that replacing SB or LPA with MVPA was consistently associated with losing
288	weight (in girls only) and improving VO_{2max} in preadolescents (21). The inconsistencies may
289	be attributed to varying study designs or methods by which the association with SB and PA
290	were tested. More efforts are needed to further explore the relationships between the
291	combined SB with PA profiles and physical fitness and BMI.
292	To the best of our knowledge, the present study is the first to adopt latent profile analysis
293	to classify patterns of PA and SB, and examine the relationships between these profiles and
294	EF, predicted VO _{2max} and BMI in preadolescents. Latent profile analysis used in this study
295	allowed the exploration of the relation between physical activity profiles and EF in
296	preadolescents, contributed to the variable-centered studies that only examined the relations
297	between separate variables. This study also benefits from the device-measured PA and SB.
298	Given that self-report measures of PA and SB are particularly prone to yield biased results,
299	this study used device-measured PA and SB, which increased the reliability of the results.
300	However, there were several limitations with our study. First, the accelerometer protocol
301	excluded use during water-based activities, and it was possible that some activities (such as

302	swimming) were not accounted for when developing the PA variables. Second,
303	approximately 34.78% of participants were excluded from the analysis because of missing or
304	invalid accelerometry data, potentially leading to sample bias. Third, owing to the cross-
305	sectional nature of the study, the causality of the observed association cannot be determined.
306	More longitudinal studies are needed to further understand the associations of combined SB
307	and PA profiles with EF and clarify the mechanisms of these associations.
308	Conclusion
309	In conclusion, the present study suggested that the combined profiles of PA and SB are
310	associated with EF in preadolescents. Preadolescents with higher PA and lower SB displayed
311	enhanced accuracy across EF tasks. Findings of this study may aid in the development of
312	evidence-based public health guidelines targeting the reduction of SB, and the subsequent
313	improvement of EF, for preadolescents (i.e., keeping the overall time spent in SB low and
314	replacing the SB with both LPA and MVPA).
315	
316	Availability of data and materials

317 The data are available from the corresponding author, upon reasonable request.

References

319	1.	Álvarez-Bueno C, Pesce C, Cavero-Redondo I, Sánchez-López M, Martínez-Hortelano
320		JA, Martínez-Vizcaíno V. The effect of physical activity interventions on children's
321		cognition and metacognition: a systematic review and meta-analysis. J Am Acad Child
322		Adolesc Psychiatry. 2017;56(9):729-738. doi: 10.1016/j.jaac.2017.06.012
323	2.	Anderson YC, Wynter LE, Grant CC, et al. Physical activity is low in obese New
324		Zealand children and adolescents. Sci Rep. 2017;7(1):41822. doi:10.1038/srep41822
325	3.	Bakk Z, Vermunt JK. Robustness of stepwise latent class modeling with continuous
326		distal outcomes. Struct Equ Model. 2016;23(1):20-31.
327		doi:10.1080/10705511.2014.955104
328	4.	Berlin KS, Kamody RC, Thurston IB, Banks GG, Rybak TM, Ferry RJ. Physical
329		activity, sedentary behaviors, and nutritional risk profiles and relations to body mass
330		index, obesity, and overweight in eighth grade. Behav Med. 2017;43(1):31-39.
331		doi:10.1080/08964289.2015.1039956

332	5.	Bull FC, Al-Ansari SS, Biddle S, et al. World Health Organization 2020 guidelines on
333		physical activity and sedentary behaviour. Br J Sports Med. 2020;54(24):1451-1462.
334		doi:10.1136/bjsports-2020-102955
335	6.	Cheung P, Li C. Physical activity and mental toughness as antecedents of academic
336		burnout among school students: a latent profile approach. Int J Environ Res Public
337		Health. 2019;16(11). doi:10.3390/ijerph16112024
338	7.	Dencker M, Thorsson O, Karlsson MK, et al. Daily physical activity and its relation to
339		aerobic fitness in children aged 8–11 years. Eur J Appl Physiol. 2006;96(5):587-592.
340		doi:10.1007/s00421-005-0117-1
341	8.	Department of Health. [Internet]. TOWARDS 2025 Strategy and action plan to prevent
342		and control non-communicable diseases in Hong Kong. 2018 [cited 24 July 2021].
343		Available from: https://www.chp.gov.hk/files/pdf/saptowards2025_fullreport_en.pdf
344	9.	Diamond A. Executive functions. Annu Rev Psychol. 2013;64(1):135-168.
345		doi:10.1146/annurev-psych-113011-143750

346	10.	Donnelly JE, Hillman CH, Castelli D, et al. Physical activity, fitness, cognitive
347		function, and academic achievement in children: a systematic review. Med Sci Sports
348		Exerc. 2016;48(6):1197-1222. doi:10.1249/MSS.00000000000000901
349	11.	Eriksen BA, Eriksen CW. Effects of noise letters upon the identification of a target
350		letter in a nonsearch task. Percept Psychophys. 1974;16(1):143-149.
351		doi:10.3758/BF03203267
352	12.	Evenson KR, Catellier DJ, Gill K, Ondrak KS, McMurray RG. Calibration of two
353		objective measures of physical activity for children. J Sports Sci. 2008;26(14):1557-
354		1565. doi:10.1080/02640410802334196
355	13.	Gomes da Silva S, Arida RM. Physical activity and brain development. Expert Rev
356		Neurother. 2015;15(9):1041-1051. doi:10.1586/14737175.2015.1077115
357	14.	de Greeff JW, Bosker RJ, Oosterlaan J, Visscher C, Hartman E. Effects of physical
358		activity on executive functions, attention and academic performance in preadolescent
359		children: a meta-analysis. J Sci Med Sport. 2018;21(5):501-507.
360		doi:10.1016/j.jsams.2017.09.595

361	15.	Hatch LM, Williams RA, Dring KJ, et al. The Daily $Mile^{TM}$: acute effects on
362		children's cognitive function and factors affecting their enjoyment. Psychol Sport
363		Exerc. 2021;57:102047. doi:10.1016/j.psychsport.2021.102047
364	16.	Hillman CH, McDonald KM, Logan NE. A review of the effects of physical activity
365		on cognition and brain health across children and adolescence. Nestle Nutr Inst
366		Workshop Ser. 2020;95:116–126. doi: 10.1159/000511508
367	17.	Hillman CH, Pontifex MB, Castelli DM, et al. Effects of the FITKids randomized
368		controlled trial on executive control and brain function. Pediatrics.
369		2014;134(4):e1063-e1071. doi:10.1542/peds.2013-3219
370	18.	Hughes C. Changes and challenges in 20 years of research into the development of
371		executive functions. Infant Child Dev. 2011;20(3):251-271. doi:10.1002/icd.736
372	19.	Jackson WM, Davis N, Sands SA, Whittington RA, Sun LS. Physical activity and
373		cognitive development: a meta-analysis. J Neurosurg Anesthesiol. 2016;28(4):373-
374		380. doi:10.1097/ANA.00000000000349
375	20.	Jago R, Salway R, Lawlor DA, et al. Profiles of children's physical activity and
376		sedentary behaviour between age 6 and 9: a latent profile and transition analysis 11

377		medical and health sciences 1117 public health and health services. Int J Behav Nutr
378		Phys Act. 2018;15(1):1-12. doi:10.1186/s12966-018-0735-8
379	21.	Jones MA, Skidmore PM, Stoner L, et al. Associations of accelerometer-measured
380		sedentary time, sedentary bouts, and physical activity with adiposity and fitness in
381		children. J Sports Sci. 2020;38(1):114-120. doi:10.1080/02640414.2019.1685842
382	22.	Kamijo K, Pontifex MB, O'Leary KC, et al. The effects of an afterschool physical
383		activity program on working memory in preadolescent children. Dev Sci.
384		2011;14(5):1046-1058. doi:10.1111/j.1467-7687.2011.01054.x
385	23.	López-Vicente M, Garcia-Aymerich J, Torrent-Pallicer J, et al. Are early physical
386		activity and sedentary behaviors related to working memory at 7 and 14 years of age?
387		J Pediatr. 2017;188:35-41. doi:10.1016/j.jpeds.2017.05.079
388	24.	Luciana M. Practitioner review: computerized assessment of neuropsychological
389		function in children: clinical and research applications of the Cambridge
390		neuropsychological testing automated battery (CANTAB). J Child Psychol Psychiatry
391		Allied Discip. 2003;44(5):649-663. doi:10.1111/1469-7610.00152

392	25.	Malina RM, Katzmarzyk PT. Physical activity and fitness in an international growth
393		standard for preadolescent and adolescent children. Food Nutr Bull. 2006;27(4
394		SUPPL):S295-S313. doi:10.1177/15648265060274s511
395	26.	Mattocks C, Ness A, Leary S, et al. Use of accelerometers in a large field-based study
396		of children: protocols, design issues, and effects on precision. J Phys Act Heal.
397		2008;5(s1):S98-S111. doi:10.1123/jpah.5.s1.s98
398	27.	McMorris T, Hale BJ. Differential effects of differing intensities of acute exercise on
399		speed and accuracy of cognition: a meta-analytical investigation. Brain Cogn.
400		2012;80(3):338-351. doi:10.1016/j.bandc.2012.09.001
401	28.	Meijer A, Königs M, Vermeulen GT, et al. The effects of physical activity on brain
402		structure and neurophysiological functioning in children: a systematic review and
403		meta-analysis. Dev Cogn Neurosci. 2020;45:100828. doi: 10.1016/j.dcn.2020.100828
404	29.	van der Niet AG, Smith J, Oosterlaan J, Scherder EJA, Hartman E, Visscher C. Effects
405		of a cognitively demanding aerobic intervention during recess on children's physical
406		fitness and executive functioning. Pediatr Exerc Sci. 2016;28(1):64-70.
407		doi:10.1123/pes.2015-0084

408	30.	Poitras VJ, Gray CE, Borghese MM, et al. Systematic review of the relationships
409		between objectively measured physical activity and health indicators in school-aged
410		children and youth. Appl Physiol Nutr Metab. 2016;41(6):S197-S239.
411		doi:10.1139/apnm-2015-0663
412	31.	Prince SA, Adamo KB, Hamel ME, Hardt J, Gorber SC, Tremblay M. A comparison
413		of direct versus self-report measures for assessing physical activity in adults: a
414		systematic review. Int J Behav Nutr Phys Act. 2008;5(1):56. doi:10.1186/1479-5868-5-
415		56
416	32.	Quan M, Zhang H, Zhang J, et al. Are preschool children active enough in Shanghai:
417		an accelerometer-based cross-sectional study. BMJ Open. 2019;9(4):e024090.
418		doi:10.1136/bmjopen-2018-024090
419	33.	Ramsbottom R, Brewer J, Williams C. A progressive shuttle run test to estimate
420		maximal oxygen uptake. Br J Sports Med. 1988;22(4):141-144.
421		doi:10.1136/bjsm.22.4.141

422	34.	von Rosen P, Dohrn IM, Hagströmer M. Latent profile analysis of physical activity
423		and sedentary behavior with mortality risk: a 15-year follow-up. Scand J Med Sci
424		Sport. 2020;30(10):1949-1956. doi:10.1111/sms.13761
425	35.	Ruiz JR, Ortega FB, Castillo R, et al. Physical activity, fitness, weight status, and
426		cognitive performance in adolescents. J Pediatr. 2010;157(6):917-922.e5.
427		doi:10.1016/j.jpeds.2010.06.026
428	36.	Singh AS, Saliasi E, Van Den Berg V, et al. Effects of physical activity interventions
429		on cognitive and academic performance in children and adolescents: a novel
430		combination of a systematic review and recommendations from an expert panel. $Br J$
431		Sports Med. 2019;53(10):640-647. doi:10.1136/bjsports-2017-098136
432	37.	Sjöwall D, Hertz M, Klingberg T. No long-term effect of physical activity intervention
433		on working memory or arithmetic in preadolescents. Front Psychol. 2017;8(8):1342.
434		doi:10.3389/fpsyg.2017.01342
435	38.	Solomon-Moore E, Jago R, Beasant L, Brigden A, Crawley E. Physical activity
436		patterns among children and adolescents with mild-to-moderate chronic fatigue

437		syndrome/myalgic encephalomyelitis. BMJ Paediatr Open. 2019;3(1):e000425-
438		e000425. doi:10.1136/bmjpo-2018-000425
439	39.	Sternberg S. High-speed scanning in human memory. Science. 1966;153(3736):652-
440		654. doi:10.1126/science.153.3736.652
441	40.	Stroop JR. Studies of interference in serial verbal reactions. J Exp Psychol.
442		1935;18(6):643-662. doi:10.1037/h0054651
443	41.	Sun FH, Cooper SB, Chak-Fung Tse F. Effects of different solutions consumed during
444		exercise on cognitive function of male college soccer players. J Exerc Sci Fit.
445		2020;18(3):155-161. doi:10.1016/j.jesf.2020.06.003
446	42.	Tremblay MS, Aubert S, Barnes JD, et al. Sedentary behavior research network
447		(SBRN) – terminology consensus project process and outcome. Int J Behav Nutr Phys
448		Act. 2017;14(1):75. doi:10.1186/s12966-017-0525-8
449	43.	Tremblay MS, LeBlanc AG, Kho ME, et al. Systematic review of sedentary behaviour
450		and health indicators in school-aged children and youth. Int J Behav Nutr Phys Act.
451		2011;8(1):98. doi:10.1186/1479-5868-8-98

452	44.	Trost SG, Loprinzi PD, Moore R, Pfeiffer KA. Comparison of accelerometer cut points
453		for predicting activity intensity in youth. Med Sci Sports Exerc. 2011;43(7):1360-1368.
454		doi:10.1249/MSS.0b013e318206476e
455	45.	Wang CKJ, Biddle SJH, Liu WC, Lim BSC. A latent profile analysis of sedentary and
456		physical activity patterns. J Public Health. 2012;20(4):367-373. doi:10.1007/s10389-
457		011-0464-9
458	46.	Watson A, Timperio A, Brown H, Best K, Hesketh KD. Effect of classroom-based
459		physical activity interventions on academic and physical activity outcomes: a
460		systematic review and meta-analysis. Int J Behav Nutr Phys Act. 2017;14(1):114.
461		doi:10.1186/s12966-017-0569-9
462	47.	Xue Y, Yang Y, Huang T. Effects of chronic exercise interventions on executive
463		function among children and adolescents: a systematic review with meta-analysis. Br J
464		Sports Med. 2019;53(22):1397-1404. doi:10.1136/bjsports-2018-099825
465	48.	Zeng X, Cai L, Wong SH sang, et al. Association of sedentary time and physical
466		activity with executive function among children. Acad Pediatr. 2021;21(1):63-69.
467		doi:10.1016/j.acap.2020.02.027

468	49.	Zhu Y, Sun F, Chiu MM, Siu AYS. Effects of high-intensity interval exercise and
469		moderate-intensity continuous exercise on executive function of healthy young males.
470		Physiol Behav. 2021;239:113505. doi:10.1016/j.physbeh.2021.113505
471		
472	Figur	e 1. Time Spent on Physical Activity and Sedentary Behavior for Each Profile. SB:
473	Seden	tary behavior; PA: Physical activity; LPA: Light physical activity; MVPA: Moderate to
474	vigoro	ous physical activity. Low Activity N = 38; Average Activity N = 31; High Activity N =
475	51	

Model	BIC	Adjusted BIC	LRT P value	Adjusted LRT P	Entropy
				value	
1-class	4694.39	4675.42	-	-	-
2-class	4404.08	4372.46	0.00	0.00	0.98
3-class	4374.06	4329.80	0.16	0.00	0.90
4-class	4369.14	4312.24	0.57	0.00	0.90
5-class	4372.26	4302.70	0.74	1.00	0.90

476 Table 1. Fit Statistics of the Latent Profile Analysis Models

Note. BIC = Bayesian information criterion; LRT = Lo-Mendel Rubin likelihood ratio test

479 Table 2. Executive Function Performance across Three Latent Profiles (N = 120)

	Low Activity	Average Activity	High Activity	Overall Wald χ^2
	N=38	N=31	N=51	
Stroop task				
Reaction time [ms]	1148.91(35.4)	1273.57(54.61)	1232.88(36.89)	$\chi^2 = 4.14, P = 0.13$
Accuracy [%]	88.55(2.74)	95.36(0.85)*	96.1(0.52)**	$\chi^2 = 8.74, P = 0.01$
Flanker task				
Reaction time [ms]	682.16(31.03)	699.52(29.62)	688.07(16.76)	$\chi^2 = 0.16, P = 0.93$
Accuracy [%]	88.64(2.48)	96.16 (1.8)*	98.4(0.29)***	$\chi^2 = 18.54, P < 0.001$

Sternberg task

Reaction time [ms]	914.13(32.44)	1004.08(61.35)	857.64(26.26)	$\chi^2 = 18.54, P = 0.051$
Accuracy [%]	88.4(2.28)	96.47(0.77)**	96.25(0.59) **	$\chi^2 = 11.1, P < 0.01$

Note. Data are presented as mean (standard error)

481 * P < 0.05; ** P < 0.01; *** P < 0.001; all compared with Low Activity

489	Table 3. Physical Fitness across Three Latent Profiles	(N =	120)
		`	

	Low Activity	Average Activity	High Activity	Overall Wald χ^2
	N=38	N=31	N=51	
BMI [kg·m ⁻²]	17.02(0.52)	16.96(0.62)	17.6(0.44)	$\chi^2 = 1.1, P = 0.58$
VO _{2max} [ml ⁻ kg ⁻¹ .min ⁻¹]	37.98(1.39)	35.28(1.55)	37.82(1.01)	$\chi^2 = 2.05, P = 0.36$

Note. Data are presented as mean (standard error)