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To enable an accurate recognition of neuronal excitability in an epileptic brain for modelling or lo-
calization of epileptic zone, here the brain response to single-pulse electrical stimulation (SPES) has
been decomposed into its constituent components using adaptive singular spectrum analysis (SSA).
Given the response at neuronal level, these components are expected to be the inhibitory and excitatory
components. The prime objective is to thoroughly investigate the nature of delayed responses (elicited
between 100ms — 1s after SPES) for localization of the epileptic zone. SSA is a powerful subspace signal
analysis method for separation of single channel signals into their constituent uncorrelated components.
The consistency in the results for both early and delayed brain responses, verifies the usability of the
approach.
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Epilepsy is one of the most common neurological dis-
orders affecting at least 50 million people worldwide!
and around 3.5 million people in Europe.? It is a
chronic neurological disease characterized by epilep-
tic events occurring due to excessive discharges of

neurons in the brain.>* Due to the importance of
epilepsy, the techniques for automatic detection of
interictal epileptic form discharges(IEDs)® as well
as seizure detection and prediction®” have been in-
vestigated by a number of researchers. Moreover, in
some recent studies, synchronization of brain corti-
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cal signals has been used as an indicator of upcom-
ing epileptic events.® As the Excitatory (E) and In-
hibitory (I) activities are essential for regulating the
flow of information in the brain, without evaluating
and controlling the ratio between E and I activities,
runaway excitation or inactivity would happen, ham-
pering sufficient information processing.® ! A large
number of previous studies have been focused on the
role of excitation and inhibition in the transforma-
tion from normal condition to seizure in the epileptic
brain.'? The mechanisms underlying epileptic events
previously have been thought to involve abnormal
functioning of ion channels and synaptic activity
leading to the E-I imbalance theory, (where increased
E, decreased I, or both lead to a higher tendency for
seizure generation and epileptogenesis). However, re-
cent findings related to genetic mutation, the effect
of neurotransmitters, the mechanism of anti-seizure
medication, and metabolic factors in regulating neu-
ral excitability demand for reconsideration and ex-
pansion of the E-I imbalance hypothesis.'3 Since in
partial epilepsy, an imbalance between E and I is
expected in areas that induce epileptic events, in
principle, cortical responses to electrical stimulation
should help determine this imbalance.' A decent ap-
proach for studying the balance between E and I,
applies single pulses, which activate only a limited
and localized population of neurons. This technique,
called single-pulse electrical stimulation (SPES), has
been implemented for describing abnormal cortical
responses to electrical pulses via intracranial elec-
trodes.’ 17 According to previous research,'” there
are two types of responses to the SPES in the epilep-
tic brain. First, early responses (ERs) are responses
to SPES generally starting within the first 100ms
after the stimulation artifact or sometimes merging
with it. They consist of a sharp deflection often fol-
lowed by a slow wave. While ERs are considered to
be the brain’s normal reaction to the stimulation, the
SPES method has established that regions showing
the onset of spontaneous seizures are associated with
distinct secondary responses to stimulation called de-
layed responses (DRs).17 ¥ DRs are responses start-
ing with a delay longer than 100ms from the stimu-
lation spike-shape artifact (generally between 100ms
to 1s after stimulation). DRs often resemble sponta-
neous interictal discharges and are not seen after ev-
ery stimulus. DRs have proved helpful in predicting
seizure control after surgery, revealing the presence

of multiple epileptogenic areas, and identifying the
epileptogenic cortical zone in patients with no seizure
during data collection.'* The results from previous
research investigating the firing pattern alterations
at the neural level in response to the SPES indicate
that the firing patterns can be categorized into four
groups where approximately 25% of neurons show a
period of high-frequency burst, 14% show a period
of suppression, 12% show high-frequency burst fol-
lowed by suppression and approximately 50% show
no change in the firing rate associated with the stim-
ulation which further increases the stimulus location
ranging from 49.7% for local stimulation to 81.6%
for contralateral stimulation, suggesting that IED-
like patterns can occur without involvement of all
nearby neurons.'® In our application, there is no ac-
cess to the recordings of the firing pattern at the
neural level from various regions for a large num-
ber of epileptic cases, including those who are the
candidates for resection surgery. Therefore, here the
aim is to decompose the SPES responses into or-
thogonal subspaces resulting in disjoint sources. The
proposed approach was applied to the data recorded
from the depth electrodes initially. However, due to
the similarity of the responses to the SPES recorded
from depth electrodes and ECoG, we also applied the
method to ECoG.

Here, the single channel decomposition ap-
proach relies on the fact that the underlying sig-
nal components (i.e. E and I) originate from disjoint
sources within the brain whereby can be separated.
Due to the role of E-I imbalance in the epileptic
brain, we aim to investigate the separability of E
and I in both ERs and DRs using the data recorded
from implanted electrodes. Furthermore, a separate
investigation of E and I in response to SPES can of-
fer great insight into a better understanding of the
neural activity imbalance in regions associated with
epileptic events in the brain.

2. Data Description

The intracranial electroencephalogram (EEG) was
recorded at 256 Hz from 20 epileptic subjects at
King’s College Hospital London as part of the clini-
cal protocol for assessment of their conditions. The
electrodes required to be implanted in the brain by
surgical operation. Based on prior evaluation, the
number, type, and locations of the intracranial elec-
trodes were chosen by the suspected location of the
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ictal onset region. The selection criteria and implan-
tation procedure have been described previously2’
mainly for participants with drug resistant (refrac-
tory) epilepsy.The data from twenty patients have
been recorded using the system and the method de-
scribed by Kokkinos et al.?! The SPES operation
was carried out by applying the approved constant
current of 1-8 mA, mostly 4 mA, from the neurostim-
ulator through single pulse of 1 ms duration and 0.1
Hz frequency. Every 10 seconds a single monostatic
pulse was appplied while the EEG signals recorded
from the electrodes not utilized for stimulation. Fig-
ure 1 illustrates an example of pot-surgery computer-
ized tomography (CT) scan showing the implanted
subdural and depth electrodes in one subject. As
demonstrated in Table 1, 11 out of 20 cases selected
for this study underwent surgery after data acquisi-
tion, and the surgical operation outcomes are shown
using Engel Outcome Scale.?? Here, class-I refers to
becoming (disabling) seizure free, class-II means rare
disabling seizures, class-III indicates improvement in
seizure reduction or prolonged seizure-free intervals,
and class-IV means no worthwhile improvement. It
is demosntarted in Table 1 that approximately 80%
of the cases that underwent surgery experienced
improvement, indicating the critical role of DRs in
finding the location of epileptogenic neurons.

Figure 1. Pot-surgery CT scan showing the implanted
subdural and depth electrodes in one subject. (Elec-

trodes: 32 RT, 7 F, TAT, 7 MidT, 4 PreF)

Table 1. The number and locations of the implanted
electrodes alongside the result of the surgery for each
case (R=Right, L=Left, T=Temporal, F=Frontal,
A=Anterior, P=Psoterior, O=0ccipital, In=Insular,
H=Hippocampus, Ms=Mesial, Par=Parietal).

case Locations and number of Result of resection surgery
implanted electrodes (Engel Outcome Scale)
1: LT40,LO8,ILMs8,LF 8 No surgery
2 LTA 8, LTP 8 RTS8 I
3 LA 8 LPSubT 8 LF8,LP 8 111
4 RF 8, RMidT 4, RPost 8, v
LA 8 LMidT 4,LP 8
5 RT 40, RAT 8, RMsT 8, I
RPT 8
6 RF8,RT 8, LF8 LTS No surgery
7 SubF 8, F 8, TPole 8, AT 8, No surgery
PT 16, TO 8, Par 8
8 RAH 10, RMidH 10, RH 10, I
LAH 8, LMidH 10, LPH 10
9 RT 32, F 7, AT 7, MidT 7, PreF 4 No surgery
10 RT 32, Tpole 5, MidT 5, PMT 5, I
Aln 5, MidIn 5, PIn 5
11 RF 8, RSubT 8, LSubT 8 111
12 RT 32, AT 6, MidT 6 I
13 AT 8, PF 8, SupF 8, No surgery
AT 8, MsT 8, PT 8
14 RT8,LT8 No surgery
15 LT20,F8,IF 8, PF 8, ST 8 v
16 RT 64, RTPole 5, RMsT 6 No surgery
17 Flns 4, TIns 4 No surgery
18 LT64,LFP 8 I
19 RF8, RTS8 LF8 LTS8 No surgery
20 RMidF 10, RPF 10, LF 10 I
3. Method

In order to investigate the separability of E and I ac-
tivities in ERs and DRs to the SPES, we apply a suit-
able subspace method to decompose these responses.
Single-channel singular spectrum analysis (SSA) is a
nonparametric method that can be applied to ran-
dom statistical processes, whether linear or nonlin-
ear, stationary or even mildly non-stationary, and
Gaussian or non-Gaussian, without making prior as-
sumptions about the data.??:?* The main purpose
of using SSA is its ability to separate the underly-
ing components of single channel signals belonging
to different subspaces. Due to this elegant property,
it has found many applications in detection,? 26 de-
composition,?”?® and forecasting.2?3° According to
the SSA properties and the fact that it performs well
even for small sample sizes, it appears as a suitable
method for investigating the ERs and DRs and sep-
arating each one into its I and E components. This is
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mainly because these components fall into different
orthogonal subspaces.

It is important to emphasize that the pipeline
did not implement any frequency analysis approach
for separation. Here, the intention is not to sepa-
rate components with different asymmetries but in-
herently with different statistical distributions. SSA,
regularized by statistical distributions, is used to de-
compose the data into orthogonal subspaces. How-
ever, after separating the components using SSA, we
examined them in terms of their frequency ranges
and it is clear that they fall perfectly in different fre-
quency ranges.

Regarding the adopted pipeline in this research,
it needs to be mentioned that the SSA method is
not comparable with other decomposition methods,
such as empirical mode decomposition (EMD) here,
due to the purpose of this study. EMD decomposes
the data into a number of intrinsic mode functions
(IMFs) ordered in frequency. Conversely, SSA de-
composes the data into its orthogonal components.
Therefore, SSA is a better option where there is no
clue in which domain the components are disjoint.
SSA generally consists of two complementary stages.
First, the signal is decomposed into its separate com-
ponents, and in the second stage, the desired signals
are reconstructed by grouping the orthogonal prin-
cipal components. Here, a pipeline based on single-
channel SSA has been followed in which, in the re-
construction stage, the eigentriples are adaptively
selected. The above SSA stages together with the
mathematical derivations have been described in the
following sections.

3.1. Decomposition

The decomposition stage includes an embedding pro-
cess followed by eigen decomposition. In the embed-
ding process, after selecting a fixed window length
of L, in the first step, the trajectory matrix X that
transfers the one-dimensional signal x of length T’
into the multi-dimensional series Xy, ..., Xi_1, with
vectors X;= (x;, ..., xjrp—1) where K = T—L+1
is computed.

o T1 - TK-1

L-1,K—-1 _

X = (xi,j)qt,j:o =
Tr—12L -+ Tr-1

In the next step S = XX7is factorized into its eigen-
values and eigenvectors to decompose trajectory ma-

trix X into its orthogonal bases where in § = UAUT
A is the diagonal matrix of eigenvalues ordered so
that \1> Xy > ... Ay > 0 and U = (Uy,Us,...UrL)
is the corresponding orthonormal matrix of eigen-
vectors of S. Here, X = X; + Xo + --- + X4, where
considering v; = XiTui/\/)\_i or X; = \/)\_lquLT

3.2. Reconstruction

The reconstruction stage corresponds to the selection
of eigentriples into groups (eigentriple grouping) for
the reconstruction of the one-dimensional time se-
ries by splitting the elementary matrices into sev-
eral groups and summing the matrices in each group
like X; = X5 + X2 + -+ + Xpp. After grouping,
diagonal averaging is used to transform the matri-
ces into one-dimensional reconstructed signals like
Z7. Here knowing that z;; € Xy, the xp € I
which is the kth term of the resulting time series
Zr is Mean(z;j|(i +j = k + 1)). In this study, for
the reconstruction stage and regrouping the compo-
nents, an adaptive approach has been developed and
used after most of the noise-related eigentriples are
removed. Following this method, the remaining com-
ponents are grouped into two waveforms which best
define the target E and I components. This is per-
formed based on knowing that the E waveform has a
spike shape with a peaky distribution implying high
kurtosis. Therefore, during the grouping process the
algorithm tends to separate a component with maxi-
mum kurtosis adaptively. To express the reconstruc-
tion of E component mathematically, we employ a
diagonal matrix W with binary diagonal elements,
i.e. wj; = {0,1}. During the reconstruction process
W is iteratively estimated in order to achieve the
maximum kurtosis, i.e.,

Wopr = max(Kurt (WAZV)) (1)

where Kurt refers to Kurtosis. From Figure 2, the ER
and DR waveforms are first decomposed into N sep-
arate components.Often (but not necessarily,) the
first eigentriples represent the overall signal trend
and the rest include low power activities such as
noise, spikes, and low-amplitude oscillations. During
the proposed adaptive process, and after discarding
the very last (noise-related) components, the eigen-
triples related to the E waveform are grouped adap-
tively, (see Figure 2), to achieve the highest kurtosis.
The result is expected to be the E waveform. This
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Figure 2.
E and noise from the original EEG signal.

is then subtracted from the refined original signal to
derive the T component. Looking at their temporal,
power spectrum density (PSD), and time-frequency
domain representations we can conclude that the
components are disjoint and belong to orthogonal
subspaces. This verifies that the E/I components
naturally originate from independent sources and
therefore are separable.
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Figure 3. The ERs and DRs to the SPES visible in both

Block diagram of SSA system for E detection from ER or DR. The I component is obtained by subtraction of

subdural and depth channels after SPES. The first 32
EEG channels are subdural, and the rest are depth elec-
trodes.The last channel is ECG signal recorded from the
subject.

4. Results and Discussion

We used 300 selected segements from the 20 cases
(subjects) included in this study, each 0.7 second
long, containing the annotated ER or DR. Consid-
ering the length and shape of ERs and DRs in the
data, a window length (aka embedding dimension)
of 20 samples was selected for the SSA algorithm.
After plotting the relative contribution and cumu-
lative contribution to the trajectory (aka Hankel)
matrix of components, the first N=10 components
were selected for regrouping. Figure 3 demonstrates
an example of the ERs and DRs to the SPES in
the intracranial EEG related to one of the subjects.
After separating ERs and DRs, first, the E and 1
signals, and their power spectrum density were in-
spected. The results from ERs and DRs show that
the I signal consists of EEG overall trend including
the lower frequency oscillations with generally a nar-
row power spectrum density (PSD) concentrated in
low frequencies up to approximately 10 Hz. However,
the E signal consists of higher frequency oscillations
with a lower power and wide PSD consisting of fre-
quencies from between 10-20 Hz up to nearly 60 Hz.
The frequency ranges for both I and E signals were
slightly different for various subjects having different
morphology responses. Figure 4 illustrates the results
of the algorithm for an ER and DR recorded by a
subdural electrode in the right temporal (RT) region
and the PSD and the short-time Fourier transform
(STFT) plot of E and I signals. As the images related
to the ERs show, The electrical stimulation spike is
considered as an artifact added to the ER obscur-
ing the actual excitatory part of ER. This makes
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ER selected from EEG ER seperation

DR selected from EEG DR seperation
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(a) An EEG segment including an ER elicited immediately after SPES (b) ER automatically decomposed into

E and I parts (Here the arrow indicates the stimulus artifact mixed with the E part of response) (¢) An EEG segment
including a DR elicited with a delay after SPES (d) DR automatically decomposed into E and I parts (e) PSD of I activity
for ER (f) PSD of E activity for ER (g) PSD of I activity for DR (h) PSD of E activity for DR (i) STFT magnitude of I
activity for ER (j) STFT of E activity for ER (k) STFT magnitude of I activity for DR (f) STFT magnitude of E activity
for DR. It is illustrated in the last row how effectively the two components have been separated using SSA.

evaluation of ER excitatory component difficult. To
make sure that the noise removal process does not
change the morphology of the SPES responses con-
siderably, while sum of E and I remains similar to
the selected overall SPES response, we use adap-
tive signed correlation index (ASCI).3! The score is
0.85+0.15 for the tests that indicates the similar-
ity of two waveforms. Also, C =( ZT:O E;x1;)/L
| j: samples has been measured to check the correla-
tion between the E and I signals. C is close to zero
for all the tests, illustrating that the E and I signals
do not share the same subspaces. From the PSD and
STFT magnitudes, the E and I signals can be in-

spected separately. The I-to-E power ratio is plotted
for the selected ER and the related DR windows.
The I-to-E power ratio plot demonstrats the changes
for the selected windows. A consistent observation
(approximately 75 percent of tests) is that in some
channels where DRs are present after SPES, there
is a considerable increase in the I-to-E power ratio
after ERs and before DRs. Figure 5 illustrates the
ratio for a selected window containing ER and the
relative DR for a subdural channel implanted in the
right temporal (RT) pole region.

As the I/E imbalance is considered a significant
indicator of epilepsy in the epileptic brain and re-
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gions associated with seizures,'?
and I waveforms and the changes in the I/E ratio
might help us to better understand the underlying
information in DRs, and consequently, the overall
seizure network in the future steps. The hypothe-
sis is that, the epileptic zones contribute more to
the elicitation of inhibition. Therefore, there can be
more insight into seizure diagnosis and localization
by deeper investigation of I-to-E power ratio for the
DRs. One possible explanation for the severe and
consistent increase in I-to-E power ratio before DRs
in some channels might be their relative location and

investigating the E

a short distance to the actual seizure onset zone or
their association with regions in the seizure network.
Previous studies have shown that DRs are generally
observed in regions associated with seizure networks.
Therefore, after stimulation of these regions, the role
of DRs may be compensatory to prevent further
increase of inhibition and synchronization between
various regions, possibly leading to a seizure. More-
over, previous studies have shown the similarities
between DRs and IEDs3? and a possible explanation
for the occurrence of IEDs to prevent seizures due
to their high levels of inhibition indicated by the
long suppression periods seen in single-cell activity.*
Another possible explanation here is that the I-to-E
ratio might affect the occurrence of DRs where the
I-to-E ratio changes need to surpass a limit for elic-
itation of DRs even in regions capable of producing
such responses to the SPES. Here, there is no sta-
tistically significant correlation between the location
of the selected electrode and the observed alteration
in the I-to-E ratio in the selected intervals. However,
it is worth mentioning that most of the recording
electrodes are implanted in the temporal area and
naturally most of the DRs are observed in this re-
gion. Findings from a recent study highlight the
important relationship between the morphology of
the responses to the SPES and the location of the
implanted electrodes. Based on this the local and
distant cortical responses to SPES are differentially
modulated by specific parameters like the intensity
and location of the stimulation point in the brain.??
Although the differences in the morphology of re-
sponses to the SPES (especially DRs), stemed from
different stimulation setup, makes it difficult to per-
form a direct comparison between these responses,
the method proposed in this study offers the oppor-
tunity to investigate the E and I imbalance for the

recorded signals.
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Figure 5. Logarithm of I-to-E power ratio for a selected
EEG channel implanted in the right temporal (RT) pole
region. (The bold black curve shows the smoothed trend)

To better discover if the I-to-E ratio measure-
ments explicitly estimated based on our proposed
method can be used to explain the DRs some points
need to be considered. First, the proposed approach
was initially applied to the data recorded from the
depth electrodes. However, due to the similarity of
the responses to the SPES recorded from depth elec-
trodes and ECoG, we also applied the method to
ECoG signals. The depth electrodes permit record-
ing the activity from a local and specific region from
a much smaller group of neurons, whereas ECoG
records a superposition of activities from different
sources in the brain. Therefore, the decomposed com-
ponents from ECoG signals are more likely the result
of synchronized activities for a population of neu-
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rons. The E activity is more localized than the I
activity; therefore, it can affect the observed sepa-
rated components and I-to-E power ratio in subdu-
ral (ECoG) electrodes compared to depth electrodes.
Second, the DRs, seen in multiple depth electrodes,
sometimes demonstrate different behavior in terms
of E and I activities and the ratio between them and
they have differences in their morphologies. It is pos-
sible that the DRs or part of them in some depth
channels are actually from a propagated signal from a
nearby source. Finally, it needs to be mentioned that
the SSA algorithm performance in terms of separat-
ing the input into distinguishable components differs
according to the morphology of the signal. Therefore,
an adaptive approach for selecting SSA parameters
like signal and window length is worth being investi-
gated.

5. Conclusion

In this study, for the first time, we presented an
approach based on SSA with an adaptive recon-
struction step to investigate the separability of E
and I activities for both ERs and DRs to the SPES
for the epileptic brain, where an imbalance between
E and I is expected. The majority of EEG-based
studies refer to E and I activities based on the fre-
quency of the waveforms without referring to their
frequency ranges. However, the method used here
exploits the waveform morphology, and that the
components are disjoint using subspace decomposi-
tion. This paves the path for deeper investigation of
seizure network, excitability of the brain tissue, lo-
calization of epileptic neurons, and extracting other
possible information which can be used for seizure
treatment particularly by using deep brain stimula-
tion.
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