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Abstract: Word segmentation is a crucial step in children’s vocabulary learning. While 

computational models of word segmentation can capture infants’ performance in small-scale 

artificial tasks, the examination of early word segmentation in naturalistic settings has been 

limited by the lack of measures that can relate models’ performance to developmental data. 

Here, we extended CLASSIC (Jones et al., 2021) - a corpus-trained chunking model that can 

simulate several memory, phonological and vocabulary learning phenomena - to allow it to 

perform word segmentation using utterance boundary information (henceforth CLASSIC-

UB). Further, we compared our model to children on a wide range of new measures, 

capitalizing on the link between word segmentation and vocabulary learning abilities. We 

show that the combination of chunking and utterance-boundary information used by 

CLASSIC-UB allows a better prediction of English-learning children's output vocabulary 

than other models.  
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Introduction 

Word segmentation is a fundamental process in infant language development. Phonological 

word forms are not given a priori but must be extracted from continuous speech input. While 

several computational models capture basic word segmentation phenomena displayed by 

infants in small-scale artificial tasks, assessing whether models can scale-up to naturalistic 

inputs has been hampered by limited sets of measures to compare performance against. Here, 

we present a new word segmentation model which extends CLASSIC (Jones & Rowland, 

2017; Jones et al., 2021; Jones, 2016; Jones, Justice et al., 2020), a chunking model that uses 

naturalistic inputs to successfully simulate key developmental phenomena in memory and 

language. Our extended model, CLASSIC-Utterance-Boundary (CLASSIC-UB), performs 

unsupervised word segmentation using large-scale naturalistic inputs. Importantly, we assess 

our model against existing segmentation models using both standard evaluation metrics and 

novel developmental measures to provide a more comprehensive assessment of segmentation 

performance. 

Chunking models successfully account for adult (e.g., Frank et al., 2010) and infant 

(e.g., French et al., 2011; Perruchet & Vinter, 1998) word segmentation in lab tasks by 

extracting and storing frequent input sequences (chunks) as candidate words that guide 

subsequent segmentation. This allows chunking models (e.g., Kurumada et al., 2013) to 

account for lexical effects in infant segmentation such as easier extraction of novel words 

when preceded by familiar words (e.g., Bortfeld et al., 2005). Lexical effects are not 

predicted by competing models that assume a dedicated mechanism that estimates the 

location of word boundaries in speech by tracking sublexical regularities (i.e., forward and 

backward sound transitional probabilities) (e.g., Cleeremans & McClelland, 1991; Saksida et 

al., 2016). Further, chunking also accounts for infants’ sensitivity to sublexical regularities 

(e.g., Hay et al., 2011; Pelucchi et al., 2009; Saffran, Aslin et al., 1996; Saffran et al., 1997; 
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Saffran, Newport et al., 1996), because the component parts of a chunk are mutually linked, 

giving equal weight to forward and backward relations (e.g., French et al., 2011; Perruchet & 

Desaulty, 2008; Perruchet & Poulin-Charronnat, 2012; Perruchet & Vinter, 1998; although 

see McCauley & Christiansen, 2019 for a hybrid model of speech comprehension and 

production that forms chunks via backward transitional probability without the need to 

capture forward relations).  

Typically, computational investigations have used artificial language tasks to assess 

the plausibility of learning mechanisms involved in infant (e.g., French et al., 2011; Perruchet 

& Vinter, 1998) and adult word segmentation (e.g., Endress & Langus, 2017; Frank et al., 

2010). Although modelers have also examined scale-up to naturalistic input (e.g., Daland & 

Pierrehumbert, 2011; Monaghan & Christiansen, 2010; Saksida et al., 2016), such 

investigations have suffered from one important limitation: The benchmark for models’ 

segmentation accuracy have been the word boundaries present in adult vocabularies, but 

these are unlikely an accurate reflection of infants’ and children’s segmentation (e.g., 

Monaghan & Christiansen, 2010). In contrast, we introduce new measures based on 

developmental data, and specifically on the composition of children’s early vocabularies. The 

key insight here is that children’s vocabularies should be a reflection of early word 

segmentation processes: Word forms that are more easily discovered in the input should enter 

the child’s vocabulary earlier on in development. We use these novel developmental 

measures alongside traditional evaluation measures to provide a much richer assessment of 

the developmental plausibility of word segmentation mechanisms. Specifically, we use this 

suite of measures to compare CLASSIC-UB to other models that have shown different 

strengths in modeling early naturalistic segmentation. 

 We first present CLASSIC’s architecture and its extension CLASSIC-UB. We then 

discuss new measures of segmentation and show how models’ developmental plausibility can 
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be assessed when trained on naturalistic speech corpora. Finally, we compare the results of 

CLASSIC-UB to competing segmentation models (transitional probability models, Saksida et 

al., 2016; and a different chunking-based model, PUDDLE, Monaghan & Christiansen, 2010) 

and conclude that chunking might play a significant role in infant word segmentation. 

 

CLASSIC 

CLASSIC uses a domain-general chunking mechanism (Gobet et al., 2001) to model 

linguistic knowledge acquisition via experience with the sequential structure of the language. 

It is not a model of auditory perception or production per se (as basic processes that transfer 

information to the learning mechanism are not modeled), but a learning model representing 

performance increases derived from perceptual learning and efficiency in production (Jones, 

Justice et al., 2020). The accumulation of language experience is essentially represented by 

the chunking of adjacent items, gradually shifting the model’s representations from 

sublexical to lexical and multi-word units. A key assumption in CLASSIC is that the child 

already knows how to identify word boundaries. This has been implemented in CLASSIC 

because past simulations (presented in the next paragraphs) have investigated phenomena at 

an age where the child is likely to have already learned how to segment speech into words. 

Below we illustrate how CLASSIC works using a simplified example in which the model 

repeatedly processes the phonetically transcribed utterance [d, æ, d | ɪ, z | k, ʌ, m, ɪ, ŋ]1 (i.e., 

dad is coming; where | demarcates word boundaries which, as explained above, are given as 

input to the model). CLASSIC first chunks adjacent phonemes that do not cross a word 

boundary and forms biphone representations (dæ, æd | ɪz | kʌ, ʌm, mɪ, ɪŋ). Any learned 

chunks can subsequently be used to encode the input. For example, at the second iteration, 

the model would represent the utterance as [dæ, d | ɪz | kʌ, mɪ, ŋ] – i.e., proceeding from left 

to right, it uses the longest available chunks to encode each demarcated word. This way of 
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encoding preserves the input temporal structure and represents a proxy for the increased 

processing efficiency derived from acquired knowledge2. The model then continues to join 

adjacent chunks; for example, the third iteration would result in the representation [dæd | ɪz | 

kʌmɪ, ŋ], where CLASSIC has learned two of three words in the utterance. When two 

adjacent chunks are words themselves, CLASSIC crosses word boundaries and learns multi-

word sequences (i.e., dæd|ɪz in the example); thus, at the fourth iteration, CLASSIC would 

encode the utterance as a two-word sequence followed by a word: [dæd|ɪz, kʌmɪŋ]. Finally, 

in a last iteration the model would represent the whole utterance as a single multi-word 

chunk: [dæd|ɪz|kʌmɪŋ]. 

 CLASSIC accounts for the role of sublexical, lexical and multi-word sequences in 

language development. For example, in Jones (2016), incremental exposure to naturalistic 

speech supported CLASSIC’s building up of chunks at different grain sizes, capturing 85% 

of variance in nonword repetition performance - a task closely related to vocabulary learning 

(e.g., Hoff et al., 2008) – from six studies involving 2- to 6-year-old children. CLASSIC has 

also simulated vocabulary learning more directly (Jones et al., 2021): Similarly to 2-3-year-

old children learning to produce words, CLASSIC gradually learns longer, more infrequent 

words that have a smaller number of similar words in the language (i.e., lower neighborhood 

density) and higher internal predictability (i.e., higher average biphone probability, or 

“phonotactic probability”). Jones et al. (2021) also showed that novel words entering 

children’s productive vocabularies are more likely to share large phonological chunks with 

words they already use, indicating a pivotal role for phonological knowledge in vocabulary 

learning. In sum, these studies have shown that sublexical knowledge can be used to learn 

and produce pseudowords and real words (see Baayen et al., 2019; Chuang et al., 2021 for 

similar conclusions using linear discriminative learning). 
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Finally, Jones, Justice et al. (2020) showed that phonological knowledge plays an 

important role in learning multi-word sequences. CLASSIC captured the faster increase in 

children’s short-term memory for digit over word sequences, likely because chunks that span 

multiple digits are learned more quickly from random combinations of digits occurring in 

naturalistic speech. This study also showed how knowledge of multi-word sequences 

facilitates lexical processing (e.g., processing of the individual items five and six becomes 

more efficient when the two are presented within a familiar multi-word sequence five-six). 

 In sum, CLASSIC is a chunking-based model that has captured important 

developmental phenomena in word learning, but has not yet been applied to word 

segmentation. Here we show how CLASSIC can be extended to perform word segmentation, 

thus making the model more developmentally plausible: Infants must of course discover 

word forms before they can learn novel words and integrate them into their existing 

vocabulary (Newman et al., 2016).  

 

CLASSIC-UB 

To extend CLASSIC to perform word segmentation, we retained CLASSIC’s architecture but 

removed word boundary information from the model input (i.e., the model is not constrained 

to chunk items within demarcated words). We also added utterance boundary information 

using positional markers (↵), which signal utterance start or end. Such positional markers 

were coded by transcribers of the input corpora used in this study, based on various syntactic 

(e.g., utterances are centered around a main clause) and prosodic cues (e.g., pauses, 

intonation patters distinguishing declarative, interrogative, or other clauses); note that only 

written transcriptions were available for most of the input, not the original speech recordings, 

so it was not possible to automatically assign positional markers based on – for example - 

changes in phonetic features. Positional markers have been used in previous computational 
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work (e.g., Aslin et al., 1996; Christiansen et al., 1998; Saksida et al., 2016) as a proxy for the 

increased saliency that phonological units at utterance boundaries gain in child-directed 

speech (e.g., Fernald & Mazzie, 1991). This has been modeled via conjunctive use of 

utterance-boundary markers and phonological units to perform distributional learning (e.g., 

utterance-boundary+syllable constitutes a pair of units for which transitional probabilities 

can be obtained; Saksida et al., 2016). In a similar way, CLASSIC-UB treats utterance-

boundary markers as additional units that can be used to form chunks (i.e., a chunk becomes 

longer when an utterance-boundary marker is attached to a phonological sequence). 

We present a version of CLASSIC-UB that uses utterance-final markers, and one that 

uses both initial and final markers. Infants may privilege utterance-final words (e.g., Aslin et 

al., 1996; Christiansen et al., 1998), as these gain perceptual prominence from syllable 

lengthening (Wightman et al., 1992) and sentential accent in English (Cinque, 1993). 

However, some studies suggest that infants may use both initial and final markers in 

segmentation (Seidl & Johnson, 2006; 2008). In fact, different cues could facilitate 

segmentation of utterance-initial words (e.g., exaggerated amplitude, duration, pitch, and 

formant structure; Cruttenden, 1986). Therefore, presence of initial markers should provide 

additional facilitation over utterance-final cues. We are not aware of any computational 

studies assessing the relative contribution of initial and final boundaries, thus comparing 

CLASSIC-UB with final markers to CLASSIC-UB with both initial and final markers could 

shed light on the factors that facilitate word segmentation at utterance edges. 

Figure 1 illustrates how CLASSIC-UB segments input, after this has been transcribed 

using the CMU pronouncing dictionary (Lenzo, 2007), which contains over 134,000 phonetic 

transcriptions of English words and provides an automatic way to convert large orthographic 

input into phonetic form (using alphabetic codes for phonemes rather than IPA e.g., AE 

rather than æ). When encoding the utterance-final biphone AED in the first utterance, the 
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model learns the chunk with an associated utterance-final marker (i.e., AED↵). If the chunk 

AED appears in later utterances, even in word-medial positions, the model will recognize that 

it can be used in word-final position assuming a word boundary at this location (see the third 

utterance dad is coming). This also shows how the following phone (IH) is marked as ‘can 

begin a word’ based on the model flagging AED as ending the preceding word DAED (bold 

chunk of Figure 1). The same logic applies to utterance-initial markers. In essence, the 

function of the ↵ markers within chunks is akin to “this chunk can appear at the 

[beginning/end] of a word”. 

 

 

Figure 1. CLASSIC-UB generalization of utterance-boundary markers to utterance-medial 

position. Solid lines indicate grouping of adjacent items into single chunks and storage into 

the lexicon. Dashed lines indicate use of stored chunks to segment speech. Lines are only 

shown for the first utterance. Time indicates independent presentations of new child-directed 

utterances. All English phonemes are present in the lexicon but are not shown for reason of 

space. The transcription used is based on the CMU pronouncing dictionary (Lenzo, 2007). 
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Like CLASSIC, CLASSIC-UB processes phonemic input. As such, it assumes that 

children already know phoneme categories, in line with an early phonetic category learning 

approach (e.g., Werker, 2018) and previous computational studies in word segmentation 

(e.g., Batchelder, 2002; Daland & Pierrehumbert, 2011; Goldwater et al., 2009; but there are 

alternative approaches, which we briefly refer to in the General Discussion). Knowledge of 

sound categories and co-occurrences of sounds might begin to develop at the same time or 

soon after infants start segmenting speech into words at around 6 months of age (Bortfeld et 

al., 2005). For example, between 3 and 9 months infants discriminate between and learn new 

phonetic categories using distributional cues (e.g., Cristià, McGuire et al., 2011; Maye et al., 

2008; Mersad et al., 2021; Yeung et al., 2014), they can use this information in word 

segmentation (e.g., Jusczyk & Aslin, 1995), and soon after in word recognition (12 months; 

Mani & Plunkett, 2010) and word learning tasks (14 months; Fais et al., 2012). Similarly, 

between 4 and 9 months infants attune to native phonotactic patterns (Cristià, Seidl et al., 

2011; Jusczyk et al., 1994), and can use this knowledge in word segmentation (e.g., Mattys & 

Jusczyk, 2001). Nevertheless, we also run all of our simulations on syllabified input (see 

Method), because infants may initially perceive syllables as basic linguistic units (e.g., 

Bertoncini & Mehler, 1981). 

As with CLASSIC, items that co-occur often will have more opportunities to be 

chunked together by CLASSIC-UB. This facilitates subsequent segmentation in two ways. 

First, when a word is frequent in the input, its sublexical components will have more 

opportunities to be chunked together, reaching a whole-word representation faster. This 

makes the model frequency-sensitive, even though frequency is not explicitly tracked (unlike 

in other chunking models, such as PUDDLE; Monaghan & Christiansen, 2010; see Appendix 

S1 for a detailed description of this model). Second, learning words that share phonological 
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material with other words will be facilitated by the reuse of existing chunks (e.g., learning 

just can make the sequence ust available to subsequently learn crust). Other models, such as 

PUDDLE, do not include this mechanism and rely on frequency information alone. 

The number and size of chunks changes as more input is processed. CLASSIC-UB 

processes input incrementally (i.e., one utterance at a time), as other segmentation models 

(e.g., French et al., 2011; Monaghan & Christiansen, 2010; Perruchet & Vinter, 1998). As 

shown in Figure 1, each utterance is encoded, from left to right, by using existing chunks 

present in the model lexicon. Consistent with previous chunking models (e.g., Batchelder, 

2002; French et al., 2011; Perruchet & Vinter, 1998), preference is given to encoding larger 

chunks over shorter ones. For example, the chunk AED↵ which contains a boundary marker 

is preferred over the shorter chunk AED, which does not contain a boundary marker. At the 

same time, new/larger chunks are stored in the model lexicon by joining adjacent encoded 

items together, facilitating subsequent segmentation. This makes the learning process 

plausible, as children’s learning happens incrementally, as a function of their accumulating 

knowledge of the language (e.g., Jones et al., 2021). 

Crucially, selecting larger chunks over shorter ones means that chunks formed by 

sublexical sequences and utterance-boundary markers are dispreferred to words, thus 

avoiding oversegmentation. At the same time, the presence of utterance-boundary markers 

prevents the model from building large undersegmented chunks. Together, these two 

mechanisms favor segmentation at the (intermediate) word-level. However, there is no 

explicit rule defining when the model should stop building chunks of increasing size. In fact, 

at later stages, the model stores multi-word chunks (consistent with representation of multi-

word sequences from 11 months; e.g., Jones, Cabiddu et al., 2020; Skarabela et al., 2021). 

Notably, such longer chunks can include multiple boundary markers, which means the model 

can represent multi-word sequences while also retaining knowledge of the individual words 
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composing the sequence. For example, an utterance such as I’ll do it later could be encoded 

using the two chunks ↵I’ll↵do↵it↵ and later↵. 

 In sum, CLASSIC-UB learns chunks including both phonological and utterance-

boundary information. Chunks gradually increase in size facilitating subsequent 

segmentation. Below, we discuss the problem of evaluating models of early naturalistic 

segmentation and describe new measures we used to assess CLASSIC-UB’s developmental 

plausibility. 

 

Evaluation of Naturalistic Speech Segmentation 

Corpus-based evaluations of segmentation models usually compare models’ output to 

segmented transcriptions of child-directed speech (e.g., Monaghan & Christiansen, 2010). 

Precision and Recall are two widely used measures. Precision is the number of words 

segmented by a model divided by the total number of items segmented (including 

segmentation errors) (i.e., how many of the items found are words). Recall is the number of 

words segmented by a model divided by the total number of words in the input (i.e., how 

many words present in the input are found). In these two measures, chunking models perform 

above models that segment speech randomly (e.g., Bernard et al., 2020; Monaghan & 

Christiansen, 2010), in line with results from computational studies capturing artificial 

language learning (e.g., French et al., 2011). For example, in Larsen et al. (2017) the 

chunking model PUDDLE showed the highest performance, reaching 82% Precision and 

80% Recall. In contrast, another class of models that track sound transitional probabilities 

(see Appendix S1 for a detailed description) perform better than the random baselines (e.g., 

Bernard et al., 2020) but less well than chunking models (e.g., 43% Precision and 51% Recall 

in Larsen et al., 2017). 
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Although these measures capture how accurately models segment the input, they do 

not capture their developmental plausibility. The use of segmented input to evaluate model 

performance makes the implicit assumption that infants segment speech in an adult-like way 

but, as discussed by Larsen et al. (2017), this assumption is likely to be wrong, given 

evidence that infants’ initial protolexicons are comprised of words and frequent 

phonotactically legal nonword sequences (e.g., Ngon et al., 2013).  

Addressing this problem is not straightforward because we do not know how infants 

segment speech in naturalistic settings. Larsen et al.’s (2017) solution is to link model 

accuracy to word age of acquisition. For example, dog is understood by a higher proportion 

of children at 13 months than deer, and this should be reflected by a more accurate 

segmentation of dog than deer (i.e., dog is correctly segmented on more occasions). 

Theoretically, the reasoning behind using word learning as a proxy for segmentation 

performance is that vocabulary knowledge (word-meaning mapping) is facilitated by word 

segmentation (e.g., Estes et al., 2007; Hay et al., 2011). For example, in Estes et al. (2007), 

infants were able to extract, store and recognize word forms previously presented in fluent 

speech to successfully perform a label-object association task. In sum, words that are 

acquired early must also be accurately segmented at earlier ages.  

Interestingly, when Larsen et al.’ (2017) measure is used, transitional probability 

models perform better than chunking models despite discovering fewer words in the input as 

mentioned above. For example, a transitional probability model explained 19% of variance in 

age of acquisition (the highest performance in the study), while the chunking model 

PUDDLE explained only 7% (Larsen et al., 2017).  

Here we also capitalize on the link between vocabulary knowledge and segmentation 

as suggested by Larsen et al. (2017), but instead of age of acquisition derived from parental 

report, we use age of first production derived from child speech (Grimm et al., 2017). 
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Looking at production rather than comprehension has drawbacks, but also important 

advantages. The words children produce are of course not a direct reflection of their 

segmentation abilities. Production involves additional factors related to recalling stored 

instances from the lexicon and to articulation, and of course what children spontaneously 

produced at the time of recording does not reflect the entirety of their comprehension 

vocabularies. Further, there are limitations inherent in estimating children’s knowledge from 

a small number of relatively short samples of speech, filtered through adult transcribers’ 

potentially biased judgement (e.g., leading to the omission of non-lexical productions). 

Nevertheless, using production vocabularies has two key advantages. First, it dramatically 

increases the number of words examined: the British CDI (Alcock, 2020), a parent-report 

measure of age of acquisition, only comprises 330 words3, lacking sufficient statistical 

sensitivity. Second, we found that the CDI word sample has a word frequency distribution 

shifted toward high-frequency words, not reflecting the Zipfian input infants hear (i.e., many 

low frequency and few high-frequency word types; Hendrickson & Perfors, 2019)4. Using 

such sample might bias results because transitional probability models might perform well 

only because the distribution considered is less skewed toward low frequency words 

(Kurumada et al., 2013). 

We additionally propose a new measure examining whether a model can capture 

word-level characteristics of child vocabularies. Previous measures do not examine whether a 

model capitalizes on sublexical/lexical regularities (similarly to how learning is evaluated in 

lab settings). Traditional measures are focused on finding a mechanism that minimizes 

segmentation errors, while the age of acquisition/production measure is focused on the time 

course of acquisition. In contrast, with our final set of analyses we assess whether the 

characteristics of the vocabulary learnt by a model reflect what children have produced in the 

language corpora. In other words, we assess whether models and children are sensitive to 
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input characteristics in a similar way. We focus on three lexical measures (word frequency, 

word length, neighborhood density) and one sublexical measure (phonotactic probability). 

These characteristics can explain approximately 50% of variance in word learning (Stokes, 

2010, 2014; Storkel, 2009). 

Finally, although word comprehension as a marker of vocabulary growth is 

predominant (e.g., Fernald & Marchman, 2012), the use of evaluation measures based on 

early production is reasonable given both the relation between early vocalizations and 

vocabulary growth (McGillion et al., 2017), and the relation between early segmentation 

abilities and later expressive vocabularies (Newman et al., 2006; 2016). 

In summary, we ask whether a novel chunking account of word segmentation can 

scale-up to naturalistic speech in a developmentally plausible way, by comparing CLASSIC-

UB to a model that has shown a high performance in traditional measures of naturalistic 

segmentation (PUDDLE), and to backward and forward transitional probability models that 

might account for a high proportion of variance in child word knowledge (Larsen et al., 

2017). We also ask whether utterance-initial edges play a role in segmentation beyond final 

edges, by comparing two different implementations of CLASSIC-UB. Finally, we ask 

whether transitional probability models can capture developmental data better than chunking 

accounts, by comparing PUDDLE to transitional probability models to test whether we 

replicate previous results (Larsen et al., 2017) but using different corpora and performance 

measures. 

 

Method 

Computational Models 

We compared CLASSIC-UB to forward and backward transitional probability (Saksida et al., 

2016), PUDDLE (Monaghan & Christiansen, 2010), and a random baseline relying on a coin 
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toss to place a boundary after each input unit (Lignos, 2012). A full description of these 

models can be found in Appendix S1. We implemented them to process syllables or 

phonemes as basic units (see Appendix S2 for details). Python and R scripts for preparing the 

input, running the models and analyzing the output are available at the OSF page 

https://doi.org/10.17605/OSF.IO/KBNEP.  

 

Corpora 

Seven CHILDES English corpora were used following Grimm et al. (2017) (see Table S2A 

and Appendix S2 for input preprocessing and characteristics). We only considered transcripts 

of target child age 2 as input for the models. While infants start segmenting speech much 

earlier than age 2, our choice to focus on this age group was motivated by the much smaller 

size of corpora of speech directed at children of younger ages (e.g., 54,274 utterances at age 1 

vs. 604,000 utterances at age 2). As we show in Appendix S2, this limits the 

representativeness of input directed at children of younger ages. In total, the input to models 

contained 604,000 utterances (MLU = 4.39) from 332 different speakers, directed to 53 target 

children. Note that such input is 3 to 60 times larger than input used in previous studies 

(Christiansen et al., 1998; Daland & Pierrehumbert, 2011; Larsen et al., 2017; Monaghan & 

Christiansen, 2010; Saksida et al., 2016). 

 

Measures of Model Performance 

Precision and Recall. We compared models’ performance by looking at the pairwise 

differences in mean Precision and Recall (e.g., Monaghan & Christiansen, 2010). We tested 

the last 10,000 utterances of output because models’ performance was stable (see Figure 2) 

and because testing the entire output (i.e., 604,000) would have led to significant results even 

for trivial differences. We used a Welch’s t-test for unequal variances, with p values and 
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bootstrap 95% confidence intervals corrected for multiple comparisons using Holm’s 

correction. 

 

Word Age of First Production. Transcripts’ MLU was used as a proxy of word age of first 

production following Grimm et al. (2017) (see Appendix S3 for details). MLU is a useful 

estimator of child gross linguistic skills (i.e., developmental stage), controlling for the fact 

that children with similar age might be far apart in terms of language development. The 

sample comprised 5,480 words. We fitted linear regression models predicting word age of 

first production, as a function of the log10 number of times a target word was correctly 

segmented by each algorithm (Larsen et al., 2017). The latter was weighted by dividing it by 

input word frequency before fitting the regression models, as the two variables correlate 

highly with each other (e.g., for a random baseline, the Pearson correlation is .92). Word 

frequency correlates highly with the age of word acquisition (e.g., Morrison et al., 1997), 

therefore failing to control for its effect might lead to results that are an artifact of frequency. 

Indeed, input frequency tends to strongly affect models’ performance (e.g., for the random 

model, the correlation between the number of correct segmentations and age of first 

production drops from .58 to .20 after controlling for frequency). Therefore, controlling for 

input frequency allows us to assess the performance of each segmentation algorithm over and 

above the fact that words that appear more often are acquired earlier.  

Since previous studies have not used weighting by word frequency, we also include 

analyses for the unweighted measure in Appendix S6 to facilitate comparison. To foreshadow 

our findings, differences between models are consistent when using either the weighted or 

unweighted measure, with only one exception (pertaining to transitional probability models) 

which is discussed in the General Discussion. 
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Comparisons between models are based on pairwise differences in Adjusted 𝑅2 from 

the regression models; we bootstrapped the 95% confidence interval of the difference 

between coefficients and corrected the interval using Holm’s correction (Grimm et al., 2017). 

We conclude that two coefficients differ significantly from one another if the corrected 

confidence interval does not include zero. 

 

Word-level Measures. The distributions of unique words discovered by each model were 

compared to children’s actual vocabulary (i.e., the words produced by children in the corpus) 

in terms of phonemic length, word frequency, neighborhood density and phonotactic 

probability. Following Jones et al. (2021), the distribution of words relative to sublexical and 

lexical characteristics should be similar between children and model if the model’s learning 

mechanism is developmentally plausible. 

As in previous studies (e.g., Storkel, 2009; Swingley & Humphrey, 2018; Vitevitch & 

Luce, 1998), word length refers to the number of phonemes in a word; word frequency is the 

log10 frequency of a word across the input; phonotactic probability is the average probability 

of a phoneme pair to appear in a word; neighborhood density is the raw count of phonemic 

words that differ from a target word by one phoneme (i.e., by deletion, insertion or 

substitution). Note that phonotactic probability and neighborhood density were stress-

unmarked to be consistent with previous work (e.g., Storkel, 2009; Swingley & Humphrey, 

2018). 

We carried out a Chi-Square Goodness of Fit Test to compare (observed) probabilities 

of a word being of a certain length (in the output of a segmentation model) to the (expected) 

probabilities in children’s utterances (we focus on lengths 2-8 phonemes due to the low 

number of words at other phonemic lengths). Probabilities are defined as the proportion of 

types at each length. We then look at the pairwise differences in Chi-Square test statistics, 
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using bootstrap confidence intervals as described in the previous section. In other words, this 

analysis first looks at how close each model is to children, and then uses the estimates of such 

distance to compare models to one another. 

For word frequency, neighborhood density and phonotactic probability (which are 

continuous measures) we followed a similar procedure to the above, but used a Kolmogorov–

Smirnov test statistic. Following Piantadosi et al. (2012), we divided each of these measures 

by word length. Word length tends to be anti-correlated with word frequency (e.g., Zipf, 

1936) and neighborhood density (Storkel, 2004), and positively correlated with phonotactic 

probability (Storkel, 2004). In our dataset, the correlations varied from moderate to strong 

(Spearman’s rho [length, frequency] = -.37; Spearman’s rho [length, neighborhood density] 

= -.86; Spearman’s rho [length, phonotactic probability] = .42).  

 

Results and Discussion 

We first report results for Precision/Recall and age of first production, and finally for word-

level measures. For ease of readability, in each subsection we only give a discursive 

presentation of key results and point to statistical results in the Appendix. Both CLASSIC-

UB initial and CLASSIC-UB initial-final are included in this section, but for reasons of space 

a discursive comparison between the two can be found in Appendix S11. 

 

Precision and Recall 

All models showed rapid learning (see Figure 2), reaching a ceiling in performance after 

approximately 40,000 utterances and indicating that the quantity of the input does not affect 

models’ performance (consistent with Daland & Pierrehumbert, 2011). Pairwise statistical 

comparisons can be found in Appendix S4. All models segmented the input above chance 
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(baseline), except for transitional probability models when the input was syllabified (see 

Figure 2b and Table S4B). 
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Figure 2. Mean Precision and Recall performance with phonemic (2a.) and syllabic (2b.) 

input. The figure shows the random baseline, backward (BTP) and forward transitional 

probability (FTP), CLASSIC-UB with utterance-final and initial-final markers, PUDDLE. 

Performance is averaged every 1000 utterances (Stage). Only the first 120 stages are shown 

to better appreciate changes in performance and because the performance of the models is 

stable. Grey confidence bands indicate the 95% confidence interval around the mean. 

 

In line with Larsen et al. (2017), PUDDLE shows the best performance, 

outperforming baseline, transitional probability and CLASSIC-UB models. When using 

phonemic input, 73% of items found by PUDDLE are words (Precision) and the model 

discovers 79% of input words (Recall). This model’s accuracy is higher when segmenting 

syllabified input, reaching 85% Precision and 89% Recall. CLASSIC-UB’s performance lies 

between PUDDLE and transitional probability models, with CLASSIC-UB initial-final 

reaching 50% Precision and Recall with phonemic input, and 66% Precision and 58% Recall 

with syllabified input. 

 Overall, the models segmented naturalistic speech above chance. However, while 

traditional measures examine models’ accuracy, they tell us nothing regarding whether the 

model’s segmentations reflect how infants segment speech, and we are not able to make any 

claim regarding the plausibility of a model compared to another. To address this issue, we 

turn to the next set of measures, which relate model performance to child data.  

 

Word Age of First Production 

Only CLASSIC-UB initial-final (Adj 𝑅2 = .084 [.066, .103]), CLASSIC-UB final (Adj 𝑅2 = 

.079 [.062, .100]) and PUDDLE (Adj 𝑅2 = .078 [.060, .097]) - and only when run on 

phonemic input - outperformed the baseline (Adj 𝑅2 = .036 [.023, .052]) at predicting word 
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age of first production (see Table 1 and all pairwise comparisons in Table S5A). Note that 

although the size of Adjusted 𝑅2 is small, it is in line with Larsen et al. (2017), who for 

example showed that PUDDLE explained .067 of variance in child age of acquisition5. 

Surprisingly, when the models were run on syllabic input, none of them passed the baseline 

test (see Table S5A). We discuss this unexpected finding in Appendix S13. Also, note that 

the results reported above are based on weighting the predictor measure by frequency as 

explained in the Method section. Results for the unweighted measure are reported in 

Appendix S6. 

Crucially, while CLASSIC-UB has lower Precision and lower Recall compared to 

PUDDLE (see Figure 2), the two models explain the same proportion of variance in child 

word age of first production (~8%), suggesting that achieving lower segmentation accuracy 

might not necessarily lead to lower developmental plausibility. Nevertheless, age of first 

production does not take into account the characteristics of the model’s vocabulary, nor does 

it answer questions about whether model and children are sensitive to similar sublexical and 

lexical characteristics. The following fine-grained word-level measures address these 

questions. 

 

Table 1 

Adjusted R2 for linear regression models predicting word age of first production as a function 

of weighted Log10 number of times a word was correctly segmented by each model. 

Heteroskedasticity-robust standard errors are computed using a HC2 estimator. Lower Bci 

and Upper Bci indicate lower and upper bounds of bootstrap confidence intervals around the 

estimate (based on 1000 iterations). Holm’s correction was applied by expanding the 

confidence intervals. 

 Phonemic input Syllabified input 

Model Adjusted R2 Lower Bci Upper Bci Adjusted R2 Lower Bci Upper Bci 
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Baseline .036 .023 .052 .041 .027 .057 

BTP .044 .030 .059 .000 .000 .002 

FTP .046 .030 .060 .013 .007 .021 

CLASSIC-UB final .079 .062 .100 .021 .012 .030 

CLASSIC-UB initial/final .084 .066 .103 .038 .025 .051 

PUDDLE .078 .060 .097 .061 .043 .078 

 

Word-level Measures 

In line with the previous analysis, the models approximated children’s vocabularies better 

than the baseline only when run on phonemic input. Therefore, in the following sections we 

report results for the phonemic analysis. Results of the syllabic analysis are included in 

Appendix S7-S10, and we also discuss this finding in Appendix S13. 

 

Phonemic Length. Qualitatively, all models learned more short than long words (see Figure 

3) as children do (e.g., Storkel, 2009). However, CLASSIC-UB (both initial and initial-final) 

approximated the proportion of long words learned by children better than either PUDDLE or 

transitional probability models. The two CLASSIC-UB models were also the only ones to 

outperform the baseline (see Table S7B). We discuss this result in the General Discussion. 

 Finally, note that PUDDLE’s performance at approximating children’s vocabularies 

by phonemic length did not differ from forward and backward transitional probability 

models.  
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Figure 3. Proportion of word types produced by children and discovered by each model by 

phonemic length, when phonemic input is used. 

 

Word Frequency. Children’s vocabularies are Zipfian like the input they receive (e.g., 

Hendrickson & Perfors, 2019), and as such comprise more low frequency than high 

frequency words. 

 No significant difference was found between PUDDLE and CLASSIC-UB at 

approximating child vocabularies by word frequency (see Figure 4 and Table S8B), but 

chunking models outperformed transitional probability models. This result is in line with 

empirical evidence showing that chunking models are better than transitional probability 

models at capturing lexical effects (e.g., Frank et al., 2010).  

 

 

Figure 4. Gaussian kernel density estimate of the distribution of unique words in children’s 

speech (Children) and discovered by each model, by Log10 word frequency (weighted by 

dividing a word frequency value by its phonemic length). Phonemic input is used. The area 

under each curve represents 100% of data points. Curve peaks represent the mode of each 

distribution.  
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Neighborhood Density. In line with the fact that the majority of words in the language have 

zero or few lexical neighbors (e.g., Vitevitch, 2008), child vocabularies are populated by a 

high number of low-neighborhood words. In this measure, only CLASSIC-UB final 

outperformed the baseline at approximating child vocabularies by neighborhood density, and 

this model performed significantly better than all other models (see Figure 5 and Table S9B). 

We return to this result in the General Discussion. 

 

 

Figure 5. Distribution of unique words in child speech (Children) and discovered by each 

model, by neighborhood density (weighted by dividing a word neighborhood density value 

by its phonemic length). Phonemic input is used. 

 

Phonotactic Probability. As shown in Figure 6, child vocabularies are populated by words 

with low internal predictability (e.g., Storkel, 2009). All models were equally good at 

approximating child vocabularies, in line with evidence showing that both chunking and 

transitional probability models are sensitive to sublexical regularities in the speech input. 

However, the models’ performance did not differ statistically from the baseline model (see 

Table S10B), suggesting that this measure might not provide sufficient sensitivity for 

evaluating segmentation models. 
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Figure 6. Distribution of unique words in child speech (Children) and discovered by each 

model, by phonotactic probability (weighted by dividing a word phonotactic probability 

value by its phonemic length). Phonemic input is used. 

 

General Discussion 

We compared CLASSIC-UB, a word segmentation model that uses naturalistic input, to 

another chunking model, PUDDLE, as well as to non-chunking accounts of word 

segmentation. We broadened the assessment of model developmental plausibility by 

introducing new measures that relate model performance to child corpus data. We found that 

CLASSIC-UB acquired a vocabulary which more closely captures child vocabularies than all 

other models – for example, both children and CLASSIC-UB learn a higher proportion of 

long and low-neighborhood words compared to other models. We discuss each of these 

findings in turn below. 

 

Measures of Developmental Plausibility 

In line with Larsen et al. (2017), we found that traditional evaluation measures can be 

inconsistent with measures based on child speech. In fact, overall, CLASSIC-UB performed 

better than PUDDLE at predicting measures based on child speech, despite segmenting 

approximately 30% fewer word tokens. One reason for this finding might be that traditional 



 27 

measures represent an adult benchmark. Infants might not segment speech into the same units 

as adults, but might – at least initially - segment and store a protolexicon made of both word 

and frequent non-word units (Ngon et al., 2013). This is also consistent with different 

accounts (e.g., Cutler et al., 2012; Pinker, 1994) that predict that learners should commit 

segmentation errors based on the same cues that allow them to segment speech (e.g., 

rhythmic structure of the language, possible-word constraint, phonotactic constraints). 

Although we still do not know which specific errors - and more importantly in which 

proportion - infants make when segmenting naturalistic speech over the course of 

development, the present findings nevertheless suggest that carrying out an in-depth 

examination of the kind of vocabulary built by models might be a first step toward assessing 

models’ developmental plausibility.  

In Larsen et al. (2017), transitional probability models explained a higher proportion 

of variance in age of acquisition than chunking models. Using our adapted production 

measure, we showed that this result might depend on controlling for the role of word 

frequency. Namely, if one controls for frequency, transitional probability models do not 

actually perform above chance (see TP models vs. Baseline in Table S5A). This means that 

the higher performance of transitional probability models might be largely driven by input 

frequency. Note that this finding is not dependent on using a production measure; in a 

supplementary analysis (see CDI addendum in OSF), we examined the models’ ability to 

predict age of acquisition based on the UK CDI (a comprehension-based measure). When the 

comprehension measure is not frequency-weighted, we replicate Larsen et al. (2017). But 

importantly, when the measure is frequency-weighted, CLASSIC-UB again performs better 

than other models (consistent with the production-based analyses reported here). 

We suggest that our proposed set of word-level measures might provide a richer and 

more nuanced method to evaluate the developmental plausibility of segmentation models. 
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First, findings from word-level measures were in line with the age of first production results, 

with chunking models outperforming transitional probability, and models run on syllabified 

input performing at chance (see Table S7B-S10B and Figures S7A-S10A). In line with 

previous findings capturing in-lab data (e.g., French et al., 2011; Kurumada et al., 2013), 

word-level measures also showed that while both transitional probability and chunking 

models closely approximated child vocabularies at the sublexical level (phonotactic 

probability), chunking models performed better when lexical measures were considered 

(word length, word frequency, neighborhood density). 

Secondly, word-level measures provided a more detailed test of the models’ lexical 

characteristics, highlighting performance differences that might be attributed to architectural 

differences across models. Indeed, CLASSIC-UB’s learning mechanism facilitates the 

discovery of words that overlap phonologically with previously discovered words. This 

allowed the model to approximate a greater proportion of children’s long/low-neighborhood 

words than competing models (see Figure 3 and 5). Therefore, uniquely relying on 

mechanisms that privilege highly probable sequences (e.g., PUDDLE, transitional probability 

models) makes it difficult to capture a portion of long/low-neighborhood words that are 

generally more difficult to learn, but that children nevertheless learn and that CLASSIC-UB 

can learn by exploiting phonological overlap. Interestingly, this feature of CLASSIC’s 

learning mechanism also means the model can account for nonword repetition effects (Jones, 

2016) that are due to phonological overlap across word and nonword sequences. Similarly, it 

is possible that CLASSIC-UB captures additional processes of storage and recall involved in 

word production (i.e., going beyond aspects of segmentation), and that this sensitivity 

explains its superior performance in approximating the characteristics of children’s 

productions.  



 29 

Although CLASSIC-UB more accurately represents the make-up of children’s early 

lexicons, its accuracy in segmenting words is not quite as good as that of PUDDLE (i.e., 

PUDDLE has a larger vocabulary). One could therefore argue that at earlier stages in 

PUDDLE’s learning, word-level characteristics may match those of CLASSIC-UB and that it 

is only the subsequent increase in PUDDLE’s vocabulary that skews their distribution. We 

conducted additional analyses (see Appendix S12) to evaluate this possibility. These analyses 

show that differences in vocabulary size do not explain the differences in word-level 

measures (see Figure S12A).  

Finally, to support our claim regarding the role of overlapping phonological 

sequences in CLASSIC-UB, we conducted an additional exploratory analysis showing that 

CLASSIC-UB’s ability to better approximate children’s vocabulary in word length and 

neighborhood density increases as word frequency increases (see Figure S12B). This is in 

line with recent work showing that frequent words are more likely to share phonological 

material with previously learned words, therefore boosting child learning compared to less 

frequent words (Jones et al., 2022). Our result is also in line with evidence showing an effect 

of overlapping phonological sequences on vocabulary learning at around 2 years of age (e.g., 

Jones et al., 2022; Stokes, 2010; Storkel, 2009), but no effect at 12–15 months (Swingley & 

Humphrey, 2018), suggesting that children first build a diverse repertoire of phonological 

chunks which later boost word learning (for a computational test of this idea using CLASSIC, 

see Jones & Rowland, 2017).  

Overall, our results speak in favor of models that exploit phonological overlap 

between sequences in word segmentation (e.g., French et al., 2011; Perruchet et al., 1998) 

and add to previous work which highlights the significant role of this in word processing and 

acquisition (Gathercole, 1995; Jones et al., 2021). 
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Limitations and Future Directions 

We have shown that chunking might play a significant role in early word segmentation by 

comparing our new chunking-based segmentation model CLASSIC-UB to two other 

influential models (transitional probability, PUDDLE). However, there are additional models 

we have not considered. One important class of Bayesian models assumes that infants 

formulate hypotheses on the possible segmentations of utterances, ultimately preferring those 

segmentations that contain few frequent and short chunks (e.g., Goldwater et al., 2006; 2009). 

Another account is that infants form chunks based on both frequency and transitional 

probabilities (forward and backward) of syllable sequences (i.e., mutual information-based 

clustering; Swingley, 2005). Given that these accounts are primarily driven by frequency 

information, future comparisons to CLASSIC-UB are important to support our conclusion 

that phonological overlap between sequences plays a role in the segmentation process in 

addition to frequency. Such comparisons would also be important because one influence does 

not exclude the other. As argued above, CLASSIC-UB’s encoding efficiency uniquely 

increases when items become connected to others: i.e., the more opportunities to chunk 

sublexical items the faster lexical representations are formed. However, once CLASSIC-UB 

has extracted a word representation from the input, it could further benefit from tracking its 

frequency in the input (e.g., see Jones, Justice et al., 2020 on how a frequency-tracking 

mechanism might improve CLASSIC’s performance). 

Moreover, it is highly likely that early naturalistic segmentation involves the use of a 

combination of cues. Indeed, the results of this study indicate that chunking alone might not 

be enough to discover items that are very long (Figure 3), occur very infrequently (Figure 4), 

receive no facilitation from word neighbors (Figure 5) and are made up of improbable 

sequences of sounds (Figure 6). This suggests that CLASSIC-UB might need to have access 

to additional cues to word boundary to be able to account for children’s ability to learn these 
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words. We know that infants use a wide range of cues when segmenting speech, such as 

prosodic salience of phrase edges (Gout at al., 2004), alternative ways to pronounce specific 

phonemes (i.e., allophonic variation; Hohne & Jusczyk, 1994), stress patterns (Jusczyk et al., 

1999), degree of coarticulation of speech sounds (Johnson & Jusczyk, 2001) and others. Such 

cues could be considered in future work. 

An alternative (and non-mutually exclusive) possibility is that long, infrequent items 

with few neighbors might be learned via generalization of linguistic structures at different 

levels (e.g., syntactic, Lippeveld & Oshima-Takane, 2020). For example, in Abend et al. 

(2017) an ideal Bayesian learner performed one-shot learning (i.e., formation of new word 

representations from a single exposure) by leveraging the mapping of words to their syntactic 

categories. Examining the role of syntactic categories would be important in future work as 

evidence shows that infants’ development of grammatical knowledge starts in parallel with 

the acquisition of phonology and the lexicon (e.g., Marino et al., 2020). 

Aside from our focus on a single word segmentation cue, another limitation is that we 

have not considered the models’ ability to capture the role of additional factors in word 

segmentation and learning. For example, Swingley and Humphrey (2018) showed that word 

concreteness, word frequency in isolation (i.e., frequency with which a word occurs in a 

single-word utterance), and syntactic category predict word learning at 12 and 15 months. 

These predictors could be included in the statistical models of age of acquisition/production – 

alongside our word-level predictors - to see how they moderate models’ accuracy (i.e., 

number of correct word segmentations). Alternatively, our word-level evaluation measure 

could be extended to examine whether segmentation models can capture the distributions of 

these additional word-level features in children’s vocabularies. We would expect models to 

better capture characteristics they are sensitive to (e.g., it is likely that chunking models 

would show sensitivity to word frequency in isolation, Kurumada et al., 2013).  
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Moreover, including these additional factors would be important because they 

differently impacted word comprehension and production in Swingley and Humphrey (2018): 

word concreteness only predicted word comprehension, and the effect of word frequency in 

isolation was moderated by syntactic category type only in word comprehension. Although 

we have highlighted limitations in using comprehension measures to investigate how well 

segmentation models perform, methods that look at comprehension and production should be 

considered complementary. Comparing comprehension and production would also allow us 

to test the extent to which CLASSIC-UB captures processes that are uniquely involved in 

production (such as recall and articulation).  

We would also like to highlight limitations deriving from the use of phoneme-based 

input adopted in the current study. The models did not have to deal with the complex problem 

of gradually abstracting phonological categories. Under an early phonetic learning approach 

(e.g., Werker, 2018), infants have to learn the relations between different realizations of 

phonemes based on contextual variation or lexical contrast (e.g., aspirated stops and 

unreleased stops are allophones of the phoneme /t/). Addressing this limitation in future work 

is important to increase the developmental plausibility of the investigations. Alternatively, 

under more recent approaches, the goal of infant speech perception may not be learning 

discrete phonetic categories, but instead representing continuous dimensions of raw speech 

(e.g., spectral energy) that are relevant to the native language (i.e., perceptual space learning; 

Feldman et al., 2021; McMurray, 2022). This implies that future work would need to 

consider more gradient units of speech perception. For example, recent work by Schatz et al. 

(2021) showed that a distributional learner can learn to discriminate phonetic contrasts by 

clustering auditory features into categories which are significantly smaller and more variable 

than traditional phonetic categories. Finally, we acknowledge that an early phonetic learning 

approach used in the present work is also in contrast with other accounts that do not assume 
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phonemes as basic units of perception, for example work that argues for gradient units 

dependent on the temporal unfolding of speech (e.g., Browman & Goldstein, 1992; Bybee, 

2001; Mowrey & Pagliuca, 1995; Port & Leary, 2005) or others that argue for features or 

morphophonemic forms (e.g., Chomsky & Halle, 1965; Postal, 1968). 

 

Conclusion 

Our goal in this paper was to test whether a chunking-based mechanism that has previously 

been successful in capturing early vocabulary learning might play a significant role in infant 

word segmentation. We constructed CLASSIC-UB, which forms chunks of phonological and 

utterance-boundary material. Our simulations make three important contributions: (1) They 

offer an existence proof that utterance boundaries carry useful information for word 

segmentation (2) Age of production and word level measures can sensibly be used to evaluate 

model performance (3) CLASSIC can be augmented to form the segmentation model 

CLASSIC-UB, consistent with the hypothesis that chunking might be an important 

mechanism in early naturalistic word segmentation. 

 

Notes 

1. For ease of exposition, the example uses IPA phonetic transcription. However, note that 

in our simulations we used a transcription based on the CMU pronouncing dictionary 

(Lenzo, 2007; see an example in Figure 1). 

2. However, CLASSIC’s encoding does not allow partial activation of chunks (unlike in 

Baayen et al., 2011). 

3. The CDI words and gestures includes 373 phonological words (not considering 

homophone duplicates) typically acquired by infants between 8 and 18 months of age. 

Our final sample comprised 330 words after filtering for those CDI words present in the 
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child-directed input the segmentation models received (i.e., CDI words that the models 

had the opportunity to learn).  

4. A discussion about the effect of sample size reduction when using the age of acquisition 

measure from the CDI can be found in the file CDI_addendum, at 

https://doi.org/10.17605/OSF.IO/KBNEP 

5. Adjusted 𝑅2 estimates cannot typically be directly compared to 𝑅2 estimates. However, 

because of our large sample size, adjusted 𝑅2 and 𝑅2 estimates and confidence intervals 

are actually identical, allowing us to compare our estimates to Larsen et al.’s (2017) 

𝑅2ones. In fact, as sample size increases expected 𝑅2 estimates become less biased 

approaching adjusted 𝑅2 unbiased estimates of the population explained variance (Karch, 

2020). 
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