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Abstract

We construct a game-theoretic model characterised by perfect information, no transaction

costs, in which agents can borrow at the risk-free interest rate and engage in short sell-

ing. Traders can freely and instantaneously eliminate any unexploited profit opportunities

through pure arbitrage just as the efficient market hypothesis postulates they should. Yet,

in this work we put forth, in a frictionless framework, a counterexample in which the Law

of One Price fails in the underlying assets markets at equilibrium. At a theoretical level, this

leads both the Binomial Option Pricing Model (BOPM) and in the limit, the Black–Scholes–

Merton Model (BSMM), to misprice the vanilla options written on these assets. This com-

pelling result is pregnant with far-reaching ramifications: (i) theoretically, it establishes that

no-arbitrage, while necessary, is not sufficient for any of the BOPM and BSMM to yield con-

sistent results; (ii) practically, it crystallises the need for practitioners to rely on additional,

more data-adaptive, methods of option pricing.
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1 Introduction

The absence of arbitrage in financial markets is a subtle yet paramount tenet which underlies

most of the financial economics machinery today. The no-arbitrage condition (or requirement,

even) lies at the core of corporate capital structure, modern international finance, and option

pricing, amongst others. In the complete absence of economic and financial frictions—the most

important of which are transaction costs, imperfect information, transportation costs and liquid-

ity constraints—conventional wisdom hypothesises that no-arbitrage is intimately related to the
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so-called Law of One Price (LOOP). In a financial context, the LOOP posits that at equilibrium

identical stocks/assets/commodities1 need to be priced exactly the same (see, e.g., Lamont and

Thaler, 2003). If not, traders could make riskless profits by buying an asset at a lower price and

immediately selling it a higher tariff. Interestingly, these traders need not all be rational and

sophisticated. They need only be able to identify an arbitrage opportunity and have the means

to exploit it. This way, the forces of demand and supply work in tandem to drive prices upward

and downward until prices reach a state of repose. And indeed, the nature of stocks means that

the LOOP obtains instantaneously as stocks can be bought and sold immediately towipe out any

arbitrage opportunity which presents itself. Accordingly, in a risk-neutralworld, option pricing

methods such as the Binomial Option Pricing Model (BOPM) and the Black–Scholes–Merton

Model (BSMM) rely heavily on the prevalence of no-arbitrage to calculate a unique price for op-

tions yielding identical state-specific payoffs. An interesting question in this regard is: provided

the prerequisite conditions for the applicability of both the BOPM and BSMM are met, could

these models theoretically misprice the relevant derivatives in a frictionless context?

In this work, we demonstrate via a counterexample the failure of the LOOP in the option and

underlying asset markets. More precisely, we present an equilibrium scenario where the same

commodity trades at different prices across different platforms. We put forth a frictionless game-

theoretic general equilibrium framework in which agents can, and do, freely and strategically

trade in commodities using a system of trading platforms (or markets). On these platforms,

agents may place bids for the assets they wish to buy, and also offer these assets for sale. In

line with how trade takes place on real-world platforms, traders can simultaneously enter both

sides (buy side and sell side) of each market to manipulate prices in their favour. We show that

in such a setup, which closely resembles a call auction (see §2.1), it is possible for an identical

commodity to trade at different prices across different markets at equilibrium. Since all the

conditions for the successful applicability of the BOPM and BSMM also hold,2 we then use the

latter to derive the prices of European vanilla options across different platforms. The BOPM—as

does the BSMM—as opposed to yielding a unique risk-neutral price, instead generates different

(equilibrium) prices, for identical options! Intriguingly, even if these prices were to give rise to
1Throughout the rest of this paper, the terms stocks, assets, and commodities will be used interchangeably.
2Traders can trade in both the asset and optionsmarkets, there are no transaction costs, short sales of commodities

are allowed, and at the equilibrium situation we exhibit, agents are not liquidity-constrained such that arbitrage is
feasible. In particular, for the type of market game we consider, the ability for traders to take short positions in assets
is novel and part of our contribution.
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arbitrage opportunities in the option markets, the resultant equilibrium option price would still

lie strictly between the prices given by the BOPM and BSMM, i.e., the latter fail no matter what.

This result is a meaningful and opportune addition to the literature, informing both academics

and practitioners. Many important papers and theories are founded on the BOPM and BSMM

(see, e.g., Baldwin and Alhalboni, 2020, and the references therein). Our findings thus suggest

a rethinking of the pervasive use of classical option pricing models which are well-known to

have several shortcomings not only from a computational viewpoint, but from economic and

statistical perspectives as well. Our claim is bolstered by recent research into this issue. Indeed,

for option valuation purposes, Ivascu (2021) finds that Machine Learning methods perform

better than the BSMM and the Corrado–Su Model in practice.

This compelling phenomenon is driven by the fact that individual agentswield a non-negligible

degree of market power in the asset markets. Hence, even though the price disparity seems to

suggest the existence of a profitable deviation, this is in fact not so. By adjusting their bids and

offers, traders influence the market-clearing prices of the commodities, ironically through the

aforementioned equilibrating forces of demand and supply themselves. Any deviation from

this unequal-price equilibrium situation, no matter how little, nudges prices in the “wrong” di-

rection for the traders, such that any gains made in one market are, at best, exactly cancelled by

losses made in the other markets. Hence, traders make no unilateral move, and equilibrium is

maintained. In a risk-neutral world, pricing vanilla options in terms of the price of the underly-

ing means that these unequal asset prices also migrate into the derivatives markets.

2 The market game Γ with numéraire and finitely many agents

The set of agents is N , where |N | < ∞. The set of stocks/assets/commodities traded (bought

and sold) in the economy is denoted by C = {1, 2, . . . ,K}. There is also a (K + 1)th asset, m,

which acts as money and yields utility in consumption—i.e., a numéraire. Each k ∈ C is traded

for money at a different trading platform, and for each k, there are Tk < ∞ trading platforms.

Every k ∈ {m} ∪ C is perfectly divisible. For ease of exposition, let T =
∑K

k=1 Tk.

Each agent n ∈ N is endowed with a strictly positive amount of every asset k, i.e., en,k ≫ 0

∀n ∈ N and ∀k ∈ {m}∪C. The consumption set of each agent is therefore identified with RK+1
+ .

In this light, each n ∈ N may be described by a preference relation representable by a utility

function un : RK+1
+ → R, and an initial endowment of commodities, en ∈ RK+1

++ . Rationality is
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common knowledge and there is perfect information.

Formally, the strategy set of each n ∈ N is defined as:

Sn =
{(

bn, qn
)
∈ RT

+ × RT
+ :

K∑
k=1

Tk∑
i=1

bin,k ≤ en,m;

|N |∑
n=1

Tk∑
i=1

qin,k ≤
|N |∑
n=1

en,k, k ∈ C
}
.

Let us explicate the meaning of the individual elements of Sn. Each n ∈ N may place bids for

(make purchases of) commodities 1, 2, ...,K by distributing amounts of money, m, across the

various trading platforms, with bin,k representing the bid placed by agent n for asset k at trading

platform i, i ∈ {1, . . . , Tk}. Likewise, agent n may simultaneously offer commodities 1, 2, ...,K

for sale by allocating amounts of k ∈ C across platforms, with qin,k standing for the amount of

commodity k offered for sale by agent n on market i.

Note, in particular, that while agents are not allowed to bid a total amount exceeding their

endowment of m (
∑K

k=1

∑Tk
i=1 b

i
n,k ≤ en,m), we impose a different type of constraint on offers

thereby departing from the extant literature in two important respects. First, observe that our

restriction means agents can engage in short-selling, such that
∑Tk

i=1 q
i
n,k > en,k is allowed for

any k ∈ C—i.e., a trader may put up for sale an amount greater than his endowment of k. Of

course, while agents can take on leverage, the nature of the trading mechanism means they

must also close their short positions by buying back (placing bids for) the relevant commodities.

Second, since our system is a closed one, the total amount of short sales of an asset at any time

cannot exceed the total amount of the asset in existence (
∑|N |

n=1

∑Tk
i=1 q

i
n,k ≤

∑|N |
n=1 en,k). This is

akin to preventing agents from making naked short sales.

Throughout the rest of the paper, we will rely on the following assumption:

Assumption 1. Utility functions for all agents are concave, smooth, differentiably strictly monotone,3

and the closure in RK+1
+ of each indifference surface in RK+1

++ is contained in RK+1
++ .

2.1 Interactions in the economy

Given a strategy profile (b, q) ∈ S :=
∏

n∈N Sn, we define Bi
k =

∑
n∈N bin,k, Qi

k =
∑

n∈N qin,k,

Bi
−n,k =

∑
h∈N\{n} b

i
h,k, andQi

−n,k =
∑

h∈N\{n} q
i
h,k. Final allocations of commodity k ∈ {m}∪C

3i.e., for all xn ∈ RK+1
++ , ∂un(xn)

∂xn,k
> 0 ∀k ∈ {m} ∪ C.
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for any n ∈ N are then determined as follows:

xn,k = en,k +

Tk∑
i=1

bin,k
Bi

k

Qi
k −

Tk∑
i=1

qin,k, k ∈ C;

xn,m = en,m −
K∑
k=1

Tk∑
i=1

bin,k +

K∑
k=1

Tk∑
i=1

qin,k
Qi

k

Bi
k,

(1)

where themarket game convention that any division by zero, including 0
0 , is equal to zero when-

ever it appears in any of the expressions above, has been adopted.

The allocation rule in (1) is very intuitive. Let us analyse its component parts. Qi
k is the total

amount of asset k offered for sale at market i, while Bi
k is the total amount of money placed

(bidden) at platform i to purchase k. When Bi
k · Qi

k > 0, trader n, having bidden bin,k at i,

then receives asset k in proportion to his bids. Likewise, trader n, having offered qin,k units of k

for sale at i, then receives money (m) in proportion to his offers. Moreover, observe that as Bi
k

increases (decreases), B
i
k

Qi
k

rises (falls), while Bi
k

Qi
k

rises (falls) asQi
k decreases (increases). As such,

whenever Bi
k · Qi

k > 0, the fraction Bi
k

Qi
k

:= pik can be naturally interpreted as the market-clearing

price of asset k at trading platform i. Henceforth, the price of k at platform iwill be denoted by

any of pik and
Bi

k

Qi
k

.4 Wemention in passing that the price formation mechanism hereby described

is perfectly alignedwith the fundamental premise of the efficient market hypothesis: all publicly

available information is fully embedded in the prevailing market-clearing price. As such, any

increase or decrease in demand and supply for the underlying asset is instantaneously reflected in

its price, price which is then used to value optionswritten on that commodity. Hence, regardless

of the frequency at which these options are traded, one can simply run an iteration of the market

game Γ , derive the commodity price(s), and then use an appropriate option valuation technique

to price the relevant options. This is particularly useful for scalpers who execute option trades
4A simple numerical example will help to cast light on how (1) works. Let there be three agents,A,B,C, and pick

a commodity k and a trading platform i. Let the bids of the agents be (biA,k, b
i
B,k, b

i
C,k) = (10, 3, 5) and their offers

be (qiA,k, q
i
B,k, q

i
C,k) = (1, 2, 3). Equation (1) then stipulates that the price, pik =

Bi
k

Qi
k

= 10+3+5
1+2+3

= 3. Accordingly, on

trading platform i, agent A, having bid 10 units of m, receives biA,k
Qi

k

Bi
k

= 10× 1
3
= 10

3
units of k—B and C obtain 3

3

and 5
3
units of k, respectively. Since A also sells 1 unit of k, his net trade of k on market i is 10

3
− 1 = 7

3
. Using this

same procedure, we can derive A’s net trade of k on every other platform (given his bids and offers there). Hence,
A’s final allocation of k, xA,k, is just his endowment of k, plus his total net trades across all Tk trading platforms.

Now, on platform i for commodity k, trader A disburses 10 units ofm. However, given A also sells 1 unit of k and
pik = 3, his net revenue on market i is (1× 3)− 10 = −7. Repeating this argument, we can derive A’s net revenue on
every other platform, for every commodity (given his bids and offers there). So, A’s final allocation of m, xA,m, is
just his endowment ofm plus his total net revenue across all

∑K
k=1 Tk trading platforms.
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on a minute-by-minute basis. Ergo, our model, though simple, has been executed with great

minuteness.

It is noteworthy that the cash-in-advance constraint that we use here allows us to consider

a model that is truly decentralised, such that no bankruptcy rules are required. This is in stark

contrast to Peck and Shell (1990), who, in order to deal with any trader who goes bankrupt,

impose extremely harsh punishments such as a referee shutting down the game altogether, re-

sulting in autarky. We also remark our treatment of short sales is different from Peck and Shell’s

(1990), who allow agents to engage in unrestricted, arbitrarily large short-selling.

Definition 1. ANash equilibrium (NE) of Γ consists of agents’ bids for, and sales of, commodi-

ties such that

(i) Every agent’s actions are best-responses given the expectations of other agents’ actions;

(ii) The best-responses are consistent with all agents’ expectations of other agents’ actions.

At an NE, any trader n ∈ N is viewed as solving the following programme:

max
(bn,qn)∈Sn

{
un

((
xn,k

(
bn,k, ln,k, B−n,k, Q−n,k

))K
k=1

, xn,m
((
bn,k, ln,k, B−n,k, Q−n,k

)K
k=1

))}
. (2)

Definition 2. An NE is termed “interior” if every n ∈ N solves (2) in the interior of Sn, i.e., no

constraint binds.

Before closing this section, we deem it important to highlight a few features of our model, and

in particular, of the trading mechanism that could be of interest to financial analysts. First, our

model is a simultaneous-move (or static) one such that our tradingmechanism closely resembles

a (periodic) call auction. Verily, just likewith a call auction, at any given trading platform for any

given commodity, traders’ bid-and-offer orders are pooled together andprocessed simultaneously

at a single market-clearing price, i.e., the system is well-behaved even out of equilibrium. Second,

notice that trade takes place costlessly in our setup—cf. Toraubally (2018) where traders incur

a service charge whenever their net trade is non-zero. This is aligned with how call auctions,

by gathering many transactions in one place, improve liquidity thereby dramatically reducing

transaction costs for traders.
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2.2 Equilibrium analysis

Our first result delineates the equilibrium relationship between the price for asset k on any trad-

ing platform i and the price for k on any other platform f .

Proposition 1. At an interior NE, the prices for commodity k between any two trading platforms i and

f must satisfy the following no-arbitrage condition for any n ∈ N :

(pfk)
2 =

Bf
−n,kQ

i
−n,k

Qf
−n,kB

i
−n,k

(pik)
2.

Proof. See Appendix.

We now lay the groundwork for our next result. In particular, by augmenting the number of

trading platforms per commodity as we have done in this paper, no equilibrium is lost. More

precisely, any equilibrium of the market game with a single trading platform per commodity, is

also an equilibrium of the market game with multiple trading platforms per commodity (see,

e.g., Koutsougeras, 1999; Toraubally, 2018). And of course, if there is a single platform for each

commodity, it is trivial that at any NE, the LOOP should obtain. It follows that such equilibria

will also constitute equilibria of our model. We collect this result in the next proposition.

Proposition 2. There (always) exists an NE of Γ at which the Law of One Price holds.

Proof. See Dubey and Shubik (1978), and Toraubally (2022).

For the sake of completeness, we remark thatDubey and Shubik (1978) prove the existence ofNE

which may not be nontrivial. However, this apparent limitation is but benign for our purposes

since in our proposed counterexample, we do indeed construct a nontrivial NE.

Before moving on to our counterexample, we deem it important to remind the reader that

the result in Proposition 2 does not preclude the possibility of there (simultaneously) being a

no-arbitrage equilibrium, at which the LOOP fails, a fact which we set forth below:

Corollary 1. By Proposition 1, at an interior NE, if Bf
−n,kQ

i
−n,k

Qf
−n,kB

i
−n,k

̸= 1, the Law of One Price fails.

The foregoing result is crucial in that it dispels the misconception of no-arbitrage being syn-

onymous with the LOOP. Indeed, Proposition 1 and Corollary 1 demonstrate that at equilib-

rium, the LOOP fails insofar as one is able to find a profile of strategies such that Bf
−n,kQ

i
−n,k ̸=
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Qf
−n,kB

i
−n,k; yet, this is perfectly consistent with the complete absence of arbitrage. That is to

say, no-arbitrage is a necessary, but not sufficient, condition for the prevalence of the LOOP.

3 The counterexample

For simplicity, let us price a European call and a European put options in discrete time. Time,

t, is measured in years. Let pik,t represent the price of commodity k at trading platform i pre-

vailing at time t. Let the strike prices of the call and put options on commodity k be Xk and Yk,

respectively. Assume that pik,t evolves according to a binomial model, with constant time steps

of length ∆t. The time to maturity of each option is T < ∞, such that the number of time steps

is g = T /∆t. Following Cox et al. (1979), over each∆t, pik,t goes up by a factor u := exp(σk
√
∆t)

with probability pu := exp(r∆t)−d
u−d , or down by a factor d := 1/u with probability pd = 1 − pu,

where σk represents the volatility of commodity k’s price, and r is the risk-free rate of interest.

Let the number of upward movements over T be ℓ. The prices of our call and put options can

then be derived, respectively, as follows:

PC,i
k,t = exp (−rT ) ·

g∑
ℓ=0

g!

(g − ℓ)!ℓ!
pℓup

g−ℓ
d max

{
pik,tu

ℓdg−ℓ −Xk, 0
}
;

PP,i
k,t = exp (−rT ) ·

g∑
ℓ=0

g!

(g − ℓ)!ℓ!
pℓup

g−ℓ
d max

{
Yk − pik,tu

ℓdg−ℓ, 0
}
.

(3)

The prices of the underlying assets at time twill be determined by traders interacting as per the

rules detailed in §2. Let the set of agents be N = {A,B,C}, the set of assets be {m} ∪ C, where

C = {1, 2}, and let there be two trading platforms i and f for each asset. The consumption set of

each agent is thus a subset of R3
+. The endowments of the traders are:

(
eA,1, eA,2, eA,m

)
=

(
3777
700 ,

254
25 ,

407
70

)
,(

eB,1, eB,2, eB,m

)
=

(
9411
700 ,

13611
700 , 15335

)
,(

eC,1, eC,2, eC,m

)
=

(
304
25 ,

277
700 ,

687
70

)
.

The traders’ preferences are represented by the following utility functions:
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uA(xA) = 15 ln(xA,1) + 4 ln(xA,2) + 9 ln(xA,m),

uB(xB) = ln(xB,1) + 2 ln(xB,2) + 9 ln(xB,m),

uC(xC) = 5 ln(xC,1) + 10 ln(xC,2) + 18 ln(xC,m).

It may be verified that the following profile of strategies constitutes an N.E:

Asset 1 :



(
biA,1, q

i
A,1, b

f
A,1, q

f
A,1

)
=

(
10
3 ,

243
50 ,

1
2 ,

9
7

)
,(

biB,1, q
i
B,1, b

f
B,1, q

f
B,1

)
=

(
2, 72950 ,

1
14 ,

9
7

)
,(

biC,1, q
i
C,1, b

f
C,1, q

f
C,1

)
=

(
2
3 ,

243
50 ,

1
7 ,

9
14

)
.

Asset 2 :



(
biA,2, q

i
A,2, b

f
A,2, q

f
A,2

)
=

(
1
7 ,

9
14 ,

2
3 ,

243
50

)
,(

biB,2, q
i
B,2, b

f
B,2, q

f
B,2

)
=

(
1
14 ,

9
7 , 2,

729
50

)
,(

biC,2, q
i
C,2, b

f
C,2, q

f
C,2

)
=

(
1
2 ,

9
7 ,

10
3 ,

243
50

)
.

The corresponding market-clearing prices to the strategies above are:

Asset 1: (pi1, p
f
1) = (2081 ,

2
9),

Asset 2: (pi2, p
f
2) = (29 ,

20
81),

and each trader ends up with consumption:

(
xA,1, xA,2, xA,m

)
= (15, 8, 4),(

xB,1, xB,2, xB,m

)
= (6, 12, 8),(

xC,1, xC,2, xC,m

)
= (10, 10, 8).

Now, let Xi
1 = Xf

1 = Xi
2 = Xf

2 = 11
50 , Y

i
1 = Y f

1 = Y i
2 = Y f

2 = 1
4 , and r = 4%. Next, recall

from Proposition 2 that there always exists an NE at which the LOOP holds. Recall further

that when the LOOP holds, the number of trading platforms for a commodity is irrelevant as

these can all be consolidated into a unique trading platform. Hence, assume from previous

iterations of the game5 that we had pi1,t−1 = pf1,t−1 = 243
1000 , and pi2,t−1 = pf2,t−1 = 47

200 . Define

5The NE allocations from the last iteration of Γ constitute traders’ endowments for the present round of trading.
As explained in Toraubally (2022), as long as the endowment point one starts from is not Pareto optimal, traders will
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ς ik,j = ςfk,j = ln
(
pik,j+1

pik,j

)
, and let

∑250
j=1 ς

i
1,j =

∑250
j=1 ς

f
1,j = 583

500 ,
∑250

j=1(ς
i
1,j)

2 =
∑250

j=1(ς
f
1,j)

2 = 249
6250 ,

and
∑250

j=1 ς
i
2,j =

∑250
j=1 ς

f
2,j = 1153

1000 ,
∑250

j=1(ς
i
2,j)

2 =
∑250

j=1(ς
f
2,j)

2 = 411
10000 .

6 We can derive the

annualised volatilities of commodities 1 and 2 across trading platforms i and f as follows:

Asset 1: (σi
1, σ

f
1 ) = (0.187, 0.209),

Asset 2: (σi
2, σ

f
2 ) = (0.199, 0.195).

For simplicity, let T = 1
6 and ∆t = 1

12 , such that g = 2. We thus have a two-step Binomial tree,

and may compute PC
t and PP

t using (3) to get:

Asset 1: (PC,i
1,t ,P

C,f
1,t ,PP,i

1,t ,P
P,f
1,t ) = (0.0284, 0.0091, 0.0081, 0.0263),

Asset 2: (PC,i
2,t ,P

C,f
2,t ,PP,i

2,t ,P
P,f
2,t ) = (0.0088, 0.0284, 0.0261, 0.0084).

The BOPM thus generates a pair of prices for identical call options on the very same commodity,

and likewise for put options. Note that this conclusion holds good regardless of the number of

time steps considered—one, two, or more. In particular, it can be verified that even in the limit,

the BSMMwill still give unequal prices as we report below, for concreteness:

Asset 1: (PC,i
1,t ,P

C,f
1,t ,PP,i

1,t ,P
P,f
1,t ) = (0.0288, 0.0095, 0.0083, 0.0270),

Asset 2: (PC,i
2,t ,P

C,f
2,t ,PP,i

2,t ,P
P,f
2,t ) = (0.0091, 0.0289, 0.0269, 0.0086).

In other words, both the BOPM and BSMM fail. We scrutinise the intricacies underlying this

critical statement in the next section. ♦

4 Discussion, implications, and conclusion

Before discussing how the unequal asset-price situation in §3 can be supported as an equilibrium,

let us first expound some of its important features. This endeavourwill help enhance the reader’s

understanding of the mechanism at play.

1. First, note that all traders engage in short-selling. A andB engage in short-selling for com-

be better off reallocating resources.
6As is commonplace in the literature, we assume there are 252 trading days per year, and hence 251 return obser-

vations. Here, time t represents the 252nd trading day and ςik,251 will constitute the 251st observation.
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modity 1
(
243
50 + 9

7 > 3777
700 and 729

50 + 9
7 > 9411

700 , respectively
)
, while C shorts commodity 2(

243
50 + 9

7 > 277
700

)
.

2. The NE exhibited is interior. Importantly, we have chosen these numbers purposely to

prove to the reader that no trader is financially constrained, such that every n ∈ N has the

possibility to move his bids (or offers) from one market to another if he so wishes.

3. Trade is costless, and every trader actually enters both sides of each market for each com-

modity.

4. The set of numbers we have chosen for the market game are all rational, such that our

unequal-price equilibrium is most assuredly not the outcome of any rounding errors. Ad-

ditionally, our example is robust in endowment and utility spaces. That is, given our equi-

librium profile of strategies, we may, for each n ∈ N , pick any utility functions and endow-

ments, such that Assumption 1 and the first-order conditions (see Appendix) are satisfied.

Now, to see why the same asset selling at unequal prices is a legitimate equilibrium, pick, say,

Commodity 1. Consider a trader, say, A, who tries to profit from the price difference in the

capital markets by reorganising his bids and offers across platforms i and f in a seemingly astute

manner. For example, A could consider simultaneously moving some of his bids from platform

i (where the price is higher) to platform f , and shifting some of his offers from f to i. However,

in moving his bids from i to f , he increases the amount demanded of the asset at f , thereby

driving up pf1 immediately. To exacerbate things, it is not only the marginal price of the asset

that soars, but its average price as well, i.e., every unit at f now costs more. A’s purchasing

power at platform f falls, such that his move fails to have the desired effect. Additionally, in

shifting his offers from f to i, he increases the amount sold of the asset at i, thereby depressing

pi1 immediately. Again, it is not only the marginal price of the commodity that falls, but the

average price as well—every unit at i is now cheaper. This deviation only serves to reduce the

revenue that A obtains from selling Commodity 1 at platform i. These effects will combine in

such a way as to make A’s move unprofitable. The same argument can be made for any other

trader and commodity, such that equilibrium prevails.

Sincewe assume a risk-neutral framework, the unequal asset prices then permeate the option

markets. Consequently, given the volatility of Commodity 1 and the risk-free rate of return, the

BOPM yields two prices for the exact same option, as does the BSMM. This is, in and of itself,
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already a blatant violation of the fundamental prediction of both models, which is a unique

price for identical options. But this is not all. Even if this price disparity gave rise to arbitrage

opportunities in the option markets and traders were to track down and risklessly exploit this

mispricing, the resultant equilibriumno-arbitrage option pricewould lie (strictly) betweenPC,f
1,t

and PC,i
1,t thanks to the workings of demand and supply—PC,f

1,t will be revised upward thanks

to increased demand for the call option, while PC,i
1,t will fall due to traders selling more of the

instrument. This process continues until traders can no longer arbitrage prices. Ultimately, this

implies an option price that is in accordance, neither with the BOPM nor the BSMM. That is to

say, the failure of each option pricing technique to deliver consistent prices is a robust, and by

extension, material issue which must not be overlooked by finance theorists and practitioners

alike.

The equilibrating mechanism described above goes through similarly for put options, and if

Commodity 2 were considered as well. We have therefore shown that when agents have market

power, as opposed to being individually negligible, one can derive equilibria at which the LOOP

fails, and with it, traditional methods of option pricing like the BOPM and BSMM. Crucially,

our model makes the significant contribution of proving that for the BOPM and BSMM to yield

meaningful results at a theoretical level, an important qualification is required: not only should

there be no-arbitrage, but the LOOP must also obtain.

At a practical level, our findings underscore the need to increase our reliance ondata-adaptive

approaches founded on nonparametric models (e.g., artificial neural networks), which pro-

cess structural changes in data through courses of action that classical parametric ones (BOPM,

BSMM, trinomial tree models, finite difference, and Monte Carlo methods) cannot—e.g., Liang

et al. (2009) use data from theHongKong optionmarket and they show, for a sample comprising

122 different options, that the use of nonparametric approaches (such as Multilayer Perceptron

and Support Vector Machines (SVMs)) attained forecast errors twice as low as those gener-

ated by parametric methods. Ivascu (2021) uses a suite of nonparametric (Machine Learning)

methods to price 1465 European call options on WTI crude oil, with crude oil futures contracts

traded on the ChicagoMercantile Exchange between 03.01.2017 and 14.11.2018 as the underlying

assets. He also finds that Machine Learning models outdistance conventional parametric ones.

As Liang et al. (2009) and Pagnottoni (2019) show, a comprehensive approach would entail us-

ing classical parametric models in the first instance to roughly forecast the option price—this is

12



aligned with our findings. Neural Networks and SVMs can subsequently be used to refine these

forecasts. This strategy allows for a substantial minimisation of forecast error.
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Appendix

Proof of Proposition 1. For alln ∈ N , utility functions are concave and the budget sets convex (see,

e.g., Toraubally, 2018). Hence, solving for the first-order necessary and sufficient conditions, we

have at an interior NE that ∀n ∈ N and ∀k ∈ C:

∂un(xn)

∂xn,k

Bi
−n,kQ

i
k

(Bi
k)

2
− ∂un(xn)

∂xn,m

Qi
−n,k

Qi
k

= 0; (4)
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−n,k

Bf
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+
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Qf
−n,kB

f
k

(Qf
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2
= 0. (7)

Note that (4) is equivalent to (5), as is (6) to (7). Our conclusion can therefore be obtained by

combining (4) and (6), and rearranging appropriately.
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