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Abstract 

Schizotypy, a potential phenotype for schizophrenia, is a personality trait that depicts psychosis-like signs in the normal range 

of psychosis continuum. Family communication may affect social functioning in people with schizotypy. Greater family stress, 

such as irritability, criticism and less praise, is perceived at a higher level of schizotypy. This study aims to determine the 

differences between people with high and low levels of schizotypy using electroencephalography (EEG) during criticism, praise 

and neutral comments. EEGs were recorded from twenty-nine participants in the general community who varied from low 

schizotypy (LS) to high schizotypy (HS) during a novel emotional auditory oddball task. We consider the effect of event-related 

potential (ERP) parameters, namely the amplitude and latency of P300 subcomponents (P3a and P3b), between pairs of mood 

descriptors (standard, positive, negative and neutral). A model based on tensor factorization is then proposed to detect these 

components from the EEG using the CANDECOMP/PARAFAC (CP) decomposition technique. Finally, we employ the mutual 

information estimation method to select influential features for classification. The highest classification accuracy, sensitivity, 

and specificity of 93.1%, 94.73%, and 90% are obtained via leave-one-out cross validation. This is the first attempt to 

investigate the identification of schizotypy by finding brain responses that are specifically associated with perceiving family 

stress and schizotypy. By measuring these responses, we achieve the goal of improving the accuracy in detection of early 

episodes of psychosis.  

Keywords: EEG, electroencephalography, event-related potentials, P300 subcomponents, schizotypal personality disorder, 

schizotypy, tensor decomposition 

 

1. Introduction 

Schizotypy is latent organization of personality traits, where 

people do not have psychosis, but occasionally have 

psychosis-like signs, such as paranormal beliefs, referential 

thinking and disorganized speech [1]. Yet, it is debatable as to 

whether schizotypy is a forerunner of psychosis [2]. 

Schizotypy is characterized by cognitive, emotional, and 

perceptual deficits, which correlate with schizophrenia 

spectrum impairments [3]. It is agreed that schizotypy 

includes three dimensions, namely positive (paranormal 

perceptual experience, unusual beliefs, delusional beliefs), 

negative (reduction of interest in physical and social 

activities), and disorganized (bizarre behavior or speech) [4]. 

Family stress is a serious risk factor that increases the risk of 

onset of psychosis [5]. People with schizotypy may not seek 

help for family stress because they do not recognize that the 
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family stress can make them susceptible to the future onset of 

psychosis [6, 7]. People with schizotypy are less prone to 

suffer future psychosis if their carer is supportive and 

expresses praise and acceptance. Good family communication 

is vital for mental health, as it allows people to understand 

each other and sustain social support [8]. So, more research is 

needed into how family stress increases vulnerability for 

psychosis. It might provide the relation between schizotypy 

and family stress. 

Electroencephalography (EEG) signals have been 

used to diagnose and predict mental disorders by means of 

advanced signal processing techniques in recent years [9], 

including the risk for psychosis [10, 11]. Event-related 

potentials (ERPs) are early attention brain responses to 

various stimuli [12, 13]. Certain ERP components are atypical 

in patients with psychosis and people at risk of psychosis, and 

they are good biomarkers of mental dysfunctions, including 

schizophrenia [14, 15]. The P300 component of ERPs reflects 

a variety of cognitive processes, although attention and 

memory (context updating) have been stressed as those 

contributing to a greater extent to its amplitude [16]. With 

regards to attention to the stimulus, different aspects are 

reflected in the two P300 subcomponents, namely P3a and 

P3b. P3a reflects stimulus-driven attentional capture (or 

automatic attention) and is anteriorly distributed [17]. P3b is 

posteriorly distributed and denotes sustained attention and 

top-down control detection of relevant events [16-18]. In 

contrast to P3b, P3a is independent of the task [19, 20]. P300 

latency indicates speed of processing. 

Studies have employed emotion or cognition tasks to 

elicit ERP components for evaluating schizotypal personality 

disorder (SPD) [21-28] or schizotypy [29-33]. The auditory 

oddball task is adept at evoking the P300 response. In it, the 

participant’s attention is alerted to an infrequent or ‘deviant’ 

stimulus appearing in the form of a higher auditory tone in 

20% of the trials, whereas the rest of stimuli (80%) consist of 

low tones and cause attentional habituation. P300 amplitude is 

maximal in response to infrequent targets in the general 

population [16]. Individuals diagnosed with SPD show 

reduced P300 amplitude during the traditional auditory odd-

ball task in information processing [21, 22]. Individuals at 

high risk for psychosis, especially those who subsequently 

convert to psychosis, also show reduced P300 amplitude to the 

infrequent stimulus than healthy individuals [17]. Kutcher and 

colleagues have shown that the P300 latency during oddballs 

is longer in SPD individuals than in normal cases [23], 

suggesting slower speed of processing of the target stimulus. 

Some studies [24, 25] have suggested that schizophrenia 

patients have a lower P300 amplitude than normal individuals 

in the auditory oddball task, whereas the SPD individuals have 

an intermediate P300 amplitude [25]. Vohs et al. [26] used a 

visual line-orientation discrimination task to compare 

schizophrenia, SPD, and normal individuals. They found that 

the schizophrenia patients have a smaller P3a amplitude and 

extended P3b latency compared to normal individuals. There 

are no significant differences between SPD and either group 

in P300 subcomponents' amplitude and latency. Increased 

P300 amplitude has also been found in a visual oddball task 

among individuals at risk for psychosis with co-morbid 

autistic spectrum disorder [34], suggesting that abnormally 

high P300 is also a risk factor for conversion to psychosis. 

Another study [29] showed that greater P300 amplitude when 

passively watching scenes depicting rejection is associated 

with greater negative schizotypy. 

Examining the P300 response to a social cognition 

oddball task would likely allow detection of attention 

impairment arising from social anxiety in schizotypy [30]. 

Altered neural and physiological responses to social 

interactions [6, 29, 30] substantiate social anxiety in 

schizotypy. People with schizotypy have lower-than-normal 

activity in the insula when listening to a close relative’s praise, 

implying lack of reward from praise [6]. Given the heightened 

sensitivity to family stress in schizotypy [6, 7], we designed a 

novel semantic oddball task in this study where the word 

‘normal’ was the frequent standard stimulus and it followed 

criticism, praise and neutral comments for the majority (75%) 

of trials. The infrequent stimulus (25% of trials) was a mood-

congruent word, e.g., ‘rage’ followed criticism, ‘happy’ 

followed praise and ‘time’ followed neutral comments. In this 

novel social cognition oddball task, increased P300 amplitude 

is hypothesised when oddballs (negative words) follow 

criticism because of the heightened sensitivity to criticism in 

schizotypy. Other semantic lexical processing tasks also elicit 

the N400 ERP component in schizotypy. One study [31] 

displayed increased N400 amplitude during both visual and 

auditory lexical processing tasks in individuals with SPD 

relative to healthy individuals. In contrast, a decrease in N400 

amplitude has been reported in females with SPD in visual 

semantic processing tasks [28] and it suggested 

overactivation, possibly implying disinhibition, of the 

semantic network because of greater ease of gaining access to 

words within semantic memory. Del Goleto et al. [31] 

designed an experiment in which individuals read short stories 

ending with either a literal, ironic or incompatible statement. 

They found that low schizotypy (LS) individuals elicited 

reduced N400 amplitudes after literal targets compared to 

incompatible targets during semantic context task that 

suggests diminished semantic processing. In contrast, the high 

schizotypy (HS) group did not produce this effect which 

suggests an impairment in lexical processing in HS [32]. 

Similar to schizophrenia patients, one study [33] suggested the 

theory of mind (ToM) impairment with a lower P300 

amplitude in the schizotypy group. They showed that 

schizotypy individuals had lower P300 amplitude in 

responding to positive, negative, and neutral ToM tasks. Thus, 

both elevated and reduced amplitudes are seen for attention-
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processing (P300) and semantic-processing (N400) ERPs 

during social cognition tasks in individuals with HS or 

schizotypal personality.  

Sophisticated EEG-based signal processing and 

machine learning research to classify HS and LS is scant in 

the schizotypy literature. One study [35] reached zero false-

positive rate by using shrinkage linear discriminant analysis 

(SKLDA) to classify HS and normal groups during an audio-

visual emotion processing task. Some studies used 

functional/effective brain connectivity to distinguish between 

schizotypy groups. Including one [36] which achieved an 

accuracy of 74.3% in their proposed method. They examined 

a combination of features including weighted phase lag index 

(wPLI) as a measure of brain connectivity to distinguish 

between two schizotypy groups. Quite recently, the authors 

have used directed transfer function (DTF) derived from 

multivariate autoregressive (MVAR) coefficients and 

achieved an accuracy of 89.21% to effectively classify the 

subjects into HS and LS categories for the first time [37]. 

Recently, tensor decomposition as a multi-

dimensional component analysis has become an attractive tool 

in signal processing [38-41]. In this study, an algorithm based 

on tensor factorization is proposed to analyze the P300 

subcomponents, namely P3a and P3b. We use a third-order 

tensor with three slabs, namely channel, time, and trial. Then, 

the tensor is decomposed into temporal, spatial, and trial 

component factors using the CANDECOMP/PARAFAC (CP) 

decomposition technique for statistical analysis of results in 

two steps. In the first step, we aim to examine significant 

differences in P300 subcomponents between pairs of mood 

descriptors within each group. In the second step, the 

significant differences are determined in P300 subcomponents 

between HS and LS groups for each mood descriptor. Finally, 

the mutual information is estimated for the features acquired 

using spatial and temporal factors to select influential features. 

Three types of popular classifiers, namely linear discriminant 

analysis (LDA), support vector machines (SVM), and decision 

tree (DT) are used to evaluate the proposed method. On the 

other hand, a fourth-order tensor in the channel, time, trial, and 

subject is employed for better visualization of detected P300 

subcomponents.  

The present study answers two main questions: (1) 

how do the ERP brain responses to emotional stimuli 

depicting family stress differentiate between HS and LS 

people, and (2) how accurately can the proposed method 

distinguish people with schizotypy from people with no 

schizotypy in the sub-clinical population and hence, qualify as 

a biomarker? It is hypothesized that: (1) P3b to deviant target 

words is larger than to standard (always neutral) target words 

only if the formers are emotional and congruent, but not if they 

are neutral and incongruent, (2) P3a amplitude does not 

significantly differ between deviant target and standard target 

words, (3) individuals with HS have higher P3b amplitude 

during deviant target words that follow criticism and praise 

than individuals with LS. The differences between HS and LS 

in P3a and P3b latencies were also measured for exploratory 

purposes. 

2. Material and methods 

2.1 Participants 

Fifty participants, including 25 HS and 25 LS (age range 18-

48 years) were screened from the general population in 

Nottingham Trent University (NTU) using methods that 

successfully recruit HS and LS participants, namely placing 

adverts on social networking websites and community centers 

for people with spiritual or paranormal beliefs, and the local 

newspaper. People with HS are those who obtained a score 

above 31 (out of 74) on the Schizotypal Personality 

Questionnaire (SPQ) [42]. People with LS are defined as those 

obtaining a score below 13 (out of 74) on the same 

questionnaire. These scores denote that people with scores in 

the 90th and 10th percentiles of the SPQ have HS and LS, 

respectively [43]. Finally, 19 HS and 10 LS individuals have 

been selected for the analysis step. Table 1 demonstrates the 

demographic characteristics and scores based on the SPQ. 

2.2 Emotional oddball task 

This task aims to determine whether people attend to a deviant 

target word (e.g., ‘happy’) more than a standard neutral target 

word (‘normal’) after listening to personal remarks (e.g., 

praise and criticism). The standard neutral target word, 

‘normal’, appeared on the computer screen in 75% of trials 

(standard trials) so that the participants habituate to the word 

‘normal’ in the majority of trials. Positive, negative, or neutral 

mood descriptors appeared as the deviant target word in 25% 

of trials. The sequence of events in the standard trials (75% of 

trials) was as follows: the participants (1) listened to the 

comment (e.g., praise), (2) saw the pre-target stimulus prime 

‘how does it make you feel?’ (the introduced interval varied 

pseudo-randomly between 300 and 650 ms to avoid 

anticipation of the time when the mood descriptor appeared), 

(3) observed the standard target ‘normal’ or the mood-

congruent deviant (positive, negative, or neutral) word (the 

target appeared for a second), and then (4) performed ‘Yes’ or 

‘No’ with a button-press. Participants could choose ‘Yes’ if 

they felt that the mood of the target word was congruent to the 

mood of the comment. A ‘No’ response indicated that the 

comment and the word were not congruent. In the deviant 

trials (25% of trials), a positive mood descriptor, e.g., ‘loved’, 

followed praise. A negative mood descriptor, e.g., ‘afraid’, 

followed criticism. A neutral mood descriptor, e.g., ‘speech’, 

followed a neutral comment. Figure 1 illustrates the trial 

structure of the emotional oddball task. 
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Table 1. Demographic characteristics and scores [Mean (S.D.)]  on the SPQ. 

 HS (n=19) LS (n=10) F/Chi-square 

(df) 

p-value 

Age 24.79 (8.12) 22.60 (3.31) 0.66 (1,27) 0.424 

Gender (male/female) 6/13 5/5 0.99 (1) 0.331 

Ethnicity (European-descent/Asian, African, 

Caribbean or similar ethnicity, other) 

17/2 6/4 3.47 (1) 0.063 

SPQ total 39.22 (6.38)* 9.10 (4.70) 170.02 (1,26) <0.001 

SPQ cognitive perceptual 18.00 (5.89)* 2.6 (1.95) 63.48 (1,26) <0.001 

SPQ interpersonal 17.39 (5.80)* 5.00 (2.62) 40.45 (1,26) <0.001 

SPQ disorganisation 9.16 (3.47)* 1.90 (2.08) 36.26 (1,26) <0.001 

* Mean (S.D.) based on 18 participants. The SPQ scores were missing for one participant. S.D. refers to standard deviation.

  

 

 Figure 1. The trial structure of emotional oddball task.

 

2.3 EEG recording and preprocessing 

The EEG was recorded using a BioSemi Active-Two system 

(Biosemi Inc, Amsterdam, Netherland) by 64 Ag-AgCl active 

electrodes based on an international 10/20 system and 2048  

 

Hz sampling rate. EEGLAB toolbox [44] running on 

MATLAB 2019a was used to preprocess the data. All data 

channels were referenced to the Cz electrode and down-

sampled to 256 Hz. Then, the EEG data were filtered using a 
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finite impulse response (FIR) highpass filter at 0.5 Hz and a 

lowpass filter at 30 Hz with zero phase shift, separately. 

Subsequently, epochs were extracted from 100 ms before the 

appearance of the stimulus and 1000 ms after that. After the 

baseline correction between -100 ms and 0, ERP trials were 

checked visually to exclude artifacts. 

2.4 Tensor decomposition 

A tensor is a multiway (N-way) array which contains N vector 

spaces with its specific coordinate system. Tensor 

decomposition is a higher-order analogue of the matrix 

singular value decomposition (SVD), which enables 

exploitation of the data diversities in different domains to 

decompose the data into their disjoint components [45]. 

Tensor decomposition, as a state-of-the-art method in signal 

processing and neuroscience, has been widely used in the past 

two decades for biosignal analysis [38-41]. In this study, we 

have used one of the most popular types of tensor 

decomposition, namely the CP decomposition algorithm. 

Before giving a brief description of the CP algorithm and its 

optimization, the notation and mathematical terminology are 

explained. 

2.4.1 Notation and terminology 

In this study, all the notations have been adopted from [46]. 

The number of tensor dimensions is defined as tensor order. 

Lowercase letters indicate scalars, e.g., 𝑎. Boldface lowercase 

letters denote vectors, e.g., 𝐚. Boldface capital letters refer to 

matrices, e.g., 𝐀 . Boldface Euler letters show high-order 

tensors (high-way arrays), e.g., 𝔂. The ith column of 𝐀 matrix 

is defined by 𝐚𝑖, compactly. A(𝑛) is defined as the nth matrix 

in a sequence. 𝔂(𝑛) is defined the mode-n matricization of a 

tensor 𝔂 ∈ ℝ𝐼1×𝐼2×…×𝐼𝑁 .The symbols ∘,∗,  and ⊙  denote 

vector outer product, elementwise product, and Khatri-Rao 

product, respectively. The Kruskal operator is denoted by ⟦ ⟧. 

2.4.2 CP-optimization 

The CP decomposition converts an input tensor into a sum of 

rank-one components, which is defined as (R denotes the 

number of components): 

𝔂 ≈ ⟦𝐀(1),  𝐀(2), … , 𝐀(𝑁)⟧ ≡ ∑  𝑅
𝑟=1 𝐚𝑟

(1)
∘ 𝐚𝑟

(2)
∘ ⋯ ∘ 𝐚𝑟

(𝑁) (1)                                             

where 𝐚𝑟
(𝑛)

∈  ℝ𝐼𝑛  for n=1, …, N, and r=1, …, R. 𝐀(𝑛), the 

factor matrices in different modes, are defined as follows: 

𝐀(𝑛)= [𝐚1
(𝑛)

 𝐚2
(𝑛)

… 𝐚𝑅
(𝑛)

]                                                           (2) 

where 𝐀(𝑛) ∈ ℝ𝐼𝑛×𝑅 for n=1, …, N, and 𝐼𝑛 is the size in mode-

n. The matrix form of ⟦𝐀(1),  𝐀(2), … , 𝐀(𝑁)⟧ can be expressed 

as follows: 

(⟦𝐀(1),  𝐀(2), … , 𝐀(𝑁)⟧)(𝑛) =  𝐀(𝑛)(𝐀(−𝑛))T                             (3)                                                                                                   

where  

𝐀(−𝑛) ≡ 𝐀(𝑁) ⊙ ⋯ ⊙ 𝐀(𝑛+1) ⊙ 𝐀(𝑛−1) ⊙ ⋯ ⊙ 𝐀(1)           (4)                                                                               

The least-square optimization problem is used for fitting CP 

problem formulation, so we have 

𝑚𝑖𝑛
A(1), A(2),… ,A(𝑁)

𝑓 ≡  
1

2
∥∥𝔂 − ⟦𝐀(1), 𝐀(2), … , 𝐀(𝑁)⟧∥∥

2
              (5)                                                                                             

For solving this problem, the alternating least square (ALS) 

method has been suggested by Harshman [47]. Some 

procedures have been developed for improving the efficiency 

of ALS. In this study, a gradient-based approach has been 

employed for CP optimization that extracts all factor matrices 

simultaneously. The partial derivatives of the cost function 𝑓 

are calculated to obtain the gradient with respect to each 𝐚𝑟
(𝑛)

. 

So, we have 

∂𝑓

∂𝐚𝑟
(𝑛) = − (𝔂 ×𝒎=𝟏

𝒎≠𝒏

𝑵  𝐚𝑟
(𝑚)

) + ∑ 𝛾𝑟ℓ
(𝑛)

𝐚ℓ
(𝑛)

𝑅

ℓ=1
 ,   

for n=1, …, N, and r=1, …, R.                                                       (6) 

where 

𝛾𝑟ℓ
(𝑛)

≡ ∏  𝑁
𝑚=1
𝑚≠𝑛

𝐚𝑟
(𝑚)T

𝐚ℓ
(𝑚)

                                                           (7)                                                                                                                               

The matrix form of Eq. (6) can be shown as: 

∂𝑓

∂𝐀(𝑛) = −𝐘(𝑛)𝐀(−𝑛) + 𝐀(𝑛)Γ(𝑛)                                                 (8)                                                                                                                

where 

Γ(𝑛) = Υ(1) ∗ ⋯ ∗ Υ(𝑛−1) ∗ Υ(𝑛+1) ∗ ⋯ ∗ Υ(𝑁),  

for n=1, …, N.                                                                       (9)                                                                                                                                                                    

The proofs of Eq. (6) and Eq. (8) have been explained in [46]. 

In this study, a generic nonlinear conjugate gradient method is 

used to solve the optimization problem [48]. 

2.4.3 Detecting P300 subcomponents using CP 

decomposition 

In this study, an automatic method is proposed for detecting 

P300 subcomponents using CP decomposition. Before tensor 

construction, each three consecutive epochs are averaged 

using a stride size of one with overlap (separately for each type 

of target word), and then concatenated. So, the data size 

remains almost the same, and the averaging length is not too 

large to be affected by fatigue or habituation. Then, a three-

way tensor 𝔂 ∈  ℝ𝐼1× 𝐼2 × 𝐼3  is constructed for each of the 

standard, positive, negative, and neutral mood descriptors. 𝐼1, 

𝐼2 and 𝐼3 denote respectively, channel, time, and trial. Factor 



 

 6  
 

matrices were acquired after applying CP optimization to 

tensor 𝔂 as follows: 

𝔂 ≈ ⟦𝐀, 𝐁, 𝐂⟧ ≡ ∑  𝑅
𝑟=1 𝐚 𝒓 ∘ 𝐛 𝒓 ∘ 𝐜 𝒓                                       (10)                                                                                                     

where 𝐚 𝒓 ∈  ℝ𝐼1×𝑅 , 𝐛 𝒓 ∈  ℝ𝐼2×𝑅  , and 𝐜 𝒓 ∈  ℝ𝐼3×𝑅  represent 

respectively, spatial, temporal and trial factors. Figure 2 shows 

the three-way tensor after CP decomposition. 

 

 

Figure 2. Factorizing three-way tensor using CP decomposition. 

 

After removing the eye-blinking component from temporal 

factors, four channels (F3, F4, P3, and P4) have been selected 

based on the typical location of P300 subcomponents. Then, 

given that P300 is symmetric over centra-lateral brain lobes, 

the average of each bilateral channel pairs has been taken for 

further steps. So, the P3a has been quantified as the average 

signal across F3 and F4 electrodes. A similar approach was 

used for P3b calculation from the mean value of the spatial 

components of P3 and P4 electrodes [49, 50]. P3a and P3b 

components have been selected based on the maximum 

amplitude within the desired time range (i.e., P3a 200-400ms 

and P3b 300ms-600ms), after multiplying the remaining 

temporal and spatial factors. Figure 3 illustrates the entire 

process of the proposed method in more detail. 

In another attempt for a better visualization of the detected 

ERP components, a four-way tensor 𝔂 ∈  ℝ𝐼1× 𝐼2 × 𝐼3× 𝐼4  

(𝐼4 corresponds to subject) has been constructed by 

concatenating subjects’ data for each group. So, the CP model 

is expressed as follows: 

 

𝔂 ≈ ⟦𝐀, 𝐁, 𝐂, 𝐃⟧ ≡ ∑  𝑅
𝑟=1 𝐚 𝒓 ∘ 𝐛 𝒓 ∘ 𝐜 𝒓 ∘ 𝐝 𝒓                       (11)                                                                               

where 𝐝 𝒓 ∈  ℝ𝐼4×𝑅 denotes subject factor. Finally, to remove 

the undesired artifacts and for a better illustration, a singular 

spectrum analysis (SSA)-based filter [51] has been applied to 

each component. 

2.4.4 Statistical analysis 

To test hypotheses 1 and 2, a paired sample t-test is conducted 

to determine the significant differences of all HS and LS 

participants between two pairs of comments including, 

standard, positive, negative, and neutral mood descriptors.  

 

 

 

Figure 3. Flow diagram of the proposed method 

 

 

The significance level for all tests was P < 0.05 (two-tailed). 

To test hypothesis 3, a two-sample t-test was applied to 

determine the significant differences between HS and LS. This 

analysis was applied between two groups of HS and LS during 

standard, negative, positive, and neutral mood descriptors. 

2.5 Schizotypy classification 

2.5.1 Feature extraction 

A total of eight ERP components, including P3a and P3b for 

standard, positive, negative, and neutral mood descriptors 



 

 7  
 

were acquired using the proposed method.  Additionally, four 

ERP components that include the whole P300 component in 

four mood descriptors were obtained using all electrodes, 

across 200-600 ms, for accurate classification between two 

groups of schizotypy. Then, the amplitude and latency of these 

components were extracted as a feature for further processing 

steps. 

2.5.2 Feature selection and classification 

Various methods have been proposed in the literature to 

facilitate classification and selection of the informative 

features. In this study, estimation of mutual information 

between features [52], as a filtering technique, is applied to 

reduce both the redundancy and dimension of features, after 

selection of significant features using t-test. Then, three types 

of classifiers (LDA, SVM, DT) have been used to distinguish 

between two groups of schizotypy. In addition to the linear 

kernel SVM, the polynomial kernel of order 3 has been 

applied for classification to achieve better performance. The 

polynomial kernel of order q is defined as [53]: 

𝐾(𝑥𝑖. 𝑥𝑗) = (1 + 𝑥𝑖
T. 𝑥𝑗)𝑞                                                     (12) 

where 𝑥𝑖 and 𝑥𝑗 are the feature vectors of two classes.  

2.5.3 Performance evaluation 

Leave one-out cross validation (LOO-CV) is used to evaluate 

the model performance. In this approach, the data from N-1 

out of N participants are used for training and one for testing. 

Then, this procedure is repeated for all the participants. Some 

performance measures namely, accuracy, specificity, 

sensitivity, and F1-score are derived as follows [37]: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
× 100                                            (13) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
× 100                                                    (14) 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
× 100                                                          (15) 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =
𝑇𝑃

𝑇𝑃+ 
1

2
 × (𝐹𝑁+𝐹𝑃)

× 100                                         (16)                                                                                              

where TP is the number of HS participants classified correctly 

in the HS class, FP is the number of LS participants classified 

incorrectly as HS class, TN is the number of LS participants 

recognized correctly in the LS class, and FN is the number of 

HS participants recognized incorrectly as LS class. 

3. Results 

3.1 Statistical analysis 

In this study, two steps are followed to determine the statistical 

analysis of the results. 

3.1.1 Comparison of amplitude and latency of 

P3a and P3b between standard and deviant 

stimuli within HS and LS groups 

Table 2 demonstrates the mean amplitude and latency of P3a 

and P3b for each mood descriptor. Furthermore, the t-value 

and p-value of each group's comparisons are shown in Table 

2. Evidently, there is a significant increase in P3b amplitude 

from the standard neutral word (‘normal’) that followed any 

type of comment to deviant negative mood-congruent words 

that followed criticism (t-value = 3.647, p-value = 0.0018) and 

from the standard neutral word (‘normal’)that followed any 

type of comment to deviant positive mood-congruent words 

descriptors that followed praise (t-value = 2.401, p-value = 

0.0273) in the HS group, the difference between negative and 

positive descriptors being non-significant (P>0.05).  With 

regards to latency of the P3a and P3b ERPs, the results show 

a significant increase in P3b latency from standard to deviant 

negative words (t-value = 3.334, p-value = 0.0037) in HS 

participants. When comparing the ERP amplitudes between 

deviant neutral words that followed a neutral comment and 

any other type of mood descriptors (both standard and deviant) 

in each schizotypy group, there is a significant increase in P3b 

amplitude from deviant neutral words to deviant negative 

words in the HS group (t-value = 2.419, p-value = 0.0264). 

Similarly, a significant increase in P3b latency is observed 

from deviant neutral words to negative deviant words in the 

HS group (t-value = 3.654, p-value = 0.0018). There was no 

significant difference between any other pair of mood 

descriptors in either HS or LS groups. 

In addition, a similar algorithm is produced using a 

four-way tensor and SSA to better illustrate the P300 

subcomponents. Figure 4 shows the comparison between 

standard and positive mood descriptors for LS and HS groups. 

Additionally, the comparison between standard and negative 

mood descriptors for LS and HS groups are illustrated in 

Figure 5. 

3.1.2 Significant differences in P3a and P3b 

between HS and LS groups during each 

mood descriptors 

Statistical results for comparison between HS and LS groups 

are reported in Table 3. In contrast to the non-significant 

findings in standard target word between two groups, there are 

significant increases in P3b amplitude (t-value = 3.401, p-

value = 0.0021) and latency (t-value = 2.161, p-value = 

0.0397) in negative target word between HS and LS when 

moving from LS to HS groups. Similarly, the HS has a more 

significant P3b amplitude than the LS in the positive mood 

descriptors. (t-value = 2.122, p-value = 0.0431). There were 

no such significant relations in any of the other mood 

descriptors between HS and LS groups. 
 



Figure 4. The comparison of P300 subcomponents between standard and positive mood descriptor for LS(a) and HS(b) groups. 

 

 

Figure 5. The comparison of P300 subcomponents between standard and negative mood descriptor for LS(a) and HS(b) groups.
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Table 3. Statistical results for comparing HS and LS groups during different mood descriptors. The significant changes are highlighted in 

bold (P < 0.05). 

     * 𝑃 < 0.05 

 
In addition, four-way tensor and SSA are used to obtain the 

visual comparison of P300 subcomponents between HS and 

LS groups. Figure 6 illustrates the visual comparison between 

two groups of schizotypy in standard, positive, and negative 

mood descriptors. 

3.2 Classification 

In this study, the EEGs from twenty-nine participants (19 HS 

and 10 LS) were used to assess the classification performance 

using the LOO-CV methodology. So, the model was trained 

on 28 participants while one participant was used as a test set. 

The set of features has been extracted, resulting in a total of 

528, including P3a and P3b features (([P3a + P3b] × 

[amplitude + latency] × 4 mood descriptors), and whole P300 

component features for all electrodes (64 electrodes × 

[amplitude + latency] × 4 mood descriptors). MI has been used 

for feature selection after feature ranking using t-test. Manual 

grid search has been used to select the optimal feature space. 

Table 4 demonstrates the classification performance of the 

proposed method. 

 The results of classification performance indicate the 

high effectiveness of ERP features for schizotypy 

assessments. Evidently, most of the participants (27 out of 29) 

are diagnosed correctly using the polynomial-SVM classifier. 

Table 4. The classification performance using different classifiers. 

Classifier type Accuracy Specificity Sensitivity F1-score 

DT 82.75 80 84.21 0.86 

LDA 89.65 90 89.47 0.91 

Linear-SVM 93.1 80 100 0.95 

Polynomial-SVM 93.1 90 94.73 0.94 

 

4. Discussion 

People with psychosis without mood disturbance, e.g., 

schizophrenia spectrum disorder, have experiences that 

include hearing voices, belief in supernatural activities and a 

belief that others are trying to harm them. Schizotypy is more 

common in families of people with schizophrenia (10%) than 

those with depression (1%), making schizotypy a risk to 

experience psychosis [54]. Diagnosis of schizotypy 

potentially provides early identification of mental disorders. 

On the other hand, any delay in diagnosis and treatment of 

psychosis-like signs contributes to poorer outcomes in 

psychosis [55]. Technological advances in signal processing 

exploit the multi-modal brain responses to accurately classify 

the people with schizotypy, which is a sub-clinical personality 

trait akin to psychosis [37]. In this study, tensor factorization, 

a state-of-the-art method, has been used for accurate detection 

of P300 subcomponents, namely P3a and P3b. To the best of 

our knowledge, this study is the first attempt to classify HS 

and LS participants using P300 subcomponents elicited during 

a novel social cognition auditory oddball task depicting family 

stress.  

As hypothesised, the P3b amplitude during deviant 

mood-congruent target words that followed criticism and 

praise was higher than the standard target word that followed 

these comments. This difference in P3b amplitude was present 

in the HS group, not the LS group, whereas, the P3a amplitude 

did not change. This finding suggests that in contrast to P3b, 

P3a is an inadvertent reaction of the brain to task-irrelevant 

stimulus events [17, 20]. Our study also shows for the first 

time increased P3b amplitude to the oddball in the HS group 

in this social cognition oddball task depicting family stress. 

The findings indicate that the P3b amplitude during deviant 

mood-congruent words following criticism and praise is 

higher in the HS group than the LS group. The higher P3b 

amplitude and longer P3b latency for negative words that 

follow criticism than neutral words that follow praise in the 

HS group further emphasise the salience of negative words  

 

Participants’ 

group 
Components Features Normal Neutral Negative Positive 

t-value p-value t-value p-value t-value p-value t-value p-value 

 

 

HS vs. LS 

 

P3a 

Amplitude -0.422 0.6758 0.154 0.8782 -0.528 0.6016 -0.703 0.4877 

Latency 0.502 0.6193 0.075 0.9407 0.271 0.7882 -0.023 0.9814 

 

P3b 

Amplitude 1.313 0.2002 1.055 0.3006 3.401 * 0.0021 * 2.122 * 0.0431 * 

Latency -1.161 0.2555 -1.077 0.2908 2.161 * 0.0397 * 0.473 0.6396 



Figure 6. The comparison between P300 subcomponents for HS and LS in standard, positive, and negative mood descriptors.

following criticism in the HS group. These findings are 

consistent with the results of some previous studies of 

increased P300 amplitude in those at risk for psychosis or in 

relation to HS [29, 34] and support our third hypothesis of 

increased P3b amplitude during deviant target words that 

follow criticism and praise in the HS group. High P3b 

amplitude suggests selective and sustained attention to the 

target stimulus; it relates to the performance of working 

memory and sustained attention in schizophrenia patients 

[56]. Abnormally high P300 amplitude in individuals at the 

risk of psychosis who also have autism is a risk factor for 

conversion to psychosis [34]. These findings suggest that 

people with HS have increased sustained attention to negative 

words that follow criticism and positive words that follow 

praise. The criticism and praise depict high expressed emotion 

(EE) and comments made by a close relative [7, 57]. HS is 

associated with greater relevance to oneself of the criticisms 

and less relevance of the praises that were used in this novel 

oddball task [7]. Individuals with HS also encounter high 

expressed emotion due to hostility more often than individuals 

with LS [6]. The increased P3b amplitude during negative and 

positive words that follow criticism and praise, respectively, 

and the longer P3b latency to negative words that follow 

criticism suggest that individuals with HS are primed by such 

comments possibly due to encountering these styles of 

communication in their family. The findings further reinforce 

the assumption that high EE is a risk factor for vulnerability 

for psychosis and not necessarily the consequence of the 

burden of illness [58]. High EE is a significant risk factor for 

schizophrenia, since there is 50% risk that people with 

schizophrenia who experience high EE will relapse a year 

later, i.e. deteriorate after a period of symptomatic relief [59]. 

On the other hand, a good relationship (warmth) reduces the 

risk of relapse by 58% after six months in people with first 

episode psychosis [60]. Diminished emotion regulation and 

more effort needed to glean the emotional words may underlie 

the higher P3b amplitude and sustained attention to these 

emotional words. Lower P300 amplitude is found during 

negative words that follow the emotion regulation strategy 

where one increases the unpleasant emotion felt by seeing an 

unpleasant image in healthy individuals [61]. The findings in 

that study suggested that increasing the intensity of negative 

feelings to an unpleasant image may limit the cognitive 
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resources to a subsequent negative word and so result in lower 

P300 amplitude to the negative word. 

Furthermore, shorter P300 latencies imply higher 

speed of processing and classification and more efficient 

attentional resources [62]. P300 latency indicates the time 

used between perception and reaction and also some 

monitoring process [63]. Our results show that the latency of 

P3b response to neutral target words following criticism is 

shorter than that for negative target words following neutral 

comments in the HS group. This suggests lower speed of 

processing for negative than neutral words. In this study, 

greater P3b latency to the deviant negative target words 

following criticism in the HS than LS group, may suggest 

delay in processing the meaning of the negative words. 

Hearing the criticism may hinder or delay the ability to attend 

to negative words. 

Finally, the machine learning results show that the 

ERP components may be a valuable brain biomarker for 

schizotypy assessment. From Table 4, our proposed method 

can classify most of the participants using some simple 

classifiers. 

The small dataset size is the major limitation of this 

study due to the loss of a large number of individuals who 

were not in the schizotypy score range. For more reliability of 

the proposed method, future studies should recruit a larger 

number of subclinical participants. In this data collection, we 

only distinguished between trials based on the target word. 

Future studies should also put the standard trials into three 

categories based on whether the comment that preceded the 

target word is a criticism, praise or neutral comment to know 

what type of comment preceded the target word in the standard 

trials. 

5. Conclusion 

This study is the first attempt to detect P3a and P3b 

components for schizotypy during a novel auditory oddball 

task using CP decomposition technique. We aimed to 

determine whether P3a and P3b amplitudes to deviant mood-

congruent target words following criticism and praise differ 

between people with HS and LS. These findings indicate that 

the P3b amplitude during deviant mood-congruent words 

following criticism and praise differ between the two groups. 

The significant group difference was observed for the P3b 

latency during deviant mood-congruent words following 

criticism. Also, we attempted to use machine learning 

algorithms to distinguish between two groups of schizotypy 

and succeed in producing a high level of accuracy in 

classification of HS and LS groups based on the P3a and P3b 

ERPs. Taken together, these results prove not only the power 

of tensor factorization in ERP detection but also the 

importance of P300 subcomponents in the assessment of 

schizotypy. Besides, we demonstrated that the family 

communication may affect social cognition in people with 

schizotypy. So, there is a need to offer more support and 

psychoeducation to families with HS about the nature of 

schizotypy and its association with communication deviance. 

The purpose is to understand how a carer’s family 

communication affects brain activity (using audio and visual 

tasks that mimic the family communication) in people with 

schizotypy. Thus, we understand how the family 

communication contributes to the neurophysiology underlying 

psychosis-like experiences at a non-clinical level. 
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