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Abstract

To quantify the data irregularity of data, there are a number of entropy mea-
sures each with its own advantages and disadvantages. In this pilot study,
a new concept, namely ensemble entropy, is introduced and used to gener-
ate more stable and low bias signal patterns for entropy estimation. We
propose ensemble versions of sample entropy (SampEn), permutation en-
tropy, dispersion entropy (DispEn), fluctuation DispEn (FDispEn) based on
the combination of different parameters initialization for a original entropy
method. Also, ensemble Shannon and conditional entropy methods based on
the entropy values obtained by different entropy algorithms. We applied the
techniques to different synthetic and three biomedical datasets to investigate
the behaviour of the ensemble methods on the changes in the data dynamics.
The results suggest that ensemble approaches are able to distinguish different
kinds of noises and the degrees of randomness in our generated MIX process.
Ensemble SampEn, unlike SampEn, does not result in undefined values for
short signals. Ensemble DispEn needs a smaller number of samples for dis-
tinguishing different kinds of noise. The majority of ensemble methods result
in larger differences between younger and older subjects using their RR in-
tervals as well as healthy young vs. elderly children using their walking stride
interval data based on Hedges’ g effect size. The ensemble algorithms lead
to more stable results (lower coefficients of variations) for the synthetic data
(different kinds of noises and mixed processes) and discriminated different
types of physiological signals better than their corresponding original en-
tropy approaches. The Matlab code used in this paper will be available at
https://github.com/HamedAzami/ upon publication.
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1. Introduction

Entropy techniques rooted in information theory are of great interest for
evaluation of irregularity and uncertainty in the data [1]. Shannon entropy
(ShEn) and conditional entropy (CondEn) are the most common concepts
used in the context of entropy analysis in particular for physiological signals
[2, 3, 4, 1]. ShEn and CondEn respectively show the amount of information
learned and the rate of information production in a system [4, 3]. Based on
these two approaches, various methods, such as approximate entropy (ApEn)
[5], sample entropy (SampEn) [6], corrected conditional entropy [7], fuzzy
entropy (FuzEn) [8], permutation entropy (PerEn) [9], dispersion entropy
(DispEn) [10], and fluctuation DispEn (FDispEn) [11] have been proposed.

These entropy metrics have been used in a wide variety of physiologi-
cal and non-physiological signal analysis applications to characterize various
pathological or disordered states. For example, ApEn and SampEn have
been used to analyze electroencephalogram (EEG) and magnetoencephalo-
gram (MEG) in Alzheimer’s disease (AD) [12]. SampEn has been used to
study the heart rate variability during episodes of mechanical ventilation and
acute anoxia in rats [13] as well as for diseases and aging [14]. FuzEn has been
applied to a gait maturation database to distinguish the effect of age on in-
trinsic stride-to-stride dynamics and also the Fantasia database to distinguish
short RR interval signals recorded from healthy young vs. elderly subjects
[15]. PerEn has been applied in epilepsy research [16, 17] and in anesthe-
siology [18, 19] using EEGs. PerEn was also used to study financial time
series [20]. DispEn was used to diagnose breathing and movement-related
sleep disorders using ECGs and electromyograms (EMGs) [21]. DisEn is also
used for the detection of different gear faults, fault diagnosis of rolling el-
ement bearings, and characterization of bearing degradation [22]. DispEn
and FDispEn have been used to help clinicians in diagnosing AD and mild
cognitive impairment using MEG signals [23].

Each of these methods has its own advantages and disadvantages based
on their algorithms and applications [24]. For example, SampEn is either
undefined or unreliable for short signals and computationally expensive for
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eters, especially to the tolerance factor r. FuzEn alleviates the problem of
undefined values of SampEn but is still unreliable for short signals. Addi-
tionally, FuzEn, compared with SampEn, is less sensitive to the changes in
its parameters and even data length. PerEn can be used for both short and
long signals. However, when a time series is symbolized based on the permu-
tation patterns (Bandt-Pompe procedure), only the order of amplitudes is
considered and some information related to the actual amplitude values may
be ignored [25, 11]. Additionally, PerEn is sensitive to noise (even when the
data signal-to-noise ratio of is high), because a small change in amplitude
value may vary the order relations among the amplitudes [11]. Although
DispEn and FDispEn are not sensitive to noise and also do not result in un-
defined values, both, like PerEn, are based on symbolic dynamics or patterns
originated from a coarse-graining of the measurements. That is, the data are
transformed into a new signal with only a few different elements. Therefore,
the study of time series dynamics is simplified to the study of distribution of
symbol sequences. By doing this, although some of the invariant properties
of the dynamics are maintained, some details may be lost [26, 27, 28]. There-
fore, there is no entropy method capable of correctly finding the underlying
structure for all datasets.

In general, different entropy values obtained by different entropy ap-
proaches (models) can be equally plausible, if there is no previous knowl-
edge about the best way to evaluate the data dynamics. Therefore, the idea
of combining different entropy approaches (ensemble or aggregation) can be
considered as an alternative approach for enhancing the quality of an entropy
estimation obtained by entropy algorithms.

An ensemble technique is a machine learning system that is constructed
with a set of models working in parallel, whose outputs are combined with
a decision fusion strategy to provide a better and unbiased result [29]. The
models can be for classification (supervised), clustering (unsupervised), re-
gression (supervised), prediction (supervised), or feature extraction (unsu-
pervised or supervised) approaches, depending on the type of task [30]. The
reason behind using an ensemble method is that no original model can be per-
fectly developed for solving non-trivial real-world problems. This rationale is
similar to the reason we use such mechanisms in our daily lives (to enhance
our confidence that we are making the right decision, by weighing various
opinions, and combining them through some thought process to reach a final
decision) [31]. Ensemble approaches have been successfully used in recent
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applications such as object detection and tracking, signal analysis, image
recognition, information retrieval, bioinformatics, and data mining [32, 31].

In this study, we develop unsupervised ensemble SampEn, PerEn, Dis-
pEn, FDispEn as well as ensemble ShEn and CondEn methods. The proposed
approaches are evaluated using synthetic datasets and real-world physiologi-
cal signals: focal and non-focal EEGs [33], RR intervals in Fantasia database
[34], and walking stride measurements [35].

2. Ensemble Entropy

Given a signal, an entropy ensemble method includes two main steps: 1)
Generation: creation of a set of patterns of a time series; and 2) Consensus
Function: integration or combination of all the patterns or values obtained in
the generation step. In the generation step, we can create or detect different
kinds of patterns based on different entropy algorithms or different parame-
ters initialization of an algorithm. The consensus function can be done based
on maximum possibility or averaging,

The goal of ensemble entropy framework is having a nonlinear approach
with the following characteristics: 1) Robustness: better average performance
compared to original entropy algorithms. 2) Novelty: finding a new combined
solution unattainable by any original ensemble algorithm. 3) Stability: en-
semble models with lower sensitivity to noise and outlier.

In this section, we propose ensemble SampEn, PerEn, DispEn, and FDis-
pEn based on the combination of different parameters initialization for a
original entropy method and ensemble ShEn and CondEn based on the en-
tropy values obtained by different entropy algorithms.

2.1. Ensemble Sample Entropy

One of the most important parameters of SampEn is the tolerance fac-
tor r. The parameter r is chosen to balance the quality of the logarithmic
likelihood estimates with the loss of data’s information. When r is too small
(e.g., smaller than 0.1 of the standard deviation of a data), poor conditional
probability estimates are achieved. This may also lead to undefined or unre-
liable SampEn values, especially for short signals. Furthermore, to avoid the
effect of noise on data, larger r is recommended. In contrast, for a large r
value (e.g., 0.3) of the standard deviation, very detailed data information is
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values so we can benefit from small and large r values at the same time.
The computation of EnsSE for a univariate signal of length N : x =

{x1, x2, . . . , xN}, defined on a domain R, starts with the creation of template
vectors xm

i (i = 1, 2, ..., N − (m− 1)) as:

xm
i = {xi, xi+1, . . . , xi+m−1}, (1)

where m is the embedding dimension [6].
Then, for each rj (j = 1, 2, ..., NM), where NM refers to the number

of models, the vector pairs in the template vectors of length m having
d[xm

i ,x
m
a ] ≤ rj (1 ≤ a ≤ N −m, a ̸= i) are averaged as:

ϕm
i (rj) =

[# of xm
a | d[ xm

i ,x
m
a ] ≤ rj]

N −m− 1
, (2)

where # refers to cardinality and d[xm
i ,x

m
a ] denotes the greatest element of

the absolute differences between xm
i and xm

a [6]. Then, ϕm(rj) is estimated
as follows:

ϕm(rj) =
1

N −m

N−m∑

i=1

ϕm
i (rj). (3)

Next, the average of ϕm(rj), (j = 1, 2, ..., NM) is estimated as ϕm(r). After
this, the dimension is increased to m+1 and ϕm+1(r) is estimated like ϕm(r)
[6].
Finally, EnsSE is defined as:

EnsSE(x,m, r) = − ln
ϕm+1(r)

ϕm(r)
. (4)

In SampEn, only the number of matches whose differences are smaller than
the tolerance r is counted and therefore, SampEn is sensitive to this pa-
rameter to a great extent. However, in EnsSE, the tolerance value of r is
substituted by the tolerance vector r. That is, when the number of matches
whose differences are smaller than each of rj (j = 1, 2, ..., NM) is considered.
In this way, small changes in amplitude (larger r - corresponding to lower
frequency components in a signal) and large changse in amplitude (smaller r
- corresponding to higher frequency components in a signal) are taken into
account in EnsSE.
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The value of embedding dimension plays the main role in characterizing
data based on PerEn. In order to work with reliable statistics for PerEn, it
is highly recommended to have (m+ 1)! ≤ N [25]. Thus, all of the m values
(providing (m+ 1)! ≤ N) can be chosen. To be less sensitive to the value of
embedding dimension, Ensemble PerEn (EnsPE) is defined based on all of
the m values (providing (m+1)! ≤ N). For the time series x = {x1, . . . , xN},
the algorithm of EnsPE is defined as follows.
First, mmax is calculated as the maximum value of m where (mmax +

1)! ≤ N . For each mj in the embedding dimension vector m =
{2, 3, . . . ,mj . . . ,mmax}, we embed the signal x in an mj-dimensional space
to obtain the reconstruction vectors x

mj

Λ = {xΛ, xΛ+1, . . . , xΛ+mj−2, xΛ+mj−1}
for Λ = 1, 2, . . . , N − mj − 1, where mj denotes the embedding dimension.
Next, the elements of x

mj

Λ are arranged in an increasing order, with integer
indices from 0 to mj − 1, as follows:

{xΛ+(ℵ1−1), xΛ+(ℵ2−1), . . . , xΛ+(ℵmj−1−1), xΛ+(ℵmj−1} (5)

where ℵ∗ is the (time) index of the element in the reconstruction vector.
There are mj! potential ordinal patterns or symbol sequences ηt (1 ≤ t ≤
mj!), termed “motifs”. Then, the occurrence of each of the order patterns
ηt denoted as f(ηt) is counted. For each ηt, the relative frequency Pr(ηt) is
estimated as follows:

Pr(ηt) =
f(ηt)

N − (mj − 1)
. (6)

For each mj, the normalized PerEn (NPerEn) value is computed as follows
[9]:

NPerEn(x,mj) =

−
mj !∑
t=1

Pr(ηt) · lnPr(ηt)

ln(mj!)
, (7)

where ln denotes the natural logarithm [25, 9]. Finally, the EnsPE is esti-
mated as follows:

EnsPE(x,m) =

mmax∑
j=2

NPerEn(x,mj)

mmax − 1
. (8)
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In the first form of DispEn, normalized cumulative distribution function
(NCDF) is used to map the original signal to discrete classes [10]. Neverthe-
less, there are four other methods (linear, tansig, logsig, and sorting mapping
approaches) to map the original signal to c discrete classes each with its own
advantages and disadvantages [11]. To benefit from the advantages of each
of them and have a low bias entropy approach, we propose to use all of the
mapping approaches in ensemble DispEn (EnsDE).
Ensemble DispEn (EnsDE) is computed as follows:

1. The samples in x are mapped to c discrete classes, which can be denoted
with integers ranging from 1 to c. In this step, we use all the five map-
ping approaches (linear, NCDF, tansig, logsig, and sorting mapping
approaches). The transformed values are assigned into c bins of equal
size depending on their amplitude levels after the transformation based
on these five mapping approaches. This results in a temporal sequence
of symbols ηc = {ηc1, . . . , ηcN}, ξc = {ξc1, . . . , ξcN}, κc = {κc

1, . . . , κ
c
N},

λc = {λc
1, . . . , λ

c
N}, and ωc = {ωc

1, . . . , ω
c
N} for the linear, NCDF, tan-

sig, logsig, and sorting mapping approaches, respectively [11].
2. Using the coarse-grained sequence ηc in the embedding dimension m

and number of classes c, the dispersion patterns ηm,c
i are formed as:

ηm,c
i = {ηci , ηci+1, . . . , η

c
i+(m−1)}, i = 1, 2, . . . , N − (m− 1). (9)

Similarly, ξm,c
i , κm,c

i , λm,c
i , and ωm,c

i are estimated.
3. Each vector ηm,c

i is mapped to a dispersion pattern πα0α1...αm−1 , where
ηci = α0, ηci+1 = α1,..., ηci+(m−1) = αm−1. The number of possible

dispersion patterns assigned to each vector ηm,c
i is equal to cm, since

the vector has m elements and each member can be one of the integers
from 1 to c [10]. Similarly, each vector ξm,c

i , κm,c
i , λm,c

i , and ωm,c
i , is

mapped to a dispersion pattern πα0α1...αm−1 .
4. For each potential dispersion pattern πα0α1...αm−1 , its relative frequency

of appearance, p(πα0α1...αm−1), is obtained by counting the number of
sequences with that pattern in all η, ξ, κ, λ, and ω and dividing it by the
total number of patterns extracted from the signal. If p(ϕy0...ym) denotes
the relative frequency of dispersion pattern πα0α1...αm−1 , we have:

p(πα0α1...αm−1) =
# of i, such that Qm,c

i has type πα0α1...αm−1

5(N − (m− 1))
(10)

7
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i = {αm,c
i , ξm,c

i , κm,c
i , λm,c

i , ωm,c
i }. Note that 5(N − (m − 1))

shows the total number of dispersion patterns in Qm,c
i .

5. Finally, based on Shannon entropy definition, the EnsDE value of x is
estimated as follows:

EnsDE(x,m, c) = − 1

log(cm)

cm∑

=1

p(πα0α1...αm−1) · log p(πα0α1...αm−1)),

(11)

where the factor 1
log(cm)

simply normalises the output to be in the range [0, 1].
Like ensemble DispEn, the algorithm of ensemble FDispEn can also be

defined to propose fluctuation DispEn (FDispEn), which disregards the ab-
solute levels of amplitude in a time series [11]. In this variant, only the
differences between adjacent elements of dispersion patterns are considered.
The patterns obtained in this way are called fluctuation dispersion patterns,
which have lengthm−1 and elements ranging from −c+1 to +c−1. The rest
of the algorithm is the same as that of the original DispEn, with the difference
of having (2c− 1)m−1 potential frequency-based dispersion patterns[11].

2.4. Ensemble Shannon and Conditional Entropy

As mentioned before, ShEn and CondEn are two main entropy approaches
for processing biomedical signals. SampEn and FuzEn are based on Con-
dEn while PerEn, DispEn, and FDispEn are based on ShEn. To have a low
bias entropy for each main entropy technique, we develop the ensemble ShEn
(EnsShE) as the average of normalized PerEn, normalized DispEn, and nor-
malized FDispEn values for a signal. Similarly, ensemble CondEn (EnCE)
is defined as the average of SampEn and FuzEn values. FuzEn here includes
both the fuzzy local and the fuzzy global entropy mneasures to reflect the
local and global characteristics of the time series [15].

2.5. Parameters of the Original and Ensemble Entropy Approaches

In the calculation of EnSE, the parameter m and vector of values r are
chosen as 2 and [0.1,0.15,0.2,0.25,0.3] of the standard deviation of x, respec-
tively. Nevertheless, lower or higher values for rj can be chosen as well. For
the SampEn and EnsCE methods, we set m = 2, and r = 0.2 of the standard
deviation (SD) of the original signal [6]. For all the DispEn- and FDispEn-
based approaches, we set c = 6 and m = 2. For more information about the
selection of c, please see [10, 11]. For PerEn, we followed (m+ 1)! ≤ N [25].

8
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In this study, the non-parametric Mann-Whitney U -test is employed to
evaluate the differences between two sample means that come from the same
population, and used to evaluate if two sample means are equal or not. The
Hedges’ g effect size [36] is also used to quantify the differences between the
results for two groups.

3. Evaluation Data

In this section, we briefly explain the synthetic and real signals used in this
study to evaluate the behaviour of ensemble entropy approaches.

3.1. Synthetic Signals

3.1.1. Noise Signals

It has been evidenced that noise is an essential ingredient of the systems [37,
38]. White, pink, and brown noise are three well-known noise types [37, 38].
White noise is a random signal having equal energy across all frequencies.
The power spectral density of white noise is as S(f) = Cw, where Cw is
a constant [38]. Pink and brown noise are random processes suitable for
modelling evolutionary or developmental systems [39]. The power spectral
density S(f) of pink and brown noises are as Cp

f
and Cb

f2 , respectively, where

Cp and Cb are constants [38].

3.1.2. Logistic Map

Data created by real-world systems, specifically physiological ones, have
typically linear and nonlinear components and likely consist of deterministic
and stochastic components [40, 41, 42]. To this end, logistic map has been
used in many applications to assess a method in detecting periodicity and
non-periodic nonlinearity in a signal [40, 41, 42, 11]. The model is dependent
on its parameter α as: xj = αxj−1(1−xj−1), where the signal x was generated
with the different values α (e.g., 3.5, 3.6, 3.7, 3.8, 3.9, and 4). In fact,
the behavior of the logistic map changes from periodicity to non-periodic
nonlinearity when α changes from 3.5 to 4 [43].
The length and sampling frequency of the signal are, respectively, 15,000

sample points (100 s) and 150 Hz. If α equals 3.5, the time series oscillates
among four values. For 3.57 ≤ α ≤ 4, the series is chaotic, although it has
segments with periodic behaviour (e.g., α ≈ 3.8) [43, 44].

9
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Data created by biological and mechanical systems most likely include de-
terministic and stochastic components [45]. Hence, to inspect how ensemble
entropy methods change when a stochastic sequence progressively turns into
a periodic deterministic time series, we generated a MIX process employed
by [5, 46]. It is defined as follows:

MIXj = (1− zj)xj + zjyj, 1 ≤ j ≤ N (12)

where N is the length of the signal vectors z = {zj}, MIX = {MIXj}, and
y = {yj}. z denotes a random variable which equals 1 with probability p and
equals 0 with probability 1 − p. x shows a periodic time-series created by
xj =

√
2 sin (2πj/12), and y is a uniformly distributed series on

[
−
√
3,
√
3
]

[47, 46].

3.2. Real Biomedical Datasets

Entropy methods are widely used to characterize physiological signals, such
as EEG, ECG, and walking stride interval signals [5, 48, 11, 25]. To this
end, three non-invasive datasets including, EEGs [33], RR intervals [34], and
walking stride interval signals [35] are used in this study.

3.2.1. Dataset of Focal and Non-focal EEGs

Epilepsy is a common neurological condition. EEG signals are used to
identify areas that generate or propagate by seizures [33, 49]. Generally,
focal EEG signals are recorded from the epileptic part of the brain, whereas
non-focal EEGs correspond to brain regions unaffected by epilepsy [49]. The
ability of ensemble entropy techniques to discriminate focal from non-focal
signals is evaluated by the use of an EEG dataset (publicly-available at [50])
[33].
The dataset includes 5 patients and, for each patient, there are 750 focal

and 750 non-focal bivariate time series. The length of each signal is 20s
with sampling frequency of 512 Hz (10240 samples). For more information,
please, refer to [33]. All subjects gave written informed consent that their
signals from long-term EEG might be used for research purposes [33]. Before
applying the complexity methods, the time series were digitally filtered using
a Hamming window FIR band-pass filter of order 200 and cut-off frequencies
0.5 Hz and 40 Hz, a band typically used in the analysis of brain activity.

10
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To investigate the ability of entropy-based methods to char-
acterize RR intervals, the Fantasia dataset (publicly-available at
http://www.physionet.org) is used to distinguish elderly from young
subjects [34]. The dataset includes 20 young (21-34 years old) and 20 old
(68-85 years old) rigorously-screened healthy individuals who underwent
about 120 minutes of continuous supine resting while uncalibrated non-
invasive ECG signals were recorded. Each group consisted of 5 women and
5 men [34]. All 40 individuals remained in an inactive state in sinus rhythm
when watching the movie Fantasia (Disney, 1940) to help to maintain
wakefulness. For each subject, the time series were digitized at 250 Hz.
Detailed information can be found in [34].
All 40 individuals provided written informed agreement and underwent a

screening history, physical examination, routine blood count and biochem-
ical analysis, ECG, and exercise tolerance test. Only healthy, nonsmoking
individuals with normal exercise tolerance tests, no medical problems, and
taking no medications were included to the research [34]. RR intervals in
ECGs were extracted using jqrs based on the PT’s algorithm [51].

3.2.3. Dataset of Walking Stride Intervals

The dataset includes the gait cycle duration on a stride-by-stride basis
in 34 young healthy (3-8 years old - 6.03±1.47) vs. 16 elderly healthy (8-14
years old - mean ± standard deviation (SD) 11.58±1.19) children [35]. Their
parents were happy with their child participate in this study. If the child and
parent were willing to participate, parents were asked to provide informed
written consent and to fill out a questionnaire describing the child’s medical
history. Children were excluded if they had any disorders likely to affect
gait, if they were unable to walk independently for 8 minutes, or if they were
born prematurely. The participants walked at their self-determined, normal
pace for 8 min around a 400-m running track. Two force-sensitive switches
were placed inside the subject’s right shoe: one underneath the heel of the
foot and the other underneath the ball of the foot. The output of these
foot switches, which provides a measure of the force applied to the floor,
was sampled at 300 Hz. The time series recorded from the subjects walking
at their normal pace have the lengths of about 400–500 samples. For more
information, please see [35].

11
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Figure 1: Mean and SD of the results obtained by original and ensemble entropy ap-
proaches for white, pink, and brown noises with different lengths changing from 40 to 700
samples.

4. Results and Discussion

4.1. Synthetic Data

4.1.1. Noise Signals

To evaluate the ability of ensemble entropy approaches, compared with
their original entropy counterparts, to distinguish the dynamics of different
noise signals, we created 40 independent realizations of white, 40 independent
realizations of brown, and 40 independent realizations of pink noise signals
with different lengths changing from 40 to 700 samples. Figure 1 shows that
the profiles for the ensemble entropy techniques are similar to those obtained
by their corresponding entropy algorithm. The results are in agreement with
the fact that white noise is the most irregular signal, followed by pink and
brown noise, in that order, based on the power spectral density of white,
pink, and brown noises [37, 38].

EnsDE, compared with DispEn, needs a lower number of samples to dis-
criminate pink from white noise demonstrating an advantage of proposed
ensemble DispEn for short signals in detecting dynamical patterns of the
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ofTable 1: Sum of the CV values obtained by ensemble and original entropy techniques for

forty independent realizations of white, brown, and pink noises with length changing from
100 to 700 samples.

Methods → DispEn EnsDE FDispEn EnsFDE PerEn EnsPE SampEn EnsSE EnsShE EnsCE

white noise 0.42 0.19 0.37 0.35 0.14 0.09 NaN 1.59 0.21 NaN

brown noise 0.29 0.20 0.57 0.49 0.19 0.10 NaN 1.66 0.26 NaN

pink noise 0.58 0.26 1.38 1.00 0.39 0.20 NaN 1.57 0.48 NaN

noises. The SampEn and EnsCE, unlike EnSE, values for short signals (40
and 60 samples) are undefined showing the advantage of EnsSE over SampEn
and EnsCE for short signals.
To evaluate the stability of the ensemble methods using the different noise

types, we examine the sum of their coefficients of variation (CV; ratio of
the standard deviation to the mean) for white, brown, and pink noises with
lengths of 20, 50, and 700 samples in Table 1. The results show that the
ensemble technique noticeably increase the stability of results (lower CV
values).

4.1.2. Logistic Map

We employed a sliding window of 150 samples (1 s) with 50% overlap moves
along the logistic map signal (Figure 2). The results obtained by all the
original and ensemble entropy method are shown in Figure 2. For all the
approaches, when 3.5 < α < 3.57 (periodic part), the entropy values are
smaller than those for 3.57 < α < 3.99 (chaotic part), except those segments
including periodic components (e.g., α ≈ 3.8) [43, 11, 44]. As expected, the
entropy values, obtained by the ensemble entropy techniques, in addition
to their original forms, increase along the signal, except for the downward
spikes in the windows of periodic behavior (α ≈ 3.8). This behaviour is
in agreement with Figure 4.10 (page 87 in [43]) and the other past studies
[11, 9, 44].

4.1.3. MIX Process

The entropy approaches are applied to 40 realizations of the MIX process
with lengths 100, 300, and 1,000 samples and p = 0, 0.1, 0.2, 0.3, 0.4, 0.5,
0.6, 0.7, 0.8, 0.9, and 1. The mean and SD values of the results are depicted
in Fig. 3. All the profiles show an increase in the irregularity of signals with
an increase in the value of p for the MIX process. It is in agreement with the

13



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

0.4

0.6

0.8

e
n

tr
o

p
y DispEn

EnsDE

FDispEn

EnsFDE

0

0.5

1

e
n

tr
o

p
y PerEn

EnsPE

SampEn

EnsSE

0

0.5

1

e
n

tr
o

p
y

EnsShE

EnsCE

0 20 40 60 80 100

time (s)

0.4

0.6

a
m

p
lit

u
d

e

Figure 2: Logistic map with parameter α changing from 3.5 to 3.99 together with entropy
values of the logistic map to batter understand original and ensemble entropy approaches.
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Figure 3: Mean and SD of the results obtained by original and ensemble entropy ap-
proaches for MIX(p) (0 ≤ p ≤ 1) with length 100, 300, and 1000 samples.

Table 2: Sum of the CV values obtained by ensemble and original entropy techniques for
forty independent realizations of MIX process with length 100, 300, and 1,000 samples.

Methods → DispEn EnsDE FDispEn EnsFDE PerEn EnsPE SampEn EnsSE EnsShE EnsCE

100 samples 0.32 0.17 0.32 0.27 0.30 0.14 1.87 1.59 0.24 1.26

300 samples 0.25 0.10 0.19 0.16 0.14 0.09 0.80 0.73 0.13 0.58

1000 samples 0.08 0.06 0.10 0.09 0.07 0.05 0.40 0.40 0.07 0.30

fact that the higher the value of p for a MIX process, the more irregular the
signal [47, 5].
To compare the results obtained by the original and ensemble entropy ap-

proaches, we used the sum of CV values for the MIX process with length 100,
300, and 1,000 samples (Table 2). It is found that the larger the length of
signals, the more stable the results. It is also found that ensemble approaches
lower the sum of CV values, especially for short signals.
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Figure 4: Boxplots for the original and ensemble DispEn, FDispEn, PerEn, and SampEn
as well as ensemble ShEn and CondEn obtained from the focal and non-focal EEGs. p-
values between 0.01 and 0.05, smaller than 0.01, and smaller than 0.001 are respectively
shown with *, **, and ***.

4.2. Real Signals

4.2.1. Dataset of Focal and Non-focal EEGs

The ability of ensemble methods to distinguish the focal from non-focal
signals is evaluated here. The results, depicted in Fig. 4, show that the non-
focal signals are more irregular than the focal ones. This fact is in agreement
with previous studies [33, 52]. Note that, because the entropy-based methods
are used for stationary signals [6, 11], we separated each signal into segments
of length 2s (1024 samples) and applied the algorithms to each of them
and their averaged values are reported. The results demonstrate that all the
techniques, except SampEn and EnsSE, lead to similar findings. It should be
mentioned that the average entropy values over 2 channels for these bivariate
EEG signals are reported for these univariate complexity techniques.
The non-parametric Mann-Whitney U -test was employed to evaluate the

differences between the results for focal vs. non-focal signals at each scale
factor. The differences for the elderly vs. young children based on Hedges’
g effect size are illustrated in Table 3. The results show that the ensemble
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ofTable 3: Differences between results for 1) focal vs. non-focal EEGs; 2) RR interval data

for healthy young vs. healthy elderly subjects; and 3) stride interval fluctuations for 3-8
vs. 8-14 years old children (gait maturation) obtained by original and ensemble DispEn,
FDispEn, PerEn, and SampEn as well as ensemble ShEn and CondEn based on the Hedges’
g effect size.

Methods → DispEn EnsDE FDispEn EnsFDE PerEn EnsPE SampEn EnsSE EnsShE EnsCE

Focal vs. non-focal 0.94 0.97 0.99 1.01 0.99 1.01 0.11 0.14 0.82 1.00

young vs. elderly (RR intervals) 0.79 1.05 1.07 1.11 0.66 0.69 0.56 0.79 0.80 0.74

young vs. elderly (stride intervals) 0.49 0.58 0.57 0.62 0.20 0.24 0.44 0.62 0.54 0.51

methods, compared with their corresponding original approaches, lead to
slightly higher effect sizes.

4.2.2. RR Intervals in Fantasia Dataset

We compare the performance of original and ensemble entropy approaches
in analyzing RR intervals. The results are depicted in Fig. 5. The results
with significant differences illustrate that young subjects’ RR intervals are
more irregular than those of elderly people. This finding is in agreement
with the fact that aging is associated with irregularity decrease in heart rate
[53, 15].
The p-values illustrate that the difference between the groups based on

EnSE, unlike SampEn, is statistically significant. The differences for the 20
elderly vs. 20 young subjects based on Hedges’ g effect size are illustrated
in Table 3. The effect sizes show that the EnsDE and EnsSE, respectively
compared with DispEn and SampEn, lead to larger differences for RR interval
data in healthy young vs. healthy elderly subjects.

4.2.3. Dataset of Walking Stride Intervals

The results, depicted in Figure 6, show that the median entropy values
obtained by the ensemble entropy approaches, except EnsPE, for the el-
derly children are larger than those for the young children, in agreement
with previous studies [54, 55, 11]. The differences for the elderly vs. young
children based on Hedges’ g effect size (Table 3) demonstrate that ensem-
ble approaches outperform their corresponding original entropy methods to
distinguish various dynamics of the stride-to-stride recordings.
In spite of the promising findings, we suggest selecting a subset of entropy

models to distinguish various features for an ensemble approach. Such a
selection strategy aims to select better entropy models among base entropy
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Figure 5: Boxplots for the original and ensemble DispEn, FDispEn, PerEn, and SampEn
as well as ensemble ShEn and CondEn computed from RR interval data for healthy young
vs. healthy elderly subjects. p-values between 0.01 and 0.05, smaller than 0.01, and
smaller than 0.001 are respectively shown with *, **, and ***.
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the selection of an appropriate subset of base entropy methods and forms a
smaller entropy ensemble that performs better than the set of all of the base
entropy techniques.
It is also recommended to work on the interpretability of ensemble models

as such models are usually more complex than original entropy approaches.
Another issue is that ensemble entropy methods are computationally more
expensive (time and space) than original entropy algorithms and also may not
be better than all the original entropy approaches in distinguishing various
states of physiological data. Therefore, there is a need to find applications
or data we want to apply an ensemble entropy approach to it. The ensemble
forms of multiscale and multivariate ensemble entropy in addition to 2D
entropy approaches also can also be developed [56, 15, 57].

5. Conclusions

The aim of this pilot study is to introduce the concept of ensemble entropy,
as a low bias approach, to quantify the data irregularity or uncertainty. The
ensemble algorithms benefit from the advantages of different entropy methods
(models) or different parameters initialization of a original entropy approach.
We evaluated the ensemble approaches for synthetic and real datasets. The
study has the following implications. First, ensemble SampEn, unlike Sam-
pEn, does not result in undefined values for short signals (100 samples), and
a lower number of samples is needed for discrimination between white, pink,
and brown noises based on ensemble DispEn, compared with the original
DispEn algorithm. Second, all the ensemble techniques lead to lower CV
values (more stable results) for different degrees of randomness, especially
for short time series. Finally, the results for the real data suggest that the
ensemble techniques may lead to larger differences (based on Hedges’ g ef-
fect size) between physiological conditions known to alter the irregularity or
uncertainty of the physiological recordings. Overall, thanks to its ability to
detect different levels of signal dynamics and its successful performance, the
concept of ensemble entropy opens up a new way to analyze data.
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