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A Revised Video Vision Transformer for Traffic
Estimation with Fleet Trajectories
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Abstract— Real-time traffic monitoring represents a key component
for transportation management. The increasing penetration rate
of connected vehicles with positioning devices encourages the
utilization of trajectory data for real-time traffic monitoring. The use
of commercial fleet trajectory data could be seen as the first step to-
wards mobile sensing networks. The main objective of this research
is to estimate space occupancy of a single road segment with
partially observed trajectories (commercial fleet trajectories in our
case). We first formulate the trajectory-based traffic estimation as
a video computing problem. Then, we reconstruct trajectory series
into video-like data by performing spatial discretization. Following
this, video input is embedded using a tubelet embedding strategy.
Finally, a Revised Video Vision Transformer (RViViT) is proposed to estimate traffic state from video embeddings. The
proposed RViViT is tested on a public dataset of naturalistic vehicle trajectories collected from German highways around
Cologne during 2017 and 2018. The results witness the effectiveness of the proposed method in traffic estimation with
partially observed trajectories.

Index Terms— Traffic estimation; Vehicle trajectory; Deep learning

I. INTRODUCTION

REAL-TIME traffic monitoring represents a key
component for transportation management, which

provide essential data for many applications, such as route
planning, congestion detection, dynamic traffic assignment
and demand prediction. Existing in-operation monitoring
systems require sensing networks consisting of hundreds or
even thousands of fixed-point sensors (e.g., cameras and loop
detectors). These large networks represent a major cost for
authorities in terms of installation and maintenance.

More than half of the vehicles shipped world-wide are
connected vehicles with embedded modems in 2019 [1].
The increasing penetration rate of connected vehicles with
positioning devices encourages the utilization of trajectory
data for real-time traffic monitoring. The use of commercial
fleet trajectory data could be seen as the first step towards
mobile sensing networks. Nowadays, commercial fleet
tracking systems can generate sufficient data for traffic
monitoring, and there is an urgent need for effective tools
to process and analyse the huge amounts of data. Teletrac
Navman [2] reported that in 2019, 86% of fleets used
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telematics which is the technology used to monitor a wide
range of information relating to an individual vehicle or an
entire fleet, and 74% of fleets were tracked with telematics;
while only 23% of fleets applied big data analytics to guide
decision-making.

The main objective of this research is to estimate traffic
state with partially observed data (i.e., commercial fleet
trajectories). We propose a pure transformer [3] deep learning
architecture - Revised Video Vision Transformer (RViViT).
The proposed RViViT is tested on a public dataset of natural
vehicle trajectories collected from German highways around
Cologne during 2017 and 2018. The main contributions of
this paper are as follows.

• We formulate traffic estimation with partial trajectories
as a video-like computing problem. Because vehicle
trajectories are usually stored as time series, which cannot
be directly used to model spatial interactions among
vehicles, we apply spatial discretization and temporal
sampling to re-map trajectory series into video-like data.

• To the best of our knowledge, this is the first attempt to
apply a transformer-like architecture in solving trajectory-
based traffic estimation problems. Currently, the trans-
former is the most prominent architecture in sequence-to-
sequence modelling [4] [5], and has shown its capacity of
learning from images [6] [7]. Therefore, it is reasonable
to explore the potential of such architectures in computing
video-like data generated from vehicle trajectories.
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• The original Video Vision Transformer (ViViT) [8] was
designed for video classification tasks. In order to esti-
mate a continuous traffic state, we extend the ViViT to
have regression functionality. A comprehensive analysis
of the Revised ViViT (RViViT) is performed in terms of
input resolution, model complexity and training data size.

II. RELATED WORKS

A. Traffic Estimation
Traffic estimation methods can be broadly grouped into two

categories, namely, model-driven and data-driven methods.
Model-driven methods use physical models describing traffic
flow dynamics. Physical models are usually built on the basis
of empirical relations, in which model parameters are either
exogenously calibrated using empirical data or endogenously
estimated within the methods. In previous studies, different
models were employed for traffic estimation. The fundamental
diagram (FD), describing relations among speed, density and
flow, is commonly used in combination with other traffic
models for estimation [9] [10] [11] [12]. Macroscopic traffic
models, using the concept of the FD as a basis for their flux
functions, have been extensively adopted by model-driven
methods. For example, the first-order Lighthill-Whitham-
Richards (LWR) model and its extentions [13] [14], the
second-order Payne-Whitham (PW) model and its extensions
[15] [16], and the second-order Aw-Rascle-Zhang (ARZ)
model and its extensions [17] [18], have been used in previous
studies [19] [20] [21] [22] [23] [24] [25] [26] [27] [28].

Data-driven methods require no physical traffic flow model
and only rely on empirical data. By using statistical or
Machine Learning (ML) algorithms, the methods capture
dependencies from empirical data, and then estimate traffic
state based on the extracted dependencies and real-time
information. Statistical approaches were often used in early
studies. For example, several heuristic and statistical data
imputation methods were analyzed in [29]; linear regression
and Auto-Regressive Integrated Moving Average (ARIMA)
models were developed for estimation purposes [30] [31].
Later, ML and Bayesian statistics were introduced in the
field of traffic estimation, such as in Bayesian Networks
(BN) [32], Kernel Regression (KR) [33], Fuzzy C-Means
(FCM) [34], K-Nearest Neighbors (KNN) [35], Principal
Component Analysis (PCA) [36] [37], Tucker decomposition
(TD) [38], and Bayesian particle filters (BPF) [39]. Recently,
a number of attention based models were proposed to
model spatiotemporally varying traffic states [40] [41]. A
comprehensive summary of traffic estimation methods can be
found in [42]

B. Deep Learning on Spatial and Temporal Data
Deep learning is part of a broader family of ML methods.

Different types of Deep Neural Networks (DNNs) have been
developed for a variety of tasks. For example, Convolutional
Neural Networks (CNNs) realize convolutional and pooling
operations for processing image-like data [43] [44]; Recurrent

Neural Networks (RNNs) introduce recurrent cells to
process time series data [45] [46]; Graph Neural Networks
(GNNs) capture the dependencies of graphs via message
passing between their nodes [47] [48]. These DNNs have
been widely used in spatio-temporal traffic estimation and
prediction studies, e.g., [49] [50] [41] [51] [52] [53] [54] [55].

A transformer is a new type of DNN, which uses self-attention
mechanisms to extract intrinsic features [3]. Transformers were
first introduced to the field of Natural Language Processing
(NLP) where they achieved remarkable success [56] [57].
For example, when Bidirectional Encoder Representations
from Transformers (BERT) [56] was published, it achieved
state-of-the-art performance on 11 NLP tasks; Generative
Pre-trained Transformer 3 (GPT-3) [57] was pre-trained on
a large amount of compressed plain text data and showed
strong performance on different types of downstream natural
language tasks without requiring any fine-tuning. Because of
the major success of transformer architectures in processing
sequential data, researchers have introduced transformers to
the computer vision (CV) field where CNNs were once seen
as the fundamental component. Nowadays, the transformer is
showing that it is a promising alternative to CNN. A number
of visual transformers have been proposed [7] [58] [59] [6],
and most of them yielded state-of-the-art performance on
multiple image recognition benchmarks. Recently, researchers
have explored the potential of transformer-like architectures
in video modelling. A few transformer-like architectures have
been proposed to model long-range contextual relationships
in video, such as Time-Space Transformer (TimeSformer)
[60] and Video Vision Transformer (ViViT) [8].

In general, transformers have showed great potential in spatial
and temporal data processing. It is interesting to develop suit-
able transformer-like architectures for spatio-temporal traffic
estimation.

III. PROBLEM FORMULATION

Vehicle trajectories contain instantaneous information of
vehicles at each time step, and are usually stored as time
series. However, these trajectory series cannot be directly
used to model spatial interactions among vehicles. Thus,
we first reconstruct trajectory series into video-like data.
Given commercial fleet trajectories with instant position
pv , acceleration av and velocity vv at each time step and
corresponding vehicle size information, we map these
trajectories into a number of video clips, as depicted in Fig.1.
Each video with the shape (T,H,W,C) is a collection of
T images. A road segment is discretized and divided into
H ×W cells: H is the number of lanes of the segment and
W is equal to the segment length divided by the cell width.
Each image has C=2 channels providing vehicle velocity and
acceleration information.

Spatial discretization enables us to measure space occupancy,
os, that can provide improved traffic measurement by consid-
ering vehicle sizes [61]. os is calculated as the percentage of
a road segment occupied by vehicles
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Fig. 1. Video input generation

os = Locp/Lall × 100 ≈ Nocp/Nall × 100 (1)

where, Locp is the occupied road length; Lall is the total road
length; Nocp is the occupied road cells; and Nall is the total
road cells.

Traffic estimation with partially observed trajectories is then
formulated as a video computing problem. Given a video input
V j ∈ RT×H×W×C generated from commercial fleet trajecto-
ries, {pj−T

v , aj−T
v , vj−T

v , ..., pjv, a
j
v, v

j
v}, between j − T and

j time steps, we estimate the space occupancy, ojs, resulting
from all types of vehicles using a video modelling framework
f(·). The problem can be represented by

{pj−T
v , aj−T

v , vj−T
v , ..., pjv, a

j
v, v

j
v} −→ V j f(·)−−→ ojs (2)

It is noted that the fleet trajectories and video input share the
same set of time steps which is also shared by the trajectories
of all the vehicles used for model evaluation later.

IV. REVISED VIDEO VISION TRANSFORMER (RVIVIT)
In this section, we first provide preliminary information

regarding transformer architectures. Then, we describe video
embedding strategies for transforming video data into an input
sequence. Finally, the architecture of the proposed RViViT is
presented.

A. Revisiting Standard and Vision Transformers
A standard transformer consists of an encoder module and

a decoder module, which consist of several encoders and
decoders, respectively. Each encoder/decoder is composed of
a Multi-head Self-Attention (MSA) layer and a feed-forward

neural network. MSA is the key component of a transformer.
Self-Attention (SA) extracts feature representations Q
(query), K (key) and V (value) from an input sequence
z ∈ RN×D using three parameter matrices WQ ∈ RD×Dq ,
WK ∈ RD×Dk , and Wv ∈ RD×Dv , where D,Dq, Dk and Dv

are the dimensions of input, query, key and value, respectively.

Q = zWq, K = zWk, V = zWv (3)

SA(z) = softmax(QKT/
√

Dq)V (4)

MSA performs Nhead SA operations, know as “heads”. The
outputs of these heads are concatenated and then projected
using a parameter matrix WMSA ∈ RDkṄhead×Dout , where
Dout is the output dimension.

MSA(z) = concat[SA1(z),SA2(z), ...,SANhead(z)]WMSA

(5)
Inspired by its success in sequence-to-sequence modelling, re-
searchers have applied transformer architecture to learn useful
representations from images [7] [58] [59] [6]. Here, we briefly
review some preliminaries associated with Video Transformers
(ViT) [7]. A standard transformer for NLP receives a sequence
of token embeddings as input. To deal with images, ViT
reshapes an image img ∈ RH×W×C into a sequence of
flattened patches imgp ∈ RN×(P 2·C), where (H , W ) is the
resolution of original image, C is the number of channels, (P ,
P ) is the resolution of each image patch, and Np = HW/P 2

is the number of patches. ViT computes patch embeddings by
mapping flattened patches to D dimensions with a trainable
linear projection:
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z0 = [zcls, img1pE, img2pE, ..., imgNp
p E] + pos (6)

where the projection by E is equivalent to a 2D convolution.
The class token zcls ∈ R(P 2·C)×D is a trainable vector, which
is inherited from BERT [56]. In order to retain positional infor-
mation, a position embedding, pos∈ R(Np+1)×D, is appended
to the patch embeddings. z0 is passed through an encoder
including a sequence of L transformer layers, and then fed
to a linear classifier. The architecture of ViT enables the self-
attention to spread information between the patch embeddings
and the class token: during training the supervision signal
comes only from the class token, while the patch embeddings
are the model’s only variable input.

B. Video Embedding
Thanks to its flexible architecture, a transformer can

operate on any input sequence z ∈ RN×D. Similar to ViT,
we need to convert video input into sequence input for
transformer layers. In the previous studies [60] [8], two
strategies were adopted for tokenising videos. Both strategies
map a video V ∈ RT×H×W×C to a sequence of tokens
z̃ ∈ Rnt×nh×nw×D, where T is the total number of frames.
Then, z̃ is combined with positional and class tokens, and
reshaped into RN×D matrices to obtain the input sequence
for transformer layers.

Fig. 2. Video embedding: a) uniform frame sampling, and b) tubelet
embedding

As shown in Fig. 2a, a straightforward strategy for tokenising
videos is to uniformly sample nt frames from an input video

clip, embed each frame independently, and concatenate all
these tokens together. More specifically, nh × nw image
patches are extracted from each frame, and a total of
nt×nh×nw are obtained from a video clip. This process can
be seen as simply constructing a large image to be tokenised
following ViT. This strategy was adopted in Timesformer
[60] which is also selected as a benchmark to compare with
our proposed method in the case study section.

Fig. 2b illustrates a tubelet embedding strategy. Here, spatio-
temporal “tubes” are extracted from an input video clip and
linearly projected to RD. This strategy extents ViT’s embed-
ding to 3D, and therefore performs a 3D convolution. For a
tubelet ∈ Rt×h×w, nt = T/t, nh = H/h and nw = W/w to-
kens are extracted from temporal, height and width dimensions
respectively. This strategy fuses spatio-temporal dependencies
during embedding, whereas the strategy illustrated in Fig 2a
fuses temporal dependencies using transformer convolution.
Note that the tubelet embedding strategy is used for video
embedding in the proposed RViViT.

C. RViViT Architecture
Fig. 3 depicts the architecture of the proposed RViViT which

consists of a video embedding layer, a spatial transformer
encoder, a temporal transformer encoder and a regression
head. The temporal encoder and spatial encoder have the
same structure which contains a sequence of L transformer
layers. Each layer has Multi-headed Self-Attention (MSA),
Layer Normalisation (LN), and Multi-Layer Perception (MLP)
blocks as follows:

z
′

l = MSA(LN(zl−1)) + zl−1 (7)

zl = MLP(LN(z
′

l)) + z
′

l (8)

Firstly, the spatial transformer encoder captures dependencies
among video embeddings (blue boxes in Fig.3) extracted
from the same time step. Here, trainable position embeddings
(grey boxes in Fig.3) are added to the video embeddings to
retain positional information. This injects information about
the relative position of the video embeddings in the sequence.
A representation for each time step is obtained after L layers
in the spatial encoder. This is the encoded regression token,
zis, where i ∈ {1, 2, ..., nt}. These spatial representations
are concatenated into Zs ∈ Rnt×D, and then fed to the
temporal encoder containing L transformer layers to learn
features among tokens from different time steps. The original
ViViT uses a classification head to perform video classification
tasks. In this research, we replace the classification head
with a linear regression head. Using the encoded regression
token, zrgr ∈ RD, from the temporal transformer encoder, the
regression head generates continuous traffic state estimations.

V. CASE STUDY

In this section, traffic estimation experiments conducted on a
public real-world vehicle trajectory dataset and corresponding
analyses of the results are presented.
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Fig. 3. RViViT architecture: a) transformer encoder, and b) the proposed RViViT

A. Data Preprocessing
We evaluated the proposed RViViT against a public

dataset of naturalistic vehicle trajectories - the Highway
Drone (HighD) dataset [62]. The HighD dataset provides
post-processed trajectories of about 110000 cars and trucks
extracted from drone videos of German highways around
Cologne during 2017 and 2018. 60 videos were recorded with
an average length of 17 minutes at six different sites (see
Fig. 4a). For each video recording, three files are provided,
which contain information about the site, the vehicles (e.g.,
type and size) and the extracted trajectories (e.g., velocity
and acceleration).

Fig. 4b shows the aerial shot of the selected site which is a road
segment of about 420-meter length. This site is numbered 1 in
the dataset and has the most trajectory data (85972 trajectories)
among all the six sites (110000 trajectories). The number
of recorded car and truck trajectories are 69751 and 16221
respectively. Using the truck trajectories, we generated 39851
1-second video clips. Each video contains 25 frames and two
channels (vehicle velocity and acceleration). The size of a road
cell was set to 2 meters × 1 lane. Thus, the width and height
of a video is 210 and 3, respectively. Then, we calculated the
corresponding space occupancy of the site for every video clip
using both car and truck trajectories. Finally, these video clips
were divided into training set, validation set and test set with
proportions of 60%, 20% and 20%, respectively.

B. Experiment Setting
In this study, all experiments were conducted on GPUs in

Google Colaboratory [63]. The patch (tubelet) size was set

to 3×3×3. The number of self-attention heads Nhead, the
number of transformer layers L, and the embedding dimension
D were set to 4, 6 and 128, respectively. We trained the
RViViT using the AdamW optimizer [64] with a batch size of
32 and Mean Square Error (MSE) loss function. The learning
rate was varied over the course of training using a linear
warm-up with cosine annealing scheduler. More specifically,
we increased the learning rate to 0.1 linearly for the 10
first warm-up epochs, and then decreased it to 0.0001 in the
following 90 epochs. We also used early-stop and dropout
(dropout rate=0.3) in all the experiments to prevent overfitting.
A detailed discussion about hyperarameter settings is provided
in the following section.

C. Result Analysis

Several spatio-temporal feature learning models were se-
lected to compare with the proposed RViViT. They are:

• 3DCNN (3D Convolutional Neural Network) [65] that ex-
tracts features from both spatial and temporal dimensions
by performing 3D convolutions;

• ConvLSTM (Convolutional Long Short-Term Memory)
[66] that extends the LSTM to have convolutional struc-
tures in both the input-to-state and state-to-state transi-
tions;

• SlowFast network [67] that includes a slow pathway to
capture spatial semantics, and a fast pathway to capture
motion at fine temporal resolution;

• TimeSformer (Time-Space Transformer) [60] that uses
the uniform frame sampling described in Section 4.2 to
convert input video into a sequence of image patches,
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Fig. 4. Recording sites in HighD [62]: a) site locations, and b) aerial shot of the site selected to analyze

and applies MSA mechanism to model spatio-temporal
dependencies.

• Space mean speed (SMS) based estimation [68] that
employs Van Aerde’s traffic flow model [69] to extract
traffic state from SMS. Model-based traffic estimation
methods that require additional spacing/headway mea-
surement (e.g., [70]) or stationary sensor measurement
(e.g., [71]) are not considered. As the proposed RViViT
only uses trajectories with instant position, acceeleration
and velocity as input.

TABLE I
COMPARISON WITH SPATIO-TEMPORAL LEARNING BENCHMARKS

Model MAE MSE MAPE (%)

3DCNN 2.29 7.65 14.60

ConvLSTM 2.07 6.74 12.98

SMS Estimation 1.90 5.98 11.65

SlowFast Network 1.68 5.17 10.28

TimeSformer 1.46 3.43 8.93

RViViT 1.43 3.35 8.41

Table 1 summarizes the estimation results of the RViViT and
aforementioned benchmarks on the HighD dataset. Note that
the evaluation metrics, Mean Absolute Error (MAE), Mean
Square Error (MSE) and Mean Absolute Percentage Error
(MAPE) were calculated using the estimated and observed
space occupancy (in %) values:

MAE =

C∑
c=1

|Oc
est. −Oc

obs.| (9)

MSE =

C∑
c=1

(Oc
est. −Oc

obs.)
2 (10)

MAPE =
1

C

C∑
c=1

|Oc
est. −Oc

obs.|/Oc
obs. (11)

where, Oc
est. and Oc

obs. are the estimated and observed
occupancy values of the cth video clip (1-second long),

respectively; and C is the total number of video clips in the
test dataset.

The results shows that two CNN-based models, i.e., the
3DCNN and ConvLSTM, yielded relatively high estimation
errors. The traffic flow model based method (SMS estimation)
produced estimation that was better than the 3DCNN and
ConvLSTM, but worse than the SlowFast network. Although
the SlowFast network is also built based on CNN, it produced
much lower MAE and RMSE values compared with the
3DCNN and ConvLSTM methods. This might be attributed to
its two-path architecture that is able to learn video features at
both low and high frame rates. The RViViT outperformed all
the tested spatio-temporal learning models. It should be noted
that another transformer-based model, the TimeSformer,
produced estimation results close to that of the RViViT,
which demonstrates the effectiveness of transformer-like
architectures in dealing with spatio-temporal data. When
compared with the TimSformer, the better performance
yielded by the RViViT might be due to two reasons. Firstly,
the RViViT employs a tubelet embedding strategy that fuses
spatio-temporal information during tokenisation, in contrast to
uniform frame sampling adopted by the TimeSformer, which
may be seen as simply constructing a large 2D image to be
tokenised following ViT. Secondly, the TimeSformer simply
forwards all embeddings through the transformer encoder;
whereas the RViViT consists of two separate transformer
encoders (spatial encoder and temporal encoder) and perform
a “late-fusion” of temporal information.

Fig. 5 shows the estimated and observed occupancy values
from a randomly selected recording which is 611-second-long
and numbered 11 in the dataset. It can be observed that the
3DCNN and ConvLSTM only modelled the rough trend of
the traffic flow evolution. There were obvious deviations
between the ground truth and the estimations from these two
models. Although the SlowFast network showed improved
performance compared to the other two CNN-based models,
it still had some difficulties in modelling variations of the
traffic flow. For example, when the traffic flow oscillated
seriously around 400-500 seconds, the estimations lagged
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behind the ground truth, and obvious over-estimations were
witnessed. Two transformer-based models produced relatively
reliable estimations. Despite slight lags, they showed the
capacity of modelling general trend and specific variations of
the traffic flow evolution.

Fig. 5. Estimated and observed occupancy values from recording #11

Input video resolution plays a important role in video
computing problems. Therefore, we analyzed different

spatial discretization and temporal sampling combinations,
as presented in Table 2. For spatial discretization, we kept
the default height of a road cell, and changed its width. The
results indicate that spatial discretization using smaller cell
sizes resulted in better estimation. For temporal sampling, we
first kept the default video length (25 frames), and sampled
frames from 1 second (25 frame/second), 5 seconds (5
frame/second) and 15 seconds (3 frame/second). The results
reveal that the RViViT achieved lower MSE when learning
from shorter videos. Then, we sampled frames from the same
second using 1, 3 and 24 strides to generate input videos
with 25, 9, and 2 frames, respectively. It is observed that
the differences among estimations were not significant. This
suggests that sampling frames from the same period with a
large stride might be a potential way to balance computational
cost and model performance.

To investigate the flexibility of the RViViT, we conducted
experiments on different dataset sizes and model settings. As
shown in Fig.6a, we tested three parameter settings, including
1) less complex settings: D=32, L=3 and Nhead = 2,
2) default settings: D=128, L=6 and Nhead = 4, and 3)
more complex settings: D=192, L=10 and Nhead = 6.
Floating Point Operations (FLOPs) were used to measure the
computational costs required by these settings. It is seen that
applying the more complex settings led to an approximate
5-time computational cost increase, but only resulted in a
slight improvement in estimation when compared with the
default settings. The less complex case requiring only around
1/18 computational cost of the default case can still provide
acceptable estimation. In Fig. 6b, the estimation results on
different dataset sizes are presented. Here, small, medium,
and full datasets contain 1000, 10000, and 39851 video clips,
respectively. As expected, we can improve the performance
of our model by feeding it with more data. However, the
RViViT can produce reliable estimation by just learning from
the medium-size dataset.

Fig.7 shows the impact of probe vehicle composition and
probe penetration rate on estimation. Note that in random
vehicle cases, we randomly selected trucks and cars as probe
vehicles; the number of random probe vehicles is the same
to its truck-only counterpart. It is clearly shown that the
estimation performance improved with the increase in the
penetration rate of the probe vehicles that provide their trajec-
tory information. Extracting trajectory information from both
trucks and cars resulted in slightly worse estimation results
than the cases that were solely based on truck trajectories.
An explanation can be that although trucks tend to maintain
lower speeds and have lager vehicle sizes in comparison to
passenger cars, which may record a lower average speed and
a higher occupancy for the segment than its mean, this pattern
is easier to be learned by the model when only trucks provide
information.

VI. CONCLUSION

Stationary sensing networks are often associated with high
maintenance costs. Using instant vehicle information from
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TABLE II
THE IMPACT OF VIDEO RESOLUTION ON ESTIMATION

Cell Width MSE Sampling Range MSE Video Length MSE

2-meter 3.35 1-second 3.35 25-frame 3.35

5-meter 3.53 5-second 3.98 9-frame 3.43

10-meter 3.70 15-second 4.29 2-frame 3.69

Fig. 6. Experiments on different a) model settings and b) dataset sizes

Fig. 7. The impact of probe penetration rate on estimation

GPS devices is a viable alternative for traffic monitoring.
In this work, we first formulated trajectory-based traffic
estimation as a video computing problem. Next, we
reconstructed trajectory series into video-like data by
performing spatial discretization. Following this, video input
was embedded using a tubelet embedding strategy. Finally, a
Revised Video Vision Transformer (RViViT) was proposed to
estimate traffic state from video embeddings.

We tested the proposed RViViT on a public dataset of
naturalistic vehicle trajectories. Four spatio-temporal deep
learning models were chosen to compared with the proposed
method, namely, 3DCNN, ConvLSTM, SlowFast network
and TimeSformer. The results showed that the RViViT

outperformed all these models. We further analyzed the
performance of the proposed method on different video
resolutions, model complexities and training data sizes. The
analysis results revealed that increasing video resolution,
model parameter and training data size had positive impacts
on model performance. Nevertheless, even using relatively
lower resolution, fewer parameters, and smaller training data
size, the RViViT was able to yield acceptable estimation
performance.

It should be noted that the proposed architecture can also be
applied to traffic prediction. Since recordings in the HighD
dataset were made with an average length of 17 minutes, we
cannot generate sufficient data to train and test a prediction
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model. We will test the prediction performance of the proposed
RViViT once a suitable dataset is available. In addition, the
RViViT is designed for estimating traffic state of a single road
segment. In the future, we will extend this work to multi-
segment traffic estimation.
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