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Abstract 22 

Although sickness behaviour in response to non-lethal parasites has been documented in wild 23 

animals, it remains unclear how social and environmental stress might also shape an animal’s 24 

behavioural response to parasitism, nor do we know whether simultaneous infection with 25 

more than one parasite changes the way animals respond. Here, we combine physiological, 26 

environmental, behavioural and parasite measures to investigate behavioural responses to 27 

infection in wild vervet monkeys (Chlorocebus pygerythrus) living in a semi-arid region of 28 

South Africa. We quantified both activity budget and behavioural predictability to investigate 29 

the occurrence of sickness behaviour and infection with two non-lethal gastrointestinal 30 

parasite genera. Higher parasite load was linked to an increase in the time spent resting. 31 

However, the nature of the relationship with other behaviours was contingent on both the 32 

parasite genus in question, and parasite species interacted, highlighting the importance of 33 

considering co-infection. Overall, food availability was the dominant predictor of behavioural 34 

change suggesting that, for monkeys living in a more extreme environment, coping with 35 

ecological stress may override the ability to modulate behaviour in response to other 36 

physiological stressors. Our findings provide insight into how animals living in harsh 37 

environments find ways to cope with parasite infection, avoidance, and transmission. 38 

 39 

Significance Statement  40 

Sickness behaviour is a suite of behaviours that occurs in response to infection that may serve 41 

as an adaptive response to cope with infection.  For wild animals, the ability to express 42 

sickness behaviour will be modulated by the presence of other competing stressors. Hence 43 

the patterns shown are likely to be more complex than under captive conditions, which is 44 

where most of our knowledge of sickness behaviour comes from. Using physiological, 45 

environmental, behavioural and parasite measures, we demonstrate that although vervet 46 
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monkeys (Chlorocebus pygerythrus) living in a semi-arid region of South Africa do exhibit 47 

sickness behaviours, this is contingent on the parasite genus in question. Further, food 48 

availability was the dominant predictor of behavioural change suggesting that, for monkeys 49 

living in a more extreme environment, coping with severe ecological stress may override the 50 

ability to express sickness behaviour in an adaptive fashion. 51 

 52 
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 56 

Introduction 57 

 58 

It has long been established that highly virulent parasites can drive population 59 

declines, and may contribute to local extinctions (see: De Castro and Bolker 2005; 60 

Antonovics 2009; Best et al. 2012). Although often overlooked, the effects of sub-clinical or 61 

non-lethal infections can be costly to host health and fitness, and consequently on population 62 

viability (Bohn et al. 2016). Hosts have evolved several physiological and behavioural 63 

responses to cope with the pressures of infection (Lopes 2014) and, while we have some 64 

understanding of the physiological immune response to infections in animals, less is known 65 

about the behavioural presentation of sickness and its physiological correlates (Dantzer and 66 

Kelley 2007). 67 

Sickness behaviour is very broadly defined as a suite of behaviours that occurs in 68 

response to infection. This includes lethargy, anorexia, somnolence, and a reduction in 69 

grooming (Hart 1988; Dantzer and Kelley 2007). Although originally thought to be simply a 70 

by-product of infection, sickness behaviour is increasingly being considered to be part of a 71 

highly organised strategy to combat infection by reallocating energy to the immune system 72 
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and away from non-essential activities (reviewed: Hart 1988; Aubert 1999; Johnson 2002). 73 

However, more work is needed to conclusively establish the adaptive nature of sickness 74 

behaviour in the wild (reviewed: Poulin 1995). If sickness behaviour is an inherently 75 

beneficial strategy to combatting infection, then a trade-off emerges as energetic resources 76 

are devoted to fighting infection at the expense of other vital processes, such as growth and 77 

reproduction (Lopes 2014). The severity of these costs, and hence the relative benefit of 78 

displaying sickness behaviour, depends on ecological context and the value of behaviours 79 

that need to be sacrificed. Thus, we should expect to see animals modulating their expression 80 

of sickness behaviours when the costs become too high. This is something particularly 81 

pertinent to animals subject to prolonged environmental or social stress given it is likely these 82 

animals have an already constrained activity budget and may not be able to express sickness 83 

behaviour even if it is beneficial (Cohn and de Sá-Rocha 2006; Moyers et al. 2015). 84 

Sickness behaviour has been extensively documented in captive populations (Weary 85 

et al. 2009; Bohn et al. 2016; Lopes et al. 2016; Stockmaier et al. 2020), but we know much 86 

less about its occurrence in wild mammals (Krief et al. 2005; Ghai et al. 2015; Hamilton et al. 87 

2020)—most likely due to the challenges associated with long-term environmental and 88 

physiological monitoring.  Sickness behaviour research in the wild, therefore, has focused 89 

almost exclusively on the relationship between parasite infection and behaviour, independent 90 

of other stressors. However, the expression of sickness behaviour is more complicated if 91 

animals are simultaneously subject to other competing stressors common in natural 92 

environments (Cohn and de Sá-Rocha 2006; Moyers et al. 2015), and the expression of 93 

sickness behaviour should vary accordingly. Although we have some grasp of the social 94 

factors that influence investment in sickness behaviour (for review, see: Lopes 2014), the 95 

influence of environmental stressors remains poorly understood. Understanding the interplay 96 
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between environmental stress and behavioural modification is central to understanding how 97 

sickness behaviour may impact long-term fitness in wild populations. 98 

Sickness behaviour research has also been principally concerned with the effects of a 99 

single designated parasite or pathogen species on behaviour. Yet, wild animals rarely harbour 100 

only a single species, and interactions between parasite species are likely (Bordes and 101 

Morand 2011). This interaction can be either synergistic, where the parasite burden of one 102 

species magnifies the consequences of another, or antagonistic, where the burden supresses 103 

the other’s effects (Graham 2008). At present, we have evidence that polyparasitism predicts 104 

infection risk (Telfer et al. 2010), host body condition, and survival (Jolles et al. 2008) in 105 

mammals but there is comparatively little research on how multi-parasite infection affects 106 

behaviour (see: Huffman and Seifu 1989; Huffman et al. 1993, 1997; Huffman 1997; Alados 107 

and Huffman 2000). 108 

While sickness behaviour research generally focuses on activity or time budgets, there 109 

are other, more fine-grained, aspects of behaviour that may also be influenced by both 110 

physiological and environmental stress, including behavioural predictability and behavioural 111 

complexity. Unpredictable behaviour or complex behaviour is thought to be biologically 112 

adaptive as it allows organisms to cope with stress or unpredictable environments  113 

(Goldberger 1997; MacIntosh et al. 2011). A decrease in in the complexity of behavioural 114 

patterns has been linked to parasite infection in primates and may serve as a proxy measure 115 

of health suggesting the behavioural correlates of parasitism stretch beyond activity budget 116 

(see: Alados and Huffman 2000; MacIntosh et al. 2011; Ghai et al. 2015). Several measures 117 

of behavioural complexity have been used from the frequency of behavioural switching (Ghai 118 

et al. 2015) to long-range autocorrelation and fractal analysis (MacIntosh et al. 2011). 119 

Current measures used to quantify behavioural predictability and/or structure often require 120 

analytical restrictions being placed on the collected data. Typically, analysis is directed at two 121 
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or three designated behaviours, or at behaviours that have been combined into larger 122 

groupings. This is primarily due to the constraints of existing analyses and measures, which 123 

often require a single or a binary response variable. For example, MacIntosh et al. (2011) 124 

selected foraging and moving, from a broader range of possible behaviours, to assess the 125 

consequences of parasite infection in Japanese macaques whereas, to assess the health of 126 

chimpanzees, Alados and Huffman (2000) grouped all recorded behaviours into either social 127 

or non-social categories. A method of quantification that allows for the inclusion of more 128 

behaviours and/or a non-binary response may provide a broader insight into how animals 129 

respond and adapt to environmental changes and where the limits of these changes might lie. 130 

One such measure is entropy rate which provides a way to combine behaviours into a 131 

discrete-time sequence of distinct behaviours representing a stationary process in time (Davis 132 

et al. 2017). This allows more behaviours to be incorporated to quantify behavioural 133 

predictability, which reduces the analytical restrictions of the single or binary-response 134 

measures previously mentioned. 135 

Here, we use a comprehensive dataset comprised of detailed physiological (faecal 136 

glucocorticoid metabolites), environmental, behavioural and parasite data to assess how these 137 

factors interact to shape behavioural responses to infection in a population of a highly social, 138 

wild mammal, specifically, the vervet monkey (Chlorocebus pygerythrus), in a semi-arid 139 

region of South Africa. Previous work in this population has identified complex relationships 140 

between behaviour and environmental conditions, with food resources, temperature, rainfall, 141 

and standing water availability strongly influencing activity budgets and mortality 142 

(McFarland et al. 2014; Young et al. 2019). As in this previous work, we use fGCMs as an 143 

index of individual response to environmental stressors (i.e., as a measure of the ability to 144 

restore homeostasis), rather than an indicator of an individual animal’s stress levels 145 

(MacDougall-Shackleton et al. 2019). Given the often harsh environmental conditions in the 146 
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study area, these monkeys provide an excellent opportunity to determine whether the 147 

expression of sickness behaviour occurs in wild animals that are subject to simultaneous 148 

external and internal stressors. 149 

We use a combined approach, quantifying both activity budget and behavioural 150 

predictability, to investigate the relationships between behaviour and two non-lethal 151 

gastrointestinal parasite genera in the context of food stress. In addition to a more 152 

comprehensive dataset, we use a newly developed measure of entropy rate to assess 153 

predictability (Vegetabile et al. 2019); this allows a larger range of behaviours to be 154 

considered, and is therefore more sensitive than existing analytical techniques. Finally, we 155 

consider whether there is an interaction between the two parasite genera studied here, and if 156 

co-infection compounds the need to invest in sickness behaviours. 157 

 158 

Methods 159 

Study Site and Study Species 160 

We collected behavioural data and faecal samples from August 2017 to April 2018 161 

from three fully habituated groups (PT = Picnic Troop, RBM = River Bend Mob, RST = 162 

Riverside Troop) of wild vervet monkeys on Samara Private Game Reserve, South Africa 163 

(32o22’S, 24o52’E). These monkeys have been the subject of continuous data collection since 164 

2009. All group members were individually identified based on natural markings, and data 165 

for this study were collected from a subset of 27 adult individuals (PT: 4 males, 6 females out 166 

of 14 adults; RBM: 2 males, 6 females out of 14 adults; RST: 3 males, 6 females out of 16 167 

adults), selected to be representative of adult demography and to reflect the full range of 168 

dominance ranks. The study area comprises semi-arid riverine woodland (Pasternak et al. 169 

2013), with a declining annual average rainfall of 386 mm, and average annual minimum and 170 

maximum temperatures of 10ºC and 27ºC respectively. The region experiences periodic 171 
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droughts that are severe enough to be a primary source of mortality for animals in our study 172 

groups (Young et al. 2019). 173 

 174 

Behavioural Data Collection 175 

Each group was followed for five days each week across the study period, and data 176 

were collected for 10 hours each day (McFarland et al. 2015; Young et al. 2019). To assess 177 

changes in activity budget, the behaviour of all visible individuals was recorded during 10-178 

min scan sampling blocks (Altmann 1974) conducted every 30 min throughout the day. We 179 

selected four, high frequency, mutually exclusive behaviours for analysis: moving, foraging, 180 

resting and allo-grooming, either given or received. Notably, we considered foraging to 181 

include both manipulation and ingestion of food (for definitions, see: Isbell and Young 1993). 182 

It was not possible to record data blind because our study involved sampling individual focal 183 

animals in the field, which requires that researchers are able to recognise and follow a 184 

specific individual in the context of the social group. However, observers were ‘blind’ to the 185 

parasite loads of the individuals from which data were collected, as all parasite analyses were 186 

conducted by RB once data collection in the field was completed. 187 

To investigate changes in behavioural predictability, we conducted 10-min continuous 188 

focal sampling (Altmann 1974) twice per week for each of the 27 subjects (Ntotal =1614 focal 189 

samples). Randomised focal times were generated for each day. During these focal sampling 190 

events, a single individual was followed and a continuous, timed record of its behaviour 191 

obtained, using electronic data loggers and proprietary software. The same mutually 192 

exclusive behaviours were identified as described above. Owing either to disruptions, such as 193 

aggressive encounters between groups, or periods where individuals were out of sight, not all 194 

focal samples were exactly 10 minutes long.  To account for this, we controlled for focal 195 
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sample length in our analyses and the final dataset included focal samples where the 196 

individual was in sight for a minimum of 7.5 minutes.  197 

Finally, we collected ad libitum data on dyadic agonistic interactions among all group 198 

members, for which we identified participants and outcomes. Given good visibility at the site 199 

we are confident that there was no systematic bias in the likelihood of observing encounters. 200 

These agonistic data were used to construct dominance hierarchies (Young et al. 2019). Only 201 

decided dyadic agonistic interactions with a clear winner and loser were included in the 202 

analysis with the loser being defined as the last individual to show submission during the 203 

interaction.  204 

 205 

Dominance Hierarchy 206 

We divided the study period into four 3-month blocks: July – September 2017, 207 

October – December 2017, January – March 2018 and April – June 2018. We used ad libitum 208 

observations of agonistic interactions to construct hierarchies for each period (RBMTotal N: 209 

963; RSTTotal N: 810; PTTotal N: 1135) for all adults in each troop and not only the subset of 210 

study subjects. Given male-female co-dominance in this population (Young et al. 2017b), we 211 

generated a single matrix that included all decided agonistic interactions regardless of the sex 212 

of participants and created a single interdigitated hierarchy.  213 

Dominance ranks in each troop and for each 3-month block were expressed as a 214 

standardized David's score using the package ‘compete’  (Curley 2016). David’s scores were 215 

standardized to enable direct comparison across groups of different size and interaction rates 216 

(Henzi et al. 2013). 217 

 218 

Food availability 219 
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We quantified food availability in each troop’s home range by calculating the 220 

Normalized Difference Vegetation Index (NDVI) every 16 days (Young et al. 2019) from 221 

MODIS data collected by Earth Observing System (EOS) satellites Terra (EOS AM-1) and 222 

Aqua (EOS PM-1). Using Moderate Resolution Imaging Spectroradiometer MOD13Q1 223 

vegetation indices at a 250-meter resolution (Didan 2015), NDVI measures the amount of 224 

biomass or chlorophyll activity by calculating the difference between the visible red and near 225 

infrared bands divided by their sum. The resultant measure is a range of values between -1 226 

and 1, where negative values indicate an absence of vegetation and positive values 227 

approaching 1 indicate larger concentrations of green vegetation (Pettorelli et al. 2005). 228 

Given the generalist, largely plant-based nature of vervet diet (Pasternak et al. 2013), the 229 

synoptic view of NDVI is a reliable measure of food availability in this species and at this 230 

site (Willems et al. 2009; Jarrett et al. 2020). 231 

 232 

Faecal sampling and analysis 233 

We collected a total of 573 faecal samples (mean = 21/individual,  3.1 SD) during 234 

the 234 days of the study. Faecal samples were collected twice per month (once during each 235 

two-week period) from the 27 subjects. Two corresponding faecal samples, one for parasite 236 

analysis and one for faecal glucocorticoid metabolites (fGCM) analysis, were collected from 237 

the same defecation event. 238 

  239 

Parasite analysis 240 

For each sample, approximately 1 g of fresh faeces was weighed in the field 241 

immediately after defecation and directly placed into 10% neutral, buffered formalin. 242 

Samples were stored in the field lab and transported to the University of Lethbridge, Canada, 243 
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where faecal flotation and sedimentation techniques were used to identify parasites (Blersch 244 

et al. 2019).  245 

We used a modified zinc sulphate flotation to isolate helminth eggs followed by ethyl-246 

acetate sedimentation to isolate potential trematodes that were too heavy to float during 247 

ZnSO4 flotation (methods: supplementary S1). For both methods, the entire pellet was 248 

examined under the microscope. Parasites were identified to genus level based on egg shape, 249 

size, colour, and contents, and all eggs were counted. Representative eggs were 250 

photographed.  251 

We recovered 5 parasite genera from faecal samples (Blersch et al. 2019). One 252 

parasite could not be identified to genus level, as eggs of Physaloptera sp. and Protospirura 253 

sp. cannot be reliably distinguished based on egg morphology alone. Based on morphological 254 

characteristics of the eggs, including their size and the presence of a hyaline substance 255 

(Brumpt 1931; Petrželková et al. 2006), we consider it most likely to be Protospirura sp. 256 

(hereafter referred to as ?Protospirura sp.) pending results of ongoing molecular analysis. 257 

Preliminary molecular analyses suggest the parasite is a single species. Due to small sample 258 

size for three genera (<5% mean annual sample prevalence), namely Oesophagostomum sp., 259 

Subulura sp. and Ternidens sp., we selected only ?Protospirura sp. and Trichostrongylus sp. 260 

(>20% mean annual sample prevalence) for these analyses but include other species in the 261 

number of genera (parasite richness).  262 

We have established previously that sequential faecal egg count patterns for 263 

Trichostrongylus sp. and ?Protospirura sp. are not stochastic and point to underlying levels 264 

of infection in our population (Blersch et al. 2021), and thus use egg counts as a proxy for the 265 

extent of helminth infection.  266 

 267 

Faecal steroid analysis 268 
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Samples were collected following the protocol of Young et al. (2017a, 2019). Within 269 

15min of defecation, a 2-5g piece of faecal material was transferred into a plastic vial 270 

following physical homogenization of the full faecal sample. Prior to collection, faecal 271 

samples were checked to ensure there was no contamination with urine during excretion or 272 

on the substrate where the sample landed. Vials were immediately stored on ice in a thermos 273 

flask in the field before transfer to a −20°C freezer at the end of the day. Samples were stored 274 

frozen until transport on dry ice to the Endocrine Research Laboratory, University of 275 

Pretoria, for analysis. 276 

Samples were lyophilized, pulverized and then sieved to remove seeds and fibrous 277 

matter (Young et al. 2017a). The resulting faecal powder (0.10g) was extracted by vortexing 278 

for 15min with 80% ethanol in water (3ml) followed by 10 minutes of centrifugation at 279 

1500g. 1.5 ml of the resultant supernatants were transferred into microcentrifuge tubes. 280 

Hormone analysis was conducted following the standard procedures of the Endocrine 281 

Research Laboratory, University of Pretoria (Ganswindt et al. 2002) using the cortisol 282 

enzyme immunoassay (EIA) (Young et al. 2017a). The sensitivity of the EIA used was 0.6 283 

ng/g dry weight (Young et al. 2017a). Inter- and intra-assay coefficients of variation of high- 284 

and low-value quality controls were: 4.64–5.96 and 8.13–11.60% respectively. All steroid 285 

concentrations are given as ng g−1 faecal dry weight. 286 

 287 

Applying entropy rate to the behaviour of free-ranging animals 288 

Entropy rate has been successfully applied to quantify the predictability of maternal 289 

signalling in captive mice but has not been tested in the wild (Vegetabile et al. 2019). 290 

To determine whether entropy rate can be applied to our observed data, and to get a 291 

sense of the sensitivity of the measure, we simulated a dataset that closely matched our 292 

observed data. Simulated data allowed us to make specific predictions related to the influence 293 
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of environmental conditions on behavioural predictability where the outcome is already 294 

known. As entropy rate has only been applied narrowly in the field of animal behaviour 295 

research, this functioned as a test of whether the entropy rate measure is capable of retrieving 296 

the known outcome in simulated behavioural data comparable to wild vervet monkey 297 

behaviour. If the outcome can be successfully retrieved in simulated data, entropy rate can 298 

then be reliably applied to explore general relationships between social and environmental 299 

factors on behavioural predictability in the wild. Furthermore, simulation provides control 300 

over the magnitude of behavioural change in response to environmental change which serves 301 

as a coarse measure of the sensitivity of entropy rate to capture changes in behavioural 302 

predictability.  303 

We derived the simulation from the prediction that an increase in food availability 304 

was associated with a reduction in time spent foraging, and a consequent increase in the time 305 

spent engaged in social behaviours.  First, we simulated a range of NDVI values between 306 

0.25 and 0.6, which was consistent with our observed data. Then we simulated behavioural 307 

sequences across NDVI values, while keeping the sequence length (n = 20 behaviours) 308 

associated with the greatest variance, number of focal samples (n = 1553) and number of 309 

individuals (n = 27) consistent with our observed behavioural data. Given that our observed 310 

dataset extends predominantly through summer, we started with an activity budget similar to 311 

the probabilities of behaviours found during the hot-dry period by (Young et al. 2019). We 312 

then simulated data such that the time spent foraging decreased with increasing NDVI, using 313 

a low (2%), medium (7%), or high (20%) decrease in foraging time between minimum NDVI 314 

and maximum NDVI. We then calculated the entropy rate for each generated sequence. This 315 

range served as an indicator of how much entropy rate can be expected to vary in relation to 316 

the magnitude of behavioural change thus providing a coarse measure of sensitivity. For 317 

modelling purposes, we then selected sequences derived from a 7 percent change in foraging 318 
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time based on previous estimates of seasonal variation in foraging time (Young et al. 2019). 319 

These simulated data were used in a Bayesian mixed effects model (brms package Bürkner 320 

2017; Bürkner 2018) to test our prediction that an increase in NDVI would result in a 321 

decrease in entropy rate. We used NDVI as our fixed effect and individual ID as our random 322 

effect. Other variables, such as troop ID or dominance rank, were not used in this model as 323 

our primary interest was whether we could retrieve the known influence of NDVI on entropy 324 

rate while aiming to keep the simulation as clear and simple as possible. 325 

 326 

Entropy rate: Time interval selection 327 

In order to estimate entropy rate, continuous focal samples had to be discretized into 328 

coded behavioural sequences. We therefore first determined the sampling time interval that 329 

resulted in maximum variance across sequences. This ensured that our measure was sensitive 330 

enough to detect small changes in behaviour. We assigned each behaviour a single letter and 331 

created coded behavioural sequences by extracting behavior from each focal at 3s, 5s, 10s, 332 

15s, 20s, 30s, 45s, 60s, 90s, 120s and 300s intervals. This generated 11 sets of sequences for 333 

each focal that ranged from 2 to 200 consecutive behaviours. We then used the entropy 334 

package (Hausser and Strimmer 2014) in R version 3.4.4 (R Core Team 2018), to calculate 335 

the entropy rate, together with the variance and standard deviation (SD) for each sequence for 336 

each time interval. A sampling interval of 30 s resulted in maximum variance (Var = 0.157) 337 

across sequences and we therefore used sequences from a 30 s sampling interval for further 338 

analysis.   339 

 340 

Statistical Analysis 341 

Patterns of co-infection 342 
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Egg counts of our two most prevalent parasite genera, ?Protospirura sp. and 343 

Trichostrongylus sp., were used in these analyses. We conducted exploratory analysis to 344 

assess whether there was a relationship in parasite intensity between ?Protospirura sp. and 345 

Trichostrongylus sp., using a mixed effects model in a Bayesian framework and specifying a 346 

lognormal distribution. We filtered out samples that were parasite negative (N = 8). 347 

?Protospirura sp. intensity, represented as eggs per gram (EPG) was our response variable 348 

while Trichostrongylus sp. was our fixed effect. We included individual ID nested in troop as 349 

our random effect with individual-level random slopes for Trichostrongylus sp.  350 

 351 

Model set 1: The influence of parasite infection and ecology on behaviour 352 

To examine whether infection with ?Protospirura sp., Trichostrongylus sp. and 353 

parasite species richness (the number of genera recovered in each faecal sample) were 354 

associated with changes in behaviour, we used scan data (Nscans=27,068) to construct a 355 

multilevel multinomial behavioural model (Koster and McElreath 2017) with the Rstan 356 

package (Stan Development Team 2020). We linked one week of behavioural data (3 days 357 

before the faecal sample collection and 4 days after) to each faecal sample for the 358 

corresponding individual for both parasite data (Ghai et al. 2015) and fGCM concentrations. 359 

We found no qualitative differences in estimates between the reduced and full focal datasets 360 

for the variables that could be included (results: supplementary S2). 361 

Multilevel, multinomial behavioural models estimate the likelihood of a given 362 

behaviour from a set of categorical behaviours occurring at any given time in relation to a 363 

reference behaviour, while controlling for repeated observations from the same individual. 364 

We set behaviour (feeding, resting, grooming given, grooming received, and moving) 365 

as our response variable, with moving as our reference variable. Moving was selected, as the 366 

reference variable is sensitive to frequency, and moving is a very common behaviour. We 367 
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included parasite intensity (given as eggs per gram), parasite richness (number of genera), 368 

and NDVI as our primary fixed effects. We also controlled for other physiological effects by 369 

including fGCMs as a fixed effect, and we also controlled for sex, standardised rank and date. 370 

Individual ID and troop were included as random effects. In addition to summary statistics, 371 

we generated predicted probabilities for each behaviour for each predictor variable while 372 

holding other coefficients constant. This allowed us to look at changes in all behaviours, 373 

including the reference variable. Owing to the use of a reference behaviour (i.e., moving), 374 

coefficients of the multinomial model are not straightforward indicators of the effect of a 375 

predictor on the probability of performing a given behaviour (Koster and McElreath 2017) 376 

thus predicted probabilities are computed to understand the effects of the fixed effects on 377 

each behaviour. 378 

 379 

Model set 2: The influence of parasite infection and ecology on behavioural predictability 380 

We used entropy rate to determine whether parasite infection affects behavioural 381 

predictability. Entropy rate quantifies the predictability of the next observation, given the 382 

history of observations which occurred before it. Our entropy rate method estimates the 383 

distribution of behaviours (the frequency of each) and a transition matrix that describes 384 

transitions between behaviours (Vegetabile et al. 2019). An entropy rate of zero would 385 

indicate an individual engaged in a single behaviour for the entire observation period whereas 386 

an entropy rate of 1 indicates that an individual either engaged in multiple behaviours, 387 

switched behaviours frequently or both. As entropy rate has only been applied narrowly in 388 

animal behaviour, we began by validating its extension to observational data from wild 389 

monkeys, using both simulated and observed data (methods and results: supplementary S3). 390 

In order to estimate entropy rate, continuous focal samples were discretized into coded 391 

behavioural sequences. We assigned each behaviour a single letter code and created 392 
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behavioural sequences by extracting behaviour from each focal at 30 second intervals, the 393 

optimal time period identified (N=693 faecal sample-matched sequences). We then used the 394 

‘entropy’ package (Hausser and Strimmer 2014) in R version 3.5.2 (R Core Team 2018), to 395 

calculate the entropy rate.  396 

 397 

Bayesian mixed-effects model structure 398 

We constructed a mixed effects model with a Gaussian distribution in a Bayesian 399 

framework to assess the relationship between parasite intensity and behavioural entropy rate 400 

(distribution comparison results: supplementary material S4). Our response variable was 401 

behavioural entropy rate and, as with model 1, parasite intensity for ?Protospirua sp., 402 

Trichostrongylus sp., parasite richness and NDVI were included as our primary fixed effects 403 

while controlling for fGCM concentration, rank and sex as fixed effects. Given that 404 

individuals may be more likely to be active earlier in the morning and resting or grooming 405 

during the hottest part of the day, which may affect behavioural predictability, we included a 406 

spline on time of day as a fixed effect. Individual ID and troop were included as random 407 

effects. As not all focal samples were exactly 10 minutes long, we also controlled for 408 

sequence length. We standardised continuous variables (rank, NDVI and sequence length) 409 

using one standard deviation (SDs) to allow comparisons of effect sizes across continuous 410 

and dichotomous variables. These variables were mean-centred on zero. We ran models with 411 

4 chains and 2000 iterations which allows for a large enough sampling pool to achieve model 412 

convergence and conduct posterior sampling (McElreath 2016; Bürkner 2018). We used 413 

weakly informative priors (normal(0, 1)) and chain convergence was confirmed by R̂ values 414 

≤ 1.01. Model goodness-of-fit was assessed using the “posterior predictive check” 415 

(pp_check) function in the “bayesplot” package (Gabry et al. 2019). 416 

 417 
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Results 418 

Using entropy rate to quantify behavioural predictability in wild primates 419 

We found that entropy rate can be used to quantify behavioural predictability in our 420 

population. Using a 30 second sampling interval, mean entropy rate in our population was 421 

0.76 (± 0.40 SD).  422 

Based on simulated data, we found that behaviour became more predictable as NDVI 423 

increased and the proportion of time spent foraging decreased. This indicates that entropy 424 

rate successfully captures changes in behavioural predictability in data of similar structure to 425 

our observed data. Regarding sensitivity, when considering the magnitude of behavioural 426 

change required to detect a change in entropy rate, simulation showed that a 2% decrease in 427 

foraging between minimum and maximum NDVI does not result in a reliable change in 428 

entropy rate while we may expect a change in entropy rate of approximately 0.3 with a 19% 429 

decrease in foraging and increase in social interactions. 430 

 431 

Patterns of infection and co-infection 432 

?Protospirura sp. had a mean annual sample prevalence of  98.74 % (±1.74 SD) and 433 

host group prevalence of 99.33% (±1.51 SD) with only 8/573 samples negative for all 434 

parasites. Trichostrongylus sp. had a mean annual sample prevalence of 22.04% (± 17.56 SD) 435 

and host group prevalence of 25.69% (±17.53 SD). Thus, all samples that were positive for 436 

Trichostrongylus sp., were also ?Protospirura sp. positive.  437 

For ?Protospirura sp., annual minimum and maximum egg counts from positive 438 

samples (ps) were 2 eggs per gram (EPG) and 5841 EPG respectively (meanps = 752.22 ± 439 

861.33 SD, medianps = 425.75) while for Trichostrongylus sp., egg counts ranged from 2 to 440 

47 EPG (meanps = 6.5 ± 5.29SD, medianps = 5.28). 441 
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We found no evidence of a population-level relationship between ?Protospirura sp. 442 

infection intensity and Trichostrongylus sp. infection intensity (Estimate = 0.39, Estimate 443 

error = 0.63, lower 95% credible interval = -0.98, upper 95% credible interval = 1.56). 444 

We found some evidence of inter-individual differences in random slopes for co-445 

infection patterns of parasite intensity (Fig. 1). For some individuals, infection intensity of 446 

?Protospirura sp. was high when Trichostrongylus sp. was absent or intensity is low. 447 

However, when Trichostrongylus sp. infection intensity was higher, ?Protospirura infection 448 

intensity was also high for some individuals. This pattern is stronger for some individuals 449 

than others. Note that estimate uncertainty is high for some individuals due to smaller 450 

individual-level sample size and this result should be interpreted with caution. Full model 451 

results are provided in the supplementary material (S5.1) and a version of Fig. 1 including 452 

credible intervals is also provided in supplementary material (S5.2). 453 

 454 

Model set 1: Influence of parasite infection and ecology on behaviour 455 

Fixed effects 456 

We found evidence of parasite-induced lethargy (i.e., increased resting time) and 457 

anorexia (i.e. reduced feeding time) as ?Protospirura sp. egg count increased (Fig. 2a). The 458 

probability of resting increased by 8.7% (l-CI = 2.2, u-CI =14.9) when egg counts were 459 

highest. This was predominantly traded off against moving, which showed a 7.4% decrease 460 

(l-CI = 2.9, u-CI =12.2) and there was also a 4.3% decrease (l-CI = 0.16, u-CI =8.3) in the 461 

probability of foraging. The probability of both giving and receiving grooming were largely 462 

unchanged.  463 

Conversely, we found that an increase in Trichostrongylus sp. loads resulted in a 464 

15.4% (l-CI = 6.3, u-CI =24.6) reduction in the probability of resting. There was also an 8.8% 465 

(l-CI = 0.2, u-CI = 21.1) increase in the probability of foraging, while the probability of 466 
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moving remained largely unchanged (Fig. 2b). The probability of both giving and receiving 467 

grooming increased slightly, by 4.0% (l-CI = -0.8, u-CI = 17.8) and 3.04% (l-CI = -1.6, u-CI 468 

= 11.4) respectively when Trichostrongylus sp. egg counts were higher; however, credible 469 

intervals were wide indicating uncertainty.   470 

An increase in parasite species richness resulted in a slight decrease in the probability 471 

of resting (4.2%, l-CI = -1.7, u-CI = 10.4). However, credible intervals were wide and 472 

uncertainty high. Parasite richness did not influence the probability of the other behaviours 473 

occurring (Fig. 3a).  474 

Although parasite intensity predicted changes in activity budget, the strongest 475 

predictor was change in food availability (Fig. 3b). When food availability was high, the 476 

probability of foraging decreased by 18.4% (l-CI = 12.3, u-CI = 23.8). This was accompanied 477 

by a 12.3% (l-CI = 8.1, u-CI = 16.0) increase in the probability of resting and a 10.1% (l-CI = 478 

5.5, u-CI = 14.8) increase in the probability of moving. The probability of grooming given 479 

and received decreased slightly by 2.1% (l-CI = 0.09, u-CI = 7.9) and 1.9% (l-CI = 0.6, u-CI 480 

= 4.4), respectively. The full model output and summary can be found in the supplementary 481 

material (S6).  482 

 483 

The influence of co-infection on behaviour 484 

We found that, when Trichostrongylus sp. infection intensity was low (2 EPG), the 485 

probability of resting increased, feeding decreased and moving decreased as ?Protospirura 486 

sp. egg count increased (Fig. 4). When Trichostrongylus sp. was high (35 EPG), the mean 487 

probability of resting was lower overall but still rose with increasing ?Protospirura sp. egg 488 

count and the probability of foraging decreased further. The probability of moving remained 489 

the same. 490 

 491 

Model set 2: Influence of parasite infection and ecology on behavioural predictability 492 
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We found evidence of a positive relationship between NDVI and entropy rate (Table 493 

1). This indicates that an increase in food availability was associated with a decrease in 494 

behavioural predictability. We found some evidence of a non-linear relationship between 495 

entropy rate and time of day (sds Est. = 0.27, Est. Error = 0.23, l-CI = 0.01, u-CI = 0.89) 496 

where sds is the spline variance parameter. Behavioural predictability was lowest in the early 497 

morning and increased until mid-day (Fig. supplementary S7). 498 

We found no evidence that ?Protospirura sp. and Trichostrongylus sp. parasite 499 

intensity or parasite richness influenced entropy rate (Table 1). Similarly, fGCM 500 

concentration, sex, rank and individual ID did not influence behavioural predictability. We 501 

found no effect of sequence length on entropy rate, which supports our use of focal samples 502 

exceeding 7.5 minutes. The full model only explained 9.2% of variance (R2 = 0.09, Est. Error 503 

= 0.02, l-CI = 0.06, u-CI = 0.13) suggesting there are other underlying drivers of behavioural 504 

predictability. 505 

We found some evidence of a small, positive interaction between ?Protospirura sp. 506 

intensity (EPG) and Trichostrongylus sp. intensity. When Trichostrongylus sp. was low (2 507 

EPG), entropy rate decreased with increasing ?Protospirura sp. intensity (Fig. 5). 508 

Conversely, when Trichostrongylus sp. egg count was high, entropy rate increased with 509 

increasing ?Protospirura sp. infection intensity. 510 

 511 

Discussion 512 

Our results showed a relationship between parasite intensity and behavioural change, 513 

providing evidence for sickness behaviour in vervet monkeys. The nature of this relationship 514 

was not straightforward, however: we found that higher parasite loads predicted an increase 515 

in time spent resting, but that other behavioural changes were contingent on both the parasite 516 

species in question, and their interactions. This highlights the benefit of considering multiple 517 
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parasite infections when assessing the links between behaviour and infection in wild non-518 

human primates. Although we found evidence for changes in the overall amount of time 519 

devoted to particular activities, we found only limited evidence for more fine-grained 520 

changes in behavioural predictability (i.e., behavioural entropy rate) in response to increased 521 

parasite intensity. Given that food availability was the best overall predictor of behavioural 522 

change, it is likely that, for monkeys living in more extreme environments, coping with 523 

ecological stress overrides any fine-scaled ability to modulate behaviour in response to other 524 

stressors. 525 

In line with previous work on non-human primates (Huffman et al. 1996; Huffman 526 

1997; Huffman and Caton 2001; Ghai et al. 2015; Friant et al. 2016), we found evidence of 527 

sickness behaviour in response to two non-lethal gastrointestinal parasite infections. We 528 

found that increases in parasite intensity (EPG) of both ?Protospirura sp. and 529 

Trichostrongylus sp. were linked to changes in activity budget suggesting that these monkeys 530 

modify their behaviour in response to high parasite infection load. High ?Protospirura sp. 531 

parasite intensity resulted in “typical” sickness behaviour—increased resting, and reduced 532 

foraging and moving. This is notable as ?Protospirura sp. transmission relies on an 533 

intermediate arthropod host, so we might expect a positive relationship between foraging and 534 

increased parasite load. The inverse relationship in this case provides further support for the 535 

idea that what we see here is, indeed, sickness behaviour. It is possible that the change in 536 

behaviour is due to other underlying physiological processes that also occur when 537 

?Protospirura sp. infection intensity is high. However, we found no relationship between 538 

faecal glucocorticoid metabolites (fGCM) concentration and behaviour, suggesting that 539 

changes in behaviour may be a result of gastrointestinal parasite infection rather than an 540 

indication that individuals are coping with other stressors. Still, it is possible that this lack of 541 

relationship may also be a result of fGCM data collection not being fine-grained enough and 542 
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a failure to detect more short-term increases in fGCMs. This emphasises the value of 543 

considering multiple physiological variables in assessing parasite-host relationships. 544 

In the case of Trichostrongylus sp. we found a different pattern, where high infection 545 

intensity was associated with an increase in the amount of time spent foraging, along with a 546 

decrease in the probability of resting. The implication here is that different gastrointestinal 547 

parasites may exert different physiological pressures on the host and the manner in which 548 

they successfully cope with different non-lethal infections. For example, nutrition plays a 549 

vital role in a host’s ability to cope with the negative effects of gastrointestinal parasites 550 

(Ezenwa 2004), which could result in the need to forage more when Trichostrongylus sp. 551 

infection is high. Alternatively, high Trichostrongylus sp. parasite intensity may coincide 552 

with other environmental or social changes that influence host behaviour or parasite 553 

dynamics. We found no relationship between temperature, rainfall, or NDVI and 554 

Trichostrongylus sp. parasite intensity (Blersch et al. 2021) suggesting that monkeys are not 555 

simply foraging more when Trichostrongylus sp. is high because food availability is lower. It 556 

is also possible that, given the relatively low egg counts of Trichostrongylus sp., individuals 557 

may not have been harbouring sufficiently high parasite burden to elicit typical sickness 558 

behaviour.   559 

We were also able to consider the co-occurrence of the two parasites. We found no 560 

strong relationship between Protospirura sp. and Trichostrongylus sp. faecal egg counts 561 

indicating that there is neither a synergistic nor antagonistic relationship between these two 562 

parasites, which further suggests there is no direct competition between them (Bordes and 563 

Morand 2011). We did find differences in egg counts with ?Protospirura sp. egg counts 564 

being both higher and more variable than Trichostrongylus sp. egg counts.  We did find, 565 

however, that co-infection with these two nematodes was linked to different activity budget 566 

changes. When parasite intensity was high for both species, shifts in behaviour were different 567 
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from those seen when only a single infection was considered. Specifically, we found that, 568 

when Trichostrongylus sp. infection intensity was high, monkeys still rested more with 569 

increasing ?Protospirura sp. egg count (i.e., showed the same pattern as when we considered 570 

?Protospirura sp. infection alone), but they also moved more and decreased foraging further, 571 

which contrasts with the findings for ?Protospirura sp. alone. While the presence of both 572 

infections may also be linked to external environmental or social changes, it lends support to 573 

the hypothesis that multiple infections exert differential changes on the wild host (reviewed: 574 

Bordes and Morand 2011) and highlights the need to address co-infections when assessing 575 

animal health. 576 

Contrary to some previous work on bats (Stockmaier et al. 2018, 2020) and  non-577 

human primates (Ghai et al. 2015), we found no marked change in the probability of either 578 

giving grooming or receiving grooming for individual infections, and only a small reduction 579 

in allogrooming when both ?Protospirura sp. and Trichostrongylus sp. infection intensity 580 

were high. While investment in sickness behaviour may be fundamentally beneficial, and 581 

suppression of sickness behaviour may be detrimental to host fitness and survival, animals 582 

have to weigh the cost of modulating behaviours in response to infection (Lopes 2014). 583 

Minimal change in grooming in relation to infection intensity suggests these vervets maintain 584 

social relationships in the face of such external pressures. Young et al. (2019), however, 585 

found that vervets engaged in fewer social behaviours when environmental conditions were 586 

sub-optimal. Given the harsh semi-arid environment, these vervets may be unable to further 587 

reduce the amount of time spent grooming in response to parasite infection; that is, they may 588 

have already reduced their grooming investment to the extent that any further reductions 589 

would incur unsustainable costs with respect to individual social benefits, and/or to group 590 

cohesion (Cohn and de Sá-Rocha 2006; Moyers et al. 2015). 591 
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While our focus here was solely on time spent grooming, social interaction has been 592 

linked to infection susceptibility and transmission in several social species (Otterstatter and 593 

Thomson 2007; Drewe 2010; Briard and Ezenwa 2021) including non-human primates (Wren 594 

et al. 2015; Romano et al. 2016). This suggests that, despite the lack of change in the time 595 

spent grooming, increased parasite load may result in alternative suppressive strategies, such 596 

as changes in the number or identity of grooming partners. However, these strategies may be 597 

contingent on the route of parasite transmission which, for ?Protospirura specifically, is 598 

unlikely to be from direct transmission between individuals. More detailed grooming analysis 599 

is required to fully understand whether these vervets do, at least in part, modulate their 600 

grooming behaviour in response to infection and the risk that maintaining grooming 601 

frequency may incur. Alternatively, the relationship between grooming and parasite infection 602 

simply may be less clear given the lower time invested in grooming in comparison to other 603 

behaviours. 604 

We also considered whether parasite infection intensity was linked to changes in 605 

behavioural structure. Behavioural entropy rate, derived from focal data, was not influenced 606 

by individual parasite infections but, when Trichostrongylus sp. infection intensity was high, 607 

entropy rate increased with increasing ?Protospirura sp. egg shedding. Thus, polyparasitism 608 

was associated with decreased behavioural predictability, indicating that monkeys engaged in 609 

more behaviours, changed behaviours more frequently, or both. This contrasts with studies on 610 

non-human primates that found a reduction in behavioural complexity or the rate of 611 

behavioural switching when individuals were parasite positive (Ghai et al. 2015)  or had 612 

impaired health (Alados and Huffman 2000; MacIntosh et al. 2011). Given that detrended 613 

fluctuation analysis (Alados and Huffman 2000; MacIntosh et al. 2011) and the rate of 614 

behavioural switching (Ghai et al. 2015) measure different aspects of behaviour, direct 615 

comparison between previous results and ours is difficult. However, our study shows that 616 
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polyparasitism may be an important and more realistic consideration in the assessment of 617 

behavioural predictability or behaviour switching, particular given that an unpredictable 618 

behaviour is thought to be biologically adaptive (Goldberger 1997; MacIntosh et al. 2011). 619 

Although we found that parasite infections were associated with both activity budgets 620 

and behavioural structure, the primary drivers of behavioural change were shifts in food 621 

availability; changes in both activity budget and behavioural structure were strongly linked to 622 

this. Previous work in our population has identified complex relationships between behaviour 623 

and environmental conditions, with food resources, temperature, rainfall, and standing water 624 

availability strongly influencing activity budgets and mortality (McFarland et al. 2014; 625 

Young et al. 2019). Our findings here augment this previous work, providing the first 626 

evidence that food availability also affects behavioural structure: behavioural predictability 627 

decreased markedly when food availability was higher. This change likely resulted from a 628 

trade-off between a decrease in time spent foraging and an increase in both moving and 629 

resting when food availability was high. Changes in aspects of behavioural predictability 630 

have been shown to have short- and long-term consequences on fitness and survival. These 631 

include the success of predator performance in predator-prey interactions where 632 

unpredictable prey are more likely to be predated on by aggressive predators (Chang et al. 633 

2017) and mating success, where consistent does not correlate with mating success (Jennings 634 

et al. 2013). However, beyond knowing that behavioural structure can serve as proxy 635 

measure of health (Alados and Huffman 2000), the implications for non-human primates are 636 

not yet well understood. Here, the use of entropy rate, rather than existing binary approaches, 637 

should allow us to identify the consequences of more complex behavioural trade-offs.  638 

Sickness behaviour is increasingly being viewed as an adaptive response to infection 639 

(reviewed in Hart 1988; Aubert 1999; Johnson 2002), however relatively little is known 640 

about the consequences of sickness behaviour in social groups. Based on the idea of 641 
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cytokine-induced sickness behaviour, Hart (1988) proposed that sickness behaviour is an 642 

adaptive response to reduce energy consumption when there is a high-energy demand that is 643 

necessary to maintain a fever. There was early support for the concept of adaptive behaviour 644 

where rats repeatedly chose inactivity over exercise when injected with endotoxin an 645 

endotoxin known to produce an immune response which suggested that that they were 646 

motivated to rest (Miller 1964). However, while sickness behaviour may aid in coping with 647 

infection, there can be corresponding negative consequences. For example, in the same study 648 

population, McFarland et al. (2021) found that monkeys who were febrile and exhibiting 649 

sickness behaviour were twice as likely to receive aggression and 6 times more likely to be 650 

injured than afebrile monkeys. This suggest that, in social groups, sickness behaviour may 651 

incur significant fitness costs. More work is required to fully examine how sickness 652 

behaviour may influence the long-term fitness of gregarious mammals. 653 

Taken together, our results provide the foundation for further research on both 654 

polyparasitism and the more fine-grained influences of non-lethal parasite infections on 655 

behaviour. We suggest that considering multiple parasite infections provides a new 656 

perspective on how parasitism shapes behaviour and that further investigation in other 657 

populations or with other parasite genera could deepen our knowledge of sickness behaviour 658 

in the wild. We also highlight the importance of using a detailed, comprehensive dataset 659 

when investigating how environment, physiology and parasitism interact to shape behaviour. 660 

In sum, our findings provide additional insight into how animals living in a harsh 661 

environment, with strong activity budget constraints, may adopt alternative approaches to 662 

parasite infection, avoidance, and transmission reduction. 663 
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Figure Captions 900 

 901 

 902 
Figure 1: Estimate of faecal egg count of ?Protospirura sp. as a function of Trichostrongylus sp. faecal egg count derived 903 
from the fitted Bayesian mixed-effects model. Upper and lower 95% credible intervals (grey bands) shown.  904 

 905 

 906 

 907 

 908 
 909 
Figure 2: The relationships between the probabilities of behaviours being expressed as a function of each primary predictor 910 
variable. The 5 behaviours are: foraging (blue), resting (purple), moving (red), grooming in (green) and grooming out 911 
(orange). Shaded regions show 89% percentile intervals as calculated from the posterior samples 912 

(a) (b) 

(c) (d) 
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 913 
Figure 3: Changes in the mean probability of behaviours in response to high ?Protospirura sp. (Proto. sp.) when 914 
Trichostrongylus sp. intensity (EPG) was low (green) and high (blue). Density plots show probability of behaviours 915 
predicted by the model, with the height of the density curve indicating the probability of the predicted behaviour. The spread 916 
of the curve indicates the uncertainty. 917 

 918 

 919 

Figure 4: Posterior density plots from the GAMM showing the relationships between primary predictor variables and 920 
entropy rate. From top to bottom, variables are NDVI, interaction term between ?Protospirura sp. (EPG) and 921 
Trichostrongylus sp. (EPG), parasite richness (number of genera), Trichostrongylus sp. intensity (eggs per gram), 922 
?Protospirura intensity (eggs per gram) and the intercept. Vertical lines represent the mean and area under the curves show 923 
95% credible intervals. 924 

 925 
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 926 
Figure 5: Changes in entropy rate in response to high ?Protospirura sp. (Proto. sp.) when Trichostrongylus sp. intensity 927 
(EPG) was low (green) and high (blue). Density plots show entropy rate predicted by the model, with the height of the 928 
density curve indicating the probability of the predicted entropy rate. The spread of the curve indicates the uncertainty. 929 

 930 

 931 

 932 

Supplementary Material 933 

S1. Parasite Sample Extraction Methodology 934 

A modified zinc sulphate flotation was used to isolate helminth eggs, whereby an additional 935 

washing step was included in the faecal flotation to avoid egg damage, which had been 936 

evident in the initial samples that were analyzed [37]. Briefly, faecal samples suspended in 937 

formalin were placed in 15 ml Falcon tubes and centrifuged at 1,389 g for 6 min after which 938 

the supernatant was discarded. The Falcon tube was filled with water, mixed with the faecal 939 

material, centrifuged at 1,389 g for 6 min, and the supernatant was discarded. The deposit 940 

was resuspended in ZnSO4 (specific gravity 1.3), vortexed to mix, and centrifuged at 617 g 941 

for 8 min. The supernatant was pipetted into 4x15 ml tubes and combined with water. The 942 

pellet that remained after flotation was kept aside for sedimentation. This step reduced the 943 

specific gravity of the ZnSO4 after flotation, thus preventing egg damage and allowing the 944 

eggs to deposit upon sedimentation. These supernatant-water tubes were centrifuged at 964 g 945 

for 6 min. The supernatant was discarded, and the deposits were combined into 1 test tube, 946 

which was filled with water and centrifuged at 964 g for 6 min. The supernatant was 947 

discarded, and the entire pellet was examined under the microscope.  948 

 949 

Ethyl-acetate sedimentation was used to isolate potential trematodes that were too heavy to 950 

float during ZnSO4 flotation. Here, the deposit from the flotation was suspended in water, 951 

vortexed, and centrifuged at 964 g for 6 min. The supernatant was discarded, and the sample 952 

was rewashed. Water was added to the pellet to the 7 ml mark of the centrifuge tube and 953 

vortexed. Then, 3 ml of ethyl-acetate was added to the tube, mixed thoroughly, and 954 

centrifuged at 1,389 g for 6 min, and the supernatant was then discarded. The entire pellet 955 
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was examined under the microscope. For both methods, parasites were identified to genus- 956 

level based on egg shape, size, colour, and contents, and all eggs were counted, 957 

Representative eggs were photographed.  958 

 959 

 960 

S1. Entropy rate methods 961 

 962 

S1.1 Methods 963 

 964 

Applying entropy rate to the behaviour of free-ranging animals 965 

  966 

To determine whether entropy rate can be applied to our observed data, and to get a sense of 967 

the sensitivity of the measure, we simulated a dataset that closely matched our observed data. 968 

Simulated data allowed us to make specific predictions related to the influence of 969 

environmental conditions on behavioural predictability where the outcome is already known. 970 

As entropy rate has only been applied narrowly in the field of animal behaviour research, this 971 

functioned as a test of whether the entropy rate measure is capable of retrieving the known 972 

outcome in simulated behavioural data comparable to wild vervet monkey behaviour. If the 973 

outcome can be successfully retrieved in simulated data, entropy rate can then be reliably 974 

applied to explore general relationships between social and environmental factors on 975 

behavioural predictability in the wild. Furthermore, simulation provides control over the 976 

magnitude of behavioural change in response to environmental change which serves as a 977 

coarse measure of the sensitivity of entropy rate to capture changes in behavioural 978 

predictability.  979 

We derived the simulation from the prediction that an increase in food availability was 980 

associated with a reduction in time spent foraging, and a consequent increase in the time 981 

spent engaged in social behaviours.  First, we simulated a range of NDVI values between 982 

0.25 and 0.6, which was consistent with our observed data. Then we simulated behavioural 983 

sequences across NDVI values, while keeping the sequence length (n = 20 behaviours) 984 

associated with the greatest variance, number of focal samples (n = 1553) and number of 985 

individuals (n = 27) consistent with our observed behavioural data. Given that our observed 986 

dataset extends predominantly through summer, we started with an activity budget similar to 987 

the probabilities of behaviours found during the hot-dry period by Young et al. (2019). We 988 

then simulated data such that the time spent foraging decreased with increasing NDVI, using 989 

a low (2%), medium (7%), or high (20%) decrease in foraging time between minimum NDVI 990 

and maximum NDVI. We then calculated the entropy rate for each generated sequence. This 991 

range served as an indicator of how much entropy rate can be expected to vary in relation to 992 

the magnitude of behavioural change thus providing a coarse measure of sensitivity. For 993 

modelling purposes, we then selected sequences derived from a 7 percent change in foraging 994 

time based on previous estimates of seasonal variation in foraging time (Young et al., 2019). 995 

These simulated data were used in a Bayesian mixed effects model (brms package: Bürkner, 996 

P, 2017, 2018) to test our prediction that an increase in NDVI would result in a decrease in 997 

entropy rate. We used NDVI as our fixed effect and individual ID as our random effect. 998 

Other variables, such as troop ID or dominance rank, were not used in this model as our 999 

primary interest was whether we could retrieve the known influence of NDVI on entropy rate 1000 

while aiming to keep the simulation as clear and simple as possible. 1001 
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Entropy rate: Time interval selection 1002 

In order to estimate entropy rate, continuous focal samples had to be discretized into coded 1003 

behavioural sequences. We therefore first determined the sampling time interval that resulted 1004 

in maximum variance across sequences. This ensured that our measure was sensitive enough 1005 

to detect small changes in behaviour. We assigned each behaviour a single letter and created 1006 

coded behavioural sequences by extracting behavior from each focal at 3s, 5s, 10s, 15s, 20,s 1007 

30s, 45s, 60s, 90s, 120s and 300s intervals. This generated 11 sets of sequences for each focal 1008 

that ranged from 2 to 200 consecutive behaviours. We then used the entropy package 1009 

(Hausser and Strimmer 2014) in R version 3.4.4 (R Core Team, 2018), to calculate the 1010 

entropy rate, together with the variance and standard deviation (SD) for each sequence for 1011 

each time interval. 1012 

 1013 

S1.2 Results 1014 

 1015 

Time interval selection 1016 

A sampling interval of 30 s resulted in maximum variance (Var = 0.157) across sequences 1017 

(fig. 2) and we therefore used sequences from a 30 s sampling interval for further analysis. 1018 

Using a 30 second sampling interval, mean entropy rate in our population was 0.76 (+- 0.40 1019 

SD).  1020 
 1021 
 1022 

 1023 

 1024 
Figure 6: Variance in entropy rate for discretized coded behavioural sequences constructed using each time interval. 1025 
Maximum variance at 30 second sampling time interval.  1026 

 1027 

Simulated Data and Sensitivity 1028 

Based on simulated data, we found that behaviour became more predictable as NDVI 1029 

increased and the proportion of time spent foraging decreased (fig. 2). This indicates that 1030 

entropy rate successfully captures changes in behavioural predictability in data of similar 1031 

structure to our observed data. Regarding sensitivity, simulation showed that a 2% decrease 1032 

in foraging between minimum and maximum NDVI does not result in a reliable change in 1033 

entropy rate while we may expect a change in entropy rate of approximately 0.3 with a 19% 1034 

decrease in foraging and increase in social interactions. 1035 

 1036 
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 1037 
 1038 
Figure 7: Plot of simulated data showing the resultant change in entropy rate as foraging decreases while NDVI increases. 1039 
Data were simulated with 2% decrease in foraging (green), 9% decrease in foraging (orange) and 19% decrease in foraging 1040 
(purple). Bands show upper and lower 95% credible intervals. 1041 

 1042 

 1043 

S2. Model comparison results 1044 

 1045 

Owing to the large number of zeroes in our dataset, we ran a generalised additive mixed-1046 

effects hurdle model with a Gaussian distribution and compared it to a non-hurdle model. No 1047 

qualitative differences were found. 1048 

 1049 
Table 1 2: Summary statistics of generalised additive mixed-effects hurdle model with a Gaussian distribution examining the 1050 
influence of  environmental and social factors on entropy rate. CI = credible interval; SD = standard deviation. Smooth-1051 
term sds() = spline “wiggliness”(spline variance parameter). Estimates where credible intervals do not cross zero are in 1052 
bold.   1053 

 Effect Estimate Est.Error l-95% CI u-95% CI �̂� 

Population-level Intercept 0.86 0.08 0.67 1.01 1.01 

 NDVI 0.11 0.03 0.06 0.16 1 

 Sex (ref: male) 0.02 0.04 -0.05 0.09 1 

 Rank -0.01 0.03 -0.07 0.05 1 

 Sequence length -0.02 0.02 -0.07 0.03 1 

 ?Protospirura sp. EPG -0.02 0.03 -0.08 0.04 1 

 Trichostrongylus sp. EPG 0.01 0.04 -0.07 0.09 1 

 Number of species -0.03 0.04 -0.11 0.04 1 

 fGCM concentration 0 0.03 -0.05 0.05 1 

 Time (spline) -0.47 0.39 -1.37 0.26 1 

Troop sd(Intercept) 0.09 0.13 0 0.49 1.01 

ID sd(Intercept) 0.04 0.02 0 0.08 1.01 

Smooth Terms sds(time) 0.18 0.17 0.01 0.6 1.01 

Family-specific parameters 

hu -2.32 0.13 -2.59 -2.07 1 

sigma 0.32 0.01 0.3 0.34 1.01 

 1054 

 1055 
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 1056 
Figure 8: Posterior predictive check for generalised additive mixed-effects hurdle model with a Gaussian distribution.  1057 

 1058 
S3. Full dataset results 1059 

 1060 

We ran a generalised additive mixed-effects model to assess whether the reduction in our 1061 

dataset that resulted from matching faecal samples to behavioural influenced results. We 1062 

found no qualitative differences in these models and proceeded with the reduced dataset.  1063 

 1064 
Table 3: Summary statistics of generalised additive mixed-effects model examining the influence of environmental and social 1065 
factors on entropy rate (N= 1553). CI = credible interval; SD = standard deviation. Smooth-term sds() = spline 1066 
“wiggliness”(spline variance parameter). Estimates where credible intervals do not cross zero are in bold. (R2 0.05, 1067 
Est.error = 0.01, l-CI = 0.03, u-CI = 0.74)   1068 

 Effect Estimate Est.Error l-95% CI u-95% CI �̂� 

Population-level Intercept 0.76 0.09 0.46 0.95 1.01 

 NDVI 0.11 0.02 0.07 0.15 1 

 Sex (ref: male) -0.02 0.03 -0.08 0.03 1.01 

 Rank 0.03 0.03 -0.02 0.08 1 

 Sequence length -0.03 0.02 -0.07 0.01 1.01 

 Time (spline) -0.09 0.53 -1.13 0.95 1 

Troop sd(Intercept) 0.11 0.15 0 0.54 1.01 

ID sd(Intercept) 0.02 0.02 0 0.06 1.01 

Smooth Terms sds(time) 0.39 0.23 0.13 0.99 1 

Family-specific sigma 0.39 0.01 0.37 0.4 1.01 

 1069 

S4. Co-infection model results   1070 

 1071 
Table 4: Summary statistics of the mixed-effects model examining the relationship between ?Protospirura sp. infection 1072 
intensity (eggs per gram) and Trichostrongylus sp. infection intensity. CI = credible interval; SD = standard deviation. 1073 
N=565 faecal samples. 1074 

   Effect Estimate Est. 

Error 

l-95% 

CI 

u-95% 

CI 

Fixed-effects Population-

level 

Intercept 2.21 1.1 0.13 4.36 
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Trichostrongylus sp. (EPG) 0.38 0.64 -1.04 1.56 

Random 

effects 

Troop sd(Intercept) 2.34 0.62 1.15 3.59 

 
 

sd(Trichostrongylus sp. (EPG)) 0.69 0.39 0.09 1.6 

 
 

cor(Intercept, Trichostrongylus sp. 

(EPG)) 

0.17 0.5 -0.81 0.94 

 ID sd(Intercept) 0.94 0.15 0.7 1.28 

 
 

sd(Trichostrongylus sp. (EPG)) 0.3 0.24 0.01 0.91 

 
 

cor(Intercept, Trichostrongylus sp. 

(EPG)) 

-0.23 0.48 -0.96 0.81 

 1075 

 1076 

S5. Multinomial full results 1077 

 1078 
Table 5: Multinomial mixed effects model results of the coefficients of the fixed and random effects. These represent the 1079 
effects of a one-unit increase in the predictor on the log-odds of exhibiting each behaviour instead of the reference category, 1080 
conditional on the other parameters. Reference behaviour: moving 1081 

  Variable Behaviour Mean Standard 

Error 

Standard 

Deviation 

2.5% 

CI 

97.5

% CI 
�̂�  

Fixed 

Effects 

Intercept Groom (give) -2.78 0.06 1.10 -4.28 -0.23 1.02 

  
Rest 0.15 0.01 0.24 -0.33 0.63 1.00 

  
Groom (receive) -2.51 0.02 0.48 -3.11 -1.02 1.01 

  
Forage -0.22 0.01 0.20 -0.59 0.15 1.00 

 
NDVI Groom (give) -0.45 0.00 0.08 -0.60 -0.30 1.00 

  
Rest 0.01 0.00 0.04 -0.07 0.09 1.00 

  
Groom (receive) -0.54 0.00 0.08 -0.70 -0.38 1.00 

  
Forage -0.54 0.00 0.04 -0.62 -0.46 1.00 

 
?Protospirura 

sp. (EPG) 

Groom (give) 0.20 0.00 0.08 0.05 0.34 1.00 

  
Rest 0.15 0.00 0.04 0.07 0.23 1.00 

  
Groom (receive) 0.22 0.00 0.08 0.07 0.38 1.00 

  
Forage 0.02 0.00 0.04 -0.06 0.11 1.00 

 
Trichostrongy

lus sp. (EPG) 

Groom (give) 0.14 0.00 0.09 -0.03 0.17 1.00 

  
Rest -0.10 0.00 0.06 -0.21 -0.01 1.00 

  
Groom (receive) 0.11 0.00 0.11 -0.10 0.21 1.00 

  
Forage 0.06 0.00 0.05 -0.05 0.12 1.00 

 
Number of 

Species 

Groom (give) -0.18 0.00 0.07 -0.31 -0.05 1.00 

  
Rest -0.06 0.00 0.04 -0.13 0.02 1.00 

  
Groom (receive) -0.11 0.00 0.08 -0.26 0.04 1.00 

  
Forage 0.00 0.00 0.04 -0.07 0.08 1.00 

 
Sex (ref: 

male) 

Groom (give) 1.21 0.01 0.26 0.66 1.69 1.01 

  
Rest 0.04 0.00 0.11 -0.17 0.26 1.00 

  
Groom (receive) 0.47 0.00 0.13 0.20 0.71 1.00 

  
Forage 0.14 0.00 0.08 -0.01 0.30 1.00 

 
Date Groom (give) 0.19 0.00 0.07 0.05 0.33 1.00 

  
Rest 0.24 0.00 0.04 0.17 0.32 1.00 
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Groom (receive) 0.58 0.00 0.09 0.41 0.75 1.00 

  
Forage 0.12 0.00 0.04 0.04 0.19 1.00 

 
fGCM Groom (give) -0.15 0.00 0.08 -0.30 0.00 1.00 

  
Rest 0.03 0.00 0.03 -0.03 0.10 1.00 

  
Groom (receive) -0.07 0.00 0.07 -0.22 0.06 1.00 

  
Forage -0.01 0.00 0.03 -0.07 0.06 1.00 

 
Rank Groom (give) -0.40 0.00 0.17 -0.76 -0.08 1.00 

  
Rest 0.01 0.00 0.09 -0.14 0.19 1.00 

  
Groom (receive) 0.25 0.00 0.12 0.01 0.46 1.00 

  
Forage 0.06 0.00 0.07 -0.07 0.20 1.00 

 
Interaction Groom (give) -0.17 0.00 0.09 -0.37 0.00 1.00 

  
Rest -0.01 0.00 0.05 -0.12 0.09 1.00 

  
Groom (receive) -0.11 0.00 0.10 -0.31 0.07 1.00 

  
Forage -0.05 0.00 0.05 -0.16 0.05 1.00 

Random 

Effects 

Troop Groom (give) 1.06 0.07 1.11 0.01 3.69 1.02 

  
Rest 0.16 0.00 0.19 0.00 0.69 1.00 

  
Groom (receive) 0.28 0.02 0.43 0.00 1.64 1.00 

  
Forage 0.13 0.01 0.19 0.00 0.61 1.00 

 
ID Groom (give) 0.48 0.00 0.10 0.32 0.71 1.00 

  
Rest 0.22 0.00 0.04 0.15 0.31 1.00 

  
Groom (receive) 0.19 0.00 0.06 0.08 0.31 1.00 

    Forage 0.14 0.00 0.03 0.09 0.21 1.00 

 1082 

 1083 

S6. Entropy rate results 1084 

 1085 

Model results 1086 

 1087 
Table 6: Summary statistics of generalised additive mixed-effects model examining the influence of parasite infection and 1088 
social factors on entropy rate. CI = credible interval; SD = standard deviation. Smooth-term sds() = spline 1089 
“wiggliness”(spline variance parameter). Estimates where credible intervals do not cross zero are in bold. N=747 1090 

  
Effect Estimate Est.Error l-95% 

CI 

u-95% 

CI 

Fixed effects Population-

level 

Intercept 0.81 0.11 0.58 1.04 

  
?Protospirura sp. (EPG) -0.04 0.04 -0.12 0.03 

  
Trichostrongylus sp. (EPG) -0.06 0.05 -0.16 0.05 

  
Interaction 

(Proto. sp. .*Trich. sp.) 

0.08 0.04 0.01 0.16 

  
Parasite richness (No. of 

genera) 

-0.03 0.04 -0.12 0.05 

  
NDVI 0.1 0.03 0.04 0.16 

  
fGCM concentration -0.01 0.03 -0.07 0.05 

  
Sex (ref: male) -0.03 0.04 -0.1 0.05 

  
Rank 0.02 0.04 -0.06 0.1 

  
Sequence length -0.05 0.03 -0.11 0 

  
Time of day (spline) -0.33 0.5 -1.37 0.78 



 45 

 
Smooth Terms sds(sTime of day) 0.28 0.23 0.02 0.87 

Random 

effects 

ID sds(sID) 0.04 0.02 0 0.09 

 
Troop sds(sTroop) 0.11 0.15 0 0.54 

Family 
 

sigma 0.38 0.01 0.36 0.4 
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Relationships between time, NDVI and entropy rate 1092 

 1093 

 1094 
Figure 9: Changes in entropy rate in response to NDVI (a) and time of day (b) derived from the fitted generalised additive 1095 
mixed effects model. Upper and lower 95% credible intervals (bands) were derived from the fitted model. 1096 
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