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Coupled Boussinesq equations are used to describe long weakly-nonlinear longitudinal strain waves in a bi-layer with
a soft bonding between the layers (e.g. a soft adhesive). From the mathematical viewpoint, a particularly difficult case
appears when the linear long-wave speeds in the layers are significantly different (high-contrast case). The traditional
derivation of the uni-directional models leads to four uncoupled Ostrovsky equations, for the right- and left-propagating
waves in each layer. However, the models impose a “zero-mass constraint” i.e. the initial conditions should necessarily
have zero mean, restricting the applicability of that description. Here, we bypass the contradiction in this high-contrast
case by constructing the solution for the deviation from the evolving mean value, using asymptotic multiple-scale
expansions involving two pairs of fast characteristic variables and two slow-time variables. By construction, the Ostro-
vsky equations emerging within the scope of this derivation are solved for initial conditions with zero mean while initial
conditions for the original system may have non-zero mean values. Asymptotic validity of the solution is carefully ex-
amined numerically. We apply the models to the description of counter-propagating waves generated by solitary wave
initial conditions, or co-propagating waves generated by cnoidal wave initial conditions, as well as the resulting wave
interactions, and contrast with the behaviour of the waves in bi-layers when the linear long-wave speeds in the layers
are close (low-contrast case). One local (classical) and two non-local (generalised) conservation laws of the coupled
Boussinesq equations for strains are derived and used to control the accuracy of the numerical simulations.

A weakly-nonlinear solution to the coupled Boussinesq
equations on a finite interval with periodic boundary con-
ditions is constructed, resolving the zero-mass contradic-
tion. The solution is shown to be asymptotically valid by
comparison to direct numerical simulations of the origi-
nal coupled Boussinesq equations, with the additional con-
trol of derived generalised conservation laws. Examples
include counter-propagating radiating solitary waves and
Ostrovsky-type wave packets when the period of the so-
lution is large compared to the size of a localised initial
condition, while decreasing the period of the solution for
the localised perturbations and using non-localised initial
conditions leads to more complicated scenarios. We ob-
serve that, in many cases, the waves appear to interact in a
nearly-elastic manner, similarly to that of solitary waves,
with small phase shift and amplitude changes compared
to the case with no interaction, while in other cases strong
interactions lead to formation of new wave structures.

I. INTRODUCTION

Korteweg-de Vries and Boussinesq-type equations have
been derived to describe long weakly-nonlinear longitudinal
strain waves in rod- and bar-like elastic solids.1–9 This pa-
per will focus on the system of coupled regularised Boussi-
nesq (cRB) equations, presented here in non-dimensional and

scaled form:

utt −uxx = ε

[
1
2
(
u2)

xx +uttxx−δ (u−w)
]
, (1)

wtt − c2wxx = ε

[
α

2
(
w2)

xx +βwttxx + γ (u−w)
]
. (2)

This system of equations describes long nonlinear longitudi-
nal strain waves in a bi-layer with a soft bonding between the
layers, allowing the layers to move relative to each other.10

In this context, u and w denote longitudinal strains in the lay-
ers, α , β , γ , δ are coefficients depending on the mechanical
and geometrical properties of a waveguide, c is the ratio of the
characteristic linear wave speeds in the layers and ε is a small
amplitude parameter. When the layers have similar proper-
ties, radiating solitary waves are found to propagate on large
periodic domains.11

In all of these contexts, the natural initial conditions
have non-zero mean, and the associated uni-directional equa-
tions emerging in the construction of weakly-nonlinear solu-
tions are typically solved numerically using pseudo-spectral
schemes with periodic boundary conditions. However, re-
cent work has shown that solving such equations on a peri-
odic domain may require careful attention if the initial con-
ditions have non-zero mean and the periodic domain is com-
parable to the scale of the initial condition.12,13 This was in-
vestigated for the Boussinesq-Klein-Gordon (BKG) equation,
which can be obtained from the cRB equations by taking the
limit γ → 0 with w = 0. The weakly-nonlinear solution de-
rived via the traditional procedure leads, at leading order, to
two uni-directional Ostrovsky equations, originally developed
in the context of fluids14 (see also Ref. 15). The model nec-
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essarily requires that regular solutions have zero mean initial
conditions. The existence of such a formal constraint is known
as the “zero-mass (or zero mean) contradiction”13 since the
original problem formulation does not impose this constraint.
However, it was shown that the derivation procedure can be
modified in order to develop a weakly-nonlinear solution of
the BKG equation for a deviation from the evolving non-zero
mean.13 Earlier results were developed at the level of Fourier
expansions in the spatial variable12 while the procedure sug-
gested in Ref. 13 can be viewed as a nonlinear extension of
the d’Alembert solution. The Ostrovsky equations emerging
within the scope of this procedure are solved for zero mean
initial conditions by construction, and the zero mean con-
tradiction is avoided. We note that additional conservation
laws of the “moment” type were constructed for the Ostrovsky
equation in Ref. 16 (see also Ref. 17). However, these conser-
vation laws are not applicable in our case since multiplying a
periodic function of some variable by powers of that variable
takes us outside of the class of periodic functions. Hence, such
conservation laws impose no additional constraints in the pe-
riodic case under study.

Considering our cRB equations, when the linear character-
istic speeds are close, satisfying the relation c− 1 = O(ε)
(low-contrast case), and the period of the solution is large
compared to the scale of a localised initial condition, we
find long-living radiating solitary waves.10,18,19 When c−
1 = O(1), we find wave packets governed by the Ostro-
vsky equations.14,18 In this paper we consider the case when
c−1 = O(1) (high-contrast case), and the period of the solu-
tion is comparable with the scale of the localised initial con-
dition, or when the initial condition is not localised at all. Pre-
viously, a simpler case when c− 1 = O(ε) was investigated
in Ref. 20. As we will obtain single or coupled Ostrovsky
equations to leading order, depending on the assumption on
the characteristic speeds in the layers, we will need to con-
sider how a weakly-nonlinear solution can be constructed that
takes account of the zero-mass contradiction.

The paper is organised as follows. In Section II we con-
struct a weakly-nonlinear solution of the Cauchy problem for
the cRB equations (1) - (2) in the case c− 1 = O(1) on a
periodic domain, using asymptotic multiple-scale expansions
for the deviation from the oscillating mean values. We use
two sets of fast characteristic variables and two slow time
variables. The validity of the solutions is examined in Sec-
tion III by comparing the constructed weakly-nonlinear so-
lution with direct numerical simulations. In Section IV we
use both direct numerical simulations and the constructed
weakly-nonlinear solutions to study the interaction of counter-
propagating waves generated by solitary wave initial condi-
tions, or co-propagating waves generated by cnoidal wave ini-
tial conditions, when the characteristic speeds are either close
or significantly different. We only consider co-propagating
waves for cnoidal wave initial conditions, as this case pro-
vides a venue for the study of the strong wave interactions.
We also determine the nature of the interaction. In Section
V we discuss the local and non-local conservation laws used
to control the accuracy of numerical simulations and we con-
clude our studies in Section VI. The numerical schemes used

in our numerical simulations are described in Supplementary
Materials.

II. WEAKLY NONLINEAR SOLUTION

We solve the equation system (1) - (2) on the periodic do-
main x ∈ [−L,L]. The initial-value (Cauchy) problem is con-
sidered, and the initial conditions are written as

u(x,0) = F1(x), ut(x,0) =V1(x), (3)
w(x,0) = F2(x), wt(x,0) =V2(x). (4)

Firstly, we integrate (1) - (2) in x over the period 2L to obtain
evolution equations of the form

d2

dt2

∫ L

−L
u(x, t) dx+ εδ

∫ L

−L
(u(x, t)−w(x, t)) dx = 0, (5)

d2

dt2

∫ L

−L
w(x, t) dx− εγ

∫ L

−L
(u(x, t)−w(x, t)) dx = 0. (6)

Denoting the mean value of u and w as

〈u〉(t) :=
1

2L

∫ L

−L
u(x, t) dx, 〈w〉(t) :=

1
2L

∫ L

−L
w(x, t) dx,

(7)
we can solve (5) - (6) to obtain

〈u〉= d1 +δd2 cosωt +d3t +δd4 sinωt, (8)
〈w〉= d1− γd2 cosωt +d3t− γd4 sinωt, (9)

where ω =
√

ε (δ + γ). Using the initial conditions (3) - (4)
we can determine the values of the coefficients as

d1 =
γ〈F1〉+δ 〈F2〉

δ + γ
, d2 =

〈F1〉−〈F2〉
δ + γ

,

d3 =
γ〈V1〉+δ 〈V2〉

ω (δ + γ)
, d4 =

〈V1〉−〈V2〉
ω (δ + γ)

, (10)

and we have

〈Fi〉=
∫ L

−L
Fi(x) dx, 〈Vi〉=

∫ L

−L
Vi(x) dx, i = 1,2. (11)

To simplify the problem we will consider initial conditions
that satisfy the condition d3 = d4 = 0, that is

1
2L

∫ L

−L
Vi dx = 0, i = 1,2. (12)

This condition appears naturally in many physical applica-
tions and is imposed here to simplify our derivations, how-
ever, as was shown for the BKG equation, it can be relaxed
(see the Appendix in Ref. 13).

We subtract (8) from u and (9) from w to construct an equa-
tion with zero mean value, so we introduce ũ = u−〈u〉 and
w̃ = w−〈w〉 to obtain the problem for deviations

ũtt − ũxx = ε

[
1
2
(
ũ2)

xx + 〈u〉ũxx + ũttxx−δ (ũ− w̃)
]
, (13)

w̃tt − c2w̃xx = ε

[
α

2
(
w̃2)

xx +α〈w〉w̃xx +β w̃ttxx + γ (ũ− w̃)
]
,

(14)
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where the expression for 〈u〉 and 〈w〉 can be found in (8)
and (9) respectively. Note that this problem has variable co-
efficients, and the traditional procedure used to derive uni-
directional models of the Korteweg-de Vries/Ostrovsky type
is no longer applicable. The initial conditions become

ũ(x,0) = F̃1(x) = F1(x)−〈u〉, ũt(x,0) =V1(x), (15)

w̃(x,0) = F̃2(x) = F2(x)−〈w〉, w̃t(x,0) =V2(x), (16)

and, by construction, have zero mean value. The case of
c− 1 = O(ε) was considered in Ref. 20 and so we will only
present the derivation for c−1 = O(1). We will compare the
cases in the results section using the derivation in Ref. 20.

In the case when c− 1 = O(1) the characteristic variables
cannot be the same in each layer, and instead we have two
distinct pairs of characteristic variables. In what follows we
omit tildes and look for a weakly-nonlinear solution of the
initial-value problem (13) - (16) of the form

u(x, t) = f−1 (ξ−,τ,T )+ f+1 (ξ+,τ,T )+
√

εP1 (ξ−,ξ+,τ,T )+ εQ1 (ξ−,ξ+,τ,T )+ ε
3
2 R1 (ξ−,ξ+,τ,T )

+ ε
2S1 (ξ−,ξ+,τ,T )+O

(
ε

5
2

)
, (17)

w(x, t) = f−2 (ν−,τ,T )+ f+2 (ν+,τ,T )+
√

εP2 (ν−,ν+,τ,T )+ εQ2 (ν−,ν+,τ,T )+ ε
3
2 R2 (ν−,ν+,τ,T )

+ ε
2S2 (ν−,ν+,τ,T )+O

(
ε

5
2

)
, (18)

where we use the characteristic and slow time variables

ξ± = x± t, ν± = x± ct, τ =
√

εt, T = εt.

Note that the second time scale, τ , arises from the terms 〈u〉
and 〈w〉 as we have the function cos(ωt). We can extract the
factor of

√
ε from ω and write cos(ω̃τ), where ω̃ =

√
δ + γ .

As we are considering the solution on the periodic domain,
u and w are 2L-periodic functions in x. Therefore we require
that f−1 and f+1 are periodic in ξ− and ξ+ respectively, and
similarly f−2 and f+2 are periodic in ν− and ν+ respectively.
We then ensure that all functions in the constructed expansion
are periodic as well. We will also construct our solution so
that functions at each order have zero mean. In particular,

1
2L

∫ L

−L
f±1 dξ± = 0,

1
2L

∫ L

−L
f±2 dν± = 0. (19)

To do this, for the functions in the expansion we will choose
appropriate initial conditions, using those found earlier for the
cRB equations, so that the initial conditions have zero mean.
Where an integration occurs, we will choose any integration
constants as the subtraction of the mean value of the func-
tion, to enforce zero mean conditions. This will be explained
at each step where it occurs. This is consistent with the ap-
proach taken in Ref. 13 where we worked in the space of
functions with zero mean. In our previous work the integra-
tion constants were not explicitly stated in the derivation, but
they were implemented to maintain zero mean conditions in
the comparisons with the numerical solutions.

As mentioned earlier, the case when c−1 = O(ε) was con-
sidered in Ref. 20 and the expansions were in the same set
of characteristic variables, while here we have two sets of
characteristic variables. This means that, at some stage in
our derivation, we may encounter a situation where we have
a function of ν± in the equation where the natural set of char-
acteristic variables is ξ±. In this case, we can rewrite one set

of characteristic variables as a linear combination of the other
set, so ν± in terms of ξ±, and then proceed. In each case, we
will be looking at functions that are fully defined at an earlier
order, but are being evaluated in terms of different character-
istic variables. A similar situation was encountered in Ref. 18
for the problem considered on the infinite domain, and we will
introduce the linear combination when it is required.

We substitute (17) and (18) into (13) and (14), then compare
at increasing powers of

√
ε . The equations are satisfied at

leading order so we move onto terms at O
(√

ε
)
. At this order

we have

−4P1ξ−ξ+
−2 f−1ξ−τ

+2 f+1ξ+τ
= 0. (20)

We average (20) with respect to the fast spatial variable x at
constant ξ− and ξ+ (see Ref. 13). Averaging P1ξ−ξ+

at con-
stant ξ− gives

1
2L

∫ L

−L
P1ξ−ξ+

dx =
1

4L

∫ 2L−ξ−

−2L−ξ−
P1ξ−ξ+

dξ+

=
1

4L

[
P1ξ−

]2L−ξ−
−2L−ξ−

= 0, (21)

with a similar result for averaging at constant ξ+. Applying
the averaging to (20) and requiring that f±1 have zero mean,
we find

f−1ξ−τ
= 0 =⇒ f−1 = f−1 (ξ−,T ) ,

f+1ξ+τ
= 0 =⇒ f+1 = f+1 (ξ+,T ) . (22)

A similar approach for the equation in w gives

f−2 = f−2 (ν−,T ) and f+2 = f+2 (ν+,T ) . (23)

Substituting (22) into (20) we obtain

P1ξ−ξ+
= 0 =⇒ P1 = g−1 (ξ−,τ,T )+g+1 (ξ+,τ,T ) , (24)
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and similarly for w we obtain

P2 = g−2 (ν−,τ,T )+g+2 (ν+,τ,T ) . (25)

The initial conditions for f±1,2 are found by substituting (17)
into (3), and also (18) into (4), then comparing terms at O(1),
to obtain

f±1 |T=0 =
1
2

(
F1 (ξ±)±

(∫
ξ±

−L
V1 (σ) dσ −Ṽ±1

))
, (26)

f±2 |T=0 =
1
2c

(
cF2 (ν±)±

(∫
ν±

−L
V2 (σ) dσ −Ṽ±2

))
. (27)

The values Ṽ±1 and Ṽ±2 are chosen in such a way to ensure that
the initial conditions have zero mean. Explicitly, we calculate
Ṽ±1 and Ṽ±2 as

Ṽ±1 =
∫ L

−L

∫
ξ±

−L
V1(σ) dσ dξ±, Ṽ±2 =

∫ L

−L

∫
ν±

−L
V2(σ) dσ dν±.

This approach of enforcing zero mean will be used at various
stages throughout our derivation. To find equations for f±1 and
f±2 , we next compare terms at O(ε), using the results from the
previous order. Therefore, we find

−4Q1ξ−ξ+
=
(

2 f−1T + f−1 f−1ξ−
+d1 f−1ξ−

+ f−1ξ−ξ−ξ−

)
ξ−
−δ

(
f−1 − f−2

)
+
(
−2 f+1T + f+1 f+1ξ+

+d1 f+1ξ+
+ f+1ξ+ξ+ξ+

)
ξ+

−δ
(

f+1 − f+2
)
+2g−1ξ−τ

−2g+1ξ+τ
+d2δ cos(ω̃τ)

(
f−1ξ−ξ−

+ f+1ξ+ξ+

)
+ f−1ξ−ξ−

f+1 +2 f−1ξ−
f+1ξ+

+ f−1 f+1ξ+ξ+
,

(28)

−4c2Q2ν−ν+ =
(

2c f−2T +α f−2 f−2ν−
+αd1 f−2ν−

+βc2 f−2ν−ν−ν−

)
ν−

+ γ
(

f−1 − f−2
)

+
(
−2c f+2T +α f+2 f+2ν+

+αd1 f+2ν+
+βc2 f+2ν+ν+ν+

)
ν+

+ γ
(

f+1 − f+2
)

+2cg−2ν−τ
−2cg+2ν+τ

−αd2γ cos(ω̃τ)
(

f−2ν−ν−
+ f+2ν+ν+

)
+α

(
f−2ν−ν−

f+2 +2 f−2ν−
f+2ν+

+ f−2 f+2ν+ν+

)
. (29)

Averaging (28) at constant ξ− or constant ξ+ gives

±2g1ξ±τ = d2δ cos(ω̃τ) f±1ξ±ξ±
+A1 (ξ±,T ) , (30)

where

A1 =
(
∓2 f±1T + f±1 f±1ξ±

+d1 f±1ξ±
+ f±1ξ±ξ±ξ±

)
ξ±
−δ f±1 .

(31)
To avoid secular terms we require that A1 = 0. Therefore we
obtain an Ostrovsky equation for f±1 of the form(
∓2 f±1T + f±1 f±1ξ±

+d1 f±1ξ±
+ f±1ξ±ξ±ξ±

)
ξ±

= δ f±1 . (32)

The Ostrovsky equation necessarily requires its regular solu-
tions to have zero mean, and therefore as the initial condition
also satisfies this condition, the function f±1 has zero mean. A
similar approach for w, averaging at constant ν− or constant
ν+, leads to

±2cg2ν±τ =−d2γ cos(ω̃τ) f±2ν±ν±
+A2 (ν±,T ) , (33)

where again requiring A2 = 0 to avoid secular terms gives an
Ostrovsky equation for f±2 of the form(
∓2c f±2T +α f±2 f±2ν±

+αd1 f±2ν±
+βc2 f±2ν±ν±ν±

)
ν±

= γ f±2 ,

(34)
and f±2 has zero mean by construction. Integrating (30) we
find an equation for g±1 of the form

g±1 =±θ1 f±1ξ±
+G±1 (ξ±,T ) , (35)

and similarly for g±2 we can find

g±2 =∓θ2 f±2ν±
+G±2 (ν±,T ) , (36)

where G±1 and G±2 are functions to be found, and we introduce

θ1 =
d2δ

2ω̃
sin(ω̃τ), θ2 =

αd2γ

2cω̃
sin(ω̃τ). (37)

As f±1,2 are zero-mean, if the functions G±1,2 are also zero-mean
then so too is g±1,2. We will find an equation for G±1,2 at the next
order. Substituting (32) and (35) into (28) and integrating we
obtain

Q1 = h−1 (ξ−,τ,T )+h+1 (ξ+,τ,T )+h1c (ξ−,ξ+,T )

+ f̂−2 (ν−,T )+ f̂+2 (ν+,T ) , (38)

where

h1c =−
1
4

 f−1ξ−

ξ+∫
−L

f+1 (σ) dσ +2 f−1 f+1 + f+1ξ+

ξ−∫
−L

f−1 (σ) dσ


− h̃1c, (39)

and h̃1c is the mean value of the function, so that the function
h1c has zero mean. The function f̂±2 (ν±,T ) is a function of
ν±, not ξ±, however we can write the characteristic variables
ν± in terms of ξ± as

ν− =
(1+ c)ξ−+(1− c)ξ+

2
, ν+ =

(1− c)ξ−+(1+ c)ξ+
2

.

(40)
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Therefore, we can rewrite our functions f±1,2 in terms of the
other set of characteristic variables, and so we find f̂±2 (ν±,T )
can be written as

f̂±2 =
δ

c2−1

∫
ν±

−L

∫ z

−L
f±2 (y,T ) dy dz− c f̂2

, (41)

where c f̂2
is the appropriately chosen integration constant.

Similarly, substituting (34) and (36) into (29) and integrating
we find

Q2 = h−2 (ν−,τ,T )+h+2 (ν+,τ,T )+h2c (ν−,ν+,T )

+ f̂−1 (ξ−,T )+ f̂+1 (ξ+,T ) , (42)

where

h2c =−
α

4c2

 f−2ν−

ν+∫
−L

f+2 (σ) dσ +2 f−2 f+2 + f+2ν+

ν−∫
−L

f−2 (σ) dσ


− h̃2c, (43)

and h2c is the appropriately chosen integration constant.
Rewriting ξ± in terms of ν± in a similar way to (40), we have

f̂±1 =− γ

c2−1

∫
ξ±

−L

∫ z

−L
f±1 (y,T ) dy dz− c f̂1

, (44)

with c f̂1
an appropriately chosen integration constant so that

f̂±1 has zero mean. As before we find the initial condition for
G±1,2 by substituting (17) and (18) into (3) and (4), compar-
ing terms at O

(√
ε
)
. Therefore, taking account of the results

found for (35) and (36), and noting that θ1|T=0 = 0, we obtain

G±1
∣∣
T=0 = 0 and G±2

∣∣
T=0 = 0. (45)

We now aim to find equations for G±1,2 and h±1,2 at the next
order. Comparing terms at O

(
ε3/2

)
in the expansion of (13)

and (14), taking account of results at previous orders, we have

−4R1ξ−ξ+
=
(

2g−1T +
(

f−1 g−1
)

ξ−
+d1g−1ξ−

+g−1ξ−ξ−ξ−

)
ξ−
−δ

(
g−1 −g−2

)
+
(
−2g+1T +

(
f+1 g+1

)
ξ+

+d1g+1ξ+
+g+1ξ+ξ+ξ+

)
ξ+

−δ
(
g+1 −g+2

)
+2h−1ξ−τ

−2h+1ξ+τ
−g−1ττ

−g+1ττ
+d2δ cos(ω̃τ)

(
g−1ξ−ξ−

+g+1ξ+ξ+

)
+g−1ξ−ξ−

f+1 +2g−1ξ−
f+1ξ+

+g−1 f+1ξ+ξ+
+g+1ξ+ξ+

f−1 +2g+1ξ+
f−1ξ−

+g+1 f−1ξ−ξ−
, (46)

−4c2R2ν−ν+ =
(

2cg−2T +α
(

f−2 g−2
)

ν−
+αd1g−2ν−

+βc2g−2ν−ν−ν−

)
ν−

+ γ
(
g−1 −g−2

)
+
(
−2cg+2T +α

(
f+2 g+2

)
ν+

+αd1g+2ν+
+βc2g+2ν+ν+ν+

)
ν+

+ γ
(
g+1 −g+2

)
+2ch−2ν−τ

−2ch+2ν+τ
−g−2ττ

−g+2ττ
−αd2γ cos(ω̃τ)

(
g−2ν−ν−

+g+2ν+ν+

)
+α

[
g−2ν−ν−

f+2 +2g−2ν−
f+2ν+

+g−2 f+2ν+ν+
+g+2ν+ν+

f−2 +2g+2ν+
f−2ν−

+g+2 f−2ν−ν−

]
. (47)

Substituting (35) into (46) and averaging at constant ξ− or
constant ξ+ leads to

±2h±1ξ±τ
=±θ1

(
∓2 f±1T + f±1 f±1ξ±

+d1 f±1ξ±
+ f1ξ±ξ±ξ±

)
ξ±ξ±

+
(
∓2G±1T +

(
f±1 G±1

)
ξ±

+d1G±1ξ±
+G1ξ±ξ±ξ±

)
ξ±

∓θ1δ f±1 −δG±1ξ±
±θ1ω̃

2 f±1ξ±

±θ1d2δ cos(ω̃τ) f±1ξ±ξ±ξ±
. (48)

If we differentiate (32) with respect to the appropriate char-
acteristic variable, we can eliminate some terms from (48) to
obtain an expression for h±1ξ±τ

of the form

2h±1ξ±τ
= θ1ω̃

2 f±1ξ±
+θ1d2δ cos(ω̃τ) f±1ξ±ξ±ξ±

+ G̃±1 (ξ±,T ) ,
(49)

where

G̃±1 =
(
∓2G±1T +

(
f±1 G±1

)
ξ±

+d1G±1ξ±
+G±1ξ±ξ±ξ±

)
ξ±
−δG±1 .

(50)
To avoid secular terms we require that G̃±1 = 0 and therefore
we have an equation for G±1 of the form

(
∓2G±1T +

(
f±1 G±1

)
ξ±

+d1G±1ξ±
+G±1ξ±ξ±ξ±

)
ξ±

= δG±1 .

(51)
Taking account of the initial condition in (45) and the form
of (51), we can clearly see that G±1 ≡ 0 in this derivation and
therefore in all subsequent steps we will omit all terms in G±1 .
Referring back to (35), we now see that g±1 has zero mean.
Integrating (49) we obtain

h±1 =− ω̃2ρ1

2
f±1 −

ω̃2ρ2
1

2
f±1ξ±ξ±

+φ
±
1 (ξ±,T ) , (52)
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6

where the functions φ
±
1 are to be found at the next order and

ρ1 = ∂
−1
τ θ1 =

d2δ

2ω̃2 cos(ω̃τ). (53)

If the function φ
±
1 is constructed to have zero mean, then so

does h±1 . Similarly, from the equation for w, we find

±2ch±2ξ±τ
=∓θ2ω̃

2 f±2ν±
±θ2d2γ cos(ω̃τ) f±2ν±ν±ν±

+ G̃±2 (ν±,T ) , (54)

where

G̃±2 (ν±,T ) =∓2cG±2T ν±
+α

(
f±2 G±2

)
ν±ν±

+αd1G±2ν±ν±

+βc2G±2ν±ν±ν±ν±
− γG±2 . (55)

We require that G̃±2 = 0 and, by the same argument as for G±1
we have G±2 ≡ 0 and therefore omit it from all subsequent
derivations, meaning g±2 has zero mean. Integrating (54) we
obtain

h±2 =
ω̃2ρ2

2c
f±2 −

ω̃2ρ2
2

2
f±2ν±ν±

+φ
±
2 (ν±,T ) , (56)

where again we need to find the function φ
±
2 and

ρ2 = ∂
−1
τ θ2 =

αd2γ

2ω̃2 cos(ω̃τ). (57)

If the function φ
±
2 is constructed to have zero mean, then so

does h±2 . Substituting (52) into (46) and integrating with re-
spect to the appropriate characteristic variables we find

R1 = ψ
−
1 (ξ−,τ,T )+ψ

+
1 (ξ+,τ,T )+ψ1c (ξ−,ξ+,T )

+ ĝ−2 + ĝ+2 , (58)

where

ψ1c =−
θ1

4

[
f+1ξ+ξ+

∫
ξ−

−L
f−1 (σ) dσ − f+1 f−1ξ−

+ f−1 f+1ξ+

− f−1ξ−ξ−

∫
ξ+

−L
f+1 (σ) dσ

]
− cψ1c , (59)

with appropriate integration constant to maintain zero mean.
The terms ĝ±2 can be found by replacing f with g in (41).
Similarly, substituting (56) into (47) and integrating gives

R2 = ψ
−
2 (ν−,τ,T )+ψ

+
2 (ν+,τ,T )+ψ2c (ξ−,ξ+,T )

+ ĝ−1 + ĝ+1 , (60)

where

ψ2c =−
αθ2

4c2

[
f−2ν−ν−

∫
ν+

−L
f+2 (σ) dσ − f−2ν−

f+2 + f−2 f+2ν+

− f+2ν+ν+

∫
ν−

−L
f−2 (σ) dσ

]
− cψ2c , (61)

with appropriate integration constant to maintain zero mean.
The expression for ĝ±1 can be found by replacing f with g in
(44). The exact form of these terms is omitted as we are only
interested in terms up to and including O(ε).

To find the initial condition for the function φ
±
1 , we substi-

tute (17) into (3) and comparing terms at O(ε), taking account
of (52). Similarly, we can substitute (18) into (4) and take ac-
count of (56) to find an initial condition for φ

±
2 . Therefore

φ
±
1 =

1
2

(
J±1 ∓

∫
ξ±

−L
K1 (σ) dσ

)
− φ̃

±
1 , (62)

φ
±
2 =

1
2c

(
J±2 ∓

∫
ν±

−L
K2 (σ) dσ

)
− φ̃

±
2 , (63)

where

J1 =
ω̃2ρ1

2
(

f−1 + f+1
)
+

ω̃2ρ2
1

2

(
f−1ξ−ξ−

+ f+1ξ+ξ+

)
−h1c−

δ

c2−1

∫
ν−

−L

∫ v

−L
f−2 (u,T ) du dv− δ

c2−1

∫
ν+

−L

∫ v

−L
f+2 (u,T ) du dv,

K1 = f−1T + f+1T −
ω̃2ρ1

2

(
f−1ξ−
− f+1ξ+

)
+

ω̃2ρ2
1

2

(
f−1ξ−ξ−ξ−

− f+1ξ+ξ+ξ+

)
−h1cξ− +h1cξ+

− cδ

c2−1

∫
ν−

−L
f−2 (y,T ) dy+

cδ

c2−1

∫
ν+

−L
f+2 (y,T ) dy, (64)

J2 =−
ω̃2ρ2

2c

(
f−2 + f+2

)
+

ω̃2ρ2
2

2

(
f−2ν−ν−

+ f+2ν+ν+

)
−h2c +

γ

c2−1

∫
ξ−

−L

∫ z

−L
f−1 (y,T ) dy dz+

γ

c2−1

∫
ξ+

−L

∫ z

−L
f+1 (y,T ) dy dz,

K2 = f−2T + f+2T +
ω̃2ρ2

2

(
f−2ν−
− f+2ν+

)
+

cω̃2ρ2
2

2

(
f−2ν−ν−ν−

− f+2ν+ν+ν+

)
− ch2cν− + ch2cν+

+
γ

c2−1

∫
ξ−

−L
f−1 (y,T ) dy− γ

c2−1

∫
ξ+

−L
f+1 (y,T ) dy, (65)

φ̃
±
1 =

∫ L

−L

1
2

(
J±1 ∓

∫
ξ±

−L
K1 (σ)

)
dξ±, φ̃

±
2 =

∫ L

−L

1
2c

(
J±2 ∓

∫
ν±

−L
K2 (σ) dσ

)
dν±. (66)
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We now have expressions up to O(ε), however we still need to
find an equation governing φ

±
1,2, therefore we compare terms

at O
(
ε2
)
, taking account of all previous results. All coupling

terms between left- and right-propagating waves are gathered

in one function, and terms of the type of (41) and (44) are
gathered in another function for convenience, as we do not
require them to determine φ

±
1,2. Gathering terms at O

(
ε2
)

we
have

−4S1ξ−ξ+
=− f−1T T − f+1T T −2g−1τT −2g+1τT −h−1ττ

−h+1ττ
+2h−1ξ−T −2h+1ξ+T +2ψ

−
1ξ−τ
−2ψ

+
1ξ+τ

+
(

f−1 h−1
)

ξ−ξ−
+
(

f+1 h+1
)

ξ+ξ+

+
1
2

(
g−

2

1

)
ξ−ξ−

+
1
2

(
g+

2

1

)
ξ+ξ+

+h−1ξ−ξ−ξ−ξ−
+h+1ξ+ξ+ξ+ξ+

+(d1 +d2δ cos(ω̃τ))
(

h−1ξ−ξ−
+h+1ξ+ξ+

)
−2g−1ξ−ξ−ξ−τ

+2g+1ξ+ξ+ξ+τ
−2 f−1ξ−ξ−ξ−T +2 f+1ξ+ξ+ξ+T −δ

(
h−1 −h−2 +h+1 −h+2

)
−4µ1c−4ϒ1, (67)

−4c2S2ν−ν+ =− f−2T T − f+2T T −2g−2τT −2g+2τT −h−2ττ
−h+2ττ

+2ch−2ν−T −2ch+2ν+T +2cψ
−
2ν−τ
−2cψ

+
2ν+τ

+α
(

f−2 h−2
)

ν−ν−
+α

(
f+2 h+2

)
ν+ν+

+
α

2

(
g−

2

2

)
ν−ν−

+
α

2

(
g+

2

2

)
ν+ν+

+α (d1−d2γ cos(ω̃τ))
(

h−2ν−ν−
+h+2ν+ν+

)
+βc2h−2ν−ν−ν−ν−

+βc2h+2ν+ν+ν+ν+
−2βcg−2ν−ν−ν−τ

+2βcg+2ν+ν+ν+τ
−2βc f−2ν−ν−ν−T +2βc f+2ν+ν+ν+T

+ γ
(
h−1 −h−2 +h+1 −h+2

)
−4µ2c−4ϒ2, (68)

where µ1c and µ2c are the coupling terms at this order, while
ϒ1 and ϒ2 are the terms involving f̂2 or equivalent. We av-
erage (67) at constant ξ− or constant ξ+, or average (68) at
constant ν− or constant ν+, integrate with respect to τ and
rearrange to obtain

2ψ1ξ± = H±1 (ξ±,τ,T )+ Ĥ±1 (ξ±,T )τ,

2cψ2ν± = H±2 (ν±,τ,T )+ Ĥ±2 (ν±,T )τ, (69)

where the functions H±1,2, Ĥ
±
1,2 can be found from (67) or (68).

To avoid secular terms we require that Ĥ±1,2 = 0 and this allows
us to find equations for φ

±
1,2. Therefore we look for terms in

(67) that depend only on ξ± and T . Following this approach
we obtain(
∓2φ

±
1T +

(
f±1 φ

±
1
)

ξ±
+d1φ

±
1ξ±

+φ
±
1ξ±ξ±ξ±

)
ξ±

= δφ
±
1

+ f±1T T ∓2 f±1ξ±ξ±ξ±T +
ω̃2θ̃ 2

1
2

f±1ξ±ξ±
− θ̃ 2

1
2

(
f±

2

1ξ±

)
ξ±ξ±

,

(70)

and from (68) we have(
∓2cφ

±
2T +α

(
f±2 φ

±
2
)

ν±
+αd1φ

±
2ν±

+βc2
φ
±
2ν±ν±ν±

)
ν±

= γφ
±
2

+ f±2T T ∓2cβ f±2ν±ν±ν±T +
ω̃2θ̃ 2

2
2

f±2ν±ν±
− αθ̃ 2

2
2

(
f±

2

2ν±

)
ν±ν±

,

(71)

where

θ̃1 =
θ1

sin(ω̃τ)
=

d2δ

2ω̃
, θ̃2 =

θ2

sin(ω̃τ)
=

αd2γ

2cω̃
. (72)

We have now defined all functions up to and including O(ε)
and so stop our derivation, however in theory this could be
continued to any order. We also note that every function in
this expansion has been constructed to have zero mean, either
directly or by the appropriate choice of integration constant.

III. VALIDITY OF WEAKLY-NONLINEAR SOLUTION

In Section II we constructed the weakly-nonlinear solution
to the original cRB equations (1) - (4), when the characteristic
speeds are essentially distinct (high-contrast case). We now
confirm the validity of the constructed expansions by numer-
ically solving the system (1) - (2) and comparing this direct
numerical solution to the constructed solution (17) and (18)
with an increasing number of terms included. This was con-
structed in Section II, so we need to solve (22), (23) for the
leading-order solution and (70), (71) for the solution up to
and including terms at O(ε).

In order to numerically solve these equations, in this sec-
tion and the subsequent sections, we implement three pseudo-
spectral numerical schemes described in Supplementary Ma-
terials. For the coupled Boussinesq equations we use the
methods in Appendix A and for a single Ostrovsky equation
and we use the method in Appendix B, both of which are sim-
ilar to schemes in Ref. 13. We use a modified pseudo-spectral
scheme for the coupled Ostrovsky equations, based upon21, to
allow for larger time steps to be taken, and this is presented in
Appendix C. We note that the choice of integration constants
to maintain zero mean is conveniently implemented within the
pseudo-spectral scheme by setting the coefficient of the zero
harmonic to zero.

Unless stated otherwise, we assume that ∆x = 0.1, ∆t =
0.01 and ∆T = ε∆t. In some calculations these parameters
may be changed to obtain a higher accuracy result and this
will be stated in the figure captions. The domain is taken as
[−L,L] in all cases, with L = 300 for most calculations with
solitary waves and 3×LK for cnoidal waves, where LK is the
period of the cnoidal wave.

In all subsequent calculations, we shall refer to the solution
of the system (1) - (2) as the numerical solution of the ex-
act system and compare this to the weakly-nonlinear solution
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with an increasing number of terms included. We calculate the
solution in the domain x ∈ [−40,40] and for t ∈ [0, T̂ ] where
T̂ = 1/ε .

To construct a right-propagating wave as the initial con-
dition, with no left-propagating wave, we choose our func-
tions F and V appropriately so that f−1 = F1, f−2 = F2 and
f+1 = f+2 = 0. Explicitly, for solitary wave initial conditions,
we have

F1(x) = A1sech2
(

x
Λ1

)
+ p, F2(x) = A2sech2

(
x

Λ2

)
,

V1(x) = 2
A1

Λ1
sech2

(
x

Λ1

)
tanh

(
x

Λ1

)
,

V2(x) = 2c
A2

Λ2
sech2

(
x

Λ2

)
tanh

(
x

Λ2

)
, (73)

where p is a constant and we have

A1 = 6k2
1, Λ1 =

√
2/k1, k1 = 1/

√
6,

A2 = 6ck2
2/α, Λ2 =

√
2cβ/k2, k2 =

√
α/6c.

We have added a pedestal to the initial condition for u to have
distinct non-zero values for d1 and d2.

To determine the agreement between the numerical solu-
tion of the exact system and the weakly-nonlinear solution,
we calculate the error as

e(i) = log
∣∣∣1− vi

v

∣∣∣ , i = 1,2,3, (74)

where v is the numerical solution of the exact system, the
weakly-nonlinear solution (17), (18) with only leading order
terms included as v1, with terms up to and including O

(√
ε
)

as v2 and with terms up to and including O(ε) as v3. This will
be plotted alongside v for comparison.

We choose α = β = c = 2, δ = γ = 0.5, p = 7 and present
the comparison between the numerical solution of the exact
system and weakly-nonlinear solutions, at various orders of ε ,
for u in Figure 1. A similar result can be observed for w. We
see from the error lines that the leading order solution (red,
dashed line) is reasonably accurate, with an error of less than
0.02. This is improved with the addition of the O

(√
ε
)

terms
(black, dash-dotted line), reducing the phase shift around the
main wave packet. The inclusion of O(ε) terms (green, dotted
line) reduces the error by an order of magnitude, as expected.
We only present one example here for brevity, but the same re-
sults have been observed for multiple values of δ , γ , pedestal
height p, and for w.

To further confirm the validity of the solution, we calculate
the maximum absolute error over x as

ri = max
−L≤x≤L

|v(x, t)− vi (x, t)|, i = 1,2,3. (75)

This error is calculated at every time step and, to smooth the
oscillations in the errors we average ri in the final third of the
calculation, denoting this value as r̂i. We then use a least-
squares power fit to determine how the maximum absolute er-
ror varies with the small parameter ε . Therefore we write the
errors in the form

exp [r̂i] =Ciε
αi , (76)

-40 -20 0 20 40
0.5

1

1.5

2

2.5

3

3.5

-0.04

-0.02

0

0.02

0.04

FIG. 1. A result of the direct numerical simulation (solid, blue)
and comparison of the errors between this solution and the weakly-
nonlinear solution, including leading order (dashed, red), O

(√
ε
)

(dash-dot, black) and O(ε) (dot, green) corrections, at t = 1/ε , for u.
Parameters are L = 40, N = 800, k = 1/

√
6, α = β = c = 2, γ = 0.5,

p = 7, ε = 2.38× 10−3, ∆t = 0.01 and ∆T = ε∆t. The solution
agrees well to leading order and this agreement is improved with the
addition of higher-order corrections.

and take the logarithm of both sides to form the error plot.
The corresponding errors for the cases considered in Figure

1 are plotted in Figure 2. The slope of the curves is approxi-

-8.5 -8 -7.5 -7 -6.5 -6
-10

-8

-6

-4

-2

FIG. 2. A comparison of error curves for varying values of ε , at
t = 1/ε , for the weakly-nonlinear solution including leading or-
der (upper, red), O

(√
ε
)

(middle, black) and O(ε) (lower, green)
corrections for u. Parameters are L = 40, N = 800, k = 1/

√
6,

α = β = c = 2, γ = 0.5, ∆t = 0.01 and ∆T = ε∆t. The inclusion
of more terms in the expansion increases the accuracy.

mately 0.77, 0.99 and 1.96, which are slightly higher than the
theoretical values for the inclusion of leading order terms and
the case with terms up to and including O(ε) terms. How-
ever this can be explained by the solutions in this case being
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wave packets, so a phase shift at the level of O
(√

ε
)

will not
have as much as an effect on the errors as it would for radi-
ating solitary waves.20 Furthermore, the increase in the slope
is consistent with the results seen for previous studies for the
Boussinesq-Klein-Gordon equation.13

IV. COUNTER-PROPAGATING WAVES

We now consider various cases for wave interaction, where
we will use the constructed weakly-nonlinear solution with
the inclusion of terms up to O

(√
ε
)

to take account of the
mass. Two types of initial condition are considered: soli-
tary wave and cnoidal wave. While our focus is on the high-
contrast case (when c−1 = O(1)), it is instructive to compare
with the solutions emerging in the low-contrast case (when
c− 1 = O(ε)). The results for the low-contrast case are pre-
sented using the solution obtained in Ref. 20. Then, we dis-
cuss the solutions for the high-contrast case, whose weakly-
nonlinear solution was constructed in Section II.

A. Solitary Wave Initial Condition

Firstly we take solitary wave initial conditions, as was done
in Section III. For counter-propagating waves, we introduce a
second wave, with the same parameters as the first wave, at a
phase shift with a sign change in V to result in wave propaga-
tion to the left for the second wave. Explicitly we have

Fi(x) = Aisech2
(

x+ x0

Λi

)
+Aisech2

(
x+ x1

Λi

)
,

Vi(x) = 2
Ai

Λi
sech2

(
x+ x0

Λi

)
tanh

(
x+ x0

Λi

)
−2

Ai

Λi
sech2

(
x+ x1

Λi

)
tanh

(
x+ x1

Λi

)
, (77)

where i = 1 is the initial condition for u and i = 2 is the ini-
tial condition for w and Ai, Λi are as defined in (73). These
can then be used to give initial conditions for the constructed
weakly-nonlinear solution via (26) and (27).

1. Low-contrast case

We analyse the case when the characteristic speeds in the
equations are close, so we have c− 1 = O(ε) and the peri-
odic domain is sufficiently large. The solutions in this case
are expected to be radiating solitary waves.20 We take the ini-
tial condition (77), where the waves will be well separated via
the choice of x0 and x1. To determine the behaviour of the
solution, we consider it at two times: t = 150, before interac-
tion, and t = 500, after the interaction. The results are shown
in Figure 3. Firstly we see that the solitons form a solitary
wave with a co-propagating radiating tail, as expected from
the co-propagating case.20 As they interact the solitons ap-
pear to emerge with only a small change in their amplitudes,

-300 -200 -100 0 100 200 300

0

0.5

1

1.5

(a) Weakly-nonlinear solution to cRB equations at t = 150.

-300 -200 -100 0 100 200 300

0

0.5

1

1.5

(b) Weakly-nonlinear solution to cRB equations at t = 500.

FIG. 3. Solution for counter-propagating waves in the cRB equa-
tions, using the weakly-nonlinear solution including terms up to
O
(√

ε
)
, at (a) t = 150 and (b) t = 500. Parameters are L = 300,

N = 6000, ε = 0.05, α = β = 1.05, c= 1.025, δ = γ = 1, k1 = 1/
√

2,
k2 =

√
1.05/2, x0 = 250, x1 =−250, ∆t = 0.01 and ∆T = ε∆t. Here,

u/w are shown by blue, solid/red, dashed curves, respectively.

although the amplitude can decay in the evolution of the ra-
diating solitary wave. To determine if their collision is elas-
tic or does indeed introduce a small change in amplitude, or
perhaps a phase shift, we compare the solution in the counter-
propagating case to a corresponding one when there is only
one radiating solitary wave present.

The comparison between the cases with and without inter-
action are shown in Figure 4 for u, while a similar result is
seen for w and so is omitted for brevity. We can clearly see
that a small phase shift occurs once interaction has taken place
(blue, solid line) and the amplitude is also slightly reduced on
the peak, suggesting that this interaction is not elastic, in con-
trast to the case with solitary waves. However, the difference
is small, and the interaction is only weakly-inelastic.
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(a) Left-propagating radiating solitary wave for u at t = 500.
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(b) Right-propagating radiating solitary wave for u at t = 500.

FIG. 4. A small phase shift appears as a result of the interaction
of radiating solitary waves (blue, solid line) and the case without
interaction (red, dashed line), for u at t = 500, enhanced for the (a)
left-propagating wave, and (b) right-propagating wave. Parameters
are L = 300, N = 6000, ε = 0.05, α = β = 1.05, c = 1.025, δ = γ =
1, k1 = 1/

√
2, k2 =

√
1.05/2, x0 = 250, x1 = −250, ∆t = 0.01 and

∆T = ε∆t.

2. High-contrast case

Now we consider the case when the characteristic speeds in
the equations are distinct, so we have c− 1 = O(1), and we
consider the effect of wave interaction on wave packets. The
initial condition is taken as (77) and we analyse the interac-
tion of the generated wave packets. The results are presented
in Figure 5. Wave packets are generated in both layers with
the packet generated in the lower layer moving faster than the
corresponding packet in the upper layer. At the point of inter-
action the packets move through each other and emerge with
the appearance of small changes in their shape and structure,
which could be attributed to evolution of the wave packets.

As was done in the low-contrast case, we compare the result
of the interaction to the corresponding co-propagating case

-300 -200 -100 0 100 200 300

0
4

0
50

(a) Solution for u at multiple times.

-300 -200 -100 0 100 200 300

0
7

0
50

(b) Solution for w at multiple times. The wave moves twice as fast in
this case.

FIG. 5. Comparison of counter-propagating wave packets at multiple
times, for (a) u and (b) w. Parameters are L = 300, N = 6000, ε =
0.0005, α = β = c = 2, δ = γ = 1, k1 = 1/

√
2, k2 = 1, x0 = 250,

x1 =−250, ∆t = 0.01 and ∆T = ε∆t.

without interaction. The comparison is shown in Figure 6 for
u, and again we see a similar result for w, albeit at a differ-
ent position due to the different characteristic speeds, so we
omit it here. We see that interaction (blue, solid line) leads
to several changes, in particular the wave packet is linked to
the other wave packet in the case of interaction, leading to a
number of differences between the solutions. Therefore, the
collision is strongly inelastic in the high-contrast case.

B. Cnoidal Wave Initial Condition

A second case of interest is using a cnoidal wave as the
initial condition for the cRB equations. We can obtain the
cnoidal wave initial condition by considering the uncoupled
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(a) Left-propagating wave packet for u at t = 500.

200 220 240 260 280 300
-1

-0.5

0

0.5
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1.5
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(b) Right-propagating wave packet for u at t = 500.

FIG. 6. Significant differences appear as a result of the interaction of
wave packets (blue, solid line) and the case without interaction (red,
dashed line), for u at t = 500, enhanced for the (a) left-propagating
wave, and (b) right-propagating wave. Parameters are L = 300, N =
6000, ε = 0.0005, α = β = c = 2, δ = γ = 1, k1 = 1/

√
2, k2 = 1,

x0 = 250, x1 =−250, ∆t = 0.01 and ∆T = ε∆t.

equations for u and w, for example

wtt − c2wxx = ε

[
α

2
(
w2)

xx +βwttxx

]
(78)

for w, and the equation for u can be found by setting c = α =
β = 1. The leading-order weakly-nonlinear solution to this
equation takes the form of the KdV equation

2c fT +α f fξ +βc2 fξ ξ ξ = 0, (79)

where we have assumed that ξ = x− ct and T = εt. This can
be thought of as a truncated Ostrovsky equation derived in
Section II, under the assumption that the initial condition has
zero mean. The cnoidal wave solution to this equation can be

obtained as

f =−6βc2

α

(
f2− ( f2− f3)cn2

[
(ξ +νT )

√
f1− f3

2
|m

])
,

(80)
where

ν = ( f1 + f2 + f3)βc, m =
f2− f3

f1− f3
.

The solution is parametrised by the three constants f3 < f2 <
f1 with 0 < m < 1. The wave length of the cnoidal wave is
given by

LK = 2K(m)

√
2

f1− f3
, (81)

where

K(m) =
∫

π/2

0

dθ√
1−m sin2

θ

is the complete elliptic integral of the first kind. This wave
is an exact solution to the KdV equation and a natural initial
condition for the cRB equations, in the same way as the soli-
tary wave solution in Section IV A also was a natural initial
condition since the Ostrovsky equation is an extension of the
KdV equation.

To reduce the number of parameters in the solution, we will
assume that f2 = 0, which means that the cnoidal wave is mov-
ing on a zero background. This will reduce the magnitude of
the mean term, but it will not be zero, which is consistent
with the approach for the solitary wave solution. To simplify

notation we introduce the constant θ =
√

f1− f3
2 and variable

x̃ = x+ x0.
To construct a right-propagating cnoidal wave as the initial

condition, we choose our functions F and V appropriately, as
was done for the solitary wave initial conditions. Explicitly
for the co-propagating wave we have the initial condition

F1(x) =−6 f3 cn2 [θ x̃|m] , F2(x) =−
6βc2

α
f3 cn2 [θ x̃|m] ,

V1(x) =−12 f3θ cn [θ x̃|m]sn [θ x̃|m]dn [θ x̃|m] ,

V2(x) =−
12βc2

α
f3θ cn [θ x̃|m]sn [θ x̃|m]dn [θ x̃|m] . (82)

1. Low-contrast case

Firstly we consider the low-contrast case. Our earlier re-
sults would suggest that each peak in the cnoidal wave will
evolve into a radiating solitary wave, whose tail will eventu-
ally interact with the preceding wave. We take the initial con-
dition for co-propagating waves, given in (82), and the results
are presented in Figure 7.

As the troughs of the cnoidal wave are long, we can see the
generation of a co-propagating radiating tail forming behind
the cnoidal wave peaks, which then begins to interact with the
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(a) Solution at t = 0.
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(b) Solution at t = 400.

FIG. 7. Generation of co-propagating radiating solitary waves from
a cnoidal wave initial condition, for u (blue, solid line) and w (red,
dashed line), at (a) t = 0, and (b) t = 400. Parameters are L≈ 168.0,
N = 3360, ε = 0.05, f1 = 1× 10−8, f2 = 0, f3 = − 1

6 , α = β = 1,
c = 1.025, δ = γ = 1, x0 = 0, ∆t = 0.01 and ∆T = ε∆t.

preceding peak. The peaks of the wave appear to survive this
interaction and maintain their shape, with a small reduction in
amplitude that could be attributed to the generation of the ra-
diating tail. The waves appear to form a larger wave structure
across the domain.

We can consider the effect of interaction of the peaks with
the radiating tails by running a simulation for the same ini-
tial condition, with five peaks, shown in Figure 7, and com-
pare this with a truncated initial condition consisting of only
a single peak, but with the same domain size as our previous
simulation. This is shown in Figure 8. From Figure 8(a) we
can see that there is not a significant phase shift in the lead-
ing peak, however we see several phase shifts and amplitude
changes have occurred with the tail, caused by the interaction
between the tails and the peaks. In Figure 8(b) we can see
that the amplitude of the peak in the case without interaction
follows a fairly steady path, while in the case with interaction

-100 0 100
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0.2

0.4

0.6

0.8

1

(a) Solution at t = 800 for u.

0 200 400 600 800 1000 1200
0.85

0.9

0.95

1

1.05

(b) Amplitude of case with (dashed line) and without (solid line)
interaction.

FIG. 8. Comparison of effect of peak interaction with radiating tails.
In (a) we have a cnoidal wave with multiple peaks (blue, solid line)
and a cnoidal wave with a single peak (red, dashed line). In (b) the
peak amplitude in the single peak case (solid line) and multiple peak
case (dashed line), for u (blue) and w (red). Parameters are L≈ 168.0,
N = 3360, ε = 0.05, f1 = 1× 10−8, f2 = 0, f3 = − 1

6 , α = β = 1,
c = 1.025, δ = γ = 1, x0 = 0, ∆t = 0.01 and ∆T = ε∆t.

it has large changes caused by interactions with the radiated
tail of the preceding peak. This is qualitatively similar to the
effects of a large soliton tunelling through a soliton gas or
other oscillatory wave structure (see, for example, Refs. 22,
23 and references therein), but in this case there are no signif-
icant phase-shifts, and the main effect is seen in the amplitude
variations.

2. High-contrast case

Following on from Section IV A, we now examine the case
when the characteristic speeds in the equations are distinct,
so we have c− 1 = O(1). We take the initial condition (82)
and the results are presented in Figure 9. A wave packet is
formed by each peak of the cnoidal wave, which were chosen
to be approximately 100 units apart so that the peaks of the
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(a) Solution at t = 0.
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(b) Solution at t = 500.

FIG. 9. Generation of wave packets from a cnoidal wave initial con-
dition, for u (blue, solid line) and w (red, dashed line), at (a) t = 0,
and (b) t = 500. Parameters are L ≈ 148.6, N = 2974, ε = 0.005,
f1 = 1× 10−12, f2 = 0, f3 = − 1

6 , α = β = 2, c = 2, δ = γ = 1,
x0 = 0, ∆t = 0.01 and ∆T = ε∆t.

cnoidal wave are distinct and each wave packet can be seen
clearly. Note that, although the solutions for u and w overlay
each other, the packets formed in the lower layer move faster
than the upper layer and their overlap is due to the choice of
time. The wave packets are connecting to each other in the
intervening space between the main wave packets.

To further explore the evolution of the cnoidal wave initial
condition into a series of wave packets, we choose an initial
condition when the peaks of the cnoidal wave are approxi-
mately 50 units apart. This is plotted in Figure 10. We can

see that wave packets are again generated, however in this
case the qualitative structure is different and the connection
between the wave packets is shorter.

-50 0 50
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4

FIG. 10. Generation of wave packets from a cnoidal wave initial
condition, for u (blue, solid line) and w (red, dashed line), at t = 500.
Parameters are L≈ 76.9, N = 1538, ε = 0.005, f1 = 1×10−6, f2 =
0, f3 = − 1

6 , α = β = 2, c = 2, δ = γ = 1, x0 = 0, ∆t = 0.01 and
∆T = ε∆t.

V. CONSERVATION LAWS

The system (1) - (2) is related to the system

Utt −Uxx = ε [UxUxx +Uttxx−δ (U−W )] , (83)

Wtt − c2Wxx = ε [αWxWxx +βWttxx + γ (U−W )] , (84)

U(x, t) =
∫ x

−L
u(σ , t) dσ , W (x, t) =

∫ x

−L
w(σ , t) dσ .

It naturally follows that U(−L) = W (−L) = 0, and also that
Ut(−L) = Wt(−L) = 0, which will be used in what follows.
The system (83) - (84) is Lagrangian, and it has three local
conservation laws for the mass, energy and momentum.10 Us-
ing these known conservation laws, we can find the conser-
vation laws for our system (1) - (2) in the form of one lo-
cal (mass) and two non-local (energy and momentum) conser-
vation laws. Indeed, differentiating the conservation law for
mass from Ref. 10 with respect to x and rewriting the energy
and momentum laws in terms of u, w instead of Ux, Wx we
obtain
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(
ut +

δ

γ
wt

)
t
−
(

ux +
δc2

γ
wx + εuux +

εαδ

γ
wwx +uttx +

εβδ

γ
wttx

)
x
= 0, (85)

1
2

{
U2

t +
δ

γ
W 2

t +u2 +
δc2

γ
w2 +

ε

3

(
u3 +

αδ

γ
w3
)
+ εu2

t +
εβδ

γ
w2

t + εδ (U−W )2
}

t

−
(

Utu+
δc2

γ
Wtw+

ε

2
Utu2 +

εαδ

2γ
Wtw2 + εUtutt +

εβδ

γ
Wtwtt

)
x
= 0, (86)(

Utu+
δ

γ
Wtw+ εutux +

εβδ

γ
wtwx

)
t
−
{

εuutt +
εβδ

γ
wwtt

+
1
2

[
U2

t +
δ

γ
W 2

t +u2 +
δc2

γ
w2 +

2ε

3

(
u3 +

αδ

γ
w3
)
+ εu2

t +
εβδ

γ
w2

t − εδ (U−W )2
]}

x
= 0. (87)

Integrating these conservation laws with respect to x from −L
to L, using the periodicity of u and w on [−L,L], we obtain

one conserved quantity (mass)

d
dt

(
〈u〉+ δ

γ
〈w〉
)
= 0, (88)

and two non-local conservation laws (energy and momentum,
respectively)

dE
dt

=
1
2

d
dt

∫ L

−L

{
U2

t +
δ

γ
W 2

t +u2 +
δc2

γ
w2 +

ε

3

(
u3 +

αδ

γ
w3
)
+ εu2

t +
εβδ

γ
w2

t + εδ (U−W )2
}

dx

=

{
Ut(L)

[
u(L)+

ε

2
u2(L)+ εutt(L)

]
+Wt(L)

[
δc2

γ
w(L)+

εαδ

2γ
w2(L)+

εβδ

γ
wtt(L)

]}
, (89)

dM
dt

=
d
dt

∫ L

−L

(
Utu+

δ

γ
Wtw+ εutux +

εβδ

γ
wtwx

)
dx =

1
2

[
U2

t (L)+
δ

γ
W 2

t (L)− εδ (U(L)−W (L))2
]
. (90)

Note that if 〈u〉 = 〈w〉 = 0 (i.e. d1 = d2 = 0), then the non-
local conservation laws (89) and (90) yield the usual (local)
conservation of energy and momentum. More generally, the
non-local conservation laws are applicable when the waves
propagate on the background of some initially pre-strained ba-
sic state characterised by non-zero mass of u and w.

We now verify the relations (89) and (90). The parameters
for the simulation are chosen as ε = 0.01, c = 1.025 and α =
β = δ = γ = 1, with solitary wave initial conditions as taken in
(73) with p = 1 to provide a significant non-zero mean value.
The energy and momentum relations are plotted in Figure 11,
where we note that the left-hand side of the mass equation (88)
is equal to zero to machine precision and therefore is omitted
from the plot.

We see that the derivatives of the energy and momentum
oscillate with period f = 2π/ω between two different values.
To verify the conservation laws, the peaks and troughs were
tracked for both the left-hand side and right-hand side of the
conservation laws and the absolute percentage error between
peaks or troughs was calculated as 4.24× 10−6% for the en-
ergy and 3.60×10−10% for the momentum. It is of note that

the left-hand side of these laws require a time derivative on
discrete data and so the accuracy to which they are conserved
is hampered by this limitation. In our case the time step was
taken as ∆t = 0.001.

VI. CONCLUSIONS

In this paper we developed an asymptotic procedure for the
construction of the weakly-nonlinear solution of the Cauchy
problem for a system of coupled regularised Boussinesq equa-
tions in the high-contrast case when the characteristic speeds
in the layers are not close (i.e. the materials of the layers have
essentially different elastic properties). Importantly, we re-
moved the need to restrict the initial conditions only to func-
tions with zero mean. The constructed solution was compared
to the case when the characteristic speeds in the equations are
close (low-contrast case).

We examined the accuracy of the constructed solution nu-
merically, using direct numerical simulations for the coupled
Boussinesq equations and our constructed semi-analytical so-
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(a) Energy for cRB equations.
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(b) Momentum for cRB equations.

FIG. 11. Verification of the generalised conservation laws in the cRB
equations, where the blue, solid line is the left-hand side of the rela-
tion and the red, dashed line is the right-hand side of the relation, for
(a) energy and (b) momentum. Parameters are L = 300, N = 60000,
c= 1.025, ε = 0.01, α = β = δ = γ = 1, k1 = k2 = 1/

√
2, ∆t = 0.001

and ∆T = ε∆t.

lution, and showed that the constructed solution is a good ap-
proximation to the direct numerical simulations, with improv-
ing accuracy for the inclusion of additional terms. In particu-
lar, we found that the inclusion of terms at O

(√
ε
)

allows us
to take account of the mass with no need for solving additional
equations to those at leading order.

We then studied the case of counter-propagating waves
within the context of close or distinct characteristic speeds,
for solitary wave initial conditions. We showed that radiat-
ing solitary waves or wave packets interact almost elastically
and their structure appears qualitatively unchanged. Compar-
ison to the case without interaction showed a minor change
in amplitude and phase shift for radiating solitary waves, with
a more distinct change for the wave packets, suggesting the

latter collisions are strongly inelastic.

Next we studied the behaviour of a cnoidal wave initial con-
dition, and solutions for the high-contrast case were compared
to that in the low-contrast case. For close characteristic speeds
we see that radiating solitary waves are generated from each
cnoidal wave peak. The tails interact with the preceding peak,
so phase shift and amplitude changes occur in the tail. The
amplitude of the main peak is changed by the interactions,
however there is no significant phase shift introduced by the
interactions. For distinct characteristic speeds, wave packets
are generated by each peak, and we can clearly see the evolu-
tion of each peak into a wave packet, joined to its neighbours.
The individual identities of the wave packets become harder
to detect when the wavelength of the cnoidal wave is reduced -
the radiation emitted by each wave packet is quickly absorbed
by the next one, resulting in a more complicated periodic wave
structure.

Finally, we showed that generalised conservation laws can
be derived to take account of an initial condition that is not
necessarily zero-mean. These conservation laws consist of
one local (mass) and two non-local (energy and momentum)
relations, with the conserved quantity oscillating with a fre-
quency determined by the evolution of non-zero mass of the
initial data, confirmed by numerical simulations. These non-
local conservation laws are applicable when the waves prop-
agate on the background of some initially pre-strained basic
state characterised by non-zero mass of u and w.

The constructed solution can find useful applications in
the studies of the scattering of radiating solitary waves by
delamination,11,24 where the previous considerations were re-
stricted to the initial conditions with either small or zero mean
value because of the zero-mass contradiction. The propaga-
tion of cnoidal waves and undular bores25,26 in structures with
defects is an interesting area for future research.

SUPPLEMENTARY MATERIALS

See supplementary material for Appendices A, B, and C, con-
taining details of the numerical techniques used in this paper.
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