
1 
 

Carbon Credit Futures as an Emerging Asset:  

Hedging, Diversification and Downside Risks 

Abstract 

Even though carbon futures as a new asset have attracted the attention of scholars, there have 

been few attempts to investigate potential benefits of investing in carbon credits. In this study, 

we analyse the feasibility of hedging and diversifying stocks with carbon futures. We adopt the 

dynamic conditional correlation (DCC) models which allow us to compute time-varying 

optimal hedge ratios, optimal weights and portfolio returns. These hedging and portfolio metrics 

are then compared with those derived for commodity futures. Our main results suggest that 

including a small portion of carbon futures in a stock portfolio provides hedging benefits and 

reduces overall risk for a given level of expected return. The COVID-19 outbreak seems to have 

changed the hedging dynamics and the hedging capability of carbon futures is impaired during 

the pandemic. In terms of diversification benefits, our results show that adding carbon to a stock 

portfolio improves the risk-adjusted performance overall. We further examine economic 

benefits as a measure of hedging performance and find evidence of positive utility gains that 

are strongly dependent on investors’ risk aversion. Comparing the performance of carbon 

futures with commodities, hedging effectiveness of carbon futures is not as high as that of 

precious metals and agriculture futures, however, carbon credits outperform energy futures in 

terms of hedging and diversification.  

1. Introduction 

Global warming and climate change have been a serious threat for the environment in the last 

couple of decades. Since the mid-20th century, increasing temperatures have been menacing the 

global climatic system. The main cause of global warming is attributed to man-made emissions 

of greenhouse gases. Starting heavily with industrialization, fossil fuel consumption to generate 

energy for manufacturing, transportation, heating, and electricity, along with hasty urbanization 

causing deforestation are seen as the major reasons of carbon emissions. Authorities have 

initiated a range of policies to prevent carbon emissions to mitigate the damages of global 

heating1. Carbon pricing that can be applied either as carbon taxes or emissions trading systems 

is one of the most efficient solutions to facilitate the transition towards low-carbon industries 

by providing an economic incentive. 

Emissions trading systems are also known as cap and trade (CAP) or emissions trading scheme 

(ETS) under which the central authority allocates a limited number of carbon permits. 

According to this system, carbon releasing companies must hold permits to cover their 

emissions. Thus, through a market-based system, polluters are allowed to adjust their carbon 

emissions permits by trading carbon allowances. As the cost of carbon increases, carbon-

releasing companies are forced to shift their operations to greener applications. Established 

emissions trading systems come along with exchange-listed futures that enhance market 

efficiency through price formation and liquidity which resultantly allure investors to actively 

trade. The value of traded global carbon permits grew by 164% in 2021 and reached to $851 

 
1 The United Nations Framework Convention on Climate Change (UNFCCC) has been established to prevent “dangerous 

human interference with the climate system” and 154 states signed the Earth Summit in 1992. The Kyoto Protocol superseded 

in 1997, and the Paris Agreement in 2015 replaced the Kyoto Protocol with 194 countries and the European Union signing the 

treaty. The Kyoto Protocol has propelled the creation of the carbon credit markets and the emissions trading systems (see 

among others, Balcilar et al., 2016). 
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billion. Since the launch of the EU ETS, carbon emissions have become a factor of production 

and tradable commodity (Gronwald et al., 2011; Wen et al., 2017). The carbon market with its 

recent history provides new opportunities for market participants, however, its price dynamics 

should be well understood in order to develop relevant investment decisions and risk 

management strategies. Unlike bonds and stocks which pay interest and dividends, respectively, 

carbon allowances do not provide interim cash flows, instead investors can collect the resale 

price, which is determined by demand and supply forces (Benz and Truck, 2009; Fan et al., 

2014). Demand for carbon may arise from energy consumption, economic activity, and 

investments, however, it is supplied by regulating bodies only, which is rather unique (Seifert 

et al., 2008; Alberola et al., 2008).  

In light of the above discussions, a new market for a new asset2 has emerged and been growing 

steadily, attracting investors who seek hedging benefits and asset-level diversification which 

provides significant advantages over country-level diversification in a world of globalization.3 

Carbon futures are used by financial market participants for hedging to facilitate risk mitigation 

and transfer (Narayan and Sharma, 2015; Schultz and Swieringa, 2014). Besides, with the 

involvement of institutional investors including hedge funds, pension funds and carbon funds, 

carbon markets have received considerable interest from market players who want to extend 

their investment opportunities, even though they do not have any emission reduction obligations 

(Afonin et al., 2018). As pointed out by Dutta (2018), financial institutions constitute a weighty 

group of investors in the European emission market that make use of the EUAs as an effective 

tool for portfolio diversification and as a part of socially responsible investing strategy.4  

Therefore, the increasing role of institutional investors in carbon markets supplements liquidity 

and enhances profitability (Jaraite-Kazukausk and Kazukauskas, 2015; Hintermann, 2017; 

Makridou et al., 2019). 

Recently, scholars have dedicated efforts to study the interactions between carbon markets and 

financial assets from the perspective of portfolio construction and risk management. Narayan 

and Sharma (2015) confer that carbon and related derivatives are used for “different investment 

operations, such as portfolio diversification, arbitrage, hedging, and speculation”. However, the 

vast majority of the literature in this field investigate the linkages between carbon and energy 

markets (Reboredo, 2013; Boersen and Scholtens, 2014; Sousa et al., 2014; Hammoudeh et al., 

2015; Yu and Lo, 2015; Kanamura, 2016; Zhang and Sun, 2016; Wen et al., 2017). We still do 

not have a very good understanding of potential benefits of investing in carbon for investors. 

Even though some studies examine carbon allowances as a hedging instrument for clean energy 

stocks (e.g. Ahmad et al., 2018; Jiang and Ma, 2022), these studies do not offer a complete 

picture. Given that carbon allowances have weak linkages with macroeconomic variables and 

financial markets (e.g. Chevallier, 2009; Tan et al., 2020), there may be some hedging and 

diversification benefits to exploit for equity market investors, which has been largely ignored 

in previous research. In addition, the bulk of prior studies focus on EUA carbon allowances, 

 
2 According to Fan et al. (2014) it could be expected that “existing finance theories, concepts and tools would not be applicable 

in this market”. 
3 As suggested by Singh et al. (2019), globalization has caused asset-level diversification to become more efficient than country-

level diversification in portfolio construction. 
4 See Viteva et al. (2014) among others on the discussion of socially responsible investing strategies adopted by investors.  



3 
 

whereas global carbon markets could offer investors various other investment opportunities in 

carbon credits that can be useful in risk management and portfolio diversification.5 

This study analyses carbon credit futures as an emerging financial asset. Given the distinctive 

and unique features of carbon allowances as a tradable asset, we believe that investigating the 

investment characteristics of carbon futures deserves a special attention and can provide useful 

information for financial market participants. Our main aim is to assess the hedging and 

diversification benefits of global carbon allowances for stock portfolios (MSCI Asia Pacific, 

MSCI Europe, MSCI North America, and NASDAQ green stocks). For this purpose, first, we 

compute hedge ratios, hedging effectiveness and optimal weights based on Engle's (2002) 

Dynamic Conditional Correlation (DCC)-Generalized Autoregressive Conditional 

Heteroskedasticity (GARCH) model and then estimate portfolio metrics and utility gains of 

hedged portfolios. We also compare hedging and diversification performance of carbon futures 

to that of commodity futures (agriculture, energy, and precious metals). More specifically, this 

paper attempts to implement hedging strategies using carbon allowances that improve the 

efficiency of risk management and minimize the overall portfolio risk. Such a contribution is 

eminent for market players in terms of building accurate portfolio construction strategies and 

pricing related financial derivatives. In our case, hedging can be considered as a special case of 

asset allocation that involves carbon/commodity futures and equities. However, as suggested 

by Wang et al. (2015), hedging is slightly different from asset allocation in the sense that 

hedgers try to minimize their losses by taking an offsetting position and thus they are less 

concerned about the returns they get than the risks they may face. Mean-variance portfolio 

investors that seek diversification, on the other hand, strive to reduce risk without sacrificing 

the potential for higher gains when they construct their portfolios. Since hedging is return 

neutral, we also investigate if the hedged portfolios provide diversification and positive 

economic benefits.  

We contribute to the emerging literature of energy finance in several dimensions. First, to the 

best of our knowledge, we use a global carbon index for the first time in the existing literature 

as the previous work largely focuses on European Union Allowances (EUAs) used in the 

European Union Emissions Trading Scheme (EU ETS), which was launched in 2005 and 

constitutes a first example. More specifically, we use the IHS Markit Global Carbon Index 

which is the first benchmark and liquid investable index designed to track global carbon credits 

established on July 31, 2014. Therefore, this study extends the relevant literature and enhances 

our understanding of benefits of investing in global carbon allowances by examining their 

hedging and diversification potential in greater depth. Second, as stated earlier, even though 

some papers investigate the links between carbon allowances and financial assets, these studies 

largely focus on clean energy equities or electricity companies (e.g. Oberndorfer, 2009; Kumar 

et al., 2012; Moreno and da Silva, 2016; Dutta et al., 2018; Ahmad et al., 2018; Wang and Cai, 

2018; Ji et al., 2019; Xia et al., 2019; Hanif et al., 2021). There are also some studies exploring 

the hedging potential of energy and carbon futures for mitigating carbon price risk (see among 

others Balcilar et al., 2016; Philip and Shi, 2016; Wen et al., 2017; Chai and Zhou, 2018; Lee 

and Yoon, 2020). However, relatively very few empirical works analyse the performance of 

carbon futures as a standalone investment (Zhang et al., 2017; Afonin et al., 2018). Therefore, 

our paper fills this gap by exploring the performance of global carbon futures not only for green 

 
5 Apart from EUA, there are also national or sub-national systems operating in other countries, including Canada, China, Japan, 

New Zealand, South Korea, Switzerland, the United Kingdom and the United States. 
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stocks but also for conventional stock portfolios. Third, our sample period that runs from July 

31, 2014 to July 30, 2021 covers the COVID-19 period and we examine how the hedging and 

diversification dynamics have changed during the pandemic. Understanding cross-market 

interactions during market turmoil is crucial for investors and portfolio managers, particularly 

in terms of risk management (Huynh et al., 2022). In this way, our study provides updated and 

fresh evidence for hedging and diversification characteristics of carbon futures before and after 

the pandemic which is rather in dearth. Fourth, unlike most of the previous studies that focus 

on symmetric variance reductions, we also consider downside risk measures, such as Value-at-

Risk (VaR) and Conditional Value at Risk (CVaR). More specifically, we further investigate 

whether an investor with a proportion of wealth allocated to carbon credits and stocks can 

reduce their exposure to downside risk relative to an unhedged stock-only portfolio.  

Our results show that carbon is a relatively cheap hedge overall, however, optimal hedge ratios 

display considerable volatility over time and significantly depend on the market state. During 

the COVID-19 pandemic, hedging becomes more expensive and hedging effectiveness falls, 

showing that hedging capability of carbon futures is impaired. Our findings also indicate that 

the Modified Conditional Value-at-Risk (MCVaR), capturing skewness and kurtosis of the 

losses beyond the VaR level, generates better results in terms of hedging effectiveness. The 

results also provide evidence of positive utility gains for portfolios consisting of carbon and 

stocks; however, the economic benefits are significantly dependent on the level of risk aversion 

and market state. As for the diversification benefits, adding carbon futures to stock portfolios 

improves portfolio performance in the full sample and pre-COVID periods; however, the 

portfolio performance of carbon futures deteriorates during the pandemic, particularly for 

European and North American stocks. Lastly, when we compare the performance of carbon 

futures with commodities, we observe that hedging effectiveness of carbon is not as high as 

those of precious metals and agriculture futures, nevertheless, carbon credits outperform energy 

futures in terms of hedging and diversification benefits. 

The remainder of this paper is organized as follows. Section 2 reviews the work in related 

literature. Section 3 presents the data with descriptive statistics. Section 4 discusses the research 

model and results of the analyses. Section 5 concludes the findings. 

2. Literature Review 

This section surveys several strands of the literature relevant to carbon as a financial asset. The 

first strand of the literature investigates the relationship between carbon and energy markets. 

As suggested by Dai et al. (2021), empirical studies that analyse the effects of carbon trading 

on macroeconomy and financial markets largely focus on energy industry. The linkages 

between carbon and energy markets have been studied extensively with the execution of 

different quantitative techniques (Keppler and Mansanet-Bataller, 2010; Byun and Cho, 2013; 

Sousa et al., 2014; Yu and Lo, 2015; Zhang and Sun, 2016; Balcilar et al., 2016; Wen et al., 

2017; Uddin et al. 2018; Ji et al., 2018; Wang and Guo, 2018). Taking a closer look at the 

relevant literature, existing research substantiates significant interactions whereby the results 

predominantly suggest that energy markets, specifically fossil fuels, significantly affect carbon 

prices (Mansanet-Bataller et al., 2007; Alberola et al., 2008; Bredin and Muckley, 2011; Creti 

et al., 2012). Empirical research also shows that oil and carbon markets are positively 

associated, as a surge in oil demand spouts energy consumption along with carbon emissions 

leading to higher carbon prices (Kanen, 2006; Zhang et al., 2017). Byun and Cho (2013) 
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forecast the volatility of the carbon market using the volatilities of Brent oil, coal, natural gas, 

and electricity prices. Their findings reveal that Brent oil, coal and electricity have a strong 

predictive power for the volatility of carbon futures. Balcilar et al. (2016) examine the energy 

and carbon markets with a focus on risk spillovers and dynamic hedging strategies. They 

provide evidence of time-varying correlations between carbon and energy futures and volatile 

hedging effectiveness of carbon allowances. In another study, Tan and Wang (2017) investigate 

the dependence between the EU ETS and energy markets and confirm significant linkages 

arising from production-restrain, substitution and aggregated-demand effects. In a similar 

study, Ji et al. (2018) show that Brent oil prices significantly affect carbon markets, wherein 

the volatility connectedness is higher than the return connectedness.   

The second strand of the literature analyses univariate dynamics of carbon prices. Examining 

the presence of outliers in carbon price volatility, Chevallier (2011a) detects instabilities in 

carbon volatility, which can be explained by growing uncertainties in post-Kyoto negotiations. 

In another study, Chevallier (2011b) adopts non-parametric modelling and report strong 

heteroskedastic and asymmetric behaviour of carbon prices. In a similar study, Chang et al. 

(2017) explore the price dynamics of the China-wide emissions trading scheme (CETS). Their 

results imply that the emissions allowances display significant dynamicity, asymmetric 

leverage and regime-switching effects.  Creti and Joëts (2017) test for multiple bubbles in EUA 

carbon prices and provide evidence of different episodes of price bubbles. They also find that 

these bubbles seem to be related to energy and environmental policy announcements. In a more 

recent study, Dutta (2018) examines jumps in EUA prices and shows that jumps do exist in the 

carbon market. He further contends that outliers and time-varying jumps should be incorporated 

into the modelling of carbon market risk. 

The third and emerging strand of the literature investigates the links between financial markets 

and carbon markets and/or hedging and diversification benefits of carbon as an investment 

vehicle. Our paper mostly relates to this stream of the literature. Table 1 provides a summary 

of key relevant works. As can be seen, most of the empirical studies in this area focus on clean 

energy equities or electricity companies. In addition, the literature cites mixed results regarding 

portfolio performance of carbon. For example, Zhang et al. (2017) suggest that including carbon 

credits into stock portfolios reduces the overall portfolio risk as the relative independence of 

the carbon market from financial assets helps to diversify. Afonin et al. (2018) provide a 

contrasting evidence and find that European carbon emissions offer diversification benefits only 

during phase 1 (2005-2007), however these benefits disappear for phase 2 (2008-2012) and 

phase 3 (2013-2020). In another study, Dutta et al. (2018) find insignificant relation between 

carbon emissions and clean energy equity returns, whereas volatility linkages are significant. 

They also show that portfolio diversification benefits are attainable for investors in the EUAs. 

In a more recent study, Hanif et al. (2021) provide implications in terms of portfolio 

management based on dynamic spillovers and copula functions. They state that the inclusion of 

carbon allowances in clean energy stock portfolios may provide diversification benefits, 

particularly during bearish market periods and investors contemplating to invest in carbon must 

hedge against price fluctuations in clean energy equities. Some studies also argue that carbon 

and stock prices are connected via energy prices within the nexus of economic and financial 

environment; increases in oil demand drive up energy prices, invoking a negative influence on 

economic growth, firm value, and leverage, which in turn depresses stock prices (Arouri and 

Nguyen, 2010; Zhang et al., 2017). However, from a different perspective, higher energy 

demand may lead to higher carbon allowance prices, creating an economic incentive to reduce 
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emissions which would directly affect firm valuation (Wen et al., 2020; Jimenez-Rodriguez, 

2019).6 

[Insert Table 1 here] 

Overall, the survey of literature shows a dearth of empirical studies on hedging and 

diversification potential of carbon futures for equity portfolios. Prior studies largely focus on 

clean energy or electricity companies to analyse benefits of investing in carbon markets. The 

recently established carbon credit markets position carbon futures as an emerging investment 

alternative with a particular stance in asset management and allocation since their weak 

association with macroeconomic factors and other financial securities situates them as potential 

hedging instruments in portfolio design (Alberola et al., 2008; Chevallier, 2009). Despite of the 

abundance of studies that examine the links between energy and carbon markets, empirical 

work analysing the interactions between carbon and stock prices and hedging/diversification 

benefits of carbon as a financial asset are relatively rarer in the existing literature. A deeper 

understanding of the interactions between equities and carbon credits would equip investors 

with enhanced skills in optimising investment and hedging strategies. Therefore, we contribute 

to the existing literature by assessing the portfolio performance of carbon futures and providing 

updated evidence regarding how the portfolio performance of carbon have changed during the 

COVID-19 pandemic.  

3. Data and Summary Statistics 

The data used in this study are listed in Table 2. The study period runs from July 31, 2014 to 

July 30, 2021, which covers the COVID-19 pandemic. The data are daily and retrieved from 

Bloomberg. Figure 1 depicts the time series of daily prices for carbon futures. The graphical 

illustration shows that carbon prices are stable from mid-2014 to mid-2017 and show a strong 

upward trajectory since mid-2017 due to positive developments in the carbon markets, such as 

more effective carbon tax policy reforms and the introduction of the Market Stability Reserve 

(MSR). The global carbon market experiences a fall during March 2020 after the WHO declared 

COVID-19 a pandemic, however it appears that it quickly recovered and entered a new period 

of price growth. It even hits a record high level in mid-2021 with increased financial investment 

in the carbon allowance markets. We also argue that the increased carbon prices can be 

attributed to governments’ actions; market participants have clear signals from governments 

that they will continue to decarbonize the economy and the supply of carbon allowances will 

be reduced more rapidly in the years ahead in line with 2030 climate target plan and 2050 net 

zero strategy, which boosts long-term prospects for higher carbon prices. 

[Insert Table 2 here] 

[Insert Figure1 here] 

Table 3 shows the summary statistics for the daily log returns of all the variables. The results 

suggest that carbon futures yield the highest daily mean return followed by green stocks, while 

 
6 There are also some recent papers examining carbon risk premium. Oestreich and Tsiakas (2015) present evidence of a large 

and significant carbon premium as the firms receiving free carbon emission allowances outperform the others, while firms with 

high carbon emissions are exposed to higher carbon risk raising their expected returns. In a relevant study, Bolton and 

Kacperczyk (2021) provide evidence of a significant positive relation between stock returns and the level of carbon emissions 

and suggest that investors price a carbon risk premium at the firm level. 
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agriculture and energy futures give daily negative returns over the sample period. Looking at 

the unconditional risk, measured by standard deviations, energy commodities are the riskiest, 

followed by carbon futures. Therefore, we can say that even though carbon credits yield high 

returns, they possess significant amount of risk. Higher moment measures namely, kurtosis and 

skewness, suggest that negative returns are more probable than positive ones, except for 

agriculture, and all return series display excess kurtosis, implying a high possibility of extreme 

returns. We also conduct further tests for unit root, autocorrelation and heteroskedasticity. 

Augmented Dickey-Fuller (ADF) unit root tests show the rejection of the presence of a unit 

root, indicating that all return series are stationary. The Ljung-Box tests applied up to 10 lags 

reject the null hypothesis of no autocorrelation in squared returns. Lastly, ARCH-Lagrange 

Multiplier (LM) tests reject the null hypothesis of homoskedasticity. In a nutshell, preliminary 

test results provide evidence of the suitability of all the return series for further modelling.  

 

[Insert Table 3 here] 

 

4. Dynamic Conditional Correlations 

Given the stylized facts of serial correlation and conditional heteroskedasticity in the return 

series shown in the previous section, these features must be taken into account when modelling 

the conditional correlations. As suggested by Lee (2006), the Dynamic Conditional Correlation 

(DCC) model of Engle (2002) offers a simple way to estimate the time-varying processes of 

conditional volatilities and correlations simultaneously.7 The DCC model includes two steps. 

In the first step, we estimate the conditional return and volatilities as given in equation (1) and 

(2), respectively below. We use the GJR-GARCH (1, 1) model of Glosten et al. (1993) to 

capture potential return-volatility asymmetry. If a given market does not exhibit asymmetric 

return-volatility relationship, we proceed with the standard GARCH specification with no 

asymmetry. 

𝑅𝑚,𝑡 = 𝜇𝑚 + 𝜓𝑚𝑅𝑚,𝑡−1 + 𝜂𝑚,𝑡          (1) 

ℎ𝑚,𝑡 = 𝜑𝑚,0 + 𝜑𝑚,1𝜂𝑚,𝑡−1
2 + 𝜑𝑚,2ℎ𝑚,𝑡−1 + 𝜑𝑚,3𝐼{𝜂𝑚,𝑡−1<0}𝜂𝑚,𝑡−1

2        (2) 

where Rm,t is the return on the market m at time t, 𝜂𝑚,𝑡 is the model residuals, ℎ𝑚,𝑡 denotes the 

conditional variances and 𝐼{𝜂𝑚,𝑡−1<0} stands for the indicator function taking the value of 1  if  

𝜂𝑚,𝑡 is negative and 0 otherwise.  

In the second step, we estimate the dynamic conditional correlations. The equation of the 

conditional covariance matrix from the DCC-GARCH model can be written as: 

𝐻𝑡 = 𝐷𝑡𝐾𝑡𝐷𝑡              (3) 

 
7 Multivariate GARCH models, particularly DCC-GARCH, are widely used in the literature to examine cross-market 

interdependencies and perform portfolio analysis. However, as suggested by an anonymous referee, some recent studies also 

adopt various empirical techniques, including machine learning and deep learning (e.g.  De Spiegeleer et al., 2018; Abdullah, 

2021; García-Medina and Luu Duc Huynh, 2021) to make predictions. We are grateful to the referee to provide this insight and 

we will consider these models for a future study.  
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where, 𝐷𝑡 represents a 2 x 2 diagonal matrix consisting of conditional standard deviations √ℎ𝑖,𝑡. 

The conditional correlation matrix Kt can be decomposed into: 

𝐾𝑡 = 𝑄𝑡
∗−1𝑄𝑡𝑄𝑡

∗−1            (4) 

where 𝑄𝑡
∗ =

[
 
 
 
 √

𝑞11,𝑡 0 … 0

0 √𝑞22,𝑡 . . . 0

⋮ ⋮ ⋮ 0
0 0 . . . √𝑞𝑛𝑛,𝑡]

 
 
 
 

          

 

Engle (2002) formulates the matrix Qt as: 

𝑄 = (1 − 𝜃1 − 𝜃2)𝐾 + 𝜃1𝜀𝑡−1𝜀𝑡−1
′ + 𝜃2𝑄𝑡−1         (5) 

where  εt-1 is a 2 x1 vector of standardized residuals and θ1 and θ2 are model coefficients to be 

estimated. Our primary focus is the conditional correlations which can be expressed as: 

𝜌
12,𝑡=

𝑞12,𝑡

√𝑞11,𝑡𝑞22,𝑡

             (6) 

Cappiello et al. (2006) introduced a more flexible version of the DCC model to capture 

asymmetries in the conditional correlations. Given that financial markets are highly 

interconnected and might be hit by common shocks, the Asymmetric DCC (ADCC) model can 

be well suited to analyse market interactions. Under the ADCC model, the dynamics of Q are 

governed by: 

𝑄 = (1 − 𝜃1 − 𝜃2)𝐾 − 𝜃3�̅� + 𝜃1𝜀𝑡−1𝜀𝑡−1
′ + 𝜃2𝑄𝑡−1 + 𝜃3𝜁𝑡−1𝜁𝑡−1

′                   (7) 

where θ3 is the asymmetry coefficient. 𝜁𝑡−1 = 𝐼[ε𝑡 < 0] ⊙ ε𝑡  , I[.] is an indicator function that 

takes value 1 if the errors are negative and 0 otherwise. ⊙ represents the Hadamard product. 

𝐺 = 𝜁𝑡−1𝜁𝑡−1
′  is the covariance matrix of 𝐸[𝜁𝑡−1𝜁𝑡−1

′ ]. This asymmetric effect in the DCC 

setting helps us understand the correlation structure better and allows us to examine if 

correlations significantly change following joint shocks. We apply the asymmetric extension of 

the DCC model if the cross-correlations exhibit asymmetry and if not, we proceed with the 

standard DCC model.   

Table 4 presents the results from the estimated GJR-GARCH (1,1) models. The AR (1) terms 

ψ in the conditional univariate mean equations are statistically significant in the case of Asia 

Pacific, North America, green stocks, and precious metals, implying explanatory power of past 

returns in predicting future returns, however, the lagged returns are not useful in forecasting for 

the rest of the markets. The ARCH coefficients φ1 are statistically significant at conventional 

levels for carbon, North America, green stocks, and agriculture futures, suggesting that lagged 

shocks drive current volatility in these markets. All the GARCH parameters φ2 are statistically 

significant at 1% level and high at magnitude, implying highly persistent volatility behaviour. 

Looking at the coefficient φ3, volatility asymmetry is present in half of the markets (Asia 

Pacific, North America, green stocks, and energy futures); however, carbon credits do not 

exhibit leverage and volatility feedback effects. Overall, our results confirm those of Byun and 

Cho (2013) who suggest that carbon prices have a time varying variance, and the volatility of 

carbon returns has a persistent characteristic, implying that past volatility can be used to forecast 
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the future volatility of carbon futures returns. We apply diagnostic tests to check the validity of 

the univariate GARCH models. More specifically, we examine if error terms display 

autocorrelation and remaining ARCH effects. The autocorrelation test results fail to reject the 

null hypothesis of no serial correlation. ARCH tests fail to reject the null hypothesis of no 

ARCH effects. Hence, the univariate GARCH models are well specified, and the variance-

covariance matrix constructed with these models can be used for conditional correlation 

modelling.  

 

[Insert Table 4 here] 

Table 5 reports the results of the second stage bi-variate (A)DCC models. The sums of θ1 and 

θ2 are fairly close to one in each case, indicating that the conditional correlations are highly 

persistent and mean-reverting. The average values of the conditional correlations between 

carbon and stock markets, denoted by ρ, are low overall and range from 0.109 to 0.191, 

suggesting that the inclusion of carbon futures to a stock portfolio can provide diversification 

benefits. Among the commodity group, energy futures exhibit the highest correlations with the 

stock markets, while precious metals are negatively correlated with European and North 

American equities. The asymmetric effects in the correlations are present in almost half of the 

cases, indicating that joint shocks increase the co-movements between financial markets. The 

asymmetry coefficient θ3 is positive for the pairs of carbon-Europe, agriculture-green stocks, 

precious metals-Europe and precious metals-green stocks, which shows that negative joint 

shocks have more impact on correlations than positive joint shocks of equal magnitude. For the 

pairs of carbon-North America, carbon-green stocks and precious metals-North America, the 

correlation asymmetry seems to be inverted since the coefficient is negative. In other words, 

the correlations increase following joint good news in these markets, a similar finding is also 

reached by Baur (2012) and Chikili (2016) for the gold market, highlighting the potential safe-

haven property. All in all, the correlations between carbon/commodity futures and stock 

markets are dynamic, except for Asia Pacific – agriculture pair that appears to have constant 

conditional correlations. Moreover, the (A)DCC models do not show any evidence of statistical 

misspecifications as both multivariate diagnostics, Hosking and Li-McLeod, tests results 

suggest that we fail to reject the null hypothesis of no autocorrelations.  

[Insert Table 5 here] 

Figure 2 presents the dynamic correlations between stock returns and futures. Even though there 

seems to be specific features for each pair, some common characteristics emerge. Firstly, the 

dynamic correlations are highly volatile throughout the sample period which implies that 

assuming constant conditional correlations would not be ideal to make informed trading 

decisions. Secondly, stock markets exhibit stronger interlinkages with carbon, agriculture and 

energy futures during mid-2016 which coincides with the Brexit referendum. The Brexit has 

had severe impacts on financial markets by significantly increasing financial market uncertainty 

and damaging stability. There have been many attempts in the literature to analyse the impact 

of Brexit on financial markets, and most of the relevant studies suggest that financial markets, 

more particularly, stock markets experienced negative returns in the short run (Ramiah et al., 

2017; Oehler et al., 2017; Breinlich et al., 2018; Davies and Studnicka, 2018). Our results 

somewhat confirm the possible detrimental effects of Brexit as the correlations become stronger 

and diversification benefits may diminish when needed most. Thirdly, it seems that the COVID-
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19 pandemic has changed the dependence structure as the correlations reach their peak values 

in early 2020. Therefore, our findings confirm general results on financial asset returns, 

displaying higher co-dependency during periods of market downturn, which is in line with 

Gronwald et al. (2011). 

  

[Insert Figure 2 here] 

Looking at the dynamic correlations between carbon futures and stock returns, we see that they 

switch between negative and positive values; the correlations range from approximately -0.3 to 

0.5 across all the markets. Green (Asia Pacific) stock markets display the highest (lowest) 

conditional correlations with carbon on average. Relatively stronger linkages between green 

equities and carbon allowances are somewhat expected as previous studies (e.g. Kumar et al, 

2012; Dutta et al., 2018) argue that higher carbon prices encourage investments in clean energy 

companies, which would translate into higher corporate profits in the green energy sector. 

However, the correlation dynamics change frequently over time; for example, while European 

stocks have the lowest and negative correlations with carbon credits during 2015, they display 

the highest positive correlations in late 2020s. It is clearly evident that the correlations are 

strongly responsive to specific events, economic developments and market turmoil and they 

seem to exacerbate in certain time periods. For instance, the cross-correlations between carbon 

and stock returns significantly rise following the Paris Agreement adopted in December 2015 

and remained at high levels during 2016. This can be linked to changing investors perception 

of carbon-related investments, which is also suggested by Monasterolo and De Angelis (2020) 

who argue that stock market investors started considering carbon as an appealing investment 

opportunity after the Paris Agreement. The pairwise correlations are also higher during the 

COVID-19 period. For example, the conditional correlations between green stocks and carbon 

futures surge in couple of days from around 0.15 to almost 0.45 when the WHO announced 

COVID-19 as a pandemic on March 11, 2020. Nevertheless, we can infer that a portfolio 

consisting of carbon futures and stocks might provide diversification benefits as the correlations 

are low in general. However, we should also note that market participants should be aware of 

volatile correlations while constructing their portfolios.  

 
Comparing the stocks-carbon pairs with stocks-commodity futures pairs, we can clearly see that 

energy futures exhibit the strongest correlations with stock markets which are mostly positive. 

For example, the average correlations between carbon and European stocks are around 0.1, 

while those between European stocks and energy futures are approximately around 0.25, 

implying that carbon can be a better diversifier than energy futures. The correlations between 

precious metals and stock markets alter between positive and negative values; the only 

exception is the Asia Pacific market which always exhibits positive and low correlations with 

precious metals. The negative correlations may provide evidence of the safe-haven property of 

precious metals; however, we observe that their co-movements with stocks strengthen during 

the COVID-19 period, which casts doubt on their safe-haven benefits. Lastly, agricultural 

futures display positive correlations with stocks; even though the correlations are low overall, 

there are sudden increases in certain periods such as the wake of the pandemic. Our results 

reveal that carbon futures may share some common characteristics with commodity futures in 

terms of the correlation structure with equities, however, precious metals appear to be more 

distinct as they mostly display negative linkages with equities.  
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5. Hedging Analysis 

The empirical results in the previous sections provide some useful insights and implications in 

terms of asset allocations and diversification for investors and portfolio managers. More 

particularly, the dynamic conditional correlations between financial assets are crucial for 

market participants to hedge their exposure to downside risks and price fluctuations. 

Theoretically, there are two different approaches for designing an optimal hedge strategy 

(Gagnon et al., 1998; Cotter and Hanly, 2010). The first approach focuses on risk minimization 

by assuming that investors are infinitely risk averse. The minimum variance hedge ratio 

(MVHR) is the most widely used because of its simplicity. However, as suggested by Cecchetti 

et al. (1988), the problem with this approach is that it ignores the expected return on the hedged 

portfolio. In addition, the assumption of infinitely risk averse investors might not be realistic 

since hedgers are heterogenous in terms of their level of risk aversion (Cotter and Hanly, 2015). 

The second approach is utility maximization which allows us to analyse if the hedged portfolio 

provides economic gains for investors. Under this approach, utility is a function of both risk 

and return and incorporates risk aversion preferences in the optimal hedging strategy. In this 

paper, we follow both approaches. First, we analyse hedge ratio and hedging dynamics in the 

minimum variance framework and then we compute utility gains from hedging.8  

5.1.Hedge ratios and optimal weights 

In this section, we investigate the role of the global carbon index in hedging against stock price 

movements based on optimal portfolio weights and hedge ratios. We further compare the 

hedging potential of carbon prices with that of commodity futures. In other words, using various 

hedging strategies, we construct different portfolios for managing the stock price risk. We also 

examine how hedging statistics change during the pre-COVID-19 and COVID-19 periods by 

splitting time-series data of hedging statistics into subsamples; pre-COVID-19 covers the 

period from August 1, 2014 to March 10, 2020 and the COVID-19 sample starts from the day 

the World Health Organization (WHO) declared COVID-19 outbreak a pandemic on March 11, 

2020 and ends on July 30, 2021.  

We present the methodology for hedging statistics below, building on the theory of minimum 

variance hedge ratio. Suppose we use asset j as a hedge for the stock market index i. Following 

Kroner and Ng (1998), we can write the optimal portfolio weight for asset i as: 

𝑤𝑖𝑗,𝑡 =
ℎ𝑗𝑗,𝑡−ℎ𝑖𝑗,𝑡

ℎ𝑖𝑖,𝑡−2ℎ𝑖𝑗,𝑡+ℎ𝑗𝑗,𝑡
,   𝑤𝑖𝑡ℎ   𝑤𝑖𝑗,𝑡 = {

0, 𝑤𝑖𝑗,𝑡 < 0

𝑤𝑖𝑗,𝑡 , 0 ≤ 𝑤𝑖𝑗,𝑡 ≤ 1

1, 𝑤𝑖𝑗,𝑡 > 1
        (8) 

where, hij,t stands for the conditional covariance between returns on assets i and j, and hii,t (hjj,t ) 

is the conditional variance of returns on asset i (j). The weight on asset j is (1 − wij,t). The 

conditional variances and covariances were extracted from the (A)DCC models. 

We follow Kroner and Sultan (1993)’s methodology to calculate the optimal hedge ratios 

(OHRs) which minimize the variance of the hedged portfolio as given in the equation (9). The 

 
8 It is also worth-noting that, following Kroner and Sultan (1993), Fernandez (2008) and Chen et al. (2008), we assume that 

future prices follow a pure martingale process (i.e. expected return on futures is zero). In this case, MVHR and utility 

maximization hedge ratios are equivalent.  
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optimal hedge ratio tells us how much a long position of one dollar in the stock market i can be 

hedged by a short position of λt dollar in asset j.  

𝜆𝑡 =
𝐶𝑜𝑣(𝑅𝑖,𝑡,𝑅𝑗,𝑡|𝐼𝑡−1)

𝑉𝑎𝑟(𝑅𝑗,𝑡|𝐼𝑡−1)
            (9)  

The statistics of optimal hedge ratio (OHR) for the entire sample, pre-COVID-19 and COVID-

19 periods are presented in Table 6. The average values of the dynamic hedge ratios for carbon 

futures range from 0.058 to 0.116 during the entire sample period, indicating that carbon credit 

futures are cheap hedges overall. For example, a $1 long position in North American stocks can 

be hedged by shorting 9.3 cents of carbon. Comparing the hedge ratios with commodities, 

agriculture futures are relatively more expensive hedges; for instance, a $1 long position in 

green stocks can be hedged for 18.5 cents with a short position in agriculture futures. It is also 

worth noting that some values of optimal hedge ratios are negative suggesting that the hedge 

can be formed by either being long or short on both assets. Looking at the hedge ratios of 

precious metals, a $1 long (short) position in European and North American markets can be 

associated with 16.9 and 4.6 cents long (short) positions in precious metals, respectively. 

Furthermore, the standard deviations of the OHRs for agriculture futures are the highest 

followed by precious metals, demonstrating that hedge ratios of these commodities may not be 

stable over time, whereas the carbon futures seem to have relatively more stable hedge ratios.   

[Insert Table 6 here] 

The dynamic hedge ratios for the full sample are plotted in Figure 3. The figures provide some 

interesting insights in terms of the behaviour of OHRs. Firstly, they show that the OHRs are 

time varying and display considerable volatility, suggesting that hedging costs may 

significantly change over time. For example, a $1 long position in Asia Pacific stocks can be 

hedged for around 3 cents with a short position in carbon futures in early 2015, the same 

position must be associated with 20 cents short position in carbon futures in mid-2015. 

Secondly, pairwise hedge ratios significantly surge and reach a high level during the COVID-

19 pandemic. As can also be seen from Table 5, the average OHR for carbon-Europe pair has 

increased from 0.038 in the pre-COVID period to 0.190 in the COVID-19 period. Higher hedge 

ratios imply an increase in hedging costs in the wake of the pandemic, due to larger number of 

contracts that the hedging strategy requires. This result is in line with Akhtaruzzaman et al. 

(2021) and Zhang et al. (2021) who document significantly higher hedge ratios after the 

COVID-19. Furthermore, the hedge ratios for Asia Pacific markets appear to be lower than the 

others, suggesting that hedging Asia Pacific stocks with carbon and commodity futures would 

be cheaper.  

[Insert Figure 3 here] 

We analyse if the increases in the OHRs are statistically significant using t-tests. The results 

reveal that there are significant differences between the OHRs in the pre-COVID and COVID-

19 period as we reject the null hypothesis of equal hedge ratios in all the cases except for Asia 

Pacific-precious metals pair. We also test for a structural break in hedge ratios using Chow 

break point tests. More specifically, we investigate if there is a structural break on March 11, 

2020, when the WHO declared the COVID-19 outbreak a global pandemic. Therefore, Chow 

test has a null hypothesis that there is no structural break on March 11, 2020. The F statistics 

presented in Table 5 provide evidence of a structural break in the OHRs for all cases, except 

for Asia Pacific-precious metals pair. Hence, we can note that the COVID-19 pandemic has 
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certainly changed hedging dynamics, leading to higher hedging costs. This suggests that 

investors should rebalance their positions in carbon and commodity futures more frequently 

during the COVID-19 to hedge stocks. These results add to the existing literature on carbon 

markets (e.g. Philip and Shi, 2016; Ahmad et al., 2018; Wang and Guo, 2018) by analysing 

dynamic hedge ratios and investigating how hedging costs have changed during the COVID-

19 outbreak.   

Optimal portfolio weights are presented in Table 7. For the full sample, portfolio pairs with 

precious metals and agriculture futures carry the highest average optimal weights that range 

from 0.402 to 0.490, suggesting that investors should invest between 40%-50% of their capital 

in agriculture or precious metals futures to create well-balanced two-asset portfolios with 

stocks. The optimal weights for carbon futures range from 0.179 to 0.227, showing that 

investors should allocate about 80% of their capital for stocks and roughly 20% for carbon 

credits to minimize the risk without lowering the expected return of the stock-carbon portfolio. 

This is consistent with the findings of Dutta et al. (2018) in that investors should invest more 

in stocks than in carbon allowances to achieve superior risk-adjusted returns. Put it differently, 

including a small portion of carbon futures in a stock portfolio may reduce the overall risk for 

a given level of expected return. Additionally, looking at the energy-stock portfolios, we 

observe that energy futures have the lowest optimal weights around 10%. Therefore, we can 

clearly say that energy futures may not perform very well in terms of hedging which we will 

analyze in the next section in a greater detail.  

[Insert Table 7 here] 

We further examine the changes in optimal weights in pre-COVID and COVID-19 periods and 

conduct t-tests to see if the changes are statistically significant. The results show that optimal 

weights of carbon and commodity futures increase during the COVID-19 period in some cases. 

For example, for green stocks-carbon pair, the optimal weight is 0.163 in the pre-COVID 

sample, indicating that, for a $1 green stocks-carbon portfolio, 16.3 cents should be invested in 

carbon futures and the remaining amount in green stocks. The optimal weight of carbon futures 

increases to 0.283 during the COVID-19 period, which suggests that investors should increase 

their investment in carbon markets and decrease their investments in green stocks. This result 

supports the recent findings of Hanif et al. (2021) that show carbon can be a refuge asset against 

extreme price movement of clean energy equities. However, there are some cases where the 

optimal weights of carbon should be reduced in the wake of the pandemic, for instance, the 

optimal weights of carbon for Asia Pacific (Europe) decreases from 0.184 (0.238) in the pre-

COVID to 0.158 (0.185) in the COVID-19 period. This shows that market participants investing 

in Asia Pacific and European markets should decrease their investment in carbon futures to 

achieve their optimal hedging strategy. Interestingly, our results show that the optimal weights 

of precious metals in Asia Pacific and Europe stock portfolios significantly decrease in the 

COVID-19 period, highlighting that precious metals may not act as a safe-haven for these 

markets. The weights of agriculture futures significantly increase after the outbreak of the 

Coronavirus, suggesting that market participants should hold more agriculture futures in their 

stock portfolios to minimize the portfolio risk. Energy futures have the lowest allocations in 

portfolio combinations both in pre-COVID and COVID-19 samples, confirming our previous 

results.  
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5.2.Hedging Effectiveness 

Portfolio weights and hedge ratios show how an optimal hedge should be constructed to 

minimize risk; however, they do not help identify whether the hedge is effective. Following Ku 

et al. (2007) and Jin et al. (2020), we calculate the hedging effectiveness (HE) to compare the 

performance of different hedging strategies. Hedging effectiveness estimates the percentage of 

the variance eliminated from an unhedged portfolio by hedging (Hamma et al., 2021). More 

specifically, we quantify the variance reduction for any hedged portfolio compared to the 

unhedged portfolio as given below: 

𝐻𝐸 =
𝑣𝑎𝑟𝑢𝑛ℎ𝑒𝑑𝑔𝑒𝑑−𝑣𝑎𝑟ℎ𝑒𝑑𝑔𝑒𝑑

𝑣𝑎𝑟𝑢𝑛ℎ𝑒𝑑𝑔𝑒𝑑
           (10) 

Hedge effectiveness of a perfect hedge is equal to 1, while HE is 0 if hedging is not effective 

to reduce portfolio volatility. A higher value of HE indicates better hedging performance.  
 
We also calculate the reductions in Value-at-Risk (VaR) and expected shortfall (ES) as 

alternative risk metrics. As known, these downside risk measures have been widely used by 

financial institutions to quantify and assess financial risks. VaR measures the maximum 

expected loss a portfolio can incur over some time interval with a certain confidence level. ES, 

also known as Conditional VaR (CVaR), represents the conditional expectation of a portfolio’s 

losses given that the loss is beyond the VaR level (Yamai and Yoshiba, 2005). Therefore, CVaR 

measures the amount of tail risk a portfolio incurs (Artzner, 1997). Unlike variance, which treats 

all deviations from the average as the same, downside risk measures consider only losses. In 

other words, the standard measures of risk like variance are symmetric around the mean while 

downside risk measures, such as VaR and CVaR, capture the asymmetry between upside risk 

and downside risk (Zhou, 2016). Hence, quantifying hedging effectiveness by downside risk 

measures would be more realistic as financial market participants are usually more concerned 

with losses than gains.  

 
Let {Rt, t=1,2,…,n} represent original financial return series with marginal cumulative 

distribution function F and probability density function f. Then, VaR of a portfolio with loss L 

for a given confidence level α can be expressed as: 

𝑉𝑎𝑅𝛼(𝑅) = inf{𝑙 ∈ ℝ: Pr(𝐿 > 𝑙) ≤ 1 − 𝛼} = inf{𝑙 ∈ ℝ: 𝐹𝐿(𝑙) ≤ 𝛼}    (11) 

where l is the smallest number of losses. Therefore, VaR is simply a quantile of the loss 

distribution. 

From a statistical point of view, CVaR measures how much a portfolio can lose on average 

beyond the VaR level and can be mathematically written as: 

𝐶𝑉𝑎𝑅𝛼(𝑅) = 𝐸[𝑅|R ≥ 𝑉𝑎𝑅𝛼(𝑅)]           (12) 

We compute both historical and modified versions of VaR and CVaR. The non-parametric 

historical VaR simply sorts the return series from the lowest to the highest value, determines 

the probability distribution and then calculates the portfolio’s losses. It is the simplest way of 

calculating VaR with no underlying assumption of return distributions. Using historical 

simulation, VaR can be estimated as: 

𝑉𝑎�̂�𝛼(𝑅) = 𝑅(𝑖)            (13) 
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for α ∈ ((i − 1)/n, i/n]. 

Historical CVaR is the sample average of excessive loss exceeding historical VaR given in 

equation (13). Because it is the simplest way of estimating CVaR, the historical simulations 

method is more widely used than any other estimation methods. Following Harmantzis et al. 

(2006), historical ES is estimated as: 

𝐶𝑉𝑎�̂�𝛼(𝑅) = 𝐸[𝑅|R ≥ 𝑉𝑎𝑅𝛼(𝑅)] =
∑ 𝑅𝑛(𝑖)

𝑛
𝑖=[𝑛𝛼]

(𝑛−[𝑛𝛼])
      (14) 

Even though the historical method is the easiest to apply, requiring no specific assumptions or 

parameters, non-parametric statistics tend to be less powerful than parametric estimations. 

Therefore, we also employ four moment modified downside risk measures to capture potential 

losses more adequately. It is a stylized empirical fact that financial time series exhibit skewness 

and excess kurtosis, suggesting that two moment VaR is not sufficient as a measure of downside 

risk (Conlon et al., 2020). The modified VaR and CVaR use the Cornish-Fisher expansion to 

capture higher-order moments, namely skewness and kurtosis. The modified versions of VaR 

and CVaR are based upon the Cornish-Fisher approximation (ZCF) of the α% quantile of the 

standard normal distribution: 

𝑍𝐶𝐹,𝛼 = 𝑍𝛼 +
1

6
(𝑍𝛼

2 − 1)𝑆 +
1

24
(𝑍𝛼

3 − 3𝑍𝛼)𝐾 −
1

36
(2𝑍𝛼

3 − 5𝑍𝛼)𝑆2     (15) 

where S and K represent skewness and kurtosis, respectively. Accordingly, the four-moment 

modified VaR (MVaR) is defined as: 

𝑀𝑉𝑎�̂�𝛼(𝑅) = 𝜇 + 𝑍𝐶𝐹,𝛼𝜎         (16) 

where μ and σ denote the mean and standard deviations of portfolio returns, respectively.  

Modified CVaR (MCVaR) is computed as a function of modified VaR and captures the loss 

expectation, conditional on the loss beyond the MVaR: 

𝑀𝐶𝑉𝑎𝑅̂
𝛼(𝑅) = 𝐸[𝑅|R ≥ 𝑀𝑉𝑎�̂�𝛼(𝑅)]                  (17) 

We set the confidence level to 95% for all downside risk measures. Our focus is downside risk 

reduction, which is the percentage of the VaR and CVaR reduction, estimated using both 

historical and parametric methods, that a hedged strategy achieves in comparison with the 

unhedged portfolio. Similar to the hedging effectiveness measure given in equation (10), VaR 

and CVaR reductions are calculated as follows: 

(𝐶)𝑉𝑎𝑅 𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 =
(𝐶)𝑉𝑎𝑅𝑢𝑛ℎ𝑒𝑑𝑔𝑒𝑑−(𝐶)𝑉𝑎𝑅ℎ𝑒𝑑𝑔𝑒𝑑

(𝐶)𝑉𝑎𝑅𝑢𝑛ℎ𝑒𝑑𝑔𝑒𝑑
      (18) 

Table 8 (a) reports the hedging effectiveness measures for the full sample. Hedging 

effectiveness of carbon measured by the variance reductions vary between 0.110 and 0.211. 

This indicates that carbon credit futures are cheap and effective hedges overall; for example, 

21.1% of the return variance of a $1 long position in the North American stocks can be hedged 

by shorting 9.3 cents of the carbon index (see Table 5 for average optimal hedge ratio). 

Comparing the hedging performance of carbon futures with commodities, we can observe that 

agriculture and precious metals futures provide the most effective hedges in terms of variance 

reduction as the hedging effectiveness statistics range from 0.388 to 0.645. We also see that 

hedging stocks with energy futures is not feasible as the variance of hedged portfolio is higher 
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than that of unhedged portfolio except for Asia Pacific stock market. Let’s take green stocks as 

an example; variance of the hedged portfolio is 1.229 while the variance of the unhedged 

portfolio is 1.207. This shows that energy futures do not provide efficient hedging benefits since 

the variance reduction is not achieved (-0.018), validating our previous findings. 

[Insert Table 8a here] 

 

The results for the full sample indicate that adding carbon futures to stock portfolios reduces 

the downside risk overall. For instance, the modified CVaR of European unhedged portfolio is 

0.05 while the hedged portfolio with carbon asset is 0.031, decreasing the downside risk by 

about 39%. Therefore, we can say that the inclusion of carbon credits into stock portfolios 

significantly reduces the expected maximum loss during the entire study period. The other 

qualitative results also remain the same; energy futures are the only assets that increase the 

overall portfolio downside risk for all the stock markets. Considering all the downside 

measures, precious metals and agriculture futures offer significant downside risk reduction, 

varying from 21.1% (ΔMVaR for agriculture-Asia Pacific pair) to 76% (ΔMCVaR for precious 

metals-Europe pair). All in all, our findings demonstrate that carbon credit futures provide 

consistent risk reduction effectiveness for stock portfolios during the entire study period.9 

Therefore, carbon futures are hedging instruments that can improve the downside risk 

performance of stock portfolios as the combinations of carbon and equities experience VaR and 

CVaR reductions. This result is in parallel with Reboredo and Ugando (2015) who provide 

evidence of significant downside risk gains for portfolios with carbon futures.  

Tables 8(b) and 8(c) document hedging effectiveness for the pre-COVID and COVID-19 

periods, respectively. Comparing the effectiveness of carbon futures in the pre-COVID phase 

with the COVID-19 period, our results show that variance reduction falls significantly during 

the COVID-19 pandemic. Although, hedging stocks with carbon credits leads to considerable 

variance reduction in the pre-COVID sample, adding carbon futures to a stock portfolio 

increases overall portfolio risk during the pandemic. For instance, variance reduction for 

European (Asia Pacific) markets falls from 35.3% (21.4%) in the pre-COVID phase to -9.4% 

(-9.9%) as the COVID-19 pandemic starts. The results for North America and green stocks also 

document weakened hedging effectiveness and show that the hedging capability of carbon 

futures is impaired even though the variance reduction is still positive. Taking green stocks as 

an example, almost 12.6% of variance reduction appears to be lost in the wake of the pandemic, 

as it falls from 20.5% to 7.9%. Considering the hedging effectiveness of commodity futures 

measured by variance reductions, it is clearly evident that agriculture futures provide the largest 

reduction for all the markets in the COVID-19 phase. For instance, variance reduction offered 

by agriculture futures for green stocks significantly increases from 39.7% in the pre-COVID to 

73.9% in the COVID-19 period, which underscores the effectiveness of agriculture futures as a 

risk management tool during the pandemic. The hedging effectiveness of precious metals is 

higher for Asia Pacific and European markets and slightly lower for North America and green 

stocks in the pre-COVID period. Nevertheless, our results reveal that investors can reduce their 

overall portfolio risk by combining stocks with agriculture and precious metals and the 

 
9 The only exception is the ΔMCVaR for carbon-Asia Pacific pair, which shows ineffective downside risk 

reduction. However, considering the majority of downside risk metrics, we can say that risk reduction is efficiently 

achieved.  
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composition of the hedged portfolio can help them lower their exposure to risk. Energy futures 

seem to provide some variance reduction only for Asia Pacific and green stocks in the COVID-

19 period, however, the percentage of variance eliminated by energy futures is quite low with 

a reduction of only 1.2% for Asia Pacific and 2.2% for green stocks. 

[Insert Table 8b here] 

[Insert Table 8c here] 

The results for the pre-COVID and COVID-19 periods presented in Table 8(b) and 8(c) suggest 

that downside risk reduction of carbon futures falls significantly in almost all cases as consistent 

with the variance reductions. For example, during the COVID-19, MCVaR of carbon-Asia 

Pacific portfolio is -0.045 and that of the unhedged Asia Pacific portfolio is -0.030, showing 

that the downside risk increases by approximately 50%. Nevertheless, carbon futures seem to 

provide hedging benefits for some markets during the pandemic; as such, hedging North 

American stocks with carbon futures can reduce downside risk by 6.5% measured by historical 

VaR in the post-COVID sample, however, the reduction is much higher around 22% before the 

pandemic. Similar to the hedging benefits of carbon, precious metals also seem to have 

diminished hedging benefits during the COVID-19 period. The historical downside risk 

measures point out that the percentage of downside risk eliminated by precious metals is 

generally higher in the pre-COVID sample, for instance, downside risk reduction falls from 

44.7% before the pandemic to 29% in the aftermath of the COVID-19 outbreak for European 

equities as measured by historical VaR. However, when we look at the modified statistics, we 

observe higher risk reduction in the COVID-19 sub-sample. To give an example, downside risk 

reduction measured by MCVaR increases from 54.8% in the pre-COVID-19 to 68.7% in the 

post-COVID-19 period for the portfolio of precious metals and North American stocks. This 

suggests that even though precious metals do not appear to provide downside risk gains for 

historical losses, they offer higher risk reduction in the COVID-19 era when we take into 

account skewness and kurtosis of the distribution of losses. This is in line with the findings of 

Pinho and Madaleno (2010) who report improved results when the leptokurtotic characteristics 

of the data are taken into consideration.  

Regarding the hedging effectiveness of energy futures measured by downside risk reductions, 

we observe mixed results. Interestingly, energy futures provide better hedging effectiveness for 

some markets during the pandemic; for example, considering the energy-Asia pacific market 

portfolio, the downside risk reduction measured by MCVaR increases from -3% in the pre-

COVID-19 period to 2.3% in the COVID-19 period. Nevertheless, the hedging effectiveness of 

energy futures is not feasible in majority of the cases as the risk reductions are still negative for 

the COVID-19 sample, suggesting that adding energy futures to a stock portfolio may result in 

increased portfolio risk during the pandemic. This is also enunciated by Mezghani et al. (2021) 

documenting that the oil market is the least attractive investment during COVID-19 while 

holding gold can be beneficial for investors. The results also demonstrate that agriculture 

futures have the greatest downside risk reduction potential for all the stock markets during 

COVID-19 pandemic. To exemplify, including agriculture futures in green stocks (European 

equities) portfolio produces the largest downside risk reduction by 73.2% (72.8%) as measured 

by MCVaR. These results confirm the recent findings of Sifat et al. (2021) who find, in contrast 

to energy and precious metals futures, agriculture futures attract more hedging pressure during 
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COVID-19 pandemic. They attribute this to higher real demand for agriculture commodities 

and weakening US Dollar.  

In summary, our results reveal that even though carbon futures provide some hedging benefits, 

their hedging effectiveness is not as high as precious metals and agriculture futures. However, 

the hedging performance of carbon futures seems to be better than that of energy futures. This 

confirms the findings of Ahmad et al. (2018) indicating that carbon as an investment asset is 

not particularly a good hedge for stocks due to their low hedging effectiveness. However, we 

should also note that they use variance reductions as a measure of hedging effectiveness, which 

does not capture downside risks. When we consider reductions in downside risks, carbon 

appears to provide better hedging effectiveness; for instance, including carbon to North 

American stock portfolio reduces the risk of unhedged portfolio by 58.5% in the full sample 

period as measured by MCVaR in comparison with 21.1% variance reduction. Overall, our 

findings suggest that hedging strategy based on CVaR with Cornish-Fisher expansion 

outperforms other measures that capture variance reduction and downside risk elimination. 

Therefore, we can say that investors should use MCVaR as a hedging effectiveness criteria 

which is in line with Chai and Zhou (2018) who find that MCVaR strategy is advisable in 

carbon market hedging problems. Moreover, it is evident that the COVID-19 pandemic has 

substantially reduced the hedging effectiveness of carbon futures, however, the values of 

hedging effectiveness are still positive in some cases during COVID-19. The deteriorated 

hedging benefits provided by alternative assets during the Coronavirus crash are also found by 

recent studies, such as Guo and Zhou (2021).  

5.3.Economic Significance Analysis of Hedging Strategy: Utility Maximization 

In order to incorporate both return and risk in hedging, we now turn to examine whether there 

are possible economic gains from the hedging positions we established earlier. In doing so, 

following Narayan and Sharma (2016) and Batten et al. (2021), we assume that a hedger 

optimizes their utility with a mean-variance utility function. We also investigate the sensitivity 

of the utility results to different levels of risk aversion. As the expected utility significantly 

depends on the risk aversion coefficient, we consider different values of risk aversion, 

corresponding to less risk averse investors (Δ=3), moderate investors (Δ=6) and highly risk 

averse investors (Δ=12).  

Following Kroner and Sultan (1993) and Batten et al. (2021), we calculate expected utility gain 

ΔE(U) as the difference between the utility of the hedged portfolio (Phedged) and the utility of 

the unhedged portfolio (Punhedged): 

ΔE(U) = [𝐸 (𝑈(𝑃ℎ𝑒𝑑𝑔𝑒𝑑|𝛺𝑡−1)) − 𝐸 (𝑈(𝑃𝑢𝑛ℎ𝑒𝑑𝑔𝑒𝑑|𝛺𝑡−1))]             (19) 

where the expected utility of the hedged portfolio is 

𝐸 (𝑈(𝑃ℎ𝑒𝑑𝑔𝑒𝑑|𝛺𝑡−1)) = 𝐸(𝑅ℎ,𝑡|𝛺𝑡−1) − 𝛥𝑉𝑎𝑟(𝑅ℎ,𝑡|𝛺𝑡−1)              (20) 

where Δ denotes the risk aversion parameter and Var represents the variance of the portfolio. 

Similarly, the expected utility of the unhedged portfolio is calculated as: 

𝐸 (𝑈(𝑃𝑢𝑛ℎ𝑒𝑑𝑔𝑒𝑑|𝛺𝑡−1)) = 𝐸(𝑅𝑖,𝑡|𝛺𝑡−1) − 𝛥𝑉𝑎𝑟(𝑅𝑖,𝑡|𝛺𝑡−1)              (21) 
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The performance of the hedge strategy is simply evaluated by the utility improvement compared 

to the unhedged portfolio, as given in equation (19). If the difference between the utilities of 

hedged and unhedged portfolio is positive (negative), then the hedge strategy yields a utility 

gain (loss). 

Table 9 presents the estimates of utility gains and losses for full sample, pre-COVID-19 and 

COVID-19 phases. The results demonstrate that the expected utility increases with risk 

aversion. This is in line with Batten et al. (2021) who find positive relation between risk 

aversion and expected utility, and attribute this to the variance reduction in the hedged position 

being larger than in the unhedged position. Overall, the empirical findings show that hedging 

stocks with carbon futures is always profitable for the full sample and pre-COVID-19 period. 

Carbon seems to provide the best hedging performance for the North American stock market 

for the entire sample; a less risk averse investor gets an average percentage utility gain of 0.826 

while a highly risk averse investor achieves an average percentage utility gain of 3.294. As 

expected, precious metals and agriculture futures produce the highest economic benefits; for 

example, a highly risk averse investor can obtain a utility gain of 10.02% if they use North 

America stock index-agriculture futures hedge. Energy futures are the worst hedgers as they do 

not produce any utility gains in the majority of cases, except for Asia Pacific markets, which 

confirms our previous findings. Overall, our results show that precious metals and agriculture 

futures provide higher utility gains than carbon futures. Nevertheless, carbon credits seem to be 

better hedges against stock price movements than energy futures. 

[Insert Table 9 here] 

Comparing the utility gains in the pre-COVID-19 and COVID-19 samples, we see that investors 

in Asia Pacific and Europe markets cannot earn positive utility gains by hedging their stock 

positions with carbon during COVID-19 pandemic. However, hedgers using North America-

carbon and green stocks-carbon pairs seem to achieve positive utility gains. We even see that 

the economic benefits increase for the COVID-19 sample; for instance, the utility gains increase 

from 2.93% in the pre-COVID to 4.73% in the post-COVID period for a highly risk averse 

investor if they use North America-carbon hedge. These results validate our previous findings 

regarding variance and downside risk reduction which in turn suggests the robustness of our 

analyses. During COVID-19 pandemic, since the variance reduction using carbon futures is not 

achieved in the case of Asia Pacific and European markets, the associated utility gains are 

negative irrespective of the risk aversion levels. On the contrary, hedging North American and 

green stocks with carbon futures can reduce overall portfolio risk while receiving positive 

returns and utility gains.  

Our results further show that agriculture futures and precious metals offer significantly greater 

economic benefits for all the stock markets and any types of investors during the COVID-19 

pandemic. For example, hedging North American equities with agriculture (precious metals) 

futures seem to provide an average utility gain of 30.65% (24.46%) for a highly risk averse 

investor in the COVID-19 era, while it is 4.92% (5.95%) in the pre-COVID period. This 

highlights that agriculture and precious metals futures can provide significant benefits for 

investors when they seek shelter from the COVID-19 turbulence, supporting the findings of 

some recent studies (e.g. Rubbaniy et al., 2021). We also observe that energy futures do not 

provide any utility gains for Europe and North America both in the pre-COVID and post-

COVID samples, while their utility gains are always positive for Asia Pacific markets. 
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Regarding the utility gains of energy futures for green stocks, the economic benefits 

significantly increase and become positive during the pandemic. Comparing the economic 

benefits of carbon credits with energy futures, we observe that hedging North American and 

green stocks with carbon credits produce much higher utility gains in the wake of the COVID-

19 pandemic.  

6. Diversification Benefits 

Lastly, we examine the diversification benefits of including carbon futures in an unhedged stock 

portfolio and compare its diversification performance with commodity futures. More 

specifically, we use various portfolio performance metrics, such as Sharpe, Omega and Sortino 

ratios, to evaluate whether the hedged portfolio outperforms the unhedged portfolio in terms of 

risk-adjusted return performance. We use 3-months US T-bills rate as a proxy for risk-free rate. 

Sharpe ratio (Sharpe, 1966) is computed as follows: 

𝑆ℎ𝑎𝑟𝑝𝑒 =
𝑅𝑝−𝑅𝑓

𝜎𝑝
           (22) 

where Rp,t represents the portfolio returns, Rf denotes the risk-free rate and σp,t is the standard 

deviations of the portfolio returns. It is well-established in the literature that Sharpe ratio has 

certain limitations, including an assumption that portfolio returns are normally distributed. In 

order to overcome this limitation, we also estimate Sortino (Sortino & van der Meer, 1991; 

Sortino & Price, 1994) and Omega (Keating and Shadwick, 2002) ratios.  

The Sortino ratio is a variation of the Sharpe ratio and only considers downside risk. In other 

words, it factors in downside risk and excludes upside risk. Given that investors’ attitude 

towards risk is asymmetric, downside risk portfolio performance measures, such as Sortino 

ratio, might give more accurate results. Sortino ratio is calculated as 

𝑆𝑜𝑟𝑡𝑖𝑛𝑜 =
𝑅𝑝−𝑅𝑓

𝜎𝑝,𝑑𝑜𝑤𝑛𝑠𝑖𝑑𝑒
                      (23) 

where σp,downside stands for downside risk. 

The final performance metric, Omega ratio, also known as gain-loss ratio, considers both 

downside and upside portfolio returns, as follows: 

𝑂𝑚𝑒𝑔𝑎 =
1

𝑇
∑ max (0,𝑅𝑝,𝑡

+ )𝑇
𝑡=1

1

𝑇
∑ max (0,𝑅𝑝,𝑡

− )𝑇
𝑡=1

            (24) 

Table 10 presents the annualized returns, annualized standard deviations and portfolio 

performance analytics. We find that adding carbon futures to a stock portfolio is beneficial in 

all cases for the entire sample and pre-COVID period; the annualized returns increase, and the 

standard deviations decrease, hence the inclusion of carbon futures raises the excess returns and 

decreases the volatility. To illustrate, for the whole sample, the annualized return of unhedged 

Asia Pacific stock portfolio increases from 0.027 to 0.063 and the annualized variance declines 

from 0.146 to 0.138, when we include carbon futures. Therefore, our results provide evidence 

of diversification benefits of including carbon futures in the full sample and pre-COVID phase. 

The full sample portfolio analytics show that annualized Sharpe ratio for the European 

unhedged stock portfolio is 0.153 and it is 0.364 for carbon-European stocks portfolio, 

indicating that the Sharpe ratio increases more than two times. Moreover, when we consider 

Sortino and Omega ratios for the entire sample, we can clearly see that all the stock portfolios 



21 
 

benefit from including carbon credit futures. To give an example, the average Sortino (Omega) 

ratio of green stocks unhedged portfolio is 0.061 (1.149) whereas the carbon-green stocks 

hedged portfolio generates a Sortino (Omega) ratio of 0.08 (1.194). Therefore, we can conclude 

that including carbon futures in stock portfolios enhances portfolio performance and adds value 

to investors in the full sample and pre-COVID periods. The sub-sample analyses demonstrate 

that the diversification benefits of carbon futures diminish during the Coronavirus crash; more 

specifically, carbon credits do not seem to provide any diversification benefit for Europe and 

North America. However, adding carbon futures to Asia Pacific and green stocks improves 

portfolio performance during the pandemic, as the performance metrics of hedged portfolios 

are higher than those of unhedged portfolios. In a nutshell, our results reveal deteriorated 

portfolio diversification benefits of carbon credits during the most recent health crisis. 

Nevertheless, on aggregate, we observe that hedging stocks with carbon futures increases the 

expected return and reduces portfolio volatility, enhancing portfolio performance.  

[Insert Table 10 here] 

Considering the diversification benefits of commodity futures, our results reveal that the 

introduction of energy and agriculture futures in a stock portfolio is not beneficial in the full 

sample and pre-COVID periods as it leads to significantly lower returns and deteriorated 

portfolio performance with much lower Sharpe, Omega and Sortino ratios. However, in the 

majority of the cases, our results point out increased diversification benefits when we include 

agriculture futures in a stock portfolio during the pandemic. Precious metals from the 

commodity group improves the portfolio performance in all cases, again both in the entire 

sample and pre-COVID phase, however, they lead to deteriorated diversification benefits in 

some portfolio compositions during the pandemic. When it comes to the portfolio performance 

of energy futures, the main findings show reduced investment benefits for Europe and North 

America, whereas a portfolio composed of energy futures and Asia Pacific or green stocks leads 

to better portfolio performance in terms of risk-adjusted return during the pandemic.  

7. Conclusion 

The aim of this paper is to deepen our understanding of hedging and diversification benefits 

provided by carbon futures. More specifically, our main research question is “what are the 

benefits of investing in carbon futures as an emerging asset?”. This is a fundamental question 

to be answered in a new era of environmental responsibility and economic sustainability, 

contributing to the burgeoning field of energy finance. In this paper, we analyse optimal 

hedging strategies and diversification benefits based on the dynamic correlations between the 

global carbon market and equities. We also compare the portfolio performance of carbon 

allowances with that of commodity futures. For this purpose, we employ both symmetric and 

asymmetric versions of the DCC-GARCH model. More particularly, we investigate whether 

carbon and commodity futures can serve as efficient hedging instruments and diversifiers 

against equity market risk by computing first optimal hedge ratios, weights and hedging 

effectiveness measures and then quantifying utility gains and diversification benefits. We 

further use downside risk measures (VaR and CVaR) to calculate hedging effectiveness and 

downside portfolio metrics (e.g. Omega and Sortino) to evaluate portfolio performance.  

Our main findings can be summarized as follows: First, the average correlations between 

commodity futures and stocks are very low; however, dynamic correlations increase strongly 

in periods of market turmoil, such as the Brexit referendum and the COVID-19 pandemic. 
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Second, carbon is a relatively cheap hedge and including roughly 20 percent of carbon 

allowances reduces overall portfolio risk for a given level of return. Third, the COVID-19 

pandemic has brought about structural changes in hedging dynamics; the hedging costs 

significantly increase, and hedging effectiveness seems to have deteriorated. Fourth, analysing 

whether the hedged portfolios offer economic gains for investors who have different levels of 

risk aversion, we observe that all types of investors are able to achieve a positive utility gain in 

a portfolio of carbon and stocks. Regarding the effects of the COVID-19 pandemic, our findings 

cite mixed results; investors investing in Asia Pacific and Europe markets cannot achieve 

positive utility gains by hedging their stock positions with carbon while hedgers using green 

stocks and North America equities can do so in the wake of the COVID-19 outbreak. Fifth, 

adding carbon futures to a stock portfolio provides diversification benefits for all the stock 

markets during the entire sample and the pre-COVID period, however, including carbon futures 

in a stock portfolio may not be beneficial for investors in Europe and North America during the 

Coronavirus crash. Sixth, when we compare the performance of carbon futures with 

commodities, we observe that hedging and diversification performance of carbon credits is not 

as high as those of precious metals and agriculture futures, however, carbon allowances 

outperform energy futures in terms of hedging and diversification benefits. Lastly, Modified 

Conditional VaR (MCVaR) gives the largest downside risk reductions in most of the cases, 

suggesting that investors should construct their hedging strategies based on MCVaR as it 

outperforms other hedging effectiveness measures such as symmetric variance and historical 

VaR. 

Our results have potential implications and provide significant insights for investors and 

portfolio managers. Even though carbon credits provide hedging and diversification benefits; 

these benefits seem to significantly change over time. Our results provide evidence of higher 

hedging costs and lower hedging effectiveness during the pandemic; therefore, financial market 

participants should be aware of changing hedging dynamics and closely monitor the markets to 

dynamically adjust their portfolio settings. The findings further suggest that carbon as a 

relatively new asset does not perform as good as precious metals and agriculture futures since 

its hedging effectiveness is comparatively lower, hence, it provides weaker protection against 

equity market risk. However, the weakest hedging instrument is energy futures, so investors 

would be better off if they avoid combining their stock investments with energy commodities. 

This suggests that carbon can be seen as a new alternative investment when hedging against the 

stock market risks. In other words, investors who have an exposure to equity market risk can 

effectively and inexpensively hedge their positions by carbon futures. Moreover, financial 

market participants should use the modified estimators of downside risk measures that capture 

skewness and kurtosis of the loss distribution as they provide the largest hedging effectiveness.  
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Table 1.  Summary of Literature Review 

Authors Sample 

Period 

Variables Method Key Findings 

Oberndorfer (2009) 2005-2007 EUA, crude oil, natural gas 

and electricity companies 

stock returns 

Multiple regressions 

and univariate GARCH 

EUA price increases (decreases) have a positive 

(negative) impact on stock returns of electricity 

corporations. The effect of carbon on electricity 

equities is time-varying and particularly more 

pronounced during the EUA market shock in 2006, 

showing the importance of the carbon market for 

equities.  

Gronwald et al. (2011) 2008-2009 EUA, gas, oil, coal and 

electricity futures, stock 

market index, energy stock 

Index and Renewable 

Energy Index 

Copula functions and 

Value at Risk (VaR) 

The results show evidence of a low dependence 

between EUA and the composite stock market index 

during the first six months of 2008, however the 

dependence becomes stronger thereafter. Stock market 

indices have higher degree of interdependence with 

carbon futures than oil and gas futures. 

Kumar et al. (2012) 2005-2008 EUA, oil futures, technology 

company stocks, clean 

energy stocks and short-term 

interest rates 

Vector Autoregression 

(VAR) models 

Carbon prices do not significantly explain price 

movements for clean energy equities, which can be 

attributed to relatively low carbon prices. 

 

Luo and Wu (2016) 2008-2012 Equity markets (China, 

Europe, US), crude oil, EUA 

spot prices 

Multivariate GARCH-

based portfolio 

optimization 

Carbon is positively correlated with crude oil and 

international stock markets. The correlations between 

carbon prices and stock markets in UK and US are 

higher and more volatile than China. 

Tian et al. (2016) 2005-2012 EUA spot price and Dow 

Jones Euro Stoxx Utilities 

Index  

Multivariate GARCH The correlations between carbon and stock returns on 

electricity companies are insignificant (significant) 

during Phase I (Phase II), which shows increased 

integration between carbon and stock markets.  

Zhang et al. (2017) 2013-2016 EU-ETS market, global oil 

markets, and global stock 

markets (China, Germany, 

France, UK, US) 

Multivariate GARCH-

based portfolio 

optimization 

Even though including carbon in a portfolio does not 

generate higher returns, it reduces the overall portfolio 

volatility. Therefore, carbon can provide diversification 

benefits.  

Afonin et al. (2018) Phase I: 

2005-2007 

EUA futures, stocks, 

government bonds, crude 

oil, natural gas, non-energy 

Portfolio optimization The results provide evidence of portfolio diversification 

from adding carbon to a portfolio consisting of equities, 

bonds, crude oil, natural gas and non-energy 
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Phase II: 

2008-2012 

Phase III: 

2013-2015 

 

commodities, Euribor 1-

month rate 

commodities, only for short sales and Phase I. During 

Phase II and III, there are no portfolio improvements.   

Ahmad et al. (2018) 2008-2017 The WilderHill Clean 

Energy Index, gold prices, 

the VIX, carbon prices, oil 

prices, oil volatility and 

bond prices. 

Multivariate GARCH Carbon is not the best hedge for clean energy stocks as 

its hedging effectiveness is relatively low. Only 1.7% 

of the return variance of clean energy stocks can be 

hedged by carbon. 

Dutta et al. (2018) 2009-2017 EUA and clean energy stock 

indices 

Multivariate GARCH The results show insignificant price linkages between 

EUA and clean energy stocks. Investors allocating 

roughly 18% of their capital in EUA and the remaining 

in clean energy equities can achieve superior risk-

adjusted returns. 

Jiménez-Rodríguez 

(2019) 

2005-2015 EUA and stock market 

indices for France, 

Germany, Italy, Spain and 

the UK 

Granger causality and 

cointegration 

The Granger causality runs from stocks markets to 

carbon prices. The results also suggest that the linkages 

between carbon and stock prices significantly change 

over time. 

Xia et al. (2019) 2008-2019 EUA, renewable energy 

stocks, oil, natural gas, 

electricity and coal 

Diebold and Yilmaz 

(2014) connectedness 

measure 

The empirical findings show weak bi-directional 

interactions between carbon and renewable energy 

stocks. Renewable energy stocks display higher 

linkages with crude oil. 

Ji et al. (2019) 2005-2018 EUAs and electricity 

companies’ stocks 

Diebold and Yilmaz 

(2014) connectedness 

measure 

EUAs are the largest information recipient from all 

electricity companies. Therefore, electricity companies' 

behaviour should be incorporated in the process of 

carbon pricing. 

Tan et al. (2020) 2008-2018 EUA futures, crude oil, 

natural gas, coal, non-energy 

commodity index, corporate 

bond spread, T-bills, stock 

returns and electricity 

futures 

Diebold and Yilmaz 

(2012, 2014) spillover 

index 

Carbon displays higher linkages with energy assets than 

financial assets. As a result, carbon may provide 

diversification benefits for a non-energy portfolio. 
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Wen et al. (2020) 2013-2019 Shenzhen carbon emission 

trading market and stocks in 

China 

Nonlinear ARDL 

model 

An increase in carbon prices has a greater effect on 

stock markets than a decrease in carbon prices. Some 

sectors, including energy, industrial, utilities and 

financials, are significantly sensitive to carbon price 

changes. 

Hanif et al. (2021) 2011-2020 EUA and six clean energy 

indices 

Diebold and Yilmaz 

(2012, 2014), Baruník, 

and Křehlík (2018) 
and copula functions 

The paper gives evidence of larger spillovers between 

EUA and green stocks in the short-term than in the 

long-term.  Traders in carbon markets should hedge 

against price risks in clean energy stocks. Investors can 

reap diversification benefits of adding carbon to green 

stock portfolios. 

Jiang and Ma (2022) 2013-2018 EUA, Brent oil and The 

WilderHill clean energy 

index 

Wavelet 

decompositions and 

Multivariate GARCH 

In a $1 portfolio, investors should invest 40% in carbon 

and 60% in clean energy stocks. $1 long position in 

clean energy stocks can be hedged by shorting 

approximately 50 cents in carbon markets. 
Notes. This table provides a summary of papers that analyse the links between carbon and stock markets and/or hedging/diversification benefits of carbon allowances. 
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Table 2. Index details 

Segment Index Coverage 

Carbon IHS Markit Global Carbon Index The index is the first benchmark and liquid index that is investable and tracks global carbon credit 

markets including futures contracts on European Union Allowances (EUA), California Carbon 

Allowances (CCA) and the Regional Greenhouse Gas Initiative (RGGI). The index uses pricing 

data from OPIS by IHS Markit Pricing (North American Pricing) and ICE Futures Pricing 

(European Pricing). 

Stock Market MSCI Asia Pacific Index The index includes large and mid cap companies across five developed (Australia, Hong Kong, 

Japan, New Zealand and Singapore) and nine emerging market countries (China, India, Indonesia, 

Korea,Malaysia, Pakistan, the Philippines, Taiwan and Thailand) in the Asia Pacific region. 

Stock Market MSCI Europe Index This index tracks the stock market performance of large and mid cap companies across fifteen 

countries (Austria, Belgium, Denmark, Finland, France, Germany, Ireland, Italy, the Netherlands, 

Norway, Portugal, Spain, Sweden, Switzerland and the UK) in Europe. 

Stock Market MSCI North America Index This index tracks the performance of large and mid cap US and Canada stock markets. 

Stock Market NASDAQ OMX Green economy 

Index 

The index is a global index designed to track the stock performance of companies operating the 

following sectors: advanced materials; biofuels; energy efficiency; financial; green building; 

healthy living; natural resources; pollution mitigation; recycling; renewable energy generation; 

transportation and water. 

Commodity S&P GSCI Agriculture Index This index is a benchmark for investments in agricultural commodity futures. It includes Chicago 

Wheat, Kansas Wheat, corn, soybeans, coffee, sugar, cocoa and cotton. 

Commodity S&P GSCI Precious metals Index The index is a benchmark for a basket of gold and silver futures.  

Commodity S&P GSCI Energy Index The index tracks the performance of energy commodity futures, including WTI crude oil, Brent 

crude oil, RBOB gasoline, heating oil, gasoil and natural gas 
Note. This table lists the variables used in the research.  
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Table 3. Descriptive statistics and initial tests 

 CARBON 

ASIA 

PACIFIC EUROPE 

NORTH 

AMERICA 

NADSAQ 

GREEN AGRICULTURE ENERGY 

PRECIOUS 

METALS 

 Mean 0.095 0.015 0.019 0.046 0.049 -0.014 -0.017 0.020 

 Median 0.085 0.045 0.079 0.068 0.102 -0.057 0.092 0.019 

 Maximum 10.427 5.432 8.180 9.127 9.253 5.588 17.376 5.715 

 Minimum -15.643 -5.753 -12.314 -12.811 -12.237 -5.252 -30.173 -5.426 

 Std. Dev. 1.999 0.921 1.128 1.139 1.099 1.061 2.482 0.995 

 Skewness -0.363 -0.234 -1.209 -1.177 -1.221 0.122 -1.222 -0.170 

 Kurtosis 8.192 7.622 16.542 24.811 22.161 5.271 25.578 7.659 

ADF -19.652a -20.167 a -15.056 a -13.043 a -9.482 a -14.074 a -7.127 a -19.613 a 

 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

Q2(10) 249.971 a 683.022 a 612.416 a 2304.94 a 158.406 a 133.792 a 421.076 a 186.265 a 

 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

ARCH (10) 16.055 a 31.696 a 41.36 a 120.85 a 80.306 a 8.8068 a 29.019 a 10.628 a 

 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

Note. This table documents descriptive statistics and initial test (ADF, Q and ARCH) results for returns of stock markers, carbon credits, and commodity futures. t. Returns of 

asset k are computed as the difference in the natural logarithm of prices in percentage, i.e. Rk,t = (lnPk,t − ln Pk,t−1) ∙ 100. The sample period runs from August 1, 2014 to July 

30, 2021. Q and ARCH represent Ljung–Box Q test and ARCH Lagrange Multiplier tests, respectively. 10 lags are used in both tests. We have employed ADF test with 

automated lag selection, where the optimal laglength is determined using AIC. a, b and c denote statistical significance at the 1%, 5% and 10% levels, respectively. 
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Table 4. Univariate GARCH estimates 

 CARBON 

ASIA 

PACIFIC EUROPE 

NORTH 

AMERICA 

NADSAQ 

GREEN AGRICULTURE ENERGY 

PRECIOUS 

METALS 

μ 0.115a 0.011 0.021 0.059a 0.039b -0.012 0.000 0.012 
 (0.040) (0.020) (0.020) (0.015) (0.019) (0.023) (0.044) (0.021) 

ψ -0.035 0.084a 0.034 -0.075b 0.056b 0.012 -0.034 -0.038b 

 (0.027) (0.027) (0.034) (0.031) (0.028) (0.025) (0.028) (0.015) 

φ0 0.141b 0.030b 0.035 0.043a 0.030a 0.023b 0.131a 0.009 
 (0.070) (0.012) (0.010) (0.011) (0.009) (0.009) (0.046) (0.015) 

φ1 0.114a 0.011 0.013 0.122b 0.098a 0.074a 0.021 0.041 
 (0.028) (0.013) (0.029) (0.054) (0.033) (0.018) (0.014) (0.038) 

φ2 0.857a 0.867a 0.843a 0.719a 0.818a 0.914a 0.886a 0.961a 

 (0.038) (0.032) (0.026) (0.037) (0.030) (0.017) (0.027) (0.039) 

φ3 - 0.170a - 0.272a 0.117a - 0.132a - 

  (0.048)  (0.080) (0.045)  (0.037)  

Q2(10) 5.948 5.554 11.981 6.268 6.905 4.495 8.847 4.825 

 [0.819] [0.851] [0.286] [0.792] [0.734] [0.922] [0.546] [0.902] 

ARCH(10) 0.705 0.599 1.384 0.643 0.942 0.364 0.927 0.537 

 [0.720] [0.816] [0.181] [0.7778] [0.492] [0.962] [0.507] [0.865] 

Notes. This table reports parameter estimates from the univariate GARCH model. Values in parentheses (brackets) represent standard errors (p-values). The sample period 

runs from August 1, 2014 to July 30, 2021.Q and ARCH represent Ljung–Box Q test and ARCH Lagrange Multiplier tests, respectively. 10 lags are used in both tests a, b and 

c denote statistical significance at the 1%, 5% and 10% levels, respectively. 
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Table 5. (A)DCC estimates 

 θ1  θ2  θ3 
 ρ Hosking  Li-McLeod 

Carbon-Asia Pacific 0.092a (0.026) 0.988a (0.005) -  0.109 66.016 [0.831] 66.159 [0.828] 

Carbon-Europe 0.102a (0.035) 0.980a (0.010) 0.176b (0.072) 0.115 84.926 [0.276] 84.917 [0.277] 

Carbon-North America 0.083c (0.048) 0.909a (0.008) -0.174a (0.041) 0.140 79.221 [0.471] 79.225 [0.470] 

Carbon-Green stocks 0.081c (0.045) 0.910a (0.007) -0.161a (0.047) 0.191 90.087 [0.185] 90.069 [0.179] 

Agriculture-Asia Pacific 0.025 (0.079) 0.831 (0.516) -  0.115 47.813 [0.997] 47.990 [0.992] 

Agriculture-Europe 0.014 (0.019) 0.961a (0.034) -  0.093 77.417 [0.497] 77.447 [0.496] 

Agriculture-North America 0.017b (0.008) 0.937a (0.030) -  0.142 60.203 [0.932] 60.319 [0.931] 

Agriculture-Green stocks 0.001 (0.000) 0.977a (0.017) 0.133a (0.041) 0.173 73.112 [0.665] 73.275 [0.630] 

Energy-Asia Pacific 0.020c (0.012) 0.928a (0.063) -  0.175 62.558 [0.898] 62.704 [0.896] 

Energy-Europe 0.035a (0.012) 0.948a (0.023) -  0.241 91.301 [0.143] 91.245 [0.144] 

Energy-North America 0.042a (0.015) 0.768a (0.101) -  0.310 59.556 [0.940] 59.657 [0.939] 

Energy-Green stocks 0.027a (0.008) 0.955a (0.016) -  0.291 73.538 [0.621] 73.620 [0.619] 

Precious Metals-Asia Pacific 0.008 (0.010) 0.934a (0.072) -  0.119 77.058 [0.508] 77.100 [0.507] 

Precious Metals-Europe 0.152a (0.034) 0.838a (0.014) 0.162a (0.057) -0.157 79.921 [0.449] 79.934 [0.449] 

Precious Metals-North America 0.165a (0.039) 0.813a (0.016) -0.208a (0.052) -0.041 86.690 [0.234] 86.725 [0.233] 

Precious Metals-Green stocks 0.159a     (0.037)     0.844a     (0.011)       0.233a      (0.050)        0.022      79.121      [0.474]      79.166 [0.473] 

Notes. This table reports parameter estimates from the second stage (A)DCC model. Values in parentheses (brackets) represent standard errors (p-values). The sample period 

runs from August 1, 2014 to July 30, 2021.a, b and c denote statistical significance at the 1%, 5% and 10% levels, respectively. Hosking and Li-McLeod are multivariate 

diagnostic tests. 10 lags are used in both tests. 
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Table 6. Optimal hedge ratios 

 Full sample   Pre-COVID-19 COVID-19   
 Mean  Max.  Min.  S.Dev. Mean Mean t-statistics Chow test 

Asia Pacific         

Carbon 0.058 0.372 -0.018 0.048 0.048 0.098 -16.308a 358.597a 

Agriculture 0.101 0.331 0.029 0.051 0.098 0.113 -4.254a 24.345a 

Energy 0.077 0.449 0.007 0.047 0.073 0.093 -6.390a 50.682a 

Precious Metals 0.109 0.443 -0.043 0.05 0.109 0.109 -0.188 0.051 

Europe         
Carbon 0.068 1.41 -0.533 0.15 0.038 0.19 -16.262a 332.623a 

Agriculture 0.127 2.165 -0.124 0.203 0.101 0.232 -6.529a 119.324a 

Energy 0.125 0.787 -0.069 0.101 0.115 0.164 -8.750a 63.721a 

Precious Metals -0.169 0.427 -1.463 0.193 -0.204 -0.027 -22.039a 263.164a 

North America        
Carbon 0.093 1.881 -0.172 0.147 0.071 0.182 -8.917a 168.797a 

Agriculture 0.167 3.061 -0.017 0.24 0.138 0.282 -5.932a 104.133a 

Energy 0.146 1.266 0.015 0.099 0.144 0.157 -2.776a 5.180b 

Precious Metals -0.046 0.575 -1.221 0.174 -0.067 0.038 -12.128a 104.025a 

Green stocks        
Carbon 0.116 1.364 -0.005 0.118 0.091 0.216 -13.397a 364.261a 

Agriculture 0.185 2.038 0.025 0.202 0.145 0.347 -9.942a 323.560a 

Energy 0.135 0.58 -0.026 0.092 0.123 0.187 -9.355a 142.822a 

Precious Metals 0.016 0.856 -1.007 0.159 -0.005 0.103 -10.639a 132.996a 

Notes. This table documents descriptive statistics of hedge ratios. Full sample covers the period from August 1, 2014 to July 30, 2021 while Pre-COVID-19 and COVID-19 

periods are from August 1, 2014 to March 10, 2020 and from March 11, 2020 to July 30, 2021. T-tests test the null hypothesis of equal hedge ratios before and after the 

COVID-19 pandemic. Chow-test test for a structural break in hedge ratios on March 11, 2020, when the WHO declared the COVID-19 outbreak a global pandemic. It has a 

null hypothesis that there is no structural break on March 11, 2020. a, b and c denote statistical significance at the 1%, 5% and 10% levels, respectively.  
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Table 7. Optimal weights 

 Full sample   Pre-COVID-19 COVID-19  

 Mean Max.  Min. S. Dev. Mean Mean t-statistics 

Asia Pacific        

Carbon 0.179 0.831 0.004 0.166 0.184 0.158 3.229a 

Agriculture 0.402 0.927 0.038 0.211 0.391 0.445 -3.827a 

Energy 0.119 0.657 0.000 0.098 0.117 0.123 -0.758 

Precious Metals 0.429 0.892 0.111 0.178 0.443 0.370 7.228a 

Europe        
Carbon 0.227 1.000 0.000 0.213 0.238 0.185 4.957a 

Agriculture 0.456 1.000 0.040 0.237 0.444 0.509 -3.768a 

Energy 0.126 0.816 0.000 0.110 0.133 0.098 5.608a 

Precious Metals 0.490 0.977 0.113 0.160 0.502 0.445 5.393a 

North America       
Carbon 0.205 1.000 0.000 0.219 0.200 0.225 -1.948b 

Agriculture 0.409 1.000 0.015 0.279 0.385 0.504 -6.446a 

Energy 0.107 1.000 0.000 0.165 0.101 0.131 -3.091a 

Precious Metals 0.443 0.981 0.031 0.221 0.444 0.439 0.379 

Green stocks       
Carbon 0.187 1.000 0.000 0.187 0.163 0.283 -10.634a 

Agriculture 0.411 1.000 0.025 0.249 0.365 0.598 -14.135a 

Energy 0.098 0.758 0.000 0.133 0.075 0.189 -10.481a 

Precious Metals 0.449 0.994 0.076 0.181 0.429 0.531 -9.414a 

Notes. Notes. This table documents descriptive statistics of optimal weights. Full sample covers the period from August 1, 2014 to July 30, 2021 while Pre-COVID-19 and 

COVID-19 periods are from August 1, 2014 to March 10, 2020 and from March 11, 2020 to July 30, 2021. T-tests test the null hypothesis of equal hedge ratios before and 

after the COVID-19 pandemic. a, b and c denote statistical significance at the 1%, 5% and 10% levels, respectively.  
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Table 8 (a). Hedging effectiveness- Full sample (August 1, 2014- July 30, 2021) 

  Var. ΔVar.(%) H. VaR ΔH.VaR (%) H. CVaR ΔH.CVaR (%) M.VaR ΔM.VaR (%) M. CVaR ΔM. CVaR (%) 

Asia Pacific          
Unhedged Portfolio 0.848  -0.014  -0.022  -0.015  -0.025  
Carbon 0.755 0.11 -0.013 0.098 -0.021 0.077 -0.014 0.054 -0.03 -0.199 

Agriculture 0.463 0.454 -0.011 0.217 -0.016 0.297 -0.012 0.211 -0.017 0.335 

Energy 0.824 0.029 -0.015 -0.014 -0.022 0.000 -0.015 -0.007 -0.026 -0.028 

Precious Metals 0.519 0.388 -0.011 0.259 -0.016 0.275 -0.011 0.272 -0.016 0.347 

Europe           
Unhedged Portfolio 1.273  -0.017  -0.029  -0.019  -0.05  
Carbon 1.018 0.200 -0.014 0.163 -0.025 0.14 -0.015 0.197 -0.031 0.389 

Agriculture 0.524 0.588 -0.012 0.326 -0.017 0.395 -0.012 0.346 -0.019 0.623 

Energy 1.3 -0.022 -0.018 -0.052 -0.03 -0.031 -0.019 -0.021 -0.051 -0.008 

Precious Metals 0.48 0.622 -0.01 0.407 -0.016 0.441 -0.01 0.484 -0.012 0.760 

North America          
Unhedged Portfolio 1.298  -0.017  -0.029  -0.017  -0.033  
Carbon 1.023 0.211 -0.014 0.17 -0.025 0.132 -0.014 0.19 -0.014 0.585 

Agriculture 0.46 0.645 -0.011 0.315 -0.016 0.443 -0.011 0.333 -0.017 0.476 

Energy 1.407 -0.084 -0.018 -0.067 -0.031 -0.087 -0.02 -0.185 -0.063 -0.933 

Precious Metals 0.494 0.619 -0.01 0.412 -0.016 0.436 -0.01 0.423 -0.012 0.625 

Green stocks          
Unhedged Portfolio 1.207  -0.016  -0.027  -0.017  -0.042  
Carbon 1.042 0.137 -0.015 0.045 -0.024 0.093 -0.014 0.179 -0.014 0.667 

Agriculture 0.505 0.582 -0.012 0.258 -0.016 0.39 -0.012 0.304 -0.018 0.571 

Energy 1.229 -0.018 -0.016 -0.058 -0.028 -0.045 -0.018 -0.083 -0.056 -0.345 

Precious Metals 0.538 0.555 -0.01 0.342 -0.017 0.379 -0.01 0.393 -0.013 0.687 

Notes. This table reports the values of variance and downside risk measures and their changes for hedged and unhedged portfolios for the full sample from August 1, 2014 to 

July 30, 2021. Var stands for variance. HVaR, HCVaR, MVaR and MCVaR represent historical Value-at-Risk (VaR), historical Conditional VaR, Modified VaR and 

Modified Conditional VaR, respectively.  
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Table 8 (b). Hedging effectiveness- Pre-COVID-19 sample (August 1, 2014- March 10, 2020) 

 Var. ΔVar.(%) H. VaR ΔH.VaR (%) H. CVaR ΔH.CVaR (%) M. VaR ΔM.VaR (%) M. CVaR ΔM. CVaR (%) 

Asia Pacific          
Unhedged Portfolio 0.708  -0.013  -0.020  -0.014  -0.023  
Carbon 0.557 0.214 -0.012 0.112 -0.018 0.123 -0.013 0.079 -0.021 0.098 

Agriculture 0.412 0.418 -0.011 0.201 -0.015 0.270 -0.011 0.207 -0.016 0.333 

Energy 0.681 0.039 -0.014 -0.037 -0.021 -0.015 -0.014 -0.021 -0.024 -0.030 

Precious Metals 0.394 0.444 -0.010 0.269 -0.014 0.304 -0.010 0.279 -0.016 0.303 

Europe           
Unhedged Portfolio 1.041  -0.016  -0.026  -0.018  -0.038  
Carbon 0.673 0.353 -0.013 0.205 -0.020 0.230 -0.014 0.211 -0.031 0.165 

Agriculture 0.491 0.529 -0.011 0.292 -0.017 0.356 -0.012 0.333 -0.019 0.500 

Energy 1.063 -0.021 -0.017 -0.050 -0.027 -0.031 -0.018 -0.006 -0.040 -0.053 

Precious Metals 0.335 0.678 -0.009 0.447 -0.013 0.494 -0.009 0.478 -0.016 0.564 

North America          
Unhedged Portfolio 0.815  -0.015  -0.024  -0.016  -0.036  
Carbon 0.571 0.299 -0.012 0.221 -0.019 0.198 -0.013 0.168 -0.022 0.390 

Agriculture 0.403 0.506 -0.010 0.325 -0.015 0.380 -0.010 0.329 -0.016 0.553 

Energy 0.944 -0.159 -0.016 -0.039 -0.026 -0.084 -0.016 -0.032 -0.047 -0.315 

Precious Metals 0.318 0.610 -0.009 0.435 -0.013 0.464 -0.009 0.419 -0.016 0.548 

Green stocks          
Unhedged Portfolio 0.690  -0.014  -0.021  -0.015  -0.034  
Carbon 0.549 0.205 -0.012 0.135 -0.018 0.132 -0.013 0.129 -0.023 0.301 

Agriculture 0.416 0.397 -0.011 0.227 -0.015 0.288 -0.011 0.259 -0.017 0.484 

Energy 0.734 -0.064 -0.015 -0.050 -0.023 -0.061 -0.015 -0.048 -0.041 -0.215 

Precious Metals 0.335 0.514 -0.009 0.369 -0.013 0.392 -0.009 0.367 -0.016 0.531 

Notes. This table reports the values of variance and downside risk measures and their changes for hedged and unhedged portfolios for the pre-COVID-19 sample from August 

1, 2014 to March 10, 2020. Var stands for variance. HVaR, HCVaR, MVaR and MCVaR represent historical Value-at-Risk (VaR), historical Conditional VaR, Modified VaR 

and Modified Conditional VaR, respectively.  
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Table 8 (c). Hedging effectiveness- COVID-19 sample (March 11, 2020- July 30, 2021) 

 Var. ΔVar.(%) H. VaR ΔH.VaR (%) H. CVaR ΔH.CVaR (%) M. VaR ΔM.VaR (%) M. CVaR ΔM. CVaR (%) 

Asia Pacific          
Unhedged Portfolio 1.411  -0.018  -0.027  -0.018  -0.030  
Carbon 1.551 -0.099 -0.016 0.125 -0.030 -0.081 -0.020 -0.077 -0.045 -0.464 

Agriculture 0.665 0.529 -0.012 0.332 -0.018 0.337 -0.014 0.257 -0.020 0.355 

Energy 1.394 0.012 -0.018 0.049 -0.027 -0.004 -0.018 0.016 -0.030 0.023 

Precious Metals 1.022 0.276 -0.013 0.272 -0.022 0.190 -0.014 0.213 -0.022 0.283 

Europe           
Unhedged Portfolio 2.203  -0.022  -0.037  -0.024  -0.072  
Carbon 2.409 -0.094 -0.021 0.014 -0.039 -0.043 -0.024 0.008 -0.056 0.229 

Agriculture 0.652 0.704 -0.013 0.396 -0.019 0.497 -0.013 0.449 -0.020 0.728 

Energy 2.251 -0.022 -0.022 -0.009 -0.039 -0.043 -0.025 -0.025 -0.075 -0.030 

Precious Metals 1.067 0.516 -0.015 0.290 -0.024 0.348 -0.014 0.412 -0.018 0.746 

North America          
Unhedged Portfolio 3.247  -0.025  -0.046  -0.028  -0.075  
Carbon 2.852 0.122 -0.023 0.065 -0.043 0.071 -0.026 0.099 -0.058 0.227 

Agriculture 0.688 0.788 -0.014 0.435 -0.020 0.565 -0.014 0.512 -0.021 0.726 

Energy 3.278 -0.009 -0.024 0.041 -0.051 -0.097 -0.033 -0.166 -0.095 -0.269 

Precious Metals 1.205 0.629 -0.015 0.394 -0.028 0.403 -0.016 0.449 -0.023 0.687 

Green stocks          
Unhedged Portfolio 3.288  -0.025  -0.045  -0.030  -0.075  
Carbon 3.029 0.079 -0.024 0.060 -0.042 0.054 -0.026 0.112 -0.057 0.240 

Agriculture 0.859 0.739 -0.016 0.377 -0.021 0.533 -0.015 0.502 -0.020 0.732 

Energy 3.214 0.022 -0.023 0.095 -0.048 -0.078 -0.031 -0.051 -0.086 -0.145 

Precious Metals 1.352 0.589 -0.017 0.337 -0.027 0.388 -0.017 0.437 -0.025 0.672 

Notes. This table reports the values of variance and downside risk measures and their changes for hedged and unhedged portfolios for the COVID-19 sample from March 11, 

2020 to July 30, 2021. Var stands for variance. HVaR, HCVaR, MVaR and MCVaR represent historical Value-at-Risk (VaR), historical Conditional VaR, Modified VaR and 

Modified Conditional VaR, respectively.  
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Table 9. Utility gains 

 Full sample  Pre-COVID-19  COVID-19   

 Δ=3 Δ=6 Δ=12 Δ=3 Δ=6 Δ=12 Δ=3 Δ=6 Δ=12 

Carbon          
Asia Pacific 0.294 0.575 1.136 0.465 0.920 1.828 -0.396 -0.816 -1.655 

Europe 0.775 1.539 3.068 1.118 2.221 4.427 -0.629 -1.248 -2.487 

North America 0.826 1.649 3.294 0.738 1.469 2.932 1.177 2.364 4.738 

Green Stocks 0.504 0.998 1.987 0.435 0.859 1.706 0.777 1.552 3.102 

Agriculture         
Asia Pacific 1.137 2.291 4.600 0.871 1.758 3.532 2.216 4.454 8.930 

Europe 2.227 4.473 8.963 1.636 3.288 6.590 4.623 9.274 18.578 

North America 2.486 4.997 10.020 1.218 2.454 4.925 7.621 15.298 30.652 

Green Stocks 2.076 4.181 8.392 0.803 1.626 3.270 7.210 14.496 29.067 

Energy          
Asia Pacific 0.067 0.142 0.290 0.072 0.154 0.319 0.055 0.104 0.202 

Europe -0.107 -0.191 -0.358 -0.094 -0.160 -0.293 -0.152 -0.297 -0.585 

North America -0.362 -0.690 -1.346 -0.419 -0.807 -1.582 -0.141 -0.233 -0.416 

Green Stocks -0.081 -0.147 -0.280 -0.152 -0.284 -0.548 0.225 0.445 0.885 

Precious Metals         
Asia Pacific 0.997 1.984 3.958 1.347 1.895 3.780 1.177 2.344 4.679 

Europe 2.380 4.755 9.504 2.130 4.248 8.483 3.380 6.788 13.603 

North America 2.400 4.809 9.628 1.489 2.979 5.959 6.085 12.212 24.464 

Green Stocks 1.996 4.003 8.018 1.064 2.127 4.252 5.747 11.555 23.171 

Note. This table documents the estimated average percentage utility gain from Eq. (14) for different levels of risk aversion, corresponding to less risk averse investors (Δ=3), 

moderate investors (Δ=6) and highly risk averse investors (Δ=12). Positive values indicate a situation where hedging is economically efficient. Full sample covers the period 

from August 1, 2014 to July 30, 2021 while Pre-COVID-19 and COVID-19 periods are from August 1, 2014 to March 10, 2020 and from March 11, 2020 to July 30, 2021, 

respectively.  
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Table 10. Portfolio analytics 

 Full sample     Pre-COVID-19    COVID-19    

 Return S.Dev Sharpe Omega Sortino Return S.Dev Sharpe Omega Sortino Return S.Dev Sharpe Omega Sortino 

Asia Pacific                
Unhedged 0.027 0.146 0.144 1.046 0.022 -0.012 0.134 -0.125 0.996 -0.002 0.200 0.189 1.028 1.206 0.096 

Carbon 0.063 0.138 0.417 1.097 0.045 0.018 0.119 0.110 1.036 0.018 0.270 0.198 1.333 1.279 0.116 

Agriculture -0.012 0.108 -0.162 0.991 -0.005 -0.047 0.102 -0.509 0.933 -0.036 0.146 0.130 1.081 1.200 0.101 

Energy 0.009 0.144 0.027 1.024 0.011 -0.037 0.131 -0.319 0.962 -0.019 0.219 0.188 1.133 1.225 0.105 

Precious Metals 0.058 0.114 0.463 1.103 0.050 0.018 0.100 0.134 1.041 0.021 0.236 0.161 1.433 1.286 0.132 

Europe                
Unhedged 0.033 0.179 0.153 1.053 0.023 -0.008 0.162 -0.079 1.006 0.003 0.219 0.236 0.904 1.210 0.081 

Carbon 0.064 0.160 0.364 1.094 0.040 0.036 0.130 0.235 1.061 0.028 0.188 0.247 0.740 1.180 0.071 

Agriculture -0.003 0.115 -0.071 1.006 0.003 -0.038 0.111 -0.383 0.951 -0.025 0.156 0.128 1.168 1.221 0.106 

Energy -0.026 0.181 -0.172 0.989 -0.005 -0.074 0.164 -0.481 0.931 -0.032 0.194 0.239 0.791 1.188 0.072 

Precious Metals 0.056 0.110 0.464 1.107 0.050 0.033 0.092 0.306 1.072 0.036 0.155 0.164 0.911 1.199 0.089 

North America                
Unhedged 0.105 0.181 0.549 1.142 0.055 0.055 0.143 0.351 1.088 0.038 0.334 0.287 1.143 1.275 0.099 

Carbon 0.118 0.161 0.694 1.166 0.067 0.075 0.120 0.582 1.124 0.057 0.309 0.269 1.129 1.260 0.099 

Agriculture 0.048 0.108 0.395 1.088 0.044 0.015 0.101 0.099 1.034 0.017 0.196 0.132 1.443 1.271 0.127 

Energy 0.012 0.188 0.038 1.034 0.013 -0.025 0.154 -0.193 0.983 -0.007 0.178 0.288 0.599 1.162 0.057 

Precious Metals 0.092 0.112 0.781 1.173 0.077 0.060 0.090 0.611 1.128 0.062 0.236 0.175 1.316 1.279 0.120 

Green Stocks                
Unhedged 0.115 0.174 0.622 1.149 0.061 0.042 0.132 0.277 1.069 0.031 0.469 0.288 1.602 1.331 0.130 

Carbon 0.145 0.162 0.853 1.194 0.080 0.074 0.118 0.585 1.121 0.057 0.483 0.277 1.719 1.351 0.140 

Agriculture 0.043 0.113 0.333 1.077 0.038 -0.003 0.102 -0.072 1.004 0.002 0.253 0.147 1.677 1.302 0.151 

Energy 0.073 0.176 0.387 1.103 0.040 -0.010 0.136 -0.106 1.000 0.000 0.488 0.285 1.686 1.356 0.129 

Precious Metals 0.094 0.116 0.764 1.165 0.077 0.051 0.092 0.496 1.105 0.052 0.291 0.185 1.538 1.306 0.139 

Note. This table documents portfolio metrics for hedged and unhedged portfolios. Full sample covers the period from August 1, 2014 to July 30, 2021 while Pre-COVID-19 

and COVID-19 periods are from August 1, 2014 to March 10, 2020 and from March 11, 2020 to July 30, 2021, respectively.  
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Figure 1. IHS Markit global carbon index daily prices 
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Figure 2. Dynamic correlations 
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Figure 3. Optimal hedge ratios 
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