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ABSTRACT

The APOE gene and particularly the ε4 allele have been a long-established 
risk factor for Alzheimer’s disease (AD), demonstrating the largest genetic effect 
size in this complex disease. In light of the odds ratios observed for the risk allele, 
many studies disregard neighbouring association signals as merely “tagging” this 
effect. Polygenic risk score (PRS) analyses in this field regularly use low linkage 
disequilibrium parameters (r2≥0.1) when selecting SNPs for analysis across the 
genome and remove kilobases of data surrounding the APOE locus, preventing 
confounding factors influencing their results. This study investigated a 500kb region 
surrounding the APOE locus, utilising PRS analysis to explore whether additional 
SNPs in this region could be providing contributory effects to AD predictability. The 
data presented here suggest that the “sphere of influence” of the APOE isoform 
SNPs covers a region of around 92kb; SNPs in Linkage Disequilibrium (LD) at r2<0.4 
with rs429358 potentially contribute independently to the PRS predictability 
for AD, and that there are additional independent SNPs in this region that have 
increased effects in an APOE ε4 negative sample. This study concludes that further 
consideration is required when selecting LD parameters for PRS analysis and that 
additional investigation into the region surrounding APOE may yield polymorphisms 
that may play a pivotal role in the development of AD. 

Introduction
The Apolipoprotein E (APOE) gene is singularly the most replicated 

genetic association with Alzheimer’s disease (AD), located on chr19q13, 
its potential role has been highlighted since the early 1990’s through 
linkage studies1. The APOE ε4 allele/isoform is determined by the 
genotypes present at two coding SNPs, rs429358 and rs7412, and has been 
observed to have a multiplicative dosage effect on AD risk, with odds ratio 
estimated at 3 for heterozygous carriers and up to 12 for homozygotes2,3. 
Despite its large effect size, this genetic variant does not account for the 
entire estimated heritability observed for AD4, and therefore genetic 
variants have been sought and found in genome-wide studies over the 
past 30 years5. In recent years, association analyses have given way 
to polygenic risk score (PRS) studies, summarizing the effect sizes of 
multiple alleles into a single score with the aim to differentiate between 
cases and controls6. These studies have highlighted the involvement of 
multiple polymorphisms in the AD phenotype; however, these studies 
often exclude the APOE region. This exclusion is due to observations 
of multiple association signals in neighbouring SNPs to rs429358 and 
rs7412, believed to be tagging the effect of the isoform SNPs via linkage 
disequilibrium (LD), therefore large regions of the genome surrounding 
APOE are often removed prior to PRS analysis to prevent confounding 
effects of these variants. This excluded region ranges from 14kb to over 
2Mb7–12, despite multiple studies suggesting that additional loci in this 



Brookes KJ, Farrell C. Utilising Polygenic Risk Score Analysis for AD to Determine the “Sphere of 
Influence” of the APOE Isoform SNPs. J Neurol Neuromedicine (2022) 6(2): 1-7 Journal of Neurology & Neuromedicine

Page 2 of 7

region may be having independent effects13–19. Therefore, 
the removal of this area could be missing key contributory 
variants from PRS models. This study aimed to investigate 
the extent of the “sphere of influence” of the APOE isoform 
SNPs by exploring the clumping parameters within a 500kb 
region, removed in our previous studies20, and identify 
potential SNPs within this region that may be independent 
contributors to the polygenic risk score for AD. 

Methods

Datasets
The IGAP_stage 1 (IGAP_S1) summary statistics21 

were used as the base dataset, and genotype data from 
the Brains for Dementia Research (BDR) project22 was 
used as the target dataset to generate the polygenic 
risk scores. The BDR dataset underwent standard 
quality control with PLINK v1.923. removing SNPs with 
a minor allele frequency of less than 1%; genotype calls 
of less than 95% and which deviated significantly from 
Hardy-Weinberg Equilibrium (P<0.0001) in the control 
samples. Samples that had less than 95% call rate were 
also removed. This resulted in an analysis dataset of 520 
samples consisting of 356 pathological confirmed AD 
cases, and 164 controls.

Clumping
The IGAP_S1 summary statistics were clumped using 

the 1000Genomes dataset in PLINK v1.923, using the 
parameters –clump-p1 1 –clump-p2 1 –clump-kb 250 and 
–clump-r2 ranging from 0.1 to 0.9. Using R v4.0.324 the 
clumped output file for each r2 was changed from wide-
to-long format for comparison with the .bim files from the 
target datasets, allowing each common SNP to be tagged 
with a clump number identifier. 

SNPs in a 500kb region (hg19_chr19:45,160,844-
45,660,844) surrounding the APOE isoform SNPs 
were extracted from both datasets, and common SNPs 
present in both datasets were carried forward into the 
analysis.

Polygenic Risk Score Generation
Polygenic risk scoring was carried out using the –score 

parameter in PLINK v1.923. Logistic regression was carried 
out in R v4.0.324, followed by calculating the Area Under 
the Curve (AUC) using the pROC package25. Using R v4.0.3 a 
‘magic for loop’ 26 was set up to allow the inclusion of SNPs 
from the base dataset individually across the APOE region 
(R script available upon request).

Results
Sixty-two SNPs were present in both the IGAP_Stage 

1 summary statistics and the BDR dataset across the 
500kb APOE region under investigation (Supplemental 

1). Individual SNP AUC values within the BDR dataset 
identified 26 SNPs of interest, inclusive of the APOE 
isoform SNPs and spanning 92kb (92,040bp). Out of 
the 26 SNPs, 14 achieve AUC’s of over 0.55, with 8 over 
0.60; these mapped on to those SNPs which were found 
to be significantly associated with the AD phenotype 
in the BDR dataset (P<0.05). SNPs with AUC’s ≥0.60 
are all found within a 39kb region (39,220bp), in 
addition to 3 SNPs with AUCs ≥0.55 and 2 SNPs with 
AUCs less than 0.55. Both rs429358 (AUC=0.7025) and 
rs7412 (AUC=0.5304) are within this region, with their 
combined isoform predictability providing an AUC of 
0.7082 (P=6.89x10-15). Notably the region of significant 
SNPs and those that have higher AUCs are upstream 
to the APOE isoform SNPs with little indication for the 
involvement of SNPs downstream of the rs7412 SNP 
(Table 1).

Visualisation of the clump assignment of these SNPs 
at various levels of r2, demonstrate two clear blocks of 
LD covering the TOMM40 and APOE genes (Table 1). It 
was hypothesised that SNPs that were tagging each other 
would not alter the AUC statistic of the polygenic risk 
scores generated, as the additional effects sizes of the SNPs 
would alter the scores for both cases and controls within 
the same margin, therefore not altering the difference 
between them in the overall risk score. To test this, SNPs 
assigned to “clump one” were added into the polygenic 
risk score model as the level of r2 decreased (Table 2). 
The SNPs incorporated into the PRS model up to an r2 ≥0.6 
have similar effect sizes, leading to marginal changes in the 
AUC generated by these scores. As more SNPs with more 
variable effect sizes are added, the AUC also varies and 
increases, suggesting these SNPs may be independently 
contributing to the PRS.

A secondary block of SNPs (rs8106922-rs1160985-
rs405509) consistently identified as belonging to the 
same clump (although the clump number changes 
across the r2 parameters) was also observed and 
subjected to the same exploration to see if the same 
pattern of additional SNPs contributing to the model 
when lower levels of LD is utilised was seen. Again, 
this clump suggests that at lower parameters of r2, 
additional SNPs are contributing to the model rather 
than tagging other SNPs (Table 3).

The discriminability of PRS consisting of the most 
significant SNP (by IGAP_Stage1 statistics) for each clump 
at various levels of linkage disequilibrium were compared 
to identify the most significant model, utilising only 
those SNPs whose individual AUC was greater than 0.55. 
This suggests that using an r2 of ≥0.7 provides the most 
discriminatory model (Table 4) incorporating 10 SNPs 
within this region, although negligible differences in AUC 
were observed between the r2 range of 0.5-0.7.
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MAF_Cases 0.376 0.243 0.074 0.361 0.399 0.021 0.445 0.007 0.252 0.277 0.170 0.346 0.053 0.524 0.038 0.323 0.323 0.284 0.319 0.409 0.295 0.312 0.427 0.411 0.049

MAF_Controls 0.296 0.204 0.104 0.409 0.329 0.046 0.476 0.024 0.314 0.268 0.207 0.360 0.104 0.372 0.037 0.104 0.104 0.451 0.101 0.146 0.399 0.436 0.509 0.168 0.082
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OR 1.437 1.255 0.695 0.818 1.352 0.443 0.885 0.283 0.736 1.043 0.783 0.940 0.488 1.859 1.025 4.126 4.126 0.482 4.184 4.028 0.629 0.586 0.718 3.467 0.578

0.6904

APOC1
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9
7
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4
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1
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A
0.340
0.114

2.07E- 14

4.031

Table1: Summary table of data collected from the IGAP_Stage1 summary statistics, clumping of the IGAP_Stage1 summary statistics at various 
levels of r2, and association data and individual SNP AUC generated on the BDR dataset covering a 92kb region of interest. SNPs with high Area 
Under the Curve (AUC) measures align with association P values within the BDR dataset.

 

Individual 0.9 0.8-0.6 0.5 0.4 0.3-0.2 0.1
rs34404554 0.6845
rs34342646 0.6847
rs71352238 0.6847

rs157582 0.7098
rs429358 0.7025

rs12721046 0.6904
rs6859 0.6108

0.7429       
3.32 x 10 -15

Linkage Disequilbrium r 2 parameter

0.6857         
2.97 x10 -12 0.6857     

3.26x10-12 0.7155        
3.0 x 10 -13 0.7313             

5.4 x 10 -15 0.7374      
3.73 x 10 -15

Table 2: Summary table of AUC generated for the SNPs assigned as belonging to clump 1 in the IGAP_Stage 1 summary statistics at each level 
of r2. Both SNPs rs34404554 and rs34342646 are in high LD and remain in the same clump throughout the r2 parameters. Individual they 
provide similar AUC, which is not dissimilar when they are combined into the PRS. Addition of SNP rs71352238 throughout r2 parameters 
of 0.8-0.6 does not see a significant change in the polygenic risk score statistics. However additional SNPs added at lower levels of linkage 
disequilibrium appear to improve both the significance of the PRS and discriminability.

Individual 0.9 0.8 0.7-0.5 0.4 - 0.2 0.1
rs1160985 0.5843 0.00031
rs8106922 0.5709
rs405509 0.5576
rs157580 0.6178

rs1871047 0.5362
rs387976 0.5058

rs2075642 0.5385

0.5809             
0.00064

0.5737             
0.0013

0.6581         
2.04x10-8

0.6686       
2.6 x 10 -9

Linkage Disequilbrium r 2 parameter

Table 3: Secondary block of SNPs in strong LD across markers rs8106922-rs1160985-rs405509 displayed no improvement of AUC when SNPs 
were in strong LD, however at lower levels of r2 (<0.4) additional SNP contributed to the model.
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Table 4: Table showing the results of polygenic risk score models 
consisting of the most significant SNP within each clump in the region 
of interest at each r2 parameter. For this only SNPs with individual 
AUCs of greater than 0.55 were included. This suggests that an r2 
parameters of ≥0.7 provides the most discriminatory model, though 
there is minimal different in AUC between r2 measures of 0.5-0.7.

The BDR target dataset was divided into two groups 
based on whether the individual was APOE ε4 allele 
positive or not. This resulted in a dataset of 247 cases 
and 53 controls in the APOE ε4 allele positive group (ε4 
pos): and 108 cases and 111 controls in the APOE ε4 
allele negative group (ε4 neg). The 10 SNP PRS model was 
applied to these sub-groups and as expected the AUC in the 
APOE ε4 allele positive was not dissimilar to that of the full 
dataset (AUC 0.7368 v 0.7477 in the full dataset) whilst the 
score for those with no APOE ε4 alleles display minimal 
discriminability (0.5284), confirming the presence of the 
APOE ε4 allele is a strong contributory factor in predicting 
AD (Table 5, header row). 

To test if each SNP within this 10 SNP model was 
contributing to the 0.7477 AUC, a drop-out analysis was 

Table 5: Summary of “drop-out” analysis to determine the level of contribution each SNP is having to the polygenic risk score model. Grey 
shading indicates drops in AUC of ≥0.005 when SNP is removed from the model. This analysis that SNPs rs429358 and rs157580 are important 
contributory SNPs in the polygenic risk score model for AD. In the absence of the APOE ε4 allele, two further SNPs, rs12721046 and rs6859, 
which display a low level of linkage disequilibrium with the APOE isoform SNP rs429358 (r2<0.4), are also important contributing SNPs in the 
discriminatory model.

carried out, removing a single SNP from the model, and 
observing if a drop of greater than 0.005 was observed in 
the AUC. The removal of SNPs, rs34404554 and rs1457582 
that reside within “clump 1” of the IGAP_S1 summary 
statistics across all r2 parameters does not result in a large 
drop in the AUC when analysed in the entire dataset or in 
the APOE ε4 allele positive/negative datasets. Likewise, 
SNPs, rs1160985, rs104022771, rs519825 and rs8104483 
are not making strong contributions to the discriminatory 
value of the 10 SNP model. However large drops in AUC 
are observed when the APOE isoform SNP rs429358 is 
removed from the model, supporting its role as a key 
contributory factor. In addition, removal of rs157580, 
consistently reduced the predictability of the model across 
full dataset and in the APOE ε4 allele positive/negative sub-
groups, suggesting this SNP may also have a contributory 
role independent of the rs429358 isoform SNP (Table 5). 
The roles of SNPs rs12721046 and rs6859 are less clear, 
although lower AUCs are observed when these SNPs are 
removed from the entire dataset and in the APOE ε4 allele 
positive it does not make the >0.005 cut-off, however in the 
APOE ε4 allele negative dataset, the removal of these SNPs 
from the model indicate key contributory roles, which may 
only be observed in the absence of the rs429358 APOE ε4 
isoform SNP.

To confirm the findings of the drop-out analysis, a “drop-
in” analysis was performed adding in the key contributory 
SNPs identified to observe the impact on the AUC (Table 
6). The resultant 4 SNP model had a higher AUC than the 
original 10 SNP model, indicating that the removal of SNPs 
that do not contribute to the model, reduces noise, and 
improves the discriminatory accuracy. However, this was 
only observed in the entire dataset and the APOE ε4 allele 
negative dataset. In the APOE ε4 allele positive sub-group 
the original model fairs better.
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For completeness, rs7412 was added into this 4-SNP 
model to ensure capture of the full APOE isoform effect. 
Inclusion of this SNP only marginally changed the 
discriminatory accuracy of the 4-SNP model with AUCs of 
0.7525, 0.7134, and 0.5746 obtained for the full cohort and 
APOE ε4 allele positive and negative subgroups respectively. 

Discussion
 The presence of the APOE ε4 allele is one of the 

strongest risk factors associated with the onset of AD1,2, 
due to this many PRS investigations on AD, remove a 
substantial region of genotype data surrounding this locus 
due to the assumption that additional association signals in 
this region are due to the SNPs being in LD with the isoform 
SNPs rs429358 and rs7412. This study has investigated 
this region of chr19, utilising PRS analysis and clumping 
algorithms to determine if by removing this region of the 
genome predictive SNPs for AD are being lost. The data 
presented here suggest that the “sphere of influence” of the 
APOE isoform SNPs covers a region of around 92kb; SNPs 
in LD at r2<0.4 with rs429358 potentially contribute to the 
PRS predictability for AD, and that there are additional 
independent SNPs in this region that demonstrate 
independent contributory effects in an APOE ε4 negative 
sample.

AUC statistics obtained for the APOE isoform SNPs in the 
BDR sample present here provide an overall model accuracy 
of 0.7082, with the increase in score significantly correlated 
to disease outcome (P=6.89x10-15). This is comparable to 
PRS outcomes observed in other studies8,27–29, confirming 
the BDR cohort is showing the same genetic architecture 
of larger cohorts. 

LD is where there is a non-random association of 
alleles between loci, suggesting they are co-inherited at 
a frequency that is higher than chance. The r2 parameter 
indicates the level at which 2 alleles are correlated, and 
therefore when one is known provides an approximate 
prediction of the allele at the second loci, with r2=1 
indicating the two alleles are in perfect correlation, 
with a certainty of allelic prediction, and 0 suggesting 
no correlation, and therefore random chance of allele 
prediction. Consequently, the higher the r2 between two 
SNPs the more correlated they are and the more accurate 

the allele prediction will be. Using this assumption many 
PRS studies opt to clump the SNP dataset being used so 
that only a single (most significant) SNP is used from a 
haplotype where the correlation (or r2) between them is 
≥0.1, although the genetic distance in which the SNP lie 
in proximity to each other to assess varies from 250kb 
(default PLINK parameter) to 1000kb windows7,8,10,11,20,30,31. 
Although this almost certainly ensures independence of 
the SNPs being entered into the PRS model, it could also 
lead to many key independent SNPs being omitted from 
the analysis. Traditionally “tag” SNPs were genetic variants 
that were genotyped as proxies for additional SNPs in 
high LD around them, reducing redundancy in genotyping 
efforts for GWAS studies, investigations into the selection 
of these “tag” SNPs to capture the maximum variation of 
the genome suggest using SNPs with r2 ≥0.532,33. 

In this analysis we clumped the base dataset and 
labelled each SNP with the clump identifier it belongs to 
at each r2 parameter. This demonstrated that the SNPs 
within the 500kb surrounding the APOE are not in high LD, 
with only 2 SNPs sharing at single clump at the highest r2 
parameter of ≥0.9. As the r2 metric decreases, more SNPs 
are assigned to the same clump and by r2≥0.1, the majority 
of the 26 SNPs are tagged by 3 haplotype blocks. When 
exploring the 2 main haplotype blocks with the immediate 
region upstream to the isoform SNPs, including SNPs 
with higher levels of LD (>0.5) into the PRS models, does 
not greatly alter the AUCs observed (Tables 2 and 3). It is 
only when SNPs with lower levels of r2 are added into the 
model is there an increase in predictability. This suggests 
that a) when SNPs in high LD are included together in PRS 
models it does not artificially increase the AUC and b) the 
current practise of clumping SNPs at an r2 ≥0.1 may be 
forcibly removing SNPs that could be contributing to the 
phenotype. Interesting, the LD level at which additional 
SNPs are informative to these models is around an r2 of 
0.5; which is the same level suggested by those involved 
in the HapMap and Tag SNP selection algorithms suggest 
is required to sufficiently capture the variation in the 
surrounding genome32,33.

This study has identified 3 potentially contributory 
SNPs to the PRS (in addition to rs429358) that are likely 

Table 6: Drop-in analysis, adding in contributory SNPs identified singly to obtain a 4-SNP model that provides a greater discriminatory accuracy 
than the 10 SNP model in the entire dataset the APOE ε4 allele negative sub-group. However, no improvement was observed in the APOE ε4 
allele positive sub-group.
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observations by Zhou and colleagues exploration of the 
APOE region, observing both the rs6859 and rs12721046 
were associated in samples homozygous for ε3 allele19. 
This along with the data presented here suggests that 
some key variants in the APOE locus may be independently 
contributing to the AD phenotype and consist of a disease 
risk haplotype when in combination with the ε4 allele. It is 
perhaps because of the high frequency of the ε4 allele found 
in AD cohorts that these variants have been overlooked 
and be obscuring association and PRS analyses, as on an ε4 
positive background it would seem these SNPs have little 
effect. Additional studies on this region, and a deeper look 
into the haplotypes is warranted, especially in AD cases 
that do not carry the ε4 allele, and across ethnic groups. 
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