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Abstract: Soft robotic modules have potential use for therapeutic and educational purposes. To do
so, they need to be safe, soft, smart, and customizable to serve individuals’ different preferences
and personalities. A safe modular robotic product made of soft materials, particularly silicon,
programmed by artificial intelligence algorithms and developed via additive manufacturing would
be promising. This study focuses on the safe tactile interaction between humans and robots by means
of soft material characteristics for translating physical communication to auditory. The embedded
vibratory sensors used to stimulate touch senses transmitted through soft materials are presented.
The soft module was developed and verified successfully to react to three different patterns of
human–robot contact, particularly users’ touches, and then communicate the type of contact with
sound. The study develops and verifies a model that can classify different tactile gestures via machine
learning algorithms for safe human–robot physical interaction. The system accurately recognizes
the gestures and shapes of three-dimensional (3D) printed soft modules. The gestures used for the
experiment are the three most common, including slapping, squeezing, and tickling. The model
builds on the concept of how safe human–robot physical interactions could help with cognitive and
behavioral communication. In this context, the ability to measure, classify, and reflect the behavior of
soft materials in robotic modules represents a prerequisite for endowing robotic materials in additive
manufacturing for safe interaction with humans.

Keywords: 3D printing; 4D printing; silicon; soft materials; human–robot; AI

1. Introduction

Rapid recent progress in soft robotics has enabled more applications of robots related
to human interactions and communications. Communication practices vary for different
purposes of the robot. This could include verbal or non-verbal communication. Recently,
physical touch communication between humans and robots has been deemed indispensable
and much more popular compared to verbal delivery in almost every social robot [1]. For
instance, vending machine interfaces, service robots in restaurants or shops, or even
smart phones. One practical application of social robots in health and therapy is nursing
robots in hospitals for physical and intellectual rehabilitation [2] or in children’s healthcare
experiences [3]. A multisensory environment (MSE) module as part of a robot system
can be defined as a space equipped with sensory materials that provide users with visual,
auditory, and tactile stimulations, usually with the aim of offering stimulating or relaxing
experiences to individuals with cognitive and behavioral impairments, including people
with Profound Intellectual and Multiple Disabilities (PIMD) [4,5].

People with PIMD are characterized by severe cognitive and/or sensory disabilities,
which lead to very intensive support needs. They are developmentally equivalent to a two-
year-old and have other physical problems, such as cerebral vision impairment. Individuals
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with PIMD often have difficulties in communication, so caregivers must always be on the
alert for their few communication signs, as they could interpret the individual’s messages.
The MSE integrated with items that stimulate other senses is often utilized to trigger and
elicit positive responses in interactions between people with PIMD and sometimes for
therapeutic reasons [4,5]. These devices are typically equipped with aromatherapy, music,
adjustable lighting, a projector, a rocking chair, bean bags, and weighted blankets [4,5].
However, many MSE products have restricted engagement capabilities and may elicit
a limited set of responses. Therefore, more versatile MSE devices that interreact safely
through means such as touch [6], sounds [7], lights [8,9] while generating visual, auditory,
or tactile feedback are demanded.

This study presents a multisensory soft robotics module with potential use for ed-
ucational and therapeutic purposes. The designs need to be sturdy, safe, modular, and
adjustable, as each client has different preferences and personalities. This approach sup-
ports the more creative and personalized modules for an interactive communication module
by giving the robotic body a voice in response to touch. Hence, a safe modular product
made of soft material, particularly silicon, is introduced to translate excitement levels by
detecting and classifying touch gestures to a scale of three different sounds. This study
aims to recognize three different types of touch gestures based on categorizations of higher
human intents through affective touch so that they reflect anger (slap), restful (tickle), and
playful (squeeze) emotions.

1.1. Touch Gesture Sensing in Robots

Humans can use gestures to express attitudes and desires. To bring the computer
closer to human life, this project focuses on applying touching gestures to human–robot
interactions. This could help build a concept of how humans and robots can understand
each other. The role that the sense of touch plays in emotional communication in humans
and animals has been widely studied, finding relations to attachment, bonding, stress,
and even memory [10,11]. Touch, as a common communicative gesture, is an important
aspect of social interaction among humans. Several works focus on using touch as a valid
modality to ascertain the user’s intention and claim evidence of the potency of touch as a
powerful means of communicating emotions. Hence, touch is a natural way of interaction
that can contribute to improving human–robot interaction (HRI) and promoting intelligent
behavior in social robots.

In robotics, various types of sensors are used to classify touch gestures. A set of
microphones is utilized for the swipe, tap, knock, and stomp gesture classifications with a
high accuracy range of 91–99% [12]. However, background noise and the risk of interfering
with the touch signal have been deemed the main drawbacks. In addition, the application
of acoustic touch detection and classification is limited to small objects and solid materials,
such as plastic or metal. Other tactile sensing technologies, such as resistive, capacitive, and
optical transducers, could be considered in the MSE module [13]. For instance, optical touch
gesture detection and classification of soft materials has not yet met widespread acceptance
due to changing lighting conditions, posing classification reliability issues, and changing
lighting conditions [14], and some of these approaches can only sense relatively simple
motion and are difficult to embed inside deforming surfaces or elongational soft robots. In
this work, a general sensing strategy using low-cost piezoelectric accelerometers and their
efficiency in both touch gesture classification and various soft module sizes is demonstrated.
The PVDF sensors were selected due to their flexibility, small size, and high sensitivity.

The Piezoelectric PVDF sensor can be used at a wide range of frequencies and is
not bandlimited, so the amount of signal transferred is significant [15]. In addition, the
lightweight and flexible properties of this sensor help lower the mechanical impedance [15].
The PVDF film sensor is also thin and flexible; hence, it is compliant with any type of
surface. The sensor can easily be pasted on different materials. Compared to strain gauges,
PVDF sensors are easier to install and can suit any size and geometry. This feature makes
the PVDF film sensor stand out from the complicated installation process of a strain gauge.
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1.2. Machine Learning Classification

The real-time classification and recognition of physical interactions, or proprioception,
is a challenging problem for soft robots due to the many degrees of freedom (DOFs) and
lack of available off-the-shelf sensors. In this work, low-cost piezoelectric sensors are used
based on a data-driven machine learning (ML) strategy to classify proprioception input
signals accurately in real time. Machine learning algorithms are also applied to determine
the relationship between sensor data and shape-oriented parameters. To do so, the signals
of different gestures on different soft modules with various shapes are acquired to create a
dataset to train the model.

Different classifier algorithms have been used in ML for touch and gesture classifica-
tion in human and robot interactions, including linear and quadratic support vector ma-
chines (SVM) [16], temporal decision trees (TDT) [17], and k-nearest neighbors (kNN) [18].
However, it was shown that, as per the type of sensors and the applications, the most suit-
able classification method could also be varied. Therefore, this study used different SVM
classifier algorithms using the machine learning package in MATLAB as the classifying
algorithm to classify different tactile gestures.

The rest of the paper is structured as follows: Section 2 describes the proposed system
for touch detection and classification and details the hardware used in this work, as well as
the fabrication of the soft robot module. Section 3 describes the feature collection process
with the validation and testing of our dataset and discusses the results obtained. Finally,
the conclusions of this work are presented in Section 4.

2. Methodology

The project’s aim is to design a physical touch communication robotics module that
can recognize and differentiate the contact of a human finger and process the data using
vibration sensors and a MATLAB machine-learning interface. The sound reaction command
is implemented immediately after the prediction of the results so that the system calls the
sound file when the gesture is identified. The different stages of the study are illustrated in
Figure 1.
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Figure 1. Touch gestures used for the classification in this study are Slap, Squeeze, and Tickle, as
these are the most common actions that humans would perform in order to feel or trigger an object;
(a) the touch is produced by the user; (b) the vibration is collected by the LDT0-028K PVDF sensor;
(c) data processing and filtering; (d) feature extraction; (e) the classification using an ML algorithm;
(f) the recognized gesture is verbally communicated.
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2.1. Fabrications, Hardware, and Data Acquisition

The main sensing module of the robot must be covered by a layer of soft material.
The purpose of this action is to first insulate the electrical components from human touch,
secondly transfer the proper vibration effect from human touches to the sensor, and thirdly
help form the body of the soft robot. After several considerations on the material selection,
silicon rubber was chosen as the most suitable material for the current soft robotics module
project. This material was used to cover the piezoelectric sensor module. As the earlier
study results showed, it has a more elastic characteristic than PLA materials for the touch
vibration measurements [19] which are widely used materials for making soft robot bodies.
Additionally, this material can be molded into any desired shape, is durable and resistant to
mold and bacteria, and the electronic hardware or circuits can be embedded directly inside.

Ecoflex 00-50 was used in this work. The computer-aided design (CAD) of the soft
robotic modules was developed using Autodesk Inventor and 3D-printed as per procedures
used in [20]. The precursors of EcoflexTM 00-50, Part A and Part B (Smooth-On, Inc.,
Macungie, PA, USA), were used as the main material. For the silicone elastomer, 5 vol.%
platinum silicone cure accelerator (Plat-Cat, Smooth-On, Macungie, PA, USA) and 1.1 vol.%
silicone thickening agent (THI-VEX, Smooth-On, Macungie, PA, USA) were added to
silicone part A. Furthermore, 20 g of Ecoflex-00-50-part A was loaded into syringe A, and
20 g of Ecoflex-00-50-part B was loaded into syringe B. Then, the syringes were loaded into
the syringe pumps. The syringes were heated in the nozzle before being extruded, by a BIO
X™—3D bioprinter—CELLINK, into a mold designated for holding the heater (Figure 2).
The extruded ink in the mold was left at room temperature to be cured for 3 h according to
the procedure used in [20,21]. Three shapes, including square, round, and triangle, were
designed and developed, as shown in Figure 3. The purpose of making different shapes
was to test the efficacy of ML algorithms on the recognition of different touches in different
shapes of soft modules.
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Figure 2. 3D-printed mold and silicone modules.

The PVDF sensors used were quite sensitive to vibration measurements. To reduce
its sensitivity, the wires to the pins need to be soldered, and a heat shrink must be used to
fasten the form-recovering process. Two sensors were embedded inside the silicon module
so that the differences between the outputs of the sensor could be used as features to classify
the types of touch. Additionally, the width of the testing pieces was 100 mm, and the width
of the sensor was 13 mm. Hence, two sensors well spread in the testing piece would collect
a wider range of vibration data and features from the touch. The embedded sensors are
represented in Figure 3.
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Figure 3. PVDF sensor with soldered wire and heat shrink; sensors embedded inside the silicon modules.

The micro-controller used in this project was the Arduino Mega2560. The microcon-
troller was connected to MATLAB on a laptop for interfacing and recording the signals
(Figure 4). Three touch gestures were implemented to perform the experiment: slapping,
squeezing, and tickling (Figure 5). These actions match the human emotions of boredom,
anxiety, and anger, respectively. Thus, the module could realize what the user’s emotion is
and, consequently, produce the appropriate soothing sound reaction. The experiment on
each touch and shape was repeated 100 times to obtain enough data for the ML classifi-
cation of touch gestures. This means that for three gestures, the total number of samples
was 300. This was the number for only one shape. Because of the use of three shapes, the
dataset of three gestures on three shapes contained approximately 900 samples.
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Figure 5. Applying different gestures from top to bottom; slapping with 4 fingers, squeezing with
5 fingers, and tickling with 4 fingers, respectively.

2.2. Machine Learning Implementation for Gesture and Shape Classifications

Supervised learning is used to classify the touch gestures in this work. After being
recorded, every signal sample is labeled with the correct type of gesture, along with the
shape, called the correct output. All samples are summarized in a dataset. The classifying
algorithm is trained with the dataset and makes predictions called predicted outputs. It will
compare the correct outputs with the predicted outputs and modify the model accordingly.
However, the classifying algorithm will not be trained with all samples in the received
dataset. The acquired dataset is divided into two parts: one for training and one for
validation. 60% of the dataset is used for training purposes, and the remaining 40% is for
validation. For example, the set of tickling samples in a round shape had 100 samples.
60 samples were used to train the model, and 40 samples were left to validate its accuracy.

Five cases are set to test the accuracy of the model. The first case is to test the gestures
in a round shape only. The second case is to compare the gestures in a round shape with
those in a triangle. The third case is between the round and the square. The fourth happens
with gestures in triangle and square shapes. The fifth is to combine all three shapes to see if
the model can still classify with high accuracy.

The most important part of classification is extracting the features of the signals. These
features are the keys to differentiating one type of touching from the others. Using a func-
tion called “extract” will assist in calculating the values for all features and summarizing
them in a feature table (Supplementary Figure S1). The features that need to be extracted
from the signals include duration, the aspect ratio of the signal between two sensors, the
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median, the mean absolute deviation, the maximum and minimum values, the velocity,
and the correlation. After having a feature-extracting function, the next task is to run all
the training samples through this function to acquire a feature table, which will later be
used for training the model. The concept is also applied to all the gestures of the other
shapes. After the extracting process, all the datastore feature tables for all the gestures were
combined into one final feature table, which was used to train the model.

The MATLAB Classification Learning App was employed here. This application helps
to apply all the classifying algorithms to the training data. The output of the app is a model
that can be used in predicting the testing data. The training of the algorithm was executed
in the Classification Learning App. The input is the features table, which was formed in
the feature extraction stage. In the response section, three unique valuables are the three
types of touching that need to be classified (Supplementary Video S1). Six types of SVM
with different features, including Linear SVM, Quadratic SVM, Cubic SVM, Fine Gaussian
SVM, Medium Gaussian SVM, and Coarse Gaussian SVM, were implemented, and the best
results were used for validation (Supplementary Figure S2). The accuracy of the models
was demonstrated by calculating the misclass rate. Finally, sketching a confusion matrix
can present the number of gestures that are correctly predicted and the incorrect gestures,
along with the types of misclassifications that the model misclassifies.

3. Results and Discussion

A high-pass Chebyshev Type 2 filter was employed to process the signals. This will help
feature extraction to go more easily and increase accuracy. The stop frequency is set to be
0.4 Hz, and the stop amplitude is 60 dB. The signals are time domain, and the achieved results
in the first 30 s are shown in Figure 6. The results shown below was achieved by applying the
gestures to the silicon module continuously. The red and blue features represent the output
of sensor 1 and sensor 2 on the silicon module. Furthermore, the graphs showed that each
gesture characteristic could be distinctly received by the sensors, producing a voltage linearly
related to the magnitude of the touch force applied. This was deduced by the small but dense
variation of the tickling graph, the large and widespread variation of the squeezing graph,
and the sharp and widespread variation of the slapping graph.
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Figure 6. Data acquisition results of slapping, squeezing, and tickling from top to bottom, respectively,
on (a) square, (b) round, and (c) triangle silicone modules.

The results are demonstrated in five cases. The first is a classification based solely on a
round shape. Comparisons between round and triangle, round, and square, and triangle
and square are the second, third, and fourth cases, respectively. The final case is to combine
all three shapes into one classification session.

In the first case, the classification consists of three gestures in a round shape only.
Therefore, the category of classifying variables includes tickling, squeezing, and slapping.
The model was trained with all SVM algorithms, and three returned the highest accuracy of
99.6%, including Linear, Quadratic, and Cubic SVM, as shown in Figure 7a. The complexity
of this case is the lowest because the model only needs to learn three types of gestures, and
the amount of data is not large. Therefore, a linear SVM is sufficient to train the model in
this case. The confusion matrix (Figure 7b) shows that all the testing samples were correctly
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classified, with no misclassified samples, in the round module. The accuracy percentage of
the model in this case is 100%.
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In the second case, the model is meant to classify three types of touching on two
shapes: round and square. This makes the number of classifying variables 6 instead. All
SVM algorithms are also used to train the model. Fine Gaussian SVM returned the highest
accuracy, up to 100%. However, the Fine Gaussian SVM model was not promising with
the testing data. Therefore, the Cubic SVM model was used, reflecting the least amount
of misclassification in the testing data. The confusion matrix had an accuracy of 92.92%,
as shown in Figure 8a. The third case considered the classification of touch gestures on
round and triangle, where again the Cubic SVM model was used to achieve the highest
classification algorithms of 97.5%, as shown in the confusion matrix in Figure 8b. The
scenario in the third study is similar to the two earlier cases, but the classification between
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square and triangle shapes and three touch gestures is shown in Figure 8c. However, the
Cubic SVM model for this case had the lowest accuracy of 84.58%.
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After testing with groups of two shapes, the final case is to combine all three shapes
with the acceleration response of three touching gestures on each shape. The total number
of classifying variables is 9. With a larger dataset, Quadratic SVM has shown the highest
accuracy of 89.4%. Since the dataset for this case is the biggest, the cross-validation folds
were set to be 5 folds. Cross-validation was applied to protect against overfitting by
partitioning the dataset into folds and estimating the accuracy of each fold. As shown in
the confusion matrix, the model could still classify with an acceptable accuracy of 85%,
considering the larger pool of datasets.

As per the confusion matrix results (Figure 8d), the touch gestures of all the testing data
could be successfully classified. However, in cases where the model classified three gestures
as different shapes, the maximum accuracy dropped. In most cases, the samples that are
misclassified are tickles and slaps. This could be explained by the fact that tickles and slaps
were performed on the surface of the module. In contrast, the gesture of squeezing comes
from two sides of the module. Moreover, round, triangle, and square are three different
shapes, and the touchpoints of squeezing can be completely different. Thus, errors in
classifying squeezes are less likely to occur.
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The three touches on all shapes’ success rates are summarized in Table 1. It can be
noticed in the tickling signals on round and square shapes that they are mostly similar.
The tickling in a round shape and the tickling in a square shape have an equal number of
peaks. Both happen within a duration of time and have a similar pattern ratio. This is also
the cause of the errors in the two cases of round vs triangle and triangle vs square. The
misclassed samples in round and triangle are the least among 3 cases that compare the
gestures in pairs of shapes. The case that has the most misclassed samples is triangle vs
square. The errors occur mainly in the classification of slapping samples of the two shapes.
In brief, throughout the classification in all cases, the shapes of the module affected only
the squeezing gesture. Meanwhile, tickling and slapping are less dependent on the shapes
of the module because they are performed only on the surface, which is similar among all
tested modules.

Table 1. The three touches on all shape success rates.

Touch Module # Successes # Failures Success Rate (%)

Tickle Round 23 17 57.5
Tickle Triangle 39 1 97.5
Tickle Square 37 3 92.5

Squeeze Round 40 0 100
Squeeze Triangle 40 0 100
Squeeze Square 35 5 87.5

Slap Round 40 0 100
Slap Triangle 20 20 50
Slap Square 32 8 80

The tickling action on the shapes was almost the same. This was because this action
was applied with the fingertips with light contact on the surface, which was the same
for all shapes. The slapping gestures experienced the same, as this gesture occurred too
quickly and powerfully, causing the graph to undergo a burst in voltage and then quickly
go down swiftly. However, a minor difference can be seen right before the stabilized value.
Squeezing gestures provided a slight difference between the triangle and the other two
shapes. The logic behind this apparently came from the shape of the module. As stated
above, the squeezing gesture was performed by placing pressure on the opposite sides
of the module. Therefore, the width of the shapes contributed to the small variation, and
the width of the triangle was the smallest of the three shapes, while the round and square
shapes were all 100 mm in dimension.

4. Conclusions

A physically stimulated soft module for detecting and classifying human touch gestures,
based on machine learning, was developed to help with stimulating or relaxing experiences
for individuals with cognitive and behavioral impairments, including Profound Intellectual
and Multiple Disabilities (PIMD) people and safe social robots, where the sound reaction
resulting from the type of touch could be used to therapize the user’s emotional problems.
The study provided knowledge of how a computer module was trained to recognize the
three common touching gestures of humans, which are tickling, squeezing, and slapping,
on different shaped soft modules, including round, triangle, and square.

First, Ecoflex 00-50 silicon-made soft modules were fabricated using 3D printing in
different shapes. The touching gestures’ signals were then acquired on all three shapes
by means of two PVDF accelerometers. Sufficient training and testing data were used for
classification via the SVM algorithm in the machine learning package in MATLAB. The
model has been trained with the data of three gestures from one shape, different pairs
of shapes, and all three shapes together. The validating results were acceptable since the
highest accuracy was 100% in differentiating the types of touch, and the lowest accuracy
was 84.58%, classifying both shape and touch gestures. In detail, only the squeezing gesture
is affected by the module’s forms. Tickling and slapping, on the other hand, are less
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affected by the shape of the module since they are conducted solely on the surface, which is
consistent across all the evaluated modules. The thickness of the module critically affected
the efficiency of the classifying process; the thinner the module, the noisier the data became.

The suggested module may be used by a wider population to inspire curiosity, reduce
stress, and improve well-being via the ability to identify and categorize touch gestures,
either as a stand-alone system or in conjunction with conventional touch sensing methods.
The module should be operated wirelessly so that the user can bring it and put it anywhere.
The design of the complete module should be more decorative and user-friendly, i.e., the
color and shape of the module could be improved and have different options with all
the electronic components hidden and 3D-printed. An inflatable silicone robot is a future
direction. In addition, with the luxury of 4D printing, more adjustable and customizable
modules are possible.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/polym14163302/s1, Figure S1: Features Extraction function.; Figure S2:
Training algorithms and plot snapshots on (a) round vs square, (b) round vs triangle, (c) square vs
triangle, (d) all three shapes, from top to bottom respectively; Video S1: Demonstrations of touches.
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