1 Title

2 Comprehensive genetic and functional analyses of Fc gamma receptors influence on response 3 to rituximab therapy for autoimmunity

4

5 Authors

James I Robinson¹#, Md Yuzaiful Md Yusof¹#, Vinny Davies^{1,2}, Dawn Wild¹, Michael Morgan^{1,3}, John C
 Taylor¹, Yasser El-Sherbiny^{4,5}, David L Morris⁶, Lu Liu⁶, Andy C Rawstron⁷, Maya H Buch^{1,8}, Darren Plant⁸,
 Heather J Cordell⁹, John D Isaacs¹⁰, Ian N Bruce⁸, Paul Emery^{1,11}, Anne Barton⁸, Timothy J Vyse^{6†}, Jennifer

- 9 H Barrett^{1†}, Edward M Vital^{1†} and Ann W Morgan^{1,11†*} on behalf of the MATURA¹² and MASTERPLANS¹³
- 10 Consortia
- 11
- 12 # These authors contributed equally as first authors
- 13 [†]These authors contributed equally as senior authors
- 14

15 Affiliations

- 16 ¹ School of Medicine, University of Leeds and NIHR Leeds Biomedical Research Centre, Leeds Teaching
- 17 Hospitals NHS Trust, UK
- 18 ² School of Mathematics and Statistics, University of Glasgow
- ³ Cancer Research UK Cambridge Institute, University of Cambridge
- ⁴ Department of Biosciences, School of Science and Technology, Nottingham Trent University
- ⁵ Department of Clinical Pathology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
- ⁶ Department of Medical and Molecular Genetics, Faculty of Life Sciences and Medicine, King's College
 London
- ⁷ Haematological Malignancy Diagnostic Service, Leeds Teaching Hospitals NHS Trust
- ⁸ Versus Arthritis Centre for Genetics and Genomics, Division of Musculoskeletal and Dermatological
- 26 Sciences, School of Biological Sciences, the University of Manchester and NIHR Manchester BRC,
- 27 Manchester University NHS Foundation Trust
- 28 ⁹ Population Health Sciences Institute, Newcastle University
- ¹⁰ Translational and Clinical Research Institute, Newcastle University and Musculoskeletal Unit, Newcastle
- 30 upon Tyne Hospitals NHS Foundation Trust
- 31 ¹¹ NIHR Leeds Medtech and In vitro Diagnostics Co-operative, Leeds Teaching Hospitals NHS Trust
- 32 ¹² Please see Appendix I
- 33 ¹³ Please see Appendix II
- 34

35 *Corresponding Author

- 36 Professor Ann W Morgan
- 37 Leeds Institute of Cardiovascular and Metabolic Medicine
- 38 School of Medicine, LIGHT Building, Clarendon Way
- 39 University of Leeds, Leeds LS2 9DA, UK
- 40 e-mail: a.w.morgan@leeds.ac.uk
- 41 Tel no.: +44 113 343 7721
- 42
- 43
- 44 Keywords
- 45 Autoimmune Diseases, B-lymphocytes, Genetics, Rheumatoid Arthritis, Rituximab, Systemic Lupus
- 46 Erythematosus
- 47
- 48
- 49 Word Count
- 50 6605

1 ABSTRACT

Background: Rituximab is widely used to treat autoimmunity but clinical response varies. Efficacy
is determined by the efficiency of B-cell depletion, which may depend on various Fc gamma
receptor (FcγR)-dependent mechanisms. Study of FcγR is challenging due to the complexity of
the *FCGR* genetic locus. We sought to assess the effect of *FCGR* variants on clinical response,
B-cell depletion and NK-cell-mediated killing in rheumatoid arthritis (RA) and systemic lupus
erythematosus (SLE).

8 **Methods:** A longitudinal cohort study was conducted in 835 patients [RA=573; SLE=262]. Clinical 9 outcome measures were two-component disease activity score in 28-joints (2C-DAS28CRP) for 10 RA and British Isles Lupus Assessment Group (BILAG)-2004 major clinical response (MCR) for 11 SLE at 6 months. B-cells were evaluated by highly-sensitive flow cytometry. Single nucleotide 12 polymorphism and copy number variation for genes encoding five Fc_YRs were measured using 13 multiplex ligation-dependent probe amplification. *Ex vivo* studies assessed NK-cell antibody-14 dependent cellular cytotoxicity (ADCC) and Fc_YR expression.

Findings: In RA, carriage of FCGR3A-158V and increased FCGR3A-158V copies were 15 associated with greater 2C-DAS28CRP response (adjusted for baseline 2C-DAS28CRP). In SLE, 16 MCR was associated with increased FCGR3A-158V, OR 1.64 (95% CI 1.12-2.41) and FCGR2C-17 ORF OR 1.93 (95% CI 1.09-3.40) copies. 236/413 (57%) patients with B-cell data achieved 18 complete depletion. Homozygosity for FCGR3A-158V and increased FCGR3A-158V copies were 19 20 associated with complete depletion in combined analyses. FCGR3A genotype was associated with rituximab-induced ADCC, and increased NK-cell FcyRIIIa expression was associated with 21 improved clinical response and depletion in vivo. Furthermore, disease status and concomitant 22 therapies impacted both NK-cell FcyRIIIa expression and ADCC. 23

Interpretation: $Fc\gamma RIIIa$ is the major low affinity $Fc\gamma R$ associated with rituximab response. Increased copies of the *FCGR3A*-158V allele (higher affinity for IgG1), influences clinical and

biological responses to rituximab in autoimmunity. Enhancing FcγR-effector functions could
improve the next generation of CD20-depleting therapies and genotyping may stratify patients for
optimal treatment protocols.

4 **Funding:** Medical Research Council, National Institute for Health and Care Research, Versus

5 Arthritis.

1 **RESEARCH IN CONTEXT**

2 Evidence before this study

Mechanistic studies to explain the variability in depth of B-cell depletion by rituximab therapy in 3 4 autoimmune diseases, including the effect of FCGR variants, were limited compared to the 5 literature in haematological malignancies. Study of FcyRs is challenging due to the complexity of 6 the FCGR locus and large samples of rituximab-treated individuals with highly-sensitive flow 7 cytometry B-cell data are required. We searched PubMed, Cochrane Library and medRxiv for articles published in English up to March 2022 using the following terms: "fc receptor", "rituximab", 8 "rheumatoid arthritis", and "systemic lupus erythematosus" and identified 35 studies. Of those 9 10 studies, only 7 studies (RA=6; SLE=1) evaluated the effect of FCGR genotype on clinical 11 outcomes. One meta-analysis which only included 3 studies in RA reported an association between the FCGR3A VV+VF genotype and rituximab response. However, the genetic studies in 12 autoimmune diseases above have in general, lacked statistical power (sample sizes between 12 13 14 and 212), included heterogeneous cohorts, treatment regimens, and outcome measures, as well as genotyping technologies that were neither comprehensive nor accounted for copy number 15 variation (CNV). 16

17

18 Added value of this study

By undertaking comprehensive assessment of all low affinity *FCGR* variants and CNV in the largest RA and SLE cohorts to date, we showed that $Fc\gamma RIIIa$ is the major $Fc\gamma R$ contributing to rituximab biological (i.e. depth of B-cell depletion) and clinical responses in both autoimmune diseases. Our genetic findings were supported by *ex vivo* data characterising $Fc\gamma RIIIa$ expression and NK-cell-mediated cytotoxicity. In SLE, our study shows the association between increased copies of the *FCGR2C*-ORF allele and improved clinical response.

25

1 Implications of all the available evidence

Our findings indicate that personalised therapy could be guided by *FCGR3A* genotyping for
optimal treatment protocols which may reduce complications such as neutropaenia, and infections
related to hypogammaglobulinaemia that develops with repeated courses of rituximab therapy.
Enhancing the FcγR-effector functions could improve the next generation of CD20-depleting
therapies with a focus on enhancing ADCC for *FCGR3A*-158F homozygotes.

1 INTRODUCTION

B-cell depletion using rituximab is widely used to treat rheumatoid arthritis (RA) and systemic
lupus erythematosus (SLE)(1-4). However, clinical responses vary and there remains an unmet
need to understand mechanisms of sub-optimal response to improve clinical outcomes.
Significant evidence supports an association between achieving complete peripheral B-cell
depletion and clinical response in RA and SLE, when highly sensitive flow cytometry (HSFC)
assays are used to enumerate circulating B-cells(5-9). However, mechanistic studies to explain
this variability in depth of depletion in autoimmunity are limited.

9 Rituximab is a chimeric anti-CD20 monoclonal antibody (mAb), with a native IgG1-Fc that crosslinks Fcy receptors (FcyRs) expressed on immune effector cells. Variability in B-cell 10 depletion traditionally invokes four main mechanisms, and the relative importance of each may 11 12 differ between autoimmunity and malignancies. These include antibody-dependent cellular 13 cvtotoxicitv (ADCC). complement-dependent cytotoxicity (CDC), antibody-dependent 14 phagocytosis (ADCP) and direct signalling-induced cell death, with variable evidence from animal models, in vitro and clinical studies(10, 11). Human genetic studies provide strong evidence for 15 natural killer (NK)cell-mediated ADCC, delivered through FcyRIIIa, as the principal 16 mechanism(10, 12, 13). 17

The expression of $Fc\gamma R$ subtypes is known to differ between leucocyte populations. NK-cells are generally characterised by expression of $Fc\gamma RIIIa$, with greater expression in the circulation than in tissues. NK-cells from some individuals express $Fc\gamma RIIc$, or rarely $Fc\gamma RIIb$ dependent upon specific gene rearrangements(14). In tissues, other $Fc\gamma R$ -mediated mechanisms and innate cells may also contribute, such as ADCP, which leads to clearance of rituximab-opsonised B-cells by cells of the reticuloendothelial system, tissue macrophages(15) or neutrophils(12, 16). Phagocytic cells express activatory $Fc\gamma Rs$ (i.e. $Fc\gamma RIIa$, $Fc\gamma RIIc$, $Fc\gamma RIIIa$ and $Fc\gamma RIIb$) in a cell-type specific

1 manner. Innate cell activation may also lead to release of soluble mediators that modulate FcvR 2 expression on phagocytic cells, for example interferon gamma (IFNy) release from activated NKcells and complement component 5a (C5a) release from Kupffer cells exposed to IgG-coated B-3 4 cells, potentially further enhancing FcyR-mediated clearance mechanisms(11, 13, 17). The 5 importance of macrophage-mediated ADCP is well-recognised in haematological malignancies, 6 with promising early results for a combination of a macrophage checkpoint inhibitor and rituximab 7 in follicular lymphoma(18). Furthermore, a recent study of cancer immunotherapy demonstrated 8 the importance of macrophage polarisation and identified that paclitaxel acted as an adjuvant to 9 polarise macrophages to the M1 phenotype with enhanced phagocytic capacity(16), including ADCP. There is a single inhibitory FcyR (FcyRIIb), which fine-tunes activatory signals. FcyRIIb is 10 the only FcyR expressed on B-cells where it may contribute to rituximab-mediated CD20 11 12 internalisation(19). Differences in the relative importance of FcyR-effector functions between different disease states and tissue sites may ultimately be explained by inherent differences in 13 IgG and immune complex structure, B-cell biology, abundance of tissue/tumour associated 14 macrophages, immune cell polarisation, concomitant immunosuppressive medications and/or 15 16 adjuvants.

17 Evolutionary gene duplications and rearrangements created a structurally variable FCGR genetic 18 locus, with duplications and deletions observed(14, 20, 21). Due to the high homology between 19 paralogs, FCGR genotyping is technically challenging. There are well-described functional variants that alter FcyR-IgG affinity and/or FcyR expression, which may modulate IgG-effector 20 functions leading to rituximab-induced B-cell depletion and clinical response. Some studies have 21 22 evaluated genetic predictors of rituximab response in genes encoding the low affinity FcyRs in RA(22-26), SLE(27) and rituximab-induced neutropenia(28, 29). However, these studies have, in 23 24 general, lacked statistical power, included heterogeneous cohorts, treatment regimens, outcome 25 measures and genotyping strategies, which confounds meta-analyses (30). Despite associations

1 with malignancies(31-35), these were not replicated in larger cohorts from the RESORT(36), 2 PRIMA(37), GOYA, or GALLIUM(38) clinical trials. Candidate variants included FCGR3A (F158V, rs3969910) and FCGR2A (H131R, rs1801274), which encode receptors with single amino acid 3 differences in the IgG binding sites. The FcyRIIIa-158V and FcyRIIa-131H allotypes have 4 increased affinity for IgG1 and IgG2, respectively. We and others have shown that FCGR3A(39) 5 and FCGR3B CNV(40, 41) correlate with cell surface expression, which may further modulate B-6 7 cell depletion. To date, there have been no studies of rituximab response that have 8 comprehensively studied common FCGR variants nor accounted for copy number variation (CNV). 9

To provide a mechanistic explanation for the clinical importance of rituximab-Fc γ R engagement, we aimed to assess association of Fc γ R allotypes on B-cell depletion, clinical response and *ex vivo* NK-cell-mediated killing with a view to informing personalised B-cell depleting therapies in autoimmunity. Our genotyping approach provided the opportunity to take account of CNV and explore both gene and allele copy number (CN).

15 **METHODS**

In order to make replication of our work simpler, we have adopted a commercial multiplexed ligation-dependent probe amplification (MLPA) platform(39) for measuring genetic variation at the *FCGR* locus, supplemented with our in-house *FCGR2C* quantitative sequence variant (QSV) assay, which together offer combined measures of qualitative single nucleotide polymorphisms (SNPs) and quantitative CNVs.

21 Study design

Prospective and retrospective longitudinal cohort studies were conducted in patients with RA and
 SLE who were treated with rituximab from January 2001 to January 2020. These patients were

recruited from two UK biologic DMARD (bDMARD) registries and a large cohort from Leeds
 Teaching Hospitals NHS Trust (LTHT).

3 Study Population: rheumatoid arthritis

4 231 patients with RA were recruited from the Biologics in RA Genetics and Genomics Study 5 Syndicate (BRAGGSS), which collected blood samples from bDMARD-treated RA patients recruited into British Society for Rheumatology Biologics Register for RA (www.braggss.co.uk). A 6 7 further 342 RA patients were recruited from the LTHT biologics clinic. Inclusion criteria were a 8 consultant diagnosis of RA; adults (>18 years) at symptom onset of RA; and fulfilling the minimal 9 clinical dataset criteria to be included in the downstream efficacy analyses (availability of 2C-10 DAS28CRP data at baseline and 3-6 months post-rituximab in Cycle 1 of therapy OR availability 11 of peripheral B-cells data at baseline and post-rituximab in Cycle 1 of therapy AND have DNA of suitable quality for genotyping). 12

For functional studies, peripheral blood were obtained from three separate cohorts from LTHT; (i) DMARD-experienced adult RA patients with long-standing disease (>2 years), (ii) DMARD-naïve early RA patients (i.e. symptom duration <1 year) who were recruited into the Infliximab as Induction Therapy in Early RA (IDEA) study, as previously published(42); and (iii) rituximabtreated RA patients from biologics clinic, where blood was taken immediately prior to first rituximab cycle.

19 Study population: systemic lupus erythematosus

177 patients with SLE were recruited from the British Isles Lupus Assessment Group (BILAG)
Biologics Registry (BILAG-BR). While the other 85 patients were recruited from the connective
tissue disease clinic at LTHT. Inclusion criteria were adults (≥18 years); fulfilling the revised 1997
American College of Rheumatology classification for SLE; active SLE as defined by 1 x BILAG A
or 2 x BILAG B grades; and fulfilling the minimal clinical dataset criteria to be included in the

downstream efficacy analyses (availability of BILAG response data at baseline and 4-6 months
post-rituximab in Cycle 1 of therapy OR availability of peripheral B-cells data at baseline and postrituximab in Cycle 1 of therapy AND have DNA of suitable quality for genotyping). For the
functional studies, peripheral blood was obtained immediately prior to first cycle rituximab in some
SLE patients.

6 Ethics statement

All studies were approved by a Research Ethics Committee (REC); North West Multicentre
(00/8/053), North West Greater Manchester (09/H1014/64), COREC (04/Q1403/37), Leeds West
(01/023, 05/MRE03/85 and 09/H1307/98) and Leeds East (04/Q1206/107, 10/H1306/88). All
participants provided informed written consent.

11 Treatment

All patients received a first cycle of therapy consisting of 100 mg of methylprednisolone and 1000 mg of rituximab given intravenously on days 1 and 14, with the exception of 3 RA patients who received 1g of rituximab in total. All RA patients received rituximab MabThera® while 7/262 SLE patients received a rituximab biosimilar. Continuation of a stable dose or reduction of concomitant DMARDs and/or oral prednisolone was left to the clinicians' discretion with the aim to stop glucocorticoids if remission was achieved within 6 months.

18 Clinical outcomes: RA

We used a validated two-component disease activity score in 28-joints (2C-DAS28CRP), adjusted to baseline 2C-DAS28CRP as our primary outcome measure. Previous pharmacogenetic studies showed that inclusion of subjective measures (tender joint count and visual analogue scale of global health assessment in the DAS28 score) impeded the identification of relevant genetic markers of TNF-inhibitor (TNFi) response(43, 44). Clinical outcome measurements (swollen joint count based on 28-joint assessment (SJC28) and CRP, in mg/L) were taken at baseline and ~6-

months post-rituximab. Where CRP levels were recorded as <5 mg/L (lower limit of reliable detection) these were replaced by imputed values from a Uniform distribution from 0 to 5. The 2C-DAS28CRP scores were calculated using the formula: $[\sqrt{SJC28} + (0.6 \text{ x ln (CRP + 1)})](45)$. The three-component disease activity score based on 28 joints and CRP (3C-DAS28CRP) was calculated for comparative purposes using the formula: 1.10 x [(0.56 x $\sqrt{TJC28}$) + (0.28 x SJC28) + (0.36 ln(CRP+1))](46).

7 Clinical outcomes: SLE

Disease activity was assessed using the BILAG-2004 index at baseline and approximately every 6 months thereafter. Clinical responses at 6-months were standardised between the two cohorts and determined as follows: (i) MCR=improvement of all domains rated A/B to grade C/better and no A/B flare between baseline and 6-months; (2) PCR=maximum of 1 domain with a persistent grade B with improvement in all other domains and no A or B flare; and (3) non-response=those not meeting the criteria for either MCR or PCR(8).

14 Routine laboratory assessments

15 All autoantibody and immunoglobulin assessments were determined using standard assays in the routine NHS diagnostics laboratory of each participating site. RA patients who ever had RF and 16 17 ACPA titres of >40 iu/mL and >7 iu/mL, respectively, were defined as positive, to maintain 18 consistency with previously published studies. For SLE, ANA was tested using indirect immunofluorescence and a panel of nuclear autoantibodies including anti-dsDNA and anti-ENA 19 antibodies (Ro52, Ro60, La, Sm, and RNP). Complement (C3 and C4) and total serum 20 immunoglobulin (IgM, IgA and IgG) titres were measured by nephelometry. Adult reference 21 22 ranges are as follows: C3: 0.75–1.65 g/L, C4: 0.14–0.54 g/L), IgG (6-16 g/L), IgA (0.8-4 g/L) and IgM (0.5-2 g/L). 23

24 Highly-Sensitive Flow Cytometry

1 Peripheral blood B-cell subsets were measured using HSFC at the accredited Leeds Haematological Malignancy Diagnostic Service at baseline and on follow-up, as previously 2 described(5). A six-colour flow cytometry protocol (CD3, CD14, CD19, CD27, CD38, CD45), 3 counting 500,000 events was used. Naive (CD19+CD27-), memory (CD19++CD27+) and 4 5 plasmablast (CD19+/-CD27++CD38++) counts were enumerated using CD45 to identify the total 6 leucocyte population for calculation of absolute B-cell subset numbers, using CD3 and CD14 to 7 exclude contaminating leucocyte populations. Complete B-cell depletion was defined as a total B-cell count <0.0001 x 10⁹ cells/L at week 2 for RA and week 6 for SLE. 8

9 Genotyping

Genomic DNA was extracted from EDTA-anticoagulated whole blood using Qiamp mini spin columns (Qiagen), Gene Catcher (ChargeSwitch, Thermo Fisher) and a manual phenol chloroform method. DNA concentration was measured using UV spectrophotometry and samples diluted to 10ng/µl. 50ng total template was used for each MLPA reaction. MLPA probe mix panels P110 and P111 version B2 (MRC-Holland, Amsterdam, The Netherlands) were performed for every sample.

Where a sample failed in the first reaction due to insufficient template (Q fragment QC) the DNA 16 17 template was concentrated using ethanol precipitation and MLPA repeated. Amplified MLPA 18 fragments were separated against a LIZ GS 5500 size standard using an ABI 3130 Applied Biosystems (Warrington, UK), instrument fitted with a 36cm 16 capillary array. Intra-sample 19 20 normalisation against internal amplification controls and reference probes was performed using 21 Coffalyser.NET software (MRC-Holland), prior to inter sample normalisation in batch analysis 22 mode. Interpretation of the underlying gene copy number and qualitative variants followed the guidelines set out in the product information sheets, with the exception of FCGR2C as described 23 below. 24

For RA, 573 patients were genotyped. A sample size of N=481 would provide >80% power to detect a variant explaining 2.5% of outcome variance at a nominal significance level of 0.01. A sample size of >1200 patients would provide >80% power to detect a variant explaining ~1% variance.

5 FCGR2C copy number assay

High sequence identity between *FCGR2A*, *FCGR2B* and *FCGR2C* prevented the MLPA probes
in panels P110 and P111 from uniquely recognising the copy number variable *FCGR2C* without
simultaneously hybridising to *FCGR2B* or *FCGR2A*. Interpretation of *FCGR2C* gene copy number
required multiple probe intensities to be combined. In our hands, these MLPA probes lacked the
consistency required to confidently call *FCGR2C* copy number.

Using a gene-specific resequencing approach in 32 individual genomes we surveyed all FCGR2 11 variants and classified them as either paralogous sequence variants (PSVs) or SNPs. Long-range 12 13 PCR was used to amplify each gene specifically using the oligonucleotide primers in 14 Supplementary Table 1. We identified a single PSV that differentiated all three genes (Supplementary Figure 1a). To supplement the MLPA panels we developed a QSV assay to 15 measure the copy number of FCGR2C directly referenced to both FCGR2A and FCGR2B. A 16 17 single pair of primers was used to co-amplify 279bp fragments of all three genes with equal 18 efficiency in a single reaction. PCR cycles (annealing at 55°C, 1.5mM MgCl2) were limited to 30, to maintain proportional amplification of all three genes. Amplicons were purified and 19 20 concentrated and normalised using a modified ChargeSwitch (Thermo Fisher, Warrington, UK) process, utilising a limiting quantity of magnetic beads and eluting in a fifth of the original volume. 21 22 Purified amplicons were Sanger sequenced using the reverse primer, and relative electropherogram peak heights of gene specific PSVs were determined using QSVanalyser 23 software(47). Comparison of the 2C-derived peak height with the invariant 2B and 2A, allowed 24

copy number estimation with respect to two reference genes (Supplementary Figure 1b). Copy
 number of *FCGR2C* was inferred from cluster centres as indicated.

The genotype, Hardy Weinberg equilibrium, gene copy number and copy number region (CNR) loss and gain frequencies, which summarise *FCGR* locus rearrangements (**Figure 1a**), for each of our cohorts are shown in **Supplementary Tables 2, 3 and 4**, respectively. Our data are consistent with the published literature(48) including measures of linkage equilibrium, which are presented from diploid British Caucasian SLE individuals (**Supplementary Table 5**).

8 Flow cytometry and NK-cells

9 NH₄Cl lysed heparinised blood samples for RA and PBMCs for SLE were incubated with 10µg/ml human IgG (Novartis, Hanover, Germany), to block non-specific binding, for 30min on ice. Cells 10 11 were stained (30 min, on ice, in dark) with anti-CD16-PE (clone 3G8, Caltag-Medsystems, Buckingham, UK), anti-CD32 (clone KB61, Dako, Cambridge UK), anti-CD3-TR (S4.1, Caltag-12 Medsystems, Buckingham, UK) and anti-CD56-PerCP (B159, Becton Dickinson Biosciences, 13 14 Berkshire, UK) or isotype controls for experiments in RA and matched HC, while cells were stained with anti-CD16-APC Vio770 (REA423, Miltenvi Biotec, Surrey, UK), anti-CD3-VioGreen 15 (REA613, Miltenyi Biotec, Surrey, UK) and anti-CD56-VioBright FITC (AF12-7H3, Miltenyi Biotec, 16 Surrey, UK) or isotype controls for experiments in SLE and matched HC. Cells were then washed 17 18 in ice cold FACS Buffer and 5000 events were acquired within the appropriate forward scatter (FSC)/side scatter (SSC) and CD3- gates on FACSCalibur (BD Biosciences, Berkshire, UK). 19 Peripheral blood NK-cells (CD3-CD56+) were identified on the basis of lymphocyte FSC/SSC and 20 specific gating for lack of expression of CD3 and positive expression of CD56 (all NK-cells, 21 Supplementary Figure 2a). Expression of FcyRIIIa on NK-cells (CD3-CD56+CD16+) were 22 evaluated by geometric mean fluorescence intensity (MFI). The CD16/CD32 geometric MFI and 23 the percentage of CD16/CD32 positive cells were determined. NK-cell subsets were distinguished 24

by separate gates created around CD56^{dim}/CD16++ and CD56^{bright}/CD16^{neg/low} NK-cells
 (Supplementary Figure 2b). Absolute NK numbers (cells/µL) = Lymphocyte count (cell
 number/µL of the blood count) x proportion of the cell subpopulation of interest ÷ 100. Adult
 reference ranges are 90-600 cells/µL(49).

5 **NK-cell degranulation assays**

6 *Rheumatoid arthritis and matched controls*

7 Pre-genotyped, thawed cryopreserved PBMCs isolated from NH₄Cl-lysed heparinised blood using 8 a Ficoll-Paque gradient were recovered overnight in RPMI Glutamax media (Invitrogen, Loughborough, UK) containing 10% FBS at a concentration of 2x10⁶ cells/ml in the presence of 9 10 400U/ml of IL-2 (Sigma, Dorset, UK). All experiments were performed at 37°C in a humidified 5% CO₂ incubator, unless otherwise stated. NK-cell degranulation assays were performed over 4 11 12 hours in the presence of CD107a FITC antibody (H4A3; BD Biosciences, Berkshire, UK) using recovered PBMCs and human B lineage cell lines (Daudi cells; ATCC, Manassas, Virginia, USA) 13 that had been pre-incubated with rituximab (Roche Ltd, Basel, Switzerland) at 10µg/ml overnight 14 using effector-target (E:T) ratios of 1:1. GolgiStop™ (BD Biosciences, Berkshire, UK) was added 15 after 1 hour to halt protein transport and prevent internalisation of CD107a. Negative controls 16 17 included Daudi cells incubated overnight in the absence of rituximab (E:T of 1:1; spontaneous degranulation) and assays performed without CD107a in the presence of a FITC-isotype control 18 (Dako, Santa Clara, USA). After 4 hours, cells were washed and stained with anti-CD3 (S4.1; 19 20 Invitrogen, Loughborough, UK), anti-CD14 (MoP9; BD Biosciences, Berkshire, UK) and anti-CD56 (B159; BD Biosciences, Berkshire, UK) for 30mins (on ice, in dark) then washed in ice cold 21 22 FACS buffer and flow cytometric analysis was performed as outlined above. The ratio of CD107a positive NK-cells without:with rituximab, identified by FSC/SSC, CD3 and CD56 expression, was 23 calculated using the Flowjo software analysis package (BD Biosciences, Berkshire, UK). 24

Additional blocking assays, were performed in a subset of experiments with anti-CD16 (3G8,
 Invitrogen, Loughborough, UK), anti-CD32 (KB61, Dako, Santa Clara, USA) and mouse IgG
 (Invitrogen, Loughborough, UK).

4 Systemic Lupus Erythematosus and matched controls

For experiments performed on SLE cases and matched controls, fresh PBMCs were initially isolated using Greiner Bio-One Leucosep[™] centrifuge tubes with porous barrier (Thermo Fisher Scientific, Loughborough, UK). NK-cells were isolated by negative selection using an NK-cell Isolation Kit and Immunomagnetic (Miltenyi Biotec, Surrey, UK) and cytofluorometric selection of CD3-CD56+ NK-cells using flow cytometry resulting in ≥90% purity. During optimisation, autologous B-cells were also isolated from PBMCs of 7 SLE patients and 5 healthy controls by positive selection using a B-cell Isolation Kit II and Immunomagnetic (Miltenyi Biotec, Surrey, UK).

12 NK-cell degranulation assays were performed by the addition of Rituximab (N7049B13, Roche Ltd, Basel, Switzerland) to NK-cells incubated in the presence of Raji cells (Sigma-Aldrich, 13 14 Gillingham, UK) for all individuals, as well as in the presence of autologous B-cells for 7 SLE patients and 5 healthy controls above using E:T ratio of 1:1, as well as GolgiStop™ (BD 15 16 Biosciences, Oxford, UK) for 4 hours. Following incubation, anti-CD107a-FITC (REA792, Miltenyi 17 Biotec, Surrey, UK) was added and NK-cells co-stained with anti-CD3 (REA613, Miltenvi Biotec, 18 Surrey, UK), anti-CD56 (AF12-7H3, Miltenyi Biotec, Surrey, UK) and anti-CD16 (REA423, Miltenyi Biotec, Surrey, UK) antibodies. Degranulation activity was measured by the ratio between 19 (percentage CD107a positivity Raji cells only) and (percentage CD107a positivity in rituximab-20 21 coated Raji cells) (Supplementary Figure 3). In terms of reliability, there was a good agreement 22 in ratio degranulation between Raji cells and autologous B-cells when used as target cells, mean 23 difference as assessed by Bland-Altman limit of agreement (LOA), -0.42% (90% CI LOA -1.93 to 24 1.08). Since the majority of SLE patients had low lymphocyte counts, we continued to perform the functional study using Raji cells as target cells only and presented our results accordingly. Flow 25

cytometry was performed using a Becton Dickinson (BD) LSRII or BD FACSCalibur flow
 cytometer for data acquisition and using a BD FACSDiva software for data analyses.

3 Statistical analyses

Associations between baseline demographic, clinical/laboratory variables and clinical response measures were assessed using linear regression of the 6-month measures, adjusting for corresponding baseline measures for RA; logistic regression was used for SLE outcomes. Complete B-cell depletion post-rituximab for the combined RA and SLE cohort was assessed using logistic regression, without adjustment and following adjusting for age, concomitant DMARD use and baseline plasmablasts. For RA, negative coefficients for the adjusted 2C-DAS28CRP response indicate a favourable outcome.

11 For three SNPs in two genes (FCGR2A, FCGR2B) with no reported CNV, associations between 12 the SNPs and outcomes were assessed using standard genotypic tests, whereby individuals 13 homozygous for the common allele served as a reference group. An additive model was also performed. For genes affected by CNV (FCGR2C, FCGR3A, FCGR3B), three analyses were 14 15 carried out. The first, emulating previous studies that did not take CNV into consideration and 16 assuming 2 gene copies; the second comparing 2 gene CN with deletions (0-1 CN) and duplications (3-4 CN), irrespective of allele carriage; the third based on minor allele CN and total 17 18 CN. To determine whether the minor allele CN improves on the nested model with total CN, a likelihood ratio test was performed. 19

Since the RA and SLE cohorts were of mixed ethnicity, we assessed the potential for population stratification by measuring pairwise LD between the relevant functional polymorphisms in the *FCGR* locus for each subgroup. We utilised Haploview to calculate r² LD between biallelic markers in individuals with two copies of *FCGR3A* and *FCGR3B*.

Continuous variables were compared using Mann-Whitney test or Kruskal-Wallis H test,
depending on data distribution and number of independent groups for comparison. Spearman's
test was used for all correlations. Associations between categorical variables were tested by
Fisher's exact test if expected number was ≤5, otherwise chi-squared tests were performed. All
statistical analysis was performed using StataMP v.16 (StataCorp College Station, Texas, USA),
SPSS v.26 (IBM Corp, Armonk, New York, USA) and GraphPad Prism v.8.3 (GraphPad Prism,
La Jolla, California, USA).

8 Role of funders

9 The funders played no role in the study design, data collection, data analysis, interpretation,
10 writing of the report, or the decision of paper submission.

11 **RESULTS**

The patient flow chart is illustrated in **Supplementary Figure 4.** A total of 835 patients were included in the final analyses and for all Tables and Figures, we have included the sample size for each of the analysis presented to highlight missing clinical data. Some clinical variables were only available for the Leeds cohort, and these are highlighted in the footnotes of Tables 1 and 2. The remaining data were missing at random.

17 Association of baseline characteristics with rituximab response and complete B-cell

18 depletion in RA

19 The baseline characteristics of our RA cohort (n=573) are described in **Table 1**.

Previous TNFi exposure (p=0.02) and number of previous biologics (p=0.04) were associated with reduced 2C-DAS28CRP response when assessed using linear regression. No clear associations were observed between other salient baseline clinical and serological markers and 6-month 2C-DAS28CRP response, adjusted for corresponding baseline 2C-DAS28CRP. Complete B-cell depletion 2-weeks after rituximab therapy was achieved in 192/328 (58.5%) patients with data available. Baseline factors associated with increased odds of achieving complete depletion as assessed using logistic regression were older age at baseline (p=0.01), female (p=0.02), longer disease duration (p=0.01), and concomitant DMARD use (p=0.01). Higher immunoglobulin (IgM, IgA, IgG) levels (p=0.02, 0.01, 0.01, respectively) and higher plasmablast counts at baseline (p<0.001) were associated with lower odds of complete depletion **(Table 1)**.

Association of baseline characteristics with rituximab response and complete depletion in 8 SLE

9 The baseline characteristics of the SLE cohort (n=262) are described in **Table 2**.

At 6-months, 177/262 (67.6%) patients achieved a BILAG response (MCR and/or PCR) and 90/262 (34.4%) achieved a BILAG MCR. Higher SLE Disease Activity Index version 2000 (SLEDAI-2K) score was associated with increased odds of BILAG response at 6-months (p=0.03), while older age reduced the odds of BILAG response (p=0.03) when assessed using logistic regression. No other baseline clinical or serological markers were associated with clinical response.

At 6-weeks post-rituximab, 44/85 (51.8%) patients with data available achieved complete B-cell depletion. Low complement (C3 and/or C4) (p=0.03) and higher plasmablast counts at baseline (p=0.02) were associated with reduced odds of complete depletion when assessed using logistic regression **(Table 2)**.

20 FCGR2C QSV assay and functional interpretation of FCGR2C genotyping

To supplement the MLPA panels, we developed a *FCGR2C* QSV assay to more accurately determine the *FCGR2C* CN and biologically validated this assay in individuals with different rearrangements of the *FCGR* locus (**Figure 1a**). Using samples from treatment-naïve, early RA patients, we observed increased NK-cell CD32 expression with *FCGR2C*-ORF carriage (Mann-

1 Whitney test: p<0.0001) and in individuals hemizygous for the CNR1 deletion, which carries both 2 FCGR2C and FCGR3B (Figure 1b). The MLPA panels used in the current study could not distinguish between classical and non-classical FCGR2C-ORF alleles(21). A previous study has 3 shown that individuals with non-classical FCGR2C-ORF have a frame-shift insertion that leads to 4 a premature STP codon leading to no FcyRIIc expression on the cell surface. Individuals with a 5 hemizygous CNR1 deletion and a FCGR2C-STP allele have previously been shown to express 6 7 FcyRIIb on most NK-cells(21) (Figure1c). Detailed FCGR2C SNP and CN data are therefore required to determine whether NK-cells expressing CD32 have an activating (FcyRIIc) or inhibitory 8 (FcyRIIb) FcyR. 9

10 Association of *FCGR* genotype and copy number with rituximab response in RA

The FCGR3A (rs396991; F158V) variant was first analysed using linear regression at the 11 12 genotypic level; FCGR3A-158V was associated with improved 2C-DAS28CRP response 13 (p=0.03). Compared to patients with two FCGR3A copies (the majority), those with duplications 14 had improved responses (2C-DAS28CRP; p=0.03). These facets were combined and increased FCGR3A-158V CN was associated with improved response (2C-DAS28CRP; p=0.02) (Figure 15 16 2a; Supplementary Table 6). In a model including both FCGR3A-158V CN and FCGR3A CN, there was evidence that total FCGR3A CN also contributed to response (2C-DAS28CRP: 17 p=0.04). No associations were observed with other FCGR variants. We have provided results 18 19 from a post-hoc analysis of the 3C-DAS28CRP in **Supplementary Table 7** to support future meta-20 analyses. This provided broadly comparable results.

21 Association of FCGR genotype and copy number with rituximab response in SLE

To provide cross-disease replication, we performed an equivalent genotypic analysis in SLE using logistic regression (Figure 2b; Supplementary Table 6). *FCGR2A*-131H homozygosity was associated with an increased odds of BILAG MCR at 6-months (p=0.02). Concordant with our RA findings, *FCGR3A* was associated with increased odds of BILAG MCR when analysed at the genotypic level, with *FCGR3A-158V* homozygotes demonstrating a 2.5-fold improved responses (p=0.03). Carriage of *FCGR3A-158V* was associated with a 1.9-fold (p=0.02) and a 1.8-fold (p=0.04) improvement in odds of BILAG response and BILAG MCR, respectively. In contrast to RA, we did not find evidence of an association between *FCGR3A* CN and clinical response, most likely because the majority of patients carried two *FCGR3A* copies (248/262). For each *FCGR3A-158V* allele, there was an increased odds of BILAG MCR at 6-months (p=0.01).

At the genotypic level, for *FCGR2C*, carriage of the *FCGR2C*-ORF allele was associated with a 2.2-fold improvement in odds of BILAG MCR (p=0.02). Furthermore, *FCGR2C* duplications had a 3-fold increased odds of BILAG MCR at 6-months (p=0.02), and a 1.9-fold improved response per *FCGR2C*-ORF copy (p=0.02). We observed modest linkage disequilibrium between *FCGR3A*-F158V and *FCGR2C*-STP/ORF (r² 0.29) in those with diploid genomes at the *FCGR* locus (**Supplementary Table 5**). When both the number of copies of *FCGR3A*-158V and number of copies of *FCGR2C*-ORF were included in the model, the association with both genes reduced.

For *FCGR3B*, patients with duplications also had the highest odds of achieving BILAG MCR compared to those with two copies (p=0.01). The associations with *FCGR2C* and *FCGR3B* CN were not independent as 17/22 subjects with a *FCGR3B* duplication also had a *FCGR2C* duplication indicating a CNR1 duplication in the majority (**Figure 1a**). All 22 SLE patients who had *FCGR3B* deletion also had a *FCGR2C* deletion (CNR1) and 21/22 carried the *FCGR2C*-STP allele. There was no association of this rearrangement that would be predicted to be associated with FcyRIIb expression in NK-cells with response, although the power was low.

There were insufficient number of non-Caucasian patients with 2 copies of *FCGR3A*, *FCGR2C* and *FCGR3B* to accurately determine whether this group had different patterns of linkage disequilibrium to the Caucasian population (**Supplementary Table 5**). A Caucasian-only

sensitivity analysis was performed using logistic regression, with broadly similar results, whereby
 the per allele effect size of MCR was 1.62 (0.97–2.71, p=0.07) for *FCGR3A*-158V and 1.75 (0.91–

3 3.36, p=0.09) for *FCGR*2C-ORF (Supplementary Table 8).

4 Association of *FCGR* F158V genotype and copy number with complete B-cell depletion

5 Since peripheral B-cells were analysed using HSFC in the Leeds cohorts only, data from both RA and SLE were combined to increase statistical power (n=413) and analysed using logistic 6 7 regression. There was no significant difference in depth of depletion between the disease groups 8 (p=0.26), although there was a significant difference in age (p=0.002). The baseline clinical 9 variables associated with depletion in the combined group are shown in **Supplementary Table** 9. Older age (p=0.02), female sex (p=0.04) concomitant DMARDs including hydroxychloroquine 10 (p=0.003), IqA (p=0.01), IqG (p=0.003) and plasmablasts (p<0.001) were all associated with 11 12 complete B-cell depletion. A weakly positive correlation was found between baseline IgG and plasmablast counts (Spearman's correlation; r=0.12; p=0.02). 13

Downstream genetic analyses are presented both unadjusted and adjusted for age, concomitant
DMARDs, including hydroxychloroquine, and plasmablasts (Figure 3; Supplementary Table
10). For the CNV-affected genes, increased *FCGR3A*-158V CN was associated with greater odds
of B-cell depletion (p=0.02), in adjusted and unadjusted logistic regression analyses.

18 Factors that modulate NK-cell FcγRIIIa expression in the RA disease continuum and SLE

To disentangle gene and disease-specific effects on NK-cell number and function, we characterised NK-cell $Fc\gamma RIIIa$ expression and cellular cytotoxicity *ex vivo*. NK-cell $Fc\gamma RIIIa$ expression was measured by flow cytometry in HC (n=47), early RA (symptom onset <1 year and DMARD-naïve; n=46) and established RA (diagnosed >2 years and receiving DMARDs; n=20). Fc\gamma RIIIa expression differed between the three groups (Kruskal-Wallis H test; p=0.01) and was reduced in early (Mann-Whitney test; p<0.001), but not established RA (Mann-Whitney test; p=0.22), when compared to HC (Figure 4a). This differential expression was not secondary to altered ratios of CD56^{bright} to CD56^{dim} NK-cells between RA and HC (Supplementary Figure 5a). Early RA patients showed lower Fc γ RIIIa expression on both NK-cell subsets (Mann-Whitney test; both p=0.02) compared to HC (Supplementary Figure 5b and 5c). Indeed, there was no difference in Fc γ RIIIa expression between HC and established SLE patients recruited on the day of their first rituximab infusion (Supplementary Figure 5d).

To assess factors contributing to the downregulation of NK-cell $Fc\gamma RIIIa$ expression in early RA, we examined its relationships with clinical and serological markers using Spearman's correlation test. There were moderate positive correlations between NK-cell $Fc\gamma RIIIa$ expression and RF titre (r=0.38; p=0.03) and serum IL-6 titre (r=0.38; p=0.03), but no significant correlation with CRP (r=0.14; p=0.47), ESR (r=0.16; p=0.38), DAS28 (r=-0.09; p=0.69), age (r=-0.02; p=0.92), nor gender (p=0.82).

NK-cell FcγRIIIa expression was then examined in relation to the *FCGR3A*-F158V variant in
individuals with two *FCGR3A* copies. No significant differences in NK-cell FcγRIIIa expression
were demonstrated between *FCGR3A* genotypic groups in either HC (Kruskal-Wallis H test;
p=0.74; **Supplementary Figure 5e**), RA (Kruskal-Wallis H test; p=0.96; **Supplementary Figure 5f**) or SLE (Mann-Whitney test; p=0.21; **Supplementary Figure 5g**).

19 Disease, genotype and DMARDs impact efficiency of NK-cell-mediated ADCC

20 NK-cell degranulation (CD107a staining) following exposure to rituximab-coated B lineage cell 21 lines was used as a surrogate of ADCC in individuals with two *FCGR3A* copies. Lysosomal-22 associated membrane protein-1 (LAMP1 or CD107a) is an established marker of NK-cell 23 degranulation and has been shown to be highly correlated with NK-cell-mediated lysis of 24 chromium labelled target cells(50). NK-cell degranulation was significantly decreased in RA (Mann-Whitney test; p=0.01; Figure 4b),
but not SLE (Mann-Whitney test; p=0.27; Figure 4c) compared with HC. *FCGR3A* genotype was
associated with rituximab-induced NK-cell degranulation in HC, RA and SLE, whereby *FCGR3A*158V carriage and *FCGR3A*-158V homozygocity were associated with greater degranulation in
HC (Mann-Whitney test; both p=0.01; Figure 4d), RA and SLE combined (Mann-Whitney test;
p=0.02, 0.05; Figure 4e), respectively, compared to *FCGR3A*-138FF.

Reduced degranulation in RA compared with HC, prompted us to explore the impact of DMARDs
on NK-cell degranulation *ex vivo* (Figure 4f). A significant reduction in the % CD107+ NK-cells
was observed after 14 weeks of methotrexate in RA, compared to baseline, with the most marked
reduction occurring in *FCGR3A*-158F homozygotes (Mann-Whitney test; p=0.02).

Inclusion of a CD16 blocking antibody inhibited rituximab-induced NK-cell degranulation in HC
(Mann-Whitney test; p=0.003) and RA (Mann-Whitney test; p=0.03, Figure 4g), supporting a
major role for FcγRIIIa in NK-cell-mediated ADCC *ex vivo*. No significant reduction in NK-cell
degranulation was observed with CD32 blockade in HC or RA (Mann-Whitney test; p=0.22,
p=0.60; Figure 4g). None of these individuals had CNR1 deletion (FcγRIIb expression) and there
was no clear association with *FCGR2C* genotype.

Higher expression of FcγRIIIa is associated with greater response and depletion *in vivo* independent of NK-cell number

Both frequency of NK-cells (CD3-CD56+) and absolute NK-cell number were lower in SLE than RA (Mann-Whitney test; both p<0.001; **Supplementary Figure 5h** and **Figure 5a** respectively). Due to small sample size in functional study, we dichotomised clinical response in RA into EULAR good-to-moderate (defined as improvement of at least 0.6 point to DAS28CRP≤5.1) vs nonresponse. There was no evidence for an association between NK-cell number and EULAR response (Mann-Whitney test; p=0.80; **Figure 5b**) or complete B-cell depletion (Mann-Whitney test; p=0.68; Figure 5c) in RA, nor BILAG MCR (Mann-Whitney test; p=0.96; Figure 5d) or
complete B-cell depletion (Mann-Whitney test; p=0.67; Figure 5e) in SLE.

We demonstrated a positive association between NK-cell Fc γ RIIIa expression at rituximab initiation and EULAR good-to-moderate response at 6-months in RA (n=18, Mann-Whitney test; p=0.03; **Figure 5f**), but not BILAG MCR in SLE (n=17, Mann-Whitney test; p=0.55, **Figure 5g**). Patients with complete depletion had higher NK-cell Fc γ RIIIa expression at rituximab initiation than those with incomplete depletion in RA and SLE (Mann-Whiteny test; p=0.04: **Figure 5h**).

8 **DISCUSSION**

9 We report the largest study, to date, of quantitative and qualitative functional variants at the FCGR genetic locus in well-characterised RA and SLE cohorts, including subgroups documenting 10 11 peripheral blood B-cell subset depletion. Our cohorts are representative of patients with RA and SLE receiving rituximab in the UK and the salient clinical characteristics (age, gender distribution, 12 13 disease duration and disease activity scores) of our cohorts are comparable to real-world data of 14 rituximab-treated patients from registries in Europe(51-54). We provide consistent evidence that FcyRIIIa is the major FcyR associated with both clinical and biological (depth of B-cell depletion) 15 response to rituximab in two autoimmune diseases. More specifically, increased copies of the 16 higher affinity FCGR3A-158V allele, was associated with improved response. Irrespective of 17 FCGR3A genotype, we observed that increased FCGR3A CN was associated with a better 18 19 response in RA. In ex vivo studies, we demonstrated FCGR3A genotype was associated with NK-20 cell-mediated degranulation, and increased NK-cell FcyRIIIa expression was associated with 21 improved clinical response and depletion in vivo.

No consistent association signals were observed with other low affinity *FCGR* genes, suggesting Fc γ RIIIa is the most important Fc γ R contributing to rituximab response. Increased NK-cellmediated degranulation was observed in *FCGR3A*-158V homozygotes, irrespective of disease,

1 which combined with the association between FcyRIIIa expression on NK-cells and response, supports ADCC being a major biological mechanism. This does not preclude FcyRIIIa-mediated 2 3 clearance of rituximab-opsonised B-cells by tissue macrophages or the reticuloendothelial system 4 by ADCP(55). Our data also reveal potential disease or inflammation-specific factors that may impair ADCC, e.g. the reduced NK-cell degranulation and FcyRIIIa expression observed in early 5 6 RA. Furthermore, we demonstrated reduced ADCC in RA patients after 14 weeks of methotrexate 7 therapy, suggesting medication used during rituximab treatment may modulate NK-cell-mediated effector mechanisms. Further studies are required to understand how NK-cell function can be 8 9 optimised at the time of rituximab treatment to improve clinical outcomes.

In SLE, higher *FCGR2C*-ORF CN and *FCGR2C* duplications were also associated with BILAG MCR at 6-months. MLPA panels were supplemented with sequencing-based *FCGR2C* genotyping methods, to aid genotype interpretation. We observed NK-cell CD32 expression broadly correlated with *FCGR2C*-ORF carriage, and also confirmed high CD32 expression in individuals with CNR1 deletion (simultaneous *FCGR2C* and *FCGR3B* deletion), previously shown to lead to NK-cell $Fc\gamma$ RIIb expression. This rearrangement was observed in 4.3% RA and 5.9% SLE individuals of our cohort, with no evidence it impacted on response.

17 In RA, we have presented data on the more recently published 2C-DAS28CRP score(45) that includes revised weighting of CRP and SJC to more closely reflect the ultrasound-detected 18 19 synovitis and radiographic progression; an outcome measure we have proposed as the RA disease activity measure of choice for genetic and biomarker studies(44). In SLE, we used a 20 21 BILAG-based endpoint rather than SLEDAI based. BILAG is better for biomarker studies because, 22 unlike the SLEDAI, it allows partial improvement and does not include serological components, a serious confounder in studies of a B-cell-targeted therapy. Consistent with our previous studies, 23 we included plasmablasts in our definition of total B-cell depletion. Whilst plasmablasts do not 24

express CD20, their persistence in circulation have been shown to reflect B-cell activity outside the circulation, such as in lymphoid tissues or ectopic germinal centres found in inflamed tissues(56-58). Our previous work has shown that plasmablast depletion can reflect the dose of rituximab administered as well as the use of combination immunosuppressants, as well as predicting subsequent clinical response to rituximab(5, 6, 8, 59, 60). Further, recent analyses of Obinutuzumab in clinical trials in lupus nephritis have also shown an association between plasmablast depletion and clinical response(61).

8 Our results have implications for future clinical trial design and development of more effective Bcell depletion strategies. Firstly, patients with increased FCGR3A-158V CN may respond to lower 9 rituximab doses during repeat cycles, reducing complications, such as neutropaenia and 10 infections secondary to hypogammaglobulinaemia that develops with repeated courses of 11 rituximab therapy. Secondly, confirmation that FcyRIIIa is the major FcyR contributing to clinical 12 response is of value to the rapeutic antibody design and highlights the need for next generation 13 14 CD20 therapeutics to show equivalent ADCC potency in individuals with both FcyRIIIa-158F/V 15 allotypes. There are now several therapeutics at different stages in development with modified Fc regions to enhance ADCC. Control of fucosylation during manufacture of the FDA-approved 16 Obinutuzumab leads to increased ADCC(62). This type 2 CD20 mAb binds to a different CD20 17 epitope, which results in reduced CDC. It is licenced for subgroups of patients with chronic 18 lymphocytic leukaemia, follicular lymphoma and multiple sclerosis and is being investigated in a 19 20 phase III trial of lupus nephritis [NCT04221477]. Other approaches to enhancing Fc effector functions include point mutations to the CH2 and CH3 domains (e.g. margetuximab). Thirdly, 21 22 further consideration needs to be given for factors that upregulate of NK-cell FcyRIIIa expression 23 and function at the time of treatment. Finally, there are also implications for quality control of biosimilar rituximab, where significant batch-batch differences in ADCC are recognised that may 24

disproportionally affect *FCGR3A*-138F homozygotes(63). Our data may also be relevant for other
cell depleting mAb based with an IgG1-Fc.

The study has some limitations. Some data were missing, which is inevitable when large 3 observation cohorts are utilised. Most notably, B-cell data were only available for patients treated 4 5 in Leeds. We have explored our data and are unable to find any patterns for the remaining missing 6 data that can be explained according to cohort, period of enrolment e.g. prior to approval for RA 7 in the UK in 2007 vs post-approval or other variables that may have biased our results. We 8 therefore conclude that our data is missing at random. We did not impute missing data to aid 9 future meta-analyses. Next, the only covariates that were significantly associated with 6-month 10 2C-DAS28CRP response in RA were exposure to previous TNFi and number of previous 11 biologics. These data were only available in the Leeds cohorts. Hence, we elected not to adjust 12 as this would have significantly reduced our sample size. In SLE, we similarly did not see any covariates with consistent associations with both BILAG response and BILAG MCR and for 13 14 simplicity and ease of future meta-analyses elected to present unadjusted data. We presented 15 nominal p-values without taking into account the number of analyses conducted, and p-values must be interpreted bearing this in mind. The strength of evidence for FCGR3A lies in the 16 17 consistent direction of genetic association in two diseases and through the ex vivo and in vivo studies. Different experimental protocols (e.g. heparinised whole blood samples vs fresh PBMCs) 18 19 were used for the flow cytometry and degranulation assays in RA and SLE, which precluded direct 20 comparison of these two disease cohorts.

In conclusion, an ADCC-enhancing quantitative *FCGR3A* variant was associated with clinical response and complete B-cell depletion in rituximab-treated RA and SLE patients. These findings were supported by mechanistic studies demonstrating the impact of FcγRIIIa expression, genotype, disease status and medication on NK-cell-mediated cytotoxicity. These results elucidate one mechanism of impaired rituximab responses, may guide development of more

- 1 effective B-cell targeted strategies and emphasise the importance of ensuring the next generation
- 2 of the rapeutics bind with equivalent affinity to both $Fc\gamma RIIIa$ allotypes.

1 CONTRIBUTORS

2 All authors met the authorship criteria. Conceptualisation: JIR, MYMY, EMV, AWM; Methodology: JIR, MYMY, JHB, EMV, AWM; Data Collection and Resources: DLM, LL, ACR, MHB, DP, HJC, 3 4 JDI, INB, PE, AB, TJV; Performing Experiments: JIR, MYMY, DW, MM, YES; Data Analysis: JIR, 5 MYMY, VD, DW, MM, JHB, JT, AWM; Writing Original Draft: JIR, MYMY, EMV, AWM. JIR, MYMY, 6 JHB and AWM have verified the underlying data. All authors have contributed in revising the 7 manuscript critically for important intellectual content, approved the submitted version and agreed to be accountable for all aspects of the work in ensuring that guestions related to the accuracy or 8 integrity of any part of the work are appropriately investigated and resolved. 9

10 DATA SHARING STATEMENT

All data associated with this study are available in the main text or the online supplementary materials. Upon a justifiable request, the share of de-identified data are available from the corresponding author.

14 **DECLARATION OF INTERESTS**

Prof Bruce has received research grants from GSK, consulting fees from GSK, UCB, Eli Lilly, BMS, Aurinia, IL-TOO and AstraZeneca and speaker fees from AstraZeneca, GSK and UCB within the last 3 years. Dr Vital has received honoraria and consulting fees from Roche within the last 3 years. All other authors declare no competing interest related to the work described in this manuscript.

20 ACKNOWLEDGEMENTS

This research was funded/supported by joint funding from the Medical Research Council (MRC) and Versus Arthritis for MATURA (grant codes 36661 and MR/K015346/1). MASTERPLANS was funded by the MRC (grant code MR/M01665X/1). The Leeds Biologics Cohort was part-funded
by programme grants from Versus Arthritis (grant codes 18475 and 18387), the National Institute
for Health and Care Research (NIHR) Leeds Biomedical Research Centre (BRC) and Diagnostic
Evaluation Co-operative and the Ann Wilks Charitable Foundation. The BILAG-BR has received
funding support from Lupus UK, and unrestricted grants from Roche and GSK.

The functional studies were in part supported through a NIHR/HEFCE Clinical Senior Lectureship 6 7 to AWM, a Versus Arthritis Foundation Fellowship (grant code 19764) to JIR and Wellcome Trust Institutional Strategic Support Fund to JIR and MYMY (204825/Z/16/Z), NIHR Doctoral Research 8 Fellowship to MYMY (DRF-2014-07-155) and NIHR Clinician Scientist to EMV (CS-2013-13-032). 9 10 We thank all the patients who have contributed to this research, clinical staff who supported 11 patient recruitment and laboratory staff who undertook sample processing. AWM, INB, JDI and 12 PE were supported by NIHR Senior Investigator awards. Work in JDI's laboratory is supported by 13 the NIHR Newcastle BRC, the Research Into Inflammatory Arthritis Centre Versus Arthritis, and Rheuma Tolerance for Cure (European Union Innovative Medicines Initiative 2, grant number 14 15 777357). INB is funded by the NIHR Manchester BRC.

This article/paper/report presents independent research funded/supported by the NIHR Leeds, NIHR Manchester and NIHR Guy's and St Thomas' BRCs. The views expressed are those of the author(s) and not necessarily those of the NIHR or the Department of Health and Social Care.

19

REFERENCES

1. Buch MH, Smolen JS, Betteridge N, Breedveld FC, Burmester G, Dörner T, et al. Updated consensus statement on the use of rituximab in patients with rheumatoid arthritis. *Ann Rheum Dis.* 2011;70(6):909-20.

2. Garcia-Montoya L, Villota-Eraso C, Yusof MYM, Vital EM, Emery P. Lessons for rituximab therapy in patients with rheumatoid arthritis. *Lancet Rheumatol.* 2020;2(8):e497-e509.

3. Fanouriakis A, Kostopoulou M, Alunno A, Aringer M, Bajema I, Boletis JN, et al. 2019 update of the EULAR recommendations for the management of systemic lupus erythematosus. *Ann Rheum Dis*. 2019;78(6):736-45.

4. Ramos-Casals M, Soto MJ, Cuadrado MJ, Khamashta MA. Rituximab in systemic lupus erythematosus: A systematic review of off-label use in 188 cases. *Lupus*. 2009;18(9):767-76.

5. Dass S, Rawstron AC, Vital EM, Henshaw K, McGonagle D, Emery P. Highly sensitive B cell analysis predicts response to rituximab therapy in rheumatoid arthritis. *Arthritis Rheum*. 2008;58(10):2993-9.

6. Vital EM, Dass S, Buch MH, Henshaw K, Pease CT, Martin MF, et al. B cell biomarkers of rituximab responses in systemic lupus erythematosus. *Arthritis Rheum*. 2011;63(10):3038-47.

7. Váncsa A, Szabó Z, Szamosi S, Bodnár N, Végh E, Gergely L, et al. Longterm effects of rituximab on B cell counts and autoantibody production in rheumatoid arthritis: use of high-sensitivity flow cytometry for more sensitive assessment of B cell depletion. *J Rheumatol.* 2013;40(5):565-71.

8. Md Yusof MY, Shaw D, El-Sherbiny YM, Dunn E, Rawstron AC, Emery P, et al. Predicting and managing primary and secondary non-response to rituximab using B-cell biomarkers in systemic lupus erythematosus. *Ann Rheum Dis.* 2017;76(11):1829-36.

9. Gomez Mendez LM, Cascino MD, Garg J, Katsumoto TR, Brakeman P, Dall'Era M, et al. Peripheral Blood B Cell Depletion after Rituximab and Complete Response in Lupus Nephritis. *Clin J Am Soc Nephrol.* 2018;13(10):1502-9.

10. Boross P, Leusen JH. Mechanisms of action of CD20 antibodies. *Am J Cancer Res*. 2012;2(6):676-90.

11. Glennie MJ, French RR, Cragg MS, Taylor RP. Mechanisms of killing by anti-CD20 monoclonal antibodies. *Mol Immunol.* 2007;44(16):3823-37.

12. Hatjiharissi E, Xu L, Santos DD, Hunter ZR, Ciccarelli BT, Verselis S, et al. Increased natural killer cell expression of CD16, augmented binding and ADCC activity to rituximab among individuals expressing the Fc{gamma}RIIIa-158 V/V and V/F polymorphism. *Blood*. 2007;110(7):2561-4.

13. Mellor JD, Brown MP, Irving HR, Zalcberg JR, Dobrovic A. A critical review of the role of Fc gamma receptor polymorphisms in the response to monoclonal antibodies in cancer. *J Haem Oncol.* 2013;6:1.

14. Nagelkerke SQ, Schmidt DE, de Haas M, Kuijpers TW. Genetic Variation in Low-To-Medium-Affinity Fcγ Receptors: Functional Consequences, Disease Associations, and Opportunities for Personalized Medicine. *Front Immunol.* 2019;10:2237.

15. Taskinen M, Karjalainen-Lindsberg ML, Nyman H, Eerola LM, Leppä S. A high tumor-associated macrophage content predicts favorable outcome in follicular lymphoma patients treated with rituximab and cyclophosphamide-doxorubicin-vincristine-prednisone. *Clin Cancer Res.* 2007;13(19):5784-9.

16. Cao X, Chen J, Li B, Dang J, Zhang W, Zhong X, et al. Promoting antibody-dependent cellular phagocytosis for effective macrophage-based cancer immunotherapy. *Sci Adv.* 2022;8(11):eabl9171.

17. Weiner GJ. Rituximab: mechanism of action. Semin Hematol. 2010;47(2):115-23.

18. Advani R, Flinn I, Popplewell L, Forero A, Bartlett NL, Ghosh N, et al. CD47 Blockade by Hu5F9-G4 and Rituximab in Non-Hodgkin's Lymphoma. *N Engl J Med.* 2018;379(18):1711-21.

19. Reddy V, Cambridge G, Isenberg DA, Glennie MJ, Cragg MS, Leandro M. Internalization of rituximab and the efficiency of B Cell depletion in rheumatoid arthritis and systemic lupus erythematosus. *Arthritis Rheum.* 2015;67(8):2046-55.

20. Mueller M, Barros P, Witherden AS, Roberts AL, Zhang Z, Schaschl H, et al. Genomic pathology of SLE-associated copy-number variation at the FCGR2C/FCGR3B/FCGR2B locus. *Am J Hum Genet*. 2013;92(1):28-40.

21. van der Heijden J, Breunis WB, Geissler J, de Boer M, van den Berg TK, Kuijpers TW. Phenotypic variation in IgG receptors by nonclassical FCGR2C alleles. *J Immunol*. 2012;188(3):1318-24.

22. Quartuccio L, Fabris M, Pontarini E, Salvin S, Zabotti A, Benucci M, et al. The 158VV Fcgamma receptor 3A genotype is associated with response to rituximab in rheumatoid arthritis: results of an Italian multicentre study. *Ann Rheum Dis.* 2014;73(4):716-21.

23. Ruyssen-Witrand A, Rouanet S, Combe B, Dougados M, Le Loet X, Sibilia J, et al. Fcgamma receptor type IIIA polymorphism influences treatment outcomes in patients with rheumatoid arthritis treated with rituximab. *Ann Rheum Dis.* 2012;71(6):875-7.

24. Pál I, Szamosi S, Hodosi K, Szekanecz Z, Váróczy L. Effect of Fcγ-receptor 3a (FCGR3A) gene polymorphisms on rituximab therapy in Hungarian patients with rheumatoid arthritis. *RMD Open*. 2017;3(2):e000485-e.

25. Kastbom A, Coster L, Arlestig L, Chatzidionysiou A, van Vollenhoven RF, Padyukov L, et al. Influence of FCGR3A genotype on the therapeutic response to rituximab in rheumatoid arthritis: an observational cohort study. *BMJ Open*. 2012;2(5).

26. Jimenez Morales A, Maldonado-Montoro M, Martinez de la Plata JE, Perez Ramirez C, Daddaoua A, Alarcon Payer C, et al. FCGR2A/FCGR3A Gene Polymorphisms and Clinical Variables as Predictors of Response to Tocilizumab and Rituximab in Patients With Rheumatoid Arthritis. *J Clin Pharmacol.* 2019;59(4):517-31.

27. Anolik JH, Campbell D, Felgar RE, Young F, Sanz I, Rosenblatt J, et al. The relationship of FcgammaRIIIa genotype to degree of B cell depletion by rituximab in the treatment of systemic lupus erythematosus. *Arthritis Rheum.* 2003;48(2):455-9.

28. Weng WK, Negrin RS, Lavori P, Horning SJ. Immunoglobulin G Fc receptor FcgammaRIIIa 158 V/F polymorphism correlates with rituximab-induced neutropenia after autologous transplantation in patients with non-Hodgkin's lymphoma. *J Clin Oncol.* 2010;28(2):279-84.

29. Ajeganova S, Tesfa D, Hägglund H, Fadeel B, Vedin I, Zignego AL, et al. Effect of FCGR polymorphism on the occurrence of late-onset neutropenia and flare-free survival in rheumatic patients treated with rituximab. *Arthritis Res Ther.* 2017;19(1):44.

30. Lee YH, Bae SC, Song GG. Functional FCGR3A 158 V/F and IL-6 -174 C/G polymorphisms predict response to biologic therapy in patients with rheumatoid arthritis: a meta-analysis. *Rheumatol Int.* 2014;34(10):1409-15.

31. Cartron G, Dacheux L, Salles G, Solal-Celigny P, Bardos P, Colombat P, et al. Therapeutic activity of humanized anti-CD20 monoclonal antibody and polymorphism in IgG Fc receptor FcgammaRIIIa gene. *Blood.* 2002;99(3):754-8.

32. Paiva M, Marques H, Martins A, Ferreira P, Catarino R, Medeiros R. FcgammaRIIa polymorphism and clinical response to rituximab in non-Hodgkin lymphoma patients. *Cancer Genet Cytogenet*. 2008;183(1):35-40.

33. Mitroviç Z, Aurer I, Radman I, Ajdukoviç R, Sertiç J, Labar B. FCgammaRIIA and FCgammaRIIA polymorphisms are not associated with response to rituximab and CHOP in patients with diffuse large B-cell lymphoma. *Haematologica*. 2007;92(7):998-9.

34. Weng WK, Levy R. Two immunoglobulin G fragment C receptor polymorphisms independently predict response to rituximab in patients with follicular lymphoma. *J Clin Oncol.* 2003;21(21):3940-7.

35. Ghielmini M, Rufibach K, Salles G, Leoncini-Franscini L, Léger-Falandry C, Cogliatti S, et al. Single agent rituximab in patients with follicular or mantle cell lymphoma: clinical and biological factors that are predictive of response and event-free survival as well as the effect of rituximab on the immune system: a study of the Swiss Group for Clinical Cancer Research (SAKK). *Ann Oncol.* 2005;16(10):1675-82.

36. Kenkre VP, Hong F, Cerhan JR, Lewis M, Sullivan L, Williams ME, et al. Fc Gamma Receptor 3A and 2A Polymorphisms Do Not Predict Response to Rituximab in Follicular Lymphoma. *Clin Cancer Res.* 2016;22(4):821-6.

37. Ghesquières H, Cartron G, Seymour JF, Delfau-Larue MH, Offner F, Soubeyran P, et al. Clinical outcome of patients with follicular lymphoma receiving chemoimmunotherapy in the PRIMA study is not affected by FCGR3A and FCGR2A polymorphisms. *Blood.* 2012;120(13):2650-7.

38. Strefford JC, Nowicka M, Hargreaves CE, Burton C, Davies A, Ganderton R, et al. Single-nucleotide Fcγ receptor polymorphisms do not impact obinutuzumab/rituximab outcome in patients with lymphoma. *Blood Adv.* 2021;5(15):2935-44.

39. Breunis WB, van Mirre E, Geissler J, Laddach N, Wolbink G, van der Schoot E, et al. Copy number variation at the FCGR locus includes FCGR3A, FCGR2C and FCGR3B but not FCGR2A and FCGR2B. *Hum Mutat.* 2009;30(5):E640-50.

40. Robinson JI, Carr IM, Cooper DL, Rashid LH, Martin SG, Emery P, et al. Confirmation of association of FCGR3B but not FCGR3A copy number with susceptibility to autoantibody positive rheumatoid arthritis. *Hum Mutat.* 2012;33(4):741-9.

41. Willcocks LC, Lyons PA, Clatworthy MR, Robinson JI, Yang W, Newland SA, et al. Copy number of FCGR3B, which is associated with systemic lupus erythematosus, correlates with protein expression and immune complex uptake. *J Exp Med*. 2008;205(7):1573-82.

42. Nam JL, Villeneuve E, Hensor EM, Conaghan PG, Keen HI, Buch MH, et al. Remission induction comparing infliximab and high-dose intravenous steroid, followed by treat-to-target: a double-blind, randomised, controlled trial in new-onset, treatment-naive, rheumatoid arthritis (the IDEA study). *Ann Rheum Dis.* 2014;73(1):75-85.

43. Massey J, Plant D, Hyrich K, Morgan AW, Wilson AG, Spiliopoulou A, et al. Genome-wide association study of response to tumour necrosis factor inhibitor therapy in rheumatoid arthritis. *Pharmacogenomics J.* 2018;18(5):657-64.

44. Gilani SS, Nair N, Plant D, Hyrich K, Morgan AW, Morris AP, et al. Pharmacogenetics of TNF inhibitor response in rheumatoid arthritis utilizing the two-component disease activity score. *Pharmacogenomics*. 2020;21(16):1151-6.

45. Hensor EMA, McKeigue P, Ling SF, Colombo M, Barrett JH, Nam JL, et al. Validity of a twocomponent imaging-derived disease activity score for improved assessment of synovitis in early rheumatoid arthritis. *Rheumatology (Oxford)*. 2019;58(8):1400-1409.

46. van der Heijde DM, van 't Hof MA, van Riel PL, Theunisse LA, Lubberts EW, van Leeuwen MA, et al. Judging disease activity in clinical practice in rheumatoid arthritis: first step in the development of a disease activity score. *Ann Rheum Dis.* 1990;49(11):916-20.

47. Carr IM, Robinson JI, Dimitriou R, Markham AF, Morgan AW, Bonthron DT. Inferring relative proportions of DNA variants from sequencing electropherograms. *Bioinformatics*. 2009;25(24):3244-50.

48. Nagelkerke SQ, Tacke CE, Breunis WB, Tanck MWT, Geissler J, Png E, et al. Extensive Ethnic Variation and Linkage Disequilibrium at the FCGR2/3 Locus: Different Genetic Associations Revealed in Kawasaki Disease. *Front Immunol.* 2019;10:185.

49. EI-Sherbiny YM, Holmes TD, Wetherill LF, Black EV, Wilson EB, Phillips SL, et al. Controlled infection with a therapeutic virus defines the activation kinetics of human natural killer cells in vivo. *Clin Exp Immunol.* 2015;180(1):98-107.

50. Alter G, Malenfant JM, Altfeld M. CD107a as a functional marker for the identification of natural killer cell activity. *J Immunol Methods*. 2004;294(1-2):15-22.

51. Grøn KL, Arkema EV, Glintborg B, Mehnert F, Østergaard M, Dreyer L, et al. Risk of serious infections in patients with rheumatoid arthritis treated in routine care with abatacept, rituximab and tocilizumab in Denmark and Sweden. *Ann Rheum Dis.* 2019;78(3):320-7.

52. Sebastiani M, Anelli MG, Atzeni F, Bazzani C, Farina I, Fedele AL, et al. Efficacy and safety of rituximab with and without methotrexate in the treatment of rheumatoid arthritis patients: results from the GISEA register. *Joint Bone Spine*. 2014;81(6):508-12.

53. Terrier B, Amoura Z, Ravaud P, Hachulla E, Jouenne R, Combe B, et al. Safety and efficacy of rituximab in systemic lupus erythematosus: results from 136 patients from the French AutoImmunity and Rituximab registry. *Arthritis Rheum*. 2010;62(8):2458-66.

54. Wendler J, Burmester GR, Sörensen H, Krause A, Richter C, Tony HP, et al. Rituximab in patients with rheumatoid arthritis in routine practice (GERINIS): six-year results from a prospective, multicentre, non-interventional study in 2,484 patients. *Arthritis Res Ther.* 2014;16(2):R80.

55. Kang TH, Lee CH, Delidakis G, Jung J, Richard-Le Goff O, Lee J, et al. An Engineered Human Fc variant With Exquisite Selectivity for FcgammaRIIIaV158 Reveals That Ligation of FcgammaRIIIa Mediates Potent Antibody Dependent Cellular Phagocytosis With GM-CSF-Differentiated Macrophages. *Front Immunol.* 2019;10:562.

56. Kavanaugh A, Rosengren S, Lee SJ, Hammaker D, Firestein GS, Kalunian K, et al. Assessment of rituximab's immunomodulatory synovial effects (ARISE trial). 1: clinical and synovial biomarker results. *Ann Rheum Dis.* 2008;67(3):402-8.

57. Teng YK, Levarht EW, Toes RE, Huizinga TW, van Laar JM. Residual inflammation after rituximab treatment is associated with sustained synovial plasma cell infiltration and enhanced B cell repopulation. *Ann Rheum Dis.* 2009;68(6):1011-6.

58. Thurlings RM, Vos K, Wijbrandts CA, Zwinderman AH, Gerlag DM, Tak PP. Synovial tissue response to rituximab: mechanism of action and identification of biomarkers of response. *Ann Rheum Dis.* 2008;67(7):917-25.

59. Vital EM, Dass S, Rawstron AC, Buch MH, Goëb V, Henshaw K, et al. Management of nonresponse to rituximab in rheumatoid arthritis: predictors and outcome of re-treatment. *Arthritis Rheum*. 2010;62(5):1273-9.

60. Vital EM, Dass S, Buch MH, Rawstron AC, Emery P. An extra dose of rituximab improves clinical response in rheumatoid arthritis patients with initial incomplete B cell depletion: a randomised controlled trial. *Ann Rheum Dis.* 2015;74(6):1195-201.

61. Vital E, Rémy P, Quintana Porras LF, Chiche L, Chauveau D, Furie R, et al. SAT0166 Biomarkers of B-cell depletion and response in a randomized, controlled trial of obinutuzumab for proliferative lupus nephritis. *Ann Rheum Dis*. 2020;79(Suppl 1):1023-4.

62. Evans SS, Clemmons AB. Obinutuzumab: A Novel Anti-CD20 Monoclonal Antibody for Chronic Lymphocytic Leukemia. *J Adv Pract Oncol.* 2015;6(4):370-4.

63. Schiestl M, Stangler T, Torella C, Čepeljnik T, Toll H, Grau R. Acceptable changes in quality attributes of glycosylated biopharmaceuticals. *Nat Biotechnol.* 2011;29(4):310-2.

FIGURE LEGENDS

Figure 1. FCGR2C QSV assay is associated with CD32 expression on NK-cells. (a) Schematic of the two main copy number regions (CNR1 and 2) and the relative positions of the functionally relevant nonsynonymous variants affecting FCGR3A and FCGR2C. (b) Expression of CD32 on NKcells in treatment-naïve, early RA patients (n=59) stratified by FCGR2C open reading frame (ORF) copy number. Data were summarised as median and the error bars denoted interquartile range. Using our FCGR2C QSV assay (Supplementary Figure 1), in combination with multiplex ligation dependent assay probe values for rs10917661, copies of FCGR2C-ORF were genotyped where matched NK-cell CD32 (clone KB61) expression data were available. It was not possible to distinguish classical and non-classical FCGR2C-ORF in our study. The latter variant also contains a premature STP codon, precluding FcyRIIc translation. A particular locus rearrangement including a deletion of one copy of FCGR2C and one copy of FCGR3B (CNR1 del), has been described to lead to expression of FcyRIIb on NK-cells. The rearrangement was observed in conjunction with FCGR2C-STP in 5/6 individuals, where we would anticipate FcyRIIc would be the only class II FcyR expressed. (c) The relationship between % positive CD32 expression on NK-cells, and geometric mean fluorescence intensity (MFI) in treatment-naïve, early RA patients (n=59). P-values calculated using non-parametric Mann-Whitney test. Data are summarised using median and interguartile range.

Figure 2: Association of *FCGR* genotype and copy number with clinical response in RA and **SLE.** (a) Co-efficient, 95% confidence intervals (CI) and p-value for the effect of the indicated genotype or copy number on 2C-DAS28CRP response (adjusted for baseline 2C-DAS28CRP) at 6 months post-rituximab, compared with reference genotype. All tests were performed using univariable linear regression; negative coefficients for clinical response outcomes indicate a favourable outcome. (b) Odds ratio (OR), 95% CI and p-value for the effect of the indicated genotype or copy number on BILAG Major Clinical Response (MCR) at 6 months post-rituximab, compared with reference genotype. All tests were performed using transformed to log10 scale. For both figures, the dots represent either the co-efficient or the OR and the error bars denote the 95% CI. The vertical broken lines denote lines of no effect.

Figure 3: Association of *FCGR* genotype and copy number with complete B-cell depletion. Odds ratio (OR), 95% confidence intervals (CI) and p-value for the effect of the indicated genotype or copy number on complete B-cell depletion post-rituximab, compared with reference genotype. The x-axis was transformed to log10 scale. The dots represent the OR and the error bars denote the 95% CI. All tests were performed using logistic regression, adjusted for age, concomitant diseasemodifying anti-rheumatic drug use including hydroxychloroquine, and baseline plasmablast count.

Figure 4. Effect of disease, genotype and methotrexate on NK-cell degranulation. (a) Natural Killer (NK)-cell (CD3-CD56+CD16+) $Fc\gamma$ RIIIa (CD16; clone 3G8) geometric mean fluorescence intensity (MFI) using flow cytometry for healthy controls (HC) (n=47), early (symptom onset <1 year and treatment naïve) (n=46) and established (>2 years) rheumatoid arthritis (RA) (n=20). Comparison of NK-cell degranulation following incubation with B-cell lineage, Daudi cells between HC (n=14) and RA (n=19) (b) and Raji cells between HC (n=7) and systemic lupus erythematosus (SLE) (n=10) (c) using an effector:target (E:T) ratio of 1:1 and rituximab. Ratio of degranulating NK-cells were compared in individuals with two copies of *FCGR3A* between the three *F158V* genotypes in HC (n=14) (d) and RA and SLE combined (n=29) (e). (f) NK-cell degranulation (%CD107a positive NK-cells) was compared before and 14 weeks after RA patients (n=10) started on methotrexate according to their *FCGR3A* genotype. (g) %CD107a positive NK-cells was assessed after incubation with rituximab and subsequent inclusion of CD16 (clone 3G8) and CD32 (clone KB61) blocking antibodies in HC (n=13) and RA (n=11). All p-values calculated using non-parametric Mann-Whitney test. Data were summarised as median and the error bars denoted interquartile range.

Figure 5. Peripheral blood NK-cell abundance and FcyRIIIa expression in rituximab-treated RA and SLE patients. Comparison of absolute natural killer (NK)-cell (CD3-CD56+) counts between (a) rituximab-treated rheumatoid arthritis (RA) (n=18) and systemic lupus erythematosus (SLE) (n=17) patients; (b) rituximab-treated RA patients exhibiting no European League Against Rheumatism (EULAR) clinical response (n=4) and moderate/good clinical response (n=14); (c) rituximab-treated RA patients exhibiting incomplete (n=6) and complete B-cell depletion (n=12); (d) rituximab-treated SLE patients exhibiting British Isles Lupus Assessment Group (BILAG) partial clinical response or no clinical response (n=13) and major clinical response (n=4); and (e) rituximabtreated SLE patients with incomplete (n=10) and complete B-cell depletion (n=7). The shaded grey areas represent adult reference ranges of the absolute NK-cell counts (90-600 cells/µL). Expression of FcyRIIIa (CD16; clone 3G8) on NK-cells of (f) RA patients exhibiting EULAR non-response (n=4) and moderate/good clinical response (n=14) to rituximab; (g) SLE patients exhibiting BILAG partial clinical response/non-response (n=13) and major clinical response (n=4) to rituximab; and (h) RA and SLE patients exhibiting incomplete (n=15) and complete B-cell depletion (n=17) in response to rituximab. All p-values calculated using non-parametric Mann-Whitney test. Data were summarised as median and the error bars denoted interquartile range.

Table 1. Baseline clinical characteristics, laboratory measures and association with clinical outcomes and complete B-cell depletion in RA

Baseline measure or characteristic	Mean (SD) or number (%) positive, N ¹	Effect on 2C-DAS28CRP at 6 months: coefficient (SE), <i>p-value, N</i> ²	Effect on Complete B-cell depletion: OR (95% CI), p-value, N ³
	N=573	N=415	N=328
Age at first RTX cycle (effect per 10 years)	58.7 (12.4), 519	-0.06 (0.05), 0.26, 380	1.03 (1.01–1.05), 0.01 , 309
Sex (Female)	436 (76%), 556	0.15 (0.15), 0.33, 415	2.02 (1.16-3.54), 0.01 , 328
Disease duration (effect per 10 years)	12.43 (10.1), 514	-0.02 (0.06), 0.78, 377	1.03 (1.01–1.06), 0.01 , 307
Concomitant DMARDs ^{4, 5}	233 (80.1%), 291	-0.41 (0.25), 0.09, 170,	2.09 (1.24-3.52), 0.01 , 302
Previous TNFi exposure⁵	232 (71.4%), 291	0.49 (0.21), 0.02 , 170	1.24 (0.75-2.05), 0.40, 302
No. of previous biologics ⁵	1.7 (1.4), 291	0.15 (0.07), 0.04 , 170	1.09 (0.92-1.28), 0.32, 302
RF (positive)	367 (81.2%), 452	-0.17 (0.18), 0.35, 294	0.88 (0.46-1.69), 0.70, 327
ACPA (positive)	344 (87.9%), 393	0.01 (0.26), 0.98, 241	0.68 (0.33-1.37), 0.28, 314
RF or ACPA (positive)	415 (91.5%), 454	-0.33 (0.24), 0.18, 296	1.25 (0.44-3.52), 0.68, 328
IgM (g/L) ⁵	1.5 (0.9), 330	0.03 (0.10), 0.72, 177	0.72 (0.55- 0.94), 0.02 , 319
IgA (g/L) ⁵	3.3 (1.4), 331	0.07 (0.07), 0.31, 177	0.82 (0.70-0.95), 0.01 , 320

Baseline measure or characteristic	Mean (SD) or number (%) positive, N ¹	Effect on 2C-DAS28CRP at 6 months: coefficient (SE), <i>p-value, N</i> ²	Effect on Complete B-cell depletion: OR (95% CI), p-value, N ³
	N=573	N=415	N=328
lgG (g/L)⁵	12.5 (3.8), 331	-0.04 (0.02), 0.15, 176	0.93 (0.87-0.98), 0.01 , 320
Total B-cell counts ⁵ (x10 ⁹ /L)	0.13 (0.13), 327	-0.75 (0.80), 0.35, 172	0.29 (0.05-1.53), 0.15, 322
Naïve B-cell counts⁵ (x10 ⁹ /L)	0.10 (0.11), 327	-1.57 (0.97), 0.11, 172	0.34 (0.05-2.54), 0.30, 322
Memory B-cell counts ⁵ (x10 ⁹ /L)	0.03 (0.04), 327	3.35 (2.68), 0.21, 172	0.03 (0.00- 8.48), 0.23, 322
Plasmablast counts ⁵ (x10 ⁹ /L)	0.004 (0.007), 332	10.24 (17.17), 0.55, 177	0.81 (0.75-0.89), <0.001 , 324

¹Sample size varies in different analyses due to missing clinical data. The N in this column reflects individuals included in analyses for either effect of 2C-DAS28CRP at 6 months and/or complete B-cell depletion.

²Coefficient, standard error (SE) and p-value for the effect of each baseline characteristic on the 2-component DAS28 (2C-DAS28CRP) at 6-months. All models were adjusted for the corresponding baseline measure. Negative coefficients for clinical response outcomes indicate a favourable outcome.

³Odds ratio (OR), 95% confidence interval (CI), p-value and number of observations for the effect of the baseline characteristic on complete B-cell depletion at 2 weeks in the Leeds cohort.

⁴Concomitant disease modifying anti-rheumatic drugs (DMARDs) included hydroxychloroquine, methotrexate and leflunomide

⁵Data were only available from the Leeds cohort. All remaining missing data was missing at random.

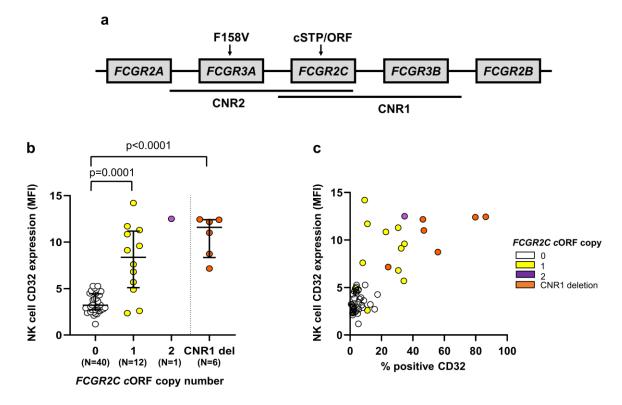
ACPA: anti-cyclic citrullinated peptide antibody; Ig: immunoglobulin; RF: rheumatoid factor; RTX: Rituximab; TNFi: tumour necrosis factor inhibitor

Table 2. Baseline clinical characteristics, laboratory measures and association with clinical outcomes and depletion in SLE

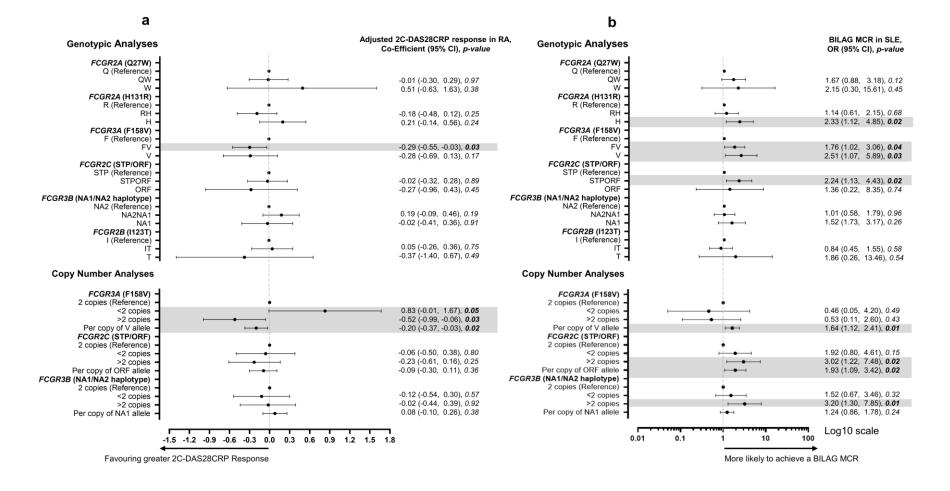
Baseline measure or characteristic	Mean (SD) or number (%) positive, N ¹ N=262	Effect on BILAG response (Major or Partial Clinical Response) at 6 months: OR (95% CI), <i>p-value</i> , N ² N=262	Effect on BILAG Major Clinical Response at 6 months: OR (95% CI), <i>p-value</i> , N ² N=262	Effect on complete B-cell depletion: OR (95% CI), <i>p-value</i> , N ² N=85
Age at first RTX cycle (effect per 10 Years)	40 (14), 262	0.81 (0.67 – 0.98), 0.03 , 262	0.88 (0.73 – 1.06), 0.17, 262	0.91 (0.67 – 1.24), <i>0.56</i> , 85
Sex (Female)	238 (91%), 262	1.55 (0.66 – 3.66), 0.31, 262	1.05 (0.43 – 2.56), 0.91, 262	0.53 (0.05 – 6.02), <i>0.61</i> , 85
Ethnicity				
Caucasian	161 (61.5%)	1.06 (0.62 – 1.80), 0.84, 262 ³	1.18 (0.70 – 1.98), 0.54, 262 ³	1.13 (0.45 – 2.84), <i>0.80</i> , 85 ³
South Asian	39 (14.9%)			
Chinese/SE Asian	13 (5.0%)			
Afro-Caribbean	31 (11.8%)			
Mixed/Undisclosed	18 (6.8%)			
Disease Duration at first RTX cycle (effect per year)	8 (6), 261	0.99 (0.96 – 1.02), 0.56, 261	0.99 (0.96 – 1.03), 0.64, 261	1.03 (0.96 – 1.10), <i>0.45</i> , 85
Concomitant DMARDs ⁴	60 (70.6%), 85	0.69 (0.22 – 2.14), 0.52, 85	0.81 (0.31 – 2.11), 0.66, 85	0.99 (0.39 – 2.51), <i>0.98</i> , 85
Concomitant anti-malarials,	225 (85.9%), 262	1.32 (0.64 – 2.72), 0.45, 262	0.96 (0.46 – 1.99), 0.91, 262	1.94 (0.67 – 5.61), <i>0.22</i> , 85
Concomitant oral prednisolone	193 (73.7%), 262	0.80 (0.44 – 1.46), 0.48, 262	1.06 (0.59 – 1.90), 0.84, 262	1.10 (0.42 – 2.90), <i>0.85</i> , 85

Baseline measure or characteristic	Mean (SD) or number (%) positive, N ¹ N=262	Effect on BILAG response (Major or Partial Clinical Response) at 6 months: OR (95% Cl), <i>p-value</i> , N ² N=262	Effect on BILAG Major Clinical Response at 6 months: OR (95% Cl), <i>p-value</i> , N ² N=262	Effect on complete B-cell depletion: OR (95% CI), <i>p-value</i> , N ² N=85
No. positive autoantibodies	1.9 (1.3), 186	1.13 (0.89 – 1.43), 0.33, 186	1.02 (0.82 – 1.28), 0.86, 186	0.80 (0.57 – 1.12), <i>0.19</i> , 85
anti-Ro	98 (49.2%), 199			
anti-La	38 (19.1%), 199	-	-	-
anti-Sm	55 (28.4%), 194			
anti-RNP	67 (33.8%), 198			
Anti-dsDNA positive	137 (52.5%), 261	1.33 (0.79 – 2.25), 0.28, 261	1.13 (0.68 – 1.88), 0.65, 261	0.71 (0.30 – 1.67), <i>0.43</i> , 85
ENA positive	130 (69.9%), 186	1.02 (0.51 – 2.01), 0.96, 261	1.05 (0.55 – 2.02), 0.88, 261	0.54 (0.21 – 1.36), <i>0.19</i> , 81
Low C3 and/or C4 titre	120 (46%), 261	1.49 (0.88 – 2.53), 0.14, 261	1.57 (0.94 – 2.63), 0.08, 261	0.35 (0.14 – 0.88), <i>0.03</i> , 85
Immunoglobulin (g/L)				
IgM	1.33 (1.9), 238	0.90 (0.76 – 1.07), 0.22, 238	0.99 (0.86 – 1.15), 0.93, 238	1.52 (0.82 – 2.82), <i>0.18</i> , 78
IgA	3.88 (1.9), 238	0.94 (0.78 – 1.12), 0.49, 238	0.98 (0.84 – 1.14), 0.76, 238	0.70 (0.47 – 1.06), <i>0.09</i> , 78
lgG	16.9 (5.4), 238	0.97 (0.93 – 1.01), 0.12, 238	1.00 (0.98 – 1.01), 0.60, 238	0.95 (0.88 – 1.02), <i>0.13</i> , 78
ESR (mm/h)	30.4 (27), 192	0.99 (0.98 – 1.00), 0.05 , 192	1.00 (0.99 – 1.01), 0.88, 192	0.99 (0.97 – 1.01), <i>0.30</i> , 62
Total B-cell counts (x 10 ⁹ /L) ⁴	0.1263 (0.13), 73	1.00 (1.00 – 1.01), 0.74, 73	1.00 (1.00 – 1.01), 0.09, 73	1.00 (1.00 – 1.00), 0.79, 73
Naïve B-cell counts (x 10 ⁹ /L) ⁴	0.0928 (0.09), 71	1.00 (0.99 – 1.01), 0.99, 71	1.00 (1.00 – 1.01), 0.17, 71	1.00 (0.99 – 1.00), <i>0.54</i> , 71

Baseline measure or characteristic	Mean (SD) or number (%) positive, N ¹ N=262	Effect on BILAG response (Major or Partial Clinical Response) at 6 months: OR (95% Cl), <i>p-value</i> , N ² N=262	Effect on BILAG Major Clinical Response at 6 months: OR (95% CI), <i>p-value</i> , N ² N=262	Effect on complete B-cell depletion: OR (95% CI), <i>p-value</i> , N ² N=85
Memory B-cell counts (x 10 ⁹ /L) ⁴	0.0292 (0.07), 71	1.00 (0.99 – 1.02), 0.68, 71	1.02 (0.99 – 1.04), 0.22, 71	1.00 (0.99 – 1.01), <i>0.71</i> , 71
Plasmablast counts (x 10 ⁹ /L) ⁴	0.0054 (0.01), 71	0.98 (0.90 – 1.06), 0.60, 71	0.95 (0.87 – 1.04), 0.23, 71	0.88 (0.80 – 0.98), <i>0.02</i> , 71
Global BILAG score	22 (9.7), 262	1.00 (0.97 – 1.02), 0.83, 262	1.00 (0.97 – 1.03), 0.93, 262	1.00 (0.96 – 1.04), <i>0.96</i> , 85
SLEDAI-2K score	10.8 (5.7), 262	1.06 (1.00 – 1.11), 0.03 , 262	1.02 (0.98 – 1.07), 0.40, 262	0.97 (0.90 – 1.05), <i>0.46</i> , 85
Active BILAG domains (A/B Grade)		-	-	-
General	36 (14.1%)			
Mucocutaneous	129 (49.2%)			
Neurology	52 (19.8%)			
Musculoskeletal	121 (46.2%)			
Cardiorespiratory	44 (17.2%)			
Gastrointestinal	18 (6.9%)			
Ophthalmic	9 (3.4%)			
Renal	114 (43.1%)			
Haematology	23 (9.5%)			


¹ Sample size varies in different analyses due to missing clinical data. The number (N) in each set of analyses is given.

² OR, 95% CI, p-value and number of observations for the effect of the baseline characteristic on clinical response measures or complete B-cell depletion at 6 weeks. Peripheral blood B-cell depletion data were only available for the Leeds cohort.


³ Due to sample size for each ethnicity category, comparison was made between Caucasian (reference) vs Non-Caucasian.

⁴ Data were only available from the Leeds cohort. All remaining missing data was missing at random.

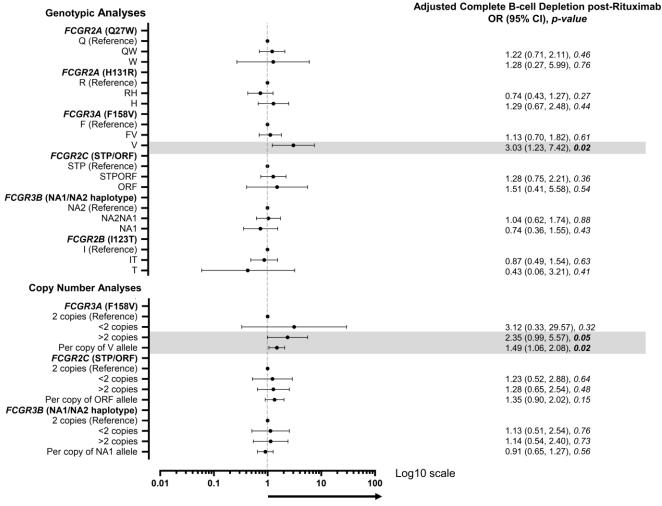

BILAG: British Isles Lupus Assessment Group; ENA: extract nuclear antigen; ESR: erythrocyte sedimentation rate; SE: South East; SLEDAI-2K: SLE Disease Activity Index v.2000

Figure 1. *FCGR2C* **QSV assay is associated with CD32 expression on NK-cells. (a)** Schematic of the two main copy number regions (CNR1 and 2) and the relative positions of the functionally relevant nonsynonymous variants affecting *FCGR3A* and *FCGR2C*. (b) Expression of CD32 on NK-cells in treatment-naïve, early RA patients (n=59) stratified by *FCGR2C* open reading frame (ORF) copy number. Data were summarised as median and the error bars denoted interquartile range. Using our *FCGR2C* QSV assay (**Supplementary Figure 1**), in combination with multiplex ligation dependent assay probe values for rs10917661, copies of *FCGR2C* ORF were genotyped where matched NK-cell CD32 (clone KB61) expression data were available. It was not possible to distinguish classical and non-classical *FCGR2C*-ORF in our study. The latter variant also contains a premature STP codon, precluding FcγRIIc translation. A particular locus rearrangement including a deletion of one copy of *FCGR2C* and one copy of *FCGR3B* (CNR1 del), has been described to lead to expression of FcγRIIb on NK-cells. The rearrangement was observed in conjunction with *FCGR2C*-STP in 5/6 individuals, where we would anticipate FcγRIIc would be the only class II FcγR expressed. (c) The relationship between % positive CD32 expression on NK-cells, and geometric mean fluorescence intensity (MFI) in treatment-naïve, early RA patients (n=59). P-values calculated using non-parametric Mann-Whitney test. Data are summarised using median and interquartile range.

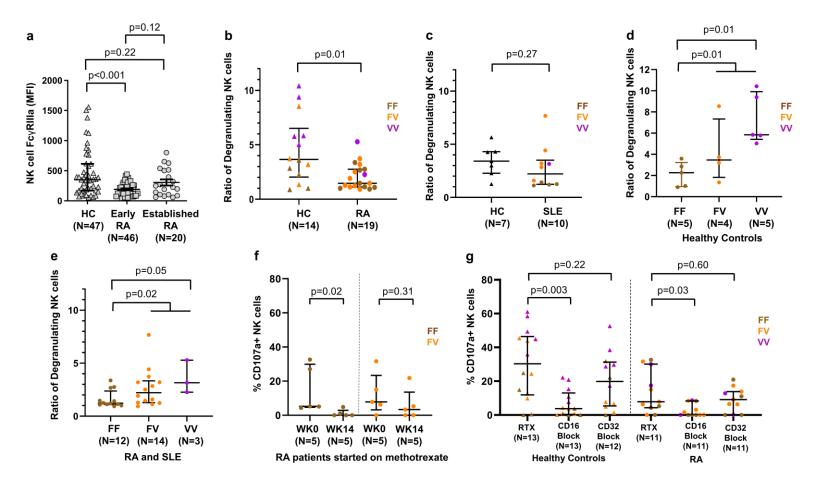
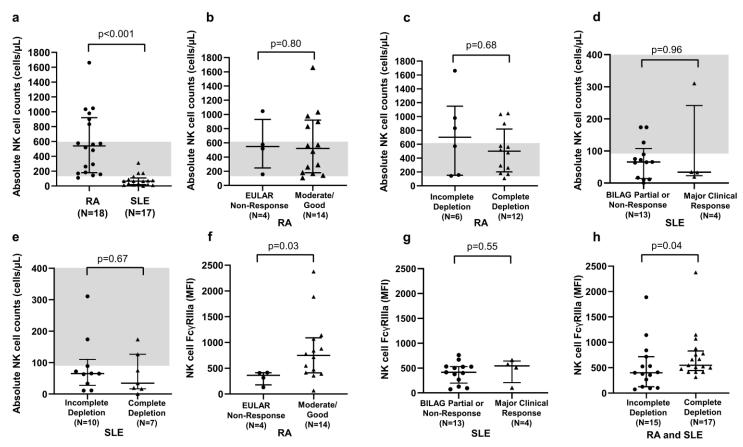


Figure 2: Association of *FCGR* genotype and copy number with clinical response in RA and SLE. (a) Co-efficient, 95% confidence intervals (CI) and p-value for the effect of the indicated genotype or copy number on 2C-DAS28CRP response (adjusted for baseline 2C-DAS28CRP) at 6 months post-rituximab, compared with reference genotype. All tests were performed using univariable linear regression; negative coefficients for clinical response outcomes indicate a favourable outcome. (b) Odds ratio (OR), 95% CI and p-value for the effect of the indicated genotype or copy number on BILAG Major Clinical Response (MCR) at 6 months post-rituximab, compared with reference genotype. All tests were performed using logistic regression. The x-axis was transformed to log10 scale. For both figures, the dots represent either the co-efficient or the OR and the error bars denote the 95% CI. The vertical broken lines denote lines of no effect.



More likely to achieve complete B-cell depletion post-rituximab

Figure 3: Association of *FCGR* genotype and copy number with complete B-cell depletion. Odds ratio (OR), 95% confidence intervals (CI) and p-value for the effect of the indicated genotype or copy number on complete B-cell depletion post-rituximab, compared with reference genotype. The x-axis was transformed to log10 scale. The dots represent the OR and the error bars denote the 95% CI. All tests were performed using logistic regression, adjusted for age, concomitant disease-modifying anti-rheumatic drug use including hydroxychloroquine, and baseline plasmablast count.

Figure 4. Effect of disease, genotype and methotrexate on NK-cell degranulation. (a) Natural Killer (NK)-cell (CD3-CD56+CD16+) FcγRIIIa (CD16; clone 3G8) geometric mean fluorescence intensity (MFI) using flow cytometry for healthy controls (HC) (n=47), early (symptom onset <1 year and treatment naïve) (n=46) and established (>2 years) rheumatoid arthritis (RA) (n=20). Comparison of NK-cell degranulation following incubation with B-cell lineage, Daudi cells between HC (n=14) and RA (n=19) (b) and Raji cells between HC (n=7) and systemic lupus erythematosus (SLE) (n=10) (c) using an effector:target (E:T) ratio of 1:1 and rituximab. Ratio of degranulating NK-cells were compared in individuals with two copies of *FCGR3A* between the three *F158V* genotypes in HC (n=14) (d) and RA and SLE combined (n=29) (e). (f) NK-cell degranulation (%CD107a positive NK-cells) was compared before and 14 weeks after RA patients (n=10) started on methotrexate according to their *FCGR3A* genotype. (g) %CD107a positive NK-cells was assessed after incubation with rituximab and subsequent inclusion of CD16 (clone 3G8) and CD32 (clone KB61) blocking antibodies in HC (n=13) and RA (n=11). All p-values calculated using non-parametric Mann-Whitney test. Data were summarised as median and the error bars denoted interquartile range.

Figure 5. Peripheral blood NK-cell abundance and $Fc\gamma$ RIIIa expression in rituximab-treated RA and SLE patients. Comparison of absolute natural killer (NK)-cell (CD3-CD56+) counts between (a) rituximab-treated rheumatoid arthritis (RA) (n=18) and systemic lupus erythematosus (SLE) (n=17) patients; (b) rituximab-treated RA patients exhibiting no European League Against Rheumatism (EULAR) clinical response (n=4) and moderate/good clinical response (n=14); (c) rituximab-treated RA patients exhibiting incomplete (n=6) and complete B-cell depletion (n=12); (d) rituximab-treated SLE patients exhibiting British Isles Lupus Assessment Group (BILAG) partial clinical response or no clinical response (n=13) and major clinical response (n=4); and (e) rituximab-treated SLE patients with incomplete (n=10) and complete B-cell depletion (n=7). The shaded grey areas represent adult reference ranges of the absolute NK-cell counts (90-600 cells/µL). Expression of FcγRIIIa (CD16; clone 3G8) on NK-cells of (f) RA patients exhibiting EULAR non-response (n=4) and moderate/good clinical response (n=14) to rituximab; (g) SLE patients exhibiting BILAG partial clinical response (n=13) and major clinical response (n=4) to rituximab; and (h) RA and SLE patients exhibiting incomplete (n=15) and complete B-cell depletion (n=17) in response to rituximab. All p-values calculated using non-parametric Mann-Whitney test. Data were summarised as median and the error bars denoted interquartile range.