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Classifying gait alterations using an
instrumented smart sock and deep learning
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Abstract— This paper presents a non-invasive
method of classifying gait patterns associated
with various movement disorders and/or neuro-
logical conditions, utilising unobtrusive, instru-
mented socks and a deep learning network. Seam-
less instrumented socks were fabricated using
three accelerometer embedded yarns, positioned
at the toe (hallux), above the heel and on the
lateral malleolus. Human trials were conducted on
12 able-bodied participants, an instrumented sock
was worn on each foot. Participants were asked
to complete seven trials consisting of their typical
gait and six different gait types that mimicked the
typical movement patterns associated with various
movement disorders and neurological conditions.
Four Neural Networks and an SVM were tested
to ascertain the most effective method of auto-
matic data classification. The Bi-LSTM generated
the most accurate results and illustrates that the
use of three accelerometers per foot increased
classification accuracy compared to a single ac-
celerometer per foot by 11.4%. When only a single
accelerometer was utilised for classification, the
ankle accelerometer generated the most accurate
results in comparison to the other two. The network was able to correctly classify five different gait types: stomp
(100%), shuffle (66.8%), diplegic (66.6%), hemiplegic (66.6%) and “normal walking” (58.0%). The network was incapable
of correctly differentiating foot slap (21.2%) and steppage gait (4.8%). This work demonstrates that instrumented textile
socks incorporating three accelerometer yarns were capable of generating sufficient data to allow a neural network to
distinguish between specific gait patterns. This may enable clinicians and therapists to remotely classify gait alterations
and observe changes in gait during rehabilitation.

Index Terms— Electronic textiles, E-textiles, Gait monitoring, Smart textiles, Wearable sensors, LSTM, Machine learning,
Sensors, Biomedical equipment
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THE ability for wearable textile devices to be worn com-
fortably, in close proximity to the human body makes

them potent candidates for continuous monitoring of physio-
logical parameters [1]–[4]. For this reason, numerous wearable
electronic textile (E-textile) sensors have been generated and
used to monitor various parameters including temperature
[5], sweat production [6], heart rate [7], and strain [8]–[10].
The capacity of this type of data collection to facilitate the
diagnosis and monitoring of different medical conditions pro-
vides opportunities to improve patient care and rehabilitation
outcomes [11]–[15]. Since the primary method of human
locomotion is walking it is one of the most studied human
movements [16]–[20], and it can be used as a predictor of
morbidity and mortality [19], [20], as well as having implica-
tions on activities of daily living. In particular, rehabilitation
of gait in individuals with Parkinson’s disease, stroke, head
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injury, diabetic neuropathy, multiple sclerosis, cerebral palsy,
brain lesions and spinal cord injuries can be a determinant of
an individual’s capacity to return to an independent life [21]–
[28].

To create effective personalised gait rehabilitation inter-
ventions, clinicians and therapists must have evidence-based
methods of analysing gait [29]. The current “gold standard”
for gait analysis takes place in a laboratory setting, often
within a constrained room or space [30]. A popular method of
analysing and recognising gait abnormalities uses three dimen-
sional motion capture camera systems [31]–[36]. Additional
technologies utilised include, force plates, instrumented walk-
ways, instrumented treadmills, EMG systems and movable
footplates, all of which can be integrated with motion capture
technology [13], [37]–[41]. Typically, the use of these systems
limits the user’s movements to a certain area. Furthermore,
these systems are often used in combination adding to the
distress of the patient and complicating the data processing
procedures for the clinician [42]. The use of these combined
systems is extremely costly and requires a trained operator.
This type of monitoring also limits the capacity of the clin-
ician to monitor gait over a prolonged period, limiting the
opportunity to view the impacts of fatigue [43].

A proposed solution to the aforementioned problems is to
use a wearable device to continuously monitor gait. Numerous
wearable devices have been created for this purpose [44],
[45]. The capacity of such sensors to collect continuous
data without requiring expensive laboratory equipment and
dedicated laboratories, has led to a boom in the development
of such equipment [15]. While many wearable systems have
been developed, there are still limitations. In some systems
the electronics can obstruct the free movement of the user,
leading to adverse effects on movement quality, negatively
impacting the ability to record the individual’s typical move-
ment patterns, resulting in deleterious consequences for re-
habilitation [46], [47]. Shoes, socks and insoles have been
the preferred wearable options for gait analysis due to their
unobtrusive nature [48]–[64]. Of these devices most have
utilised pressure sensors to monitor gait [37], [48], [49], [51],
[53]–[61], [64]. In general pressure sensors can be affected by
hysteresis leading to poor reliability [65]. Fibre-optic based
pressure sensing systems are less prone to hysteresis; however,
these can be easily damaged when walking [65]. As an
alternative, some researchers have utilised accelerometers [50],
[61], [63], and inertial measurement units [49], [62] for gait
analysis. The majority of these devices are large/bulky and
have not been seamlessly integrated into the wearable garment,
adversely impacting the comfort of the wearer and impeding
movement [61]–[63]. The use of IMUs and accelerometers has
typically only generated data from a single point located on
the foot (based on a single sensor), which may not provide
sufficient data to classify gait alterations [62], [63].

E-textile based ’smart socks’ are one such product that has
been developed to track gait outside of the laboratory [54]–
[61], [64]. Numerous versions have been designed using pres-
sure sensors, either attached to the surface of the sock [59]–
[61], [64], or that utilise textile-based pressure sensors [54]–
[58]. Surface based sensors on the socks are likely to be

effected by abrasion whereas textile based pressure sensors are
characteristically adversely affected by hysteresis [65]–[68].
The majority of sock systems still use pressure sensors and
have focused on identifying heel strike and toe off, allowing
easy identification of temporal-spatial gait parameters but lim-
iting their ability to distinguish between gait types. Alternative
devices have been developed that can distinguish between
the gait patterns of different individuals and identify various
human activities such as running, leaping and sliding [64].
Each of these activities generates a significantly different
movement pattern to each of the others. Consequently, the
ability of this type of device to capture subtle changes in
motion, such as differences in gait patterns, has not been
assessed.

Each of these approaches, especially when used to contin-
uously monitor gait over a prolonged period, generates vast
amounts of data. This alone makes the already challenging
task of analysing movement even more difficult. The use
of machine learning to automate processing and analysis of
large volumes of gait data has become more common in
recent years. Researchers have classified gait abnormalities
using shallow machine learning tools such as random forest,
K nearest neighbour and support vector machine learning
tools [42], [50], deep neural networks such as long short term
memory networks (LSTM) [53], [69] and convolutional neural
networks (CNN) [70]. The use of these tools to identify gait
features has typically been more successful with multi-sensor
and even multi-modality data collection [42]. These data have
generally been collected using wearables that were not based
on smart textiles [50], [53], [71]. For some of these devices the
electronics have not been seamlessly integrated into wearable
systems.

To overcome the limitations identified in the literature,
a pair of socks was instrumented with six yarn embedded
tri-axial accelerometers (three per sock).By embedding the
electronics within the structure of a yarn (creating an electronic
yarn or E-yarn), the aesthetics and feel of the garment were
maintained. The core technology to create E-yarns has previ-
ously been used to generate temperature sensing [72], [73],
acoustic sensing [74], and solar energy harvesting yarns [75].
Accelerometery based E-yarns have been used within vibration
sensing gloves [76]. The aim of the current work was to use
a deep learning neural network to automatically classify gait
differences non-invasively, based on multi-sensor data from
a pair of instrumented smart socks created using E-textiles.
The data set used in this work was distinctive to this research
and represents the first time data collected from a wearable
system has been utilised to classify seven different gait patterns
associated with various movement disorders and/or neurolog-
ical conditions. The data from the instrumented sock was
analysed using three types of neural network and a support-
vector machine (SVM) classifier in order to identify the best
performing neural network. It was hypothesised that A) The
multi-sensor data (provided by three sensors for each foot)
would generate a better classification accuracy than a single
accelerometer per foot. B) That the neural network would be
able to accurately classify each of the gait profiles generated
in the data collected based on distinctive time series data.



AUTHOR et al.: PREPARATION OF PAPERS FOR IEEE TRANSACTIONS AND JOURNALS (FEBRUARY 2017) 3

II. MATERIALS AND METHODS

A. Fabrication of the instrumented smart sock
The accelerometer embedded E-yarns were constructed

in three stages. Initially a tri-axial, analogue accelerome-
ter, sensitivity of 300 mV/g (Micro electrochemical systems,
ADXL337, Analog Devices, Norwood, MA, USA) was sol-
dered onto five flexible Litz wires. Each Litz wire consisted of
seven enamelled copper strands, covered in a nylon sheath with
a diameter of 254 µm (BXL2001, OSCO Ltd., Milton Keynes,
UK). This created five solder discrete joints corresponding to
the axis outputs (x-axis, y-axis and z-axis), the voltage input,
and the ground (Figure 1a). The soldered accelerometer was
then encapsulated within a resin micro-pod (Dymax 9001-E-
V3.7; Dymax, Corporation, Torrington, CT, USA). The micro-
pod included eight textured, multi-filament, polyester yarns,
36 filaments/167 dtex (Ashworth and Sons, Cheshire, UK)
that ran parallel to the copper wires and provided additional
mechanical support to the yarns (Figure 1b). The final ac-
celerometer embedded E-yarn was created by inserting the
encapsulated accelerometer, Litz wires, and supporting fibres
into a suture braider (RU1/24-80; Herzog GmbH, Oldenburg,
Germany). The covering braided structure consisted of 24
carriers with polyester yarns, 36 filaments/167 dtex (Ashworth
and Sons, Cheshire, UK) and a lay length of 5 was used
(Figure 1c).

A seamless knitted sock was subsequently produced using
a Stoll ADF 3 flatbed knitting machine. The sock was knitted
with integrated channels for the insertion of the accelerometer
yarns and a pocket to accommodate the interface electronics.
The sock comprised of three types of yarns, a single cover
lycra 16/SCY/090 with a nylon 6.6 covering (Stretchline, Long
Eaton, UK), a two yarn 20/DCY/003 nylon 6.6, and a 1/78/68
Nylon 6.6 yarn (ContiFibre, Casaloldo, Italy). Once fabricate
three accelerometer yarns were inserted into the sock and
stitched in place. These yarns were positioned approximately
over the lateral malleolus, posterior to the calcaneus, and
medially to the hallux (Figure 1d). The integrated electronics
did not impact on the textile’s flexibility or deformability (Fig-
ure 1e). To ensure that the electronics would not lead to skin
damage in participants and patients, the sock was designed to
ensure no presence of the electronics was evident inside the
sock as evidenced in Figure 1f. The interface electronics used
to capture the data and power the accelerometers consisted
of a Teensy LC (PJRC, Oregon, USA) micro-controller wired
to the analogue input of each accelerometer. The ensemble
was housed within a 3D printed thermoplastic polyurethane
casing. This was inserted into the knitted pocket of the sock.
The Teensy boards were connected onto a computer using
USB cables throughout the experiments, however the hardware
solution could be made wireless in future iterations. Python
(Python Software Foundation, Delaware, USA) was utilised to
capture the data from the two micro-controllers.

B. Testing the instrumented smart sock
1) Participants: Twelve able-bodied injury free individuals:

five male and seven female, age 22 to 42 years, mass 58
to 97 kg, UK shoe size 4 to 8.5, were recruited for this

TABLE I
THE DIFFERENT GAIT TYPES EVALUATED USING THE SOCK

Gait type Description Associated med-
ical condition

Normal gait Smooth, continuous ambulation with min-
imal effort

N/A

Hemiplegic
or
hemispastic
gait

Initial toe contact on hemiparetic side,
mechanically induced increased limb
length in swing due to reduced hip and
knee flexion and ankle plantar flexion
resulting in toe dragging or hip circum-
duction [28], [77]

Stroke, head
injury, Cerebral
palsy

Steppage
gait

Weakness of the dorsiflexor muscles re-
sulting in drop foot and an equinus po-
sition of the ankle. The foot hangs in
plantar flexion leading to reduced toe
clearance, as a compensation hip and knee
flexion in swing is increased and the
initial contact often occurs with a flat or
forefoot contact altering the typical foot
progression throughout stance [27], [78]

Equinus
contractures,
stroke, pelvic or
spinal trauma

Shuffling
or Parkin-
sonian
gait

Reduced hip extension, knee extension
and ankle plantar flexion throughout pre-
swing and initial swing phases. Results in
short “shuffling steps” with soles of feet
barely leaving the floor [28], [79]

Parkinson’s Dis-
ease and PAD-IC
(Peripheral arte-
rial disease – in-
termittent clau-
dication)

Diplegic
gait

Bilateral spasticity of the adductors and
hip flexors, extension of the knees and
plantar flexion of the ankles, leads to
bilateral circumduction of the legs which
can lead to a “scissoring” like action with
the feet crossing over [27], [28]

Bilateral
spasticity,
Cerebral
palsy, cervical
spondylotic
myelopathy,
and multiple
sclerosis

Foot slap Weakness or total/partial paralysis of the
muscles controlled by the peroneal nerve
(pretibial muscles I.e., tibialis anterior).
After initial heel contact the forefoot
rapidly drops to the ground generating a
slap sound [80]

Multiple sclero-
sis, spinal disor-
ders

Stomping
or sensory
ataxic gait

Insufficient sensory information is avail-
able for the individual to know where
their foot is in relation to the ground in
terms of distance and position/angle (neu-
rological/visual/proprioceptive). A stomp-
ing action is used to ensure firm contact.
This is accompanied by a wide step width
and short step length [26]

Diabetic
neuropathy

study. Ethical approval was granted by the non-invasive ethics
committee for the School of Science and Technology at
Nottingham Trent University (approval number 1540613). All
participants gave written informed consent prior to testing.

2) Protocol: Participants were asked to walk around a figure
of 8 walkway (30.6 ±0.12m in length) for 180 s per trial
wearing a pair of the instrumented smart socks. The seven
experimental conditions consisted of distinct gait features
associated with specific neurological and physical conditions.
Table I presents the gait features of each experimental con-
dition and its associated medical condition. All participants
were provided with a pair of instrumented smart socks to wear
and were instructed on how to wear the socks to ensure the
accelerometers were positioned in the correct locations. Prior
to each experimental walking condition, the participant was
shown the walking pattern they were required to mimic and
was given time to practice the pattern ensuring they could
replicate the appropriate movement characteristics. When data
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Fig. 1. The instrumented smart sock and the electronic yarn fabrication process. a) ADXL337 accelerometer soldered onto the flexible Litz wires.
b) Polymer resin micro-pod around the soldered accelerometer and supporting yarns. c) Accelerometer embedded electronic yarn: encapsulated
accelerometer, Litz wires, and supporting yarns. d) Accelerometer locations on the instrumented sock, lateral malleolus, posterior calcaneus and
medial to the hallux. e) The ability of the sock to undergo textile deformations. f) Inside of the sock demonstrating lack of visible E-yarns.

capture was ready to begin, the participants were given simple
instructions; on the command “Go”, they would walk around
the figure of 8 track (marked out on the laboratory floor),
using the specific gait pattern they had been shown, until
they were told to stop by the researcher. After each trial was
complete, the participant was given time to rest if needed and
the next gait pattern was demonstrated. Once the participant
had experienced sufficient rest (minimum of 2min) they were
asked to practice the new gait pattern prior to data collection.
This process was repeated until all experimental conditions
were complete. The order in which each participant was asked
to complete the walking trials was randomised to remove
the impact of fatigue when walking using an unfamiliar gait
pattern.

Once the data were recorded each file was labelled and
assigned to a specific folder based on the gait pattern being
mimicked. Tri-axial acceleration data was recorded at 87.5Hz
generating 141687 data points per foot, per trial. The vectors
generated were combined into 2 s data instances consisting
of data from all three accelerometers from both socks. Ap-
proximately 75% of the data captured was provided to the
neural networks for training purposes and the remaining 25%
of the data was split evenly between the testing and validation
sets. This split represents the entirety of nine participants data
being used for training, and the remaining three participants
(5, 6, 7) data being used for testing and validation. The
process of restricting 25% of the data for testing enables

evaluation of each neural network trained using unseen data,
providing information about the capacity of each network
to classify new data (not used in the training process). As
well as accuracy measures, precision, recall and specificity
were calculated for each neural network as well as time
performance. Each instance of data was generated with a 50
time-step gap (sampled at 87.5Hz) between itself and its
predecessor to ensure comprehensive sampling of the data
without introducing prohibitive time costs for the training
of the neural networks. The neural networks were optimised
using the Adaptive Moment Estimation optimiser with a mini
batch size of 128. The training was automatically stopped
after the validation set showed 20 consecutive steps with lower
accuracy than the current best. At this point the current best
network was returned and the training stopped. The network
was then evaluated using the test data.

C. Neural network structures utilised for classification of
the data

LSTM’s are a type of recurrent neural network [81] which
have shown significant promise in the classification of time
series data in a range of fields [53], [69], [82], and have
been applied in the medical industry to better understand
movements in a variety of contexts. LSTM’s can learn features
and representations within data over both long and short
periods of time. Bi-LSTM’s, which were used in this work,
are a particular type of LSTM where the input flows in both
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Bi-LSTM Topology

Sequence Input Layer
Dropout Layer (0.5)

Bi-LSTM Layer (200 units)
Dropout Layer (0.5)

ReLU Layer
Fully Connected Layer

Softmax Layer
Output Layer

TABLE II
AN ILLUSTRATION OF THE BI-LSTM MODELS, DEPICTING THE

INDIVIDUAL LAYERS, USED TO CLASSIFY THE DATA IN THIS WORK.

directions rather than unidirectionally within the LSTM. This
has resulted in better performance for a range of tasks [53],
[83]. The Bi-LSTMs used in this work contained 200 cells
that were shaped according to seven layers: sequence input,
Bi-LSTM, dropout, RELU layer fully connected, SoftMax and
classification layers. The information depicting this can be
seen in Table II.

To ascertain the suitability of the Bi-LSTM in the context of
this work, the data was applied to three other neutral network
architectures and an SVM classifier. The three architectures
were a convolutional neural network (CNN), a Bi-LSTM
convolutional neural network (Bi-LSTM-CNN) and an LSTM
network. All of the networks and the SVM were trained using
the same data as the Bi-LSTM in this work. Broadly, the Bi-
LSTM was found to outperform the three other three networks
tested, with the Bi-LSTM CNN and LSTM marginally behind.
The CNN and the SVM performed markedly worse and were
generally unable to learn the features within the data. The full
results of these experiments, along with the topologies of the
networks can be found in appendix Table III

III. RESULTS AND DISCUSSION

Four neural networks and a SVM classifier were tested
to identify the most appropriate method for use with the
data set generated by the smart socks, the results of which
can be found in appendix Figure 4. The convolutional neural
network was only able to achieve a classification percentage
just above random (100 / 7 classes = 14.2%). Similarly,
the SVM produced a classifier similar to random choice.
The Bi-LSTM convolutional neural network performed well,
achieving a 53.4% accuracy, which was slightly worse than the
Bi-LSTM, however, short shuffling gait and diplegic gait were
both correctly classified more than 70% of the time whereas no
other gait type was classified correctly more than 60% of the
time. Finally, the LSTM produced a classification of 52.7%,
although no trials were classified as high stepping gait (even
in error) and slap foot gait was never correctly classified and
a total of 10 normal gait trials were misclassified as slap foot
by the network. It is worth noting that due of the shape of the
input data, it was only possible to generate convolutions of a
small size; in experiments with “bigger data”, it is possible
that the convolutional neural networks would present a more
promising result. Consequently, the Bi-LSTM is presented in
most detail within the method section, as it performed best
out of all the networks trialled.

The primary aim of this work was to combine an instru-
mented smart sock and a neural network to classify different
gait profiles. It was hypothesised that the multi-sensor data
(provided by three sensors for each foot) would generate
a better classification accuracy than a single accelerometer
per foot. The results obtained when a single accelerometer
yarn was used for the classification of gait is presented in
figures 2a,b and c. The accelerometer located on the ankle
produced the highest overall accuracy compared to the other
two locations. An accuracy of 43.5% (figure 2a) was observed
for the accelerometer located on the ankle. The Bi-LSTM was
able to classify stomp gait 99.0% of the time when only the
ankle accelerometer was used. Nonetheless, this gait was over
classified by the network and only 40.8% of the total data
identified as stomp gait was actually data corresponding to
this gait. As shown in figure 2b the lowest overall accuracy
of 20.6% was demonstrated when only data from the heel
accelerometer was used. The heel accelerometer correctly
identified steppage gait 66.2% of the time. Data from the
toe accelerometer produced an overall accuracy of 33.3% as
illustrated in figure 2c. Although, it generated a low overall
classification accuracy, shuffling gait showcased a classifica-
tion accuracy of 100%. The overall classification accuracy for
the smart sock with all accelerometery data provided for the
Bi-LSTM was 54.9% (figure 3). Previous work has suggested
that data from multiple sensors increases the capacity for
neural networks to correctly classify gait features [42]. The
data presented here concurs with this statement, showing
that the use of multiple sets of sensor data improved the
classification accuracy of the network by over 11%.

The second hypothesis was that the Bi-LSTM would be
able to accurately classify each of the gait profiles. The Bi-
LSTM in combination with the instrumented smart socks
allowed for the correct classification of five of the seven
gait profiles (figure 3). The results demonstrate that stomping
gait was correctly classified 100% of the time. However, the
network also misclassified other gaits as stomping gait. It
can be observed that 57.3% of the time, other gait types
were misclassified as stomp gait. This was plausibly because
stomping generated the highest acceleration values through
the rapid change of acceleration in the vertical and anterior-
posterior directions associated with large ground impacts [26].
Since, other gait types also had phases of high acceleration
this may have limited the networks capacity to classify the
gait type based on feature differences. The short shuffling gait
was identified with the next best accuracy of 66.8% closely
followed by the diplegic and hemiplegic gait classifications
(66.6%). Although both the short shuffling and diplegic gait
profiles were correctly classified over 66% of the time they
were both misclassified as each other, more than as any other
gait type. This was most likely due to the short shuffling
gait generating minimal acceleration compared to the other
gait profiles as the foot only leaves the floor by a small
distance [79]. During diplegic gait most participants walked
very slowly due to it being a difficult gait to perform, this may
have resulted in the acceleration profiles of both shuffling and
diplegic gait being quite similar.

Hemiplegic and normal gait were also misclassified as
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Fig. 2. Confusion matrices illustrating the results for the most accurate network for each of the single accelerometers when classifying the various
gait types. a) Ankle located accelerometer (overall accuracy 43.8%). b) Heel located accelerometer (overall accuracy 20.6%). c) Toe located
accelerometer (overall accuracy 33.3%).

each other, even though they were correctly classified by the
network most of the time, 66.6% and 58.0% respectively.
Hemiplegic gait has an asymmetrical profile where one of
the legs performs the expected “normal” movement, while
the other leg circumducts to compensate for the inability
to flex the knee [77]. Although there is an asymmetrical
distribution of the gait parameters, the change in acceleration
may not have been sufficient to identify it as asymmetrical.
Additionally, there is still a heel strike and controlled shift of
weight from one leg to the other. Moreover, this condition was
easier for participants to replicate than most of the other gait
profiles allowing them to walk at a more natural speed which

again may have been a factor associated with the Bi-LSTM
confusing hemiplegic gait and normal walking.

Both the foot slap and steppage gait were misclassified more
often than they were correctly identified by the Bi-LSTM
(21.2% and 4.8% respectively). These two gaits were most
often misclassified as stomping gait (60.1% foot slap gait
data and 58.7% steppage gait data). In foot slap gait the high
acceleration recorded by the toe accelerometer as the forefoot
rapidly drops to the ground may have confused the network
into classifying it as stomping gait [80]. Steppage gait requires
the foot to be lifted higher, and this exaggerated foot move-
ment might have caused an increase in acceleration, causing
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Fig. 3. Confusion matrix presenting output and classification accuracy for the best performing network based on data from all three accelerometers
from each sock. The overall classification accuracy for the network was 54.9%.

the algorithm to misclassify it as stomping gait [27], [78]. Foot
slap gait was incorrectly classified as steppage gait 11.9% (114
times out of a possible 938 instances). However, steppage gait
was never misclassified as foot slap gait. This suggests that
the Bi-LSTM was able to distinguish steppage gait from foot
slap gait even though it was incapable of distinguishing it from
the other gait conditions. This is probably due to the foot slap
gait generating a heel initial contact rather than mid or forefoot
initial contact [27], [78], [80]. With regards to steppage gait,
beyond lifting the legs higher there are few differences in the
gait profile to distinguish this from the other profiles [27],
[78].

The current instrumented smart sock system could be im-
proved leading to greater accuracy and the capacity to classify
additional gait profiles. One option may be to include ac-
celerometer data from a sensor close to the sacrum [45], which
may assist when distinguishing gaits where hip movement is
prominent such as is the case with diplegic and hemiplegic
gaits. Another option to improve classification accuracy would
potentially be to incorporate other types of sensors into the
smart socks such as IMUs (inertial measurement units). The
addition of data from multiple modalities has been demon-
strated to enable greater gait classification accuracy [42]. The
challenge associated with this would be the incorporation of
such a sensor into the sock with minimal impact to the sock
profile and the user’s comfort experience.

One strength of this work is that the Bi-LSTM network
was able to correctly classify the majority of the gait profiles
for participants that were not part of the training data. This
suggests that data overfitting was not a significant problem for
the network and that the network generally used appropriate
elements of the available data to make its classifications. It
can therefore be suggested that the training data set used was

sufficient to limit overfitting and ensure generalisability of the
data during testing [84]. Based on this principle, it should be
possible to use the current smart socks and Bi-LSTM network
to collect data from clinical populations in order to test the
capacity of the network to classify differences in gait between
individuals with medical impairments that have led to their
altered gait profiles.

IV. CONCLUSION

The instrumented smart sock presented in this paper com-
bined with a Bi-LSTM was capable of classifying five of seven
different gait profiles. The deep learning architectures used to
interpret the data were revealed to be accurate, capable of dis-
tinguishing between different gait profiles and robust enough
to cope with data from different participants. Furthermore, this
work indicates that the incorporation of three accelerometers
has a significant advantage when compared to measuring the
acceleration from a single point on the foot. In addition, the
results suggest that if only one accelerometer is used, it should
be positioned at the ankle rather than the toe or heel. This
work has demonstrated a proof of concept and shows that
different movement patterns can be identified by a trained
Bi-LSTM using simple un-processed accelerometery data and
minimal interpretation by a clinician/researcher. The next step
in the process of developing a product that could be used to
assist in gait rehabilitation and real time gait monitoring, is to
collect data from clinical populations who may present subtle
differences to their movement profiles that cannot be replicated
by able-bodied individuals.

APPENDIX
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Network Topology
Bi-LSTM-CNN Convolutional Neural Network LSTM

Sequence Input Layer Sequence Input Layer Sequence Input Layer
Dropout Layer Dropout Layer Dropout Layer
1x1 Convolutional Layer 1x1 Convolutional Layer LSTM layer (200 units)
Bi-LSTM layer (200 units) ReLU Layer Dropout Layer
Dropout Layer MaxPooling layer ReLU Layer
Flatten Layer Fully Connected Layer Fully Connected Layer
ReLU Layer Softmax Layer Softmax Layer
Fully Connected Layer Output Layer Output Layer
Softmax Layer
Output Layer

TABLE III
ILLUSTRATIONS OF THE BI-LSTM CONVOLUTIONAL NEURAL NETWORK, CONVOLUTIONAL NEURAL NETWORK, AND LSTM NETWORK,DEPICTING

THE INDIVIDUAL LAYERS, USED TO CLASSIFY THE DATA IN THIS WORK.
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Fig. 4. Results from the confusion matrices when classifying the various gait types utilising three neural networks and a SVM classifier. The data
captured by all three accelerometers from each sock was used for the classification. a) Convolution Neural Network (overall accuracy 15.6%). b)
Bi-LSTM-Convolution Neural Network (overall accuracy 53.4%). c) LSTM Neural Network (overall accuracy 52.7%). d) Support-Vector Network
(overall accuracy 14.3%).
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