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A review of challenges and framework development for corrosion fatigue life
assessment of monopile-supported horizontal-axis offshore wind turbines
Victor Okenyia, Mahdi Bodaghia, Neil Mansfielda, Shukri Afazova and Petros Siegkasb

aDepartment of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham, UK; bDepartment of Mechanical Engineering
and Materials Science and Engineering, Cyprus University of Technology, Limassol, Cyprus

ABSTRACT
Digital tools such as machine learning and the digital twins are emerging in asset management of offshore
wind structures to address their structural integrity and cost challenges due to manual inspections and
remote sites of offshore wind farms. The corrosive offshore environments and salt-water effects further
increase the risk of fatigue failures in offshore wind turbines. This paper presents a review of corrosion
fatigue research in horizontal-axis offshore wind turbines (HAOWT) support structures, including the
current trends in using digital tools that address the current state of asset integrity monitoring. Based on
the conducted review, it has been found that digital twins incorporating finite element analysis, material
characterisation and modelling, machine learning using artificial neural networks, data analytics, and
internet of things (IoT) using smart sensor technologies, can be enablers for tackling the challenges in
corrosion fatigue (CF) assessment of offshore wind turbines in shallow and deep waters.

Abbreviations: ANN, Artificial Neural Network; CF, Corrosion Fatigue; CPFE, Crystal Plasticity Finite Element;
DT, Digital Twin; FCGR, Fatigue Crack Growth Rate; FEA, Finite Element Analysis; HAOWT, Horizontal-Axis
Offshore Wind Turbine; HAZ, Heat-Affected Zone; IoT, Internet of Things; ML, Machine Learning; O&M,
Operation and Maintenance; RS, Residual Stress; SCADA, Supervisory Control and Data Acquisition; SIF,
Stress Intensity Factor
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1. Introduction

Offshore wind power is rapidly growing, and the number of
offshore wind turbines installed in 2021 tripled those installed in
2020, taking global capacity to 48.2 GW (Lee and Zhao 2021). In
2020, the UK had the highest total offshore wind power capacity
of 10.4 GW (see Figure 1; Wood Mackenzie 2020). The UK is
one of the lead offshore wind power generation countries with a
capacity of 20–55 GW planned to be installed by 2050 (James
and Ros 2015). With a need for advancement in durability, more
research resources for new materials are being considered in
offshore structures (WoodMackenzie 2020). From design consider-
ations, production, and cost optimisations literature (Muskulus and
Schafhirt 2014; Wu et al. 2014; Chehouri et al. 2015; Gentils et al.
2017; Hou et al. 2017), reducing high energy costs requires building
offshore wind farms capable of producing more energy. This
directly translates into building larger offshore wind turbines that
will require larger substructures to support them. Data from
offshore wind farms across Europe show that as offshore wind tur-
bine installations move into deeper waters leading to increase in the
investment costs due to an increase in operation and maintenance
costs (Morthorst and Kitzing 2016). Wind turbines with a capacity
to produce over 10 MW were first manufactured in 2018, with
foundation costs corresponding to more than 20% of its capital
cost (Kim and Kim 2018). With advancements in design and con-
struction, there are now next-generation horizontal-axis offshore
wind turbine (HAOWT) prototype of 15 MW capacity set to be
built from 2022 using monopile foundations (Vestas 2021).

Challenges facing the wind energy sector include aerodynamic
and hydrodynamic effects, soil-structure interaction, design optim-
isation, environmental factors related to harsh operating con-
ditions, excessive costs associated with manufacturing,
installation, building, operation, and maintenance. There are phys-
ical asset management challenges due to the remote location of
these structures in deeper waters as well as life performance chal-
lenges due to higher wind loads and lower fatigue performance at
the welds (e.g. welded monopile sections experiencing transient
stress fields) (Igwemezie et al. 2018).

Fatigue in HAOWT operation is caused by cyclic mechanical
loadings and enhanced by the marine environments where cor-
rosion is a major degradation factor. Thus, corrosion fatigue
(CF) is a type of damage to the material under cumulative cyclic
loading in a corrosive environment (Suresh 1992). Fatigue
damages and rate of crack growth in metallic materials are
accelerated by corrosion with a potential cause of fractures,
rapid ageing, and failure of engineered systems with pitting
being its most detrimental factor. CF of structural members is
still a principal concern in the foundations of offshore wind tur-
bines (Dong et al. 2012), where the cost of maintenance against
CF could be seen as an important domain because 98% of the
support structures are made of structural steel (Ancona and
Jim 2001). Pitting is important to the life span of the structure
(Melchers 2010), which requires further research to understand
its effect on offshore wind turbine monopile structural steel
materials. Pitting and CF have been researched in other sectors

© 2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License (http://creativecommons.org/licenses/by-nc-nd/4.0/), which
permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way.

CONTACT Mahdi Bodaghi mahdi.bodaghi@ntu.ac.uk Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham
NG11 8NS, UK

SHIPS AND OFFSHORE STRUCTURES
https://doi.org/10.1080/17445302.2022.2140531

http://crossmark.crossref.org/dialog/?doi=10.1080/17445302.2022.2140531&domain=pdf&date_stamp=2022-11-03
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:mahdi.bodaghi@ntu.ac.uk
http://www.tandfonline.com


as well, such as electric power generation (e.g. nuclear), aero-
space (e.g. high-pressure turbine blades), marine (e.g. ships
and submarines), oil and gas, and construction (e.g. bridges)
(Larrosa et al. 2018).

Support structures consist of jackets, gravity foundations, tri-
pods, suction caissons, and monopiles with and without floating
substructures (O’Kelly and Arshad 2016). Monopiles are the most
common foundation type used in up to ∼96% of running offshore
wind turbines in the UK (Higgins and Foley 2014). They are
installed in sea depths of approximately 35 m, however, they
could also be deployed in deeper waters. Between January and
June 2017, about 110 foundations were installed in the UK (Wind
Europe 2017) showing an increase in offshore wind turbine growth.
A typical large monopile with circumferential weld, fabricated for
an offshore wind farm, is shown in Figure 2. The economic con-
sideration of monopiles in HAOWT applications emanates from
its effectiveness in reducing material maintenance costs (Oh et al.

2013). The currently installed monopiles are becoming larger in
diameter and height, and a direct relationship between wind
speed and tower height has been established for improved power
generation (Lavanya and Kumar 2020). A further 15% tower height
increase is predicted between 2020 and 2025 leading to a tower
height of about 150 m (Igwemezie et al. 2019). Recently, research
has been conducted to explore the incorporation of high strength
concrete in producing hybrid monopiles (Jammes et al. 2013;
Chen et al. 2018; Ma and Yang 2020).

Understanding the mechanical response of support structures,
especially monopiles with large diameters presently used in
HAOWT, requires closer research attention due to their recent
developments and exploitation. The loads and larger bending
moments could be a source of concern in deeper waters. Several
experiments and modelling techniques have been applied over
the years to study the CF by using damage theories (Rejovitzky
and Altus 2013; Adedipe et al. 2015; Bergara et al. 2017; Sun

Figure 1. Offshore wind power capacity in 2020 in Europe (Wood Mackenzie 2020). (Image published with kind permission by WindEurope) (This figure is available in
colour online).

Figure 2. A fabricated monopile for an offshore wind farm (Kallehave et al. 2015) (This figure is available in colour online).
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and Jahangiri 2019). Further studies on the mechanics of sup-
port structures would be required to understand the fatigue
mechanisms in the support structures in aggressive
environments.

Recent technological advancements in computational simu-
lation tools, the internet of things (IoT), real-time monitoring,
and material performance evaluation of HAOWT have shown
promising results in effective physical asset management by collect-
ing and analysing data from multiple structures. Digital twins (DT)
can be employed to reproduce real-world scenarios in a digital
replica with embedded sensors to automate, optimise, diagnose,
maintain, and repair assets (i.e. HAOWT). This is especially useful
in deeper waters, where manual inspection could be expensive,
inefficient, and associated with high risks (Wang 2020). DT tech-
nologies have the potential to enable engineers to gain more oper-
ational information and allow them to make better decisions to
extend the lifespan of large HAOWT. Research on fatigue degra-
dation under corrosion of existing and newer steel grade materials
incorporating the use of digital tools and operational data is still not
fully explored. The behaviour of steel materials for monopile sup-
port structures in marine environments under the influence of
mechanical and environmental factors especially more advanced
S355 thermomechanical rolled steel requires further research to
understand how the fatigue properties change as the size of
HAOWTs materials tend to enlarge since size effects have been
observed (Ólafsson et al. 2016). Also, holistic modelling tools for
on-line monitoring and prognostic maintenance of HAOWT are
required to be further developed.

This review is conducted as a number of support structure col-
lapses have taken place over the last two decades where the risk of
future collapses is still a concern. Reported cases have shown aero-
dynamic effects through typhoons and storms to be the most critical
factors for wind turbine collapse while environmental damages are
also encountered (Ma et al. 2019). These damages were also
observed to occur mostly at the initial life stage and the end-of-
life stages. Thus, as we consider corrosion which is a form of
environmental damage, the cyclic loading effect must be considered
as both these factors are key drivers for CF damage. A proposed
methodological framework has been applied in this review as illus-
trated in Figure 3. The three main stages of the methods include: a
wide-range review to identify challenges faced in practice; collec-
tion of facts to make observation on progress and identify possible
solutions; and proposal of a framework incorporating digital tools
to address these challenges. Across this review, trends from over
130 publications have been considered as well as industry reports
to provide means of better assessing CF to ensure serviceable life,
especially in HAOWT supported by monopiles.

This study aims to provide a review of the challenges in fatigue
of HAOWT monopile supported structures with the view to
address the digital challenges as well as design and physical chal-
lenges as illustrated in Figure 4. This review is not meant to be
exhaustive, but it would offer the most prominent advances to
encourage further prospective studies.

2. Understanding fatigue and corrosion in offshore
structures

The synergy between corrosion and fatigue produces a detrimental
effect on a metallic material. CF is an environmental time-depen-
dent electrochemical process occurring at the slip steps or the
crack tip with two major mechanisms of anodic slip dissolution
and hydrogen embrittlement. Reduced crack growth rates could
also occur as corrosion products may cause an oxide-induced
crack closure effect owing to elasticity around the crack tip which

prevents plastic deformation or a decrease in stress intensity factor
(SIF) as crack width grows (Pippan and Hohenwarter 2017; Wu
et al. 2020). Thus, loading conditions of frequency and stress wave-
form occurring in service can affect crack growth caused by anodic
dissolution, while protective film rupture rate, passivation rate and
solution renewal rate affect hydrogen embrittlement (Suresh 1992).

An increase in pitting resistance suggests a corresponding
increase in corrosion-fatigue strength, and a reduction in the failure
at the slip zone (Jaske et al. 1981). Pitting corrosion varies depend-
ing on different marine zones (Mathiesen et al. 2016). Monopile
appears to have a high pitting corrosion rate, and potentially
becomes a stress concentrations area for the initiation of fatigue
cracks owing to lines of geometric discontinuities in weldments.
CF with considered pitting has the following stages (Akid and
Richardson 2010; Fatoba 2015): (i) passive film breakdown; (ii)
pit initiation; (iii) pit growth; (iv) pit-to-crack transition; (v)
short crack growth and long crack growth.

Corrosion ordinarily is affected by chemical, physical, and bio-
logical factors (e.g. biofouling, plant, and animal life). However,
other factors affect corrosion in aqueous environments which
further points out the complex nature of the interaction between
corrosion and fatigue and how the former helps the latter. Factors
influencing CF have long been categorised into mechanical, metal-
lurgical, and environmental (Wei and Speidel 1972). Some mechan-
ical factors include peak stress (Zhao et al. 2017), cyclic frequency,
stress ratio, load waveform (Adedipe et al. 2016; Igwemezie and
Mehmanparast 2020), residual stress (RS) (Xin and Veljkovic
2020); metallurgical factors like alloy composition, microstructure
(Nicolas et al. 2019), wielding defects, heat treatment (Mehmanpar-
ast et al. 2017); environmental factors like pH (Kolawole et al.
2019), temperature (Atkinson and Chen 1993), electrochemical
potential (Kovalov et al. 2018), inhibitors (Lindley and Rudd
2001). Material and environmental factors including temperature
and pH seem to have a direct impact on pitting CF. As pitting
induces localised stress concentrations, they become sites for
crack nucleation.

2.1. Loading and operational factors affecting corrosion
fatigue process

CF processes in HAOWTs are affected by extreme wave con-
ditions at different exposure levels, operational conditions, and
different load combinations. The HAOWT support structures
are designed to endure extreme loading events that may occur
during operation, such as extreme wind gusts and wave con-
ditions. Extreme wave loading events that occur once every 50
years are frequently considered in design (Arany et al. 2017).
Extreme wave loads cause cyclic loading with high velocity and
acceleration components, which causes fatigue in the monopile
region. These effects, when combined with the several corrosion
zones described in DNVGL-RP-0416 (DNV 2016) (see Figure 5),
where the rates of material loss per year at various exposure
levels are anticipated, can result in devastating CF effects, particu-
larly in the splash zone.

The two principal fatigue load scenarios of regular operation and
parked conditions both have high cyclic loads (BSI 2019). For
instance, the bending moments (see Figure 5) vary cyclically due
to operational rotation of the blades, wind forces on the tower,
and wave forces. Other load situations that affect the HAOWT
structures are torsional forces, operational centrifugal forces, corio-
lis forces, and gyroscopic forces (Igwemezie et al. 2019). Thrust
force on the rotor has frequently contributed the most effect on
HAOWT monopile supported structures (O’Kelly and Arshad
2016; Gentils et al. 2017). Design guidance for loading
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combinations for regular and extreme wind and wave situations has
been recommended (DNV 2014). This enables the structural per-
formance of offshore wind turbines to be assessed under the most
extreme situations. In reality, loading conditions are complex
with stochastic nature as they vary with time (DNV and Risø
2002). These factors suggest that for effective assessment of CF in
monopile supported HAOWT, corrosion zones, loading sequence
and the operational states jointly impact the service life. Addition-
ally, soil-structure interaction which includes the natural frequency
of the structure must also be considered in design.

During the concept design stage of a HAOWT, the site of instal-
lation must be considered as this factor will influence the wind and
wave forces necessary to generate the required power production
capacity of the wind turbine. In the initial stages of design, efforts
must be paid to the sizing of components such as monopile

diameter, blade dimensions, wall thickness, embedded length etc.,
to ensure structural stability after which loading conditions (ulti-
mate limit states, serviceability states, and fatigue limit states) will
be estimated. The final stages must consider design checks for
safety, natural frequency, deflection, corrosion and fatigue life esti-
mation to assess the long term performance of the structure.

2.2. Fatigue analysis methods and fracture mechanics
model

In understanding CF in engineering structures, there is a need to
fully describe the combined effect of mechanical factors and various
aggressive environments. Quantifying the effects of aggressive
environments in complex synergistic interactions is challenging.
Fatigue analysis methods include stress life, strain life, and linear

Figure 3. Research review methodology applied in this study (This figure is available in colour online).

Figure 4. Summary of current fatigue challenges in offshore wind turbine (This figure is available in colour online).
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elastic fracture mechanics. Total life (stress and strain life method)
or damage tolerance approaches (linear elastic fracture mechanics)
are important for the total life assessment to ensure structural integ-
rity and the remaining life of structural materials. The stress life
method provides a great quantitative estimation of damage but
variations from effects of surface finish, thickness factors and flaw
sizes can create inconsistencies (Fatoba 2015). This can affect the
accurate estimation of crack initiation. Regardless, the total life
method is capable of estimating the life in air or corrosive environ-
ments. Table 1 provides a summary of fracture mechanics models
for various stages and damage predictions.

From the models presented in Table 1, it is observed that crack
growth studies are needed once a crack is initiated. These models
will be able to inform the growth of the crack over time and support
the estimation of potential risks of ultimate collapse. The usefulness
of these models is that they could predict the time between crack
initiation and risk of failure based on assumed loads. The presented
models in Table 1 show that they have the capability to predict the
effects of the environment on fatigue crack propagation using frac-
ture mechanics approaches. Pitting CF in the monopile of the
HAOWT structure is important because it is critical to crack
nucleation, growth, and the total life of the structure (Larrosa
et al. 2018). However, fracture mechanics models are still integrat-
ing the holistic impact of mechanical, metallurgical, and environ-
mental factors in pitting CF.

The accumulative fatigue damage approach and the fracture
mechanics approach are two different methods that have been
applied to fatigue damage assessment for different loading in
offshore wind turbine materials. Fatigue life curves represent stress
versus number of cycles (S-N curves) while FCGR is depicted by
crack length versus number of cycles curve. The fracture mechanics
approach and the total life approach have two different philos-
ophies. The fracture mechanics approach based on Table 1 proves
to be a more accurate method when applied to corrosion fatigue.

Based on the review of life assessment methodologies, the total
life method can be improved by generating S-N curves that have
factored in the effect of thickness loss, notch effects, stress concen-
trations and surface effects in the analyses. The conditions of the
remaining surfaces, notches from manufacturing, and installation
are factors that will eventually affect the rate of CF damage, and
they must be also considered. An example of corrosion protection
is the Siemens Gamesa 8 MW HAOWT monopile where the welds
are coated to reduce the impact of corrosion on the life.

For damage tolerant methods, crack growth and propagation
from corrosion pits can be applied more as a fracture mechanics
model at the operation stage and wear-out stage for monitoring
damage progression in service. A Vestas V80 2 MW HAOWT
reportedly failed due to welding defects (Ma et al. 2019). To con-
sider crack initiation, the heat-affected zones (HAZ) at material
weldments should be taken into consideration. While the total
life approach which is more of a simplified method could help for
design stages, the fracture mechanics which is a detailed method
is recommended as a more exact approach as this includes physics
related to crack initiation and propagation in fatigue life assessment
and failure assessment (Shittu et al. 2021).

3. Corrosion fatigue in materials used in HAOWT
fabrication

3.1. Corrosion fatigue on the base material, HAZ, and wield
zones in HAOWT

Large structural steel plates are welded in both longitudinal and cir-
cumferential directions after rolling and bending to produce mono-
piles (Jacob et al. 2018). The welding process generates a heat-
affected zone (HAZ), which is characterised in general by weak fati-
gue performance. In the integrity assessment of HAOWT structures
subject to wind and wave loads, the weld region is the common site

Figure 5. Loads on monopile supported wind turbine at different exposure levels (This figure is available in colour online).
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for fatigue crack nucleation and growth (Mehmanparast et al.
2017). The fatigue resistance in the HAZ is lower than the base
material (Kang et al. 2013) indicating a higher possibility of failure
in the HAZ. Also, it is worth noting that the initiation and spread of
cracks into the base material from HAZ is often in the direction of
pipe thickness (Thompson 1984; Healy et al. 1990; Trudel et al.
2014; Mehmanparast et al. 2017). In the recent work by Jacob
and Mehmanparast (2021), along the through-thickness, higher
fatigue crack growth rate (FCGR) occurred in specimens from
the inner surface to the outer surface compared to the vice-versa
in seawater (Jacob and Mehmanparast 2021). The residual stresses
(RSs) in the HAZ are typically tensile, which contributes to the
mean stress effect (Adedipe et al. 2015), especially when a crack
starts to grow in welds (Tsay et al. 1999; Mehmanparast et al.
2016; Xin and Veljkovic 2020; Xu et al. 2021). Thus, methods
such as post-weld heat treatment can reduce the tensile RS in
offshore wind turbines monopile fabrication, hence their life.

The growth of fatigue cracks has been shown under cyclic load-
ing to be greater at the HAZ compared to the base material tested in
air under no corrosion (Adedipe et al. 2017). Few research studies

were conducted on fatigue crack initiation caused by microstruc-
tural defects (Smaili et al. 2019a, 2019b) and the conclusions
drawn from these studies showed that weld zones and HAZ must
be considered carefully in assessing fatigue crack initiation. The
effect of pits on the fatigue performance in the HAZ is a research
field that requires more extensive research as environmental con-
ditions grow in harshness.

3.2. Corrosion fatigue in structural steel for HAOWT
monopile applications

Structural steel S355 is widely used in the fabrication of most
offshore wind monopile due to its weldability characteristics
(Healy and Billingham 1998). Materials can be selected according
to the recommendations of Det Norske Veritas (DNV 2009). How-
ever, as sizes of HAOWT increase, high yield strength structural
steels at low temperatures as observed in offshore conditions have
been sought to improve their fatigue and corrosion performance.
Table 2 shows the mechanical properties of thermo-mechanically
rolled weldable fine grain structural steel grades denoted by M/

Table 1. Models in corrosion fatigue studies.

Category
Reference to classical

models Model description Expression and parameters
Pitting Corrosion
Fracture
Mechanics
Models

Hoeppner Model
(Hoeppner 1979)

Critical pit depth prediction facilitating crack
nucleation.

K = 1.1s
√
p(a/Q)

d = Ct3

(K, σ, a, Q, t, d and C are stress intensity factor, applied stress, pit length,
function based on crack shape, time taken to reach pit depth, pit
depth and constant dependent upon material and environment)

Lindley Model (Lindley
et al. 1982)

Threshold stress intensity factor ΔKth
determination of crack initiation from the
pit.

DKth = Ds
√
(pa)[1.13− 0.07(a/c)0̂.5]

1 + 1.47(a/c)1.64]0̂.5

ΔKth, a and c and Δσ are threshold stress intensity factor, minor axis of
semi-elliptical crack, major axis of semi-elliptical crack and applied
stress range respectively.

Kawai and Kasai Model
(Kawai and Kasai
1985)

Critical pit depth measurement from which
fatigue crack grows by determining
allowable stress intensity threshold

DKall = Dsall
√
phma (where DKall , Dsall , F and hmax are allowable

stress intensity threshold, allowable stress range, geometric factor
and maximum pit depth respectively.

Chen Model (Chen
et al. 1996)

Crack initiation prediction from fatigue crack
growth rate

DKtr = 1.12KtDs
√
pCtr

F

(Da/DN) pit = (Cp/2p) b2c−2

(Da/DN)crack = CF (ktDs)
n f−nc0.5nf

where DKtr is SIF for transition, Kt is elastic stress concentration factor, c
is half-pit diameter, Δσ is applied stress range, Φ is shape factor
determined by the pit diameter, β is pit aspect ratio, f is cyclic
frequency, and CF , Cp and n are constants.

Kondo Model (Kondo
1989)

Critical pit condition estimation using stress
intensity and pit characteristics

DKp = 2.24sa
√
pca/Q

c = Cpt1/3 = Cp(N/f )1/3

where σa, Q, c, t, N, and f represent the stress amplitude, pit aspect ratio,
shape factor, pit radius, number of fatigue cycles and cyclic frequency
respectively.

Corrosion Fatigue
Multi-Stage
Predictive Model

Multi-stage Model
(Lishchuk et al. 2011)

CF prediction from the combination of pitting
corrosion fatigue models at pit growth and
crack growth stages

Ncf = Nsf + Npg + Nptc + Ncfsc + Ncflc
where Ncf is the corrosion fatigue life, Nsf , number of cycles to scale
break down, Npg , the number of cycles for pit growth, Nptc , the
number of cycles to pit-to-crack transition, Ncfsc , the number of cycles
for corrosion fatigue short crack growth and Ncflc is the number of
cycles to corrosion fatigue long crack growth.

Corrosion Fatigue
Predictive
Models

Superposition Model
(Wei and Gao 1983)

Crack growth rate prediction from the
superposition of rate of plasticity-informed
crack and a plasticity-chemically-informed
crack

(Da/DN)e = (Da/DN)m + (Da/DN)cf
where (Da/DN)e is the crack growth rate in an aggressive environment,
(Da/DN)m is the rate of plasticity-driven fatigue crack propagation in
an inert environment and (Da/DN)cf is the difference between the
total growth rate and ‘pure’ fatigue growth rate

The Competition Model
(Austen, IM and
Walker 1984)

CF crack prediction expressed as competition
between mechanical fatigue and CF (when
crack growth rate exceeds pit growth rate)

(Da/DN)e = (Da/DN)m (u)+ (Da/DN)cf (u)
where θ = 1

Short Crack Growth
Model (Akid and
Miller 1991)

Crack growth rate prediction from the addition
of crack growth rate in air and crack growth
rate in a dissolved environment based on
anodic dissolution

(Da/DN)env = (Da/DN)air + (Da/DN)diss
(Da/DN)diss = (Mia/ZFr) · 1/w
where M is the atomic weight of the corroding metal, ia is the anodic
dissolution current, Z is the valency, F is the Faraday’s constant, ρ is
density and w is the cyclic frequency
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ML and produced in a highly deoxidised process. G denotes that
material was produced in a hot rolled process. S355 structural
steel is currently used in modern large offshore wind turbines as
recommended in BS EN10225 (European Committee for Standari-
zation 2019). These steel grades are reported to have high perform-
ance in toughness and weldability (Igwemezie et al. 2018).
However, there seems to be limited information regarding material
property degradation due to CF and the effects of the full manufac-
turing process chain.

Finally, corrosion prevention strategies for offshore wind tur-
bine structures and materials exposed to variable loading con-
ditions and harsh environmental conditions were considered.
Corrosion mitigation strategies such as spray metallization, galva-
nic anodes, and external current have been widely considered
(Momber 2011; Price and Figueira 2017; Masi et al. 2019). Also,
cathodic protection in the submerged zone, coatings in tidal
zones, splash zones, and atmospheric zones have been proposed.
Mitigating strategies focusing on the reduction of cyclic loads
have been researched. For instance, the application of a three-
dimensional pendulum tuned mass damper to the HAOWT sup-
port structure reduced vibration frequencies and considerably
enhanced fatigue life (Mohammadi et al. 2018; Sun and Jahangiri
2019).

3.3. Finite element analysis of corrosion fatigue in high
strength steels in offshore wind turbines

Finite element analysis (FEA) can be utilised to predict the stress
field in engineering structures subject to loads, which can be used
for CF analyses. FEA has been applied in fatigue studies at various
scales including:

♣ Stress assisted corrosion for pitting evolution studies using cellu-
lar automation finite element model (Córdoba-Torres et al. 2001;
Saucedo-Mora and Marrow 2014; Fatoba et al. 2018; Cui et al.
2019). The model provided useful information on real-time diag-
nostics of CF i.e. relate changes of depth, aspect ratio, and mor-
phology of pits with time under influence of stress.

♣ Information on heterogeneous stress, strain, and plastic states
leading to crack nucleation using crystal plasticity finite element
model (Lu et al. 2014; Castelluccio and McDowell 2015; Signor
et al. 2016; Prithivirajan et al. 2021). This model was also able
to give valuable information on shape change, rotation, and geo-
metrical dislocations with application in fatigue crack study. This

model is useful in the mesoscopic (inter-grain scale, grain cluster
scale) and microscopic scales (grain scale, intra-grain scale).

♣Multiscale fatigue modelling for the prediction of pit initiation up
to long term fatigue crack growth (Anagnostou et al. 2010; Ye
et al. 2017). This model used the combined approach of
macroscale (where the global state of stress on the
component is measured), and mesoscale level (where critical
damage site and boundary conditions are extracted from the lar-
ger model).

High strength steel has found frequent use in the construction
industry due to its high yield strength and low cost (Xin and Velj-
kovic 2019). FE studies can be found on most steels application in
aerospace, nuclear, and oil and gas industries (Deng 2009; Grbovic
and Rasuo 2012; Guo et al. 2012; Topaç et al. 2012; Fatoba 2015). FE
models on corrosion fatigue of actual sized HAOWTs are com-
monly not applied due to their heavy computational demands but
with recent advancements in desktop computational power, its
combination with programming tools could be of greater value to
capture deformation in all components with great speed. Table 3
reviewed some applications of FEA on fatigue and CF of steel
materials in offshore applications including monopile support
structures.

Limited work is currently available on the application of cyclic
loading in pit to crack transition on local models. Presently, there
is limited literature on the application of cyclic load to pit to
crack transition on structural steel materials for offshore appli-
cations. FEA has assisted in fatigue damage studies showing that
RS values measured in welds can be equal to the yield stress of
the material. Other mechanical factors such as mean stress effect,
depicted by stress ratio R can be found in FEA work but lacks ade-
quate experimental data for its validation in high strength steels.

Some recommendations for future work in FEA could include
the use of a wielding interface that could be used to accurately
model material properties and capture the microstructural develop-
ment in the HAZ. Another consideration is the application of com-
putational fluid dynamics coupled with physics-based corrosion to
model the interaction between the monopile and seawater to pre-
dict pressure distribution and its contribution to corrosion and
pit generation, especially in the submerged zone. Computational
fluid dynamics can also be used to predict the loads due to wind
and the overall flow behaviour in HAOWT farms. Furthermore, a
combination of these models with a soil-pile model based on differ-
ent soil conditions of different geographic zones could have a better

Table 2. Mechanical properties of steel grades in offshore applications according to EN10225 (Oakley Steel 2021).

Mechanical properties EN10225 S355 TMCP Steels

Hot rolled plate S355G8 + M S355G10 + M S420G2 + M S460G2 + M
Yield, σy (MPa)
< Ø16 mm 355 355 420 460
Ø16 mm – Ø25 mm 355 355 400 440
Ø25 mm – Ø40 mm 345 345 390 420
Ø40 mm – Ø63 mm 335 335 380 415
Ø63 mm – Ø100 mm 325 325 380 406 (63–80)/400 (80–100)
Tensile, σUTS (MPa)
< Ø40 mm 470–630 470–630 500–660 ∼520–700
Ø40 mm < Ø100 mm 470–630 470–630 480–640 ∼500–675
BH 285 285 – –
EL % 22 22 19 17
E (GPa) 205 205 – –
υ 0.29 0.29 – –
M% 55 55 – –
Charpy V-notch (J) 50@ −40°C 50@ −40°C – –

* Ø – thickness; σy – Tensile yield strength; σUTS – Ultimate tensile strength; BH – Brinell hardness; EL – Elongation at break; E –Modulus of elasticity; υ – Poisson’s ratio;M –
Machinability.

SHIPS AND OFFSHORE STRUCTURES 7



representation of the induced stresses near the boundary between
the soil and the water.

Pit morphology, especially its aspect ratio and location, can be
modelled and analysed using FEA. Overall, the availability of exper-
imental data from fatigue tests on steel in marine environments
under mechanical and metallurgical factors such as loading fre-
quency, variable amplitude loading interactions, and applied heat
treatment methods is limited. The review in Table 3 showed the
need to investigate the application of FEA to fatigue initiation
studies on a macroscale level for high strength weldable steels in
offshore applications. The consideration of aggressive environ-
mental effects, specifically corrosion, would be a significant inte-
gration to FEA models of fatigue degradation stages.

3.4. Application of condition monitoring to HAOWT support
structures

Condition monitoring has the potential to improve structural
reliability and reduce maintenance costs. A preventive based main-
tenance approach is critical to condition monitoring to reduce the
risk associated with physical inspections and ensure that structures
are serviceable over an extended period. Apart from time-based pre-
ventive maintenance, there are also corrective maintenance and pre-
dictive maintenance which are condition-based. Condition
monitoring techniques applied in offshore wind turbines can include
vibration analysis, strain monitoring, acoustic emission, thermogra-
phy, electric signals, and shock pulse method (Dhillon 2002).

Results from a failure mode analysis are presented in Figure 6.
The number of failure modes associated with the support struc-
ture in offshore wind turbines appears to be the highest. Con-
dition monitoring could be useful in reliability assessment by
using data acquisition and signal processing tools for monitoring
different components of an offshore wind turbine. A review was
conducted for the condition-based maintenance in an offshore
wind turbine (Scheu et al. 2019), where it was reported that sig-
nals obtained from various measurements required complex ana-
lyses to estimate the remaining life of components. It was also
reported that a real-time damage calculation would provide
more feasible solutions.

Supervisory control and data acquisition (SCADA) system data
analysis and wind turbine condition monitoring systems are tools
applied in condition monitoring of some offshore wind turbines
by offering cost-effective data sensing and collection. SCADA sys-
tems can collect operational data (including temperatures, currents,
pressures, wind speed, and direction) in real-time. Signals are
measured at 10 min intervals with a low sampling frequency of
1 Hz. These systems are of importance to researchers in damage
diagnostics and prognostics. Wind turbine condition monitoring
systems have a higher sampling frequency and can conduct diagno-
sis and prognosis. The combination of these systems could be useful
in larger HAOWT. Smart monitoring has been suggested and
encouraged in automated monitoring systems to help engineers
in the detection of deviations from measured data (Tchakoua
et al. 2014).

Some works have specifically considered health monitoring tools
used on monopiles (Bang et al. 2012; Devriendt et al. 2014; Zhou
et al. 2019; Jeong et al. 2020) for static and dynamic analysis in
which strain and deflection due to bending were obtained using
accelerometers and wireless sensors. Ziegler et al. (2017) applied a
stochastic extrapolation algorithm and a single strain monitoring
measurement to predict strains in other parts of the structure.
Most of these works have been done on actual size HAOWTs. How-
ever, faster, and more extensive laboratory testing could also be
conducted on scaled-down in size HAOWTs (e.g. to develop and
validate a health monitoring technology and fatigue assessment
methods). Real-time condition monitoring appears more widely
applied to wind turbine components such as the blade, gearbox,
nacelle, and drivetrain, but not so much in fatigue damage assess-
ment despite the possibility of potential critical failure. A combi-
nation of FEA and fatigue analyses with experimental data from
real-time condition monitoring could enable real-time fatigue
damage calculations to estimate remaining life.

4. Application of artificial neural network to fatigue
applicable to HAOWT structures

Artificial neural network (ANN) is a machine learning (ML)
technique and one of the widely used predictive methods based

Table 3. A review of FEA of fatigue in high strength steel for offshore applications.

Reference Fatigue stage Steel type FEA results and validation
Xin et al. (2021) Fatigue crack

growth
S355 and S690 steel grade Results showed that as load ratio increased, the fatigue life of both specimens

reduced at a constantly applied stress range. S690 showed higher fatigue
strength compared to S355. The FEM results for crack propagation life correlated
well with analytical (integration method) results.

Moghaddam et al.
(2019)

Corrosion fatigue
crack growth

S355 grade steel plates used for mooring
points and weldment were considered.

Pit data from service were well captured in the study using FEA method where
crack growth was developed in the pit region A higher crack length was
observed in the HAZ than the base material as load ratio increased. Thus, higher
load ratios, which is more representative of reality, will need to be considered.
There was an inadequate range of experimental data for comparison from FEA.

Yeter et al. (2013) Fatigue failure S355 steel grade Worst load case scenario operational conditions were applied. A local FEA model
using shell meshing provided detailed results in the critical hotspot region. No
validation was reported in the literature.

Jacob et al. (2018) Fatigue crack
growth

S355
G10 + M steel grade

Results showed that residual stress effects would be critical in fatigue crack
initiation. Correlation between experimentally measured and predicted FEM
residual stresses was demonstrated and showed a similar trend.

Xin and Veljkovic
(2019)

Fatigue crack
initiation

S355 and S690 steel grade FEA results showed the earliest fatigue crack initiation at 61% and 81% of total
fatigue life for S355 and S690 respectively, implying a better performance of
S690 in fatigue resistance although liable to brittleness. Number of fatigue
cycles to crack initiation were predicted using FEA and validated against
experimental results which showed good correlation.

Rozumek et al.
(2018)

Fatigue crack
growth

S355J0 steel grade FEA fatigue crack path simulation was done and showed an agreement with a
crack path observed on a real specimen.

Biswal et al. (2021) Fatigue crack
initiation

S355 steel grade FEA was used to estimate cumulative fatigue damage based on loads from service
using an elastic material model.
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on data (Arcos Jiménez et al. 2017). It can be applied either for
tracing patterns or approximating data output. It is employed in
wind power generation as part of the need to employ tools for
reliability, optimised performance, and maintenance using
multi-layer networks for non-linear generalisations (Hertz
2018). For instance, feedforward network was used for fatigue
life assessment using aerodynamic and hydrodynamic forces as
inputs (Tian et al. 2011). The back-propagation network and
radial basis function neural network have been also used while
the availability of more viable data in recent years has also
increased the application of neuro-fuzzy networks (Ata and
Kocyigit 2010). Researchers have reported the use of ANN in
wind power forecasting (Lin and Liu 2020), HAOWT support
structure design optimisation (Stieng and Muskulus 2020; Ziane
et al. 2021), and fault detection in HAOWT tower structure
(Qiu et al. 2020). Marugán et al. (2018) highlighted that ANN
has been used for: 38% for forecasting, 29% for fault detection,
23% for control, and 10% for design. Low cycle fatigue prediction
using multi-layer perception and back-propagation ANN was
applied to 316L(N) stainless steel (Srinivasan et al. 2003) with
core inputs being temperature, strain rate and amplitude. Pre-
dicted fatigue life results showed a close match with results

from experiments comparing the root mean square values.
Most of the ANN time-based predictions have also proved to
show better performance over frequency-based prediction,
which is fast, but results have shown some conservative fatigue
life predictions (Durodola et al. 2017). One challenge of ANNs
is their limitations in prediction where extrapolating beyond
the available data set is conducted. For example, an ANN predict-
ing fatigue life under low cycle fatigue cannot accurately extrap-
olate data to predict high cycle fatigue if the data for high cycles
is not available. Many studies have applied ANN to fatigue crack
growth and CF predictions (Haque and Sudhakar 2001; Gope
et al. 2015; Wang et al. 2017; Mortazavi and Ince 2020), where
the most used method was the back-propagation network. Similar
neural network has been applied in a single layer feed-forward
ANN to predict a crack growth (Huang et al. 2006).

One of the many advantages of the application of ANN to
HAOWT is their ability to perform fast calculations for on-line
monitoring (Marugán et al. 2018). ANN techniques in the literature
have majorly been applied to components such as rotors, blades
generator, gearbox and bearing while a few have considered
tower structures and structural steel materials. Its application
could extend to fault diagnostics and forecasting of monopile

Figure 6. Failure modes in offshore wind turbine main systems (Scheu et al. 2019) (This figure is available in colour online).

Figure 7. DT maintenance applications to different economic sectors (Errandonea et al. 2020) (This figure is available in colour online).
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components as well as monitoring of loads using strain gauge
measurements (Ziegler et al. 2017).

5. Application of digital twin to fatigue in HAOWT
structures

Digital twin (DT) in this review, is considered as a real term
operation of physical asset which involves three key components
given as: (i) digital model of the physical asset; (ii) changing data
set retrieval; and (iii) dynamic updating of the model (Wright
and Davidson 2020). Theories underlying physical systems and
obtained data are applied to build a model which replicates
these physical systems producing accurate representations. Infor-
mation acquired from sensors can be integrated within simu-
lations to predict real-time performance, forecasting, and fault
detection. Recent advancements and deployment of IoT enable
fast transition of captured multiscale properties using sensors,
which can also be beneficial for the application of DT. History
data from physical components can be used in the prediction
of future component failure in engineering systems. It has been
predicted that 25 billion sensors should have been in use by
2021 (Gartner 2018), which emphasises the trend of using data-
driven approaches to further optimise existing and new engineer-
ing systems. Many digital twin software tools are currently avail-
able or in a process of development from technology providers
including Microsoft, GE, IBM, Siemens, Oracle etc. This indicates
that more DT are expected to be widely applied to sectors of the
economy, including engineering. For instance, it has been applied
in the manufacturing sector for product optimisation, the auto-
motive sector for vehicle performance, the retail sector for custo-
mer experience, the healthcare sector for patient monitoring, as
well as in smart cities for planning, oil and gas and renewable
energy for asset maintenance. Thus, simulation-based and data-
driven DT can provide benefits in condition monitoring of phys-
ical assets and their maintenance.

Figure 7 shows that condition-based maintenance (diagnostics/
preventive), predictive maintenance (prognostics), and prescrip-
tive maintenance (optimised solutions) are key areas of DT appli-
cations in the energy sector (Errandonea et al. 2020). There has
been a sudden rise in research on DT for maintenance since
about 2017 in most of the sectors, as well as a sizable number of
DT applications also recorded in the energy sector. DT application
for fatigue assessment has also been applied in the aerospace
industry (Leser et al. 2020), to oil and gas semisubmersible drilling
rigs using reduced-basis finite element analysis and corrosion
management (Sharma et al. 2018; Adey et al. 2020), to industrial
machines (Zhidchenko et al. 2019) and general engineering

systems (Ekoyuncu et al. 2019). Numerous DT frameworks have
been proposed by researchers to focus on different maintenance
applications. Physics-based predictive maintenance frameworks
have been proposed based on modelling of physical phenomena
(e.g. fatigue using sensor data and models) to predict remaining
life (Georgoulias et al. 2019). Cloud-based DT applications
could offer remote high-speed computing and efficient data sto-
rage resulting in potential cost-savings. DT material degradation
frameworks, that can be applied to structural steel in offshore
wind turbines for damage estimation and prediction of remaining
life, could also adopt cloud-based ML capabilities (Ekoyuncu et al.
2019). Incorporation of DT frameworks for real-time diagnostics
and long-term prognostics could aid efficient scheduling for
inspections.

Table 4 summarises relevant work from literature, specific to the
application of DT to corrosion and fatigue assessment in HAOWT
aiming to identify published work, benefits of DT use and potential
areas for further development.

DT concept in the wind energy industry has been considered
as a means of capturing real time data from sensors and feeding
it into FEA models (Sharma et al. 2018). DT frameworks have
been proposed for general condition monitoring, but there is
a lack of DT frameworks coupling condition monitoring for
wind power generation and fatigue analyses. The DTs developed
for wind power applications seem to be more predictive rather
than prescriptive. Development of data-driven and simulation-
based DTs, for existing and new HAOWTs, is an opportunity
to reduce maintenance and repair costs. Cloud computing is
another opportunity that can enhance the deployment of more
DT in HAOWT applications. A recent example is Shell partner-
ing with Kongsberg Digital to develop a digital twin for remote
operation optimisation using cloud computing (Stump 2020).
DT for fatigue monitoring in HAOWT could incorporate phy-
sics-based FEA, 5G and IoT technologies, sensors for data col-
lection, data analytics and ML technologies (e.g. ANN). Based
on the conducted literature review in this study, a digital twin
framework is proposed in Figure 8 to provide a general over-
view. As an exemplar for the application of corrosion fatigue
assessment, material characterisation testing can be performed
to generate S-N curves which includes notch effects, stress con-
centrations and surface and pitting effects. This is then utilised
in FEA analysis to generate data sets incorporating corrosion
and fatigue effect. These data sets can be further used to train
ANN models which can obtain real-life data from actual operat-
ing HAOWT where rainflow algorithms combined with damage
calculations (e.g. Miner’s rule) could be applied to predict the
remaining life.

Table 4. Review of DT applicable to HAOWT.

Reference DT research conducted

Area of DT
application in

HAOWT Key benefits Observations
Sivalingam
et al. (2018)

Studied the application of DT for
prediction of remaining fatigue life
in a power converter of an HAOWT
subjected to thermal cycles.

Damage
prediction.

DT monitoring was shown to be more
realistic over statistical methods. Main
factors affecting the remaining life in
components were observed.

The framework could allow for the
consideration of boundary conditions
present in a specific HAOWT structure.

Johansen and
Nejad (2019)

Researched DT condition monitoring
for drivetrains in marine applications.

Condition-
based
monitoring.

DT model-based framework was
recommended for fault diagnostics.

A digital twin of a simple drivetrain test rig
has been demonstrated utilising different
modelling approaches that could be
applied to HAOWT structures as well.

Knezevic et al.
(2019)

Presented a DT framework concept for
fatigue life estimation for operation
and maintenance using FEA.

Damage
prediction.

The proposed framework provided a faster
and more accurate real-time structural
response.

Modelling real-time conditions appeared to
be specific to each case and cannot be
generalised.
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6. Conclusion and future perspectives

Current approaches in the use of digital tools for corrosion fatigue
damage on HAOWT have been reviewed (e.g. finite element analy-
sis, machine learning, digital twins). The following key challenges
and future perspectives were derived from this study:

♣ The wind energy sector is still faced with challenges from aerody-
namic and hydrodynamic actions, soil-structure interaction
issues, and environmental factors in harsh operating conditions
as large-diameter offshore wind turbines are now being installed
in deeper waters for higher capacity power production. Thus, this
new level of upscale in capacity and size brings about more cor-
rosion fatigue challenges in HAOWT. The combination of catho-
dic protection and vibration mitigation techniques has been used
to reduce corrosion rate and cyclic load respectively. Hence,
improving the fatigue life is needed when implemented at early
stages of manufacture, installation, and operation.

♣ Improved steel grades of structural steel have been developed and
are currently applied in the manufacturing of wind turbines. To
accurately quantify the effect of corrosion fatigue on the remain-
ing life of these steels (i.e. pitting, crack initiation and crack
propagation and growth effects), more experimental works is
required. Availability of reliable experimental data would
increase the accuracy of computational models and be able to
predict the fatigue damage in corrosive environments with
greater accuracy.

♣ Advancement in structural and material damage assessment
simulation tools have shown enormous potential in detecting,
analysing, and predicting fatigue damage. Further improve-
ments for using representative S-N curves capturing notch
effects to cater for weld damages, thickness effects to consider
corrosion loss, and stress concentration factors are needed.

♣ Pitting, which is affected by material and environmental factors,
can have detrimental effects on monopile components. Pits can
become a source for crack initiation leading to reduced fatigue
life. In the consideration of corrosion fatigue damage at weld-
ments of offshore wind turbine support structures, fatigue S-N
curves must factor the effects of pit size and morphology.

♣ There is insufficient knowledge on the pit-crack transition stage
in corrosion fatigue for the fundamental understanding of the
overall fatigue damage process, Thus, finite element analysis
models could further help to understand the relationship
between crack initiation and pitting by considering material
behaviour, soil conditions and sea waves on HAOWT structures.
In addition to this, more experimental works on corrosion fati-
gue is needed to address the pitting effects.

♣ Computational analyses that consider the dynamic impacts of
seawater, wind, and soil structure on HAOWT support struc-
tures are encouraged as they can provide further understanding
for the development of representative load cases for fatigue ana-
lyses. Particularly, the use of computational fluid dynamics for
wave loading and modelling of different soil conditions can
give insight into both cyclic responses and stiffness effects of
soil located in various sites globally.

♣ Data obtained from real-time condition monitoring of offshore
wind turbines (i.e. in-service loads) need to be considered in
damage assessment models in a standard prognostic system to
boost operation and maintenance in the wind sector, specifically
for HAOWT monopile support structures.

♣ Artificial neural network techniques using back-propagation
neural network with a time-based predictive algorithm has
been the most applied algorithm to fatigue prediction in the
monitoring of HAOWT components. Artificial neural networks
can perform fast predictions of environmental conditions affect-
ing HAOWT components. However, their accuracy is depen-
dent on the data quality which is used for training.

♣ Fatigue simulations based on finite element analysis showed the
potential to provide training data needed to build an artificial
neural network algorithm and reduce computational costs in
its training phase. More research on optimisation algorithms
for remaining fatigue life prediction is encouraged by using
finite element analysis predicted data into machine learning
approaches such as artificial neural networks.

♣Digital Twin technologies have been used in wind energy for con-
dition-based maintenance, and predictive maintenance. In
addition, physics-based predictive maintenance showed to be
more effective for fatigue consideration with a capacity to

Figure 8. Digital twin framework for enabling corrosion fatigue assessment in monopile supported offshore wind turbine (This figure is available in colour online).
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combine multiple damage models for diagnostics and prognos-
tics purposes. However, the digital twin frameworks presented
by researchers for offshore wind turbines are conceptual and
they need to be further explored in collaboration with industry
to achieve their exploitation.

♣ Digital twins incorporating finite element analysis, material
characterisation and modelling, artificial neural networks, data
analytics, and internet of things using smart sensor technologies
can tackle the challenges in corrosion fatigue assessment of
offshore wind turbines.
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